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A Single-compartment Model of
Calcium Dynamics in Nerve
Terminals and Dendrites

FRrRITJOF HELMCHEN AND DAVID W. TANK

INTRODUCTION

In this chapter, we describe a single-compartment model of calcium dynamics that has
been applied to fluorescence measurements of calcium transients in neurons. It has
been particularly useful in describing the buildup and decay of the intracellular free
calcium concentration ([Ca**],) produced by sodium action potentials in nerve ter-
minals and dendrites (Regehr and Tank 1994). Rapid (<1 msec) and local (<0.1 um)
actions of Ca** near its entry site, such as the triggering of neurotransmitter release by
calcium microdomains (see Chapter 38), are not addressed by this approach. Rather,
the model describes the dynamics of longer lasting (typically >10 msec) and more spa-
tially homogeneous [Ca*'], elevations—sometimes referred to as “residual free calci-
um”—that are commonly measured in dendrites and nerve terminals with high-affin-
ity calcium indicators such as Fura-2 and Calcium Green-1.

We first describe the model under the conditions of fast, nonsaturating buffers for
which analytical expressions for the amplitude and the time constants of [Ca**],
changes can be explicitly derived. We present examples of how this model has been
applied to experimental data to obtain quantitative information about Ca*™ influx,
buffering, and clearance. We then illustrate several changes that occur when saturation
or kinetic effects become significant. Finally, we discuss how the changes in calcium
dynamics that are explained by the model have been exploited for measuring proper-
ties of calcium-driven reactions, such as those regulating short-term synaptic
enhancement, vesicle recycling, and adaptation.

THE SINGLE-COMPARTMENT MODEL

The underlying assumption is that Ca'* gradients and diffusion can be neglected on
the time scale of interest, making it possible to treat the cytosolic volume as a single,
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Figure 33.1 (a) Schematic drawing of the single-compartment model. Ca** clearance from the
cytosol includes extrusion via the plasma membrane, uptake into intracellular organelles, and bind-
ing to slow endogenous buffers. Two pools of endogenous rapid Ca** buffers (S) and exogenously
introduced buffers (B) are considered. (b) A single, brief calcium influx leads to an exponential
[Ca**], transient (leff). Changes in influx, buffermg, or clearance parameters alter the shape of the
tran51ent (middle and right). For comparison, the control trace is drawn as dashed curves. (c)
Summation of [Ca**], transients during a train of stimuli for 1 sec at 20 Hz (left). The accumula-
tion of the average [Ca**]. is described by an exponential rise to a steady-state plateau level P and
an exponentlal decay. The dependence of the [Ca**], accumulation on changes in influx, buffering,
and clearance is shown as in b. Note that a change in the Ca**-binding ratio does not affect the
plateau level.

homogeneous compartment. When is this assumption of spatial homogeneity justi-
fied? For a compartment of radius r, a characteristic diffusion time is given by ¢, = r*/
(6D,) where D, is an effective Ca**-diffusion constant that takes into account the
slowdown of Ca*™* diffusion caused by binding to cytosolic proteins (see Chapter 31).
For r = 1 um, which is the size of most mammalian nerve terminals and dendrites, and
D, =~ 20 pm?* sec™* (Gabso et al. 1997), ¢, is about 10 msec. Following the cessation of
influx, Ca** gradients dissipate within this time period. [Ca**]. changes that occur on
the time scale of 0.1 second (widely observed in small neural processes) can be well
described using a single-compartment model that considers Ca** influx, buffering,
and clearance as the relevant biophysical processes (Figure 33.1a). The approximations
used to describe these processes are discussed below.

o Influx. We limit our attention to pulses of calcium influx that are brief compared to
the time required for calcium clearance. This condition is quite reasonable for short
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depolarizing voltage steps and, in particular, for the calcium influx through voltage-
gated calcium channels during the repolarizing phase of an action potential that
lasts less than a millisecond (Borst and Helmchen 1998). Ca™* clearance times in
presynaptic terminals and dendrites are typically two orders of magnitude longer. A
brief Ca** pulse at time ¢ can be described by a delta function and the increase in
total calcium concentration (A[Ca**] ),

QCa
2FV

jin = AlCa™]8(t 1) = 8(t—t) (1)
where F is Faraday’s constant, V the volume of the cellular compartment, and Q,
the calcium charge injected.

Buffering. Most of the calcium ions entering the cytosol become bound by endoge-
nous calcium-binding proteins and exogenous calcium buffers introduced into the
cell by the experimenter (see Chapter 31). The initial changes in free-calcium con-
centration depend on the Ca**-buffering capacity of the rapid Ca** buffers. Usually,
a pool S of rapid endogenous buffers and a pool B of exogenously introduced, rapid
buffers are considered (Figure 33.1a). The Ca**-binding ratio of the exogenous
buffer (i) is defined as the ratio of the change in buffer-bound Ca** over the free
Ca** change (Neher and Augustine 1992). k;, depends on the total buffer concen-
tration [B]., its dissociation constant K, and [Ca**],

o _oBCal _ [BlK, [Bl;
BT9[Cat].  ([Ca™]+K)? K

([Ca™],<<K)) (2)

An analogous expression exists for the Ca**-binding ratio of the endogenous buffer
(). The maximal Ca**-binding ratio ([B]/K,) occurs at [Ca**]; levels that are well
below the K. In its simplest version, the smgle compartment model assumes that
K, and ¥, are [Ca*™]-independent, corresponding to the idea that there are only
small [Ca**] changes from a resting level during the experiment. Under these con-
ditions, changes in free calcium concentration are proportional to changes in total
calcium concentration (see Equation 5). A value of K, = 100 implies that for each
free calcium ion, there are 100 ions bound to the buffer B. Note that Ca**-binding
ratios are dimensionless and that experimentally determined values for the endoge-
nous buffers range from 50 to 2000 (Table 33.1). Also note that Ca™* indicators,
which generally have fast kinetics, are potent, exogenous Ca** buffers and therefore
have to be included in pool B.

Clearance. Calcium ions are either sequestered into intracellular organelles or
extruded via the plasma membrane until [Ca**], decays back to a resting level of
typically 50-100 nM. Most single-compartment models used for the analysis of
experimental imaging data have used a calcium clearance mechanism that is linear-
ly dependent on the deviation of [Ca**]; from the resting calcium level with a clear-
ance rate Y
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Jou = —YA[C2™]; = —y([Ca™], - [Ca™] ) (3)

This expression provides a good fit to experimental data in several systems (Neher and
Augustine 1992; Tank et al. 1995; Helmchen et al. 1996, 1997). Nevertheless, Equation
3 is generally considered to be the low [Ca™*]. limit of a saturable, enzyme-driven
extrusion mechanism; e.g., one following Michaelis-Menten kinetics. The good agree-
ment with experimental data suggests that saturation effects might only be found
under rather extreme stimulus conditions.

Dynamics of Single [Ca**], Transients

Combining the above kinetic descriptions for influx, buffering, and clearance, the dif-
ferential equation for the temporal dynamics of [Ca**]. following a single, brief calci-
um influx is

dlCa™], . .
dr :Jin +]out ( )
4
d[ca++]i + ++
—— (14 + 1) = A[Ca™], 8( - 1) - Y ACa™],

This equation simply states that the change in total calcium equals the increase in cal-
cium minus the clearance. Assuming constant Ca**-binding ratios, the analytical solu-
tion of Equation 4 is an exponential function with amplitude A and decay-time con-
stant T (Figure 33.1b). The relationships between A and T and the model parameters
are as follows:

Q. /2FV)
BT (5)

= (1 +K+ %)
Y

Both A and T depend on the Ca**-binding ratios. However, the product Az, which is
the integral of the [Ca**], transient (the area “underneath” the exponential curve), is
independent of the Ca**-binding ratios. Figure 33.1b illustrates that changes in influx,
total buffering capacity, and clearance rate lead to specific changes of the [Ca**] -tran-
sient shape (Sabatini and Regehr 1995). Although changes in influx or clearance only
affect either A or 1, both magnitudes depend on the Ca**-buffering capacity. Because
of this dependence, A and T may be altered by introducing a calcium indicator dye. A
description of how this can be exploited to obtain an estimate of the endogenous
Ca**-binding ratio ¥ is given below.

(6)

Table 33.1. Some representative experimental results for the basic parameters of calcium dynamics in dendrites and nerve terminals

Clearance

Time
constant

rate y

Ca**-binding

Amplitude

(sec™)

References

7 (msec) ratio

A (nm)

Preparation
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Dendrites

Helmchen et al. (1996)

1700
2000

120
180
900-2000

70
90
400

260
150

Neocortical L5 pyramidal neurons

Hippocampal CA1 neurons
Cerebellar Purkinje cells

Helmchen et al. (1996)

Callewaert et al. (1996);

Fierro and Llano (1996)

Svoboda et al. (1997)

100

Neocortical 1.2/3 pyramidal neurons in vivo

Nerve terminals

Regehr et al. (1994)
Tank et al. (1995)

1000
4000

5-10
5-10

Hippocampal mossy fiber terminals

Crayfish neuromuscular junction

80-100

600

Regehr and Atluri (1995)

Feller et al. (1996)
Sinha et al. (1997)

150

300

Cerebellar granule cell to Purkinje cell synapse

Frog retinotectal synapse

100
40

140

Hippocampal CA3-CAl synapse

Helmchen et al. (1997)

900
o single action potential-evoked [Ca**] transients. They depend on the exogenous buffer conditions and temperature

400-500 40

Calciform terminals in brain stem

The reported amplitudes and time constants refer t
(see original publications for specific conditions). (-)

Indicates not determined.
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Summation of [Ca**]. Transients during
Repetitive Calcium Influx

If multiple calcium influx pulses occur on a time scale short compared to the [Ca*™].-
decay time, the amplitude of the [Ca**], transient simply increases corresponding to
the greater total calcium charge Q... For example, the amplitude of [Ca**]; transients
has been shown to scale approximately linearly with the number of high-frequency
action potentials in presynaptic terminals (Regehr et al. 1994), in Purkinje cell axons
(Callewaert et al. 1996), and in mammalian pyramidal cell dendrites in vivo
(Svoboda et al. 1997). Such a linear increase would be expected to break down for
more stimuli when calcium influx per pulse changes or saturation of buffers and
pumps occurs. A linear sum of individual transients can also approximate the
buildup of [Ca**], during repetitive calcium influx as it occurs during firing of a neu-
ron at a lower constant frequency. We consider a train of stimuli starting at time ¢t =
0 and with a time interval of At (frequency f= 1/At). The [Ca**], level above resting
level immediately before the (n+1)™ stimulus is given by a geometric progression
(Regehr et al. 1994):

-+ _ —(AY)/T — A _anAnT
A[Ca*™].(nAt) AE e @) (1-e ) (7)
where A is the amplitude and 7 the time constant of each individual transient. For
stimulation frequencies f <1/(21), there is little buildup and individually spaced tran-
sients result, but for higher frequencies, the transients add up; [Ca**], exponentially
reaches a steady state in which influx and clearance balance, and [Ca™], fluctuates
around a plateau level (Figure 33.1¢). The time constant of the rise and the decay fol-
lowing the end of stimulation both are given by T. The mean plateau level P reached at
steady state is proportional to the frequency (Tank et al. 1995; Helmchen et al. 1996):

QCa

P=4t =2k

f (8)
with the integral of the single calcium transient (AT) as proportionality constant. P is
independent of the Ca**-binding ratios, indicating that Ca** buffers can affect the
transient dynamics of [Ca™]. but not its steady-state levels. Figure 33.1c summarizes
the effects of changes in influx, buffering, and clearance on the [Ca*™], accumulation
during repetitive stimulation. As in the case of the single [Ca*™™], transient, each change
in these biophysical parameters leads to a characteristic alteration of the overall shape
of the [Ca**], change (Tank et al. 1995).

APPLICATIONS OF THE SINGLE-COMPARTMENT MODEL

Changes in calcium dynamics similar to those illustrated in Figure 33.1b and c have
been measured in small cell somata, presynaptic terminals, dendrites, and axons. The
results of these experiments provide evidence for the applicability of the single-com-
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partment model as well as quantitative estimates for the model parameters. Table 33.1
provides a comparison of observed parameters and lists the corresponding references.

Estimates of Endogenous Ca**-binding Ratio and Clearance Rate

The endogenous Ca**-binding ratio ¥, and the clearance rate Y can be estimated by
measuring changes in the [Ca**], -transient decay time produced by increasing con-
centrations of an exogenous Ca** buffer such as BAPTA or Fura-2 (Figure 33.2a). This
follows directly from Equation 6, which can be rearranged to give:

T =aK,+a
a =1/y 9)
a,= (1 +x)/y

The decay time constant T should be linearly related to the exogenous buffer capacity
K (Tank et al. 1991). The inverse of the measured slope (a,) provides the clearance
rate and the negative x-axis intercept (-a,/a,) provides an estimate of the endogenous

300 +

T (ms)

200 —
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Fura-2 Ca-binding ratio xg
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Figure 33.2. (a) Amplitude and decay time of calcium transients evoked by single action poten-
tials in dendrites of neocortical pyramidal neurons depend on the Fura-2 concentration. (b) The
endogenous Ca**-binding ratio & and the clearance rate y can be quantified by measuring the
dependence of the decay-time constant on the exogenously introduced Ca** buffering capacity. (c)
The amplitude A of the [Ca**], transient can be estimated from the degree of saturation of a fluo-
rescent indicator with a known dissociation constant (see text). Schematic drawing of the indicator
fluorescence change upon two brief calcium injections. The [Ca**]; change per stimulus is assumed
to be equal, but the change in fluorescence F is smaller for the second stimulus. (d) Schematic illus-
tration of the effect of adding Ca** buffers with different kinetic properties on individual control
calcium transients (dashed curves). The fast buffer BAPTA changes the [Ca**], transient shape
according to equilibrium considerations. A slow buffer like EGTA, in contrast, leads to a faster ini-
tial decay and a subsequent slow phase which are explained by its slow association rate. (a, b reprint-
ed, with permission, from Helmchen et al. 1996.)
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buffer capacity k, (Neher and Augustine 1992). An example of this method, taken
from a study of [Ca**], transients in pyramidal cell dendrites, is shown in Figure
33.2b. Two methods have been employed to provide known exogenous buffer concen-
trations: dialysis with patch pipets (Neher and Augustine 1992; Helmchen et al. 1996,
1997) and intracellular sharp-microelectrode injection of a fluorescent buffer from
which estimated concentrations can be calculated from the fluorescence intensity
(Tank et al. 1995).

Estimates of Amplitude A and Total Calcium Charge Q,

Compared to the unaltered [Ca**], transients, the amplitude A which is obtained from
a Ca*™ indicator measurement is reduced by a factor (1 + Kk )/(1 + K + k) (see
Equation 5). A can either be measured ratiometrically or estimated from the degree of
saturation of the fluorescent dye (see below). If the total buffering capacity of the cyto-
plasm is known and with an estimate of the compartment volume from morphology,
the total calcium charge Q. can be calculated by rearranging Equation 5:

Q. = 2FVA(1 + x4 + K3) (10)

Alternatively, Q, can be measured directly using excessive dye loading of the com-
partment to obtain fluorescence changes proportional to Q., (Neher 1995; Borst and
Helmchen 1998; see Chapter 32). If individual calcium transients cannot be easily
resolved, Q,, can be determined from the frequency dependence of the initial slope of
the calcium buildup produced by a train of action potentials (Tank et al. 1995).

DEVIATIONS FROM LINEAR BEHAVIOR

If [Ca**], changes are appreciable compared to the dissociation constant of the dom-
inant intracellular buffers, or when buffer kinetics are slow compared to the decay
time constant, exponential decaying transients are not observed. Here we describe
expected deviations under these two circumstances.

Saturation of Buffers and Pumps

If buffer kinetics are still rapid but [Ca**], changes become appreciable compared to
the K, values of the intracellular buffers, then Equation 4 is still appropriate, but K,
and K, are not constant and the solution is not an exponential decay. Numerically cal-
culated decay curves as well as measured transients show pronounced upward curva-
ture (faster decays) at higher [Ca**]. levels on a semi-log plot (Tank et al. 1995)
because the effective buffering capacity is reduced at these levels due to partial satura-
tion of the buffers. An opposite effect would be expected from saturation of clearance
mechanisms at very high [Ca**], levels. Saturation in the clearance rate would be
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expected to also alter the linear frequency dependence of the plateau level during long
stimulus trains (Equation 8). A related buffer saturation effect can be exploited to
advantage to provide an estimate of the amplitude A of individual [Ca**], transient
when ratiometric measurements of absolute calcium concentration are not feasible,
for example when fluorescence is measured from a large region of AM-loaded brain
slices or intact brains (Regehr and Atluri 1995; Feller et al. 1996). Except when confo-
cal or two-photon techniques for volume resolution are used, such measurements con-
tain contaminating fluorescence from other structures. In these cases, A can be esti-
mated from the degree of saturation of a high-affinity calcium indicator (Regehr and
Atluri 1995; Sabatini and Regehr 1995; Feller et al. 1996). Figure 33.2¢ shows the fluo-
rescence change of an indicator evoked by two subsequent brief calcium injections.
The second injection evokes a smaller fluorescence change than the first one due to
partial saturation of the indicator. Assuming that the change in calcium concentration
is the same for the two stimuli, its magnitude can be estimated from the ratio o of the
two fluorescence changes:

A[Ca*], = ([Ca™] ;och)(l - o)

(11)

where o = (F, — F,)/(F, - F,) and assuming F, = F, (Feller et al. 1996). This method,
however, relies on reasonable estimates of the resting [Ca**], level and the dissociation
constant of the indicator.

Slow Buffers

Radical departures in calcium dynamics from the expected results (Equations 4-6)
have been observed when slow calcium buffers such as EDTA or EGTA are introduced
as exogenous buffers into presynaptic nerve terminals (Atluri and Regehr 1996; Feller
et al. 1996) and nerve-cell dendrites (Markram et al. 1998). A comparison between the
effects on a [Ca*™"], transient of adding a fast buffer, BAPTA, versus a slow buffer,
EGTA, is illustrated schematically in Figure 33.2d. Addition of BAPTA reduces the
amplitude of the transient while prolonging its decay, consistent with what is expect-
ed from Equations 5 and 6. Addition of EGTA, however, has only a slight effect on the
amplitude A but changes the shape of the transient by providing a faster initial decay
while also producing a slower subsequent phase. As easily demonstrated in numerical
simulations, the early faster decay is produced by Ca** binding to EGTA on a time scale
longer than the response time of the Ca™ indicator (Atluri and Regehr 1996; Feller et
al. 1996; Markram et al. 1998). The fast-time constant can be approximated by adding
the association rate of Ca** binding of EGTA to the clearance mechanisms (Atluri and
Regehr 1996):

(1 + %+ Kp)

T, ——— 12
=+ KR EGTA) (12
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The longer time constant of the second decay phase is produced by the same mecha-
nism as for BAPTA: More bound calcium must be removed per unit change of free cal-
cium ion concentration change. This time constant is given by Equation 6 after addi-
tion of the Ca**-binding ratio K.

SINGLE-COMPARTMENT MODELS AND THE MEASUREMENT OF
CALCIUM-DRIVEN REACTIONS

The single-compartment models we have summarized here were developed to explain
basic properties of calcium transients observed in imaging experiments on small
structures such as presynaptic terminals and dendrites. The analysis also provides a set
of tools to alter calcium dynamics, however, which has proven to be important in bio-
physical characterization of calcium-driven reactions. For example, the systematic
prolongation of calcium transients with increasing exogenous buffer concentrations
helped to demonstrate that the time constant of [Ca**], decay was the rate-limiting
step in the decay of calcium-driven short-term synaptic enhancement at an inverte-
brate synapse (Delaney and Tank 1994). In a mammalian synapse, exogenous buffer
addition and calcium plateau manipulation by changes in stimulus frequency were
used to alter calcium dynamics, in order to determine kinetic rate constants of a calci-
um-driven reaction involved in short-term synaptic enhancement (Regehr et al. 1994).
Similar approaches have been used in the characterization of vesicle mobilization in
chromaffin cells (Heinemann et al. 1993), mitochondrial Ca** uptake and release in
bullfrog sympathetic neurons (Friel and Tsien 1994), adaptation of cellular excitabili-
ty (Sobel and Tank 1994), and synaptic facilitation in the cerebellum (Atluri and
Regehr 1996).

CONCLUSION

In summary, we have described the basic equations and parameters of a simple model
of calcium dynamics that is applicable to action-potential-evoked [Ca*™], transients in
nerve terminals and dendrites. Methods have been introduced to quantify the main
parameters of calcium influx, buffering, and clearance. The single-compartment
model is well suited as a starting point for a more detailed characterization of Ca**
handling in small cellular compartments.
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