
1 Behavioral e�ects of cerebellar perturbations
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2 Dimensionality reduction of behavioral metrics
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i) Raw behavioral metric distributions

ii) Principal components analysis
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iii) Example: Social Chamber Eigenmetrics

Eigenmodes capture variance in behavioral data for 
both wild-type and cerebellar DREADD-inactivated mice, 

despite being computed from only the former.

Explained Variance PC3: “Exploratory and Sociable Behavior”

Eigenmodes de�ne new dimensions in the space of be-
havioral metrics. This component suggests that social 
preference and novelty-seeking measures are anticor-

related.

The experimental data is then 
projected onto these “eigen-

metrics” and only dimensions 
that capture signi�cant vari-

ance in both are kept.

Principal components are computed from the 
wild-type distributions in order to �nd natural 

correlations between behavioral metrics.
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The reprojected data recapit-
ulates the raw behavioral 

data across a reduced set of 
dimensions. Di�erences in 

control versus experimental 
distributions suggest e�ects 

of DREADD inactivation.

3 Behavioral metrics a�ected by cerebellar inactivation
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Two metrics from di�erent assays (EPM and Social Chamber) 
exhibit a clear separation between acute (red), developmental 
(blue) and control groups. Boundary lines (black) derived from 
�tting quadratic SVM. This suggests opposing e�ects in social 
and anxiety-related behavior resulting from Lobule VII inacti-

vation at di�erent developmental stages.

A principal component derived from Y-maze appears 
to capture learning and reversal metrics (top). Inter-

estingly, the distributions across this dimension 
appear shifted in Lobule VI-inactivated mice, but not 
controls, independent of chronic vs acute treatment.

a) Lobule VII DREADD induces development-dependent 
 covariation in two tasks

b) Lobule VI DREADD induces a speci�c 
reversal learning de�cit
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4 Preliminary: Anatomical localization of behavioral e�ects

i) Allen Brain Atlas registration (see also: 719.11 / RR12)

ii) Localization of expression iii) Behavior metrics projection

Serial two-photon stacks of 
DREADD-expressing brains 
are registered to a common 

coordinate framework 
(Allen CCFv2).

Anatomical data con�rms expression 
(red) overlaps with cerebellar ROIs (e.g., 

blue: Crus II).

(Preliminary): Projecting behavioral metrics to expres-
sion voxels (red; average score) associates behavior to 

anatomical regions (blue trace: Crus II)
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High dimensional neuroanatomical and behavioral analysis for probing cerebellar
involvement in nonmotor function
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   Genetically encodable Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) 
allow reversible inactivation of identi�ed cell types in freely-moving animals on a time scale of 
hours. To understand the role of speci�c cerebellar regions in guiding behavior during develop-
ment and adulthood, we have developed detailed quantitative approaches for analyzing the 
extent of DREADD inactivation and the consequent pattern of behavioral perturbation.
 

   In both juvenile and adult mice, we performed cerebellar lobule-speci�c injections of 
AAV8-hSyn-hM4D(Gi)-mCherry to co-express an inhibitory DREADD (hM4D) and a �uorescent re-
porter (mCherry). After administration of DREADD agonist clozapine-N-oxide (CNO), mice were 
tested sequentially in �ve behavioral paradigms commonly used to model autism in mice: an ele-
vated-plus maze, reversal in a swimming Y-maze, self-grooming, three-chamber social preference, 
and a virtual reality-based working memory task. In each case, direct monitoring and video re-
cording were used to acquire subsecond-resolution measurements of animal trajectory for o�ine 
analysis. To de�ne di�erent dimensions of autism-like phenotypes, we used principal compo-
nents analysis to identify patterns of animal-to-animal covariation encompassing multiple behav-
ioral measurements. In this way we created a basis set of “eigenbehaviors” constructed from per-
formance in unperturbed mice, which we used to quantify lobule-speci�c inactivation. These be-
haviors constitute a multidimensional autism-like phenotype.
 

   We next sought to associate behavioral phenotypes with spatial patterns of DREADD expres-
sion. We used serial two photon (STP) reconstruction to render anatomical volumes complete 
with precisely mapped regions of expression. Our developed image processing pipeline builds 
aligned volumes from these STP stacks and registers the volumes to a standard mouse brain co-
ordinate system (Allen CCFv2). Comparison of anatomical representations to behavioral pheno-
types will test the hypothesis that lobule-speci�c perturbation of cerebellar regions leads to 
multi-dimensional e�ects on behavior. Our experimental and analytical framework enables quan-
titative linkage of neuroanatomy to behavior.
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