REVIEW ARTICLENeuropathological findings in autism

Saskia J. M. C. Palmen,^{1,2,4} Herman van Engeland,¹ Patrick R. Hof⁵ and Christoph Schmitz^{2,3}

¹Rudolf Magnus Institute of Neuroscience, Department of Child and Adolescent Psychiatry, University Medical Center Utrecht, Utrecht, ²European Graduate School of Neuroscience (EURON), ³Department of Psychiatry and Neuropsychology, Division of Cellular Neuroscience, University of Maastricht, Maastricht, The Netherlands, ⁴Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany and ⁵Department of Neuroscience and Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY, USA

Summary

Autism is currently viewed as a largely genetically determined neurodevelopmental disorder, although its underlying biological causes remain to be established. In this review, we examine the available neuropathological literature on autism and discuss the findings that have emerged. Classic neuropathological observations are rather consistent with respect to the limbic system (nine of 14 studied cases showed increased cell packing density and smaller neuronal size), the cerebellum (21 of 29 studied cases showed a decreased number of Purkinje cells, and in all of five cases that were examined for agerelated morphological alterations, these changes were found in cerebellar nuclei and inferior olive) and the cerebral cortex (>50% of the studied cases showed Correspondence to: Saskia Palmen, MD, Department of Child and Adolescent Psychiatry, HP A01.468, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands E-mail: s.palmen@azu.nl

features of cortical dysgenesis). However, all reported studies had to contend with the problem of small sample sizes, the use of quantification techniques not free of bias and assumptions, and high percentages of autistic subjects with comorbid mental retardation (at least 70%) or epilepsy (at least 40%). Furthermore, data from the limbic system and on age-related changes lack replication by independent groups. It is anticipated that future neuropathological studies hold great promise, especially as new techniques such as designbased stereology and gene expression are increasingly implemented and combined, larger samples are analysed, and younger subjects free of comorbidities are investigated.

Keywords: autism; neuropathology; cerebral cortex; cerebellum; limbic system

Abbreviations: GAD = glutamic acid decarboxylase

Received May 15, 2004. Revised July 1, 2004. Accepted July 6, 2004. Advanced Access publication August 25, 2004

Introduction

Autism is an oligogenic neurodevelopmental disorder with a heritability of >90% (Bailey *et al.*, 1996). It is defined by the presence of marked social deficits, specific language abnormalities and stereotyped, repetitive behaviours (American Psychiatric Association, 1994). Kanner, the first to report on autism, noticed the presence of enlarged heads in some of the children with autism (Kanner, 1943). Several subsequent studies have replicated this finding. Macrocephaly, defined as head circumference above the 97th percentile, was found

in ~20% of subjects with autism (Bailey *et al.*, 1993; Davidovitch *et al.*, 1996; Woodhouse *et al.*, 1996; Lainhart *et al.*, 1997; Stevenson *et al.*, 1997; Fidler *et al.*, 2000; Fombonne, 2000; Miles *et al.*, 2000; Naqvi *et al.*, 2000; Aylward *et al.*, 2002; van Karnebeek *et al.*, 2002; Courchesne *et al.*, 2003). Macrocephaly is not present until the first year of life, however (Lainhart *et al.*, 1997; Stevenson *et al.*, 1997; Courchesne *et al.*, 2003). Consistent with these clinical findings, neuropathological studies have reported increased brain weight in autistic individuals (Bailey *et al.*, 1998; Kemper and Bauman, 1998; Courchesne *et al.*, 1999; Casanova *et al.*, 2002*a*). Likewise, neuroimaging studies have shown increased brain size in autistic children (Filipek *et al.*, 1992; Courchesne *et al.*, 2001; Aylward *et al.*, 2002; Carper *et al.*, 2002; Sparks *et al.*, 2002; Herbert *et al.*, 2003). However, in autistic adolescents and adults, compared with control subjects, contradictory results have been reported either of increased brain volume (Piven *et al.*, 1995, 1996; Hardan *et al.*, 2001*a, b*) or of no difference in brain volume (Aylward *et al.*, 1999; Haznedar *et al.*, 2000; Courchesne *et al.*, 2001; Townsend *et al.*, 2001; Aylward *et al.*, 2002; Carper *et al.*, 2002; Rojas *et al.*, 2002).

Thus, although abundant evidence of increased head circumference, brain weight and brain volume in autism, especially in children, exists, the underlying biological mechanisms of brain enlargement remain to be determined and could involve increased neurogenesis, increased gliogenesis, increased synaptogenesis, disturbed migration of neurons, decreased apoptosis, decreased pruning or complex combinations of these events. This review discusses the existing neuropathological literature on autism (see Table 1) and elaborates on the possibilities for future research, especially in the fields of genetics and neuropathology.

Neuropathological alterations in distinct brain regions

Alterations in the limbic system

Bauman and Kemper were the first to investigate the limbic system in autistic cases. Several case reports (e.g. Bauman and Kemper, 1985, 1987, 1990) and an earlier review (Bauman, 1991) were brought together in one final review by these authors (Kemper and Bauman, 1993). By surveying wholebrain serial sections, six autistic cases (five males, five with mental retardation and four with epilepsy, 9, 10, 12, 22, 28 and 29 years old) were compared with six age- and sex-matched controls. All autistic cases showed increased cell packing density and reduced cell size in hippocampus, subiculum and amygdala, and, although to a lesser extent, in entorhinal cortex, mammillary bodies and septal nuclei. This pattern of small, closely packed neurons, with limited dendritic arbors, resembles that typically seen during earlier stages of brain maturation and may, therefore, reflect features of an immature brain (LeRoy Conel, 1939; Jacobson, 1991). A case report of a 16-year-old female with autism and severe mental retardation showed macroscopically low brain weight (1000 g), ventricular dilation and a thin corpus callosum (Guerin et al., 1996). Microscopically, however, no abnormalities were observed in the limbic structures, the cerebral cortex and the cerebellum. Based on an earlier hypothesis by Lyon (1990), Guerin et al. (1996) proposed that these findings indicate a reduced density of axons and dendrites in the autistic brain. However, this hypothesis has not been tested in a larger sample size of autistics thus far. Using the Golgi method, the hippocampus of two autistic subjects (a 7-year-old female and a 9-year-old

male, both with mental retardation, but without epilepsy) and two control subjects (8 and 13 years old) was examined (Raymond *et al.*, 1996). Only one autistic case had adequate CA4 neuronal staining, showing smaller neurons in the CA4 field compared with an age-matched control case. Both autistic cases showed less extensive dendritic branching in the CA1 and CA4 fields. These findings of reduced cell size and simplified dendritic pattern, without dysmorphic features, were consistent with a curtailment of maturation, as suggested previously by Kemper and Bauman (1993). Bailey *et al.* (1998) investigated six autistic cases (all with mental retardation and three with epilepsy) and seven age- and sex-matched controls. In only one of the five examined cases, increased cell packing density was observed in all CA subfields of the hippocampus.

Alterations in the cerebellum

Williams et al. (1980) were the first to perform a detailed neuropathological analysis on four individuals with autistic behaviour (three males, 12, 27 and 33 years of age and one female, 3 years of age, all presenting with mental retardation and two with seizures). Cortical and subcortical structures and the cerebellum were examined. Nerve cell loss and replacement gliosis were found in atrophic orbitofrontal and temporal regions in two cases, which were probably due to cerebral trauma that occurred some time after the development of autistic symptoms. The only abnormality likely to be associated with autism was reduced Purkinje cell density in one case, with concomitant epilepsy and profound mental retardation. Thus, no clues as to the cause or the anatomicpathological substrate of autistic behaviour could be obtained from these cases. Ritvo et al. (1986) counted Purkinje cells in the cerebellum of four autistic cases (all males, three with mental retardation, none with seizures) and three male controls. Autistic cases showed a decreased number of Purkinje cells in the cerebellar hemisphere and vermis. Apart from reports on limbic alterations in six autistic cases, Kemper and Bauman (1993) also reported on alterations in the cerebellum. All six autistic cases showed decreased numbers of Purkinje cells (see also Fig. 1). As there was no evidence of glial cell hyperplasia or of retrograde olivary cell loss, both characteristic of a postnatal cerebellar insult (Holms and Stewart, 1908; Rakic and Sidman, 1970), a lesion acquired early in development was suggested. Furthermore, in the two young autistic cases, the neurons in the deep cerebellar nuclei and the inferior olive were large, whereas in the autistic cases, older than 22 years, these neurons were small and pale. It should be mentioned that in normal development, projections from the inferior olive to the Purkinje cells are preceded by projections from the inferior olive to the cerebellar nuclei (Flechsig, 1920). Accordingly, a decreased number of Purkinje cells (which are the final target of the inferior olive projections) may result in an abnormal development of these fetal projections from the inferior olive to the cerebellar nuclei. However, as this fetal circuit was meant to function only for a short period of time, it was postulated that this circuit would eventually fail, resulting in

_	Author and year	Journal	Sample size and characteristics	Region of interest	Results
1	Williams <i>et al.</i> (1980)	Arch Neurol	4A, 3M; 4, 14, 27, 33 years; 4MR; 2E	Whole brain	Nerve cell loss and replacement gliosis in atrophic orbitofrontal and temporal regions in cases 1 and 3; smaller neurons in CA4; Purkinje cell density in case 1
2	Bauman and Kemper (1985)	Neurology	1A, 1M; 29 years; 1MR; 1E. 1C; 1M; 25 years	Whole brain	↑cell packing density and ↓cell size in HIP, subiculum, entorhinal cortex, septal nuclei, mammillary body and selected nuclei of the AMY. Atrophy of neocerebellar cortex, with marked ↓of Purkinje cells and cerebellar nuclei contained ↓numbers of neurons, with the remaining neurons being small and pale
3	Coleman <i>et al.</i> (1985)	J Autism Dev Disord	1A, 0M; 21 years; 1MR; 0E. 2C; 0M; 18 and 25 years	Auditory cortex and Broca's area	No differences, except for \downarrow glia in left auditory cortex and \downarrow numbers of pyramidal neurons in right auditory association cortex
4	Ritvo <i>et al.</i> (1986)	Am J Psychiatry	4A, 4M; 10, 19, 19, 22 years; 3MR; 0E, 3C: 3M: 3, 10, 13 years	СВ	↓Purkinje cell counts in both CB hemisphere and vermis
5	Bauman and Kemper (1987)	Neurology	1A, 0M; 11 years; ?MR; 0E. 2C: 2M: age-matched	AMY and HIP	↑cell packing density in HIP
6	Bauman and Kemper (1990)	Neurology	1A, 1M; 12 years; 0MR; ?E. 2C; 2M; age-matched	Limbic system and CB	<pre>index in the image of the</pre>
7	Bauman (1991)	Pediatrics	5A, 4M; 9 (new), 11, 22 (new), 28 (new), 29 years (including study numbers 2 and 5 from the table); 4MR; 4E (3 new)	Limbic system in 4 cases and CB in all 5 cases	Review of earlier findings of ↑cell packing density in limbic system (4/5) and ↓Purkinje cell numbers in CB (5/5)
8	Hof <i>et al.</i> (1991)	Acta Neuropathol	1A, 0M; 24 years; 1MR; 0E	Detection of neurofibrillary tangles in cerebral cortex and limbic system	Microcephaly (773 g). Neuro- fibrillary tangles, especially in layer II and III of temporal cortex, probably due to severe head banging
9	Fehlow <i>et al.</i> (1993)	Pediatr Grenzgeb	1A, 1M; 19 years; 1MR; 0E	CB	Purkinje cell loss in lobules VI and VII
10	Kemper and Bauman (1993)	Neurol Clin	6A (including all subjects of study number 7 from the table), 5M; 9, 10, 12 (new), 22, 28, 29 years; 5MR (1 new); 4E (0 new). 6C; age- and sex-matched	Limbic system and CB	Small and densely packed neurons in limbic system (6/6); ACC coarse and poorly laminated in 5/6; ↓Purkinje cell numbers in CB (6/6)
11	Guerin <i>et al.</i> (1996)	Dev Med Child Neurol	1A, 0M; 16 years; 1MR; 1E	Whole brain	Macroscopic: microcephaly, ↑VENT; thin CC. Microscopic: no abnormalities
12	Raymond <i>et al.</i> (1996)	Acta Neuropathol	2A, 1M; 7 and 9 years; 2MR; 0E. 2C; ?M; 8 and 13 years	HIP	Smaller neurons in CA4; less dendritic branching in CA1 and CA4
13	Rodier <i>et al.</i> (1996)	J Comp Neurol	1A, 0M; 21 years; 1MR; 1E, 1C; 1M; 80 years	Pons, medulla and CB	Near-complete absence of the facial nucleus and superior olive along with shortening of the brainstem
14	Bailey <i>et al.</i> (1998)	Brain	6A, 6M; 4 and 20–27 years; 6MR; 3E, 7C; 5M; age-matched	Whole brain with neuronal counts in SFG, CB, HIP	Megaencephaly in 4; abnormalities in inferior olives in 4; ↓Purkinje cells in all adults; cortical dysgenesis in at least 50%
15	Blatt <i>et al.</i> (2001)	J Autism Dev Disord	4A, 4M;19, 19, 20, 22 years; 4MR; 2E. 3C; 3M; 16, 19, 24 years	GABAergic, serotonergic, cholinergic, glutamatergic system in HIP	↓GABAergic receptor system

2574 S. J. M. C. Palmen et al.

 Table 1 Neuropathological findings in autism

Table 1 Continued

	Author and year	Journal	Sample size and characteristics	Region of interest	Results
16	Fatemi <i>et al.</i> (2001)	Synapse	5A, 5M; 22 years; at least 3MR; ?E. 4C; 4M; 24 years	Bcl-2 and p53 in parietal cortex	32% ↓Bcl-2; 130% ↑p53
17	Fatemi <i>et al.</i> (2001 <i>b</i>)	Neuroreport	5A, 5M; 25 years; ?MR; ?E. 8C; 8m; 24y	CB cortex	34–51% ↓Bcl-2
18	Fatemi <i>et al.</i> (2001 <i>a</i>)	J Autism Dev Disord	5A (same subjects as in study number 17 from the table), 5M; 25 years; ?MR; ?E. 8C: 8M: 24 years	Reelin and Bcl-2 in CB cortex	>40% ↓reelin and 34–51% ↓Bcl-2
19	Perry <i>et al.</i> (2001)	Am J Psychiatry	7A, 6M; 24 years; probably 7MR; at least 50% E. 10C, 8M; 32 years, 9MR; 5M; 32 years	Frontal and parietal cortex and basal forebrain	30% \downarrow M1 receptor binding in parietal cortex; 65–73% $\downarrow \alpha 4$ nicotinic receptor binding in frontal and parietal cortex; \uparrow BDNF in forebrain
20	Casanova <i>et al.</i> (2002 <i>a</i>)	J Child Neurol	2AS, 2M; 22 and 79 years; 0MR; ?E. 18C; 18M; 9–98 years	Layer III of prefrontal and temporal cortex	Cell columns were more numerous, smaller, and less compact
21	Casanova <i>et al.</i> (2002 <i>b</i>)	Neurology	9A, 7M; 12 years; 7MR; 5E. 9C; ?M; 15 years	Layer III of prefrontal and temporal cortex	Cell columns were more numerous, smaller and less compact
22	Fatemi <i>et al.</i> (2002 <i>b</i>)	Biol Psychiatry	5A, 8C (CB), 4C (parietal cortex), (same subjects as in study 16 and 17 from the table)	GAD 65 and 67 kDa proteins in CB and parietal cortex	$\downarrow 65$ kDA 48% in parietal cortex and 50% in CB; $\downarrow 67$ kDA 61% in parietal cortex and 51% in CB
23	Fatemi <i>et al.</i> (2002 <i>a</i>)	Cell Mol Neurobiol	5A (same subjects as in study number 17 from the table), 5M; 25 years; ?MR; ?E. 5C; at least 4M; 24 years	CB	24% smaller Purkinje cells; no differences in density
24	Lee <i>et al.</i> (2002)	Brain	8A (7 overlapping with study 19 from the table) 7M; 25 years; 7MR; 5E. 10C; 6M; 28 years, 11MR; 7M: 33 years	СВ	$\downarrow \alpha 3$ and $\alpha 4$ nicotinic receptor binding in granule cell, Purkinje and molecular layers; $\uparrow \alpha 7$ nicotinic receptor binding in granule cell layer
25	Araghi-Niknam and Fatemi (2003)	Cell Mol Neurobiol	5A, 5M; 24 years; ?MR; ?E. 4C; 4M; 24 years	Cerebellar and superior frontal cortex	\downarrow Bcl-2 and \uparrow p53 both in cerebellar (36 and 38%, respectively) and superior frontal cortex (38 and 68%, respectively)

A = autistic subjects; ACC = anterior cingulate cortex; AMY = amygdala; AS = subjects with Asperger's syndrome; BDNF = brain-derived neurotrophic factor; C = control subjects; CB = cerebellum; CC = corpus callosum; E = epilepsy; GAD = glutamic acid decarboxylase; HIP = hippocampus; M = male; MR = mental retardation; SFG = superior frontal gyrus; VENT = ventricles;. \downarrow = decreased; \uparrow = increased; ? = not mentioned. Example of how to read the column 'sample sizes and characteristics': in the first study (Williams *et al.*, 1980), four autistic subjects were studied, three of them were male, ages were 4, 14, 27 and 33 years (either separate ages, or mean age, or age range is mentioned, dependent on the information given in the article), all four were mentally retarded, two had epilepsy as well. No controls were included.

the atrophy of the involved cells. A case report documented a 19-year-old man, presenting with Ehlers–Danlos syndrome and concomitant mental retardation and autism, who died of a mechanical ileus due to excessive aerophagia (Fehlow *et al.*, 1993). This case also exhibited a marked decrease in the number of Purkinje cells in cerebellar lobules VI and VII. However, another case report, of a 16-year-old female with autism and severe mental retardation (Guerin *et al.*, 1996), showed no abnormalities in the cerebellum. Bailey *et al.* (1998), in their study of six autistic cases (all with mental retardation and three with epilepsy) and seven ageand sex-matched controls, reported low Purkinje cell counts in all five adult autistic cases, but not in the cerebellum of the 4-year-old autistic boy. Harding and Copp (1997) stated that, considering the normal development of the cerebellar cortex, it would be unlikely that the reported decreased number of Purkinje cells occurred only before 30 weeks of gestation, as was suggested by Kemper and Bauman (1993). A substantially decreased number of Purkinje cells before 32 weeks of gestation would be associated with hypoplastic folia (Harding and Copp, 1997), which was not the case in the brains investigated by Bailey and colleagues. In addition, the reported modest glial hyperplasia would have been another indication of a postnatal decrease in the number of Purkinje cells. Lee *et al.* (2002) examined two autistic cases (both with mental retardation, one with

Fig. 1 (A and B) Representative photomicrographs from 200 µm thick frontal sections of post-mortem brains from a 13-year-old male suffering from autism (A) and from a 14-year-old male control (B). These pictures show a part of the cerebellum (GCL = granule cell layer; ML = molecular layer). Note the smaller number of Purkinje cells in the brain from the autistic patient compared with the control (arrows). These photomicrographs were produced using a video camera (Hitachi HV-C20A; Hitachi, Japan) attached to an Olympus BX 50 microscope and the Stereo Investigator software (MicroBrightField, Williston, VT). Twelve separate images each were needed to cover the parts of the cerebellum shown. For each separate image, the microscope was focused on the Purkinje cell layer. These images were then assembled into one montage using the Virtual Slice module of the Stereo Investigator software. Final images were constructed using Corel Draw v. 11. Only minor adjustments of contrast and brightness were made, which in no case altered the appearance of the original materials. Bar = 400 μ m. (C and D) Representative MRI scans of the cerebellar midsagittal areas from a 16-year-old male suffering from autism (C) and from a 16-year-old male control (D) (arrows). Note the somewhat smaller cerebellar midsagittal area in the brain from the autistic patient compared with the control.

epilepsy) and observed a decreased number of Purkinje cells in both cases, whereas cerebellar white matter thinning and demyelination was found in one case. As a result of the consistently reported decreased numbers of Purkinje cells in autism, Fatemi *et al.* (2002*a*) were the first to examine the size of the cerebellar Purkinje cells. Blocks of the cerebella of five adult male autistic subjects (same subjects as in Fatemi *et al.*, 2001*a*) were compared with those of five age- and sex-matched controls. A 24% decrease in mean Purkinje cell size was found in the autistic group.

Alterations in the brainstem

As already mentioned in the previous section, Kemper and Bauman (1993) reported alterations in the inferior olive. In the three young autistic cases (9, 10 and 12 years of age), the neurons in the inferior olive were large, whereas in the autistic cases (older than 22 years) these neurons were small and pale, but adequate in number. Furthermore, in all six autistic cases, some of the olivary neurons tended to cluster at the periphery of the nuclear complex. Although the significance of these findings remains to be elucidated, this pattern has been described earlier in some syndromes of prenatal origin that are associated with mental retardation (Sumi, 1970; DeBassio et al., 1985). The brainstem of a 21-year-old autistic woman with mental retardation and epilepsy (Rodier et al., 1996) showed a near-complete absence of the facial nucleus and superior olive along with shortening of the brainstem between the trapezoid body and the inferior olive, when compared with an 80year-old male control case. Bailey et al. (1998) reported olivary dysplasia in three of the five autistic cases, as well as ectopic neurons related to the olivary complex in another two cases.

Alterations in the neocortex

By counting pyramidal cells, other neurons and glial cells in the primary auditory cortex, Broca's language area and the auditory association cortex, Coleman et al. (1985) failed to find consistent differences between the brain of a 21-year-old autistic female, with probable mental retardation, but without seizure disorder, and two control brains (both from females, 18 and 25 years old, respectively). The differences between the two control cases were larger than those between both of them and the autistic case. Of the 42 comparisons made, only six revealed differences between the autistic case and the control cases (i.e. decreased number of glial cells in the left primary auditory cortex and decreased number of pyramidal neurons in the right auditory association cortex in the autistic case), whereas 20 comparisons showed differences between the two control cases. Numerous neurofibrillary tangles were found in layer II and III of the cerebral cortex, especially in the temporal region, of a 24-year-old woman with autism and mental retardation, and severe self-injury behaviour (Hof et al., 1991). A few neurofibrillary tangles were also found in the amygdala. It was suggested that these neurofibrillary tangles may be related to severe and chronic head injury, similar to boxers' encephalopathy, where such abnormalities have also been observed (Corsellis et al., 1973; Hof et al., 1992). Kemper and Bauman (1993), investigating six autistic cases, reported an unusually coarse and poorly laminated anterior cingulate cortex in five of the six autistic cases. A 16-year-old female with autism and severe mental retardation showed no abnormalities in the cerebral cortex (Guerin et al., 1996). Bailey et al. (1998) reported no alterations in neuronal counts of the superior frontal cortex of the six autistic cases compared with seven age-matched control cases.

Observations on cortical dysgenesis and migration abnormalities

Bailey et al. (1998) reported cortical dysgenesis in four of six autistic cases, with thickened cortices, high neuronal density, presence of neurons in the molecular layer, irregular laminar patterns and poor grey-white matter boundaries. White matter abnormalities were also found in four cases, including ectopic grey matter in three cases and increased number of white matter neurons in one case. The authors stated that cerebral developmental abnormalities, such as megaencephaly (which was present in four of the six cases), are usually associated with heterotopias (Harding and Copp, 1997), that were also found in the present cases. Fatemi and colleagues pursued the investigation of the neurochemical parallels of decreased Purkinje cell counts that have been consistently reported in autism. In two overlapping studies, levels of reelin (Fatemi et al., 2001a) and Bcl-2 (Fatemi et al., 2001a, b) were measured in the cerebellar cortex of five adult autistic males (IQ and seizure status unknown) and eight adult controls. Reelin, the product of the *reelin* gene, is a signalling protein that is involved in the control of neuronal migration and correct lamination during the embryonic period, and of synaptic plasticity in adult life (Fatemi, 2002). The Bcl-2 protein governs programmed cell death (apoptosis) in the developing brain. More than 40% reduction in reelin and 34-51% reduction in Bcl-2 were found by Fatemi et al. (2001a, b). Reduction in reelin has been found to be associated with disturbed neuronal migration and lamination of the cerebral and cerebellar cortex in mice (Gonzalez et al., 1997; Fatemi et al., 1999; Fatemi, 2001) and was suggested to be involved in migrational processes during the early development of the human brain (Piven et al., 1990; Persico et al., 2001). Moreover, reductions in blood reelin have been associated with severe mental retardation and hypoplastic cerebellum, findings that have both been reported in autism. The reported reduction in Bcl-2 might influence programmed cell death as this protein strongly inhibits apoptosis. Following these reports of reduced levels of the anti-apoptotic protein Bcl-2 in the cerebellum from autistic patients (Fatemi et al., 2001a, b), levels of Bcl-2 and p53 (a key regulator of neuronal apoptosis; Araki et al., 2000) were measured in the parietal and superior frontal cortex of five adult autistic males (three with mental retardation, seizures unknown) and four adult male controls (Fatemi and Halt, 2001; Araghi-Niknam and Fatemi, 2003). A reduction of >30% (32% in parietal and 38% in superior frontal cortex) in Bcl-2 expression was reported, comparable with the reduction observed in the cerebellar cortex (Fatemi et al., 2001a, b). In contrast, an increase in p53 expression (130% in parietal and 68% in superior frontal cortex) was found. These abnormalities in Bcl-2 and p53 were correlated with the presence of severe mental retardation (mean IQ of the patients was 25). Both the

decrease in the anti-apoptotic Bcl-2 and the increase in apoptosis-controlling p53 were thought to result in a greater propensity for cell death. Indeed, it was suggested previously that increased brain volume in autism may be found only in high-functioning subjects (Akshoomoff *et al.*, 2002), whereas autistic subjects with (severe) mental retardation would display normal or even smaller brain volumes compared with controls.

Recently, the configuration of so-called minicolumns was investigated in autism and Asperger syndrome (Casanova et al., 2002a, b). Casanova and colleagues posed that cell minicolumns are supposed to be a basic functional unit of the brain that organizes neurons in cortical space (Mountcastle, 1997). Instead of cell counting, an overall cell density measure was used, estimating the amount of space occupied by cell somas in a certain predefined area. More numerous, smaller and less compact minicolumns were found in nine autistic subjects (seven with mental retardation, five with epilepsy, four with macroencephaly) compared with nine control cases (Casanova et al., 2002b) and in two adults with Asperger's syndrome compared with 18 control subjects (Casanova et al., 2002c). However, the functional significance of these minicolumns is still unclear (Hutsler and Galuske, 2003). Several attempts have been made to identify these minicolumns as the anatomical correlate of the smallest processing unit in the cerebral cortex; however, further research will be required to solve this issue unequivocally (Jones, 2000).

Alterations in the cholinergic system

The cholinergic system has been shown to play a significant role in cortical development (Hohmann and Berger-Sweeney, 1998). Cholinergic afferents innervate the cerebral cortex during the most dynamic periods of neuronal differentiation and synapse formation. Disruption of cholinergic innervation during early postnatal development results in delayed cortical neuronal development and permanent changes in cortical architecture and cognitive function (Hohmann and Berger-Sweeney, 1998). Abnormalities have been found in the basal forebrain (septal) cholinergic neurons of autistic cases, such as larger neurons at younger ages and smaller neurons at older age (Bauman and Kemper, 1994). Perry et al. (2001) investigated cholinergic biomarkers in the basal forebrain and the (frontal and parietal) cerebral cortex in the brains of seven autistic cases (all with mental retardation, at least 50% with epilepsy), nine mentally retarded but not autistic cases, and 10 controls. In the autistic cases, muscarinic M1 receptor binding was found to be 30% lower in the parietal cortex compared with both the normal comparison cases and the non-autistic mentally retarded cases. In addition, $\alpha 4$ nicotinic receptor binding was reduced by 65–73% in the frontal and parietal cortex in both autistic and nonautistic, mentally retarded cases compared with the controls. In the basal forebrain of autistic subjects, the only abnormality was an increase in brain-derived neurotrophic factor

(BDNF), an increase that had been found previously in neonatal bloodspots of children who later developed autism or mental retardation (Nelson et al., 2001). These results indicated normal presynaptic cholinergic activity, but abnormal postsynaptic cholinoceptive function, the M1 receptor being located postsynaptically. Following the report of Perry et al. (2001), the same group examined cholinergic activities in the cerebellum of these autistic cases (with an additional one). Eight autistic adults (seven with mental retardation, five with epilepsy), 11 age-matched subjects with mental retardation but no autism, and 10 age-matched controls were included in this study (Lee et al., 2002). In the autistic cases, the nicotinic receptor, consisting primarily of $\alpha 3$ and α 4 subunits, was reduced by 40–50%, whereas an opposite increase in nicotinic receptor consisting of the α 7 subunit was reported. The exact relationship between these receptor abnormalities and autism and mental retardation remains to be determined.

Alterations in the GABAergic system

Like the cholinergic system, the GABAergic system also has an important role in early neuronal development, and has also been suggested to be involved in autism (Cook et al., 1998; Schroer et al., 1998). During the early neonatal period, GABA provides most of the excitatory drive to developing neurons rather than being an inhibitory neurotransmitter (Cherubini et al., 1991; Barker et al., 1998). Blatt et al. (2001) investigated four neurotransmitter systems (i.e. the GABAergic, serotonergic, cholinergic and glutamatergic system) in the hippocampus of four autistic adult male cases (all with mental retardation and two with epilepsy) and three adult male control cases. The GABAergic system was the only neurotransmitter system found to be significantly reduced in autism. The other three neurotransmitter systems did not show any differences between the autistic and control cases. Although the significance of these findings is not clear, it was suggested that a decrease in the availability of inhibitory GABA receptors could alter receptor activity. As a consequence, the threshold for development of seizures, a frequent co-morbidity of autism (Bailey et al., 1998), would be reduced. Fatemi et al. (2002b) investigated the level of glutamic acid decarboxylase (GAD), the ratelimiting enzyme responsible for the conversion of glutamate to GABA in the brain. The levels of the 65 and the 67 kDa GAD were measured in the cerebellum of five autistic and eight control cases and in the parietal cortex of five autistic cases (three overlapping with the cerebellum cases) and four control cases (all overlapping with the cerebellum cases). The 65 kDa GAD protein was reduced by 50% in the cerebellum and by 48% in the parietal cortex of the autistic cases. The 67 kDa GAD protein was reduced by 51% in the cerebellum and by 61% in the parietal cortex of the autistic cases. These decreases in GAD were thought to subserve a deficit in GABA availability, as reported by Blatt et al. (2001). In addition, a deficit in GABA was not only

suggested to play a role in the aetiology of seizures, it was also proposed to affect several important biological functions, such as locomotor activity, learning and circadian rhythms (Soghomonian and Martin, 1998). However, as the sample sizes and the number of studies on the GABAergic system in autism have been very small thus far, no definite statement can be made about the exact role of the GABAergic system in the aetiology of autism.

Are MRI findings in autism a structural observable correlate of the neuropathological findings?

Research on the neuropathology of autism has been hampered by the lack of availability of large sample sizes and closely matched control groups. Structural MRI, on the other hand, is uniquely suited to scan (repeatedly) the brains of large groups of (young) patients and matched controls in vivo and map neuroanatomic abnormalities. Unfortunately, to date, structural MRI findings cannot be directly correlated to the neuropathological findings in autism, although the repeatedly reported increased brain volume detected with MRI (Filipek et al., 1992; Piven et al., 1995, 1996; Courchesne et al., 2001; Hardan et al., 2001a, b; Aylward et al., 2002; Carper et al., 2002; Sparks et al., 2002; Herbert et al., 2003) seems consistent with the frequent observation of an increased brain weight in autism (Bailey et al., 1998; Kemper and Bauman, 1998; Courchesne et al., 1999; Casanova et al., 2002a; see also Courchesne et al., 2000). Neuropathological studies have consistently reported smaller and more closely packed neurons in the limbic system in autistic patients, whereas MRI findings are rather equivocal. Volumes of limbic structures of autistic subjects have been found either increased (Howard et al., 2000; Sparks et al., 2002), decreased (Aylward et al., 1999; Pierce et al., 2001; Saitoh et al., 2001; Herbert et al., 2003) or unchanged (Saitoh et al., 1995; Piven et al., 1998; Haznedar et al., 2000; Howard et al., 2000) compared with those of control subjects. Likewise, the consistent observation of a decrease in Purkinje cell number and density does not have an MRI equivalent. Although early MRI reports consistently showed smaller midsagittal cerebellar hemispheres in autism (Gaffney et al., 1987; Murakami et al., 1989) or vermis (Courchesne et al., 1988; Hashimoto et al., 1995; Ciesielski et al., 1997) (see also Fig. 1), more recent reports did not (Filipek et al., 1992; Garber and Ritvo, 1992; Holttum et al., 1992; Kleinmand et al., 1992; Nowell et al., 1990; Piven et al., 1992, 1997). This lack of agreement in cerebellar segmentation among neuroimaging studies might be partially explained by using different MRI systems, as was reported most recently (Lotspeich et al., 2004). It is important to keep in mind that generally these studies have not accounted for IQ as a confounding factor (Piven et al., 1992). Thus, although both neuropathological and MRI studies investigate brain structures, the two techniques have failed to provide correlated and consistent data.

Discussion

In this review, we have attempted to provide an extensive overview of the available neuropathological literature of autism. Although some consistent results emerge, the majority of the neuropathological data remain equivocal. This may be due to lack of statistical power, resulting from small sample sizes and from the heterogeneity of the disorder itself, to the inability to control for potential confounding variables such as

 Table 2 Consistent neuropathological findings in autism

Finding	п	New	MR	Е	Results
Increased cell packing density and smal	ler neurons in	n the limbic syst	em		
Kemper and Bauman (1993)	6	6	5	4	6 of 6
Guerin et al. (1996)	1	1	1	1	0 of 1
Raymond et al. (1996)	2	2	2	0	2 of 2 (only HIP measured)
Bailey et al. (1998)	6	6	6	3	1 of 5 (only HIP measured)
Total	15	15	14/15	8/15	9 of 14 (64%)
Decreased numbers of/smaller Purkinje	cells in CB				
Williams et al. (1980)	4	4	4	2	1 of 4
Ritvo <i>et al.</i> (1986)	4	4	3	0	4 of 4
Fehlow <i>et al.</i> (1993)	1	1	1	0	1 of 1
Kemper and Bauman (1993)	6		5	4	6 of 6
Guerin <i>et al.</i> (1996)	1		1	1	0 of 1
Bailey et al. (1998)	6		6	3	5 of 6 (only the child unaffected)
Fatemi <i>et al.</i> (2002a)	5	5	?	2	2 of 5
Lee et al. (2002)	2	5	2	1	2 of 2
Total	29	14	22/24	11/24	2 of 2 21 of 29 (72%)
Age changes in CB nuclei and inferior	alive	14	22/24	11/24	21 01 29 (7270)
Rauman (1001)	5		5	4	Large neurons in the 2 children
Dauman (1991)	5		5	+	pale and small neurons
					in the 2 adults
Total	5	0	5	4	5 of 5 (100%)
Total Droinstem/olivery_dvenlagie	5	0	5	4	5 01 5 (100%)
Dialitistem/onvary dyspiasia	1	1	1	1	1 of 1
Rouler <i>et al.</i> (1990)	1	1	1	1	1 01 1
Balley et al. (1998)	5	1	5	5	5 01 5
	0	1	0/0	4/0	4 01 0 (67%)
Alterations in the neocortex		1	1	0	0.61
Coleman <i>et al.</i> (1985)	1	1	1	0	0 of 1
Hof <i>et al.</i> (1991)	I	1	I z	0	l of l NFI
Kemper and Bauman (1993)	6		5	4	5 of 6 poorly laminated ACC
Guerin <i>et al.</i> (1996)	I		I	1	0 of 1
Bailey <i>et al.</i> (1998)	6		6	3	0 of 6 abnormal FR neuronal count
Total	15	2	14/15	8/15	6/15 (40%)
Cortical dysgenesis					
Bailey <i>et al.</i> (1998)	6		6	3	4 of 6
Fatemi <i>et al.</i> (2001 <i>b</i>)	5	5	3 or >	?	As a group \downarrow Bcl-2 and \uparrow p53 PA
Fatemi et al. (2001a)	5		?	?	As a group \downarrow Bcl-2 and reelin CB
Casanova et al. (2002c)	2AS	2AS	0	?	1 of 2 had smaller minicolumns
Casanova et al. (2002a)	9	9	7	5	As a group smaller minicolumns
Araghi-Niknam and Fatemi (2003)	5		?	?	As a group \downarrow Bcl-2 and \uparrow p53 FR
Total	32	14 + 2	16/22	8/15	
Abnormalities in cholinergic system					
Perry et al. (2001)	7	7	7	3 or >	As a group ↓M1 PA;
					$\downarrow \alpha 4 \text{ FR} + \text{PA};$
					↑BDNF forebrain
Lee et al. (2002)	8	1	7	5	As a group $\downarrow \alpha 3$ and $\alpha 4$ and
					↑α7 in CB
Total	15	8	14/15	8/15	
Abnormalities in GABAergic system					
Blatt <i>et al.</i> (2001)	4	4	4	2	GABAergic system in HIP
Fatemi et al. (2002b)	5		?	?	$\uparrow 65$ and 67 kDA GAD in CB
()	-		-	-	and parietal cortex
Total	9	4	4/9	2/9	
	-				

ACC = anterior cingulate cortex; AS = Asperger's syndrome; BDNF = brain-derived neurotrophic factor; CB = cerebellum; E = epilepsy; FR = frontal cortex; GAD = glutamic acid decarboxylase; HIP = hippocampus; MR = mental retardation; *n* = number of autistic subjects; New = number of brains mentioned for the first time (58 autistic and two Asperger); NFT = neurofibrillary tangles; PA = parietal cortex; ? = not mentioned. gender, mental retardation, epilepsy and medication status, and, importantly, to the lack of consistent design in histopathological quantitative studies of autism published to date. Furthermore, the investigation of different brain structures could have contributed to the disparate findings. However, when considering the available data, a number of conclusions can be drawn (Table 2). First, a decrease in the number of Purkinje cells throughout the cerebellar hemispheres without significant gliosis and features of cortical dysgenesis has been found consistently by different research groups. Secondly, although not replicated by independent research groups, increased cell packing density of smaller neurons in the limbic system and age-related abnormalities in the cerebellar nuclei and the inferior olive have been reported in the majority of the studied cases. Finally, both the nicotinic and muscarinic cholinergic and the GABAergic system are likely to be impaired in autism.

An arrest of normal development has been proposed to explain the findings in the limbic system, whereas the decrease in Purkinje cell numbers is likely to be largely prenatal in origin (Kemper and Bauman, 1998). The features of cortical dysgenesis, such as increased neuronal density, increased cortical thickness, ectopic grey matter and poor differentiation of the grey–white boundary, are suggestive of abnormalities in cortical lamination (i.e. abnormalities in neuronal proliferation and migration) and apoptosis (Rorke, 1994). In support of this possibility are the findings of reductions in reelin (implicated in regulation of layering of the cortex) and Bcl-2 (implicated in the process of apoptosis).

As to the timing of the neuropathological abnormalities in autism, all authors have suggested a prenatal origin, most probably during the first 6 months of gestation (Piven et al., 1990; Rorke, 1994; Rodier et al., 1996; Bauman et al., 1997; Courchesne, 1997; Bailey et al., 1998; Gillberg, 1999). It should be mentioned, however, that according to a hypothesis by Gillberg (1999), there could be at least two different pathways to autism, one connected with primary temporofrontal dysfunction (and late prenatal-early postnatal origins) and another linked to primary brainstem dysfunction (and early prenatal origins). Furthermore, a recent report by Kern (2003) has suggested that it is conceivable that some children become autistic from neuronal cell death or brain damage occurring postnatally as a result of injuries, as some cases of autism do not show symptoms until a substantial period after birth. Indeed, Purkinje cells can be selectively vulnerable to certain types of insult such as ischaemia, hypoxia, excitotoxicity, viral infections, heavy metals, and toxins such as ethanol (Welsh et al., 2002).

Taken together, there is evidence from neuropathological data for an evolving pathological process in the autistic brain that extends from the fetal period of brain development into adulthood. However, the mechanisms underlying these alterations remain unknown. Likewise, the underlying causes of the reported decreased nicotinic receptor binding in the cholinergic system are not understood, although it is known that nicotine enhances several cognitive and psychomotor behaviours (Granon *et al.*, 2003), suggesting the potential for intervention through cholinergic receptor modulation. The same holds true for the apparent reduced function of the GABAergic system.

Thus, besides the ongoing classic neuropathological research, future studies will benefit from focusing on techniques aiming to disentangle the underlying biological mechanisms of autism. Design-based stereological approaches to neuropathology may become a key methodology, as they can provide information about the degree of maturation or health of brain cells and overall brain development (West, 1993; Hof and Schmitz, 2000; Schmitz and Hof, 2004). Design-based stereology permits precise and reliable measurement of number, size and spatial distribution of cells within a given brain region, using standardized protocols. Another relatively new approach, holding great promise in the immediate future of autism research, is the study of gene expression. It is expected that extensive and detailed investigations of gene expression will help to understand the molecular and cellular basis of the neuropathology of autism. Region-specific alterations in gene expression will be reflective of neuroadaptive processes underlying the neuropathological findings of autism reported in the literature. In the field of autism, gene expression is still in its infancy, although some results have already been published. For example, preliminary data have shown a complete absence of *aB*-crystallin, a small heat-shock protein functioning as a molecular chaperone, in the frontal cortex of brains from autistic patients (Pickett, 2001). Purcell et al. (2001a) investigated the neural cell adhesion molecule (NCAM), a developmentally regulated protein, in a sample of 10 autistic cerebella and 16 control cerebella. A decrease in the longest of three isoforms (180 kDa) of NCAM was found in the cerebella from the autistic patients. In addition, the mRNA levels of two genes, both members of the glutamate system, were found to be increased in the cerebellum of the same autistic cases (Purcell et al., 2001b). Identifying changes in gene expression will ultimately be useful to provide molecular diagnostic tests for autism and to identify specific cellular pathways that have been disrupted in this disorder.

In conclusion, classic neuropathological observations in autism show increased cell packing density and smaller neuronal size in the limbic system, decreased number of Purkinje cells in the cerebellum, and features of cortical dysgenesis or migration disturbances. However, the underlying neurobiological basis remains elusive. The implementation of newer techniques, such as design-based stereology and large-scale analysis of gene expression, holds great promise and might eventually result in the elucidation of the aetiology of autism.

Note added in proof

A recent study applying functional MRI during sentence comprehension indicated a lower degree of information integration across large-scale cortical networks involved in language processing as a possible neural basis of disordered language in autism (Just *et al.*, Brain 2004; 127, 1811–1821). It will be attractive to test this hypothesis in future neuropathological studies of autism.

Acknowledgements

We wish to thank the following institutions and colleagues for the provision of human tissue: the Harvard Brain Tissue Research Center (Belmont, MA), the University of Maryland Brain and Tissue Bank for Developmental Disorders (Baltimore, MD), the US Autism Tissue Program (Princeton, NJ), Dr J. Wegiel (New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY) and NIH grant NO1 HD13138. The work was financially supported by the European Community (Quality of Life and Management of Living Resources, QLK6-CT-2000-60042, QLK6-GH-00-60042-56; to S.J.M.C.P.), the Korczak foundation (to H.v.E.), the US National Alliance for Autism Research (to C.S. and P.R.H.) and by NIH grant MH66392 (to P.R.H.). P.R.H. is the Regenstreif Professor of Neuroscience. We thank Dr D. P. Perl and Dr H. Heinsen for support and helpful discussion.

References

- Akshoomoff N, Pierce K, Courchesne E. The neurobiological basis of autism from a developmental perspective. Dev Psychopathol 2002; 14: 613–34.
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders. DSM-IV. 4th edn. Washington (DC): American Psychiatric Association; 1994.
- Araghi-Niknam M, Fatemi SH. Levels of Bcl-2 and p53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol 2003; 23: 945–52.
- Araki N, Morisama T, Sakai T, Tokuoh H, Yunoue S, Kamo M, et al. Comparative analysis of brain proteins from p53-deficient mice by two-dimensional electrophoresis. Electrophoresis 2000; 21: 1880–9.
- Aylward EH, Minshew NJ, Goldstein G, Honeycutt NA, Augustine AM, Yates KO, et al. MRI volumes of amygdala and hippocampus in nonmentally retarded autistic adolescents and adults. Neurology 1999; 53: 2145–50.
- Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N. Effects of age on brain volume and head circumference in autism. Neurology 2002; 59: 175–83.
- Bailey A, Luthert P, Bolton P. Autism and megalencephaly. Lancet 1993; 341: 1225–6.
- Bailey A, Phillips W, Rutter M. Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiat 1996; 37: 89–126.
- Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, et al. A clinicopathological study of autism. Brain 1998; 121: 889–905.
- Barker JL, Behar T, Li Y-X, Liu Q-Y, Ma W, Maric D, et al. GABAergic cells and signals in CNS development. Perspect Dev Neurobiol 1998; 5: 305–22.
- Bauman ML. Microscopic neuroanatomic abnormalities in autism. Pediatrics 1991; 87: 791–5.
- Bauman ML, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology 1985; 35: 866–74.
- Bauman ML, Kemper TL. Limbic involvement in a second case of early infantile autism. Neurology 1987; 37: 147.
- Bauman ML, Kemper TL. Limbic and cerebellar abnormalities are also present in an autistic child of normal intelligence. Neurology 1990; 40: 359.
- Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL, editors. The neurobiology of autism. Baltimore: Johns Hopkins University Press; 1994. p. 119–45.

- Bauman ML, Filipek PA, Kemper TL. Early infantile autism. Int Rev Neurobiol 1997; 41: 367–86.
- Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 2001; 31: 537–43.
- Carper R, Moses P, Tigue Z, Courchesne E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 2002; 16: 1038–51.
- Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Neuronal density and architecture (gray level index) in the brains of autistic patients. J Child Neurol 2002a; 17: 515–21.
- Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Minicolumnar pathology in autism. Neurology 2002b; 58: 428–32.
- Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Asperger's syndrome and cortical neuropathology. J Child Neurol 2002c; 17: 142–5.
- Cherubini E, Gaiarsa JL, Ben-Ari Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 1991; 14: 515–9.
- Ciesielski KT, Harris RJ, Hart BL, Pabst HF. Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsy-chologia 1997; 35: 643–55.
- Coleman PD, Romano J, Lapham L, Simon W. Cell counts in cerebral cortex of an autistic patient. J Autism Dev Disord 1985; 15: 245–55.
- Cook EH, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ, et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11–13 markers. Am J Hum Genet 1998; 62: 1077–83.
- Corsellis JAN, Bruton CJ, Freeman-Browne D. The aftermath of boxing. Psychol Med 1973; 3: 270–303.
- Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 1997; 7: 269–78.
- Courchesne E, Yeung-Courchesne R, Press G, Hesselink J, Jernigan T. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988; 318: 1349–54.
- Courchesne E, Muller R, Saitoh O. Brain weight in autism: normal in the majority of cases, megalencephalic in rare cases. Neurology 1999; 52: 1057–9.
- Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, et al. Normal brain development and aging: quantitative analysis at *in vivo* MR imaging in healthy volunteers. Radiology 2000; 216: 672–82.
- Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001; 57: 245–54.
- Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism. J Am Med Assoc 2003; 290: 337–44.
- Davidovitch M, Patterson B, Gartside P. Head circumference measurements in children with autism. J Child Neurol 1996; 11: 389–93.
- DeBassio WA, Kemper TL, Knoefel JE. Coffin–Siris syndrome: neuropathologic findings. Arch Neurol 1985; 42: 350–53.
- Fatemi SH. Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 2001; 6: 129–33.
- Fatemi SH. The role of reelin in pathology of autism. Mol Psychiatry 2002; 7: 919–20.
- Fatemi SH, Halt AR. Altered levels of Bcl2 and p53 proteins in parietal cortex reflect deranged apoptotic regulation in autism. Synapse 2001; 42: 281–4.
- Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, et al. Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 1999; 4: 145–54.
- Fatemi SH, Stary JM, Halt AR, Realmuto GR. Dysregulation of reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord 2001a; 31: 529–35.
- Fatemi SH, Halt AR, Stary JM, Realmuto GM, Jalali-Mousavi M. Reduction in anti-apoptotic protein Bcl-2 in autistic cerebellum. Neuroreport 2001b; 12: 929–33.
- Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 2002a; 22: 171–5.

- Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 2002b; 52: 805–10.
- Fehlow P, Bernstein K, Tennstedt A, Walther F. [Early infantile autism and excessive aerophagy with symptomatic megacolon and ileus in a case of Ehlers–Danlos syndrome]. Padiatr Grenzgeb 1993; 31: 259–67.
- Fidler DJ, Bailey JN, Smalley SL. Macrocephaly in autism and other pervasive developmental disorders. Dev Med Child Neurol 2000; 42: 737–40.
- Filipek PA, Richelme C, Kennedy DN, Rademacher J, Pitcher DA, Zidel S, et al. Morphometric analysis of the brain in developmental language disorders and autism. Ann Neurol 1992; 32: 475.
- Flechsig P. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Leipzig: Thieme; 1920.
- Fombonne E. Is a large head circumference a sign of autism? J Autism Dev Disord 2000; 30: 365.
- Gaffney GR, Tsai LY, Kuperman S, Minchin S. Cerebellar structure in autism. Am J Dis Child 1987; 141: 1330–2.
- Garber HJ, Ritvo ER. Magnetic resonance imaging of the posterior fossa in autistic adults. Am J Psychiatry 1992; 149: 245–7.
- Gillberg C. Neurodevelopmental processes and psychological functioning in autism. Dev Psychopathol 1999; 11: 567–87.
- Gonzalez JL, Russo CJ, Goldowitz D, Sweet HO, Davisson MT, Walsh CA. Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J Neurosci 1997; 17: 9204–11.
- Granon S, Faure P, Changeux JP. Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA 2003; 100: 9596–601.
- Guerin P, Lyon G, Barthelemy C, Sostak E, Chevrollier V, Garreau B, et al. Neuropathological study of a case of autistic syndrome with severe mental retardation. Dev Med Child Neurol 1996; 38: 203–11.
- Hardan AY, Minshew NJ, Mallikarjuhn M, Keshavan MS. Brain volume in autism. J Child Neurol 2001a; 16: 421–4.
- Hardan AY, Minshew NJ, Harenski K, Keshavan MS. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry 2001b; 40: 666–72.
- Harding B, Copp AJ. Malformations. In: Graham DI, Lantos PL, editors. Greenfield's neuropathology. London: Arnold; 1997. p. 397–533.
- Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M, et al. Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995; 25: 1–18.
- Haznedar MM, Buchsbaum MS, Wei TC, Hof PR, Cartwright C, Bienstock CA, et al. Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am J Psychiatry 2000; 157: 1994–2001.
- Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Lange N, Bakardjiev A, et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003; 126: 1182–92.
- Hof PR, Schmitz C. Current trends in neurostereology. Introduction to the special issue 'Recent Advances in Neurostereology'. J Chem Neuroanat 2000; 20: 3–5.
- Hof PR, Knabe R, Bovier P, Bouras C. Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol (Berl) 1991; 82: 321–6.
- Hof PR, Bouras C, Buee L, Delacourte A, Perl DP, Morrison JH. Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer's disease cases. Acta Neuropathol (Berl) 1992; 85: 23–30.
- Hohmann CF, Berger-Sweeney J. Cholinergic regulation of cortical development and plasticity. New twists to an old story. Perspect Dev Neurobiol 1998; 5: 401–25.
- Holms G, Stewart TG. On the connection of the inferior olives with the cerebellum in man. Brain 1908; 31: 125.
- Holttum JR, Minshew NJ, Sanders RS, Phillips NE. Magnetic resonance imaging of the posterior fossa in autism. Biol Psychiatry 1992; 32: 1091–101.

- Howard MA, Cowell PE, Boucher J, Broks P, Mayes A, Farrant A, et al. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport 2000; 11: 2931–5.
- Hutsler J, Galuske RA. Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 2003; 26: 429–35.
- Jacobson M. Developmental neurobiology. New York: Plenum Press; 1991.
- Jones EG. Microcolumns in the cerebral cortex. Proc Natl Acad Sci USA 2000; 97: 5019–21.
- Kanner L. Autistic disturbances of affective contact. Nervous Child 1943; 2: 217–50.
- Kemper TL, Bauman ML. The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 1993; 11: 175–187.
- Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol 1998; 57: 645–52.
- Kern KJ. Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev 2003; 25: 377–82.
- Kleinmand MD, Neff S, Rosman NP. The brain in infantile autism: are posterior fossa structures abnormal? Neurology 1992; 42: 753–60.
- Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo S, Coon H, et al. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 1997; 36: 282–90.
- Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 2002; 125: 1483–95.
- LeRoy Conel J. The postnatal development of the human cerebral cortex. Cambridge (MA): Harvard University Press; 1939.
- Lotspeich LJ, Kwon H, Schumann CM, Fryer SL, Goodlin-Jones BL, Buonocore MH, et al. Investigation of neuroanatomical differences between autism and asperger syndrome. Arch Gen Psychiatry 2004; 61: 291–8.
- Lyon G. Bases neuropathologiques des troubles du development cognitif et de l'autisme de l'enfant. GASLINI 1990; 32: 43–8.
- Miles JH, Hadden LL, Takahashi TN, Hillman RE. Head circumference is an independent clinical finding associated with autism. Am J Med Genet 2000; 95: 339–50.
- Mountcastle VB. The columnar organization of the neocortex. Brain 1997; 120: 701–22.
- Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 1989; 46: 689–94.
- Naqvi S, Cole T, Graham JM Jr. Cole–Hughes macrocephaly syndrome and associated autistic manifestations. Am J Med Genet 2000; 94: 149–52.
- Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL, et al. Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 2001; 49: 597–606.
- Nowell MA, Hackney DB, Muraki AS, Coleman M. Varied MR appearance of autism: fifty-three pediatric patients having the full autistic syndrome. Magn Reson Imaging 1990; 8: 811–6.
- Perry EK, Lee ML, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, et al. Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry 2001; 158: 1058–66.
- Persico AM, D'Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C, et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6: 150–9.
- Pickett J. Current investigations in autism brain tissue research. J Autism Dev Disord 2001; 31: 521–7.
- Pierce K, Muller RA, Ambrose J, Allen G, Courchesne E. Face processing occurs outside the fusiform 'face area' in autism: evidence from functional MRI. Brain 2001; 124: 2059–73.
- Piven J, Berthier ML, Starkstein SE, Nehme E, Pearlson G, Folstein S. Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am J Psychiatry 1990; 147: 734–9.
- Piven J, Nehme E, Simon J, Barta P, Pearlson G, Folstein SE. Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle. Biol Psychiatry 1992; 31: 491–504.

- Piven J, Arndt S, Bailey J, Haverkamo S, Andreasen NC, Palmer P. An MRI study of brain size in autism. Am J Psychiatry 1995; 152: 1145–9.
- Piven J, Arndt S, Bailey J, Andreasen N. Regional brain enlargement in autism: a magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 1996; 35: 530–6.
- Piven J, Saliba K, Bailey J, Arndt S. An MRI study of autism: the cerebellum revisited. Neurology 1997; 49: 546–51.
- Piven J, Bailey J, Ranson BJ, Arndt S. No difference in hippocampus volume detected on magnetic resonance imaging in autistic individuals. J Autism Dev Disord 1998; 28: 105–10.
- Purcell AE, Rocco MM, Lenhart JA, Hyder K, Zimmerman AW, Pevsner J. Assessment of neural cell adhesion molecule (NCAM) in autistic serum and postmortem brain. J Autism Dev Disord 2001a; 31: 183–94.
- Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001b; 57: 1618–28.
- Rakic P, Sidman RL. Histogenesis of cortical layers in human cerebellum particularly the lamina dissecans. J Comp Neurol 1970; 139: 473–500.
- Raymond GV, Bauman ML, Kemper TL. Hippocampus in autism: a Golgi analysis. Acta Neuropathol 1996; 91: 117–9.
- Ritvo ER, Freeman BJ, Scheibel AB. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 1986; 143: 862–6.
- Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 1996; 370: 247–61.
- Rojas DC, Bawn SD, Benkers TL, Reite ML, Rogers SJ. Smaller left hemisphere planum temporale in adults with autistic disorder. Neurosci Lett 2002; 328: 237–40.
- Rorke LB. A perspective: the role of disordered genetic control of neurogenesis in the pathogenesis of migration disorders. J Neuropathol Exp Neurol 1994; 53: 105–17.
- Saitoh O, Courchesne E, Egaas B, Lincoln AJ, Screibman L. Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology 1995; 45: 317–24.

- Saitoh O, Karns CM, Courchesne E. Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 2001; 124: 1317–24.
- Schmitz C, Hof PR. A user's guide to design-based stereology in neuroscience. Neuroscience. In press 2004.
- Schroer RJ, Phelan MC, Michaelis RC, Crawford EC, Skinner SA, Cuccaro M, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet 1998; 76: 327–36.
- Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 1998; 19: 500–5.
- Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002; 59: 184–92.
- Stevenson RE, Schroer RJ, Skinner C, Fender D, Simensen RJ. Autism and macrocephaly. Lancet 1997; 349: 1744–5.
- Sumi SM. Brain malformations in the trisomy 18 syndrome. Brain 1970; 93: 821–30.
- Townsend J, Westerfield M, Leaver E, Makeig S, Jung T, Pierce K, et al. Event-related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. Cogn Brain Res 2001; 11: 127–45.
- Van Karnebeek CD, van Gelderen I, Nijhof GJ, Abeling NG, Vreken P, Redeker EJ, et al. An aetiological study of 25 mentally retarded adults with autism. J Med Genet 2002; 39: 205–13.
- Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O'Hearn E, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 2002; 89: 331–59.
- West MJ. New stereological methods for counting neurons. Neurobiol Aging 1993; 14: 275–85.
- Williams RS, Hauser SL, Purpura DP, DeLong GR, Swisher CN. Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Arch Neurol 1980; 37: 749–53.
- Woodhouse W, Bailey A, Rutter M, Bolton P, Baird G. Head circumference in autism and other pervasive developmental disorders. J Child Psychol Psychiat 1996; 37: 665–71.