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A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague*

The capacity to predict future events permits a creature to detect, model, andmanipulate
the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.

An adaptive organism must be able to
predict future events such as the presence of
mates, food, and danger. For any creature,
the features of its niche strongly constrain
the time scales for prediction that are likely
to be useful for its survival. Predictions give
an animal time to prepare behavioral reac-
tions and can be used to improve the choic-
es an animal makes in the future. This
anticipatory capacity is crucial for deciding
between alternative courses of action be-
cause some choices may lead to food where-
as others may result in injury or loss of
resources.

Experiments show that animals can pre-
dict many different aspects of their environ-
ments, including complex properties such as
the spatial locations and physical character-
istics of stimuli (1). One simple, yet useful
prediction that animals make is the proba-
ble time and magnitude of future rewarding
events. “Reward” is an operational concept
for describing the positive value that a crea-
ture ascribes to an object, a behavioral act,

or an internal physical state. The function
of reward can be described according to the
behavior elicited (2). For example, appeti-
tive or rewarding stimuli induce approach
behavior that permits an animal to con-
sume. Rewards may also play the role of
positive reinforcers where they increase the
frequency of behavioral reactions during
learning and maintain well-established ap-
petitive behaviors after learning. The re-
ward value associated with a stimulus is not
a static, intrinsic property of the stimulus.
Animals can assign different appetitive val-
ues to a stimulus as a function of their
internal states at the time the stimulus is
encountered and as a function of their ex-
perience with the stimulus.

One clear connection between reward
and prediction derives from a wide variety
of conditioning experiments (1). In these
experiments, arbitrary stimuli with no in-
trinsic reward value will function as reward-
ing stimuli after being repeatedly associated
in time with rewarding objects—these ob-
jects are one form of unconditioned stimu-
lus (US). After such associations develop,
the neutral stimuli are called conditioned
stimuli (CS). In the descriptions that fol-
low, we call the appetitive CS the sensory
cue and the US the reward. It should be
kept in mind, however, that learning that
depends on CS-US pairing takes many dif-
ferent forms and is not always dependent on
reward (for example, learning associated

with aversive stimuli). In standard condi-
tioning paradigms, the sensory cue must
consistently precede the reward in order for
an association to develop. After condition-
ing, the animal’s behavior indicates that the
sensory cue induces a prediction about the
likely time and magnitude of the reward
and tends to elicit approach behavior. It
appears that this form of learning is associ-
ated with a transfer of an appetitive or
approach-eliciting component of the re-
ward back to the sensory cue.

Some theories of reward-dependent
learning suggest that learning is driven by
the unpredictability of the reward by the
sensory cue (3, 4). One of the main ideas is
that no further learning takes place when
the reward is entirely predicted by a sensory
cue (or cues). For example, if presentation
of a light is consistently followed by food, a
rat will learn that the light predicts the
future arrival of food. If, after such training,
the light is paired with a sound and this pair
is consistently followed by food, then some-
thing unusual happens—the rat’s behavior
indicates that the light continues to predict
food, but the sound predicts nothing. This
phenomenon is called “blocking.” The pre-
diction-based explanation is that the light
fully predicts the food that arrives and the
presence of the sound adds no new predic-
tive (useful) information; therefore, no as-
sociation developed to the sound (5). It
appears therefore that learning is driven by
deviations or “errors” between the predicted
time and amount of rewards and their ac-
tual experienced times and magnitudes [but
see (4)].

Engineered systems that are designed to
optimize their actions in complex environ-
ments face the same challenges as animals,
except that the equivalent of rewards and
punishments are determined by design
goals. One established method by which
artificial systems can learn to predict is
called the temporal difference (TD) algo-
rithm (6). This algorithm was originally
inspired by behavioral data on how animals
actually learn predictions (7). Real-world
applications of TD models abound. The
predictions learned by TD methods can also
be used to implement a technique called
dynamic programming, which specifies how
a system can come to choose appropriate
actions. In this article, we review how these
computational methods provide an inter-
pretation of the activity of dopamine neu-
rons thought to mediate reward-processing
and reward-dependent learning. The con-
nection between the computational theory
and the experimental results is striking and
provides a quantitative framework for future
experiments and theories on the computa-
tional roles of ascending monoaminergic
systems (8–13).
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Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction

Reward predicted
Reward occurs

No prediction
Reward occurs

Reward predicted
No reward occurs

(No CS)

(No R)CS
-1 0 1 2 s

CS

R

R

Do dopamine neurons report an error
in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.

SCIENCE z VOL. 275 z 14 MARCH 1997 z http://www.sciencemag.org1594

 o
n 

S
ep

te
m

be
r 

8,
 2

00
9 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org


problems analogous to those faced by living
creatures (19). Temporal difference meth-
ods were introduced into the psychological
and biological literature by Richard Sutton
and Andrew Barto in the early 1980s (6, 7).
It is therefore interesting that this method
yields some insight into the output of do-
pamine neurons in primates.

There are two main assumptions in TD.
First, the computational goal of learning is
to use the sensory cues to predict a dis-
counted sum of all future rewards V(t) with-
in a learning trial:

V(t) 5 E[g0r(t) 1 g1r(t 1 1)

1 g2r(t 1 2) 1 z z z] (1)

where r(t) is the reward at time t and E[z]
denotes the expected value of the sum of
future rewards up to the end of the trial. 0 #
g # 1 is a discount factor that makes re-
wards that arrive sooner more important
than rewards that arrive later. Predicting
the sum of future rewards is an important
generalization over static conditioning
models like the Rescorla-Wagner rule for
classical conditioning (1–4). The second
main assumption is the Markovian one,
that is, the presentation of future sensory
cues and rewards depends only on the im-
mediate (current) sensory cues and not the
past sensory cues.

As explained below, the strategy is to use
a vector describing the presence of sensory
cues x(t) in the trial along with a vector of
adaptable weights w to make an estimate
V̂(t) of the true V(t). The reason that the
sensory cue is written as a vector is explained
below. The difficulty in adjusting weights w
to estimate V(t) is that the system (that is,
the animal) would have to wait to receive all
its future rewards in a trial r(t 1 1), r(t 1
2), . . . to assess its predictions. This latter
constraint would require the animal to re-
member over time which weights need
changing and which weights do not.

Fortunately, there is information avail-
able at each instant in time that can act as
a surrogate prediction error. This possibility
is implicit in the definition of V(t) because
it satisfies a condition of consistency
through time:

V(t) 5 E[r(t) 1 gV(t 1 1)] (2)

An error in the estimated predictions can
now be defined with information available
at successive time steps:

d~t) 5 r(t) 1 gV̂(t 1 1) 2 V̂(t) (3)

This d(t) is called the TD error and acts as
a surrogate prediction error signal that is
instantly available at time t 1 1. As de-
scribed below, d(t) is used to improve the
estimates of V(t) and also to choose appro-
priate actions.

Representing a stimulus through time. We
suggested above that a set of sensory cues
along with an associated set of adaptable
weights would suffice to estimate V(t) (the
discounted sum of future rewards). It is,
however, not sufficient for the representa-
tion of each sensory cue (for example, a
light) to have only one associated adaptable
weight because such a model would not
account for the data shown above—it
would not be able to represent both the
time of the cue and the time of reward
delivery. These experimental data show
that a sensory cue can predict reward deliv-
ery at arbitrary times into the near future.
This conclusion holds for both the mon-
keys’ behavior and the output of the dopa-
mine neurons. If the time of reward delivery
is changed relative to the time of cue onset,
then the same cue will come to predict the
new time of reward delivery. The way in
which such temporal labels are constructed
in neural tissue is not known, but it is clear
that they exist (20).

Given these facts, we assume that each
sensory cue consists of a vector of signals
x(t) 5 {x1(t), x2(t), z z z } that represent the
light for variable lengths of time into the
future, that is, xi(t) is 1 exactly i time steps
after the presentation of the light in the
trial and 0 otherwise (Fig. 2B). Each com-
ponent of x(t), xi(t), has its own prediction
weight wi (Fig. 2B). This representation
means that if the light comes on at time s,
x1(s 1 1) 5 1, x2(s 1 2) 5 1, . . . represent
the light at 1, 2, . . . time steps into the
future and w1, w2, . . . are the respective
weights. The net prediction for cue x(t) at
time t takes the simple linear form

V̂(t) [ V̂(x(t)) 5 Siwixi~t) (4)

This form of temporal representation is
what Sutton and Barto (7) call a complete
serial-compound stimulus and is related to
Grossberg’s spectral timing model (21).
Unfortunately, virtually nothing is known
about how the brain represents a stimulus
for substantial periods of time into the
future; therefore, all temporal representa-
tions are underconstrained from a biolog-
ical perspective.

As in trial-based models like the Res-
corla-Wagner rule, the adaptable weights w
are improved according to the correlation
between the stimulus representations and
the prediction error. The change in weights
from one trial to the next is

Dwi 5 axStxi(t)d(t) (5)

where ax is the learning rate for cue x(t)
and the sum over t is taken over the course
of a trial. It has been shown that under
certain conditions this update rule (Eq. 5)
will cause V̂(t) to converge to the true V(t)
(22). If there were many different sensory

cues, each would have its own vector rep-
resentation and its own vector of weights,
and Eq. 4 would be summed over all the
cues.

Comparing model and data.We now turn
this apparatus toward the neural and behav-
ioral data described above. To construct
and use an error signal similar to the TD
error above, a neural system would need to
possess four basic features: (i) access to a
measure of reward value r(t); (ii) a signal
measuring the temporal derivative of the
ongoing prediction of reward gV̂(t 1 1) 2
V̂(t); (iii) a site where these signals could be
summed; and (iv) delivery of the error sig-
nal to areas constructing the prediction in
such a way that it can control plasticity.

It has been previously proposed that
midbrain dopamine neurons satisfy features

Fig. 2. Constructing and using a prediction error.
(A) Interpretation of the anatomical arrangement
of inputs and outputs of the ventral tegmental area
( VTA). M1 and M2 represent two different cortical
modalities whose output is assumed to arrive at
the VTA in the form of a temporal derivative (sur-
prise signal) V̇(t), which reflects the degree to
which the current sensory state differs from the
previous sensory state. The high degree of con-
vergence forces V̇(t) to arrive at the VTA as a
scalar signal. Information about reward r(t) also
converges on the VTA. The VTA output is taken
as a simple linear sum d(t) 5 r(t) 1 V̇(t). The
widespread output connections of the VTA make
the prediction error d(t) simultaneously available to
structures constructing the predictions. (B) Tem-
poral representation of a sensory cue. A cue like a
light is represented at multiple delays xn from its
initial time of onset, and each delay is associated
with a separate adjustable weight wn. These pa-
rameterswn are adjusted according to the correla-
tion of activity xn and d and through training come
to act as predictions. This simple system stores
predictions rather than correlations.
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(i), (ii), and (iii) listed above (Fig. 2A) (8,
10, 12). As indicated in Fig. 2, the dopa-
mine neurons receive highly convergent in-
put from many brain regions. The model
represents the hypothesis that this input
arrives in the form of a surprise signal that
measures the degree to which the current
sensory state differs from the last sensory
state. We assume that the dopamine neu-
rons’ output actually reflects d(t) 1 b(t),
where b(t) is a basal firing rate (12). Figure
3 shows the training of the model on a task
where a single sensory cue predicted the
future delivery of a fixed amount of reward
20 time steps into the future. The predic-
tion error signal (top) matches the activity
of the real dopamine neurons over the
course of learning. The pattern of weights
that develops (bottom) provide the model’s
explanations for two well-described behav-
ioral effects—blocking and secondary con-
ditioning (1). The model accounts for the
behavior of the dopamine neurons in a
variety of other experiments in monkeys
(12). The model also accounts for changes
in dopaminergic activity if the time of the
reward is changed (18).

The model makes two other testable pre-
dictions: (i) in the presence of multiple
sensory cues that predict reward, the phasic

activation of the neurons will transfer to
the earliest consistent cue. (ii) After train-
ing on multiple sensory cues, omission of an
intermediate cue will be accompanied by a
phasic decrease in dopaminergic activity at
the time that the cue formerly occurred. For
example, after training a monkey on the
temporal sequence light 13light 23re-
ward, the dopamine neurons should respond
phasically only to the onset of light 1. At
this point, if light 2 is omitted on a trial, the
activity in the neurons will depress at the
time that light 2 would have occurred.

Choosing and criticizing actions. We
showed above how the dopamine signal can
be used to learn and store predictions; how-
ever, these same responses could also be
used to influence the choice of appropriate
actions through a connection with a tech-
nique called dynamic programming (23).
We discuss below the connection to dy-
namic programming.

We introduce this use with a simple
example. Suppose a rat must move through
a maze to gain food. In the hallways of the
maze, the rat has two options available to it:
go forward a step or go backward a step. At
junctions, the rat has three or four direc-
tions from which to choose. At each posi-
tion, the rat has various actions available to

it, and the action chosen will affect its
future prospects for finding its way to food.
A wrong turn at one point may not be felt
as a mistake until many steps later when the
rat runs into a dead end. How is the rat to
know which action was crucial in leading it
to the dead end? This is called the temporal
credit assignment problem: Actions at one
point in time can affect the acquisition of
rewards in the future in complicated ways.

One solution to temporal credit assign-
ment is to describe the animal as adopting
and improving a “policy” that specifies how
its actions are assigned to its states. Its state
is the collection of sensory cues associated
with each maze position. To improve a
policy, the animal requires a means to eval-
uate the value of each maze position. The
evaluation used in dynamic programming is
the amount of summed future reward ex-
pected from each maze position provided
that the animal follows its policy. The
summed future rewards expected from some
state [that is, V(t)] is exactly what the TD
method learns, suggesting a connection
with the dopamine signal.

As the rat above explores the maze, its
predictions become more accurate. The pre-
dictions are considered “correct” once the
average prediction error d(t) is 0. At this
point, fluctuations in dopaminergic activity
represent an important “economic evalua-
tion” that is broadcast to target structures:
Greater than baseline dopamine activity
means the action performed is “better than
expected” and less than baseline means
“worse than expected.” Hence, dopamine
responses provide the information to imple-
ment a simple behavioral strategy—take [or
learn to take (24)] actions correlated with
increased dopamine activity and avoid ac-
tions correlated with decreases in dopamine
activity.

A very simple such use of d(t) as an
evaluation signal for action choice is a form
of learned klinokinesis (25), choosing one
action while d(t) . 0, and choosing a new
random action if d(t) # 0. This use of d(t)
has been shown to account for bee foraging
behavior on flowers that yield variable re-
turns (9, 11). Figure 4 shows the way in
which TD methods can construct for a mo-
bile “creature” a useful map of the value of
certain actions.

A TD model was equipped with a simple
visual system (two, 200 by 200 pixel reti-
nae) and trained on three different sensory
cues (colored blocks) that differed in the
amount of reward each contained (blue .
green . red). The model had three neu-
rons, each sensitive only to the percentage
of one color in the visual field. Each color-
sensitive neuron provides input to the pre-
diction unit P (analog of VTA unit in Fig.
2) through a single weight. Dedicating only
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Fig. 3. Development of prediction
error signal through training. (Top)
Prediction error (changes in dopa-
mine neuron output) as a function of
time and trial. On each trial, a sen-
sory cue is presented at time step
10 and time step 20 followed by
reward delivery [r(t)5 1] at time step
60. On trial 0, the presentation of
the two cues causes no change be-
cause the associated weights are
initially set to 0. There is, however, a
strong positive response (increased
firing rate) at the delivery of reward
at time step 60. By repeating the
pairing of the sensory cues followed
in time by reward, the transient re-
sponse of the model shifts to the
time of the earliest sensory cue
(time step 10). Failure to deliver the
reward during an intermediate trial
causes a large negative fluctuation
in the model’s output. This would
be seen in an experiment as a
marked decrease in spike output at
the time that reward should have
been delivered. In this example, the
timing of reward delivery is learned
well before any response transfers
to the earliest sensory cue. (Bot-
tom) The value function V(t). The
weights are all initially set to 0 (trial
0). After the large prediction error
occurs on trial 0, the weights begin
to grow. Eventually they all saturate to 1 so that the only transient is the unpredicted onset of the first
sensory cue. The depression in the surface results from the error trial where the rewardwas not delivered
at the expected time.
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a single weight to each cue limits this “crea-
ture” to a one time step prediction on the
basis of its current state. After experiencing
each type of object multiple times, the
weights reflect the relative amounts of re-
ward in each object, that is, wb . wg . wr.
These three weights equip the creature with
a kind of cognitive map or “value surface”
with which to assay its possible actions (Fig.
4B).

The value surface above the arena is a
plot of the value function V(x, y) (height)
when the creature is placed in the indicated
corner and looks at every position (x, y) in
the arena. The value V(x, y) of looking at
each position (x, y) is computed as a linear
function of the weights (wb, wg, wr) associ-
ated with activity induced in the color-
sensitive units. As this “creature” changes
its direction of gaze from one position (x0,
y0) at time t to another position (x1, y1) at
time t 1 1, the difference in the values of
these two positions V(t 1 1) 2 V(t) is
available as the output d(t) of the predic-
tion neuron P. In this example, when the
creature looks from point 1 to point 2, the
percentage of blue in its visual field increas-
es. This increase is available as a positive
fluctuation (“things are better than expect-
ed”) in the output d(t) of neuron P. Simi-
larly, looking from point 2 to point 1 causes
a large negative fluctuation in d(t) (“things
are worse than expected”). As discussed
above, these fluctuations could be used by
some target structure to decide whether to
move in the direction of sight. Directions
associated with a positive prediction error
are likely to yield increased future returns.

This example illustrates how only three
stored quantities (weights associated with
each color) and the capacity to look at
different locations endow this simple “crea-
ture” with a useful map of the quality of
different directions in the arena. This same
model has been given simple card-choice
tasks analogous to those given to humans
(26), and the model matches well the hu-
man behavior. It is also interesting that
humans develop a predictive galvanic skin
response that predicts appropriately which
card decks are good and which are bad (26).

Summary and Future Questions

We have reviewed evidence that supports
the proposal that dopamine neurons in the
VTA and the substantia nigra report ongo-
ing prediction errors for reward. The output
of these neurons is consistent with a scalar
prediction error signal; therefore, the deliv-
ery of this signal to target structures may
influence the processing of predictions and
the choice of reward-maximizing actions.
These conclusions are supported by data on
the activity changes of these neurons during

the acquisition and expression of a range of
simple conditioning tasks. This representa-
tion of the experimental data raises a num-
ber of important issues for future work.

The first issue concerns temporal repre-
sentations, that is, how is any stimulus rep-
resented through time? A large body of
behavioral data show that animals can keep
track of the time elapsed from the presen-
tation of a CS and make precise predictions
accordingly. We adopted a very simple
model of this capacity, but experiments
have yet to suggest where or how the tem-
poral information is constructed and used
by the brain. It is not yet clear how far into
the future such predictions can be made;
however, one suspects that they will be
longer than the predictions made by struc-
tures that mediate cerebellar eyeblink con-
ditioning and motor learning displayed by
the vestibulo-ocular reflex (27). The time
scales that are ethologically important to a
particular creature should provide good
constraints when searching for mechanisms
that might construct and distribute tempo-
ral labels in the cerebral cortex.

A second issue is information about
aversive events. The experimental data sug-
gest that the dopamine system provides in-
formation about appetitive stimuli, not
aversive stimuli. It is possible however that
the absence of an expected reward is inter-
preted as a kind of “punishment” to some
other system to which the dopamine neu-
rons send their output. It would then be the

responsibility of these targets to pass out
information about the degree to which the
nondelivery of reward was “punishing.” It
was long ago proposed that rewards and
punishments represent opponent processes
and that the dynamics of opponency might
be responsible for many puzzling effects in
conditioning (28).

A third issue raised by the model is the
relation between scalar signals of appetitive
values and vector signals with many com-
ponents, including those that represent pri-
mary rewards and predictive stimuli. Simple
models like the one presented above may be
able to learn with a scalar signal only if the
scope of choices is limited. Behavior in
more realistic environmental situations re-
quires vector signaling of the type of re-
wards and of the various physical compo-
nents of the predictive stimuli. Without the
capacity to discriminate which stimuli are
responsible for fluctuations in a broadcast
scalar error signal, an agent may learn in-
appropriately, for example, it may learn to
approach food when it is actually thirsty.

Dopamine neurons emit an excellent ap-
petitive error (teaching) signal without in-
dicating further details about the appetitive
event. It is therefore likely that other re-
ward-processing structures subserve the
analysis and discrimination of appetitive
events without constituting particularly ef-
ficient teaching signals. This putative divi-
sion of labor between the analysis of phys-
ical and functional attributes and scalar

Fig. 4. Simple cognitive maps can
be easily built and used. (A) Archi-
tecture of the TD model. Three col-
or-sensitive units (b, g, r) report, re-
spectively, the percentage of blue,
green, and red in the visual field.
Each unit influences neuron P ( VTA
analog) through a single weight.
The colored blocks contain varying
amounts of reward with blue
. green . red. After training, the
weights (wb, wg, wr) reflect this dif-
ference in reward content. Using
only a single weight for each senso-
ry cue, the model can make only
one-time step predictions; howev-
er, combined with its capacity to
move its head or walk about the
arena, a crude “value-map” is avail-
able in the output d(t) of neuron P.
(B) Value surface for the arena
when the creature is positioned in
the corner as indicated. The height
of the surface codes for the value
V(x, y) of each location when viewed
from the corner where the “crea-
ture” is positioned. All the creature
needs to do is look from one loca-
tion to another (or move from one
position to another), and the differences in value V(t1 1)2 V(t) are coded in the changes in the firing rate
of P (see text).
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evaluation signals raises a fourth issue—
attention.

The model does not address the atten-
tional functions of some of the innervated
structures, such as the nucleus accumbens
and the frontal cortex. Evidence suggests
that these structures are important for cases
in which different amounts of attention are
paid to different stimuli. There is, however,
evidence to suggest that the required atten-
tional mechanisms might also operate at
the level of the dopamine neurons. Their
responses to novel stimuli will decrement
with repeated presentation and they will
generalize their responses to nonappetitive
stimuli that are physically similar to appet-
itive stimuli (29). In general, questions
about attentional effects in dopaminergic
systems are ripe for future work.

The suggestions that a scalar prediction-
error signal influences behavioral choices
receives support from the preliminary work
on human decision-making and from the
fact that changes in dopamine activity fluc-
tuations parallel changes in the behavioral
performance of the monkeys (30). In the
mammalian brain, the striatum is one site
where this kind of scalar evaluation could
have a direct effect on action choice, and
activity relating to conditioned stimuli is
seen in the striatum (31). The widespread
projection of dopamine axons to striatal
neurons gives rise to synapses at dendritic
spines that are also contacted by excitatory
inputs from cortex (32). This may be a site
where the dopamine signal influences be-
havioral choices by modulating the level of
competition in the dorsal striatum. Phasic
dopamine signals may lead to an augmen-
tation of excitatory influences in the stria-
tum (33), and there is evidence for striatal
plasticity after pulsatile application of do-
pamine (34). Plasticity could mediate the
learning of appropriate policies (24).

The possibilities in the striatum for using
a scalar evaluation signal carried by changes
in dopamine delivery are complemented by
interesting possibilities in the cerebral cor-
tex. In prefrontal cortex, dopamine delivery
has a dramatic influence on working mem-
ory (35). Dopamine also modulates cogni-
tive activation of anterior cingulate cortex
in schizophenic patients (36). Clearly, do-
pamine delivery has important cognitive
consequences at the level of the cerebral
cortex. Under the model presented here,
changes in dopaminergic activity distribute
prediction errors to widespread target struc-
tures. It seems reasonable to require that the
prediction errors be delivered primarily to
those regions most responsible for making
the predictions; otherwise, one cortical re-
gion would have to deal with prediction
errors engendered by the bad guesses of
another region. From this point of view,

one could expect there to be a mechanism
that coupled local activity in the cortex to
an enhanced sensitivity of nearby dopamine
terminals to differences from baseline in
spike production along their parent axon.
There is experimental evidence that sup-
ports this possibility (37).

Neuromodulatory systems like dopamine
systems are so named because they were
thought to modulate global states of the
brain at time scales and temporal resolu-
tions much poorer than other systems like
fast glutamatergic connections. Although
this global modulation function may be ac-
curate, the work discussed here shows that
neuromodulatory systems may also deliver
precisely timed information to specific tar-
get structures to influence a number of im-
portant cognitive functions.
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Language Acquisition and Use:
Learning and Applying
Probabilistic Constraints

Mark S. Seidenberg

What kinds of knowledge underlie the use of language and how is this knowledge ac-
quired? Linguists equate knowing a language with knowing a grammar. Classic “poverty
of the stimulus” arguments suggest that grammar identification is an intractable inductive
problem and that acquisition is possible only because children possess innate knowledge
of grammatical structure. An alternative view is emerging from studies of statistical and
probabilistic aspects of language, connectionist models, and the learning capacities of
infants. This approach emphasizes continuity between how language is acquired and how
it is used. It retains the idea that innate capacities constrain language learning, but calls
into question whether they include knowledge of grammatical structure.

Modern thinking about language has been
dominated by the views of Noam Chomsky,
who created the generative paradigm with-
in which most research has been conducted
for over 30 years (1). This approach con-
tinues to flourish (2), and although alterna-
tive theories exist, they typically share
Chomsky’s assumptions about the nature of
language and the goals of linguistic theory
(3). Research on language has arrived at a
particularly interesting point, however, be-
cause of important developments outside of
the linguistic mainstream that are converg-
ing on a different view of the nature of
language. These developments represent an
important turn of events in the history of
ideas about language.

The Standard Theory

The place to begin is with Chomsky’s clas-
sic questions (4): (i) what constitutes
knowledge of a language, (ii) how is this
knowledge acquired, and (iii) how is it put

to use? The standard theory provides the
following answers (1–5).

In answer to the first question, what one
knows is a grammar, a complex system of
rules and constraints that allows people to
distinguish grammatical from ungrammati-
cal sentences. The grammar is an idealiza-
tion that abstracts away from a variety of
so-called performance factors related to lan-
guage use. The Competence Hypothesis is
that this idealization will facilitate the iden-
tification of generalizations about linguistic
knowledge that lie beneath overt behavior,
which is affected by many other factors.
Many phenomena that are prominent char-
acteristics of language use are therefore set
aside. The clear cases that are often cited in
separating competence from performance
include dysfluencies and errors. In practice,
however, the competence theory also ex-
cludes other factors that affect language use,
including the nature of the perceptual and
motor systems that are used; memory capac-
ities that limit the complexity of utterances

that can be produced or understood; and
reasoning capacities used in comprehending
text or discourse. The competence theory
also excludes information about statistical
and probabilistic aspects of language—for
example, the fact that verbs differ in how
often they occur in transitive and intransi-
tive sentences (“John ate the candy” versus
“John ate,” respectively), or the fact that
when the subject of the verb “break” is
animate, it is typically the agent of the
action, but when it is inanimate, it is typi-
cally the entity being broken (compare
“John broke the glass” with “The glass
broke”). That this information should be
excluded was the point of Chomsky’s fa-
mous sentence “Colorless green ideas sleep
furiously” and the accompanying observa-
tion that, “I think that we are forced to
conclude that . . . probabilistic models give
no particular insight into some of the basic
problems of syntactic structure” (6). Finally,
the competence theory also disregards the
communicative functions of language and
how they are achieved. These aspects of
language are acknowledged as important
but considered separable from core gram-
matical knowledge.

The grammar’s essential properties in-
clude generativity (it can be used to pro-
duce and comprehend an essentially infi-
nite number of sentences); abstractness of
structure (it uses representations that are
not overtly marked in the surface forms of
utterances); modularity (the grammar is or-
ganized into components with different
types of representations governed by differ-
ent principles); and domain specificity (lan-
guage exhibits properties that are not seen
in other aspects of cognition; therefore, it
cannot be an expression of general capaci-
ties to think and to learn).

The second question regarding language
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