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Autism spectrum disorders (ASD) represent a group of developmental disabilities with a strong genetic
basis. The laboratory mouse is increasingly used as a model organism for ASD, and MGI, the Mouse Gen-
ome Informatics resource, is the primary model organism database for the laboratory mouse. MGI uses
the Mammalian Phenotype (MP) ontology to describe mouse models of human diseases. Using bioinfor-
matics tools including Phenologs, MouseNET, and the Ontological Discovery Environment, we tested data
associated with MP terms to characterize new gene-phenotype associations related to ASD. Our integra-
tive analysis using these tools identified numerous mouse genotypes that are likely to have previously
uncharacterized autistic-like phenotypes. The genes implicated in these mouse models had considerable
overlap with a set of over 300 genes recently associated with ASD due to small, rare copy number vari-
ation (Pinto et al., 2010). Prediction and characterization of autistic mutant mouse alleles assists
researchers in studying the complex nature of ASD and provides a generalizable approach to candidate
gene prioritization.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Autism spectrum disorders (ASD) are the fastest growing group
of serious developmental disabilities in the United States, affecting
one in every 110 children [1]. ASD is used to describe multiple dis-
orders that are primarily characterized by deficits in socialization
and communication, as well as restricted, stereotyped and repeti-
tive patterns of behavior [2]. ASD, broadly defined, has a substan-
tial genetic basis with a 92% concordance rate among monozygotic
twins compared to 10% in dizygotic pairs [3]. Some cases are asso-
ciated to genetic disorders such as Fragile X, to rare mutations in
synaptic genes, or to risk loci identified from genome-wide associ-
ation studies [4]. However, the genetic determinates and molecular
mechanism of ASD remain largely unknown.

Until recently, the prevailing hypothesis for the cause of com-
plex genetic diseases was that a combination of alleles that are rel-
atively common in a population collectively act to manifest a
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disease phenotype; any one allele on its own has little phenotypic
contribution [5]. By this notion, the common alleles contributing to
disease should be identified in patient populations by performing
genome-wide association studies (GWAS). ASD has been subject
to a number of GWAS, but to date only a few common alleles have
been implicated and the majority of these have not been confirmed
in follow up studies [6]. However, there is a growing appreciation
that many complex human disorders are not the result of a combi-
nation of common alleles but, rather, they result from one or few
rare variant alleles that have a large phenotypic contribution [7].
An important tenant of this model is that a large number of gene
variants must reside within a population to explain the prevalence
of disease. Support for this model in ASD comes from a recent
study that implicates over 300 genes in autism by small (1 or 2
gene) copy number variants (CNV) found with a higher burden in
996 ASD patients [8].

With such a large number of genes being implicated in ASD, a
bioinformatics and computational approach can usefully be em-
ployed to assess how these alleles can manifest in a common phe-
notype. In the last 10 years, such scientists have taken advantage of
the Gene Ontology (GO) to evaluate the characteristics of sets of
genes [9]. The GO, like other formal ontologies, consists of a struc-
tured hierarchical controlled vocabulary whose use serves to stan-
dardize the representation of gene and gene product attributes. GO
term enrichment experiments use the transitive closure power of
the GO hierarchical structure to identify biological processes that
sets of genes are statistically more frequently associated with
[10]. The authors of the CNV study, for example, performed such
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a ‘‘GO term enrichment’’ test that revealed biological processes
which were not previously implicated in ASD including cellular
proliferation and GTPase/Ras signaling [8]. While pointing out po-
tential new avenues of investigation, there are limitations to this
type of GO analysis since GO annotations describe gene function
in normal biological processes and specifically do not describe
pathological processes. Understanding why certain alleles associ-
ate with ASD, however, requires that the analysis include informa-
tion about the associated disease phenotypes. For example, a
common experimental approach is to subject a mouse strain carry-
ing a targeted mutation of an ASD candidate gene to behavioral and
neurological studies [11]. Such studies provide valuable insights
into the human disorder, but as more genes are implicated in
ASD, and more mouse models become available, researchers can
be overwhelmed in just reviewing the literature.

Biocuration efforts, coupled to ontology development, make
this literature more computable. The Mouse Genome Informatics
(MGI) bioinformatics resource captures data about experiments
conducted using the mouse as a model of human biology including
those related to autism. MGI integrates genetic, genomic and phe-
notypic data for the laboratory mouse [12], and curates data using
several different ontologies including the Mammalian Phenotype
(MP) Ontology [13]. As of January 8, 2011, the MP contains over
7800 terms that are used to describe the phenotypes of over
38,000 mouse genotypes. Mouse genotypes are also associated
within MGI to the records in the Online Mendelian Inheritance in
Man (OMIM) resource when a mouse is explicitly used as a model
for a human disease.

The MP has been incorporated into several recently developed
bioinformatics tools. (1) The Phenologs database, released in
2010 [14] identifies MP terms that are overrepresented among
mouse genes that are orthologous to human genes associated with
disease in OMIM. (2) The MouseNET system [15] supports predic-
tion of functional assignments based on integration of genetic and
genomic data. (3) The Ontological Discovery Environment (ODE)
[16] integrates gene sets associated with phenotype terms using
a variety of analysis tools such as Phenome Map analysis where
a hierarchy of phenotypes is proposed based on their associated
genes. (4) ODE’s newest analytic module, Anchored Bicliques of
Biomolecular Associates (ABBA) [16], finds genes that are function-
ally similar to an input set based on diverse evidence sources
including empirical studies and curated annotations of mouse
genes to GO and MP terms. We employed all of these tools in the
analysis reported here.

Starting with genes clustered by MP terms, and utilizing infor-
matics tools described above, we developed a method for discover-
ing novel mouse models of autism. Using this new approach, we
identified annotation gaps and doubled the number of mouse
genotypes associated with autism within MGI. We defined a list
of ASD candidate genes by finding overlap between human genes
implicated in the CNV study and mouse orthologs that contribute
to an autistic-like phenotype. This analysis has led to the predic-
tion of new plausible mouse models of ASD for future experimental
investigation.

2. Methods

2.1. Phenologs database

The Phenologs database provides a mechanism to identify non-
obvious equivalencies between mutant phenotypes in different
species. The Phenologs database integrates data for a variety of
human diseases represented in OMIM by compressing multiple
variants of a disease together under one term. In the case of the
Phenolog term ‘‘Autism’’, multiple variants of ASDs were
compressed to the singular term. By searching for ‘‘Autism’’ within
the Phenologs database, a table displaying ASD-implicated human
genes and their mouse orthologs is generated. MP terms that were
significantly overrepresented among these mouse orthologs were
ranked using a hypergeometric probability as described [14]. MP
terms that had 2 or more orthologs among the human autism gene
set, and had a p-value higher than p > 0.2.05e�04, were selected
for further analysis.

2.2. Phenome Map in the Ontological Discovery Environment (ODE)

The Ontological Discovery Environment (ODE) provides analysis
of functional genomics data sets across species and experimental
systems (http://ontologicaldiscovery.org/) [16]. The ODE database
contains gene sets including those that consist of genes with alleles
annotated to a MP term in the MGI database. These gene sets have
the MP term as their identifier. Within ODE, a user is able to input
gene sets that are centered on a specific phenotype or experimen-
tal result, retrieve publicly available sets, and analyze multiple
gene sets using a variety of analysis tools. One analysis tool, Phe-
nome Map [17], uses multi-way intersections of gene sets to create
a hierarchy of gene-phenotype associations using a novel algo-
rithm for biclique enumeration. We used Phenome Map to identify
genes that are not associated with the OMIM term ‘Autism’ within
MGI, but that appear to be good candidate genes based on func-
tional similarity with autism-implicated genes that are in MGI.
Mouse alleles found after review of the biomedical literature that
were not yet associated with autism within MGI were submitted
to the MGI curation pipeline.

2.3. MouseNET

MouseNET uses computational integration of diverse genetic,
genomic, and phenotype data and Bayesian inference to predict
functional relationships among mouse genes [15]. From a user-de-
fined list of genes of interest, MouseNET generates a probabilistic
network of functional relationships. The edges of the network rep-
resent statistical weighting of supporting evidence that includes
protein–protein interactions, gene–phenotype association, and
expression co-localization. The biological context of the network
is provided by testing for enrichment of GO annotations associated
with the individual genes in the predicted network. Associations
among the mouse genes and disease terms for their orthologous
counterparts are also provided by the resource. MouseNET can be
used to identify potential novel disease gene candidates. Mouse-
NET was used to predict new candidates genes related to Autism
based on current data in the MGI system.

2.4. Anchored Bicliques of Biomolecular Associates (ABBA)

ODE’s Anchored Bicliques of Biomolecular Associates (ABBA)
tool [16] is another analysis module that incorporates data and
information from ODE, GO, and the MP to find genes that have sim-
ilar characteristics based on discrete functional associations. When
a list of genes is input into ABBA, the tool generates a list of all of
the gene sets from within ODE’s database that contain a user deter-
mined number of the input genes. The tool then returns ranked list
of other similar genes that are enriched among the same gene sets
as the input genes. The user may designate a connectivity thresh-
old for the number of gene sets that contain the predicted genes.
This tool was used to identify genes that may be functionally sim-
ilar to genes associated with autism within MGI’s database. For this
study, the inputs used were: the eight genes associated with aut-
ism in MGI as of 8/2010, ODE genes sets that contain at least two
genes from input list, genes for output list must be on at least nine
ODE gene sets. This list of genes was reviewed in the current
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scientific literature for any relevance to autism and any evidence
was reported to MGI curators as necessary.

2.5. Generation of candidate ASD genes based on orthology to human
ASD-implicated genes and/or association with a neurological
phenotype

A recent study led by the Autism Genome Project Consortium
revealed rare copy number variation (CNV) as a determining risk
factor for autism [8]. In the study, 996 autistic patients and their
parents were genotyped to determine non-redundant CNVs in
any individual experiencing the disorder. A list of 231 CNVs that af-
fect one gene were identified along with 195 CNVs that affect two
genes. Using MGI mouse/human orthology data, the lists of CNVs
were compared with the gene lists from the ABBA and MouseNET
analyses to determine overlap (Table 1). Probability of candidate
gene overlap with ASD-associated CNVs due to random chance
was determined by a Fisher’s exact test method described in Fury
et al. [18]. Genes identified by the ABBA and MouseNET tools were
also manually screened for association with the MP terms ‘‘abnor-
mal behavior’’, ‘‘abnormal nervous system morphology’’ and
‘‘abnormal nervous system physiology’’ and are included in Table
1.

2.6. Statistical analysis

Precision (Pi), recall (Rho), and F-measure (f) were determined
as described [19]. Briefly, precision measures the fraction of re-
turned genes that are relevant to the search and recall measures
the fraction of relevant genes that are returned by the search. F-
measure represents the harmonic mean between precision and re-
call. The true positive gene set used was from a list of ASD-impli-
cated genes chosen by a consortium of ASD researchers [8].
Probability of candidate gene overlap with ASD-associated CNVs
due to chance was determined by a Fisher’s exact test method de-
Table 1
Candidate ASD genes based on mouse phenomics. Genes from ABBA or MouseNET analysi
genes associated with an abnormal neurological phenotype. The first three columns repres
column represents genes associated with an abnormal neurological phenotype in mice.
described in Pinto et al. [8].

Gene symbol MGI ID Phenome Map MouseNET

Anks1b MGI:1924781
Camk4 MGI:88258
Cask MGI:1309489
Chrna3 MGI:87887
Chrnb4 MGI:87892
Dsc3 MGI:1194993
Fgfr3 MGI:95524
Ghr MGI:95708
Plcb4 MGI:107464 �
Thrb MGI:98743
Unc5c MGI:1095412 � �
Amph MGI:103574 �
Apc MGI:88039 �
Cacna1a MGI:109482 � �
Cadps MGI:1350922 �
En1 MGI:95389 �
Foxp2 MGI:2148705 �
Gria2 MGI:95809 � �
Grin1 MGI:95819 �
Grin3b MGI:2150393 �
L1cam MGI:96721 �
Met MGI:96969 �
Mll1 MGI:96995 �
Pax3 MGI:97487 �
Pkd1 MGI:97603 �
Rora MGI:104661 �
Slc6a4 MGI:96285
scribed in Fury et al. [18]. Precision, recall and the F-measure were
calculated for each value of the rank threshold applied to ABBA re-
sults, and were compared to the distribution of measures esti-
mated from 1000 draws of randomly chosen genes.

2.7. Integration of bioinformatics tools

A workflow was established among the bioinformatics tools
that utilize MP annotations as depicted in Fig. 1. In summary, a
manual input of ‘‘Autism’’ generated a list of associated MP terms
from the Phenologs database. A ‘‘project’’ was then manually cre-
ated within the ODE environment by selecting the relevant MP
terms from the ODE database. Mouse genes were identified from
a Phenome Map analysis and subjected to a thorough literature re-
view. Genes with alleles from eight definitive mouse ASD models
were then separately used as inputs into the ABBA and MouseNET
tools. Results were then integrated by comparing candidate genes
to orthologous human genes implicated by the CNV analysis and/or
genes associated with an abnormal mouse neurological phenotype.
3. Results

Using the Phenologs tool to find MP terms that are overrepre-
sented with the five mouse orthologs of human genes implicated
in ASD, six such MP terms were identified (Fig. 2). The six MP terms
are ‘‘abnormal social investigation’’, ‘‘impaired coordination’’,
‘‘abnormal behavior’’, ‘‘abnormal cerebellar foliation’’, ‘‘small cere-
bellum’’, and ‘‘abnormal motor/capabilities/coordination move-
ment.’’ Many of these same MP terms were found among MGI’s
annotations of mouse models of autism confirming the validity of
the Phenolog findings.

We then integrated these results with tools available in the
Ontological Discovery Environment by taking the six MP terms
from the Phenologs analysis and performing a Phenome Map anal-
ysis. This function creates a hierarchical tree that shows groupings
s that have orthologous with human genes implicated in ASD by CNV analysis and/or
ent ASD candidate genes identified by different stages of our analysis and the fourth

The last column represents human orthologs implicated in ASD by CNV analysis as
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Fig. 1. Phenome analysis workflow. The analysis starts with a keyword search in
the Phenolog database and then proceeds by using the output from the previous
tool as an input to the text. ODE = Ontological Discovery Environment, MGI = Mouse
Genome Informatics, ABBA = Anchored Bicliques of Biomolecular Associates
analysis.

Fig. 2. Phenologs of ASD-implicated genes. A depiction of the process using the Pheno
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of all genes annotated to these terms based on their annotations to
different combinations of the input MP terms (Fig. 3). Genes asso-
ciated with two or more MP terms were examined for association
with ASD in both the MGI database and in the scientific literature.
For example, the only gene with annotations to all six MP terms,
En2, was already annotated to autism in MGI. However, a mouse
genotype containing Gabrb3 was not yet annotated to autism in
MGI although we identified research clearly using it as a model
(Fig. 3) [20]. This process led to the addition of three mutant alleles
that have experimental evidence for a linkage with autism within
MGI. These are Gabrb3, Ehmt1, and Nrcam. One additional gene,
Pten, was also identified as a strong candidate but lacked an expli-
cit statement from researchers saying this was an appropriate ASD
model.

Of particular interest were genes from this analysis that lack
mouse literature linking the gene to autism related phenotypes
but whose human orthologs have been implicated in ASD. For
example, mutations in the Rora gene have been linked to abnormal
coordination and abnormal cerebellum development in mice but
had not been considered a model for autism simply because the
human gene was not implicated in the disease. However, it was re-
cently demonstrated that idiopathic autistic patients have de-
creased expression of the RORA protein due to differences in the
methylation state of the gene suggestive that RORA plays a role
in the disease phenotype [21].

Intrigued by these findings, we compared the 426 genes impli-
cated in autism by the CNV study to mouse genes that have similar
functional and phenotypic similarity to known mouse ASD genes.
We took advantage of two tools. The first was MouseNET. Mouse-
NET creates a functional network based on an inputted list of
genes. By entering into the MouseNET the eight genes associated
with ASD in the MGI database (Cadps2, En2, Gabrb3, Gstm1, Nlgn3,
Pten, Ehmt1, and Nrcam), a ranked list of genes from a functional
network was generated. A ranked list containing 40 potential genes
was identified by a scoring mechanism that incorporated the sim-
ilarity between genes. Literature review of the genes identified by
MouseNet found a subset of eight human genes associated with
autism. These genes are CADPS, PAX3, DMD, MLL1, PKD1, AMPH,
logs tool to determine the MP terms most associated with disease-related genes.



Fig. 3. Phenome Map. Mapping of the six MP term-created gene sets generated by within ODE. The top of the map shows the one gene that has MP annotations to all six MP.
Below this root node, different derivatives of MP terms and their associated genes are shown. Red box indicates a root node. See text for discussion of the three examples. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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CACNA1A, and APC. However, the mouse orthologs for these genes
were not recorded as models for autism due to a lack of experi-
mental evidence. One additional gene, Unc5c was found to overlap
with the CNV list.

We also analyzed the autism-implicated gene set with the ABBA
tool to find similar genes based on functional and phenotypic sim-
ilarity. ABBA incorporates data from the ODE database to generate
a list of candidate genes with similar characteristics to an input set.
To assess this approach, we first measured precision and recall
against a true positive list of 133 genes definitively linked to peo-
ple affected with ASD as determined by a consortium of ASD
researchers [8]. Precision and recall scores were calculated over a
range of gene set overlap thresholds (Fig. 4). As expected, there is
Fig. 4. Recall and precision analysis. Recall and precision scores were calculated for the
percentile of 1000 randomly drawn gene lists of the same size as each thresholded ABB
less recall and improved precision as stringency is increased. We
compared these results to 1000 randomly drawn ranked gene lists
and plotted the precision and recall at a 95% confidence level. Our
ABBA analysis performs significantly better than chance on recall
but not precision at very high thresholds, and for lower thresholds,
consistently performs above chance. This analysis shows that our
approach performs well despite scarcity in existing knowledge of
genetic components of ASD. We expect as more genes are impli-
cated in ASD and are added to the true positive list, precision of
our analysis will improve.

By inputting the eight autism-implicated genes into our ABBA
analysis, 349 candidate genes were identified. Eleven orthologous
genes was found to overlap with the CNV set including: Unc5c,
ABBA analysis across a range of gene set overlaps. Control sets represent the 95%
A result.
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Dsc3, Ghr, Cask, Fgfr3, Camk4, Chrna3, Anks1b, Chrnb4, Plcb4, and
Thrb. Assuming 25,000 protein coding genes, the probability of
having 11 or more orthologous genes overlap is p = 0.0069. Inves-
tigation of the ABBA candidate genes within MGI showed 27 had
neurological phenotypes (see Table 1) especially mutant alleles
to Unc5c and Plcb4 that expressed neurological morphology and
behavioral phenotypes potentially indicative of ASD. Besides the
CNV analysis, neither gene has been associated with ASD before.
4. Discussion

With this project, we discover potential mouse models of aut-
ism by employing bioinformatics tools that access and integrate
MGI phenotype data. As a result, four additional mutant mouse al-
leles are now associated with autism within the MGI database. In
addition, a list of 27 candidate genes that are potentially relevant
to ASD has been identified. These findings may lead to additional
mouse models of autism by highlighting those mutant mouse
strains that should be examined for autistic-like behavior. To vali-
date our approach, we have begun experimental study of candidate
strains using new mouse behavioral tests for autism like pheno-
types [22]. Behavioral tests include time spent investigating stran-
ger mice [23], exploration of a novel environment, and scoring of
repetitive behaviors such as grooming.

The workflow developed in this project is applicable to finding
models for any human disease where a single allele has a large con-
tribution to the disease phenotype. For example, of the 300+ genes
implicated in the study linking small CNVs to autism, only 3% over-
lap with genes previously linked to autism or other genes associ-
ated with intellect-disabilities. The large number of unknown
genes confounds evaluation by pattern recognition algorithms in
finding additional candidate genes while the number of known
genes is large enough to make reviewing the literature burden-
some. The advantage of our approach is that it quickly highlights
mouse strains containing highly penetrant alleles that have pheno-
typic characteristics relevant to the disease in question, making
integrated use of both high-throughput genomic studies and indi-
vidual gene characterizations. With inclusion of additional infor-
mation on the temporal and spatial information known about a
given gene’s expression in the rich datasets becoming available
from projects like the Allen brain atlas [24], we may be able to re-
late subsets of the phenotype characteristics to time and place of
gene expression in the developing brain. This is an avenue of anal-
ysis we are pursing to better understand how the alleles of so
many different genes lead to the ASD phenotype.

While we have attempted an analysis of recall and precision of
our approach, it is critical to consider the existing state of knowl-
edge underlying true positive and true negative results. The possi-
bility of unbiased whole genome experimentation is a recent
development and as such, even the most well characterized disease
processes have relatively sparse associations to genes. Therefore,
we expect serious downward biased estimates of precision. By in-
tent, the focus of the human component of the Phenologs database
is on complex disorders whose genetic components are not com-
pletely known. Furthermore, the Phenologs database uses annota-
tions from 2008 and is not updated. This impacts both the human
genes associated with a human disease and the number of mouse
orthologs associated with an MP term. For example, three indepen-
dent studies published in 2008 find the CNTNAP2 is linked to an in-
creased familial risk of ASD but this gene is not included in
Phenolog’s ASD gene set [25–27]. Likewise, 18 genes are associated
with the MP term ‘‘abnormal social investigation’’ in the Phenologs
database based on the criteria of having an allele annotated to this
term on a non-complex genetic background; as of February 2011,
there are 32 genes that meet this criteria. A third limitation that
impacts both Phenologs and our initial ODE analyses is that full-
transitive closure was not made of the MP annotations. Curators
annotating data to an ontology make associations to the most
appropriate granular term; annotations are meant to be associated
to all the ancestral terms in the ontology hierarchy. Not performing
transitive closure leads to an under-representation of genes associ-
ated with higher level MP terms, except when multiple genotypes
at the same locus are annotated to various levels of the hierarchy.
In light of these issues, we are working on our own MP term
enrichment based on orthologous OMIM gene associations, and
ODE now features full-transitive closure of MP annotations.

4.1. Conclusions

We have developed an informatics approach to find mouse al-
leles that contribute to an autistic phenotype that have yet to be
described as mouse models of ASD in the literature. We believe
our approach will aid researchers looking to prioritize mouse mod-
els to any given disease that has a large number of implicated
genes.
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