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Abstract

The classical notion that the cerebellum and the basal ganglia are dedicated to motor control is under dispute given increasing evidence of
their involvement in non-motor functions. Is it then impossible to characterize the functions of the cerebellum, the basal ganglia and the
cerebral cortex in a simplistic manner? This paper presents a novel view that their computational roles can be characterized not by asking
what are the “goals” of their computation, such as motor or sensory, but by asking what are the “methods” of their computation, specifically,
their learning algorithms. There is currently enough anatomical, physiological, and theoretical evidence to support the hypotheses that the
cerebellum is a specialized organism for supervised learning, the basal ganglia are for reinforcement learning, and the cerebral cortex is for
unsupervised learning.

This paper investigates how the learning modules specialized for these three kinds of learning can be assembled into goal-oriented
behaving systems. In general, supervised learning modules in the cerebellum can be utilized as “internal models” of the environment.
Reinforcement learning modules in the basal ganglia enable action selection by an “evaluation” of environmental states. Unsupervised
learning modules in the cerebral cortex can provide statistically efficient representation of the states of the environment and the behaving
system. Two basic action selection architectures are shown, namely, reactive action selection and predictive action selection. They can be
implemented within the anatomical constraint of the network linking these structures. Furthermore, the use of the cerebellar supervised
learning modules for state estimation, behavioral simulation, and encapsulation of learned skill is considered. Finally, the usefulness of such
theoretical frameworks in interpreting brain imaging data is demonstrated in the paradigm of procedural learning.q 1999 Published by
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Traditionally, the cerebellum and the basal ganglia were
thought to be dedicated to the control of movement.
However, this idea is rapidly losing ground to the corpus
of evidence that suggests their involvement in non-motor
tasks (Brown, Schneider & Lidsky, 1997; Desmond & Fiez,
1998; Lawrence, Sahakian & Robbins, 1998; Leiner, Leiner
& Dow, 1993; Middleton & Strick, 1994). Despite the
demise of the motor control-only dogma, the activity of
the cerebellum and the basal ganglia in brain imaging
studies tends to be neglected or under-evaluated, often as
the artifacts of motor components in the task response. This
negligence is not only due to the wide prevalence of the old
theory, but also due to the paucity of alternative theories that
would enable us to comprehend the way the cerebellum and

the basal ganglia participate in sensory or cognitive tasks
(Houk, 1997; Ito, 1993).

One characteristic feature of the cerebellum is its highly
uniform anatomical organization (Llinas & Walton, 1998).
The characteristic multiple inhibitory pathways are also
present throughout the parallel circuit of the basal ganglia
(Wilson, 1998). The cerebral neocortex also has a charac-
teristic six-layer organization (Douglas & Martin, 1998).
These anatomical features, which are preserved throughout
each of these structures, suggest that the cerebellum, the
basal ganglia, and the cerebral cortex are each specialized
for a certain kind of computation. However, the question
about their unique “purposes” of computation, such as
motor control, sensory acquisition, or cognitive processing,
is ill-posed because all of these functions depend on each
other under a normal behavioral context (Bower, 1997).
Furthermore, the cerebellum and the basal ganglia are reci-
procally connected to the cerebral cortex (Fig. 1), and the
connected areas tend to be simultaneously active, making it
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difficult to differentiate their roles by a mere observation of
their activity.

The approach taken in this paper is to ask what are the
unique “methods” of computation, namely, the learning
algorithms, for which the cerebellum, the basal ganglia
and the cerebral cortex are specialized. The specific hypoth-
eses considered in this paper are that the cerebellum is a
specialized organism forsupervised learning, the basal
ganglia is for reinforcement learning, and the cerebral
cortex is for unsupervised learning. In this framework, a
particular function, such as the control of arm movement,
can be realized by a global network combining different
learning modules in the cerebellum, the basal ganglia and
the cerebral cortex. Moreover, learning modules in the same
structure, for example, different parts of the cerebellum, can
be used for different behavioral purposes, for example, for
motor control and cognitive processing, depending on
where their outputs are directed (Ito, 1993; Middleton &
Strick, 1996; Wolpert, Miall & Kawato, 1998).

In Section 2, the goals and the algorithms of supervised,
reinforcement and unsupervised learning paradigms are
summarized. Section 3 summarizes the anatomical, physio-
logical and theoretical evidence that suggests that the cere-
bellum, the basal ganglia and the cerebral cortex are
specialized, respectively, in the three learning paradigms
reviewed in Section 3. In Section 4, a number of global
architectures are considered in which supervised, reinforce-
ment, and unsupervised learning modules are assembled for
goal-directed behaviors. It is also investigated whether these
architectures can be implemented within the anatomical and
physiological constraints. In Section 5, experimental data on
the brain activity during procedural learning tasks are
considered in light of the behavioral architectures consid-
ered in Section 4. Finally, Section 6 provides discussions on
the issues concerning the learning of global architectures
and the regulation of global parameters.

2. Three basic learning paradigms

This section presents a summary of the formulations and
the algorithms of the three major learning paradigms consid-
ered in the computational learning theories, namely, super-
vised learning, reinforcement learning, and unsupervised
learning (Fig. 2). This classification is due to the nature of
the teaching signalsthat guide learning: directionalerror
vectorsin supervised learning, scalarrewards, or reinforce-
ment signals, in reinforcement learning, andnone in
unsupervised learning.

2.1. Supervised learning

In the supervised learning paradigm (Fig. 2(a)), the goal
is to construct an input–output mapping

y � F�x� �1�
that predicts the outputy � �y1;…; ym� 0 for an input data
pointx � �x1;…; xn� 0. The mapping is found from the exam-
ples of the desired output�ŷ�1�; ŷ�2�;…; � at the input data
points �x�1�; x�2�;…; � in order to minimize the expected
output error, such as that in a Euclid norm

Ex�iŷ 2 yi2�: �2�
Since the true distribution of the inputp�x� is usually
unknown, it is approximated by minimizing the sum of
squared errors at sample data points

E �
X

t

iŷ�t�2 y�t�i2 �
X

t

iŷ�t�2 F�x�t�;w�i2 �3�

under a certain constraint on the mappingF, such as
smoothness (see Bishop (1995) for more details).

For example, when the input–output mapping is repre-
sented as

yi�t� �
Xn
j�1

wij xj�t�; �4�

K. Doya / Neural Networks 12 (1999) 961–974962

Cerebral Cortex

Basal
Ganglia

Cerebellum

Thalamus

substantia
nigra

inferior
olive

Fig. 1. The global network linking the cerebellum, the basal ganglia and the
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Fig. 2. Three basic learning paradigms. (a) Supervised learning by error
vectors; (b) reinforcement learning by scalar reward signal; (c) unsuper-
vised learning by statistics of input signal itself.



wherewij is a connection weight, the supervised learning
algorithm is given by the gradient descent of the sample
error

Dwij / 2
2E
2wij

� �ŷi�t�2 yi�t��xj�t�; �5�

whereŷi�t�2 yi�t� is theoutput error.
In summary, supervised learning is characterized by the

parameter update based on the correlation between the
output error and the presynaptic input.

2.2. Reinforcement learning

In the reinforcement learning paradigm (Fig. 2(b)), a
learning agenttakes anaction u�t� [ Rm in response to
the state x�t� [ Rn of the environment, which results in
the change of the state

x�t 1 1� � F�x�t�;u�t��; �6�
and the delivery of reinforcement signal, or areward

r�t 1 1� � R�x�t�;u�t��: �7�
The goal is to find apolicy

u�t� � G�x�t��; �8�
which maximizes the cumulative sum of the rewards.

In general, current actionu�t� affects all future states and
accordingly all future rewards. The maximization is realized
by the use of thevalue functionof the states

V�x� � E�r�t 1 1�1 gr�t 1 2�1 g2r�t 1 3�1 …�; �9�
where the right-hand side is evaluated for the dynamics (6)–
(8) with the initial conditionx�t� � x and a discount factor 0#
g# 1.The two basic ingredients in reinforcement learningare,
first, the estimation of the value function, and then, the
improvement of the policy using the value function (see
Sutton and Barto (1998) for more information).

The basic algorithm for learning the value function is to
minimize thetemporal difference(TD) error of the reward
prediction

d�t� � r�t�1 gV�x�t��2 V�x�t 2 1��; �10�
which signals the inconsistency of the current estimate of
the value function. For example, when the value function is
represented as

V�t� �
Xn
j�1

vjxj�t�; �11�

the learning algorithm for the weightvj is given by

Dvj / d�t�xj�t 2 1�: �12�
A simple way of improving the policy is to take a stochas-

tic action

ui�t� � g
Xn
j�1

wij xj�t�1 mi�t�
0@ 1A; �13�

whereg�� is a gain function andmi�t� is a noise term. The TD
error d�t� as defined in (10) then signals the unexpected
delivery of the rewardr�t� or the increase in the state
value V�x�t�� above expectation, possibly due to the
previous choice of actionui�t 2 1�. The learning algorithm
for the action weightwij is given by

Dwij / d�t��ui�t 2 1�2 �ui�xj�t 2 1�; �14�
where �ui is the average level of the action output.

Thus, the TD errord�t�, which signals the error in reward
prediction, works as the main teaching signal in both learn-
ing of the value function and the selection of actions,

2.3. Unsupervised learning

In the unsupervised learning paradigm (Fig. 2(c)), only a
set of input data�x�1�; x�2�;…; � [ Rn is given and the goal
is to construct a mapping so that the output�y�1�; y�2�;…� [
Rm fully characterizes the statistical properties of the input.

A typical formulation is a maximization of the mutual
information between the input and the output

H�x; y� � H�x�2 H�xjy�; �15�
where H denotes theentropy H�x� � E�2log p�x��. The
mutual information quantifies the decrease in uncertainty
about inputx by knowing outputy (see Becker (1995) for
more details).

For example, a typical unsupervised learning algorithm is
derived from an objective function

E � ix�t�2 W 0y�t�i2
1
Xm
i�1

uyi�t�u; �16�

whereW is the input–output weight matrix andW0 denotes
its transpose. The first term represents the “input reconstruc-
tion error” that is minimized when the mutual information is
maximized. The second term provides a sparseness
constraint that encourages the majority of output units to
stay close to zero (Harpur & Prager, 1995; Olshausen &
Field, 1996).

Outputy is determined as the fixed point solution of the
relaxation dynamics

_y / 2
2E
2y
�Wx 2 WW0y 2 sign�y�: �17�

The weights are updated by the gradient descent

DW/ 2
2E
2W

� y�x 2 W 0y� 0 � yx 0 2 yy 0W; �18�

which is a Hebbian potentiation and activity-dependent
synaptic decay.

In summary, unsupervised learning is characterized by
the relaxation dynamics for determining the output as well
as the Hebbian synaptic rule under a certain regularization.
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3. Learning paradigms of the cerebellum, the basal
ganglia and the cerebral cortex

This section summarizes the anatomical and physiologi-
cal evidence supporting the hypothesis that the cerebellum,
the basal ganglia and the cerebral cortex are specialized,
respectively, in supervised, reinforcement and unsupervised
learning.

3.1. Supervised learning in the cerebellum

3.1.1. Anatomy
The circuit of the cerebellum is characterized by the

nearly feed-forward structure (Fig. 3) with massive synaptic
convergence of granule cell axons (parallel fibers) onto
Purkinje cells. There are two major input pathways: the
mossy fiberinput and theclimbing fiber input from the
inferior olive (see DeZeeuw, Simpson, Hoogenraad, Galjart,
Koekkoek and Ruigrok (1998) and Llinas and Walton
(1998) for details). The mossy fiber input, which carries
both sensory afferent and cerebral efferent signals, is relayed
by a massive number of granule cells, each of which
combines different mossy fiber inputs. The parallel fiber
input and the climbing fiber input converge at the
Purkinje cells. Each Purkinje cell receives approxi-
mately 200,000 parallel fiber inputs and only one climb-
ing fiber input. The output neurons of the cerebellum,
which are located in the deep cerebellar nuclei, receive
inhibitory input from Purkinje cells as well as the excitatory
mossy fiber input.

The connection between the cerebellar cortex, the cere-
bellar nuclei and the inferior olive is highly topographic.
There is a modular structure called “microzones”, each of

which consists of approximately 3000 Purkinje cells. The
outputs of the cerebellar nuclei are directed to the oculomo-
tor system, the spinal motor pathway, and through the thala-
mus to certain areas in the cerebral cortex, depending on the
locations within the cerebellar nuclei (Middleton & Strick,
1998).

3.1.2. Physiology
The responses of a Purkinje cell to parallel fiber inputs

and climbing fiber input are discerned as two differently
shaped spikes, which are called simple spikes and complex
spikes. The simple spike response of the Purkinje cell,
which is due to the parallel fiber input, encodes movement
related signals, such as the acceleration and velocity compo-
nents of eye movement command (Gomi, Shidara, Take-
mura, Inoue, Kawano & Kawato, 1998; Shidara, Kawano,
Gomi & Kawato, 1993). The complex spike response, which
is generated by a single spike of the climbing fiber, is char-
acterized by its very low frequency, usually a few spikes per
second. A statistical analysis has shown that the climbing
fiber input best encodes the errors in movement, for exam-
ple, the retinal slip signal in eye movement control
(Kobayashi, Kawano, Takemura, Inoue, Kitama, Gomi &
Kawato, 1998). The complex spikes are also related to
movement errors in arm reaching movement, particularly
toward the end of the movement (Kitazawa, Kimura &
Yin, 1998).

Coincident activation of the parallel fiber and climbing
fiber inputs induces thelong-term depression(LTD) of the
parallel fiber synapse onto the Purkinje cell (Ito, Sakurai &
Tongroach, 1982). The cellular and molecular mechanisms
of the LTD have been studied in detail (Daniel, Levenes &
Crepel, 1998).

3.1.3. Theoretical models
The results of these studies suggest that the circuit of the

cerebellum is capable of implementing the supervised learn-
ing paradigm (Albus, 1971; Ito, 1984; Marr, 1969). The
massive number of granule cells can work as expansion
encoders of the mossy fiber input signal. Their outputs are
linearly combined by a Purkinje cell, as in (4), and the
synaptic weights are updated by (5) with the error signal
ŷi�t�2 yi�t� carried by the climbing fiber and the inputxj�t�
carried by the parallel fibers (Kawato & Gomi, 1992a;
Wolpert et al., 1998).

The involvement of the cerebellum in error-driven learn-
ing behaviors, such as eye-movement control and condi-
tioned eye-blinking, has been experimentally
demonstrated (Ito, 1984; Thompson & Krupa, 1994),
although there is still controversy about whether the LTD
in the parallel fiber–Purkinje cell synapse is the single major
substrate of learning (Raymond, Lisberger & Mauk, 1996).
Houk, Buckingham and Barto (1996) have provided a
review of models of the cerebellum at different levels of
abstraction.

A number of simulation and robotic experiments have
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confirmed the usefulness of supervised learning in cerebel-
lum-like networks in motor control tasks (Fujita, 1982;
Gomi & Kawato, 1992; Kawato, Furukawa & Suzuki,
1987; Kettner, Mahamud, Leung, Sitkoff & Houk, 1997;
Schweighofer, Arbib & Kawato, 1998). An important
issue in supervised learning is the time delay in the delivery
of the error signal, which can be circumvented by introdu-
cing an “eligibility trace” for synaptic plasticity (Houk &
Alford, 1996; Kettner et al., 1997; Schweighofer, Arbib &
Dominey, 1996).

3.2. Reinforcement learning in the basal ganglia

3.2.1. Anatomy
The circuit of the basal ganglia is characterized by multi-

ple inhibitory pathways, as illustrated in Fig. 4. The striatum
(the caudate nucleus and the putamen) receives the main
input from the cerebral cortex. The striatum consists of
two compartments: thestriosomethat sends output to the
dopamine neurons in SNc and thematrix that sends output
to GPi and SNr (see the legend in Fig. 4 for complete terms).
There are both direct and indirect pathways that work in a
complimentary manner. The dopamine neurons in SNc send
projection back to both compartments of the striatum. Those
dopaminergic terminal are found in the presynaptic term-
inals of the cortico-striatal connection. The outputs of GPi
and SNr are directed through the thalamus to specific areas
in the cerebral cortex. There are multiple loops starting from
the cerebral cortex, through the basal ganglia and the thala-
mus, and back to the cerebral cortex (Alexander & Crutcher,
1990). It has recently been shown that the projection from
the GPi through the thalamus to the cortex is highly topo-
graphic, and thus the basal ganglia are composed of multiple
“output channels” (Middleton & Strick, 1994, 1996).

3.2.2. Physiology
Data from neuronal recording and lesion studies indicate

that the basal ganglia are involved in learning and execution
of goal-directed, sequential behavior (Graybiel, 1995;

Miyachi, Hikosaka, Miyashita, Karadi & Rand, 1997).
Neurons in the striatum and the global pallidus show activ-
ities at different timings for the sensory-motor behaviors
(Schultz, Apicella, Romo & Scarnati, 1995). “Tonically
active neurons” in the striatum show a phasic pause of spik-
ing when an animal detects sensory cues that signals the
delivery of a reward (Aosaki, Tsubokawa, Watanabe,
Grabiel & Kimura, 1994). The dopamine neurons in SNc,
which send output to the striatum, show phasic increase in
firing when an animal is given an unexpected reward or a
sensory cue that signals the delivery of a reward in the near
future (Schultz, 1998; Schultz, Apicella & Ljungberg,
1993).

The plasticity of the cortical input to the striatum is
known to be modulated by the dopamine. It was shown
that the coincident cortical input and the depolarization in
a striatal neuron induce long-term depression (LTD) of the
cortico-striatal synapse, provided that there are enough level
of dopamine (Calabresi, Pisani, Mercuri & Bernardi, 1996).
Furthermore, long-term potentiation (LTP) instead of LTD
is observed when the coincidence of cortical input and post-
synaptic depolarization is also associated with a phasic
dopamine release (Wickens, Begg & Barto, 1996).

3.2.3. Theoretical models
Based on the reward predicting activity of dopamine

neurons and the change of behavior in the course of task
learning, it has been suggested that the basal ganglia is
involved in reinforcement learning, in which the dopamine
neuron activity encoding the reward prediction errord�t� in
(10) (Montague, Dayan & Sejnowski, 1996; Schultz et al.,
1997). More specifically, it is suggested that the striosome
compartment works as the value prediction mechanism
while the matrix compartment works as the action selection
mechanism (Barto, 1995; Houk, Adams & Barto, 1995).

The capability of reinforcement learning models of the
basal ganglia to replicate sequence learning behaviors has
been demonstrated (Berns & Sejnowski, 1998; Dominey,
Arbib& Joseph, 1995; Nakahara, Doya, Hikosaka &
Nagano, 1997, 1998; Suri & Schultz, 1998).

3.3. Unsupervised learning in the cerebral cortex

3.3.1. Anatomy
A remarkable anatomical feature of the cerebral neocor-

tex is the layered organization and the massive recurrent
connections (Fig. 5; see Douglas and Martin (1998) for
details). The cerebral cortex is subdivided into many func-
tional areas, where each area represents the sensory, motor
or contextual information in different modalities and frames
of references (Andersen, 1995; Graziano, Hu & Gross,
1997; van Essen & Maunsell, 1983).

3.3.2. Physiology
Neurons in the cortex are well characterized by their

specific response tuning, for example, to the orientation
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and color of the visual stimuli in the visual cortex. The
response tuning of the cortical neurons is highly dependent
on the sensory experience (Blakemore & Cooper, 1970;
Hirsch & Spinelli, 1970). The cortical synapses have been
shown to follow a Hebbian-type plasticity rule: they are
potentiated when the presynaptic input is associated with
the postsynaptic response (e.g. calcium ion influx) but
depressed when it is not associated with postsynaptic
response (Artola, Brocher & Singer, 1990; Tsumoto &
Suda, 1979).

3.3.3. Theoretical models
These properties strongly suggest that the information

coding in the cerebral cortical areas are established by the
unsupervised learning paradigm in which the activity is
determined by a relaxation dynamics (e.g. as in (17)) and
the synapses are update by a Hebbian rule (e.g. as in (18)).

There have been many learning and development models
of response tuning in cortical neurons based on Hebbian
synaptic mechanisms (Amari & Takeuchi, 1978; Fukush-
ima, 1980; Grossberg, 1976; Kohonen, 1982; von der Mals-
burg, 1973). Other models have used information theoretic
formulation of unsupervised learning (Bell & Sejnowski,
1997; Linsker, 1986; Olshausen & Field, 1996; Sanger,
1989).

4. Global architectures for adaptive behaviors

The neural circuits of invertebrates can perform amaz-
ingly sophisticated functions despite their small size
(Stein, Grillner, Selverston & Stuart, 1997), since they are
highly optimized for specific behaviors as a result of evolu-
tionary processes. In contrast, the most recently developed
areas of the mammalian brain, namely, the cerebellum, the
basal ganglia and the cerebral cortex, appear to be specia-
lized for implementations of specific learning algorithms,
namely, supervised, reinforcement, and unsupervised learn-
ing, rather than being genetically preprogrammed for a fixed
repertoire of behaviors. Each of the three structures has
modular organization: microzones in the cerebellum, output
channels in the basal ganglia, and cytoarchitectonically
defined areas and columnar organization in the cerebral
cortex.

This section explores the possible global architectures in
which the modules specialized in supervised, reinforcement,
and unsupervised learning are combined into a goal-directed
behaving system. Candidates of such global architectures
are found in the theories of dynamic programming (Bertse-
kas & Tsitsiklis, 1996), reinforcement learning (Sutton &
Barto, 1998), adaptive control (Narendra & Parthasarathy,
1990) and adaptive signal processing (Haykin, 1996). It is
also considered whether such global architectures can be
implemented under the constraints of brain anatomy.

The general construction principles are the following.

1. Supervised learningmodules in the cerebellum can be
used as theinternal modelof the environment (Kawato &
Gomi, 1992b; Wolpert et al., 1998) and short-cut models
of input–output mappings that have been acquired else-
where in the brain (Ito, 1993).

2. Reinforcement learningmodules in the basal ganglia are
used to evaluate the given state and to select an action
based on the evaluation.

3. Unsupervised learningmodules in the cerebral cortex
work as the medium for representing the state of the
external environment as well as the internal context.
They also provide the common representational basis
for the cerebellum and the basal ganglia, between
which there are no direct anatomical connections.

4.1. Reactive action selection

The most primitive adaptive action selection is imple-
mented by theactor–critic architecture (Barto, Sutton &
Anderson, 1983) illustrated in Fig. 6. A stochastic policy
G is implemented in the actor network (13). Thecritic
monitors the state of the environment and estimates the
value functionV�x� for the current policy.

This basic reinforcement learning architecture can be
implemented in the network linking frontal cortical areas,
such as the supplementary motor area and the basal ganglia,
with the striatalstriosomecompartment implementing the
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critic and thematrix compartment implementing the actor
(Barto, Bradtke & Singh, 1995; Houk et al., 1995).

It is essential that an appropriate encoding of the statex
and the actionu be available for such a simple reinforce-
ment learning architecture to work efficiently. The cerebral
cortical areas which send the input to and receive the output
from the basal ganglia can subserve the function of state and
action encoding based on the unsupervised learning para-
digm.

4.2. Predictive action selection

Another action selection strategy based on the value func-
tion is to use it in conjunction with a model of the environ-
mental dynamics. According to the theory of dynamic
programming, the optimal action can be taken from the
value function that satisfies theBellman equation

V�x�t�� � max
u
�t��r�t 1 1�1 gV�x�t 1 1���: �19�

Here, the immediate future reward is predicted by a reward
model

r�t 1 1� � R�x�t�;u�t�� �20�
and the future statex�t 1 1� is predicted by the environmen-
tal model

x�t 1 1� � F�x�t�;u�t��: �21�
Given such a value functionV, the best action can be
selected as the one that maximizes the right-hand side of
the Bellman equation (19), i.e. the action that maximizes the
predicted sum of immediate and future rewards.

4.2.1. Discrete model-based action selection
In the tasks that involve the selection of discrete actions,

it is possible to compare the right-hand side of (19) for each
candidate action and then execute the action that maximizes
it. One implementation of such an action selection is to

consider a candidate actionup�t� one at a time, predict the
resulting future statexp�t 1 1� and its valueV�xp�t 1 1��,
and accept it for execution if it is good enough. Fig. 7
illustrates a simple implementation of this serial action
selection mechanism. In this case, whether the candidate
action is good enough for execution is determined by

dp�t 1 1� � R�x�t�;u�t��1 gV�xp�t 1 1��2 V�x�t��; �22�
which has the same form as the TD error (10).

It is possible for such an architecture to be implemented
in the network linking the prefrontal and rostral premotor
areas, the lateral cerebellum, and the basal ganglia as shown
in Fig. 7. The prefrontal and the rostral premotor areas as
well as the lateral cerebellum are known to be activated
during imagery of body movement and during mental opera-
tions such as mathematical calculation (Deiber, Ibanez,
Honda, Sadato, Raman & Hallett, 1998; Rueckert, Lange,
Partiot, Appollonio, Litvan, Le Bihan & Grafman, 1996].

Thus, the loop consisting of the lateral cerebellum and the
prefrontal and rostral premotor cortex should be capable of
predicting the outcome of a hypothetical action. These corti-
cal areas also send projection to the anterior part of the basal
ganglia, where the multiple inhibitory pathways should
enable the computation of the predictive TD error (22)
encoded in the activity of the dopamine neurons. In fact,
the anterior basal ganglia, the pre-SMA, and the prefrontal
cortex have been shown to be preferentially involved in
learning a new sequential movement by trial and error in
both animal lesion studies (Miyachi et al., 1997] and human
imaging studies (Hikosaka, Miyachi, Miyashita & Karadi,
1995; Sakai, Hikosaka, Miyauchi, Takino, Sasaki & Putz,
1998).

4.2.2. Differential model-based action selection
When continuous actions are considered, action selection

based on the Bellman equation (19) is achieved by differ-
entiating the maximization term for actionu and making it
zero, namely

2R�x; u�
2u

1 g
2V�x�
2x

2F�x;u�
2u

� 0 �23�

By assuming that the reward (cost) for the actionu is quad-
ratic, the term2R�x;u�=2u becomes a linear function ofu
and thus the optimal action is given by

u / 2F�x;u� 0
2u

2V�x� 0
2x

: �24�

In this equation,2V�x� 0=2x represents the steepest ascent
direction of the value function, which can be regarded as
the “desired” movement direction. The input gain matrix
2F�x; u�=2u, which can be regarded as a local inverse
dynamic model, converts this movement direction into
action direction (Doya, 1996, 1999). The corresponding
network architecture is illustrated in Fig. 8.

Such a control architecture could possibly be implemen-
ted in the global network linking the basal ganglia, the
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primary motor cortex (M1), and the lateral cerebellum, as
shown in Fig. 8. M1 is reciprocally connected to both the
cerebellum and the basal ganglia. Georgopoulos (1995) and
Scott (1997) have observed cellular responses encoding
both movement direction and muscular activities.

The input gain2F�x;u�=2u could possibly be implemen-
ted in the lateral cerebellum by supervised learning of state
changeẋ for action u�t� Although there is support for the
hypothesis that the value functionV�x� is learned in the
basal ganglia (Barto et al., 1995), it is not certain whether
the gradient2V�x�=2x of the value function can be calcu-
lated in the basal ganglia. However, it may be possible to
learn to approximate such a quantity by way of the temporal
differential formula _V � 2V�x�=2x _x.

This architecture shares the same features with the
previously proposed model of the limb premotor network
(Houk, Keifer & Barto, 1993), in that there is no explicit
desired trajectory calculation and the detailed motor
command is generated in the reciprocal connection between
the motor cortex and the cerebellum.

4.3. Models for prediction, simulation and encapsulation

Let us now consider several ways of utilizing cerebellar
supervised learning modules in conjunction with any of the
above action selection architectures.

4.3.1. Model-based state estimation
One big challenge in the control of movement is the

existence of feedback delays and hidden states. The basic
assumption in the above action architectures is that the
information necessary for evaluation and action selection
is readily available in the form of the state vectorx�t�.
One possible role of the cerebellum and the cerebral cortex
is to provide the estimate of the current state despite the
delayed, noisy, and/or degenerate sensory inputs.

This could possibly be implemented by the network
dynamics within the cortical areas or by the network linking
the cerebral cortex and the cerebellum, which is supposed to
provide the model of the environmental dynamics (Wolpert
et al., 1998), as shown in Fig. 9. Typical examples of state
estimation using dynamic models are the Smith predictor
(Miall, Weir, Wolpert & Stein, 1993) and the Kalman filter
(Paulin, 1993).

Such model-based estimation of the external state is
useful not only for motor execution, but also for sensory
acquisition that involves a comparison of actual and
expected sensory outcome, for example, somatosensory
object recognition (Gao, Parsons, Bower, Xiong, Li &
Fox, 1996) and judgment of precise timing (Ivry, 1996).

4.3.2. Simulation in the virtual environment
In the model-based, predictive action selection architec-

ture above, we only considered a single-step planning of
action. However, provided that the number of possible
actions are small and that there is enough working memory
capacity and time for decision making, it is possible to
extend such mechanisms to multiple-step prediction and
evaluation.

It is also possible to use such an internal model of envir-
onment not only for on-line action selection but also for the
improvement of the value function and the policy based on
the simulated experiences, as illustrated in Fig. 10. Suchoff-
line learning could enable learning a behavior from a very
limited number of actual experiences, although its success
depends strongly on the accuracy of the environmental
model.

4.3.3. Encapsulating learned mappings
Many of the discussed control and decision architectures

involve global communication between the cerebellum, the
basal ganglia and the cerebral cortex, and this can be quite
costly in the hardware resources and processing time. These
architectures are useful for learning a new task, but once it
has been well learned, it is more advantageous to store the
learned policy in a local circuit for compact storage, reliable
execution, and quick reaction.
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For example, supervised learning modules in the medial
part of the cerebellum, which receives the spinal sensory
afferents and sends out motor commands to the spinal cord
and primary motor cortex, are a candidate for a repository of
learned sensory-motor mapping (Fig. 11). For example, in
arm movement control, the output the cortical feedback
pathway could be used as the teacher signal for the cerebel-
lum. In this case, the cerebellum serves as a direct controller
(Barto et al., 1996) or an inverse model of the arm dynamics
(Kawato et al., 1987; Schweighofer et al., 1998).

Similarly, supervised learning modules in the lateral part
of the cerebellum, which are reciprocally connected to
different parts of the frontal cortex including the prefrontal
cortex, are a candidate for the repository of more abstract
state–action mappings that was originally acquired using
the global network, as illustrated in Fig. 7.

Such encapsulation of learned mapping is useful for
robust storage and quick reaction, and it frees a large portion
of the brain from the task already learned so that these
portions of the brain can be used to learn new tasks.

5. Brain activation in sequence learning

The characterization of specific computations for the

cerebellum, the basal ganglia and the cerebral cortex and
their possible combinations as a global learning architecture
might be useful in inferring the specific roles of the acti-
vated areas in brain imaging studies. The results of func-
tional imaging experiments on sequence learning are
investigated in view of the architectures listed above.

5.1. Implicit learning

In an implicit sequence learning task paradigm, subjects
were asked to perform simple actions (usually press
buttons), initially by following cues shown in random
order. Then the order of cues (thus the actions) was fixed
in a particular sequence or generated according to a certain
grammar. As a subject repeated the regular sequence, the
reaction time for pressing buttons became shorter even
when the subject was not aware of any particular order or
grammar.

Table 1A summarizes the activation in the cerebellum,
the basal ganglia and the frontal cortex during such implicit
sequence learning. The most consistent activity was found
in the basal ganglia. In view of the global architectures, the
result is compatible with the reactive architecture shown in
Fig. 6, which does not use an explicit model of the environ-
mental dynamics, in this case the button sequence.

5.2. Sequence learning by exploration

Let us now focus on sequence learning by trial and error.
Subjects were asked to learn the right sequential movements
(usually pressing buttons with fingers) by actively searching
for the right order. Although such a task can be learned with
the simple stochastic learning architecture shown in Fig. 6,
more efficient learning is possible with the predictive model
of the task, as shown in Fig. 7. For example, it is possible to
avoid making the same errors with the ability to predict the
outcome of the action taken previously. Such predictive
action selection is particularly useful early in the learning
process before a stereotyped reaction is established.

Table 1B summarizes the areas activated during such
exploratory sequence learning. Prominent activations were
found in the prefrontal cortex and the rostral premotor areas.
This is compatible with the predictive action selection archi-
tecture shown in Fig. 7, which relies on the state prediction
presented in the prefrontal and premotor cortex.

6. Discussion

This paper presented a hypothesis that the cerebellum, the
basal ganglia and the cerebral cortex are, respectively,
specialized in supervised, reinforcement and unsupervised
learning paradigms. First, the anatomical, physiological and
theoretical support for the hypothesis was outlined. Then a
number of global architectures for goal-oriented behaviors
were considered with the combination of those learning
modules within biological constraints.
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6.1. Previous models

Despite the wealth of the models for the cerebellum, the
basal ganglia and the cerebral cortex, there have been few
attempts at characterizing the specific computations in these
three brain areas in a unified framework.

Thach, Mink, Goodkin & Keating, (1993) compared the
roles the cerebellum and the basal ganglia and concluded
that the cerebellum is involved in combining primitive
movements and that the basal ganglia is involved in the
inhibition and disinhibition of primitive or complex move-
ments. Mushiake (1995) gave a nice review of anatomical
and physiological findings that point to different functions
of the cerebellum, the basal ganglia and the cerebral cortex.

Houk and Wise (1995) emphasized the distributed nature
of the operation of the networks liking the basal ganglia, the
cerebellum and the cerebral cortex and characterized their
major functions as “context recognition” for the basal gang-
lia, “pattern generation” for the cerebellum, and “informa-
tion stores” for the cerebral cortex. However, they
mentioned differences in the nature of computations for
the evidence in support of their ideas: supervised learning
in the cerebellum, reinforcement learning in the basal gang-
lia and attractor dynamics in the cerebral cortex.

The novel features in the current proposal are: (1) the
differences in the computational paradigms are the primary
differences in the three structures and (2) the theory is based
on sound mathematical frameworks, including dynamic
programming, reinforcement learning, and adaptive control.

The first point enables a very simple and coherent char-
acterization of the three structures. The second point enables
a systematic exploration of the possible ways of their inter-
actions. These models are useful both in interpreting the
existing experimental data and in planning new behavioral
experiments. Furthermore, it is possible to test the perfor-
mance of those architectures in a realistic simulation of
experimental paradigms.

One such example is seen in the model of sequence

learning by Nakahara et al. (1998). They succeeded in repli-
cating the experimental results from a “2× 5 task” based on
the assumption that the loops connecting the basal ganglia
and the cerebral cortex work as the “actor–critic” architec-
ture (Fig. 6) and that different cortical areas provide the
sensory and contextual information in different frames of
reference.

6.2. Cerebral and cerebellar mappings

One of the major functions of the cerebellum is to provide
a model or mapping between sensory-motor representations.
However, it is well known that different cortical areas have
different maps that capture different aspects of the sensory
and motor state, for example, a visuo-motor target in differ-
ent frames of references (Snyder, Grieve, Brotchie &
Andersen, 1998; Graziano et al., 1997). Thus, the connec-
tion between different cortical areas can work as acoordi-
nate transformation system. What are the essential
difference between cortical and cerebellar mapping?

As described in Section 2, unsupervised learning is based
on the statistical properties of the signals and a solution
depends on iterative network dynamics and is quite context
dependent. On the other hand, a deterministic function of
the current input is learned in the feed-forward cerebellar
circuit. Thus, a cerebellar mapping can work as a short-cut
circuit or a look-up table for a mapping that was originally
developed by the time-consuming cortico-cortical proces-
sing. Such a mechanism is especially useful when the same
mapping is used repeatedly for time critical tasks, for exam-
ple, inverse kinematic and inverse dynamic mappings for
arm movement.

6.3. Cognitive tasks

In this paper, the considerations were mainly made in the
context of motor control, but similar architectures could also
be utilized for cognitive functions including logical infer-
ence and communication. For example, in mathematical
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Table 1
Activations of prefrontal cortex, premotor cortex, basal ganglia and cerebellum in sequence learning tasks. Abbreviations: r., right; l., left; b., bilateral; a.,
anterior; v., ventral., DLPF, dorsolateral prefrontal cortex; PM, premotor area; SMA, supplementary motor area, GP, global pallidus

Prefrontal Premotor Basal ganglia Cerebellum

A. Implicit learning
Grafton, Hazeltine and Ivry (1995) b. SMA b. putamen r. dentate
Rauch, Savage, Brown, Curran, Alpert Kendrick, Fischman and Kosslyn (1995) r. PM r. striatum
Doyon, Owen, Petrides, Sziklas and Evans (1996) r.v. striatum r.dentate
Berns, Cohen and Mintun (1997) l.PM r.v.striatum
Grafton, Hazeltine and Ivry (1998) r.SMA
B. Exploratory learning
Jenkins, Brooks, Nixon, Frackowiak and Passingham (1994) b. b.PM b.cortex

b.cortex
Hikosaka, Sakai, Miyauchi, Takino, Sasaki and Putz (1996) preSMA
Jeuptner, Stephan, Frith, Brooks, Frackowiak and Passingham (1997) b. b.PM b.caudate b.cortex

b.GP b.nuclei
Sakai et al. (1998) l.DLPF preSMA



problem-solving, sequential selection of arithmetic opera-
tions on symbolic representations can be implemented by
the predictive decision architecture shown in Fig. 7. After
repeated problem solving, the search process can be skipped
by using the problem–solution mapping learned in the cere-
bellum, as shown in Fig. 11.

In the context of communication, the “environment” is
the partner of communication and the goal is to bring the
physical or internal state of the partner into a desired state.
This involves sequential selection of actions, i.e. words or
gestures, in an appropriate sequence, in the same way as in
the case of many control tasks. When the model of the
partner is available, the goal can be achieved more readily
and quickly. If the internal models of the speaker and
listener are similar, communication is made efficient.

Actually, the brain areas that are activated in complex
motor tasks are also activated in cognitive or verbal tasks
(Mellet, Tzourio, Crivello, Joliot, Denis & Mazoyer, 1996;
Rueckert et al., 1996). Thus, we postulate that the current
investigation of behavioral architectures and their brain
implementation is not only applicable to motor tasks but
also to cognitive tasks including communication.

Predictive action selection architecture (Fig. 7) has been
extensively used in traditional artificial intelligence (AI)
research. Classical AI approaches to an understanding of
human cognitive functions failed because these approaches
usually took into account only a single or a few possible
architectures for problem solving. The massively parallel
organization of the brain enables the use of many different
strategies for the same task. It is essential to consider the
process in which a deliberate, intensive task turns into a
trivial, automatic task after repeated training.

6.4. Who decides the architecture?

This paper has presented useful module combinations but
has not considered “how” such appropriate modules are
picked up from the cerebellum, the basal ganglia and the
cerebral cortex and are assembled into a global network.
The genetic information of area to area connections is
certainly important, but it does not explain how the exact
networks for novel, learned behaviors is set up.

Traditionally, the central executivewas supposed to
undertake the task of activating and connecting appropriate
processing modules (Baddeley, 1992). However, its compu-
tational principle and biological substrate is unknown.
Proponents ofsubsumption architectureswould reject the
need for such a centralized process. They have demon-
strated the recruitment of appropriate modules by simple
rules (Brooks, 1991). However, the way different modules
are activated and preceded is usually pre-wired in many
robotic demonstrations.

An alternative possibility is that the competitive learning
mechanism in the cerebral cortex is utilized for the selection
of appropriate modules for the environmental state and
the goal of the task (Houk & Wise, 1995). Recently, a

computational framework of selecting and combining multi-
ple control modules based on the performances of the multi-
ple predictive models has been proposed (Wolpert &
Kawato, 1998; Wolpert et al., 1998). Such a modular archi-
tecture could possibly be implemented by a network linking
the cerebellum and the prefrontal and rostral premotor
cortex. An activation of the preSMA and the rostral cingu-
late motor area (CMAr) at the time of change in the motor
plan is in accordance with such a possibility (Shima &
Tanji, 1998; Shima, Mushiake, Saito & Tanji, 1996).

6.5. Who sets the parameters?

The performance of any learning algorithm depends on
the setting of some global parameters, such as the learning
rates. The appropriate values of such parameters are usually
task dependent and therefore have to be under active regula-
tion. In the framework of reinforcement learning, such
global parameters include the time scale of an evaluation
(discount factor), the size of the noise for exploration
(temperature), the magnitude of cost for action and the
learning rates. How does the brain appropriately set such
parameters?

This is still an open problem, but the likely candidates are
the diffuse ascending projections from the midbrain nuclei
to the cerebellum, the basal ganglia, and the cerebral cortex.
For example, the noradrenergic system is known to modu-
late the sharpness of neural responses (Usher, Cohen,
Servan-Schreiber, Rajkowski & Aston-Jones, 1999),
which is similar to the role oftemperaturein many learning
algorithms. The level of serotonin affects the subject’s
activeness, which is reminiscent of the role of the action
cost parameter. The cholinergic and noradrenergic input is
known to regulate the synaptic plasticity of the cortical
neurons (Brocher, Artola & Singer, 1992). Computational
studies of regulatory mechanisms for learning systems, or
meta-learning, would provide a theoretical basis for under-
standing the roles of emotional systems in regulating beha-
vioral learning.
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