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In Chap. 9 we introduced calcium ions and alluded to their crucial role in regulating the
day-to-day life of neurons. The dynamics of the free intracellular calcium is controlled by
anumber of physical and chemical processes, foremost among them diffiusion and binding
to a host of different proteins, which serve as calcium buffers and as calcium sensors or
triggers. Whereas buffers simply bind Ca?* above some critical concentration, releasing it
back into the cytoplasm when [Ca®*]; has been reduced below this level, certain proteins—
such as calmodulin—change their conformation when they bind with Ca* ions, thereby
activating or modulating enzymes, ionic channels, or other proteins.

The calcium concentration inside the cell not only determines the degree of activation
of calcium-dependent potassium currents but—much more importantly—is relevant for
determining the changes in structure expressed in synaptic plasticity. As discussed in
Chap. 13, it is these changes that are thought to underlie learning. Given the relevance of
second messenger molecules, such as Ca’*t, IP;, cyclic AMP and others, for the processes
underlying growth, sensory adaptation, and the establishment and maintenance of synaptic
plasticity, itis crucial that we have some understanding of the role that diffusion and chemical
kinetics play in governing the behavior of these substances,

Today, we have unprecedented access to the spatio-temporal dynamics of intracellular
calcium in individual neurons using fluorescent calcium dyes, such as fura-2 or fluo-3,
in combination with confocal or two-photon microscopy in the visible or in the infrared
spectrum (Tsien, 1988; Tank et al., 1988; Hernandez-Cruz, Sala, and Adams, 1990: Ghosh
and Greenberg, 1995). The data gleaned from these methods of directly visualizing calcium
in the dendritic tree, cell body, and presynaptic terminals are quantitative enough to allow
detailed comparison with numerical models, commencing with the work of Hodgkin and his
colleagues in the squid axon (Blaustein and Hodgkin, 1969; Baker, Hodgkin, and Ridgway,
1971) and continuing with the study of calcium transients in the presynaptic terminal (Llinds,
Steinberg and Walton, 1981a.b; Zucker and Stockbridge, 1983; Stockbridge and Moore,
1984; Simon and Llinds, 1985; Zucker and Fogelson, 1986: Parnas, Hovav, and Parnas,
1989; Yamada and Zucker, 1992) as well as in dendrites, cell bodies and spines (Connor and

Nikolakopoulou, 1982: Gamble and Koch, 1987; Sala and Heméndez-Cruz, 1990; Holmes
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and Levy, 1990; Carnevale and Rosenthal, 1992; Zador and Koch, 1994: DeSchutter and
Bower, 1994a,b; DeSchutter and Smolen, 1998: Borg-Graham, 1998; Yamada, Koch, and
Adams, 1998).

In this chapter, we study the physics of diffusion and buffering, dwelling at some length
on the fundamental limitations imposed by physics on how fast substances can diffuse.
We will develop certain analogies between the reaction-diffusion equation and the cable
equation and discuss the potential relevance of these processes for information processing
and computation. While these results apply to any substance diffusing inside cells and
binding to other molecules, we will focus on Ca’* ions, given their crucial role in the day-to-
day life of neurons and, in fact, in all cells. The control and regulation of calcium in neuronal
structures is a vast subject, which we can only briefly hint at. For more details on calcium
signaling in neurons the reader is urged to consult Hille’s monograph (1992), the articles by
Ghosh and Greenberg (1995) and by Clapham (1995), or the insightful Meyer and Stryer
(1991) review. Finally, for the computational methods, consult DeSchutter and Smolen
(1998). We end by discussing some general aspects of information processing using calcium.

Let us commence by deriving the diffusion equation that underlies the distribution of
ions inside and outside cells.

11.1 Diffusion Equation

Historically, the diffusion equation was first derived from a macroscopic, deterministic point
of view by Fick (1855), who postulated a force arising between molecules proportional to
their concentration difference. Although such a phenomenological approach does lead to
the correct equation, we now know that no such force exists. Instead, diffusion is due to the
constant agitation of molecules arising from their thermal energy. The physically correct
probabilistic interpretation of this Brownian motion was advanced by Einstein (1905), who
used the theory of random walk. Because of the simplicity and elegance of his arguments,
we will develop here a heuristic derivation of the diffusion equation using this stochastic
perspective,

11.1.1 Random Walk Model of Diffusion
The starting point of the molecular theory of heat is that molecules and small particles at the
absolute temperature T' have, on average, a kinetic energy kT'/2 associated with movement
along each dimension. The resulting velocities of these particles in solution do not allow
them to travel very far since they collide within picoseconds with other molecules, changing
their direction of travel as a result. This incessant and random agitation of molecules due
to thermal energy is the basis of diffusion.

Imagine a particle moving along an one-dimensional line. Both space and time are
discretized, such that the particle can only be at locations =m Ax, where m is an integer.
Each time step Ar, the particle can move either with 50% probability to the right or with
50% probability to the left, in both cases by the amount Ax. The particle cannot remain in
place or move by more than Ax. Finally, we assume that the particle has no memory of any
locations it has previously visited.

These rules allow us to define a probability distribution p(x, ¢) that the particle will be
at position x at time 7. The only way the particle could have arrived at position x is if it was
at either one of the two adjacent positions in the previous time step. That is,
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1
p(x,t):5(p(x#Ax,t—Az)+p(x+Ax,t—At)) . (11.1)

Subtracting p(x, t — At) from both sides as well as dividing by At yields
plx, 1) = plx,1 — A _
At B

(Ax)? p(x — Ax,t — At) — 2p(x,t — At) + p(x + Ax, 1 — A1)
2AL (Ax)?
The left-hand side of this equation is nothing but the first-order approximation of the first
temporal derivative of p, while the term on the right-hand side corresponds to the second-
order approximation of the second spatial derivative of p(x,t — At). In the limit as Ax
and At approach zero in such a way that

(Ax)*
=D (11.3)
2AL

converges toward a finite constant (with units of cm¥/sec), we end up with the partial
differential diffusion equation

(11.2)

ap(x, 1) 3 p(x, 1)
=D .
dat Ax?
It describes how the probability function p(x, t) evolves over time and is also known under
the generic name of Fokker-Planck equation. We will reencounter this class of equations
in Chap. 15.
The simplest interpretation of diffusion can be given if the single particle is replaced by
a cloud of N independently moving particles that all start off at the origin, x = 0. What
is the expected mean position of this cloud of particles and the variance around this mean
position? According to our simple model, x;(¢) for particle i at time t = nAt can only
differ from the previous position by +Ax,

xi(nAt) = x;((n — 1)At) = Ax. (11.5)

(11.4)

The average position of the cloud, {x(nAt)), at time # At is given by summing over all the
individual particles,

N N
(x(nAl)) = ;Ex,-(nm) = —]—L—glxi((n — A1) + Ax]. (11.6)

Since we assumed earlier that each particle has an equal chance of moving to the left
or to the right (and that no boundaries impede the motion of the particles), the last term
in brackets averages zero for large numbers of particles. This equation then tells us that
the mean position of the cloud at time nAt does not change from its previous position,
{(x(nAD) = (x((n — 1)At)). If the cloud starts off at the origin, we conclude that the
average location of the cloud will never move,

(x(nAn) =0. (11.7)

If we incorporate a systematic drift into the motion of the particles, for instance, by applying
an electric field that imposes a preferred direction of motion (assuming that the moving
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particle is charged), this result will have to be modified. However, in the absence of such a
bias, the cloud will remain centered at the origin.

How much does the cloud spread out over time? As anybody can observe when placing
a drop of ink into a water glass, at first a small part of the water is stained an intense blue,
Later on, the spot of blue becomes less intense and larger, dispersing eventually throughout

the entire glass. One measure of this spreading is the variance of the mean position of the
cloud. This is defined as

1 N
(x(nA1)?) = v ; x; (nAr)?

(11.8)
N
= %Z[xi((n — DAD? £ 2Ax - x;((n — 1)Ax) 4 (Ax)?]

i=1
(we here used Eq. 11.5). Because the random walk is unbiased, the second term in this
equation will be zero on average, resulting in

(X(mAD?) = (x((n — DHAD?) + (Ax)2. (11.9)

We can, of course, recursively apply the same decomposition for {x((n — I)At)z), ending
up in n steps with {x(0)2). Since the entire population started out at the origin, this last
term in zero. Setting f = n At and remembering that (Ax)?/(2Af) = D, we conclude

(x(t)*) = 2Dr . (11.10)

Thus, while the mean position of the cloud does not move, the variance or width of the
cloud increases linearly with time and its standard deviation as the square root of time.
Interpreted in terms of single particles, Eq. 11.7 implies that the mean position of a single
particle does not change while the probability of finding it at larger and larger distances
from the origin increases as the square root of time (Eq. 11.10).

11.1.2 Diffusion in Two or Three Dimensions
The same concept can be applied to the motion of a particle in more than one dimension. As
long as the motion along the x direction is independent of the motion in the y direction, the

variance of motion in the plane is the sum of the variances of motion in the two independent
directions,

(r(0?) = (x(1)%) + (y()*) = 4Dr . (11.11)

A computer simulation of such a random walk is illustrated in Fig. 11.1. Given the square-
root relationship between time and distance traversed, it is possible for the particle to explore
short distances much more thoroughly than large distances. Thus, the typical pattern evident
in Fig. 11.1: the particle tends to return to the same region many times before eventually
wandering away. When it does move away, it blindly chooses another region to explore,
with no regard for whether or not it had previously visited that area. This reflects the fact
that the particle does not move down any gradient in response to a “diffusive” force as
postulated by Fick (1855), but acts in a probabilistic manner to spread over the available
space; its tracks do not uniformly fill up the available space. For a particle diffusing in three
dimensions, exactly the same principle applies, except that now

i 1,
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Fig. 11.1 DIFFusioN oF A PARTICLE IN THE PLANE Computer simulation of a single particle
executing a random walk on a rectangular grid. At each point in time, it has a probability of 0.25 of
moving in any one of four directions. In the limit of an infinitesimally fine grid, this approximates
diffusion in a plane. The particle started at the center and after 5000 iterations ended up at the lower
left corner. The radii of the four circles correspond to the variance in the locations of the particle after
500, 1000, 2000, and 4000 iterations. The expected time-averaged location of the particle is always
at the center of the bull’s eye.

r)?) = (x(O?) + ()% + {z(1)?) = 6Dt . (11.12)

The random walk approach to diffusion has been very fruitful in mathematical physics. It
is straightforward to derive equations corresponding to particles moving down a gradient
caused, for instance, by an applied electric field, or if the space the particle moves in
has absorbing or reflecting boundaries such as a membrane. For more details on the
mathematics of random walk see the idiosyncratic, but immensely informative, monograph
by Mandelbrot (1977); for a delightful text on the use of random walk techniques to describe
the motion of bacteria and other small organisms see Berg (1983).

11.1.3 Diffusion Coefficient

In the above, we assumed—see Eq. 11.3—that D is purely dictated by the temporal and
spatial discretization steps. However, for real particles in solution—where gravity can be
neglected— D must clearly depend on certain physical attributes of the particles themselves
as well as on properties of the solution. What precisely determines [ and how large is it
for real ions, such as Ca®", and big molecules, such as calmodulin which binds free Ca?t
in neurons?

Einstein (1905), arguing that diffusion is thermal agitation of particles opposed by
friction, derived a general relationship between diffusion and friction. For particles that
can be approximated as spheres much larger than the size of individual water molecules
(which are on the order of 1 A), D is determined by the Einstein-Stokes relation as
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kT
D=
6 nrg

where ry is the radius of the diffusing particle and 1 the viscosity of water. The proportion-
ality of D to the absolute temperature 7' simply reflects the thermal origin of diffusion. For
room temperature (20° C), this equation reduces to D = o /rs,witha = 2.15 um?/msec
and the radius rg specified in units of angstrom (A). (For a very thorough discussion of
this, see Hille, 1992)) The diffusion coefficient is usually specified in cmzlsec; however,
we will adopt units more convenient to neuronal structures and measure [ in units of
um?/msec.

The Einstein-Stokes relationship—based on classical hydrodynamics— is accurate for
large particles, but works less well for small ions. For instance, for the 0.99 A radius calcium
ion, D should be 2.14 um?/msec but is, in fact, 0.6 um?/msec (Blaustein and Hodgkin,
1969). This mismatch is partially caused by the formation of a hydration shell around the
ion, that is, water molecules that lie in direct contact with each ion in solution. For larger
and heavier molecules, this is less of a consideration and their radius can be thought of as

(11.13)

medium characteristic of the intracellular cytoplasm.

11.2 Solutions to the Diffusion Equation

Before we discuss the impulse response or Green’s function of the diffusion equation,
let us sketch out its macroscopic phenomenological derivation. The mathematical theory
of diffusion in an 1sotropic milieu is based on the simplest phenomenological expression
possible—also called Fick’s first law of diffusion (Fick, 1855)—that the rate of transfer
S(x, 7) of a diffusing substance across a surface of unit area (also called the flux; Eq. 9.2)
is proportional to the concentration gradient measured normal to the surface,

dC(x,t)

t)=-D
S(x, 1) o

(11.14)

TABLE 11.1
Diffusion Coefficients

Ion or molecule | Diffusion coefficient

H+ | 9.31
NO | 3.82
Nat | 1.33!
K+t | 1.96!
Ca’t | 0.6
IP; 0.24
Calmodulin 0.13
CaM kinase I1 0.034
1

Diffusion coefficients in an aqueous environment for different ions and second

messenger molecules in units of 10~ ¢m /sec, that is pm?/msec.

! Table 10.1 in Hille (1992).

2 In rat cortex: Meulemans (1994); see also Wise and Houghton (1968),
3 Blaustein and Hodgkin (1969).
4 Allbritton, Meyer, and Stryer (1992).
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where D is the constant of proportionality and the minus sign arises because diffusion
oceurs against a concentration increase. Since the amount of substance diffusing across the
boundary is proportional to the area of the boundary, the diffusion coefficient has dimensions
of pum?/msec.

Because this amount corresponds to a particular number of molecules diffusing, we refer
to it using the colloguial, but entirely appropriate, term s#uff for lack of a more specific term
and express it in units of gram molecules or moles (mol) while the concentration C is given
in molars (M), that is moles of molecules per liter.! The extracellular concentration of Ca>*
ions is about 2 mM, while its intracellular concentration at rest is around 10 to 20 nM, a
difference of five orders of magnitude.

Consider acylindrical cable where the concentration C only varies along the x dimension,
reducing the problem of solving the diffusion equation from three dimensions to one. The
justification of this is identical to the one we made for one-dimensional cable theory in
Chap. 2, namely, that the radius of the cylinder is much shorter than its length and that the
equilibrium time for radial diffusion is short compared to longitudinal diffusion.

If the concentration inside a compartment centered at x and with boundaries at x +Ax and
x — Ax (Fig. 11.2) varies by dC/d1, the change in the amount of stuff in this compartment
is given by

Axmd? 9C (x, )
2 a

This change should be identical to the net rate of transfer across one boundary minus the
rate of transfer across the other,

zd?

(11.15)

—4—(S(x—Ax,t)—S(x—i—Ax,r)). (11.16)

Setting these two expressions equal leads to
dC(x,1)  S(x—Ax,1) — S(x + Ax, t)
o 2Ax '
In the limit of an infinitesimally small interval (Ax — 0), the expression S(x + Ax, ) —
S(x — Ax, t) converges to 2Ax 3S(x, 1)/dx. Applying Eq. 11.14 we arrive once again at
the diffusion equation

9

Fig. 11.2 Dirrusion IN A CYLINDER  Diffusion of some substance into and out of a cylindrical
compartment with boundaries at x — Ax and x + Ax. §(x, t) corresponds to the rate of transfer across
the cross section of area wd2/4, and C(x, t) corresponds to the concentration. As in one-dimensional
cable theory, under certain conditions the three-dimensional diffusion equation can be reduced to a
one-dimensional one.

(11.17)

S(x-Ax,t)

—

X-AX X+AX

1. To remind the reader, one mole of water, that is, 18 grams molecules, corresponds to 6.023 x 10% H,0 molecules. Its
concentration is 1000 grams per liter divided by 18 grams per mole, that is 55 M.
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dC(x, 1) FC(x,1)
=D .
at dx?
This is a linear partial differential equation of the parabolic type, with a unique solution if
both an initial and a boundary condition are specified. We wish to point out already here,

although we will not exploit this similarity until Sec. 11.7, that Eq. 11.18 is isomorphic to
the linear cable equation (Eq. 2.7) if r,, — oo (Fig. 11.3).

(11.18)

11.2.1 Steady-State Solution for an Infinite Cable

What is the steady-state behavior of the diffusion equation? If, in analogy with the cable
equation, we “clamp” the concentration at the origin C(x = 0, t) for all times to a fixed
value Cy, Eq. 11.18 reduces to an ordinary differential equation,

d*C(x) .
o =0 (11.19)

Its solution for an infinite cable is C(x) = Cy for all values of x. After enough time has
passed, the concentration in the entire cable rises to the concentration at the origin. This
behavior is in marked contrast to the exponential decay of the potential in response to a

current step (Eq. 2.12) and is a consequence of the fact that none of the diffusing substance
“leaks” out across the walls of the cylinder.

11.2.2 Time-Dependent Solution for an Infinite Cable
The simplest time-dependent solution is the one for the concentration change along an
infinite one-dimensional cable if an amout So of calcium ions is injected instantaneously

Fig. 11.3 EQUIVALENT ELECTRICAL CIRCUIT ASSOCIATED WITH THE DIFFUSION EQUATION
Lumped electrical circuit representation associated with the diffusion of a substance in an elongated
fiber. The input here is defined as 2Jc,/ Fd, where d is the diameter of the process, F is Faraday’s
constant, and Ic, is the calcium current flowing across the membrane. With the membrane capacity
¢m setto 1 and r, = 1/D, this circuit can be mapped onto the lumped electrical circuit approximating
the cable equation (Fig. 2.3) in the absence of any membrane conductance (that is, r,, — 00). As we
will show in Sec. 11.7, this analogy to the cable equation can be extended to the presence of a fast
buffer and ionic pumps in the membrane. In the limit of infinitely small mesh size, the solution to this
circuit approximates the continuous diffusion equation (Eq. 11.18),
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into the cylinder at x = 0. We can show by simple differentiation that the resulting spatio-
temporal evolution of C is given by

S0 1 5
V2m 2Dt

The associated concentration profile is plotted in Fig. 11.4 for different values of 7 and
X. In comparing this function with the impulse response function of the infinite, passive
cable (Eq. 2.31 and Fig. 2.6), we notice the absence of an e™' term (caused by the lack
of a finite, membrane leak conductance for the diffusion equation). As a consequence, the
total amount of substance is conserved, f Cs(x,t)dx = §p, at all times r. The absence
of this exponential causes the Green’s function for the diffusion equation to decay less
rapidly than the corresponding Green’s function for the cable equation. In particular, and
not surprisingly, given our earlier result concerning the variance in the mean position of a
cloud of randomly moving particles, the variance of the impulse response function increases
linearly with time. We expand upon this point in the following section.

Cslx. 1) = (11.20)

11.2.3 Square-Root Relationship of Diffusion
For any fixed time 7, Eq. 11.20 can be expressed as a Gaussian, as can be seen upon
inspection of Fig. 11.4A,

So 22
Cs(x,0) = e 2’ (11.21)
o2
with
o =~2Dt. (11.22)

The variance of the Gaussian increases linearly with ¢, or the standard deviation increases
with the square root of time. This has important consequences.

Let us consider the concentration in a semi-infinite cylinder, where the concentration at
one end is held fixed: C(x = 0,¢) = Cj for all times. In the case of the cable equation,
this would be equivalent to clamping the voltage at one end of the cable. We can solve for
C(x, t) directly by using either Fourier or Laplace transforms (Crank, 1975),

X

C(x,0) = Cyerfc (—) (11.23)

o2

where erfc(x) is the complementary error function defined as

2 oo
erfc(z) = ——f e dy 11.24
(2) 7= _ (11.24)
with erfc(0) = 1. The propagation of this concentration increase along the cylinder—

illustrated in Fig. 11.5—involves only the dimensionless parameter x /(o +/2). Due to the
square-root relationship between o and 1, it follows that the time required for any location
to reach a given concentration is proportional to the square of the distance. If we ask at what
time 71 /2(x) the concentration at x reaches half of the source concentration, that is, Cy /2,
we solve for 1 in Eq. 11.23, with its left-hand side set to Cy/2. By consulting tables for the
error function (such as in Crank, 1975), we see that erfc(0.5) A2 1/2 within a few percent.
In other words, x /(2,/Dt,2) = 1/2, or

=
2

[f/z"’\’vB. (11.25)
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t (msec)

Fig. 11.4 ImPULSE RESPONSE OF THE DIFFuUsioN EQUATION IN AN INFINITE CABLE Concen-
tration C;(x. t) in an infinite cylinder in response to an instantaneous injection of substance at ¢t = 0
at the origin x = 0 as a function of space (A) or time (B; see Eq. 11.20). This Green’s function decays
more slowly than the Green’s function of the linear cable equation (Eq. 2.31). As is clear from panel
A, for any fixed time r the impulse response function can be described as a Gaussian, whose variance
increases linearly with time.

Note that the approximation only involves the numerical factor in front of the square. We
can reformulate this equation by stating that for a given duration ¢ from the onset of the
concentration step, the distance x;; at which the concentration has reached half of its peak
value is given by

X1~ NDi (11.26)
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Fig. 11.5 THE SQUARE-ROOT Law
OF DIFFusioN At = 0, the cal-
cium concentration at the origin of
a semi-infinite cable is clamped to
Co. (A) Evolving concentration pro-
file along the cable. (B) As time goes
by, the concentration throughout the
cable slowly rises to €y (different
from the solution of the cable equa-
tion). At any one instance, we can
ask at what location x; ;2 along the
cable the concentration first reaches
Cu/2 (dashed line). This relationship,
shown in (C), is a square-root one.
It takes four times as long to diffuse
twice the distance (Eq. 11.26). This
imposes a fundamental physical con-
straint on how fast any substance can
diffuse in one or more spatial dimen-
sions.

In three-dimensional space, the right-hand side needs to be multiplied by +/3 (as in
Eq. 11.12). If considering diffusion of ions within the porous and highly restricted ex-
tracellular space, further adjustments are necessary (see Sec. 20.2).

As an example, let us assume that the concentration of calcium at one end of a one-
dimensional cylinder is clamped to 1 #M . Assuming that no buffer impedes the diffusion of
the calcium jons along the cable (and that Dc¢, = 0.6 um?/msec), a calcium front—defined

here as the time at which the concentration at any one locat
down the cylinder takes about 1 msec to cover the firs

ionfirstreaches 0.5 u M —moving
t 0.77 pm, 10 msec to propagate

PN 7 NS S -

" O o~

Zi



bot Law
, the cal-
origin of

3 (as in
ficted ex-

pf a one-
Fffusion of
defined
—moving
propagate

11.3 Electrodiffusion and the Nernst-Planck Equation e 259

2.5 pm away from the origin and has traveled only 7.7 pm after 100 msec (Fig. 11.5). In
neuronal tissues, these times are considerably further reduced due to the binding of calcium
to intracellular buffers (Sec. 11.4).

The linear diffusion equation, as a member of the family of parabolic differential
equations which also includes the linear cable equation (Sec. 2.3), does not admit to any
solution C(x, 1) = C(x — vr) that propagates with fixed velocity v along the cable. This
behavior is in stark contrast to the linear relationship between distance and time for action
potentials propagating down the axon or for the wave of calcium release occurring in eggs
following fertilization, making the cells impervious to the entry of additional sperms.

The square-root behavior imposes a fundamental limitation on the time required for
concentration changes of calcium or any other intracellular messenger to affect distant sites
(in the absence of active transport systems) and is apparent everywhere. For instance, if
we keep the concentration of calcium in the shell just below the membrane of a spherical
cell constant, the center of the sphere will have reached one half the shell concentration
after about 0.044%/D msec, where d is the diameter of the sphere (in micrometers). For
additional solutions to the diffusion equation under various boundary conditions consult
Crank (1975) and the monograph by Cussler (1984).

11.3 Electrodiffusion and the Nernst-Planck Equation

In the derivation of the cable equation in the second chapter, we had assumed that the
concentration of ions does not vary along the longitudinal direction of the cable. Thus, ions
are only propelled along the cable by the voltage gradient, giving rise to the 3%V /8x? term.
In the previous section, we discussed the effective motion of ions due to diffusion, down
the concentration gradient.

In general, of course, we need to include the movement of ions caused by concentration
differences as well as by drift along the electric field. Even if a dendrite is initially at
equilibrium with respect to the spatial distribution of sodium, potassium, calcium, and
chloride ions, which are most important for fast signaling, the influx and efflux of ions across
the membrane disturb this equilibrium. This is particularly true for very small volumes,
such as thin dendrites or spines where the influx of even a moderate amount of calcium
significantly increases [Ca’*];, creating concentration gradients that propel calcium ions
down this gradient (in addition to any existing voltage gradient).

In order to account for these effects, we need to combine Fick’s law (Eq. 11.14) with
Ohm’s law, something done by Nernst (1888, 1889) as well as Planck (1890). Assuming
that the longitudinal current and ionic concentrations are uniform across the cross section
of the cylindrical dendrite or axon and that the random, diffusional motion superimposes
linearly onto the electrotonic motions of ions driven by a true “force,” we can write the
one-dimensional Nernst-Planck electrodiffusion equation (Hille, 1992),
AC(x, 1) ZgF?DyCi(x.1) 8Vi(x, 1)

dx RT ax
where [; 1 (x, t) is the axial current for the ionic species being considered (here labeled k),
74 is its valence, Dy its diffusion coefficient, R the gas constant, and F Faraday’s constant.
The z; F Dy term in front of the concentration gradient converts “stuff” into a current,

while the constants in front of the potential gradient express implicitly how the electrical
conductance relates to the concentration and the mobility of the ions (see also Eq. 11.13).

Li(x, 1) = =z F Dy (11.27)




