Chapter 6

BORN LINGUISTS

AGES: BIRTH TO EIGHT YEARS

Complex skills require deep foundations. Babies start to learn language a long time before they are able to speak, preferentially focusing their attention on speech from birth—or even earlier, as hearing becomes functional during the third trimester of pregnancy (see chapter 11). Because babies do not have the motor abilities to express all the knowledge that they have obtained, though, you may not realize how much language they understand at a given age.

Newborn babies already prefer their mother’s voice over other female voices, their native language over other languages, and speech over other sounds that have the same acoustic properties, including speech played backward. They can also detect a variety of vocal cues, including acoustic characteristics, stress patterns, and the rhythms of different languages. From early in life, your infant absorbs the huge amounts of information that will make him an expert in his native language, learning about its cadences, its sounds, the structures of its words, and the grammar of its sentences. As we discussed in chapter 3, most adults instinctively speak to infants in motherese, which is slower than normal language and contains exaggerated versions of consonant and vowel sounds.

Young infants can distinguish and categorize the sounds of all languages of the world, though adults often confuse the sounds of a foreign language. For example, the r and l of English sound the same to Japanese adults, but different to Japanese infants. As they acquire experience with speech, babies begin to specialize in the sounds (called phonemes) of their own language (or languages). By six months of age (for vowels) or ten months (for consonants), babies become better at identifying the phonemes of their native language and worse at identifying the phonemes of other languages. In other words, experience with language shapes
the categories into which babies place sounds, determining which variations in sound characteristics are meaningful (reflecting different phonemes) and which should be ignored (reflecting different speakers or other unimportant variations).

As we would expect, their neural activity reflects this phoneme learning. In older infants, the patterns of electrical signals in the brain recorded from electrodes on the scalp, termed event-related potentials, show that babies distinguish between a pair of sounds from the native language, while failing to distinguish two confusable foreign sounds. In younger infants, event-related potential patterns distinguish both foreign- and native-language sound pairs. This brain specialization is important for future language learning. Babies whose brains discriminate native sounds well (and foreign sounds poorly) at seven and a half months go on to learn language earlier than babies who show the less mature pattern of distinguishing all sounds equally well. The more discriminating babies learn words more quickly, produce more words and more complex sentences at twenty-four months, and produce longer phrases at thirty months than the less discriminating babies. So even though your baby isn’t talking back, he is absorbing the patterns of your talk.

Social interaction is one cue that babies use to determine which sounds they should be learning. Nine-month-old infants who hear a brief tape recording or video of someone speaking a new language do not learn its sounds, but the same
amount of speech from a live person is sufficient to allow the babies to discriminate phonemes in the new language. (Under some circumstances, babies can learn from tape or video, but it takes longer than learning from a live person.) Indeed, certain measures of social interaction with a language teacher (including a parent) predict how well individual infants will remember the sounds of the new language. The preference for social interaction may be part of the reason that autistic children (see chapter 27), who do not interact well with other people (and do not prefer the sounds of motherese), have difficulty learning language.

The timing of speech production is determined by maturation of the brain regions that control movement. Forming understandable sounds requires considerable fine motor control and apparently a lot of practice. Babies first attempt to talk at around two months, when they begin cooing vowels, the least complicated speech sounds to produce. Some consonant sounds follow around five months, when babbling begins. Early babbling sounds the same in all babies, regardless of their native language. Around the end of the first year, babbling starts to include language-specific phonemes.

Responding with a comment or a touch to your baby’s best attempts to communicate seems to encourage continued efforts to improve these skills.

Word learning also starts long before babies can produce words of their own. Six-month-old infants know their own names and will look at a picture of their mommy or daddy when they hear the word. As we discussed in chapter 1, infants can listen to a string of nonsense syllables and determine which of them are most commonly heard together as “words.” They apply this talent to identifying words in normal speech, where words tend to run together without pauses. (To understand this phenomenon, think of the way a foreign language sounds; you can’t guess where one word ends and the next begins.) Later, their brains learn about the regularities of sentence structure that constitute the rules of grammar in their native language. By nine months, familiar and unfamiliar words trigger noticeably different event-related potentials. By the first half of baby’s second year, these potentials are different for words whose meaning
the child does or doesn't understand. Babies' brains also respond differently to made-up words depending on whether or not they obey the rules for which syllable should be stressed in the baby's native language. Stress patterns appear to be another tool that babies use to determine which groups of sounds are words.

In the second year, as children learn more words and become able to say many of them, they become better at distinguishing similar words, like bear and pear. Babies at fourteen months will direct their gaze toward an object even when its name is mispronounced, suggesting that their brain does not yet represent the sounds in known words with complete accuracy. Similarly, at this age, brain activity does not distinguish between familiar words and similar-sounding nonsense words. This changes at around twenty months. The relationship between learning words and learning sounds seems to be bidirectional, so that learning sounds makes it easier to learn words, but learning more words also helps babies improve their ability to distinguish sounds.

Sentences add new layers of complexity to language learning. Again, children can comprehend sentences and grammatical connecting words before they're able to use them in speech. To understand a sentence, your child must know not only the meanings of the individual words (called semantic information) but also how they relate to each other within the sentence (syntactic information). The brain represents these two types of information separately.

For almost everyone (excepting some left-handers), the left hemisphere is dominant for language production. Similar regions in the right hemisphere are responsible for prosody, the tone and rhythm of speech that conveys much of its emotional content. (For example, prosody tells you when someone is being sarcastic or making a joke.) Laterality of language representations seems to be part of the basic pattern of brain connections laid down by genes before sensory experience becomes effective (see chapter 2) because it is apparent by two or three months of age and even occurs in deaf infants. If the dominant speech regions are damaged in childhood, though, especially before the age of five, the other side of the brain can take over their function, leaving language skills relatively normal. If the same damage occurs after puberty, it severely impairs communication abilities.

When we hear something that sounds "wrong," event-potentials in our brains reveal whether we're reacting to syntactic or semantic violations. "The boy walked down the flower" is an example of a semantic violation, while "The boy walk
PRACTICAL TIP: TEACH FOREIGN LANGUAGES EARLY IN LIFE

From the perspective of neuroscience, it's absurd to wait until high school to begin studying a foreign language. By adolescence, students must work much harder to learn a new language, and most of them will never master it completely. If you want your child to speak another language fluently, by far the best approach is to start early in life.

In one study, researchers tested the English grammar proficiency of Chinese or Korean immigrants who had arrived in the U.S. at various ages and stayed at least five years. The test required participants to identify whether there were grammatical errors in sentences like “Tom is reading book in the bathtub” or “The man climbed the ladder up carefully.” The test was simple enough that native English speakers could ace it by the age of six, but the immigrants who began learning English after age seventeen missed many of these simple questions. Only people who came to the U.S. before age seven performed at the level of native speakers. Everyone in the group who arrived at eight to ten years of age did a bit worse, and those who arrived at eleven to fifteen were still less proficient.

Between ages eight and fifteen, researchers found a strong relationship between age of exposure and performance on the test. But in adulthood, individual variability in performance was not connected to age. No matter whether they'd started learning English at eighteen or forty, few adults learned perfectly. (Some later researchers found that language learning in adulthood also declines with age—that is, young adults learn better than older adults—but everyone agrees that young children learn better than older people.)

The take-home message for parents and schools is clear: take advantage of young children's superior language learning abilities by beginning instruction in elementary school or earlier. When it comes to language, there's no substitute for an early start.

down the road” is syntactic. In small children, these mistake-detection responses develop slowly, starting as children transition from two-word phrases to their first full sentences, around thirty months of age. Brain responses gradually become
faster and more precisely localized through childhood and into the early teens.

There seem to be at least two sensitive periods for language learning. We already discussed the sensitive period for phonemes, in the first year or two of life, when babies' brains become specialized for representing the sounds of their native language(s). There is also a sensitive period for learning about grammar. Children's ability to acquire syntax rules declines gradually after age eight, and adults are worse than children at learning languages (see Practical tip: Teach foreign languages early in life).

Some adults manage to learn a second language to a high level of proficiency. Most of us, though, no matter how hard we study in adulthood, will always have a foreign accent and make minor grammatical errors. In contrast, there does not appear to be a sensitive period for semantic learning, as new vocabulary words can be acquired equally well at any age. The event-related potential signal for semantic violations looks the same for both native and second languages, even in people who learned their second language late in life.

Children can learn more than one native language if they are exposed to both languages early enough, but their brains appear to represent the languages at least somewhat separately. Bilingual children reach language milestones at the same age and have the same risk of language impairment as monolingual children, though the details of their language development are somewhat different. So if your household is bilingual, the research indicates that this is not a disadvantage for your child's language learning. (Indeed, it may be an advantage for cognitive development; see Practical tip: Learning two languages improves cognitive control, p. 118.) Learning a second language also changes the brain. A region in the left inferior parietal cortex is larger in people who speak more than one language, and it is largest in those who learned the second language when they were young or speak it fluently.

Infants quickly learn to identify different languages by their rhythms, their characteristic phonemes, and other cues. Bilingual children do sometimes mix languages in their speech, but they seem to do so for the same reasons and in the same situations as adult bilinguals, for instance, substituting a word from one language when they don't know the word for that concept in the other one. Though bilingual children have a smaller vocabulary in a particular language than monolingual children of the same age, bilingual children know more words in total if you count both languages.

Born Linguists 53
Children who hear more words while interacting with their parents in the first two years of life learn language faster than children who hear fewer words. These differences in home environments tend to fall along socioeconomic class lines. In one study, the poorest children heard 600 words an hour, working-class children heard 1,200 words, and children of professionals heard 2,100 words. These major differences in children’s language environment correlate with their later language development and IQ scores—though the finding that highly verbal parents raise highly verbal children may be partly due to genetic factors or the many other advantages of growing up in a professional household (see chapter 30).

Later research has shown that you can improve your children’s language skills by responding rapidly to their vocalizations, mimicking the turn-taking of conversation even before your baby is capable of forming words. Responding with a comment or a touch to your baby’s best attempts to communicate seems to encourage continued efforts to improve these skills. So talk to your baby and put up a good show of understanding what she’s saying. It’s fun for both of you, and it will help her language skills to develop more quickly.
Chapter 30

A TOUGH ROAD TO TRAVEL: GROWING UP IN POVERTY

AGES: CONCEPTION TO EIGHTEEN YEARS

Growing up under conditions of deprivation can damage children’s brains. This is an exception to the general principle we have expressed throughout this book that most children are resilient, and that variations in normal (“good enough”) parenting do not appear to have a strong influence on how they turn out as adults. This chapter is about the other side of the coin: what happens to children whose developing brains match themselves to an environment that does not encourage them to express their full potential. After all, even dandelions can’t grow in the desert.

Where your children grow up is one of the most critical factors in their development. When you move to a new house or apartment—or another country—you’re determining not only your children’s schools but also their neighborhood and the characteristics of the group from whom your children will select their friends. Children learn a lot from other kids and from the culture by which they are surrounded (see chapters 17 and 20). It’s hard to raise children to reject the attitudes and assumptions of their peers, as parents have discovered everywhere from religious communities to inner-city neighborhoods. This is one of the many reasons that children start life at a disadvantage when they grow up in places with high unemployment, unsafe streets, and poor education.

Poverty itself isn’t exactly the problem, unless children are actually starving, which is rare in developed countries. The risks instead come from conditions that are made more likely by poverty, in particular growing up in a chronic state
of fear and/or stress. Poverty is stressful due to a combination of economic insecurity (inadequate living conditions, frequent moves), disorganized households and harsh parenting (common side effects of parental stress or addiction), and social subordination (being treated as inferior because of social class and/or race). Heightened fear and anxiety can result from living in a high-crime neighborhood, food insecurity, and parental mistreatment (again more common when parents are stressed).

Inadequate parenting can and does occur in any segment of society, of course. Indeed, the middle class, because it is the biggest economic group in many countries, typically contains the largest number of chronically stressed or threatened children, as well as the largest number of children with behavioral problems. In addition, some especially resilient people who grow up in very difficult conditions become highly successful and happy adults. Even so, poor children grow up in environments that statistically increase their risk of a variety of disorders. Indeed,
some of these “problems,” such as chronic anxiety or early reproduction, may actually constitute adaptive responses to insecure living conditions (see chapter 26).

Socially and economically disadvantaged people are much more likely than middle-class people to suffer from medical, emotional, cognitive, and behavioral problems. Socioeconomic status (SES) is an umbrella term for the resources that people have available to them relative to others in their society. At minimum, it includes income, occupation (with associated prestige), and education, each of which can be broken down into more detailed measures. Across a variety of countries with different social systems, lower SES predicts substantially increased risk of a broad range of medical problems, including heart disease, respiratory disease, diabetes, and psychiatric conditions. As family SES decreases, children have increased risk of low birth weight, premature birth, infant mortality, injury, asthma, and various chronic conditions, including behavioral disorders. Community SES also influences child outcomes in studies that control for family SES.

Health and SES vary together across the full range of SES; the relationship is not merely a consequence of very poor health at the bottom of the scale. Overall, the lower people’s SES, the earlier they are likely to die, with a difference of decades in some countries between the highest- and lowest-SES groups. The gradient is steepest at the bottom, though, with the biggest step between poor and working-class groups. These differences are large. In the U.S., adults with the lowest SES are about five times more likely to report having “poor” or “fair” health than the highest-SES adults.

SES is closely connected with health even in countries with equal access to health care and for diseases that medical care cannot prevent, such as juvenile diabetes and rheumatoid arthritis. So it is not primarily due to differences in

People who are satisfied with their standard of living and feel financially secure are healthier, regardless of their actual income, occupation, and education, than people who are unsatisfied and anxious about the future.
medical care—though such differences can make the problem worse. Only part of this discrepancy (about one third, in one study of British government workers) can be explained by lifestyle differences, such as high rates of smoking and drinking, poor diet, and infrequent exercise among low-SES groups. Lung cancer is still more prevalent in low-SES than high-SES groups even when comparing people who smoke the same number of cigarettes, so there must be some problem beyond lifestyle choices.

The relationship between SES and health may be attributable to the effects of stress, which can damage the brain and the rest of the body (see chapter 26). In many species, life at the bottom of the dominance hierarchy involves chronic stress and a poorly functioning biological stress response system. You could imagine that animals with poor stress responses are just more likely to become subordinate, but researchers found that social subordination occurs first and causes poor stress responsiveness, and not the other way around.

It can be most stressful to be a high-ranking animal in some species or under special circumstances, for instance, when dominance can be maintained only by fighting a lot. But in people, it’s usually the low-ranking members of society who experience the most stress. Social status is so important to people that reducing the power or status of middle-SES adults in an experimental situation decreases their ability to concentrate, ignore distractors, and inhibit inappropriate behavior. We speculate that chronically low social status may have a similar effect on low-SES children. In one study, by age ten, children in Montreal already showed a sharp relationship between SES and cortisol, with blood levels twice as high in the lowest-SES children as in the highest-SES children.

How we interpret the circumstances of our lives also has a strong effect on our stress responses (see chapter 26)—often stronger than the effects of our actual economic circumstances. Low-SES people not only experience more chronic stresses and negative life events, but also experience ambiguous events as being more stressful, compared to higher-SES people. When people are asked to give their own position in society on a drawing of a ten-rung ladder, their ranking is a stronger predictor of health than their actual SES. People who are satisfied with their standard of living and feel financially secure are healthier, regardless of their actual income, occupation, and education, than people who are unsatisfied and anxious about the future. Along the same lines, countries, states, or cities with greater income inequality have steeper gradients of SES versus health. This may
be because income inequality interferes with the feeling of community, which provides many types of social support to counteract stress. Increased crime also correlates with income inequality—again, better than with absolute poverty. So the existence of strong inequality in society may be a major driver of stress.

Which parts of children’s brains are damaged by deprivation? We know from animal studies that chronic stress can cause structural changes in the hippocampus and amygdala (see chapter 26). In people, low subjective SES and other sources of chronic stress are linked to reduced hippocampal volume. Long-term memory, which depends on hippocampal function, is impaired in low-SES populations. In experimental animals, chronic stress can cause neurons to die, prevent new neurons from being born or surviving, and cause dendrites to become less complex (a change that is reversible) in the hippocampus. Scores on a variety of language tests also vary strongly with SES, perhaps due to the less complex language environment provided by low-SES parents (see chapter 6).

In people, the perception of low SES is associated with stronger activity in the amygdala in response to threats. That’s understandable; if you believe that you are low on the totem pole, it’s natural to feel vulnerable and therefore respond strongly to danger. Indeed such increased vigilance may reflect a sensible reaction to real dangers in the environment. The amygdala is important for rapid processing of events that induce fear and other emotions (see chapter 18), and it is extensively interconnected with the stress response system.

Across the life span, from infants to adults, low SES predicts decreased executive function, perhaps because the environment offers fewer opportunities to strengthen these abilities through practice. The medial prefrontal cortex (including the anterior cingulate and orbitofrontal regions) is an important inhibitor of the stress system. In experimental animals and people, chronic stress reduces the size of the prefrontal cortex. This brain region is involved in working memory and planning and organizing behavior (aspects of executive function), and it is also necessary for learned suppression of fearful reactions to situations that are no longer dangerous. People who perceive themselves as having low SES have reduced volume in one part of the anterior cingulate cortex. One promising intervention for low-income preschool children, Tools of the Mind, focuses on promoting behaviors that depend on the prefrontal cortex (see Practical tip: Imaginary friends, real skills, p. 117).

The causes and possible solutions to the SES-health gradient are hotly de-
bated, within the scientific community as well as in society. The key problem for research is that people aren't randomly assigned to be poor, so we can't draw conclusions about causality by comparing the characteristics of low-SES and high-SES people (see *Did you know? Epidemiology is hard to interpret*, p. 262).

Do people develop problems because they're disadvantaged? Or do they become (or remain) disadvantaged due to poor health or other problems? There is evidence in favor of both positions. The health of adopted children is best predicted by their adopted parents' income, not their biological parents' income, suggesting that family income can influence health independently of genetics. Along the same lines, childhood SES predicts adult health, as we discuss below. On the other hand, the adult income and (particularly) education of adopted children does depend partly on their biological parents' characteristics.

It's important to remember that these two classes of explanations aren't mutually exclusive. Indeed, the most likely relationship between poverty and achievement is a vicious cycle, in which starting life with few resources leads children to develop a variety of problems, which then make their life situation worse, reducing their resources (and their children's resources) still further.

Some of the relationship between SES and cognitive achievement may be attributable to exposure to environmental hazards, more common in poor neighborhoods, that can cause substantial, lasting impairment in brain function. Children exposed to lead before or during elementary school age have lower IQs and impulse control, as well as higher aggression and delinquency, compared with children of the same SES. All these problems persist through adulthood. Mercury exposure also reduces IQ, along with attention, memory, and language development.

Children who live in noisy environments, such as near airports or highways, are delayed in learning to read compared with other children of the same SES. Chronic noise exposure also causes deficits in attention and long-term memory, perhaps because it is known to increase stress hormone levels. Crowded or chaotic environments (at home or at school) impair cognitive development and academic

The existence of strong inequality in society may be a major driver of stress.

A Tough Road to Travel: Growing Up in Poverty 261
The tools of epidemiology, appropriately, are best suited to the study of epidemics, which are caused by a single factor (a germ). The same tools are increasingly used to study conditions like heart disease, which have far more complex causes. Epidemiological studies of this kind are far more difficult to interpret and should be approached with a skeptical eye.

In a typical epidemiology study, scientists collect data on a large group of people for years and then attempt to correlate risk factors, such as excessive drinking, with health outcomes, such as deaths due to injury. Studies of this sort have serious limitations, which are rarely taken into account in your local newspaper or when health agencies make lifestyle recommendations based on their findings.

It is almost impossible to draw reliable conclusions about cause and effect from correlation data. One pitfall is reverse correlation. For instance, obesity is correlated with poverty. Does poverty lead to poor diet and lack of exercise, which then cause obesity, as is commonly assumed? Or might obesity cause poverty due to wage discrimination against fat people? Another pitfall is that an additional (unstudied) factor might cause both parts of the correlation. Harsh parenting is correlated with later antisocial behavior. Does that mean harsh parenting causes antisocial behavior? Or could it be that some parents pass along a genetic tendency to antisocial behavior to their children, who then are likely to misbehave, evoking harsh parenting, even from adoptive parents? We did not invent these two examples. In both cases, there is good evidence for the second interpretation, at least as a partial explanation of the observed correlations (see p.151 for more information on the effects of harsh parenting).

Making interpretation even more difficult, risk factors tend to travel in packs. Postmenopausal women taking hormone replacement therapy have fewer heart attacks than other women, but they are also less likely to die from homicide or accidents—effects that are unlikely to be caused by hormones. The explanation is that women who take hormone replacement therapy typically have a variety of healthy characteristics: compared to other women, they pay more attention to their health, exercise more, and
are richer, more educated, and thinner. When the risk factors are correlated with each other, it becomes very difficult to sort out causes from accidental “bystander qualities,” even if the observed correlations are strong.

Epidemiology can be very useful. The link between cigarette smoking and lung cancer was established through this technique because the correlation is large (heavy smokers have twenty or thirty times more risk than non-smokers) and the rate of lung cancer in nonsmokers is low. Many side effects of approved drugs have also been identified by epidemiology. But most lifestyle effects are small to moderate, and most of the common diseases in developed countries are influenced by multiple factors. Under those conditions, epidemiology can only generate hypotheses that must be tested by other means. Such studies should be interpreted with care and caution.

performance and increase psychological distress in both parents and children, again independent of SES. These environmental conditions are all common in the lives of low-SES children and often occur together.

Growing up in a low-SES family predicts poor health even for children whose SES improves in adulthood. For example, in a group of nuns who had been living together since early adulthood, disease risk and longevity still varied depending on their education (whether or not they had gone to college). For more than fifty years, the nuns had shared meals, housing conditions, and a very similar lifestyle, but the traces of their early experiences were still substantial, with educated sisters living an average of 3.28 years longer than less educated sisters. In general, people whose SES improves later in life gain less advantage from the change than people whose SES improves in childhood.

Children whose families move out of poverty improve in some areas but not others. One study followed 1,420 poor children in North Carolina from 1993 (at ages nine to thirteen) through 2000. American Indian families were more than twice as likely as non-Indian families to be below the poverty line when the study began. In 1996, a casino opened and began to distribute some of its profits to every person on the reservation. Children whose families moved above the poverty line showed a 40 percent decrease in antisocial behaviors during the study, while children whose families remained poor showed no change in antisocial behaviors.
In contrast, moving out of poverty had no effect on symptoms of depression and anxiety, though children who had never been poor had fewer symptoms than always-poor or ex-poor children.

If indeed poverty leads to a vicious cycle like the one we’ve described, it should be easiest to break that cycle in young children, before they fall too far behind their peers. Intensive preschool enrichment programs can have positive effects that last into adulthood, substantially increasing the odds of a poor child graduating from high school, finishing college, getting a skilled job, and owning a home. These programs can also reduce the likelihood that a child will need special education or repeat a year of school.

Mostly these effects do not depend on increasing children’s IQs. Instead the positive outcomes seem to stem from improvements in social competence, including perseverance and motivation (see chapter 13) and emotional well-being. The programs that produce these results tend to be extensive, long-lasting interventions, which require a considerable commitment from both families and funding agencies. These programs are often still cost-effective for society in the long run if they reduce the likelihood that children will need special education or repeat a year of school or that they will receive welfare payments as adults.

Intervention is difficult for exactly the same reason that it is important: because it requires interrupting the developing brain’s strong tendency to match itself to the local environment. As we’ve discussed throughout this book, evolution has made that matching process resilient and hard to disrupt. If a child’s environment is toxic, though, it can do more harm than good. Fortunately, the reward for intervening is also large—turning that child into an adult who can function successfully in a safe and productive world, like the one we all want for our children.
CHAPTER 1 The Five Hidden Talents of Your Baby’s Brain

cats versus dogs: Quinn 2002
syllable boundaries: Saffran, Aslin, and Newport 1996
mobile and ribbon: Rovee-Collier and Barr 2001
properties of objects and agents: Spelke and Kinzler 2007
surprised the object was not solid: Baillargeon, Spelke, and Wasserman 1985
object permanence in three-and-a-half-month-olds: Baillargeon and Wang 2002
Freud discredited: Webster 1995
hands versus sticks: Woodward 1998
circle chasing circle: Gergely et al. 1995
male and female faces: Quinn 2002
early preference for faces: Johnson et al. 1991; Mondloch et al. 1999
early preference for voices: Fernald 1992
infant attention: Colombo 2001
adults influence baby’s attention: Hood, Willen, and Driver, 1998; Reid and Striano 2005
for more on psychology in babies: Bloom 2004; Gopnik 2009

CHAPTER 2 In the Beginning: Prenatal Development

prenatal development: Sanes, Reh, and Harris 2005
autism and hurricanes: Kinney et al. 2008
ice storm and IQ: LaPlante et al. 2008
stress and schizophrenia: Khashan et al. 2008
prenatal drug exposure: Thompson, Levitt, and Stanwood 2009
prescribed drugs and developmental problems: Witter et al. 2009; Gentile 2011
neurodevelopmental disabilities, Norwegian study: Moster, Lie, and Markestad 2008
increase in premature birth: Goldenberg et al. 2008
increased survival contributes to preterm birth statistics: Ananth et al. 2005
thirty-four to thirty-seven-week births, elective induction of labor: Fuchs and Wapner 2006; Engle and Kominarek 2008

CHAPTER 3 Baby, You Were Born to Learn

characteristics of breast-feeding mothers: Der, Batty, and Deary 2006
higher-quality studies less likely to find an effect: Jain, Concato, and Leventhal 2002
sibling study of breast-feeding and intelligence: Der, Batry, and Deary 2006
another study of sibling pairs: Evenhouse and Reilly, 2005; the authors claim to have
found an effect of breast-feeding on cognitive function, but they use an unusually
lenient measure of statistical significance ($p < 0.1$). The effect is not significant at
$p < 0.05$, the typical scientific standard.
mothers randomly assigned to breast-feeding support program: Kramer et al. 2008
cross-cultural motor development: Adolph, Karasik, and Tamis-LeMonda 2009
practice accelerates motor development: Adolph, Karasik, and Tamis-LeMonda 2009
American nouns versus Korean verbs: Gopnik and Choi 1990
imitation using head or hands: Gergely, Bekkering, and Király 2002
infant brain development: Tau and Peterson 2010
head-eye coordination: Goodkin 1980
infants learn about objects: Gopnik, Meltzoff, and Kuhl 1999

CHAPTER 4 Beyond Nature Versus Nurture
epigenetic modifications: Zhang and Meaney 2010
epigentic modifications in twins: Wong et al. 2010
epigenic modifications passed along to offspring: Jablonka and Raz 2009
enrichment and inherited learning ability in mice: Arai et al. 2009
lactose tolerance and milk drinking: Holden and Mace 1997
culture drives evolution: Laland, Odling-Smee, and Myles 2010
heritability of IQ in different environments: Turkheimer et al. 2003
gene-environment interactions: Maccoby 2000; Rutter 2007
Swedish adoptees and criminality: Bohman et al. 1982

CHAPTER 5 Once in a Lifetime: Sensitive Periods
sensitive periods and neural circuits: Knudsen 2004
synapse number in visual cortex: Huttenlocher 1990
synapse density in frontal cortex: Huttenlocher 1979; Huttenlocher and Dabholkar 1997
synapse development in monkeys: Rakic, Bourgeois, and Goldman-Rakic 1994
energy use in children’s brains: Chugani 1998
owl sound localization: Keuroghlian and Knudsen 2007
adult recovery from amblyopia: Levi 2005

CHAPTER 6 Born Linguists
language learning and the brain: Kuhl and Rivera-Gaxiola 2008; Gervain and Mehler 2010
sensitive periods in language learning: Johnson and Newport 1989; Newport,
Bavelier, and Neville 2001

Notes 275
bilingual children: Werker and Byers-Heinlein 2008
children who hear more words learn language faster: Hart and Risley, 1995

CHAPTER 7 Beautiful Dreamer
suprachiasmatic nucleus and circadian rhythms: Welsh, Takahashi, and Kay 2010
development of sleep patterns: Roffwarg, Muzio, and Dement 1966; Dement 1974
sleep enhances neural plasticity: Frank, Issa, and Stryker 2001
sleep disorders: Garcia, Rosen, and Mahowald 2001
maternal drinking and sleep: Mennella and Gerrish 1998
going your baby to sleep: Mennella and Gerrish 1998; Weissbluth 2003
what children dream about: Foulkes 1999; Nir and Tononi 2009
night terrors and tonsillectomy: Guilleminault et al. 2003
naps and learning: Mednick et al. 2002; Mednick and Ehrman 2006

CHAPTER 8 It's a Girl! Gender Differences
a phase of intense adherence to a sex role: Best and Williams 1993
statistic called *d*-prime: http://www.leeds.ac.uk/educol/documents/00002182.htm
girls have more sensitive hearing: Kei et al. 1997, *d*’ of 0.26 for infants on a measure of peripheral auditory responsiveness used to assess hearing loss; other reports found a variety of small gender differences or none at all. Note that many of the studies cited to support this idea in popular books were done in adults, not children.
toy preference in three-year-olds: Servin, Bohlin, and Berlin 1999; many others
formation of gender identity: Maccoby 1998
monkey toy preferences: Alexander and Hines 2002 in vervet monkeys; Hassett, Siebert, and Wallen 2008 in rhesus monkeys (showed male preference for trucks; dolls were not tested)
cross-gender play and homosexuality: Bailey and Zucker 1995, meta-analysis
encouraging boyish behavior has no effect: Green 1985
boys are more active than girls: Eaton and Enns 1986, meta-analysis
boys are more physically aggressive: Card et al. 2008, meta-analysis
male monkeys engage in more rough-and-tumble play: Alexander and Hines 2002 in vervet monkeys; Wallen 2005 in rhesus monkeys; many others
CAH girls are more aggressive and more active: Pasterski et al. 2007
mental rotation in infants: Moore and Johnson 2008; Quinn and Liben 2008
mental rotation in children and adults: Voyer, Voyer, and Bryden 1995, meta-analysis
mental rotation predicts math SAT scores: Casey et al. 1995
SES and mental rotation: Levine et al. 2005
video games improve spatial skills: Subrahmanyam and Greenfield 1994, *Marble Madness* in fifth graders; Okagaki and Frensch 1994, *Tetris* in college students; De Lisi...

athletes and spatial ability: Ozel, Larue, and Molinaro 2004
gender segregation: Maccoby and Jacklin 1987
girls get better grades: Linn and Kessel 1996
girls’ brain volume peaks earlier: Lenroot et al. 2007
girls are better at inhibitory control: Else-Quest et al. 2006, meta-analysis
girls’ advantage for language: Kovas et al. 2005
boys lag at fine motor control: Kimura 2000
writing disadvantage persists through high school: Hedges and Nowell 1995
no difference in high school math performance: Hyde et al. 2010 (more boys than girls above the ninety-ninth percentile, but only among whites, not among Asian Americans)
men take more time to graduate: Thomas 1981; Bank 1995
SATs and grades: Kessel and Linn 1996, meta-analysis; Leonard and Jiang 1999
girls more likely to express negative emotions: Maccoby 1998
moral reasoning differences: Jaffee and Hyde 2000, meta-analysis
differences in identifying emotions: McClure 2000, meta-analysis
risk taking: Byrnes, Miller, and Schafer 1999, meta-analysis
masturbation: Petersen and Hyde 2010, meta-analysis
self-esteem: Kling et al. 1999 (peak at fifteen to eighteen years of age), meta-analysis
body image: Feingold and Mazzella 1998, meta-analysis
body image linked to progressively thinner standards: Grabe, Ward, and Hyde 2008, meta-analysis
teasing, obesity, and anorexia: Neumark-Sztainer et al. 2007
dieting increases risk of obesity: Field and Colditz 2001

CHAPTER 9 Adolescence: It’s Not Just About Sex

a time of near limitless possibility: Luciana 2010
adolescent behavior: Smetana, Campione-Barr, and Metzger 2006
brain appears nearly finished in late childhood: Caviness et al. 1996
human synapse development: Huttenlocher 1990; Glantz et al. 2007
monkey synapse development: Rakic, Bourgeois, and Goldman-Rakic 1994
gray matter and white matter development: Gogtay and Thompson 2010

brain growth and intelligence: Shaw et al. 2006a
differences in the balance between impulse and restraint: Casey, Duhoux, and Cohen 2010
Iowa Gambling Task in adolescence: Steinberg 2010
reward and the ventral striatum: Casey, Duhoux, and Cohen 2010
puberty and the adolescent brain: Sisk and Foster 2004
circadian rhythms set time to wake up and sleep: Duffy, Rimmer, and Czeisler 2001
adolescent day-night cycle: Carskadon et al. 1999; Carskadon, Acebo, and Jenni 2004
sleep duration in children and adolescents: Iglowstein et al. 2003
survey of sleep habits in girls: Frey et al. 2009
social jetlag: Wittmann et al. 2006
stress and the adolescent brain: Romeo and McEwen 2006
dopamine and novelty seeking: Spear 2010
oxytocin and parental love: Gordon et al. 2010

CHAPTER 10 Learning to See
motion: Braddick and Atkinson 2009
heritability of myopia: Hornbeak and Young 2009
increasing prevalence of myopia: Rose et al. 2001
myopia in Israel: Dayan et al. 2005
outdoor activity and myopia: Jones et al. 2007; Rose et al. 2008a; Rose et al. 2008b
contrast: Brown and Lindsey 2009
figure (what babies see): data from Salomão and Ventura 1995; Adams and Courage 2002
face processing: de Schonen et al. 2005
sensitive periods: Lewis and Maurer 2009
effects of sensory deficits: Lewis and Maurer 2009
advantage in distinguishing own- versus other-race faces: Kelly et al. 2007
corrective glasses for amblyopia: Moseley, Fielder, and Stewart 2009

CHAPTER 11 Connect with Your Baby Through Hearing and Touch
how hearing works: Kandel, Schwartz, and Jessell 2000
development of vestibular system: Nandi and Luxon 2008
prenatal risks to hearing and vestibular system: Eliot 1999
babies can hear before they’re born: Hepper and Shahidullah 1994
newborns prefer mother’s voice: DeCasper and Fifer 1980
newborns prefer mother’s language: Mehler et al. 1988
cochlear implant timing: Harrison, Gordon, and Mount 2005
processing speed: Görke 1986; Müller, Ebner, and Hömberg 1994
somatosensory cortex map: Kandel, Schwartz, and Jessell 2000
for more on touch deprivation experiments in monkeys: Blum 2002

CHAPTER 12 Eat Dessert First: Flavor Preferences
newborns distinguish mother by smell: Winberg and Porter 1998
mothers distinguish newborns by smell: Kaitz et al. 1987
baby’s preferences for amniotic fluid and Mom’s unwashed breast: Sullivan 2000
prenatal development of olfactory brain: Schaal 1988
what toddlers eat: Fox et al. 2004
how to get kids to like broccoli: Capaldi 1996, chapter 3
organization of taste system: Yarmolinsky, Zuker, and Ryba 2009
development of taste buds: Mistretta and Bradley 1984; Witt and Reutter 1996
nucleus solitarius: Rolls 2006
morphine replacing sweet receptor: Zhao et al. 2003
learning food preferences: Mennella, Jagnow, and Beauchamp 2001
rabbits learn food preferences: Bilkö, Altbäcker, and Hudson 1994
inadequate nutrition in low-fat diets for children: Nicklas et al. 1992; Milner and Allison 1999
prevalence of eating disorders: Hoek 2006
longitudinal predictors of obesity and eating disorders: Neumark-Sztainer et al. 2007
morning sickness and salt preference: Crystal and Bernstein 1998
infant flavor preferences last for years: Mennella and Beauchamp 2002
soy or hydrolysate versus milk formula: Beauchamp and Mennella 2009
cheese versus body odor labeling: de Araujo et al. 2005

CHAPTER 13 The Best Gift You Can Give: Self-control
preschool delay times and later success: Shoda, Mischel, and Peake 1990; Duckworth and Seligman 2005; Blair and Razza 2007
self-control of emotion; development of attention and effortful control: Bell and Deater-Deckard 2007
brain circuits for self-control: Posner and Rothbart 2007
marshmallow task strategy: Peake, Hebl, and Mischel 2002
Tools of the Mind: Diamond et al. 2007; Blair and Diamond 2008
executive function in bilingual children: Bialystok 2009; Kovács and Mehler 2009
theory of mind in bilingual children: Goetz 2003
training willpower in adults: Baumeister et al. 2006
computerized attention training: Tang and Posner 2009

Notes 279
CHAPTER 14 Playing for Keeps
animal play: Fagen 1974; Burghardt and Sutton-Smith 2005
brain size and play: Iwaniuk, Nelson, and Pellis 2001
octopus play: Mather and Anderson 1999
learning and stress: Joëlsa et al. 2006
video games: Gentile and Stone 2005
play in mammals: Vanderschuren, Niesink, and van Ree 1997
culture and play: Tamis-LeMonda et al. 1992

CHAPTER 15 Moving the Body and Brain Along
emotional benefits of exercise in children: Bailey 2006
cognitive benefits of exercise in children: meta-analysis Sibley and Etnier 2003;
 Hillman, Erickson, and Kramer 2008; Pontifex et al. 2011
cognitive benefits of exercise in adults: Hillman, Erickson, and Kramer 2008
brain changes with exercise in children: Chaddock et al. 2010; Chaddock et al. 2011
chronic traumatic encephalopathy: McKee et al. 2009
football and concussion: Guskiewicz et al. 2005; Guskiewicz et al. 2007
concussions in children: Halstead et al. 2010

CHAPTER 16 Electronic Entertainment and the Multitasking Myth
video games and attention in college students: Green and Bavelier 2003; Dye, Green,
 and Bavelier 2009b; Li et al. 2009
recent decline in empathy: http://www.ns.umich.edu/htdocs/releases/story.php?id=7724
video games and attention in children: Dye, Green, and Bavelier 2009a; Dye and
 Bavelier 2010
infants and TV: Christakis 2009; Bavelier, Green and Dye 2010
costs of switching, role of prefrontal cortex: Marois and Ivanoff 2005
distractibility in multitasking college students: Ophir, Nass, and Wagner 2009
Dora the Explorer versus Teletubbies: Linebarger and Walker 2005

CHAPTER 17 Nice to Meet You: Temperament
temperament and personality: Caspi 2000; Rothbart, Ahadi, and Evans 2000
high-reactive babies: Fox et al. 2005
personality traits and stability: McAdams and Olson 2010
your kids have different environments: Plomin et al. 2001
temperament and parenting in development of conscience: Kochanska and Aksan 2006
children with a specific receptor sensitive to parenting style: Sheese et al. 2007
negative feedback on antisocial behavior: Reiss and Leve 2007; Dodge and McCourt 2010
children learn from their peers: Berndt and Murphy 2002
birth order and personality: Harris 1998 (pp. 365–78); Townsend 2000
Chinese versus Canadian mothers and behavioral inhibition: Chen et al. 1998
rat grooming and pup behavior: Zhang and Meaney 2010
high-reactive monkeys are more vulnerable: Suomi 1997

CHAPTER 18 Emotions in the Driver’s Seat
learning to recognize emotions in others: Leppänen and Nelson 2009
neural circuits involved in emotion perception: Barrett et al. 2007
left/right brain and emotions: Wager et al. 2003
self-control and empathy: Posner and Rothbart 2007
development of emotion regulation: Eisenberg, Spinrad, and Eggum 2010

CHAPTER 19 Empathy and Theory of Mind
 Singer 2006; Baillargeon, Scott, and He 2009
empathy in animals: Rice and Gainer 1962; Preston and de Waal 2002; Emery and
 Clayton 2009
insula: Craig 2009
older siblings and theory of mind: Ruffman et al. 1998
social brain: Adolphs 2003
mirror neurons: Rizzolatti and Sinigaglia 2010
children can’t remember their past mental states: Gopnik 1993

CHAPTER 20 Playing Nicely with Others
parent-infant synchrony: Feldman 2007
distress when their partner stops responding: Mesman, van IJzendoorn, and
 Bakermans-Kranenburg 2009
maternal depression: Feldman 2007; Field, Diego, and Hernandez-Reif 2009
stranger anxiety develops: Kagen 2003
joint attention in infants: Parlade et al. 2009
attachment and day care: Friedman and Boyle 2008; Bohlin and Hagekull 2009
attachment, 5-HTT, and self-control: Kochanska, Philibert, and Barry 2009
development of peer interactions: Rubin, Bukowski, and Parker 2006
cultural effects on socialization: Chen and French 2008
mutual dislike relationships: Card 2010
conscience in children: Kochanska and Aksan 2006
social withdrawal: Rubin, Coplan, and Bowker 2009

Notes 281

CHAPTER 21 **Starting to Write the Life Story**
declarative versus nondeclarative memory: Squire 1987
toddlers navigate by landmarks: Wang, Hermer, and Spelke 1999
habituation in the brain: Colombo and Mitchell 2009
study habits: Rohrer and Pashler 2010
formation and breakage of synapses: Chklovskii, Mel, and Svoboda 2004
conversion to long-term memory: Squire and Zola-Morgan 1991; Wang and Morris 2010
babies forget faster than older children: Rovee-Collier and Barr 2001
memories appear to be rewritten: Wang and Morris 2010

CHAPTER 22 **Learning to Solve Problems**
beliefs about intelligence predict performance: Blackwell, Trzesniewski, and Dweck 2007
social rejection and IQ: Baumeister, Twenge, and Nuss 2002
predicting infant IQ from habituation: Kavšek 2004
heritability of IQ in poverty: Turkheimer et al. 2003
IQ in adopted children: van IJzendoorn, Juffer, and Klein Poelhuis 2005
genetic influences on intelligence and brain: Shaw 2007; Green et al. 2008; Deary, Penke, and Johnson 2010
children’s brains and abstract reasoning: Ferrer, O’Hare, and Bunge 2009
Flynn effect and modern life: Dickens and Flynn 2001
interventions to improve intelligence: Buschkuehl and Jaeggi 2010
working memory training improves intelligence: Jaeggi et al. 2008

CHAPTER 23 **Take It from the Top: Music**
consonance and dissonance in infancy: Trainor, Tsang, and Cheung 2002
openness to different rhythms: Hannon and Trehub 2005
early rhythm learning: Gerry, Faux, and Trainor 2010
auditory discrimination in preschool children: Jensen and Neff 1993
rhythm perception in deaf children with cochlear implants: Nakata et al. 2006
key and harmony perception: Corrigall and Trainor, 2009; Hannon and Trainor 2007
Heschl’s gyrus in musicians: Schneider et al. 2002
cognitive changes from music and drama lessons: Schellenberg 2005
practice and long-distance connections: Zatorre, Chen, and Penhune 2007
brain changes from keyboard lessons: Hyde et al. 2009
corpus callosum in children receiving musical training: Schlaug et al. 1995

CHAPTER 24 **Go Figure: Learning About Math**
Mickey doll becomes two Mickeys: Dehaene 1999
subitization, numerosity, and addition in animals: Dehaene 1999
children temporarily lose numerosity: Mehler and Bever 1967
mental number line and brain regions that process number: Nieder and Dehaene 2009
eye movements and math: Knops et al. 2009
stereotypes and performance: Wheeler and Petty 2001
performance with positive versus negative stereotypes: McGlone and Aronson 2006
Mundurukú: Pica et al. 2004
story versus equation problems: Sohn et al. 2004; Lee et al. 2007

CHAPTER 25 The Many Roads to Reading

brain activity in adults during reading: Dehaene 2009
neurons that represent objects: Desimone et al. 1984
car recognition: Gauthier et al. 2000
right inferior temporal cortex and mirror confusion: Gross and Bornstein 1978
left-right discrimination and readiness to read: Fisher, Bornstein, and Gross 1985
monkeys with damage to inferior temporal cortex: Holmes and Gross 1984
brain activity in children during reading: Turkeltaub et al. 2003
reading at home: Whitehurst et al. 1988
potential causes of dyslexia: Ramus et al. 2003
survey of students at Göteborg University: Wolff and Lundberg 2002
Chinese children learn to read by writing: Tan et al. 2005
brain activity during reading in Chinese speakers: Siok et al. 2008
prevalence of dyslexia in English and Chinese speakers: Yin and Weekes 2003
Chinese dyslexics learning English: Ho and Fong 2005

CHAPTER 26 Hang in There, Baby: Stress and Resilience

children exposed to a moderate amount of stress: Power 2004
maternal separation in monkeys: Suomi 2006
maternal separation in rats: Zhang and Meaney 2010
overprotection of high-reactive children: Fox et al. 2005
parents regulate children’s physiological stress responses: Gunnar and Quevedo 2007
effects of early life stress are similar in people: Haglund et al. 2007; Feder, Nestler, and Charney 2009
maternal effects on rat stress responses: Cameron et al. 2005; Zhang and Meaney 2010
peer-raised monkeys: Suomi 2006
longitudinal study in New Zealand: Caspi et al. 2003

Notes 283
serotonin transporter interaction with environmental trauma: Uher and McGuffin 2010, meta-analysis
dandelion and orchid children: Boyce and Ellis 2005; Ellis, Jackson, and Boyce 2006; related ideas in Belsky, Bakermans-Kranenburg, and van IJzendoorn 2007
one prospective study of high-stress families: Boyce et al. 1995
experimental study with rhesus monkeys: Suomi 1997

CHAPTER 27 Mind-Blindness: Autism
characteristics of autism: Frith 2003
feral children: McCarthy 1925; Williams 2003
early signs of autism: Volkmar, Chawarska, and Klin 2005; Karmel et al. 2010
changes in amygdala, cerebellum, and neocortex in autism: Palmen et al. 2004; Amaral et al. 2008
prematurity, cerebellar injury, and autism: Limperopoulos 2010
cerebellum and tickling: Blakemore, Wolpert, and Frith 1998
Temple Grandin quote: Grandin 1995
L. H. Willey quote: Willey 1999
half of children receiving intensive behavioral therapy can enter regular education: Sallows and Graupner 2005
UCLA model of therapy: Cohen, Amerine-Dickens, and Smith 2006
combining intensive behavioral therapy with other approaches is less effective: Howard et al. 2005
therapy for Catherine: Green, Brennan, and Fein 2002
very early intervention: Dawson et al. 2010
Wakefield vaccine fraud: Deer 2011

CHAPTER 28 Old Genes Meet the Modern World: ADHD
estimates of ADHD prevalence: Castellanos and Tannock 2002; Elia et al. 2010
ADHD susceptibility genes: Elia et al. 2010
white and gray matter growth in ADHD: Shaw et al. 2006b
discovery of Ritalin: Shorter 2008
EEG rhythms in ADHD: Barry, Clarke, and Johnstone 2003
no evidence for sweeping claims about movement exercises: Bishop 2007
warning signs of quackery: Hyman and Levy 2000; Jacobson, Foxx, and Mulick 2005
meta-analysis of neurofeedback studies: Arns et al. 2009
functional imaging is not a reliable diagnostic tool: Bush, Valera, and Seidman 2005
differences in caudate nucleus, basal ganglia: Mink 1996; Redgrave, Prescott, and Gurney 1999; Tripp and Wickens 2009
Amen’s books offer what most psychiatrists would do: Leuchter 2009
Amen has declined the opportunity to test his diagnostic tools: Adinoff and Devous 2010
by age eighteen, symptoms have subsided: Mannuzza et al. 1991
Ritalin does not increase risk of substance abuse: Mannuzza et al. 2008
brain differences reflect a delay in development: Shaw et al. 2007; Castellanos et al. 2002

CHAPTER 29 Catch Your Child Being Good: Behavior Modification
modifying children’s behavior: Strand 2000; Kazdin and Rotella 2009
ratio of positive to negative interactions in marriage: Gottman and Silver 1998
extinction learning and the brain: Quirk and Mueller 2008
self-esteem outcomes: Baumeister et al. 2003
praise and motivation: Henderlong and Lepper 2002

CHAPTER 30 A Tough Road to Travel: Growing Up in Poverty
relationship between SES and health: Sapolsky 2004; Dow and Rehkopf 2010
stress and the health effects of SES: Sapolsky 2005; McEwen and Gianaros 2010; but see Matthews, Gallo, and Taylor 2010 for a contrary view
brain effects of deprivation: Hackman and Farah 2009; McEwen and Gianaros 2010
language environment provided by low-SES parents: Hart and Risley 1995
adopted children and biological parents’ SES: Rowe and Rodgers 1997
likely relationship between poverty and achievement is a vicious cycle: Conger and Donnellan 2007
exposure to toxins: Evans 2006
epidemiology interpretation: Taubes 2007
nun study: Snowdon et al. 1989
people whose SES improves later in life: Cohen et al. 2010
children who move out of poverty: Costello et al. 2003; Kawachi, Adler, and Dow 2010
intensive preschool enrichment: Knudsen et al. 2006

GLOSSARY
For further introduction to technical terms: Bear, Connors, and Paradiso 2006

Notes 285
REFERENCES

Barry, R. J., Clarke, A. R., and Johnstone,

Blair, C., and Razza, R. P. Relating effortful control, executive function, and
Card, N. A., Stucky, B. D., Sawalani, G. M., and Little, T. D. Direct and indirect

De Lisi, R., and Wolford, J. L. Improving children’s mental rotation accuracy with computer game playing. *Jour-
Deer, B. How the case against the MMR vaccine was fixed. British Medical Journal 342:c5347 (2011).
Eisenberg, N., Spinrad, T. L., and Eggeum, N. D. Emotion-related self-regulation...

Field, T., Diego, M., and Hernandez-Reif, M. Depressed mothers’ infants are less responsive to faces and voices. *Infant

Goetz, P. J. The effects of bilingualism on

Gunnar, M., and Quevedo, K. The neurobiology of stress and

Kessel, C., and Linn, M. C. Grades or

Mannuzza, S., Klein, R. G., Truong, N. L., Moulton, J. L., III, Roizen, E. R., and

Quinn, P. C. Beyond prototypes: Asymmetries in infant categorization and what

Rovee-Collier, C., and Barr, R. Infant

Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., Clasen, L., Evans, A., Giedd, J., and Rapoport, J. L. Attention-deficit/hyperactivity...

Williams, P. Cultural impressions of the wolf, with specific reference to the

