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Abstract

Autism spectrum disorder (ASD) is one of the most prevalent and highly heritable neurodevelopmental disorders in
humans. There is significant evidence that the onset and severity of ASD is governed in part by complex genetic
mechanisms affecting the normal development of the brain. To date, a number of genes have been associated with ASD.
However, the temporal and spatial co-expression of these genes in the brain remain unclear. To address this issue, we
examined the co-expression network of 26 autism genes from AutDB (http://mindspec.org/autdb.html), in the framework of
3,041 genes whose expression energies have the highest correlation between the coronal and sagittal images from the
Allen Mouse Brain Atlas database (http://mouse.brain-map.org). These data were derived from in situ hybridization
experiments conducted on male, 56-day old C57BL/6J mice co-registered to the Allen Reference Atlas, and were used to
generate a normalized co-expression matrix indicating the cosine similarity between expression vectors of genes in this
database. The network formed by the autism-associated genes showed a higher degree of co-expression connectivity than
seen for the other genes in this dataset (Kolmogorov–Smirnov P = 5610228). Using Monte Carlo simulations, we identified
two cliques of co-expressed genes that were significantly enriched with autism genes (A Bonferroni corrected P,0.05).
Genes in both these cliques were significantly over-expressed in the cerebellar cortex (P = 161025) suggesting possible
implication of this brain region in autism. In conclusion, our study provides a detailed profiling of co-expression patterns of
autism genes in the mouse brain, and suggests specific brain regions and new candidate genes that could be involved in
autism etiology.
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Introduction

Autism spectrum disorder (ASD) is one of the most prevalent

and highly heritable neurodevelopmental disorders in humans [1–

3]. There is strong evidence that the onset and severity of ASD is

governed in part by complex molecular mechanisms affecting the

normal development of the brain [1,4]. While no major

anatomical pathology have been observed in brains of ASD cases

[5], various molecular and neuroimaging studies have linked

several brain regions to ASD. For example, Voineagu et al. have

found differences in gene expression patterns in the cortex of ASD

brain [6]. Cortical regions has also been highlighted in neuroim-

aging studies of autistic brains along the cerebellum and other

brain areas [7,8]. In addition, other studies have pointed to various

molecular mechanisms that might be altered in the autistic brain

[9–11]. In this realm, genes involved in synapse formation and

brain circuitry are consistently found to be dysregulated in people

with ASD [12–14].

Recent genomic advances have led to the discovery of diverse

genetic loci linked to ASD, including chromosomal aberrations

[15,16], copy number variations [11,17,18] and both common

and rare single nucleotide variations (SNVs) [19–24]. Conse-

quently, to date, more than 330 candidate genes have been

associated with ASD susceptibility [25] and many more are

projected to be found. However, despite the plethora of genetic

variations associated with ASD, the molecular mechanisms and

neuroanatomical structures underlying ASD traits remain largely

unclear.

The mouse model system provides a convenient and safe

approach to experimentally study neuroanatomical mechanisms

and candidate genes for autism susceptibility [26–28]. At present,

dozens of single gene knockout and transgenic mice models have

been used to elucidate neuropathology that might underlie the

autism-like behaviors [29]. Despite the obvious genetic and

neuroanatomical differences between mouse and human, mouse

models are extremely valuable and effectively used in dissecting

out the role of specific gene, pathway, neuron subtype, or brain

region in a particular abnormal behavior shared by both these

mammals. In this realm, the Allen Brain Atlas of the mouse [30–

33] provides a comprehensive source of genome-wide high-

resolution atlas of gene expression throughout the adult mouse

brain. In this study, we utilized this database to examine the spatial

co-expression characteristics of genes associated with autism

susceptibility. Consequently, we identified several co-expression
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gene networks that are enriched with autism genes highlighting

potential candidate genes and brain regions implicated in autism.

Methods

Construction of the autism genes dataset (AutRef84)
The autism gene database, AutDB [34], was used to construct a

set of 84 genes, AutRef84, strongly implicated in autism

pathogenesis [25,29]. Genes contained in AutDB were classified

into four genetic categories: (1) Rare: rare submicroscopic copy

number variants and single gene disruptions or mutations directly

linked to ASD; (2) Syndromic: genes implicated in syndromes in

which a subset of affected individuals also develop autistic

symptoms; (3) Association: small risk-conferring candidate genes

with common polymorphisms that have been identified from

genome-wide association studies in idiopathic ASD cases; and (4)

Functional: functional candidate genes relevant to ASD that are not

covered by any of the other genetic categories. AutRef84 was

generated by filtering out functional candidate genes that lack any

experimentally derived genetic link to ASD as well as genes that

solely belong to the Association classification. The resulting dataset

consisted of 64 genes classified within the rare classification and 20

within the syndromic classification (Supplementary Table S1).

Gene expression dataset
We utilized gene expression data available from the Allen Brain

Atlas (ABA) of the mouse brain (http://mouse.brain-map.org)

which contains voxelized expression profiles for ,20,000 genes

derived from in situ hybridization (ISH) experiments conducted on

male, 56-day old C57BL/6J mice) [30–33]. Gene expression

profiles in the ABA were generated for the mouse brains from

processed image data for the sagittal sections of a single

hemisphere and, for 4,104 genes of high neurobiological interest,

coronal and sagittal sections across the whole brain. We focused

on genes for which brain-wide data are available. The ISH data

were co-registered to the Allen Reference Atlas, which is

partitioned into 49,742 cubic voxels of size 200 microns. A gene

labeled g has a profile of expression energy presented as a function

E(v,g) over the brain, where v is a voxel label. The Allen Mouse

Brain Atlas Addiction Database (http://addiction.

brainarchitecture.org/) used this expression dataset to create a

high quality brain expression dataset, called Abest, which consists of

3,041 genes with the most highly correlated expression energy

profiles between the coronal and sagittal sections [35]. This gene-

expression dataset was used for the co-expression analysis

discussed below.

Gene co-expression analysis
For the set of 3,041 genes defined above, a gene-by-gene co-

expression matrix was computed as follows:

C(g,g0)~

PV
v~1 E(v,g)E(v,g0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPV

u~1 E(u,g)2PV
w~1 E(w,g0)2

q ð1Þ

where V = 49,742 is the total number of voxels in the brain. The

quantity C(g,g’) is the cosine similarity between the gene-expression

profiles of genes g and g’ with values ranging between zero and

one by construction. The motivation for choosing the cosine

similarity as the co-expression measure in this study, is its

connection to the difference between the energies of two brain-

wide functions. The proposed co-expression measure (Equation 1)

can also be described as a simple decreasing function of the

squared energy of the difference between two brain-wide

functions. The co-expression matrix C is symmetric, with ones

on the diagonal. Its size is 3,041, the number of genes in the full

Abest dataset. Given a subset of this dataset, the co-expression

matrix of this subset can be obtained by extracting the sub-matrix

of C corresponding to the position of the genes in the full dataset.

To determine whether the autism genes are more co-expressed

than other genes expected by chance, the cumulative distribution

function (CDF) of the entries of the autism-related and Abest co-

expression matrices were compared, and a two-sample Kolmo-

gorov–Smirnov test was used to determine whether they were

drawn from the same probability distribution. In addition, we

compared the connectivity of the co-expression network of the

autism genes to co-expression networks of the same size randomly

drawn from Abest. For that, Monte Carlo simulations [36] were

conducted to generate 100,000 random gene sets sampled from

Abest, and the co-expression matrices of these sets of genes where

extracted from the co-expression matrix C.

Given the co-expression matrix of G genes of interest, one can

consider the underlying weighted graph with nodes corresponding

to genes, and the weight of links equals to the co-expression of the

nodes [37]. The matrix can be cut at any value r between zero

and one, resulting in links with weights lower than the threshold r.

At any value of the threshold, the connected components (sets of

connected genes) can be computed using Tarjan’s algorithm. In

particular, the maximum size M(r) and average size A(r) of

connected components can be calculated for all gene sets over

different co-expression values. If Nr(k) is the number of connected

components in the co-expression matrix of G genes defined by r
threshold and contain exactly k genes out of G genes in the gene

set, the maximum and average sizes are expressed as follows:

A(r)~

PG
k~1 kNr(k)PG
k~1 Nr(k)

ð2Þ

M(r)~maxfk[½1::G�,Nr(k)w0g ð3Þ

Author Summary

Autism spectrum disorder (ASD) is a complex neurodevel-
opmental condition associated with many different genes.
However, the neuroanatomical and functional properties
of these genes in the brain are largely unknown. Here we
examined the co-expression network of 26 genes associ-
ated with ASD, using data from the Allen Mouse Brain
Atlas, which provides a whole-genome, high-resolution
map of gene expression pattern in the adult mouse brain.
We discovered that autism genes are significantly more co-
expressed than expected by chance, suggesting common
neuro-functional properties. We then examined the spatial
properties of co-expression modules that are highly
enriched with autism genes. Consequently, we found that
genes in two of these modules are significantly over-
expressed in the cerebellar cortex, and particularly in
sections that are predominantly populated by granular
cells. These findings provide the essential link between
gene networks associated with ASD and specific brain
regions, and hence lay out a basis for further exploration of
the particular neuronal circuits involved in ASD etiology.

Co-expression of Autism Genes in the Mouse Brain
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Figure 1. Co-expression characteristics of gene networks. Distributions of co-expression characteristics are depicted for the autism gene
network (Red) and for the 3041 genes in the mouse Allen Brain Atlas database (Blue). (A) Cumulative distribution functions (CDFs). Black arrow
indicates the maximal difference between the two CDFs. (B) Average and maximum sizes of connected components for different co-expression
thresholds are plotted for the autism gene network (Red) and 1000 randomly generated gene networks of size G = 26 (Cyan).
doi:10.1371/journal.pcbi.1003128.g001

Co-expression of Autism Genes in the Mouse Brain
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Further, we applied the classical definition of ‘‘clique’’ from graph

theory [38,39] to our co-expression matrix to characterize

networks of co-expressed genes such that every gene in the

network is connected to all other genes at a co-expression

threshold r.

Anatomical and functional characterization of co-
expression cliques

Next, we aimed at evaluating the unique anatomical properties

of co-expression cliques that are significantly enriched with autism

genes. For that, we first identified virtually all cliques in the dataset

that contained ng$2 autism genes. Then, we used Monte Carlo

simulations using 100,000 randomly generated gene sets of size

G = 26 to compute the likelihood of each clique to contain at least

ng autism genes. Finally, for cliques that were significantly enriched

with autism genes, we calculated the sum of the normalized

expression profiles of the genes in the clique as follow:

Sclique(v)~
X

g[clique

Enorm(v,g),

where Enorm(v,g)~
E(v,g)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPv
w{1 E(w,g)2

q
ð4Þ

We then used Sclique, to examine the neuroanatomical properties of

the genes included in the clique as follows [40]. For a given brain

region v in the Allen Reference Atlas [41], the fitting score

between the expression profile and the region v is defined as the

cosine similarity between the expression profile and the charac-

teristic function xv of the brain region.

Figure 2. Cliques of co-expression genes delineated by co-expressed autism genes. The 59 cliques of co-expression genes containing $2
autism genes identified in our data are listed in the rows together with the minimal co-expression value in the clique, and numbers of autism genes
and number of total genes in the clique. A p-value indicates the likelihood of finding this number of autism genes in the clique (based on 100,000
Monte Carlo simulations). The 26 autism genes included in the study are depicted in columns with black and white fillings indicating their presence
and absence from a clique respectively.
doi:10.1371/journal.pcbi.1003128.g002

Figure 3. Cliques of co-expressed genes. Venn diagram for the ten cliques of co-expressed genes that are highly enriched with autism genes.
For each clique, the following parameters are given: the number of autism genes/number of all genes in the clique, the co-expression threshold (in %)
of the clique, and the p-value of the autism gene enrichment (using 100,000 Monte Carlo resampling procedure).
doi:10.1371/journal.pcbi.1003128.g003

Co-expression of Autism Genes in the Mouse Brain
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wv(Sclique)~

PV
v~1 Sclique(v)xv(v)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPV

u~1 Sclique(u)2PV
w~1 xv(w)2

q ð5Þ

where xv(v) equals one if voxel labeled v belongs to region v, and

zero otherwise. This fitting score would equal one if the sum of the

gene expression in the clique were proportional to the character-

istic function of the region v, and zero if it were entirely supported

outside the region. The fitting score defined in the above equation

equals the co-expression between a (hypothetical) gene whose

expression profile would be Sclique, and a (hypothetical) gene whose

expression would coincide exactly with region v. Fitting scores of a

given clique can be computed in all brain regions, and the

distribution of these fitting scores can be simulated by repeatedly

drawing random cliques of genes (with the same number of genes)

from Abest. These analyses were performed using a commercial

software package (MATLAB R2011b, The MathWorks Inc.,

Natick, MA, 2000).

Finally, we used the Bioconductor GOstats package in R

software [42] to assess whether genes belonging to a co-expression

clique, also share other functional or molecular properties. The

absolute list of GO terms were obtained using both a (a) cut-

off = 2*ratio (fg/fc) [where fg = frequency of occurrence of a GO

term in the given gene set, fc = frequency of its occurrence in the

complete list of human genes] and (b) cut-off = median value of

ratio (fg/fc). Only significant terms (P,0.01) with an associated

gene count. = 5 were considered.

Results

Overall, 26 genes were found in the intersection of the autism-

genes dataset and the dataset of high-quality expression genes from

the Allen Brain Atlas (ABA) of the mouse brain (AutRef8

4>Abest = 26). These autism-related genes showed a higher degree

of co-expression connectivity than all other genes in this dataset

(Kolmogorov–Smirnov P = 5610228). Comparing the empirical

distributions of co-expression values of the autism genes to the

other genes in the Allen dataset revealed that the largest deviation

between these distributions was at co-expression value of 47.53%

Figure 4. Expression and anatomical properties of Clique I. (A) Maximal-intensity projection of the sum of normalized expressions of genes in
this clique highlight regions in the cerebellum. (B) The expression fittings in these regions are higher than expected by chance (P = 0.00002, based on
100,000 random permutations). The brain regions of the ABA at 200 micron resolutions (one dot per region on the figure) are grouped into the
following main regions: COR (cerebral cortex), OLF (olfactory areas), Hi (hippocampal region), RHi (Retrohippocampal region), STR (striatum), PAL
(pallidum), THA (thalamus), HYP (hypoyhalamus), MID,(midbrain), PON (pons), MED (medulla), CER (cerebellum).
doi:10.1371/journal.pcbi.1003128.g004

Co-expression of Autism Genes in the Mouse Brain
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(Figure 1A). Furthermore, we evaluated the connectivity of genes

across different co-expression values. Here too, the average size of

connected components (See methods) among autism gene was

consistently larger than seen in 1000 randomly generated gene sets

from the Allen database (Figure 1B).

Next, we examined cliques (see methods) of co-expressed genes

delineated by autism genes inter-connected at co-expression values

of $47.53%. A total of 59 overlapping cliques were characterized

containing on average 563.5 genes and 8.3 autism genes

(Figure 2). Finally, using Monte Carlo simulations, we identified

ten cliques that were significantly enriched with autism genes at

P,0.01 (Figure 3). Of note, the two top ranked cliques remained

significant (P,0.05) even after accounting for multiple testing

using the conservative Bonferroni correction.

The top-ranked clique in our analysis (hereafter will be referred

as Clique I), was delineated by the autism genes: Ptchd1, Galnt13,

Dpp6 and Astn2, and included another 29 genes, inter-connected

with a co-expression values of $70% (Supplementary Table
S2). The second top-ranked clique (hereafter will be referred as

Clique II) included the autism genes: Rims3, and Astn2, and

another four genes, all inter-connected at $79% co-expression

level (Supplementary Table S3). Examining the neuroanatom-

ical expression properties across a set of 134 brain regions of the

left hemisphere (41 of which are cortical, and 93 subcortical)

grouped by the 12 main brain regions according to the Allen

Reference Atlas, revealed a significant over-expression of genes

belonging to Cliques I in the cerebellar cortex (Figures 4A, 4B,
Supplementary Figure S1). Genes belonging to Clique II also

showed a slight over-expression in the cerebellar cortex

(Figures 5A, 5B), as well as in several cortical regions, however

these signals were much weaker than the one of clique I. Next, we

asked if the over-expression in the cerebellum is a unique property

of these two cliques. For that, we examined the neuroanatomical

expression of all cliques in Figure 2 and found only seven other

cliques showing a similar over-expression in the cerebellar cortex.

Interestingly, these cliques had substantial gene overlap with

cliques I&II, and were ranked high in their autism gene

enrichment scores (Supplementary Table S4), thus supporting

the illumination of the cerebellar cortex in this analysis.

Finally, we asked if these two co-expressed cliques are associated

with particular cell type or any other functional or cellular

property. Examining cell-type-specific microarray data which we

Figure 5. Expression and anatomical properties of Clique II. (A) Maximal-intensity projection of the sum of expressions of genes in this clique
highlights the cerebellar cortex. (B) The fitting score in the cerebellar cortex is highest among all other brain regions and higher than expected by
chance (P = 0.018, based on 100,000 random permutations). Some other regions in the cerebral cortex also show a slight deviation from expression
values expected by chance (P,0.05). The brain regions of the ABA at 200 micron resolutions (one dot per region on the figure) are grouped into the
following main regions: COR (cerebral cortex), OLF (olfactory areas), Hi (hippocampal region), RHi (Retrohippocampal region), STR (striatum), PAL
(pallidum), THA (thalamus), HYP (hypoyhalamus), MID,(midbrain), PON (pons), MED (medulla), CER (cerebellum).
doi:10.1371/journal.pcbi.1003128.g005

Co-expression of Autism Genes in the Mouse Brain
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have for 64 cell types [43] revealed that 4 of them (stellate basket cells,

granule cells, oligodendrocytes and Purkinje cells) are considerably

populating the cerebellum (Supplementary Figure S2). Further,

we looked through different coronal sections through the cerebellum

from the Allen Reference Atlas [41] and visually compared them to

sections of the sum of expressions of genes in Cliques I & II. Figure 6
shows the normalized volumetric expression quantities of both cliques

along with the closest coronal section of the mouse brain in the Allen

Reference Atlas. One can see that the voxels with the most intense

expression in both cliques tend to follow the granular layer. Hence,

the results of these analyses suggest that genes in both clique I & II

tend to be over-expressed in granule cells in the cerebellar cortex.

Using the Bioconductor GOstats package in R, we two biological

processes: ‘‘Transmission of nerve impulse’’ (P = 0.001842), and ‘‘Ion

transport’’ (P = 0.000733) and one cellular component ‘‘Vesicles’’

(P = 0.001134) that were enriched with genes from Clique I

(Supplementary Table S5). Unfortunately, the number of genes

in Clique II was too small for this analysis.

Discussion

In this study, we explored the co-expression network 26 autism

genes within the framework of 3,041 genes exhibiting the highest-

quality expression data in the Allen Mouse Brain Atlas database

[30–33]. The significantly tighter co-expression connectivity among

the 26 autism genes than other genes, implies common functional

properties for these genes in the mouse brain. Further investigation

into the co-expression patterns of these genes revealed two cliques of

co-expressed genes that were significantly dominated by autism

genes. Genes in both these cliques shown significant over-expression

in the cerebellar cortex, and particularly in sections that are

predominantly populated by granular cells. Some regions of the

cerebral cortex are also highlighted by the second clique (Figure 5),

but to a lesser extent than the cerebellar cortex. Another recent

study of our group examining the expression of the same autism

gene set (AutRef84) in different human tissues, found a statistically

significant enrichment in the frontal cortex [44]. The cerebral

cortex was highlighted in other neuroanatomical studies of autism in

both human [45,46] and mouse [47] and is known to play a central

role in cognitive and emotional processing [48], which are key

deficits in autism and other neuropsychiatric disorders. In addition,

a recent neuroimaging study [49] highlighted functional sub-regions

in the cerebellum as playing a role in both motor and cognitive

tasks. Other genes associated with autism have been shown to play a

role in the development of this region [50–53]. Our results, provide

additional support in the potential involvement of the cerebellum in

Figure 6. Cell type properties of Cliques I & II. (A) Sections of the sum of expressions of genes in cliques I (left) and II (right) are depicted
through the most frontal coronal section of the cerebellum that intersects Nucleus X. The boundaries of the cerebellar cortex and of nucleus X are
outlined. (B) The corresponding coronal section of the mouse brain in the Allen Mouse Brain Atlas, Allen Institute for Brain Science [57].
doi:10.1371/journal.pcbi.1003128.g006
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autism etiology, and suggest additional candidate genes that are also

over-expressed in the cerebellar cortex.

Two recent transcriptomic analyses in human brains

[6,54] revealed additional co-expression modules enriched with

autism-associated genes. Some of these modules partially overlap

with our findings in either gene content or brain regions,

suggesting common functional and neuroanatomical properties

of autism gene in both human and mouse brains. Together, these

studies provide new insights into the specific gene networks and

brain regions that could be involved in autism etiology.

A major strength of our study is the utilization of the Allen

Mouse Brain Atlas [30–33] which comprises a high-resolution

genome-wide exploration of gene expression in the adult mouse

brain. This data allows one to explore gene expression properties

up to a resolution of 200 microns, which provide a good

distinction between different brain regions as well as potentially

tell apart different sub-regions and cell types. Another advantage

of this study is the focus on those genes exhibiting the highest

expression correlation between the coronal and sagittal sections

[35] as well as restricting the autism gene to a subset

demonstrating, to the best of our knowledge, the most compelling

associations to autism susceptibility. These strict criteria reduce the

chances of erroneous results. Our study has also some pitfalls.

First, the analyses were done on data from mouse brains. Since

autism is a human condition, one may ask how well finding of this

study apply to human brain. A recent study comparing

postsynaptic protein composition between mouse and human

suggest a high correlation between these two mammals in those

matters [55]. Nevertheless, similar analyses in the human brain are

still required to provide a finer validity to our findings. In addition,

the strict criteria used here, restricted the number of studied genes

to 3, 041 and 26 autism genes which are roughly represent 15%

and 31% of the genes in the Allen Brain Atlas and AutDB datasets

respectively. Such a small number of genes might results in false

negatives and hence might miss other co-expression properties and

brain regions associated with autism. Hence, larger studies are

needed to complement the results of our analysis.

In conclusions, our study provides unique insights into the

neuroanatomical co-expression properties of genes associated with

autism in the mouse brain and suggest specific regions implicated

in autism etiology. Complementing these findings with additional

genomics and neuroimaging analyses from both mouse and

human brains would help gaining a broader picture of the autistic

brain.

Supporting Information

Figure S1 ISH images of the autism genes of Clique I.
Imaged sections of ISH-treated brains (close to bregma), for (A)

Astn2, (B) Galnt13, and (C) Ptchd1 with the cerebellar cortex

clearly visible.

(TIF)

Figure S2 Estimated brain-wide density for (A) Stellate
Basket Cells, (B) Granule Cells, and (C) Mature
Oligodendrocytes. These data correspond to microarray data

from [56], using the data sets estimated in [43] to have the highest

purity. Interestingly, the estimated brain-wide densities are almost

zero in the cerebral cortex, suggesting that cell types characterized

by their transcriptomes are indeed specific to the cerebellar cortex.

(TIF)

Table S1 AutRef84: A Reference set of Rare and
Syndromic ASD-linked genes.

(XLSX)

Table S2 Co-expression of genes in Clique I. The pairwise

co-expression values between all 33 genes in Clique I are depicted

and color-coded. The four genes already associated with autism

are highlighted in yellow.

(XLSX)

Table S3 Co-expression of genes in Clique II. The

pairwise co-expression values between all six genes in Clique II

are depicted and color-coded. The two genes already associated

with autism are highlighted in yellow.

(XLSX)

Table S4 Overlap of cliques displaying overexpression
in the cerebellum with cliques I & II.

(DOC)

Table S5 Results of the Bioconductor GOstat analysis
for genes belonging to Clique I.

(DOC)
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