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1Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal QC H3C 3J7, Canada
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The recent flowering of Bayesian approaches invites the

re-examination of classic issues in behavior, even in

areas as venerable as Pavlovian conditioning. A statisti-

cal account can offer a new, principled interpretation of

behavior, and previous experiments and theories can

inform many unexplored aspects of the Bayesian

enterprise. Here we consider one such issue: the finding

that surprising events provoke animals to learn faster.

We suggest that, in a statistical account of conditioning,

surprise signals change and therefore uncertainty and

the need for new learning. We discuss inference in a

world that changes and show how experimental results

involving surprise can be interpreted from this perspec-

tive, and also how, thus understood, these phenomena

help constrain statistical theories of animal and human

learning.
Introduction

Classical conditioning experiments probe how subjects
(typically animals) learn to predict biologically significant
events such as food delivery. As with human learning
experiments, which are often formally similar, there is a
long history of quantitative models of conditioning [1–4],
and a more recent interest in reframing them in explicitly
statistical terms [5–11]. A statistical viewpoint can offer a
principled explanation for why subjects display seemingly
peculiar behavior; it can constrain or justify seemingly
arbitrary aspects of the previous generation of models;
and it can identify theoretically important features
underlying a pattern of experimental data. This article
focuses on one such feature in animal conditioning
experiments: evidence that surprise can enhance the
speed of learning [3].

We revisit this corner of the literature in this article
because, we suggest, this phenomenon bears on a nexus of
issues central tomodernBayesianaccounts of learning (see
also Conceptual Foundations Editorial by Chater, Tenen-
baum and Yuille, and the Technical Introduction to this
Special Issue; see Supplementary material online). Draw-
ing on work by Dayan and collaborators [5,6,9], we suggest
that surprise causes faster learning because it signals
change, leading to increased uncertainty in one’s beliefs –
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say, about the probability that a bell’s ringing will be
followed by food delivery. In Bayesian inference, the speed
of learning (that is, the credence granted to new evidence
over prior beliefs) turns on the reliability (or conversely,
uncertainty) accorded to each. Change increases uncer-
tainty, and speeds subsequent learning, by making old
evidence less relevant to the present circumstances.

We begin by setting out Pearce’s [3] theory of surprise in
conditioning, and then consider its parallels with Baye-
sian inference in a changing world. With this framework
in place, we review and reinterpret a number of
experimental phenomena. Importantly, this exercise is
informative not just about the experiments, but about the
theories, because change is a relatively unexplored aspect
of the Bayesian model space. For formal simplicity, most
Bayesian theories of human [12] and animal [6,9,13]
learning (including our own [10,11]) treat the world as
unchanging – or at best, changing in a steady, rudimen-
tary fashion. That animals react to surprise by modifying
their subsequent learning suggests they are are, in effect,
able to make more complicated inferences about when
change has occurred [14] or how quickly it is occurring. By
understanding what sorts of surprise affect learning and
how, we can begin better to understand the structure of
the statistical problem animals are solving. Such an
enterprise opens new issues for future study in both
human and animal learning contexts.
Theories of conditioning

In a classical conditioning experiment, affectively neutral
stimuli (such as bells or lights, known as ‘conditioned
stimuli’ or CSs) are repeatedly paired with biologically
significant reinforcers (such as food or shock; ‘uncondi-
tioned stimuli’ or USs). Experiments study how animals’
predictions of reinforcement develop with experience of
various patterns of CS/US pairings; prediction is assessed
via ‘conditioned responses’ (CRs, such as salivation or
freezing), which are thought directly to reflect the
expectation of a US. In the simplest case, a bell is
repeatedly paired with food, and the animal gradually
comes to salivate in response to the bell alone.

We focus on a series of classic findings suggesting that
surprising events (such as a sudden change in the extent
to which some stimulus predicts reinforcement) can speed
subsequent predictive learning of the sort described
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above. In fact, the experimental protocols in question are
convoluted (they involve, at the least, multiple phases to
first establish expectations, violate them to produce
surprise, and then test subsequent learning in experi-
mental animals compared with non-surprised controls).
We therefore defer the details and first discuss two
different sorts of abstract theories of the phenomena,
associative and Bayesian. These will help to interpret the
data we subsequently present, and at the same time raise
questions that the data will help to address.
Associative learning approaches

Associative learning models [1–4] specify rules for the
development of predictions given the stimuli presented.
Typically, each stimulus is assumed to have a weight, or
‘associative strength’, characterizing how strongly it
predicts reinforcement. When stimuli are presented in a
trial, the amount of reinforcement expected (and, there-
fore, the degree of behavioral response such as salivation
produced) depends on their associative strengths. The
weights for the presented stimuli are updated based on the
subsequent delivery or nondelivery of reinforcement.

As we have noted, animals respond to surprising events
with faster learning. To capture this behavior, some
associative learning models [2–4] endow each stimulus
with a further attribute known as ‘associability’, which
governs how quickly its associative strength is updated. In
the Pearce–Hall [3] version of this idea (Box 1), the
associability depends on how accurately the stimulus’
associative strength has previously predicted reinforce-
ment – with more accurate stimuli less susceptible to
further learning. This feature allows ‘surprising’
reinforcement or non-reinforcement (such as that caused
when a stimulus’ predictive relationship with reinforce-
ment abruptly changes) to produce faster learning. (Note
that other attentional factors also impact associability
[2,4], and these might also have a Bayesian interpretation
[6]. Here we focus on surprise.)

This mechanism explains how some surprising events
give rise to faster learning. To better understand the
conceptual issues surrounding why they should do so, we
will now consider a Bayesian perspective on learning in
the presence of changing contingencies.
Bayesian accounts of conditioning and change

In a Bayesian model, Pearce and Hall’s [3] concept of
surprise can be related to a formal notion of change.
Box 1. The Pearce–Hall model

The Pearce–Hall model [3] updates the associative strength Vi for

each stimulus i present on trial t according to:

DVi ðtÞfai ðtÞlðtÞ

where l(t) is the magnitude of reinforcement delivered on the trial

and ai (t) is the associability of the stimulus.

The associability is modulated by surprise, defined as:

ai ðtÞZ jlðtK1ÞKVi ðtK1Þj

that is, the absolute value of the difference between the previous

trial’s actual reinforcement and that which had been predicted on the

basis of the stimulus.
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Bayesian approaches to conditioning [6,9–11] interpret
animals’ responding as arising from statistical
reasoning about the likelihood of reinforcement, given
their experience. Specifically, they take conditioned
responding to reflect subjects’ estimates of P(US(t)jCS(t),
data(1. t–1)), the probability of reinforcement given the
currently observed stimuli and the training history,
data(1.t–1), of conditioned stimuli and reinforcers seen
on previous trials.

A standard Bayesian approach to reinforcer prediction
would assume the animal begins with a ‘world model’ or
skeletal description of the task contingencies (for instance,
how observed stimuli and reinforcers may relate, how they
may change over time). The model is specified only up to
some set of unknown parameters, w, (controlling, for
instance, how probable it is that a bell will be followed by
food); the job of the animal is to use experience with bells
and food to estimate w, and thus the probability of
reinforcement in a particular situation. The learning
rule for w is simply Bayes’ rule; but different Bayesian
accounts can differ in what sort of world model they
assume, and therefore what sorts of regularities in their
experience they can learn to capture. Because they focus
on, or ignore, different aspects of an animal’s experience,
different world models can make very different experi-
mental predictions. In the following, we consider different
world models and how experimental data might help us to
distinguish them.

World models: discriminative and generative

The types of world models used to describe classical
conditioning may be grouped into two broad categories,
the ‘discriminative’ and ‘generative’ approaches. These
differ as to whether they attempt to learn about the inputs
to a problem as well as the outputs. A discriminative
approach to classical conditioning assumes animals
model only P(US(t)jCS(t), data(1.t–1)), the probability
of reinforcement given the current conditioned stimuli.
All other stimuli are treated as inputs and not
explicitly modeled. The generative approach to classical
conditioning assumes that animals learn to predict
the full pattern of both stimuli and reinforcement
P(US(t),CS(t)jdata(1.t–1)) rather than just reinforce-
ment. Note that without additional information about
stimulus delivery, P(CS(t)jdata(1.t–1)), it is not
possible to reconstruct a generative model from a
discriminative one.

We will interpret the conditioning data we present in
terms of our latent variable model of conditioning [10,11],
which takes a generative approach, assuming that
animals learn to predict both conditioned and uncondi-
tioned stimuli. Our world model (Box 2) treats correlated
patterns of stimuli and reinforcers as arising from unitary
events, called ‘latent causes’, which are unobservable in
themselves but whose occurrence may be inferred from
the patterns of observable stimuli. A number of other
approaches [6,7,9] instead assume a discriminative view.

World models: change

Another important aspect of world models in classical
conditioning is whether and how they incorporate the
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Box 2. A latent variable model for classical conditioning

According to the latent variable theory [10,11], animals assume that

patterns of observed events within their environment are attribu-

table to a set of unobservable ‘latent’ causes. Learning is interpreted

as an attempt to recover the parameters of the generative model that

gave rise to the observed events.

In the theory, animals model the occurrence of binary valued

causes x(t) and observables y(t) (both stimuli and reinforcers) on

each trial. Causes are activated randomly on each trial, and each

stimulus arrives (or doesn’t) according to an independent flip of a

biased coin. The bias is determined by the sum of weights, wt, from

all active causes to the stimulus, so that the activation of a cause

promotes a particular pattern of observable stimuli (those to which it

has positive weights).

Thus, in Figure I below, the activation of the hidden cause x1(t)

promotes the appearance of stimuli A and B (thicker lines denote

larger weights) and opposes (red dashed line for negative weight)

reinforcement (R); the activation of the hidden cause x2(t) promotes

B, C, and reinforcement. The weights therefore describe likely

patterns of co-occurring stimuli and reinforcers, and so, given

learned weights, the likelihood of reinforcement given some

observed stimuli can easily be estimated. Additionally, we assume

that the parameters wt may change from trial to trial. The rate of

change for the weight parameters is controlled by an additional

parameter qt. Estimating the values of wt therefore requires

estimating the speed at which they are currently changing, which

can also be done using Bayes’ rule.

A B C R

x1 x2
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Figure I. Latent variable model (see text for details)
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possibility of change in the task contingencies (for
instance, in the predictive relationship between a bell
and food). An animal’s beliefs about changing contingen-
cies can be incorporated into the Bayesian perspective by
specifying how the parameters w evolve over time. In
particular, one can specify how the parameters in effect at
time t,wt, relate towtK1, the parameters at time tK1 (e.g.
by a randomwalk) [9,13]. Of course, one might also specify
that the parameters do not change (that wtZwtK1).

Animals working from different basic assumptions
about how the world changes will behave differently as a
result of drawing different statistical conclusions from
their experience. For instance, if the model assumes that
change occurs sporadically [14] or at different rates, then
the standard Bayesian process of learning and prediction
will implicitly involve drawing inferences about whether a
change has occurred, or how quickly the world is currently
changing. As detailed below, these inferences will affect
the speed of learning, and it is this process we suggest
corresponds to Pearce and Hall’s notion of surprise [3]. On
the other hand, if the model assumes no change [10,11] or
www.sciencedirect.com
change at a constant rate (as in the Kalman filter model of
Kakade and Dayan [9,13]), then evidence of change, in
itself, will have no such effect.

For the following, we assume that the parameters of
our generative model (Box 2), wt, change via a random
diffusion process, and that the amount of change on each
trial is controlled by parameters qt which are themselves
unknown and changing. Inferring the parameters wt

involves inferring qt. This formulation therefore posits
that animals learn, effectively, about the speed, qt, at
which parameters change.
Change and uncertainty

A key concept in Bayesian inference is uncertainty. A
Bayesian agent estimates not just parameters wt from
experience, but also its uncertainty (or lack of confidence)
in these estimates. As originally noted by Dayan and Long
[5], uncertainty about model parameters plays the same
role as ‘associability’ in associative learning theories such
as the Pearce–Hall model. Greater uncertainty about wt

grants increased influence to newly observed data when
the two are combined, through Bayes’ rule, to produce a
new estimate. Analogously in associative learning models,
increasing the associability weights current data
more heavily.

The possibility that parameters have changed gives rise
to uncertainty about them, because if they have changed,
previous evidence is less informative about their present
value. When rapid change occurs, it will produce
surprising events (that is, events not well captured by
the previously inferred values of the model parameters).
For this reason, in a model that estimates the speed of
change (Box 2), suprising events will be evidence of rapid
change. This will lead to increased uncertainty and faster
subsequent learning – analogous to the relationship
between surprise and learning rate in the Pearce–Hall
model. Thus key to this account is how events in the world
affect the model’s beliefs about the speed of change, which
we examine and illustrate below.
Theories of conditioning: summary

We have reviewed associative and Bayesian viewpoints on
classical conditioning, surprise, and change. In the
following, we will use these theories (Box 2) to examine
a number of empirical phenomena involving surprise and
learning. This will serve to illustrate the ideas about
change we have put forward; to suggest an interpretation
of the data in terms of these statistical concepts; and, also,
to investigate and constrain an appropriate Bayesian
model of conditioning phenomena. On the last point, recall
that Bayesian theories can differ in assuming different
structure in their world model; for instance, generative
versus discriminative models or different accounts of
change. One way to get an empirical indication of what
sort of information is represented in animals’ world
models is to understand what sorts of information affects
their behavior. Therefore, in the following, we ask whether
different sorts of surprise affect animals’ behavior. If, for
instance, surprising CSs (neutral stimuli) affect behavior,
then that would support a generative model, which
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incorporates such stimuli, over a discriminative model,
which does not attempt to predict them.

Learning from surprising reinforcement

The core idea of the Pearce–Hall model (Box 1) is that
surprising reinforcement or non-reinforcement gives rise
to increased associabilities and faster learning. As we
have discussed, a Bayesian perspective on this idea is that
surprising events signal change, thereby increasing
uncertainty and speeding learning. We now describe
some experiments that demonstrate these effects.

The experimental designs are, necessarily, fairly
complex, as the experiments involve several stages. The
usual structure is to start with some protocol that would
cause slow learning, and then show that this effect can be
reversed by subsequently introducing some surprising
change in contingencies, speeding learning.

Surprising reinforcers accelerate learning

To unpack a typical experiment, we start with the ‘latent
inhibition’ (LI) effect [15] (see Table 1, Experiment 1):
if a stimulus is repeatedly presented non-reinforced, prior
to being paired with reinforcement, then acquisition of
the stimulus-reinforcement relationship is slowed.
Actually, latent inhibition can occur even if the stimulus
preexposures are reinforced (WS: Weak Shock; see Table 1
acronyms) – in one experiment [16], a stimulus was
repeatedly pre-exposed together with a small shock, which
retarded acquisition when the stimulus was subsequently
paired with a larger shock. But serially combining both
sorts of preexposure (WSCLI) – either of which alone
would slow subsequent acquisition – cancels their effect
[3]. The interpretation is that the surprise caused by the
change from weakly reinforced to non-reinforced preexpo-
sure speeds learning, reversing the slowing.
Table 1. A summary of experiments that pertain to issues of surpr

Group Phase 1 Interm

Experiment 1: Latent inhibition and reinforced preexposure

Control – –

LI AK –

WS AC(weak) –

WSCLI AC(weak) AK

Experiment 2: Unblocking by reinforcer switch

Control – –

BL BC1 –

UB BC1 –

Experiment 3: Latent inhibition and overshadowing

Control – –

LI AK –

OV – –

LICOV AK –

Experiment 4: Partial reinforcement extinction effect

EXT AC –

PREE AC/AK –

Experiment 1: Pre-exposure with unreinforced stimuli (A–) retards acquisition, a phe

with a weak shock (AC) also retards acquisition (WS) [16]. Surprisingly, the two pr

Experiment 2: Blocking (BL) is the retardationof learning thatarises asa result ofbeing rein

(unblocking or UB) if the reinforcer is changed between pretraining (Phase 1) and the co

footshock (C1) to an ice-water dunking (C2) [19].

Experiment 3: Overshadowing (OV) occurs when acquisition to one stimulus (A) is

inhibition and overshadowing both cause slow learning on their own, once again th

Experiment 4: Extinction (EXT) is the loss of a conditioned response to a stimulus (

without reinforcement (Phase 2: A–). If the reinforced presentations (Phase 1: AC) ar

then subsequent extinction occurs more slowly, a phenomenon known as the partia

www.sciencedirect.com
Surprise may also account for the reversal of another
well-known effect that retards learning: blocking (Experi-
ment 2 of Table 1). In blocking (BL), the acquisition of an
association between a stimulus, A, and reinforcement is
weakened (‘blocked’) if, on the training trials, presenta-
tions of A and reinforcement are accompanied by a second
stimulus, B, that had already been associated with
reinforcement. This effect can be reversed by a number
of ‘unblocking’ treatments that introduce various surpris-
ing events, facilitating improved learning. In one version
[19], the reinforcer is switched (between two equally
aversive choices, footshock and ice-water dunking) during
the blocking phase, and this surprising change reverses
the blocking effect (UB).

Figures 1a and 1b illustrate the interpretation of
this result in terms of Bayesian change detection. Here,
the reinforcer switch causes faster change to be
inferred, speeding learning and reversing the effect
of blocking.

In short, the experiments discussed here suggest that
animals can indeed detect surprising changes in reinfor-
cer delivery and adjust their learning rate accordingly,
as predicted by the Pearce–Hall model and also by
Bayesian theories in which the occurrence or speed of
change can be tracked. Other Bayesian theories, those
that assume change is nonexistent or constant, would not
produce such surprise-related effects. We now consider
the behavioral effects of another sort of change, which
suggest further constraints on the space of consistent
Bayesian models.
Surprising neutral stimuli also accelerate learning

A further question is whether surprising neutral stimuli
(CSs like lights or tones) can produce similar effects on
the speed of learning as do surprising reinforcers. Such
ise and change

Phase 2 Rate of acquisition

AC Fast

AC Slow

AC Slow

AC Fast

AC Fast

ABC1 Slow

ABC2 Fast

AC Fast

AC Slow

ABC Slow

ABC Fast

Rate of extincition

AK Fast

AK Slow

nomenon known as latent inhibition (LI) [17]; pre-exposure of stimulus pairings

e-exposure effects cancel each other when combined (WSCLI) [18].

forced in the presence ofa pretrainedCS(B).The blocking effect issignificantly reduced

mpound training. In one version of the experiment the reinforcer is changed from a

slowed by the presence of another simulus (B) during training. Whereas latent

e effects seem to counteract each other when combined (OVCLI) [20].

A) that occurs when a trained conditioned stimulus (A) is repeatedly presented

e interspersed with non-reinforced presentations (Phase 1: A–) (on 50% of trials),

l reinforcement extinction effect (PREE).
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(d)

0

Figure 1. The probability of reinforcement (i.e. the modeled conditioned responding) and the rate of change estimated by our Bayesian model for Experiments 2 and 3 from

Table 1. The schematic plots are derived from inference using the world model presented in Box 2 and observations drawn from the experimental designs. The modeled

responses (a,c) qualitatively illustrate behavior patterns observed experimentally; inferences about the rate of change (b,d) help to explain why the learning curves differ

between conditions. Experiment 2: unblocking with a qualitative change in reinforcement. (a) The estimated probability of reinforcement and (b) the estimated rate of change

as a function of the number of Phase 2 ‘blocking’ trials, for both the blocking and unblocking training schedules. Experiment 3: overshadowing counteracts latent inhibition.

(c) The estimated probability of reinforcement and (d) the estimated rate of change as a function of the number of Phase 2 trials, either AC trials in the case of latent inhibition

(LI) or ABC in the case of latent inhibition plus overshadowing (LICOV).
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an effect would not be captured by the Pearce–Hall
model [3] (which computes surprise only in terms of
expected reinforcement), nor for similar reasons by
Bayesian theories that take a discriminative approach
(that is, those that model only reinforcement but not
neutral stimuli, and cannot therefore detect change in
them).

Contrary to these accounts, such an effect may be
demonstrated by another experiment in which two
treatments that would slow conditioning counteract one
another when combined (Experiment 3 of Table 1) [20].
Recall that in latent inhibition (LI), a stimulus, A, is pre-
exposed (here, unreinforced), retarding acquisition when
it is subseqently paired with reinforcement. Blaisdell and
colleagues [20] demonstrate that this effect is reversed if a
novel stimulus, B, is introduced during the reinforcement
phase. Without the stimulus pre-exposure (which should
retard learning), the inclusion of B (known as ‘over-
shadowing’; OV) would also retard learning [21], but, here
again, the combination of treatments (LICOV) reduces
www.sciencedirect.com
the deficit. On the Bayesian analysis we have described,
this is because of the surprising inclusion of neutral
stimulus B, signaling an increased rate of change (Figures
1c and 1d), facilitating acquisition and counteracting
latent inhibition.

There are a number of other demonstrations of
surprising non-reinforcing stimuli affecting learning
rates. In a serial conditioning task introduced by Wilson
et al. [22] and subsequently used extensively by Holland
and collaborators [23], a surprising change in how well
a light predicts a neutral tone stimulus speeds
subsequent conditioning.

That surprising stimuli should affect learning
suggests, on a Bayesian account, that they must be
part of the world model being learned. That is, such
experiments seem to support generative models over
discriminative models of conditioning. We finally
consider another sort of surprise that is relevant to
the structure of the Bayesian world model: surprise due
to stochastic reinforcer delivery.

http://www.sciencedirect.com
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Figure 2. The partial reinforcement extinction effect: (a) the estimated probability of reinforcement and (b) the rate of change estimated during extinction trials (AK) for both a

fully reinforced and partially reinforced stimulus A. The schematic plots are derived via inference over the world model presented in Box 2 using observations drawn from

Experiment 4 of Table 1.
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Fixed-rate stochastic reinforcement might not accelerate

learning

Because the Pearce–Hall [3] model computes surprise as
the mismatch between observed and predicted reinforce-
ment (Box 1), it makes a characteristic prediction
concerning experiments (known as ‘partial reinforce-
ment’) in which a stimulus is reinforced randomly some
fraction of the time. (For instance, reinforcement might be
delivered, or not, according to a coin flip.) In this case, as
reinforcement can never be exactly predicted, the model
predicts constant surprise and persistent fast learning. By
contrast, our Bayesian analysis predicts no such effect,
because of the structure of the generative model we have
assumed. That generative model assumes that reinforcer
delivery will be stochastic, and attempts only to predict
the probability of reinforcement. Surprise occurs when
there is evidence of change in the probabilities. Random
variation under constant probabilities (as with a sequence
of coin flips) will not be surprising.

One test of these accounts is how quickly responding to
partially reinforced stimuli extinguishes when reinforce-
ment ceases. The Pearce–Hall model predicts that
elevated associability should result in faster extinction
for partially reinforced stimuli relative to fully reinforced
stimuli. The opposite is true: responding to partially
reinforced stimuli extinguishes more slowly [24–26]. This
is known as the partial reinforcement extinction effect
(PREE; Table 1, Experiment 4).

As first noted by Gallistel and Gibbon [7], the PREE is
actually to be expected on a statistical account, because a
downward change in the probability of reinforcement is
harder to spot against a partially reinforced background.
Figure 2a illustrates the idea in our Bayesian analysis.
Here, when extinction begins, the absence of reinforce-
ment is less surprising if reinforcer omissions were
anyway expected owing to prior partial reinforcement.
As a result, slower change is inferred, leading to less
uncertain model weights, a smaller learning rate, and
slower extinction.

In principle, the inferential effects we describe could be
concealing additional effects of the learning rate of the sort
predicted by Pearce–Hall. However, Gallistel and Gibbon
www.sciencedirect.com
[7] replot PREE extinction times in terms of the number
of expected reinforcements omitted (compensating, on
their analysis, for the different amounts of experience
needed to spot a change); thus transformed, the data still
reveal no residual effect of Pearce–Hall style
stochasticity sensitivity.

That said, it is clear that the PREE involves multiple
interacting factors [27,28]; and a recent experiment [26]
seems to reject the mathematical form, although not
the basic insight, of Gallistel and Gibbon’s [7] account.
We also should note that there is some empirical support
for the Pearce–Hall prediction of persistently elevated
associability in partial reinforcement [29], but
measuring associability using an orienting response
(which is thought to reflect it), rather than through its
signature effects on learning, on which we have
concentrated here. Further experiments are required to
unravel fully the effects of stochasticity on uncertainty
and associability, and their differential effects on
behavior. However, provisionally, the PREE suggests
that an appropriate Bayesian world model is one that
predicts the probability, rather than the absolute
occurrence, of reinforcement.
Conclusions

We have presented a Bayesian perspective on the issues
surrounding animal reasoning with respect to change in
the environment. The idea – that changing contingencies
lead to uncertainty about reinforcement probabilities,
which in turn leads to faster learning – provides a
tentative but parsimonious explanation for why animals
behave as they do in the presence of change (see also Box 3
for future research areas). This viewpoint also puts
inference about change at the center of the learning
problem. Bayesian learning in a changing world involves
rich computational and inferential issues that have not
been fully explored either experimentally or theoretically.
(see also Editorial ‘Where next?’ in this issue). Work on
change in Bayesian models has been largely confined to
the animal learning literature; it will be of particular
interest to investigate the same issues in the context of

http://dx.doi.org/doi:10.1016/j.tics.2006.05.008
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Box 3. Questions for future research

† Different Bayesian world models can capture different types of

structure in experience. How detailed is animals’ learning about

how, or how quickly, the world changes?

† There is a neurophysiologically motivated suggestion that the

brain contains special mechanisms for detecting abrupt changes

(jumps) as opposed to steady ones [14,30,31]. How does this work,

and do animals manifest such distinct inference about jumps

behaviorally?

† The Pearce–Hall model assumes surprise affects learning only for

stimuli that co-occur with it. How does learning about change

generalize between stimuli or contexts?

† As simplifying assumptions (such as the lack of change) are

relaxed, exact Bayesian inference becomes computationally intract-

able. What sort of approximations do subjects make to perform

these computations [32,33]?

† Are phenomena involving surprise and change paralleled in

human learning experiments?

Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July2006300
human learning, which has recently featured very much
parallel models and tasks.
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