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Over the last 60 years, the spotlight of research has periodically returned to the cerebellum
as new techniques and insights have emerged. Because of its simple homogeneous
structure, limited diversity of cell types and characteristic behavioral pathologies, the
cerebellum is a natural home for studies of cell specification, patterning, and neuronal
migration. However, recent evidence has extended the traditional range of perceived
cerebellar function to include modulation of cognitive processes and implicated cerebellar
hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light
of this emerging frontier, we review the key stages and genetic mechanisms behind
cerebellum development. In particular, we discuss the role of the midbrain hindbrain
isthmic organizer in the development of the cerebellar vermis and the specification and
differentiation of Purkinje cells and granule neurons. These developmental processes are
then considered in relation to recent insights into selected human developmental cerebellar
defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia.
Finally, we review current research that opens up the possibility of using the mouse as a
genetic model to study the role of the cerebellum in cognitive function.

Keywords: cerebellum, development, defects, hypoplasia, genetics, function, behavior, autism spectrum

disorders

INTRODUCTION
The cerebellum is an intriguing component of the central nervous
system. From one perspective it is a famously simple neuro-
nanatomical circuit constructed from a relatively few neuronal
types and comprising a single uniform microarchitecture (Cajal,
1894; Eccles et al., 1967). However, the nature of the calculations
performed by this circuit and its precise role in a variety of dif-
ferent neural functions has proved notoriously difficult to pin
down. Despite the conserved nature of its core functional neu-
ronal partnership, formed between granule cell axons and Purkinje
cell dendrites, it is also clear that the cerebellum is employed as a

Abbreviations: Ahi1, Abelson helper integration site 1; Apc, adenomatous polypo-
sis coli; Atoh1, atonal homolog 1; BMI1, B lymphoma Mo-MLV insertion region
1 homolog; CASK, calcium/calmodulin-dependent serine protein kinase; Cep290,
centrosomal protein 290 kDa; CHMP1A, charged multivesicular body protein 1a;
EGL, external granule cell (germinal) layer; En1, engrailed 1; En2, engrailed 2;
EXOSC3, exosome component 3; FGF, fibroblast growth factor; Foxc1, forkhead
box C1; Gbx2, gastrulation brain homeobox 2; GCps, granule cell precursors;
Gli, GLI-Kruppel family member; Ink4a, cyclin-dependent kinase inhibitor 2A,
p16Ink4a; IsO, isthmus organizer; KAL1, Kallmann syndrome 1 sequence; LMX1B,
Lim homeobox transcription factor 1 beta; Otx2, orthodenticle homeobox 2; Pax2,
paired box gene 2; PC, Purkinje cell; Ptf1a, pancreas transcription factor 1 subunit
alpha; r1, rhombomere 1; RARS2, arginyl-tRNA synthetase 2; Reln, Reelin; RL,
rhombic lip; Shh, Sonic Hedgehog; Smo, smoothened; SUFU, suppressor of fused
homolog; TGFβ, transforming growth factor beta; Tmem67, transmembrane pro-
tein 67; Tmem216, transmembrane protein 216; Tsc1, tuberous sclerosis complex
1; TSEN2, tRNA-splicing endonuclease subunit 2; TSEN34, tRNA-splicing endonu-
clease subunit 34; TSEN54, tRNA-splicing endonuclease subunit 54; vz, ventricular
zone; Wnt1, wingless-type MMTV integration site family, member 1; ZIC1, zinc
finger protein of the cerebellum 1; ZIC3, zinc finger protein of the cerebellum 3;
ZIC4, zinc finger protein of the cerebellum 4.

neural “comparator” in different ways in different species (Meek,
1992; Barlow, 2002). From a predominantly proprioceptive and
sensory role in fish, it has adopted more overt motor functions
in mammals (Nieuwenhuys et al., 1998). In primates, including
humans, a large proportion of the cerebellar cortex is in addition
given over to interactions with regions of the cortex involved in
cognition and judgment (Strick et al., 2009). The recruitment of
a relatively unchanging core cerebellar circuitry into a variety of
different functions both presents challenges in understanding its
role in human disease but also great potential for the use of simpler
model animal systems in solving these challenges.

Despite the uniformity of its cellular structure, the cerebel-
lum is divided into clear anatomical divisions on the basis of a
transverse fissures that separate lobes. These are folds in what is
a continuous ribbon of neural circuitry that, in humans, would
extend over a meter in anteroposterior length (Braitenberg and
Atwood, 1958). A primary fissure divides the anterior from the
posterior lobes, while a posterolateral fissure separates poste-
rior lobe from a distinct flocculonodular lobe. Perpendicular
to these, longitudinal, deep furrows partition the two cerebel-
lar hemispheres (both with intermediate and lateral zones) from
a central “vermis.” While the flocculonodular lobe sits some-
what apart as a region with direct vestibular interactions (the
“vestibulocerebellum”), the vermis, intermediate and lateral cere-
bellar hemispheres each predominantly target a different cerebellar
nucleus that lies in the white matter beneath the cerebellar corti-
cal layers. Thus for the majority for the cerebellum, the targeting
of output of each nucleus determines the functional output of
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the overlying cerebellar cortex. In mammals, the medial vestigial
and interposed nuclei mainly target descending motor systems,
channeling the output of the vermis and intermediate hemi-
spheric zone (the “spinocerebellum”). By contrast, the lateral
zone of the cerebellar hemispheres is chiefly linked via the den-
tate nucleus to the thalamus and hence the cerebral cortex (the
“cerebrocerebellum”).

These three major functional subdivisions of the cerebellum
have been long been recognized and used to calibrate defects
in developmental morphogenesis, many of which, as described
below, have a prominent affect on the vermis (spinocerebellum).
However, it should be clear from the above that functional con-
sequences of developmental disorders may also depend on the
degree of disruption to the formation of cerebellar nuclei and
the precision of their inputs, which are difficult to assess. In
addition, appreciation of cerebellar dysfunction is colored by the
simple constraint that the cerebellum is best-known and under-
stood in terms of its integration of proprioceptive information
in the control of movement (Sherrington, 1906; Holmes, 1939).
Typical symptoms of cerebellar dysfunction include dyssynergia
(problems with measuring appropriate muscle force), dysmetria
(improper interpretation of distance), ataxia (disordered move-
ment), and dysdiadochokinesia (inability to perform rapidly alter-
nating movements). Therefore, although appreciated for some
time, relatively little attention has been given to the involvement
of the cerebellar system in cognitive and emotional behaviors. This
might reflect both the immediate usefulness of simple motor tests
to diagnose cerebellar damage (Holmes, 1939), but also a focus on
descending motor systems that corresponds to the expectations of
loss of the vermis.

However, recent studies have highlighted the possibility that
cerebellar defects might underlie some of the symptoms in sub-
sets of patients diagnosed with neurodevelopmental disorders
like autism spectrum disorders (ASD), attention deficit hyper-
activity disorder (ADHD), and schizophrenia (Courchesne et al.,
1988; Bauman and Kemper, 1994; Mostofsky et al., 1998; Palmen
et al., 2004; Bottmer et al., 2005; Fatemi et al., 2012; Vaidya, 2012;
Villanueva, 2012). As these conditions are clinically heterogeneous,
it remains near impossible to consistently link specific neuro-
anatomical defects, in the cerebellum or otherwise, to distinct
behaviors. However, as our ability to classify patients into more
homogeneous phenotypic groups improves with ever more power-
ful imaging techniques (Smyser et al., 2011; Haubold et al., 2012),
and next generation sequencing approaches allows the identifi-
cation of genetic alterations (Coe et al., 2012), the possibilities
of linking genetic alterations with specific cerebellar defects and
behaviors becomes imminently feasible. These analyses extend to
conditions characterized by vermal agenesis, emphasizing the need
for a fuller understanding of how cerebellar output and underlying
anatomy are reorganized in these conditions.

These advances are coupled with an increasing potential to
interpret both anatomical and genetic phenotypes in terms of
specific aspects of cerebellar development. This has been driven
by substantial progress in understanding the origins of different
cerebellar cell types and their interactions within the last 10 years.
Fate-maps based on the genetic identity of different cell types,
a molecular dissection of their interactions and new anatomical

techniques to trace long range connections in the brain (Strick
et al., 2009) have revealed the underlying pathways for cerebel-
lum growth and patterning. In particular, distinct developmental
pathways for neurons with the cerebellar cortex and deep nuclei
imply that different populations will be affected in different
ways depending on the location and timing of a given genetic
disorder. These point the way to a future where specific connec-
tions and neuron populations can be systematically investigated in
the context of human disorders. However, our understanding of
the mechanisms whereby these genetic alterations cause specific
cerebellar pathologies and the exact behavioral consequences of
these cerebellar defects remain limited. These questions are best
addressed in model systems that allow the accurate perturbation of
specific genes and/or pathways, coupled with an in-depth analysis
of developmental processes over time. The mouse has emerged as
a valuable model for three critical regions: (1) powerful genetic
tools available in the mouse have made it possible to accurately
fate-map cells that share the same genetic ancestry and (2) dissect
the function of a gene at different developmental time points and
in different cell types or brain regions with high precision, and
(3) behavioral tests have been developed that can be applied
to determine the consequences of defined defects on specific
behavioral endo-phenotypes. The development of innovative
approaches to map brain connectivity in mice will add yet
another powerful tool to the available kit (Lo and Anderson,
2011).

As the classification of brain pathologies with cerebellar
involvement and known genetic associations have been reviewed
extensively (see for example Barkovich et al., 2009), our aim
is not to recapitulate these in the present article. Instead, we
aim to outline some of the key developmental processes that
typically go awry during cerebellar development and use well-
understood examples from mouse genetic studies to illustrate
how different developmental defects or signaling defects that
arise at different developmental stages cause distinct structural
abnormalities of the cerebellum. This discussion highlights signif-
icant gaps in our understanding of the mechanisms that underlie
cerebellar malformation. Finally, we briefly outline the current
understanding of cerebellar connectivity with the neocortex that
might underlie its role in higher order function and speculate
how defects in cerebellar connectivity might underlie behaviors
associated with neurodevelopmental disorders such as autism.
This final section highlights the potential limits of the mouse
model as a means of understanding the full range of cerebel-
lar developmental disorders, when the functional connections
between cerebellum, thalamus, and cortex are not yet fully
understood.

CONGENITAL CEREBELLAR DEFECTS: DEVELOPMENTAL
MECHANISMS
Developmental defects of the cerebellum can be present as part
of more complex developmental syndromes, in combination with
other nervous system defects such as cortical hypoplasia and cor-
pus callosum agenesis or more rarely, as isolated defects. Clinical
classification of cerebellar defects is difficult and several classifi-
cation schemes have been proposed, some of which are based on
embryological and genetic considerations (Barkovich et al., 2009).
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These classifications are important in order for the correct division
of patients for treatment and further genetic studies to identify
the genetic causes responsible for cerebellar anomalies. Before
we discuss recent advances in the genetics of human cerebellar
hypoplasia, we first provide an overview of the key developmental
processes that control cerebellar growth and morphogenesis, and
discuss pertinent studies in mouse mutants upon which most of
the interpretation of human malformations is based.

OVERVIEW OF KEY STAGES IN CEREBELLAR DEVELOPMENT: INSIGHTS
FROM THE MOUSE
The isthmus organizer (IsO)
The cerebellum is derived from the dorsal part of the most ante-
rior segment of the hindbrain, rhombomere 1 (r1; Millet et al.,
1996; Wingate and Hatten, 1999). Thus, any developmental defect
that results in the failure to specify the anterior hindbrain or r1
itself, will inevitably result in cerebellar aplasia (Eddison et al.,
2004) as might global defects in dorsal patterning mechanisms
(Chizhikov et al., 2006). Early steps in brain development include
the specification of neural tissue (neural induction), formation,
and internalization of the neural tube (neurulation), and pat-
terning of the neural tube. The latter process imparts positional
identity to different compartments along the anterior–posterior
neuraxis, a process primarily achieved through the formation of
specialized signaling centers, also referred to as secondary organiz-
ers. Secondary organizers secrete growth factors that pattern the
adjacent tissue through the induction of distinct patterns of gene
expression on either side of the organizer, as a result of the presence
of the differential expression of competence factors (Kiecker and
Lumsden, 2012). The signaling center that divides and patterns the
mesencephalon and r1 is the mid-hindbrain or IsO. Classic studies
in a number of model organisms have shown that the key orga-
nizing molecule secreted by the IsO is fibroblast growth factor 8
(FGF8; Crossley et al.,1996; Martinez et al.,1999). The initiation of
Fgf8 expression at the IsO is dependent upon the transcription fac-
tor LMX1B (Lim homeobox transcription factor 1 beta), whereas
the position of the IsO at the mid-hindbrain boundary is deter-
mined the mutually repressive activities of the homeobox genes
Otx2 (orthodenticle homeobox 2) anteriorly, and Gbx2 (gastrula-
tion brain homeobox 2), posteriorly (Joyner et al., 2000; Guo et al.,
2007). Once established, a stable transcriptional and signaling net-
work maintains gene expression at the IsO. Critical components
of this regulatory network include the transcription factors PAX2
(paired box gene 2), EN1 (engrailed 1), EN2 (engrailed 2), and
GLI3 (GLI-Kruppel family member 3) and signaling molecules
FGF8, FGF17, WNT1 (wingless-type MMTV integration site fam-
ily, member 1), and SHH (Sonic Hedgehog; Wittmann et al.,
2009). Detailed fate-mapping studies in the mouse have located
the progenitors of the medial cerebellar vermis to anterior r1 of
the early embryo (Sgaier et al., 2005). The spatial organization
of gene expression patterns of Wnt1 and Fgf8 in relation to the
approximate progenitor domains of the vermis and hemispheres
are represented in Figure 1.

Conditional gene deletion experiments in the mouse have
proven to be an extremely powerful approach to dissect dif-
ferent requirements of key signaling pathways during cerebellar
development (Table 1). The FGF and WNT signaling pathways

are prime examples. Since the initial identification of Fgf8 and
Wnt1 gene expression in cells at the IsO (Wilkinson et al., 1987;
Crossley and Martin, 1995), various approaches to disrupt the
function of these genes during cerebellar development have been
employed. The germline deletion of Fgf8 revealed an early function
in gastrulation, such that the role of Fgf8 in cerebellar development
could not be investigated in these mutants (Meyers et al., 1998).
The deletion of Fgf8 specifically from the early IsO was found
to result in the rapid cell death of all progenitors of the mid-
brain and cerebellum, identifying FGF as an essential survival
factor cells in the mesencephalic(mes)/r1 region. The analysis
of embryos homozygous for hypomorphic alleles of Fgf8, sug-
gested that the maintenance of normal levels of FGF8 signaling
was particularly important for the formation of medial cerebellar
tissue (Chi et al., 2003). The requirement for high FGF signal-
ing during vermis development was confirmed in mouse mutants
where FGF signaling was specifically inhibited in the developing
mes/r1 region shortly after the initiation of Fgf8 expression in
the IsO. Furthermore, the loss of vermis progenitors was found
to be associated with roof plate expansion in anterior r1 (Bas-
son et al., 2008; Figures 1D,E). A study by the Joyner lab has
shown that the developmental stage at which Fgf8 expression is
disrupted is a key determinant of the severity of vermis hypopla-
sia; Fgf8 deletion from the early (pre-E9.5) IsO cause severe vermis
hypoplasia, whereas only mild hypoplasia in the anterior ver-
mis resulted from Fgf8 deletion between E9.5 and E11 (Sato and
Joyner, 2009).

In the case of Wnt1, the germline deletion of Wnt1 resulted in
a similar phenotype to the early mes/r1-deletion of Fgf8, namely
the absence of the midbrain and cerebellum by birth (McMa-
hon and Bradley, 1990; Thomas and Capecchi, 1990). A similar
phenotype is observed upon the deletion of β-catenin using a
Wnt1-Cre line (Brault et al., 2001). The cerebella of mice homozy-
gous for a hypomorphic allele of Wnt1 (swaying, sw) essentially
represent phenocopies of FGF hypomorphic cerebella, by display-
ing a specific loss of the cerebellar vermis (Thomas et al., 1991;
Louvi et al., 2003). Temporal requirements for WNT signaling
have not been mapped as extensively as for FGF, but the deletion
of β-catenin after E12.5 using Nestin-Cre, resulted in cerebellar
vermis hypoplasia defects similar to Wnt1sw/swmutants (Schuller
and Rowitch, 2007). This observation suggests that the require-
ment for WNT/β-catenin signaling during vermis development
and midline “fusion” is later, or extends over a longer time win-
dow than the requirement for FGF signaling. Taken together, these
studies indicate that the cerebellar vermis that develops from tis-
sue in anterior r1 that is exposed to the highest levels of FGF and
WNT for the longest time has the strictest requirement for these
signals during development.

In keeping with this general theme, mice deficient in En1, the
first engrailed homeobox gene to be expressed during cerebel-
lar development, results in cerebellar vermis aplasia (Wurst et al.,
1994). A substantial number of mice with conditional deletion of
En1 after E9 exhibit normal cerebella, confirming the importance
of early En1 expression (Sgaier et al., 2007).

The role of the SHH pathway in postnatal cerebellar devel-
opment is well-understood (see below). However, recent studies
have provided evidence for important roles for Gli3 at the IsO,
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FIGURE 1 | Developmental origins of the mouse cerebellum and the role

of isthmic gene expression in patterning the vermis. (A) Schematic
representation of a mid-gestation embryo showing the location of derivatives
of rhombomere 1. The ventricular layer (green) and rhombic lip (brown) of
dorsal rhombomere 1 give rise to all GABA-ergic and glutamatergic cells of
the cerebellum, respectively. (B) In a dorsal (posterior) view, the adult
cerebellum is characterized by a central (darker shaded) vermis running
anterior (ant) to posterior (pos). A uniform layering of cell types can be found
throughout the vermis and more lateral hemispheres (shown in schematic
parasagittal section), with GABA-ergic and glutamatergic differentially
distributed in a later-specific manner: the molecular layer is largely reserved
for the interaction of Purkinje cell dendrites and granule cell axons with
sparse basket and stellate inhibitory interneurons. The Purkinje cells layer
separates the molecular layer from an internal granule cell layer that contains

a population of inhibitory Golgi cells. Deep cerebellar nuclei (GABA-ergic and
glutamatergic neurons) lie within the white matter. (C) Schematic diagram
showing the location of the isthmus organizer at the midbrain/hindbrain
boundary with respect to the fourth ventricle roof plate (rp) and the
expression domains of Wnt1 (purple) and Fgf8 (blue). (D) Dorsal schematic
view of the isthmus region showing with darker shading the approximate
region where progenitors of the cerebellar vermis reside, as based on
inducible fate-mapping studies (Sgaier et al., 2005). The translation of this
dorsal rhombomere 1 territory into adult vermis is shown inset. (E) Altered
morphology of the isthmic region and reduced cerebellar size in a hypomorph
with an altered function of the isthmic organizer due to diminished FGF
signaling. Loss of vermis progenitors is concomitant with the expansion of
the roof plate (adapted from Basson et al., 2008). The consequences for
vermal morphogenesis in the adult are shown inset.

consistent with Gli3 as a regulator of dorsal neural tube cell fates.
Deletion of Gli3 results in higher Fgf8 expression and the expan-
sion of the IsO (Aoto et al., 2002; Blaess et al., 2008). Recently,
the conditional deletion of the SHH regulator, SUFU (suppres-
sor of fused homolog), was shown to cause hyperplasia and
disorganization of the IsO and mes/r1 regions. These early defects
were also associated with ectopic and disorganized Fgf8 expression
at the IsO. Interestingly, these SUFU mutants exhibited cerebellar
vermis hypoplasia that was almost entirely rescued by the consti-
tutive expression of the GLI3 repressor (GLI3R) form, suggesting
that this defect was primarily caused by the failure to generate
GLI3R (Kim et al., 2011).

An important prediction of these studies in the mouse is that
many human cerebellar disorders with strong cerebellar vermis
involvement are likely to be caused by the disruption of IsO func-
tion during the earliest stages of cerebellar development. This
proposition will be discussed further in Section “Mechanistic
Insights into the Causes of Human Cerebellar Defects” in the
context of recent findings on the mechanisms underlying human
cerebellar malformations.

Establishment of progenitor zones and neurogenesis
After initial patterning and growth of r1 to form the cerebellar
anlage, neurogenesis is initiated in two distinct germinal centers,
the ventricular zone (VZ) and rhombic lip (RL). All cerebellar
neurons and glia as well as progenitors that populate a number
of extracerebellar nuclei are born within these germinal zones
(Figures 1A,B and 2A). Evidence that the production of dif-
ferent neuronal lineages is spatially restricted during cerebellar
development comes from loss-of-function and lineage tracing
experiments in the mouse. Ben-Arie et al. (1997) first demon-
strated that the loss of Atoh1 (atonal homolog 1), a gene specifically
expressed in the RL, resulted in the failure to form an external
germinal layer (EGL) and EGL-derived granule cells (Figure 2B).

The rhombic lip. Genetic fate-mapping studies and Atoh1 loss-
of-function studies have shown that progenitors of all excitatory
glutamatergic neurons of the cerebellum are generated within the
upper RL (Machold and Fishell, 2005; Wang et al., 2005). Defects in
the formation or induction of the RL or the specification of granule
cell progenitors (GCps) are predicted to result in severe cerebellar
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FIGURE 2 | Cellular development of cerebellum and components of the

re-entrant cortico-cerebellar loop. (A) Schematic cross sectional view
through the anlage of the cerebellum showing the relationship between
rhombic lip (rl), ventricular zone (vz), and roof plate (rp) of the fourth ventricle.
Adult morphological layering (Figure 1) is the product of two major migration
pathways. The vz gives rise to GABA-ergic radially dispersed Purkinje cells
(oc). The rl generates glutamatergic deep cerebellar nucleus (dcn) neurons
and granule cell precursors of the external germinal layer (egl), which migrate
tangentially from the rl in sub-pial streams. (B) Postnatally, the egl proliferates
under the influence of Purkinje cell-derived Shh. Postmitotic glutamatergic
granule cells migrate radially from the EGL to internal granule layer (igl). In
mutants where Purkinje cells are deleted, or in which Shh is depleted, or

where egl formation is suppressed (as in the Atoh1 knockout mouse),
cerebellum growth is reduced. Disruptions in signals from the overlying
mesenchyme, directly or through affecting signaling from the roof plate, may
modulate the responsiveness of the egl to mitogens, thus abrogating its
expansion. (C) From data derived in the primate (Strick et al., 2009) a general
model for a mammalian circuit would propose that cortico-cerebellar closed
loops modulate cortical activity for a number of different motor and non-motor
cortical areas. Without presupposing details of cortical areas in the mouse,
cortical activity would be anticipated to feed into the cerebellar circuit via the
pontine nucleus, a derivative of the rhombic lip of the hindbrain. Cerebellar
output via dentate nucleus neurons would then feed back to the cortical areas
via the thalamus.

hypoplasia due to the absence of this rapidly proliferating tran-
sit amplifying cell population during postnatal development (see
Progenitor Cell Migration, Proliferation, and Differentiation). The
mechanisms required for the induction and functionality of the RL
are being elucidated. A number of signaling pathways, including
the TGFβ (transforming growth factor beta) and Notch pathways
and signaling from the roof plate (Alder et al., 1996; Chizhikov
et al., 2006) are implicated in the induction of the RL. Cell pro-
duction from the RL appears to involve an iterative induction of
Atoh1 in successive waves of migratory derivatives (Machold et al.,
2007; Broom et al., 2012).

In addition to GCps, the Atoh1-positive RL also gives rise
to neurons that populate the deep cerebellar and extracerebellar
nuclei; these include both glutamatergic and cholinergic neurons
(Machold and Fishell, 2005; Wang et al., 2005; Wingate, 2005).
Moreover, the RL extends into the hindbrain where it generates
neurons that participate in a number of defined circuits including
mossy fiber inputs to granule cells via the pons (Rodriguez and
Dymecki, 2000; Rose et al., 2009). This raises the possibility that
defects across the extent of the cerebellar and hindbrain RL could
be the cause of conditions, such as pontocerebellar hypoplasia
(see below) where multiple distributed elements of the cerebellar
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systems are disrupted. Developmental defects affecting this pro-
genitor zone and its descendants might have far-reaching effects
on cerebellar connectivity (Figure 2A). In particular, these discov-
eries also point to a time window of sensitivity to developmental
damage that might target deep cerebellar nuclei but leave later
born granule cell derivatives untouched. Such a window of poten-
tial vulnerability to intrinsic or extrinsic damage to the embryo
might have selective effects on cerebellar function (in particular
connectivity) that are not necessarily correlated with substantial
reduction in cerebellar size.

Ventricular zone. Genetic fate-mapping of cells in the cerebellar
VZ, demonstrated that all GABA-ergic neurons, including Purk-
inje, Golgi, basket, and stellate cells, as well as small GABA-ergic
neurons of the deep cerebellar nuclei are derived from this region
(Hoshino et al., 2005; Sudarov et al., 2011; Figure 2A). Compared
to the number of glutamatergic granule neurons in the adult cere-
bellum, the contribution of GABA-ergic neurons to the over-all
size of the cerebellum is relatively minor. Thus, defects in the gen-
eration of GABA-ergic neurons are not expected to result directly
in significant cerebellar hypoplasia. However, as we discuss in the
next section, VZ-derived Purkinje cell progenitors are the primary
source of mitogen to GCps in the EGL. Thus, the absence or mislo-
calization of Purkinje cells due to VZ defects could be responsible
for cerebellar hypoplasia owing to a deficit in GCp proliferation
and postnatal cerebellar growth (Figure 2B). Indeed, Hoshino
et al. (2005) showed that the disruption of the Ptf1a (pancreas
transcription factor 1 subunit alpha) gene by transgenic insertion
resulted in the compete loss of GABA-ergic lineages in the cerebel-
lum and severe cerebellar hypoplasia. It is important to note that
Bergmann glia are also derived from the VZ. As these cells form
the scaffold that guides the radial migration of neuronal progeni-
tors, defects in the generation or differentiation of these cells could
also be responsible for the failure of Purkinje cell migration (see
Progenitor Cell Migration, Proliferation, and Differentiation).

Finally, evidence for interaction between progenitor zones
comes from the analysis of cell fate upon the deletion of Ptf1a
and Atoh1. Pascual et al. (2007) showed that VZ-derived pro-
genitors that develop in the absence of the transcription factor
PTF1A, invade the EGL and adapted glutamatergic fates reminis-
cent of RL-derived progenitors, indicating that PTF1A actively
represses glutamatergic fate to maintain GABA-ergic fate determi-
nation. Similarly, Rose et al. (2009) found that deletion of Atoh1
results in RL cells entering the roof plate, indicating that ATOH1
activity suppresses the adoption of this non-neuronal fate. This is
reminiscent of the mutual inhibitory interactions that specify pro-
genitor domains within the spinal cord (reviewed by Wilson and
Maden, 2005). Defects in cross-regulation, or in the formation or
maintenance of cerebellar germinal zones may result in cerebellar
hypoplasia by directly disrupting the formation of cerebellar neu-
rons, or by undermining subsequent interactions that lead to the
massive expansion of the granule cell precursor pool in the EGL.

Progenitor cell migration, proliferation, and differentiation
Tissue growth in the developing embryo has to be tightly regu-
lated to allow the coordinated expansion of different cell types.
Coordinated growth requires communication between two or

more closely apposed tissue or cell layers. Perhaps the best-known
example is the orchestration of epithelial growth and morpho-
genesis through epithelial–mesenchymal interactions. Postnatal
cerebellar growth is regulated in a similar manner. Rapid cerebel-
lar growth is primarily driven by the proliferation of GCps in the
EGL, a process largely coordinated by a layer of Purkinje neurons
under the surface of the cerebellum (Hatten and Heintz, 1995). As
we have discussed, the failure to specify Purkinje neurons is associ-
ated with severe cerebellar hypoplasia. After their birth in the VZ,
Purkinje neuron progenitors migrate along radial glia toward the
pial surface of the cerebellar anlage. Genetic defects that disrupt
the glial scaffold, or the production of signals and cell-intrinsic
mechanisms that control Purkinje cell migration result in vari-
ous degrees of cerebellar hypoplasia (Figure 2B). In addition, cell
migration defects resulting in the ectopic localization of Purkinje
cells are likely to underlie many examples of cerebellar heterotopias
(Yang et al., 2002).

One of the central pathways linked to GCp proliferation and
differentiation is the SHH pathway. Immature Purkinje cells
secrete SHH and that the proliferation of GCps is critically depen-
dent on SHH signaling (Dahmane and Ruiz i Altaba, 1999; Wallace,
1999; Wechsler-Reya and Scott, 1999). In mouse, conditional dele-
tion of Shh from PCs (Purkinje cells) or SHH signal transduction
components like Smo (smoothened), Gli1, and Gli2 from GCps
have all been shown to result in defects in GCp proliferation
and cerebellar hypoplasia (Lewis et al., 2004; Corrales et al., 2006;
Spassky et al., 2008). Disrupting PC migration or differentiation
result in similar phenotypes (Hatten, 1999). For example, mice
homozygous for the reeler allele, Relnrl/rl , exhibit severe cerebel-
lar hypoplasia (Magdaleno et al., 2002). In the absence of Reelin,
PCs fail to organize in the form of a Purkinje plate under the
pial surface of the E14.5 cerebellum (Mariani et al., 1977; Miyata
et al., 1997). These observations suggest that the primary cause of
cerebellar hypoplasia associated with defects in Reelin signaling is
the failure of SHH-expressing PCs to reach their appropriate posi-
tion underneath the EGL where they provide a proliferative SHH
signal.

It is important to note that cerebellar hypoplasia caused by
defects in SHH signaling affects the (primarily postnatal) prolifer-
ation of GCps in the vermis and hemispheres equally, resulting in
a phenotype that differs significantly from early IsO defects with
disproportionally hypoplastic vermis.

Conditional manipulation of signaling pathways that function
during early cerebellar development have revealed additional func-
tions during later stages of cerebellar development. Again, the
WNT and FGF pathways provide good examples of this princi-
ple. Reduced WNT signaling during early development result in
cerebellar defects typical of reduced IsO function, i.e., vermis apla-
sia (see The Isthmus Organizer). WNT/β-catenin signaling is also
active at later stages of cerebellar development, particularly in the
germinal zones and Bergmann glia (Selvadurai and Mason, 2011).
The role of WNT/β-catenin signaling at later developmental stages
has been investigated more recently. Several groups have reported
that increased β-catenin signaling can alter the proliferation and
differentiation of neuronal progenitors in the developing cerebel-
lum. Lorenz et al. (2011) showed that activation of WNT/β-catenin
signaling by deletion of the Apc (adenomatous polyposis coli)
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gene or stabilization of β-catenin in GCps inhibited their prolifer-
ation and enhanced their differentiation. As a consequence, these
mice exhibited cerebellar hypoplasia and ataxia. The Wechsler-
Reya group confirmed the potent inhibition of GCp proliferation
and cerebellar hypoplasia as a result of hyperactivation of β-
catenin in GCps, but found additionally that the proliferation
of GABA-ergic progenitors in the VZ was significantly increased
when signaling was increased in this progenitor zone (Pei et al.,
2012). The observation of differential effects of increased WNT
signaling on progenitors in different anatomical locations is also
important in understanding the origins of childhood tumors of the
cerebellum, medulloblastoma. Medulloblastoma subtypes charac-
terized by activating mutations in WNT pathway genes are most
likely to originate from the lower, i.e., non-cerebellar RL and
not from cells in the EGL (Gibson et al., 2010), in agreement
with the finding that WNT activation inhibits cell proliferation in
the EGL.

Similar complexities have been observed upon altering FGF
signaling during cerebellar development. Increased FGF signaling
upon deletion of Sprouty genes, which encode FGF antagonists,
have opposite effects on cerebellar growth depending on the time
of deletion. Upregulated FGF signaling during early development
is associated with the expansion of vermis progenitors in anterior
r1 and an expansion of the width of the vermis. Increased FGF
signaling during late embryonic and postnatal stages on the other
hand is associated with abnormalities in Bergmann glial and Purk-
inje cell differentiation, reduced SHH production by these cells as
well as an inhibitory effect on the responsiveness of GCps to SHH.
As a consequence of these changes, GCps prematurely exit the cell
cycle and differentiate, leading to general cerebellar hypoplasia (Yu
et al., 2011).

These observations provide a window on some of the complex-
ities of understanding the role of particular pathways in cerebellar
development. Not only does one pathway have multiple functions
at different developmental time points, the effects of deregulated
signaling in one neuronal progenitor subpopulation can be vastly
different from another. In the light of these observations, any
attempt to infer mechanistic explanations for cerebellar pheno-
types from observations made in unrelated cell types or simplified
in vitro cultures have to be interpreted with considerable caution.
Although these studies are useful as initial proof-of-principle stud-
ies, validation and analysis in the appropriate cell types in an intact
developing cerebellum are essential.

MECHANISTIC INSIGHTS INTO THE CAUSES OF HUMAN CEREBELLAR
DEFECTS
Insights gained from studies in model organisms have greatly
improved our ability to identify the underlying processes respon-
sible for many congenital cerebellar anomalies that affect the
human population. In this section, we aim to demonstrate some
of these new insights by discussing our current understanding of
two major syndromes associated with cerebellar hypoplasia: Jou-
bert syndrome and Dandy–Walker malformation. We contrast the
remarkable progress that has been made in our understanding of
these syndromes with pontocerebellar hypoplasia, a group of con-
ditions for which candidate genes have been identified but little
mechanistic insights are available.

Disrupted WNT signaling in Joubert syndrome
Joubert syndrome is characterized by cerebellar vermis hypoplasia
and abnormal superior cerebellar peduncles and associated with
both movement disorders and mental retardation (Joubert et al.,
1999). Joubert syndrome has been the subject of intense study
by human geneticists and more than 20 disease-associated genes
have been identified to date (Valente et al., 2013). All these genes
appear to encode proteins that are associated with the assembly and
biology of cilia, and Joubert syndrome can therefore be classified
within the larger group of ciliopathies, alongside Bardet–Biedl and
Meckel syndromes (Brancati et al., 2010).

Despite the wealth of human genetics data and direct links to
ciliary assembly and function, the cilia-dependent developmental
pathways disrupted in Joubert syndrome are poorly understood.
A recent study by the Gleeson group provided important insights
into the causes of cerebellar phenotypes in Joubert syndrome
caused by mutations in AHI1 (Abelson helper integration site
1). First, they showed convincingly that vermis hypoplasia in
Ahi1−/− mouse mutants is associated with an expanded roof plate
and a vermis midline “fusion” defect (Lancaster et al., 2011). This
cerebellar midline defect phenocopies the vermis agenesis charac-
teristic of mutants with reduced IsO function like Wnt1sw/sw and
FGF hypomorphs (Louvi et al., 2003; Basson et al., 2008). From
studies in the mouse, we would hypothesize that the apparent
“fusion” defect in these mutants is primarily caused by the failure
of vermis progenitors in the anterior cerebellar anlage to expand,
a defect that is likely associated with the abnormal expansion of
roof plate tissue (Basson et al., 2008). WNT signaling was not
measured in Ahi1−/− embryos at early stages when the IsO is
functional (E9.5–E12.5) and roof plate expansion at the expense
of the expansion of vermis progenitors has been shown to take
place in FGF pathway mutants. However, WNT signaling was
diminished in the medial cerebellar anlage at E13.5, which cor-
related with reduced proliferation of vermis progenitors adjacent
to the midline. Finally, WNT/β-catenin activation by LiCl treat-
ment at E12.5 and E13.5 partially rescued the proliferation defect
and midline “fusion,” confirming reduced WNT signaling as an
important pathogenic mechanism in Joubert syndrome (Lancaster
et al., 2009). A similar, yet milder phenotype is also reported in
Cep290−/− animals. Although WNT signaling was not investi-
gated in the Cep290 (centrosomal protein 290 kDa) mutants, the
data suggest that a WNT signaling defects might also underlie Jou-
bert syndrome caused by mutations in Joubert-associated genes
other than AHI1. This study clearly implicates deregulated WNT
signaling as a mechanism in Joubert syndrome.

Abdelhamed et al. (2013) recently reported some interesting
observations implicating the Joubert syndrome gene, Tmem67
(transmembrane protein 67) in the regulation of SHH and WNT
signaling. The authors report a significant expansion of the
fourth ventricle roof plate in Tmem67−/− embryos, a pheno-
type consistent with a disruption of early IsO function and vermis
hypoplasia/aplasia. Based on the studies discussed so far, one
might predict that reduced WNT signaling in these mutants may
lead directly to reduced activity of the IsO, early loss of vermis pro-
genitors, or reduced proliferation of cells at the midline, akin to the
hypothesis to explain vermis defects in Ahi−/− embryos. Indeed,
the authors present data to suggest that WNT/β-catenin signaling
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is reduced in Tmem67−/− embryonic fibroblasts from embryos
with Joubert syndrome-like phenotypes. They also report reduced
Shh expression in the ventral neural tube. It will be important to
examine WNT and SHH signaling in mes/r1 in Tmem67 mutants,
in order to draw direct conclusions as to the involvement of these
pathways in cerebellar development at these critical early devel-
opmental stages. Taken together, these recent studies suggest that
several signaling pathways might be affected as a result of defec-
tive ciliary function and that the cerebellar vermis phenotype in
Joubert syndrome is due to the deregulation of signaling pathways
required for early IsO function and vermis expansion.

In addition to the well-known WNT and SHH pathways, the
non-canonical WNT-planar cell polarity (PCP) pathway has also
been implicated in the pathogenesis of Joubert syndrome. Knock-
down or mutation of Tmem216 (transmembrane protein 216), a
gene mutated in Joubert and Meckel syndromes, resulted in cilio-
genesis defects, and impaired centrosome docking to cilia due to
the mislocalization of hyperactivated RhoA. Disheveled1 (Dvl1)
phosphorylation in response to Tmem216 knockdown and mild
PCP phenotypes were observed in zebrafish (Valente et al., 2010).
The role of WNT-PCP pathway during cerebellar morphogenesis
has not been investigated and the developmental processes that
might be sensitive to disrupted WNT-PCP signaling remains an
important question to address in cerebellar development.

Although the critical roles of FGF signaling during cerebel-
lar development are well-established in model organisms, FGF
signaling defects have not been linked directly to cerebellar ver-
mis defects in humans. This might be due to the fact that FGF
hypomorphic mutations that reduce FGF signaling sufficiently
to cause a cerebellar vermis phenotype, are also detrimental to
the development of many other organs, such that foetuses carry-
ing these mutations will not survive past birth. Two groups have
reported rare patients with Kallmann syndrome and partial cere-
bellar vermis a/hypoplasia, initially diagnosed as Dandy–Walker
malformation (Ueno et al., 2004; Aluclu et al., 2007). Mutations
in the coding sequence of KAL1 (Kallmann syndrome 1 sequence)
was excluded by Ueno et al. in their study, leaving the possibility
that mutations in other Kallmann syndrome-associated genes that
affect FGF signaling might be responsible.

Dandy–Walker malformation
Dandy–Walker malformation of the cerebellum is diagnosed upon
the identification of vermis hypoplasia (Brodal, 1945), rotation of
the vermis away from the brain stem and an enlarged posterior
fossa. Behavioral pathology can include motor deficits consis-
tent with cerebellum damage and, in 50% of patients, intellectual
impairment that has been tentatively correlated with the degree
of loss of vermal lobulation (Boddaert et al., 2003). Grinberg
et al. (2004) identified the linked ZIC1 (zinc finger protein of
the cerebellum 1) and ZIC4 (zinc finger protein of the cere-
bellum 4) genes on 3q24 as candidate genes, an observation
since confirmed by other groups (Tohyama et al., 2011). Exper-
iments in Zic1−/−;Zic4−/− mouse models indicated that these
genes were required for the full responsiveness of GCps to SHH.
Zic1−/−;Zic4−/− GCps correspondingly showed reduced pro-
liferation and general cerebellar hypoplasia. These cerebella also
showed the loss of the anterior folium in the vermis that was

specifically due to the loss of Zic1, which is uniquely expressed in
the VZ. Taken together, this study links Zic1 and Zic4 to the SHH
pathway and GCps proliferation postnatally, and suggests that
additional genetic or perhaps non-genetic factors are responsi-
ble for causing the pronounced vermis a/hypoplasia characteristic
of Dandy–Walker malformation, perhaps by interacting with Zic1
(Blank et al., 2011).

The analysis of Foxc1 (forkhead box C1) mouse mutants after
the identification of FOXC1 as a candidate gene for Dandy–Walker
malformation in humans, has revealed an novel mechanism
whereby cerebellar vermis hypoplasia could arise. MouseFoxc1
hypomorphs exhibit vermis hypoplasia confirming that reduced
FOXC1 function is responsible for Dandy–Walker malformation
in humans. Intriguingly, Foxc1 is not expressed in the develop-
ing cerebellum, but in mesenchymal tissue of the posterior fossa
covering the cerebellar anlage from about E11.5. The IsO, roof
plate, and RL initially develop normally in these mutants, but
Atoh1 expression in GCps in the medial EGL was lost by E14.5 of
development. As Atoh1 is required for GCp proliferation (Flora
et al., 2009), these cells fail to expand resulting in the absence of
an EGL in the medial cerebellum by birth. The exact mechanisms
whereby FOXC1 in the cranial mesenchyme controls Atoh1 expres-
sion in GCps are not known, but Aldinger et al. (2009) showed
that the expression of BMP and TGFβ family genes are reduced in
these mutant embryos. As BMP signaling is required for normal
Atoh1 expression and GCp expansion, this observation provides a
likely explanation for vermis hypoplasia in patients with FOXC1
mutations (Tong and Kwan, 2013). These findings highlight the
important contribution of signaling interactions between progen-
itor zones and non-progenitor tissues like the cranial mesenchyme
and roof plate in cerebellar development.

In conclusion, studies so far appear to primarily link Dandy–
Walker Malformations to defects in GCp expansion. However,
with the exception of Foxc1, the reasons for the disproportionate
effect on vermis progenitors are not understood. It is interesting
to note that both Zic1 and Zic4 are also expressed in the mes-
enchyme overlying the cerebellar anlage; perhaps these genes have
an additional function in this tissue that might explain the vermis
hypoplasia (Blank et al., 2011).

Pontocerebellar hypoplasia
Pontocerebellar hypoplasia is characterized by hypoplasia of the
brainstem and cerebellum by birth; a condition to usually deteri-
orates further suggesting that some pontocerebellar hypoplasias
can be classified as a neurodegenerative condition. Clinical
signs include severe motor and developmental delays, respira-
tory deficiency and early postnatal lethality (Barth, 1993). The
CHMP1A (charged multivesicular body protein 1a) gene that
encodes chromatin modifying protein 1A (CHMP1A), has been
identified as a candidate gene for pontocerebellar hypoplasia.
Patient-derived lymphoblastoid cell lines showed reduced prolif-
eration and increased expression of the cell cycle inhibitor INK4A
(cyclin-dependent kinase inhibitor 2A, p16Ink4a), a target of the
Polycomb group member BMI1 (B lymphoma Mo-MLV inser-
tion region 1 homolog). This change in expression correlated
with reduced BMI1 recruitment to an Ink4a regulatory region,
suggesting that CHMP1A may regulate Polycomb recruitment
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to gene loci, thereby phenocopying the cerebellar phenotype in
Bmi1−/− mutants and (Mochida et al., 2012). To what extent
the loss of BMI1 or other Polycomb components affects the
development of pontine structures have not been established.

With the rapid advance in genomic science many genetic
changes have now been identified to be associated with human
pontocerebellar hypoplasia. These include intriguing candidates
like CASK (calcium/calmodulin-dependent serine protein kinase),
EXOSC3 (exosome component 3), RARS2 (arginyl-tRNA syn-
thetase 2), TSEN54 (tRNA-splicing endonuclease subunit 54),
TSEN2 (tRNA-splicing endonuclease subunit 2), and TSEN34
(tRNA-splicing endonuclease subunit 34; Edvardson et al., 2007;
Najm et al., 2008; Graham et al., 2010; Wan et al., 2012). The lat-
ter genetic associations suggest pathogenic mechanism related to
defects in fundamental processes like protein synthesis and RNA
splicing, but the mechanisms are likely to be varied and largely
remain unexplored.

COGNITIVE CONSEQUENCES OF CEREBELLAR DEFECTS
In addition to well-established effects on motor coordination,
the consequences of cerebellar defects on non-motor behaviors
have received increasing attention over the last 20 years (Strick
et al., 2009). Cerebellar lesions like those acquired after tumor
resection have been linked to a number of non-motor behavioral
disturbances. Schmahmann and Sherman (1998) coined the term
“cerebellar cognitive affective syndrome” to describe the range of
behavioral alterations associated with cerebellar lesions. These
include alterations in (i) executive functions like planning and
abstract reasoning, (ii) spatial recognition, (iii) language difficul-
ties especially with grammar and controlling pitch and timing,
and (iv) changes in measures of personality like emotions and
social behavior (Schmahmann and Sherman, 1998; Tavano et al.,
2007). Attempts to conceptualize this constellation of pheno-
types have focused on the capacity of the cerebellum to accurately
measure time intervals (Ivry et al., 1988; Ackermann et al., 1998;
Schmahmann, 1998). The demonstrable ability of the cerebellum
to generate internal models during learning (Imamizu et al., 2000)
might thus be applied to generating internal models of cognitive
processes via a series of re-entrant connections with non-motor
cortical areas (Schmahmann and Pandya, 1991).

The anatomical basis for the influence of the cerebellum on cor-
tical activity is the ascending projection from the dentate nucleus:
a deep cerebellar nuclear formation that appears to be exclusive to
mammals (Nieuwenhuys et al., 1998). The output of the dentate
nucleus is modulated by Purkinje cells in the large neo-cerebellar
hemispheres. In these regions the relatively coarse correspondence
of cerebellar topography with particular body regions breaks down
and is, at best, highly fragmented (Manni and Petrosini, 2004).
In recent years, the advent of new trans-synaptic labeling tech-
niques has allowed these cortical connections in primates, which
were identified by traditional neuronal tracers (Schmahmann and
Pandya, 1989), to be mapped with greatly improved precision.
This has revealed that both primary motor cortex and dorsolat-
eral prefrontal cortex are connected in “closed” loops with the
cerebellum. In other words, Purkinje cells that modulate these
cortical areas via the dentate nucleus, receive a reciprocal cortical
input from the same regions via the pons (Kelly and Strick, 2003;

Figure 2C). Furthermore, and contrary to prevailing theories
(Glickstein, 2000), there is little anatomical cross-talk between
these distinct loops. These observations sketch out a system of
cerebello-cortical connectivity where substantial areas of the cere-
bellum are anatomically allocated to distinct cognitive processes.
It is perhaps therefore unsurprising that the ventral portion of the
dentate nucleus, which has been proposed to specifically mediate
“cognitive” connections (Strick et al., 2009) is substantially greater
in humans than other primates (Matano, 2001).

THE CEREBELLUM AND AUTISTIC SPECTRUM DISORDER
The increasing evidence for a cognitive role for the cere-
bellum has correlated with a number of studies that
have linked forms of cerebellar hypoplasia with ASD
(Courchesne et al., 1988, 1994; Bauman, 1991; Courchesne, 1997;
Palmen et al., 2004; Dicicco-Bloom et al., 2006; Schmahmann,
2010; Fatemi et al., 2012). While firmly located within corti-
cal processes (Mundy, 2003), these studies have prompted the
hypothesis that ASD, might be mediated in part by interac-
tions between cerebellum and cortex. By analogy, ASD represents
a deficit in the cognitive equivalent of the modulatory pro-
cesses by which the cerebellum has long been know to fine-tune
motor skills and learning: a so-called “dysmetria of thought”
(Schmahmann, 2010).

While this area of theory is necessarily in its early stages of
development, it defines a new frontier for cerebellar research that
has been probed both in human studies and experimentally in
mice. Various groups have identified cerebellar vermis hypoplasia
in patients with syndromic forms of autism (Becker et al., 2001;
Sanlaville and Verloes, 2007; Aldinger et al., 2013). However, the
precise link between cerebellar development and ASD are unclear.
Studies of large-scale cerebellar pathology have revealed conflict-
ing data with respect to the tempo of brain growth in patients
and control groups (reviewed by Palmen et al., 2004). By con-
trast, at a cellular level, more substantive trends have emerged in
terms of Purkinje cell loss (Ritvo et al., 1986; Kemper and Bauman,
1993) or reduction in cell size (Fatemi et al., 2002). Furthermore,
some studies have shown an intriguing specificity in the loca-
tion of Purkinje cell loss (Courchesne et al., 1988) with respect to
areas activated during cognitive processes (Stoodley and Schmah-
mann, 2009). A small number of studies also examined specific
alterations in cerebellar nucleus connections as assessed by diffu-
sion tensor imaging (Brito et al., 2009; Sivaswamy et al., 2010) and
histopathology (Bauman and Kemper, 1994). In particular, the
superior (containing cerebellar output to thalamus) and middle
(input from pons) cerebellar peduncles, which underlie cortical
cerebellar loops, appear specifically affected.

From these findings it is apparent that ASD is accompanied
by pathology in different cell types reflected by different develop-
mental origins within different time windows. This fragmented
pattern of pathology might reflect multiple different develop-
mental aetiologies for a syndrome that is represented by a broad
range of severity of disability. Alternatively, these observations
may reflect coordinated patterns of trans-synaptic degeneration
stemming from a single locus. The flipside to this perspective is
retrograde neurodegeneration might predict patterns of cell loss
that help establish the timing for developmental causes of ASD. As
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Bauman and Kemper (2005) point out, the lack of retrograde
loss of olivary neurons in ASD patients with reduced numbers of
Purkinje cells suggests that cell death must have occurred prior to
28–30 weeks gestation (Bauman and Kemper, 2005).

Despite the potential complexities of cerebellar origins of ASD,
a recent analysis of an ASD-like condition in a tuberous sclerosis
complex 1 (Tsc1) mutant mouse is a particularly significant step
in linking cerebellar defects to ASD (Tsai et al., 2012). Firstly, it
establishes the parameters of a reference mouse model for human
ASD, which is exhibited by many Tuberous Sclerosis patients.
Secondly, Sahin and colleagues generated a mutant where gene
deletion was restricted to the cerebellum and yet still recapitu-
lated ASD-like behavior. This provides compelling evidence that
developmental defects restricted to the cerebellum can result in a
number of behaviors typical of autism. By deleting Tsc1 only from
cerebellar Purkinje cells during postnatal development, Tsai et al.
(2012) could show that a reduction in Purkinje cells and increased
Purkinje cell spine density were associated with altered behav-
iors typically associated with ASDs. The core behavioral features
assessed during ASD diagnosis in humans include deficits in social
reciprocity, communication, language delay, repetitive behaviors,
and an insistence on sameness. Some of these behaviors can be
modeled and was examined in these Purkinje cell-specific Tsc1
mutant mice. These mice scored low on sociability and social nov-
elty tests when presented with the opportunity to interact with
a new mouse. Although communication and language are not
easily assessed in mice, pups will attempt to attract the mother’s
attention by ultrasonic vocalizations when separated from her.
Tsc1 mutant pups showed an increase in these vocalizations, sug-
gesting that the lack of Tsc1 in the cerebellum can affect this
process, although the relevance of this observation to ASDs is not
clear. Finally, Tsc1-deficient mice exhibited excessive grooming,
an indication of repetitive behaviors and demonstrated cognitive
inflexibility in a reversal learning paradigm, perhaps indicative
of an insistence of sameness (Tsai et al., 2012). This landmark
study provides direct evidence that subtle disruptions in cerebel-
lar architecture can have pronounced effects on behaviors typically
associated with cortical defects. The promise of such mouse mod-
els lies not only in understanding the genetic basis of ASD but also
the anatomical questions of where in the anatomical pathways of
cortico-cerebellar connectivity gene deletions impose circuit-wide
pathology.

FUTURE DIRECTIONS
The identification of the genetic defects responsible for specific
anatomical abnormalities in the cerebellum is likely to continue
at an unrivalled speed owing largely to the revolution in next
generation sequencing. However, it should be remembered that
knowledge of the genetic basis of disease is only the first step in
understanding the condition. The next big challenge is to unravel
the developmental and molecular mechanisms by which genetic

changes manifest in a particular disease phenotype. Studies in
model systems like the mouse have been essential in this quest and
will no doubt continue to remain so. Without the fundamental
knowledge gained from these experimental studies, translation of
genetic findings to preventative and curative strategies will not be
possible.

Unraveling the salient features and functional importance of
cerebellar connectivity with cortical regions implicated in psychi-
atric conditions like autism, ADHD and schizophrenia, is of the
utmost importance of we want to understand the involvement of
the cerebellum in these conditions (Whitty et al., 2009; O’Halloran
et al., 2012). Multi-disciplinary teams that combine the expertise
of clinicians, radiologists, human geneticists, developmental and
molecular biologists, and experts in rodent behavior are most likely
to succeed in providing a more complete understanding of how
genes and mechanisms that control cerebellar development relate
to cerebellar disease and function.

Significant differences between the neuroanatomy of rodents
and primates may emerge as barriers to understanding cognitive
deficits in the mouse, despite all its advantages as an experimental
and genetic model. Nevertheless, we highlight here that recent
insights gained in the Tsc1 mutant suggest that the substrates
for cortico-cerebellar modulation of behavior are present in the
rodent. While this field is relatively undeveloped, the promise
for understanding the full range of cerebellum function through
exploration of these systems in mouse presents a research avenue
of enormous promise.

Finally, this article almost exclusively focuses on cerebellar
hypoplasia. Many other congenital cerebellar malformations have
been described, including a range of conditions that appear to be
associated with malformation of the posterior fossa and cerebellar
overgrowth. For example, rasopathies like Costello syndrome are
characterized by Chiari type I malformation and cerebellar tonsil-
lar herniation (Gripp et al., 2010). One might like to speculate that
abnormal signaling between the cranial mesenchyme and the cere-
bellar anlage, as those implicated in the aetiology of Dandy–Walker
malformation could be involved in a subset of these conditions.
However, the underlying mechanisms responsible for cerebellar
defects in these conditions remain largely enigmatic. Epigenetic
and environmental influences are also likely to contribute substan-
tially to cerebellar disease burden and psychiatric diseases linked
to cerebellar dysfunction. Investigative studies in the laboratory,
aimed at unraveling the potential mechanisms whereby alterations
that affect development through means other than changes in the
coding sequences of genes cause disease are just beginning and
represent an important piece of the puzzle (Pidsley et al., 2012;
James et al., 2013).
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