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Predictive coding posits that neural systems make forward-looking predictions about incoming information.
Neural signals contain information not about the currently perceived stimulus, but about the difference
between the observed and the predicted stimulus. We propose to extend the predictive coding framework
from high-level sensory processing to themore abstract domain of theory ofmind; that is, to inferences about
others’ goals, thoughts, and personalities. We review evidence that, across brain regions, neural responses
to depictions of human behavior, from biological motion to trait descriptions, exhibit a key signature of pre-
dictive coding: reduced activity to predictable stimuli. We discuss how future experiments could distinguish
predictive coding from alternative explanations of this response profile. This framework may provide an
important new window on the neural computations underlying theory of mind.
Introduction
Social life depends on developing an understanding of other

people’s behavior: why they do the things they do, and what

they are likely to do next. Critically, though, the externally observ-

able actions are just observable consequences of an unobserv-

able, internal causal structure: the person’s goals and intentions,

beliefs and desires, preferences and personality traits. Thus, a

cornerstone of the human capacity for social cognition is the

ability to reason about these invisible causes. If a person checks

her watch, is she uncertain about the time or bored with the con-

versation? And is she chronically rude or just unusually frazzled?

The ability to reason about these questions is sometimes called

having a ‘‘theory of mind.’’

Remarkably, theory of mind seems to depend on a distinct

and reliable group of brain regions, sometimes called the

‘‘mentalizing network’’ (e.g., Aichhorn et al., 2009; Saxe and

Kanwisher, 2003), which includes regions in human superior

temporal sulcus (STS), temporo-parietal junction (TPJ), medial

precuneus (PC), and medial prefrontal cortex (MPFC). Indeed,

the identity of these regions has been known since the very first

neuroimaging studies were conducted. By 2000, based on four

empirical studies, Frith and Frith concluded that ‘‘Studies in

which volunteers have to make inferences about the mental

states of others activate a number of brain areas, most notable

the medial [pre]frontal cortex [(MPFC)] and temporo-parietal

junction [(TPJ)]’’ (Frith and Frith, 2000). Since then, more than

400 studies of these regions have been published. However,

although there is widespread agreement on where to look for

neural correlates of theory of mind, much less is known about

the neural representations and computations that are imple-

mented in these regions. The problem is exacerbated because

these brain regions, and functions, may be uniquely human

(Saxe, 2006; Santos et al., 2006). Recent evidence suggests

that there is no unique homolog of the TPJ or MPFC (Rushworth

et al., 2013; Mars et al., 2013), making it even harder to directly

investigate the neural responses in these regions.

In the current review, we import a theoretical framework, pre-

dictive coding, from other areas of cognitive neuroscience and

explore its application to theory of mind. There has recently
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been increasing interest in the idea of predictive coding as a uni-

fying framework for understanding neural computations across

many domains (e.g., Clark, 2013). In this review, we adapt a

version of the predictive coding framework that has been devel-

oped for mid- and high-level vision. Like vision, theory of mind

can be understood as an inverse problem (Baker et al., 2011;

Baker et al., 2009); the challenge is to use the observable

evidence (in this case human behaviors and states) to infer the

invisible causal structure that gave rise to the evidence (the

goals, thoughts, and personality of the individual; Seo and Lee,

2012). Also like vision, theory of mind is a complex cognitive

process that depends on many different brain regions with likely

distinct computational roles (DiCarlo et al., 2012). We suggest

that a predictive coding framework can be used both to shed

light on existing data about these brain regions, and to suggest

productive new lines of research.

First, we briefly review predictive coding, and sketch a model

we believe can serve as an integrative framework for the neuro-

science of theory of mind. Second, we provide a selective review

of existing neuroimaging studies of theory of mind. Across

different stimuli and designs, with correspondingly different

social information and predictive contexts, we find a classic

signature of a predictive error code: reduced neural response

to more predictable inputs. Third, we discuss how to distinguish

predictive coding from alternative explanations of this response

profile, including differences in attention or processing time.

Based on recent neuroimaging experiments in visual neuro-

science, we suggest strategies for future experiments to test

specific predictions of predictive coding. Finally, we discuss

the implications of predictive coding for our understanding of

the neural basis of theory of mind.

A Predictive Coding Framework
The central idea of ‘‘predictive coding’’ is that (some) neural

responses contain information not about the value of a currently

perceived stimulus, but about the difference between the

stimulus value and the expected value (Fiorillo et al., 2003;

Schultz et al., 1997; Schultz, 2010). This general idea is

most familiar from studies of ‘‘reward prediction error’’ in
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Figure 1. A Sensory-Coding-Based Model of Social Predictive
Coding
Predictor neurons (P) code expectations about the identity of incoming input
and pass down the prediction to lower level predictor neurons (green arrows)
and lower level error neurons (blue arrows). Error neurons (E) act as gated
comparators, comparing sensory input from lower levels (red arrows) with the
information from predictor neurons (blue arrows). The difference between the
predicted input and the actual input is passed up to higher level error neurons,
propagating up the processing hierarchy (red arrows). Error neurons also
modulate the response of predictor neurons (purple arrows), likely both by
inhibiting the predictor neurons making incorrect predictions, and enhancing
predictor neurons making correct predictions. When the information that
is being passed up from lower levels matches the information carried by
the predictor neurons, the error neurons’ response to the input is reduced,
‘‘explaining away’’ the predictable input (Rao and Ballard, 1999).
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dopaminergic neurons in the striatum. Famously, these neurons

initially fire when the animal receives a valued reward, like a drop

of juice, and do not respond above baseline to neutral stimuli,

such as aural tones. After the animal has learned that a particular

tone predicts the arrival of a drop of juice two seconds later, the

same neurons fire at the time of the tone. Tellingly, the firing rate

of these neurons no longer rises above baseline at the time the

juice drop actually arrives. Nevertheless, the neurons still

respond to juice. If the tone that typically predicts a single drop

of juice is unexpectedly followed by two drops of juice, the

neurons will increase their firing; and if the tone is unexpectedly

followed by no drops of juice, the neurons decrease their firing

rate below baseline (Fiorillo et al., 2003; Schultz et al., 1997).

These dopaminergic neurons exhibit the simplest and best

known example of a neural ‘‘error’’ code: the rate of firing corre-

sponds to any currently ‘‘new’’ (i.e., previously unpredictable)

information about the value of coming reward, not to the actual

value of any currently perceived stimulus (Bayer and Glimcher,

2005; Nakahara et al., 2004; Tobler et al., 2005).

Predictive coding addresses a general challenge that an ani-

mal faces: developing an accurate model of the expected value
of all incoming inputs. Thus, predictive coding models can be

applied beyond the context of reward prediction to cortical pro-

cessing more generally. In fact, predictive coding was initially

suggested as a model for visual perception (Barlow, 1961; Greg-

ory, 1980; Mumford, 1992), using a visual error code that

preferentially encodes unexpected visual information. The key

benefit of such a code, proponents suggest, is to increase

neural efficiency, by devoting more neural resources to new,

unpredictable information.

By contrast to the single population of reward prediction

error neurons, predictive coding in the massively hierarchical

structure of cortical processing poses a series of challenges.

If sensory neurons respond to prediction errors, there must

exist other neurons to provide the prediction. Thus predictive

coding models require at least two classes of neurons: neurons

that formulate predictions for sensory inputs (‘‘predictor’’ neu-

rons, also called ‘‘representation’’ neurons; Summerfield et al.,

2008; Clark, 2013), and neurons that respond to deviations

from the predictions (‘‘error’’ neurons). Because sensory input

passes through many hierarchically organized levels of pro-

cessing (DiCarlo et al., 2012; Felleman and Van Essen, 1991;

Logothetis and Sheinberg, 1996; Desimone et al., 1984;

Maunsell and Newsome, 1987), a predictive model of sensory

processing requires an account of the interactions between

prediction and error signals, both within a single level and

across levels.

To illustrate the idea, we provide our own sketch of a hierarchi-

cal predictive coding model. This proposal is a hybrid of multiple

approaches (Friston, 2010; Clark, 2013; Wacongne et al., 2012;

deWit et al., 2010; Spratling, 2010), seems to capture the essen-

tial common ideas, and is reasonably consistent with existing

data. The key structural idea is that predictor neurons code

expectations about the identity of incoming sensory input and

pass down the prediction to both lower level predictor neurons

and lower level error neurons. Error neurons act like gated com-

parators: they compare sensory input from lower levels with the

information from predictor neurons. When the information that

is being passed up from lower levels matches the information

carried by the predictor neurons, the error neurons’ response

to the input is reduced. This type of inhibition is the classic sig-

nature of predictive coding, ‘‘explaining away’’ predictable input

(Rao and Ballard, 1999). However, when predictor neurons at a

higher level fail to predict the input (or lack of input), there is a

mismatch between the top-down information from the predictor

neurons and the bottom-up information from lower levels, and

error neurons respond robustly. This error response propagates

up the processing hierarchy. The consequence is a sparse, effi-

cient representation (mostly in predictor neurons) of predictable

input, and a robust, distributed response (mostly in error neu-

rons) to unpredictable input, both coordinated across multiple

levels of the processing hierarchy (Figure 1).

Within a cortical region, population activity reflects amixture of

responses in the predictor neurons (passing information about

predicted inputs down the hierarchy) and the error neurons

(passing information about unpredicted inputs up the hierarchy).

In principle, predictive codingmodels needmake no assumption

about the distribution of these two kinds of neurons within a

population; in practice, aggregate population activity is often
Neuron 79, September 4, 2013 ª2013 Elsevier Inc. 837
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dominated by error neurons (Friston, 2009; Wacongne et al.,

2012; Egner et al., 2010; Keller et al., 2012;Meyer and Sauerland,

2009). The result is that the classic signature of predictive cod-

ing, reduced activity to predictable stimuli, is typically observed

when averaging across large samples of neurons within a region

(Meyer and Olson, 2011; Egner et al., 2010; de Gardelle et al.,

2013). However, (as described in more detail below) signatures

of the predictor neurons can also be observed; for example,

the predictor neurons would likely show increased response

when the input matches their predictions (e.g., de Gardelle

et al., 2013).

Following work in sensory processing (e.g., Wacongne et al.,

2012), in our proposal both error neurons and predictor neurons

convey ‘‘representational’’ information, and both are likely tuned

to specific stimuli or stimulus features. Predictor neurons,

present at each level of the cortical hierarchy, do not code a

‘‘complete’’ representation of the expected stimulus, but only

some features or dimensions of the stimulus, at a relevant level

of processing. Each set of predictor neurons can explain only

those particular features or dimensions of the input, and corre-

spondingly modulates the response in a highly specific subset

of error neurons. Error neurons are similarly distributed

throughout the cortex and respond to specific stimulus features

(Meyer and Olson, 2011; den Ouden et al., 2012), rather than, for

example, a single ‘‘error region’’ signaling the overall amount of

error or degree to which the observed stimulus is unpredicted

(e.g., Hayden et al., 2011). Thus, for example, in the early visual

cortex, predictor neurons code information about the predicted

orientation and contrast at a certain point in the visual field,

and error neurons signal mismatches between the observed

orientation and contrast and the predicted orientation and

contrast. In IT cortex, predictor neurons code information about

object category; error neurons signal mismatches in predicted

and observed object category (den Ouden et al., 2012; Peelen

and Kastner, 2011).

One consequence of this model is that, typically, the effects of

predictions are limited to relatively few levels of the processing

hierarchy. To illustrate, expecting to see John walk in the room

would lead to predictions of biological motion, a body, and a

face (and possibly to specific predictions within each of these

domains), thus reducing error responses in neural populations

that respond at this level of abstraction. However, these predic-

tions often cannot be effectively or specifically translated into

predictions at the level of early visual receptive fields. Thus,

while prediction signals may be passed down the entire cortical

hierarchy (Clark, 2013; Rao andBallard, 1999), inmany cases the

downstream transformation will make the signal too widespread

to be informative. For example, differential responses to pre-

dictable complex images have been observed in monkey IT

(Meyer and Olson, 2011), and in human ventral temporal cortex

(den Ouden et al., 2010; Egner et al., 2010), without correspond-

ing effects in lower visual areas. Only when the environment

supports specific, low-level predictions (on the scale of e.g.,

orientation and contrast at specific points in retinotopy) should

error signals be observed at lower levels of processing (Alink

et al., 2010; e.g., Murray et al., 2002; Weiner et al., 2010).

When there is no relevant prediction available, error neurons

act largely as ‘‘feature detection’’ or ‘‘probabilistic belief accu-
838 Neuron 79, September 4, 2013 ª2013 Elsevier Inc.
mulation’’ neurons (Drugowitsch and Pouget, 2012). This pattern

highlights a key difference between predictive coding models

developed for sensory versus reward systems (den Ouden

et al., 2012). Reward errors are ‘‘signed’’: the presence of an

unexpected reward and the absence of an expected reward

are signaled by the same neurons changing their firing rates in

opposite directions. By contrast, sensory prediction neurons

are likely ‘‘unsigned’’: firing rates increase in the presence of

unexplained input.

Finally, our approach contrasts with other recent attempts to

integrate social cognitive neuroscience and predictive coding.

Because predictive coding is most familiar from the context of

reward learning, there has been considerable interest in linking

predictive coding to social reward learning (Behrens et al.,

2009; Jones et al., 2011; Fehr and Camerer, 2007). Social reward

learning can mean either using social stimuli (e.g., smiling faces)

as reward, or learning about reward based on observation or

consideration of others’ experiences (Lin et al., 2012; Zhu

et al., 2012; Zaki and Mitchell, 2011; Poore et al., 2012; Jones

et al., 2011; Izuma et al., 2008; Chang and Sanfey, 2013; see

Dunne and O’Doherty, 2013 for a review). Predictive coding

may also be an important mechanism for motor control (i.e.,

anticipating, and explaining away, the consequences of one’s

own motor actions). Therefore some authors have linked motor

predictions to social predictions via the idea of ‘‘mirror neurons,’’

or shared motor representations for one’s own and others’

actions (Brown and Brüne, 2012; Kilner and Frith, 2008; Patel

et al., 2012). The current proposal differs from both of these

previous approaches by starting with a hierarchical predictive

coding framework developed for cortical visual processing and

by focusing on theory of mind, and specifically the attribution

of internal states like goals, beliefs, and personality traits.

This proposal is of course too general, and leaves many

aspects of the model unspecified (some of which we address

below). Nevertheless, the basic features of predictive coding

described here provide an integrative framework for many find-

ings in the social cognitive neuroscience of theory of mind.

The Sources of Predictions
The social environment—the actions and reactions of other

human beings—can be predicted at a range of temporal scales,

from milliseconds (where will she look when the door slams?)

to minutes (when she comes back, where will she search for

her glasses?) to months (will she provide trustworthy testimony

in a court-case?). All of these contexts afford predictions of a

person’s actions in terms of her internal states, but the sources

and timescales of the predictions are different. As we describe

in the next three sections, many experiments find that neural re-

sponses to predictable actions and internal states are reduced,

compared to unpredictable actions and states. This common

pattern can provide telling clues about the different types, and

sources, of predictions. We find that, while all regions show a

higher response to unexpected stimuli, what counts as unex-

pected varies across regions and experiments, suggesting

that, at different levels of processing, neural error responses

are sensitive to distinct sources of social prediction.

To help clarify the sources of social prediction, we first review

three sources of neural predictions typically manipulated in



Figure 2. Three Brain Regions Involved
in Different Aspects of Theory of Mind:
Examples of Individual Regions of Interest
A region in posterior superior temporal sulcus
(STS, green, peak voxel [66, �36, 12]) involved
in action perception (localized using biomo-
tion relative to scrambled biological motion,
Pelphrey et al., 2003); a region in temporo-
parietal junction (TPJ, blue, peak voxel [62, �52,
18]) involved in thinking about beliefs and
desires (localized using stories about mental
states relative to stories about physical events,
Saxe and Kanwisher, 2003), and a region
in medial prefrontal cortex (MPFC, red,

peak voxel [�2, 56, �4]) involved in thinking about people’s stable preferences and personalities (localized using attribution of traits to self relative to attri-
bution of traits to someone else, Mitchell et al., 2006). All three ROIs localized using single subject data, p < 0.001.
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visual cognitive neuroscience experiments. First, given an

assumption that the external world is relatively stable, neurons

may predict that sensory stimuli will remain similar over short

timescales. Predictions based on very recent sensory history

can account for increased responses to stimuli that deviate

from very recent experience (Wacongne et al., 2012), and

reduced responses to stimulus repetition (Summerfield et al.,

2008). Predictive coding may therefore offer an account of

widespread findings of repetition suppression in neural popu-

lations (Grill-Spector et al., 2006). Predictive coding error is

consistent with evidence that predictable repetitions elicit

more repetition suppression than unpredictable repetitions

(Todorovic et al., 2011, Todorovic and de Lange, 2012).

Second, predictable sequences of sensory inputs can be

created arbitrarily, through training. For example, Meyer and

Olson (2011) created associations between pairs of images; for

hundreds of training trials, image A was always presented

before image B. After training, the response in IT neurons to

image B was significantly reduced when it followed image A.

This reduction was highly specific: the response remained high

when image B was presented alone, or following some other

image, and there was no reduction in the response to image

A presented after image B. Other experiments show that a

tone can be used as a cue to predict the orientation of an

upcoming grating (Kok et al., 2012a), and either a colored

frame or an auditory tone can predict whether an upcoming

image will be a face or a house (den Ouden et al., 2010; Egner

et al., 2010). The reliability of the cue can be stable over the

experiment (Egner et al., 2010), or can vary continuously across

trials (den Ouden et al., 2010). In all cases, the magnitude of

neural responses tracks with the unpredictability of the

stimulus, given the cue.

Perhaps most interesting, however, is the third source of

predictions: an internal model of the causal structure of the

world that generated the observed input (Clark, 2013; Tenen-

baum et al., 2011). For example, when two visual bars are

presented in alternating positions creating an illusion of motion,

the visual system appears to generate an internal model of a

single object moving smoothly from one position to the other

across the intervening space. As a consequence, the addition

of a third bar presented at the right intervening space and

time is treated as ‘‘predicted,’’ even though that stimulus is

otherwise unpredictable within the context of the experiment

(Alink et al., 2010).
In principle, all of three these sources of predictions can be

applied to social prediction and human actions. In practice,

most of the experiments on theory of mind depend on pre-

dictions based on prior expectations and an internal model of

human behavior (though we do find some evidence of predic-

tions based on temporal proximity). Based on the patterns of

findings, we argue that these internal models must be quite

abstract, and include expectations that actions will be rational

and efficient, and consistent with, for example, the individual’s

beliefs, personality traits, and social norms.

To reduce the complexity of this literature review, we focus

here on three examples of neural responses to actions at three

conceptual levels: responses to biological motion and goal-

directed action in the superior temporal sulcus (STS), to other

people’s beliefs and desires in the temporo-parietal junction

(TPJ), and to people’s stable personality traits in the medial pre-

frontal cortex (MPFC) (Figure 2). We find that, across all three

regions, with respect to the region’s preference and level of

abstraction, expected stimuli systematically elicit lower activa-

tion than unexpected stimuli.

Predicting Goal-Directed Action
The most immediate dimension of the social environment is the

visibly observable movements of other people’s bodies (e.g.,

grasping an item, running away) and faces (e.g., gaze shifts,

emotional expressions). Brain regions in the superior temporal

sulcus (STS) are implicated in many aspects of social action

perception, showing robust responses to face and body action

in both humans (Jellema et al., 2000; Puce et al., 1998; Bonda

et al., 1996; Allison et al., 2002) and monkeys (Perrett et al.,

1985; Jellema and Perrett, 2003b; Jellema and Perrett,

2003a). Patients with lesions to the STS have difficulty recog-

nizing actions (Battelli et al., 2003; Pavlova et al., 2003), an

effect that is reproduced by creating reversible ‘‘lesions’’ in

the STS through repetitive TMS (Grossman et al., 2005).

Consistent with a prediction error code, STS response to

observed actions is reduced when the observed action can

be predicted, and enhanced when the observed action is less

predictable. These predictions appear to arise from a variety

of sources, ranging from experimental statistics, to constraints

on biological motion, to assumption about rational action, sug-

gesting that rather than representing low-level sensory-based

statistics, this region represents (and makes predictions about)

coherent, rational actions.
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First, like many sensory regions, the STS response is sensitive

to the recent history of the experiment and is reduced by repeti-

tion of a stimulus relevant to human action perception. If two

successive images of faces have the same gaze direction (i.e.,

both gazing right) or the same facial expression (e.g., fearful),

the STS response is reduced compared both to a non-repeated

presentation and to a repeated presentation of an irrelevant

stimulus, such as a house or object (Calder et al., 2007, Ishai

et al., 2004, Furl et al., 2007). Similarly, presenting the same

action twice in row, from different viewing angles, positions,

sizes, and actors leads to reduced STS response relative to a

different action (Grossman et al., 2010; Kable and Chatterjee,

2006).

Human action can also be predicted based on internal models

at many levels of abstraction, from biomechanics to a principle

of rational action. The most basic (and most temporally fine-

grained) predictions are constrained by the structure of bones

and joints and the forces exerted by muscles. Observers

can thus predict the spatiotemporal trajectory of human move-

ments, especially for ballistic motions (Blake and Shiffrar,

2007). Human movements that violate these biomechanical

predictions (for example, a finger bending sideways) elicit a

higher response than more predictable movements in the STS

and related areas (e.g., Costantini et al., 2005). Watching a

human-like figure make robot-like, mechanical movements

elicits more activity than either a human-like figure making

human-like movements or a robot making mechanical move-

ments (Saygin et al., 2012).

Even when they do not violate biomechanical laws, human

actions have a typical spatial and temporal structure. Thus, if a

person is walking rapidly across the room, we predict that they

will continue in the same trajectory, even if they are temporarily

occluded. The posterior STS responds more when the person

reappears later than expected than when the person emerges

at the predicted time; when the person is replaced with a

passively gliding object, there is no effect of the time lag (Saxe

et al., 2004).

In addition to intrinsic aspects of the action, observers expect

others’ actions to be temporally and spatially contingent on the

structure of the environment. If a bright object flashes near a

woman’s head, she is very likely to immediately shift her gaze

toward the object. Seeing the woman immediately shift her

gaze away from the bright object elicits a higher response in

the STS than the predicted gaze shift toward the object (Pelphrey

et al., 2003; Pelphrey and Vander Wyk, 2011). This difference is

reduced if the woman first waits a few seconds before shifting

her gaze, breaking the perception that that flash caused the

gaze shift. Similar effects are observed in infants as young as

9 months, using EEG (Senju et al., 2006). In a more extreme

mismatch between behavior and environment, watching an

agent twisting empty space next to a gear drives a stronger

STS response than the agent twisting the gear (Pelphrey et al.,

2004).

Finally, the STS internal model of human behavior includes

something like a principle of rational action: the expectation

that people will tend to choose themost efficient available action

to achieve their goal. The same action may therefore be pre-

dicted, or unpredicted, depending on the individual’s goals
840 Neuron 79, September 4, 2013 ª2013 Elsevier Inc.
and the environmental constraints (Gergely and Csibra, 2003).

Correspondingly, the STS response is higher when the same

biomechanical action is unpredicted either because it is ineffi-

cient, or because it is not a means to achieve the individual’s

goal.

For example, action efficiency can bemanipulated by having a

person take a short or long path to the same goal (Csibra and

Gergely, 2007), e.g., reaching for a ball efficiently by arching

her arm just enough to avoid a barrier, or inefficiently by arching

her arm far above the barrier. Across differences in barrier height

and arm trajectory, activity in a region of the MTG/STS is corre-

lated with the perceived inefficiency of the action (Jastorff et al.,

2011). In a related experiment, observers watch someone

performing an unusual action, e.g., a girl pressing an elevator

button with her knee. The context renders her action more or

less efficient: either her hands are empty, she is carrying a single

book, or her arms are completely occupied with a large stack

of books. Activity in STS is highest when the action appears least

efficient, and lowest when the action appears most efficient

(Brass et al., 2007). The STS also respondsmore to failed actions

(e.g., failing to drop a ring onto a peg), an extreme form of

inefficiency, than to successful ones (getting the ring onto the

peg, Shultz et al., 2011). Predictions for efficient action can

even be completely removed from the familiar biomechanics of

human body parts: the same inefficient action (going around

a non-existent barrier) elicits stronger responses in STS than

the efficient version of the same action, when executed by a

‘‘worm’’ (a string of moving dots, Deen and Saxe, 2012).

In other experiments, the STS shows enhanced responses to

actions that are unpredicted given the individual’s specific goals,

even if the action is not inherently inefficient or irrational. For

example, an individual who likes (and smiles at) a mug and

dislikes (and frowns at) a teddy bear can be predicted to reach

for the mug and not the bear. The goal-inconsistent action

(reaching for the mug) elicits a higher response in the STS

(Vander Wyk et al., 2009). Similarly, when two people are coop-

erating on a joint action, the STS shows increased responses

when one person fails to follow the other’s instructions: e.g.,

when asked to select one specific object (e.g., a red ball), the

actor takes the other object (e.g., the white ball; Shibata et al.,

2011; see also Bortoletto et al., 2011).

In sum, observers expect human movements to reflect

actions, which are sensitive to the environment and efficient

means to achieve the individual’s goals. These expectations

can generate predictions for sequences of movements on the

timescale of seconds. All of these sources of predictions can

modulate the neural response in the STS, which is reduced

when the stimulus fits the prediction.

Predicting Beliefs and Desires
Moving from the scale of seconds to the scale of minutes, the

more general version of the principle of rational action is that

people will act efficiently to achieve their desires, given their

beliefs (Baker et al., 2011). Unlike specific motor intentions,

beliefs and desires last from minutes (e.g., the belief that your

keys are in your purse) to years (e.g., the desire to become a

neurosurgeon). These beliefs and desires can be used to predict

aspects of a person’s actions, emotions, and other mental
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states, especially when the person’s beliefs and desires differ

from those of the observer (Wellman et al., 2001; Wimmer and

Perner, 1983). Among other regions, a brain region posterior to

the superior temporal sulcus, in the temporo-parietal junction

(TPJ), shows a robust responses while thinking about an individ-

ual’s beliefs and desires (Saxe and Kanwisher, 2003; Young and

Saxe, 2009a; Aichhorn et al., 2009; Perner et al., 2006). If the TPJ

includes a prediction error code, it should respondmore strongly

to beliefs and desires that are unexpected, given the context.

Indeed, there is evidence that the TPJ response is reduced

when a person’s beliefs and desires are predictable (though

note that the results reviewed in this section were generally not

interpreted in terms of prediction error coding by the original

authors). In all of these experiments, the source of prediction is

not recent experimental history or trained associations, but

rather a high level generative model of human thoughts and

behaviors.

One source of predictions about a person’s beliefs and desires

is their actions (Patel et al., 2012). Observers expect other people

to be self-consistent and coherent (e.g., Hamilton and Sherman,

1996). This sensitivity to inconsistencies in belief and action is

reflected in the TPJ. For example, in one group of studies, partic-

ipants read about an act of violent harm or murder. Under the

assumption that people usually act in accordance with their

beliefs (Malle, 1999), the prediction is that the perpetrator in-

tended the harm; most assaults and murders are not accidental.

Next, the participants read about the perpetrator’s actual

beliefs and desires. Responses in the right TPJ are higher for

‘‘unpredicted’’ innocent or benevolent intentions that exculpate

the harm (e.g., she believed the poison was sugar; he only

wanted to end the patient’s misery from an incurable disease)

compared to the ‘‘predicted’’ intention (to kill the person; Buck-

holtz et al., 2008; Koster-Hale et al., 2013; Yamada et al., 2012;

Young and Saxe, 2009b).

Not all actions imply the corresponding intention, however: for

example, violation of social norms (e.g., spitting out a friend’s

cooking back on your plate) are more likely to be committed

accidentally than intentionally. Consistent with a prediction error

code, the TPJ response is higher for violations of norms

performed intentionally (‘‘because you hated the food’’) versus

unintentionally (‘‘because you choked’’; Berthoz et al., 2002).

In addition to these general principles, an individual’s beliefs

and desires can sometimes be predicted based on other infor-

mation you have about his or her specific group membership

and social background. For example, Saxe and Wexler (2005)

introduce characters with different social backgrounds, ranging

from the mundane (e.g., New Jersey) to the exotic (e.g., a poly-

amorous cult). Participants then read about that character’s

beliefs and desires (e.g., a husband who believed it would be

either fun or awful if his wife had an affair). The response in right

TPJ is reduced for the belief that was predictable, given the

character’s social background: the person from New Jersey

thinking his wife having an affair would be awful, and the person

from the polyamorous cult thinking his wife having an affair

would be fun. Similarly, when reading about a political partisan,

political beliefs that are unexpected, given the individual’s affili-

ation (e.g., a Republican wanting liberal Supreme Court judges)

elicits a higher response in right TPJ (Cloutier et al., 2011).
On the other hand, the general plausibility of a belief, in the

absence of specific background information about the individ-

ual, does not seem to be sufficient to generate a prediction

(or a prediction error) in the right TPJ. Without specific back-

ground information about the believer, there is no difference

in the right TPJ response to absurd versus commonsense

beliefs (e.g., ‘‘If the eggs are dropped on the table, Will thinks

they’ll bounce / break,’’ (Young et al., 2010), although the partic-

ipants themselves rated the absurd beliefs significantly more

‘‘unexpected.’’ A possible interpretation of these results is that

the internal model of the RTPJ predicts another person’s beliefs

based on expectations of a coherent individual mind, using

information about that individual’s specific actions and history,

but not based on expectation that others will share one’s own

beliefs (see below for a contrast with MPFC) or common

knowledge. However, since these are null results, they should

be interpreted with caution.

In sum, the response in the TPJ to other people’s beliefs and

desires can be modulated by how predictable those beliefs

and desires are, relative to the current environment, the indi-

vidual’s actions, broader social norms, and the individual’s

specific social background.

Predicting Preferences and Personalities
At even longer timescales, successful prediction of the social

environment depends on building distinct models of each of

the individual humans who compose one’s social group. While

some general rules, like the principle of rational action, apply to

all people, predicting a specific person’s action often depends

on knowing the history and traits of that individual. Brain

regions on the medial surface of cortex, in both medial prefrontal

(MPFC) and medial parietal (PC) cortex, show robust responses

while thinking about people’s stable personalities and prefer-

ences (Mitchell et al., 2006; Schiller et al., 2009; Cloutier et al.,

2011). Consistent with a predictive error code, these responses

are reduced when new information about a person can be better

predicted. Again these predictions appear to be derived from

relatively high level expectations that people’s traits will be

consistent across time and contexts, rather than from local

experimental statistics.

Prior knowledge of a person can be acquired through direct

interaction. First person experience of another person’s traits

(e.g., trust-worthiness, reliability), can be manipulated when

participants play a series of simple ‘‘games’’ with one or a few

other players. By gradually changing the other players’ behav-

iors, it is possible to create parametric ‘‘prediction errors.’’ In

one experiment, for example, the other player provided ‘‘advice’’

to the participant; this advice shifted over the experiments, so

that it was reliable in some phases, and unreliable in others.

The response in MPFC tracks with trial-by-trial error in expecta-

tions about the informant’s reliability (Behrens et al., 2008).

Expectations about other people’s traits can also be based

on verbal reports and descriptions. For example, the initial

behaviors of a (fictional) stranger can create an impression of a

certain kind of personality (e.g., ‘‘Tolvan gave her brother a

compliment’’). The MPFC response is enhanced when later ac-

tions by the same person are inconsistent with (i.e., unpredicted

by) this trait (e.g., ‘‘Tolvan gave her sister a slap’’) compared to
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when they are predictable (e.g., ‘‘Tolvan gave her sister a hug’’;

Ma et al., 2012; Mende-Siedlecki et al., 2012).

When specific information about a person’s reputation or traits

is unavailable, we may predict others’ preferences by assuming

that they will share our own preferences (Krueger and Clement,

1994; Ross et al., 1977). In one series of studies (Tamir and

Mitchell, 2010), participants judged the likely preferences of

strangers (e.g., is this person likely to ‘‘fear speaking in public’’

or ‘‘enjoy winter sports’’?) about whom they had almost

no background information. Under those circumstances, the

response of the MPFC was predicted by the discrepancy

between the attributions to the target and the participant’s own

preference for the same items: the more another person was

perceived as different from the self, for a specific item, the larger

the response in MPFC.

In all, human observers appear to formulate predictions for

other people’s movements, actions, beliefs, preferences, and

behaviors, based on relatively abstract internal models of

people’s bodies, minds, and personalities. These predictions

are reflected in multiple brain regions, including STS, TPJ, and

MPFC, where responses to more predictable inputs are

reduced, and to less predictable inputs are enhanced.

Consistent with our general proposal for prediction error cod-

ing, reduced responses to predicted stimuli in these experiments

are typically restricted to relatively few brain regions, and by

implication, to relatively few levels of the processing hierarchy.

Beliefs or actions that are unpredicted, based on high level

expectations, do not elicit enhanced responses at every level

of stimulus processing (e.g., early visual cortex, word form areas,

etc). Nor are prediction errors signaled by a single centralized

domain general ‘‘error detector.’’ Instead, relatively domain-

and content-specific predictions appear to influence just the

error response at the relevant level of abstraction.

Beyond Error
In sum, human thoughts and actions can be rendered unex-

pected in many ways, and across many such variations a com-

mon pattern emerges: brain regions that respond to these

stimuli also show enhanced responses to ‘‘unexpected’’ inputs.

This profile is the classic signature of error neurons, and there-

fore consistent with a predictive coding model of action under-

standing.

While consistent with predictive coding, however, these re-

sults provide only weak evidence in favor of predictive coding.

Increased responses to unexpected stimuli can be explained

by many different mechanisms, including increased ‘‘effort’’

required, increased attention, or longer evidence accumulation

under uncertainty. The predictive coding framework will there-

fore be most useful if it can make more specific predictions

and suggest new experiments.

(1) Distinguishing Prediction from Attention

A salient alternative explanation for enhanced responses to

unpredicted stimuli relies on attention. Unexpected stimuli may

garner more attention, and increased attention can lead to

more processing and higher activation (e.g., Bradley et al.,

2003; Lane et al., 1999). Similarly, increased processing effort

or longer processing time can predict higher activation (e.g.,

Cohen et al., 1997). Thus, higher activation to unexpected stimuli
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could reflect greater attention or longer processing, rather than

prediction coding errors. However, relative to these accounts,

predictive coding has a distinctive signature.

By hypothesis, predictions codes are more precise, more

computationally efficient, and less noisy than error codes

(Friston, 2005; Jehee and Ballard, 2009; Rao and Ballard,

1999; Spratling, 2008). As a result, in a predictive coding model,

better speed and accuracy of perception are associated with

reduced overall neural responses to predicted stimuli (Kok

et al., 2012a; den Ouden et al., 2009). By contrast, attention

may cause better speed and accuracy of performance by

increasing overall neural responses to attended stimuli (Feldman

and Friston, 2010; Friston, 2010; Herrmann et al., 2010; Hillyard

et al., 1998; Kok et al., 2012b; Martinez-Trujillo and Treue, 2004;

Reynolds and Heeger, 2009; Treue and Martı́nez-Trujillo, 1999).

That is, whereas attention may increase gain in neural responses

to the attended stimulus, predictions improve perception by

decreasing noise (or increasing sparseness) in neural responses

to the predicted stimulus.

If the neural responses described in the previous section

reflect prediction error, reduced neural responses should be

accompanied by improvements in behavioral performance: peo-

ple should make judgments more quickly, with less error, and

with more sensitivity to expected stimuli. Indeed, behavioral ev-

idence suggests that observers make faster and more accurate

judgments about people who behave as expected in social con-

texts. After watching two people engage in part of a cooperative

action or conversation, participants are faster andmore accurate

when both agents are behaving as expected (e.g., responding

aggressively or cooperatively, responding communicatively or

non-communicatively, or right away, instead of too early or

late; Manera et al., 2011; Neri et al., 2006; Graf et al., 2007).

Important next questions will be to look for these signatures in

other aspects of social cognition, such as goal inference or belief

attribution.

An interesting extension of this idea is the proposal that the

sparser prediction signal should also be easier to decode from

a neural population than the more distributed error signal, within

a single region and task (Kok et al., 2012a; Sapountzis et al.,

2010). In an elegant study, Kok et al., (2012a) asked participants

to make fine perceptual discriminations between oriented grat-

ings. They hypothesized that when the orientation of the gratings

was accurately predicted by a cue, the representation of the

grating would be largely in the sparser predictor neurons,

whereas when the orientation was not accurately predicted

(i.e., on the relatively rare invalidly cued trials), then the represen-

tation of the orientation would be largely in the more distributed

error neurons. Three predictions of their model were confirmed in

the responses of early visual cortex. First, the overall response to

the gratings was lower when the orientation was predicted than

when it was unpredicted (the classic pattern of ‘‘explaining

away’’ the error signal). Second, behavioral discriminations on

the gratings were more accurate when the orientation was

predicted than when it was unpredicted, consistent with the

hypothesis of a more efficient code. Third, and critically, the

orientation of the gratings could be more easily decoded

from the spatial pattern of neural responses in early visual

cortex when the orientation was predicted than when it was



Figure 3. Predicted Stimuli Elicit Reduced Activity with Sharpened Representations
Kok et al. (2012a) report that an accurate prediction led to reduced response amplitude in early visual cortex, but also simultaneously to an ‘‘improved’’ stimulus
representation, as measured by multi-voxel pattern analysis. Consistent with this suggestion, we find that in the right temporo-parietal junction (RTPJ; right box)
the response amplitude to a predicted belief was lower, but the spatial pattern associated with that belief category was more reliable. Left: a sample stimulus.
All stories described first a harmful action, and then the agent’s belief. The ‘‘predicted’’ belief (solid arrow) was consistent with the action (i.e., making the act
an intentional harm). The ‘‘unpredicted’’ belief (dotted arrow) was inconsistent and rendered the harm an accident. Middle: The amplitude of response in the
TPJ was lower for the intentional than accidental condition. Right: The spatial pattern of response in the TPJ was most robust and reliable across trials for
intentional harms, and somewhat less reliable for accidental harms. Data from Koster-Hale et al. (2013).
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unpredicted, consistent with the hypothesis that the prediction

signal is spatially sparser than the error signal. Finally, Kok

et al., (2012a) distinguished the effects of prediction from effects

of attention, by manipulating the participants’ task. Directing

attention to the gratings’ orientation (versus contrast) improved

decoding of orientation in V1, but the effects of attending to

orientation, and of seeing the unpredicted orientation, were

independent and additive.

A corresponding hypothesis should be easy to test with

respect to the neural representation of human behaviors,

thoughts and personalities. The lower responses to expected

stimuli should be accompanied by better decoding of relevant

stimulus dimensions. Indeed, our own results from the TPJ are

consistent with this hypothesis. As described above, when

reading about harmful actions (e.g., putting poison powder in

someone’s coffee), the TPJ response is higher to ‘‘unpredicted’’

innocent beliefs (e.g., that the powder was sugar) than to ‘‘pre-

dicted’’ consistent beliefs (e.g., that the powder was poison;

Young and Saxe, 2009b). We also found that using spatial

pattern analysis in the TPJ, we could decode the difference

between innocent and guilty beliefs (Koster-Hale et al., 2013).

Based on Kok et al., (2012a), a further prediction is that the

decoding should be driven by a sparser and more efficient

response to the predicted category; and indeed, re-analysis of

our data suggests that the guilty beliefs elicit a more distinctive

(i.e., more correlated across trials) spatial pattern than the

‘‘unpredicted’’ innocent beliefs (Figure 3).

Interestingly, the benefits of an accurate prediction may be

quite specific to the aspects of the stimulus that are accurately

predicted. As we suggest earlier, most predictions are limited

to a particular level of abstraction; given a high-level prediction,

the probability of lower-level features appearing will be too

widely distributed to be informative. As a result, accurate pre-

dictions may improve behavioral performance (and neural

decoding) at the representational level of the prediction (e.g.,

which object a person wanted) but fail to improve, or even
degrade, these measures for lower-level features (e.g., where

in space someone looked; He et al., 2012).

(2) Finding the Prediction Signal

An important direction for future research will be to focus on

signatures of the predictor neurons, in addition to the error

neurons. At least four different strategies may help to identify

prediction signals, and distinguish them from the often more

dominant error signals.

First, unlike error neurons, predictor neurons should show

robust activity when the stimulus fits prior predictions. Consis-

tent with this suggestion, a recent study found that although

the majority of voxels in the fusiform face area (FFA, Kanwisher

et al., 1997; Kanwisher, 2010) was suppressed for a repeated

face, a subset of voxels reliably showed the reverse pattern

(de Gardelle et al., 2013), termed repetition enhancement (see

also Turk-Browne et al., 2006; Müller et al., 2013). Intriguingly,

these two populations of voxels also showed different patterns

of functional connectivity. It will be intriguing to test whether

the STS, TPJ, PC, or MPFC similarly contain subsets of voxels

with enhanced responses to predicted actions or beliefs, and

whether these voxels have distinctive patterns of functional con-

nectivity with other regions, especially because unlike face pro-

cessing, the direction of information flow among regions

involved in theory of mind is largely unknown.

Second, because both predictor neurons and error neurons

may have preferred stimuli (or stimulus features), it may be

possible to identify the content of the prediction independent

from the response to the subsequent stimulus. For example,

the response of the FFA seems to increase when a face stimulus

is predicted, as well as (and partially independent from) when a

face stimulus is observed (den Ouden et al., 2010; Egner et al.,

2010). Note though that neither of the existing studies could

fully independently identify the response to predicting a face,

because in both cases, the probability of a face was exactly

reciprocal to the probability of the only other possible stimulus,

a house. By including a third category of stimulus, or a third
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possible cue, or by independently varying the predictive value of

the two cues, it should be possible to independently measure

category-specific responses to the prediction of a category,

versus the response to that category when observed.

Third, and relatedly, predictor neurons can signal the ex-

pectation of a stimulus that never occurs. In some cases, the

absence of an expected stimulus should generate error activity

(den Ouden et al., 2010; Todorovic et al., 2011; Wacongne

et al., 2012). For example, the activity pattern in IT generated

by the surprising absence of an object contains information

about the identity of the absent stimulus (Peelen and Kastner,

2011). Unlike the ‘‘signed’’ (i.e., below baseline) error response

in reward systems, sensory neurons thus seem to show an

increased response to an unexpectedly absent stimulus (though

note that there is some disagreement as towhether this activity is

driven only by the prediction signal before the stimulus is ex-

pected to appear, or by a combination of the prediction signal

with a subsequent error signal when the stimulus fails to appear,

e.g., den Ouden et al., 2010).

Fourth, the prediction and the error signals could be separable

in time. Specifically, under some circumstances, prediction

signals can begin before the stimulus, whereas error signals

are typically triggered by the stimulus itself (e.g., Hesselmann

et al., 2010). The low temporal resolution of fMRI may make it

hard to test this hypothesis directly. However one pattern of

results is consistent with the idea that the STS contains pre-

dictions of upcoming biological motion: still photographs of a

person in mid-motion (such as a discus thrower in the middle

of throwing a disc) elicited more activity in the STS than images

that do not imply or predict motion (the same discus thrower at

rest; Kourtzi and Kanwisher, 2000; Senior et al., 2000).

Fifth, error responses in a single region may be influenced by

predictions from different sources, and these different sources

may be spatially separable. For example, FFA shows repetition

suppression for both repetition of one identical face image

(plausibly a very low-level prediction) and for repetition of a

face across different sizes (requiring a higher-level prediction).

These error signals were related to different patterns of func-

tional connectivity between FFA and lower level regions (Ewbank

et al., 2013). By analogy, there may be different patterns of

functional correlations related to different sources of prediction

for human actions. In one experiment, for example, the STS

response was enhanced for actions that were unpredicted for

two different reasons: reaching for empty space next to a target

(which is an inefficient or failed action), or reaching for a previ-

ously nonpreferred object (which is unpredicted relative to an

inferred goal; Carter et al., 2011; see also Bubic et al., 2009). It

would be interesting to test whether these two kinds of errors

are associated with spatially distinct sources of functional con-

nectivity to the STS.

(3) Using Predictive Coding to Test the Neural

Computations Underlying Theory of Mind

The framework of predictive coding offers a new opportunity to

study the neural representations of others’ actions and thoughts,

using new experimental designs. The necessary logic has been

developed in repetition suppression experiments (Grill-Spector

et al., 2006). Complex stimuli elicit responses in many different

brain regions simultaneously, making it hard to dissociate the
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representational and computational contributions of different

brain regions. Consequently, in higher level vision, repetition

suppression has been used to differentiate the stimulus dimen-

sions or features represented in multiple co-activated regions.

For example, although both the FFA and the STS face area

show repetition suppression when the identity of a face is

repeated, only a more anterior STS region shows a reduced

response when the emotional expression is repeated across

different faces (Winston et al., 2004).

Looking for prediction error offers a generalized, and more

flexible, version of repetition suppression studies; critically, it

only requires that a stimulus be surprising along some dimen-

sion, without having to repeat the stimulus. This flexibility is

particularly advantageous for studies using naturalistic or social

stimuli, which can be hard to repeat without also invoking repe-

tition of a number of confounding, but unrelated representa-

tions—for example, words, syntactic structure, or faces. Exact

repetitions of complex stimuli can be unnatural or pragmatically

odd, which may especially limit the ability to study repetition

suppression in young or special populations. By contrast, the

distribution of observed error signals could reveal both which

neural populations or regions are coding the relevant dimensions

and features, and what the sources of predictions are.

Finally, and perhaps most importantly, this framework may

enrich theorizing about neuroimaging results in social cognitive

neuroscience. One of the key challenges facing social cognitive

neuroscience is that the richness of the data often surpasses the

precision of the theories. This proves to be a problem both for

interpreting the data—inverse inferences are very rarely well-

constrained enough to be compelling, despite their role in theory

building—and for designing new hypotheses and experiments.

Increased response in a brain region has been argued to indicate

both that the stimulus carries many relevant features to a region

and that the stimulus was harder to process or a less good

‘‘fit’’ to the region; this problem is exacerbated when trying to

interpret different neural patterns across groups (i.e., special

populations). If we can begin to break down (a) what kinds of

predictions a region makes, (b) what kind of information directs

those predictions, and (c) what constitutes an error, it may be

possible to formulate much more specific hypotheses about

the computations, and information flow, that underlie human

theory of mind.

In sum, we find a predictive coding approach to theory of

mind promising. There is extensive evidence of a key signature

of predictive coding, in fMRI studies of theory of mind: reduced

responses to expected stimuli. Existing data also provide hints of

other, more distinctive signatures of predictive coding. Future

experiments designed to more directly test the predictions and

errors represented in different brain regions may provide an

important new window on the neural computations underlying

theory of mind.
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