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INTRODUCTION 

The large number of recent reviews and evaluations devoted to the actions 
of calmodulin (CAM) as a mediator of Ca2+ signaling retleets the great 
interest in the key role of CaH in a variety of processes in the cell (6. 19 . 

20, 26, 82), as well as the rapid increase in understanding the role of CAM 
in the mechanisms underlying these essential physiological functions (10. 
21,28,33,36,56,57,59,66,83,99, lOa, 110, 1 l 7 . 139). The examples 
discussed in these compendia characterize in detail some of the regulatory 
actions of calmodulin in the cell, but the list of such actions is growing 
with the continuing identification of specific targets for activation by CAM 
(e.g. see 6, 18, 29, 43, 53, 140). Recent explorations of CAM-regulated 
processes have taken advantage of the special physiological properties of a 
variety of organisms in which the direct requirements for Ca2+ -activated 
CAM can be revealed by genetic manipulation (25, 75). Such approaches 
exploit strain-specific variants of CAM (e.g. see 41. 66. 69, 76. 106). as 
well as differences in the properties of its targets [e.g. the CAM-regulated 
kinases (99) and the phosphatases that have been described earlier in 
vertebrates (8)J. The functional insights emerging from these studies. focused 
on the actions of ci+ -activated CAM, are gaining mechanistic value from 
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214 WEINSTEIN & MEHLER 

the inferences provided by rapidly accumulating data about the three-dimen
sional structural characteristics of the CAM molecule (e.g. see 5, 7, 15, 

3 1, 46, 60, 85, 92, 97, 120) and its complexes with ligands (e.g. see 45, 

47, 52, 61, 62, 77, 8 1). The literature summarizing the structural charac
teristics of CAM emphasizes those shared with other calcium-binding pro
teins (especially the EF-hand class; 80, 109), as well as those structural 
elqnents that appear to set CAM apart from other members of this family 
of proteins, and determine the specificity of its interaction with the various 
targets in the cell (7, 14,3 1,32,47,52,53,60-62,77,8 1,85,92,94-96, 

120, 128). Based on such structural data, hypotheses regarding the mech
anisms of action of CAM in a variety of physiological processes can be 
formulated at a detailed molecular level (e.g. see 30, 87, 90-92, 94, 98, 

99, 108, 126). Such hypotheses can serve to identify and discriminate the 
differences in the structural properties that underlie the diverse actions of 
CAM in the various physiological mechanisms it subserves in the cell. A 
practical consequence of the mechanistic insights at the molecular level is 
the opportunity they may offer to achieve specific control over the many 
processes that depend on Ca2+ concentration gradients and their decoding 
by CAM (e.g. see 9, 17, 96, 135). One promising avenue for achieving 
such control through structural manipulation is the application of protein 
engineering approaches to CAM based on a structurally-defined design 
strategy (138). 

However, it is becoming increasingly clear that the CAM molecule has 
special dynamic properties that characterize its structure (7, 46, 47, 63, 85, 

92, 128), determine the effects of Ca2+ binding on the biological properties 
of the molecule (e.g. see 3 1,35,55, 1 10,1 19), and affect the interactions 
of CAM with its cellular targets (30, 32, 47, 52, 62, 77, 81, 100). These 
dynamic structural characteristics are major determinants of the capacity of 
CAM to carry out its actions in the cell with the significant functional 
selectivity and high fidelity required of an ubiquitous modulatory agent (e.g. 
see 56, 58, 66). Consequently, an essential requirement for understanding 
how CAM performs its diverse functions is information that reaches beyond 
the structural details, to the time- and Ca2+ -dependent properties of its 
molecular structure. Accordingly, we focus here on the new elements of a 
mechanistic understanding of CAM function that emerge from this infor
mation and on computational simulation approaches that are well suited for 
the analysis and interpretation of such data. We review some key aspects 
of the recent progress made in the elucidation of the structural and dynamic 
properties of CAM and their putative relations to the functional role of 
CAM in physiological processes. Special attention is given to the emergence 
of a structure-based hypothesis for selective binding of CAM to the large 
variety of proteins it modulates and to the role that Ca2+ -binding and the 
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STRUCTURAL DYNAMICS IN CALMODULIN FUNCTION 215 

dynamic properties of the protein have in determining CAM selectivity for 
protein targets. 

ci+ -BINDING AND THE STRUCTURAL PROPERTIES 

OF CALMODULIN 

Structural Dependence of Ca
2+ Affinities 

Detailed information on the three-dimensional structure of CAM at atomic 
resolution is relatively recent (5, 15) and reveals an architecture that is 
similar to that described earlier for troponin C (TNC) (38, 39) in the 
positioning of two Ca2+ -binding globular domains linked by a long, sol
vent-exposed straight helix (see Figure 1). The two calcium-binding motifs 
in each globular domain are composed of pairs of helix-loop-helix elements 
known as EF-hands (80, 109), which define a class of calcium-binding 
proteins comprising an ever growing number of members being identified 
in a large variety of species (33, 34). The quest for understanding the 
relationships between Ca2+ binding and the physiological functions of the 
EF-hand proteins led to explorations of the structural properties of these 
Ca

2+ -binding motifs (37) and their sequence similarities in a variety of 
proteins (e.g. see 89, 127). The properties of EF-hand motifs were compared 

Figure I Ribbon tracing of the three-dimensional structure of calmodulin. (Left: a) The structure 
from X-ray crystallography (5). (Right: b) The structure computed from molecular dynamics 
simulation (see CAM2 in Reference 85). To obtain equivalent representations, the Ca carbons 
of the Codomains (residues 83-148) were superimposed, and the structures were then separated 
as shown. The Ca

2+ 
ions are represented by their van der Waals surfaces. 
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(80, 109), and the responses of proteins incorporating such specialized 
motifs to the binding of ions have received special attention (2, 3, 16, 40, 
42, 44, 56, 70, 73, 74, 85, 106, 110, 118, 119). Since the activation of 
CAM is a direct consequence of ci+ -binding, much attention was also 
devoted to measuring the kinetics of binding and the affinities of CaH for 
calmodulins from many sources (recent reviews; 16, 22). A number of 
methods have been used to determine the macroscopic binding constants of 
CAM (e.g. see 16, 22, 72 and references therein). The results of direct 
binding studies suggest either four noninteracting sites with identical (or 
different) CaH affinities, or cooperativity between the Ca2+ binding sites 
in at least one of the domains. 

Kinetic studies of calcium binding, using 43Ci+ NMR and stopped-flow 
fast kinetics (see 16), led to a model in which CaH binds first to the 
C-terminal domain and subsequently to EF hands I and II in the N-terminal 
domain when the concentration of Ca2+ is increased. Wang et al (131) 
proposed a model to resolve the discrepancies between the various inferences 
from the direct binding and the kinetic studies, which assumed two pairs 
of binding sites with high and low affinity and relatively strong cooperativity 
in the pair of sites within each domain. 

Most of the equilibrium binding studies have suggested varying degrees 
of positive cooperativity in the binding of ci+ to the loops of EF-hands 
III and IV, which have the higher affinity, and some have indicated that 
cooperativity also is found between the lower affinity sites I and II in the 
EF-hands of the N-terminal domain (e.g. see 55, 72, 107). The products 
of the macroscopic binding constants (KIK2 of sites III,IV and K3K4 of 
sites I,ll in CAM) obtained by Linse et al (72) were considered to be more 
precisely defined experimentally than the values of the individual hinding 
constants because experimental errors in the latter tended to cancel each 
other. Comparing the values of these products from various sources (16) 
does in fact show them to be much closer, at a given ionic strength, than 
the values of the individual binding constants. The discrepancies in the 
values of the individual binding constants emphasized in earlier comparisons 
(e.g. see discussion in 16) could thus be due to greater uncertainties inherent 
in the experimental procedures, or to the different ways in which binding 
constants were obtained from the experimental data (16, 72). 

To clarify the role of cooperativity between Ca-binding sites in determining 
the measured affinities, similar studies of Ca2+ binding were carried out 
with tryptic fragments of CAM molecules from various sources (including 
vertebrate- and yeast-CAM) (58, 72, L06, 113). These fragments (termed 
TR IC for residues 1-77, and TR2C for residues 78-148) are obtained by 
trypsin digestion that cleaves the central tether helix at Lys77 and separates 
the pair of EF-hands in the N-terminal domain from those in the C-tcrminus 
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STRUCTURAL DYNAMICS IN CALMODULIN FUNCTION 217 

(4). A least-squares fitting procedure devised recently to extract the binding 
constants directly from the experimental data obtained by titration, using 
lH-NMR spectroscopy, was applied to CAM and its two tryptic fragments 
(72). In these studies, the binding constants of Ca2+ in each of the fragments 
were not appreciably different from the values obtained for the corresponding 
sites in the complete CAM, which indicates no measurable interaction 
between the N- and C-terminal domains in the Ca-binding process (72). 
However, some authors have emphasized the experimental difficulties in 
the interpretation of the measurements yielding the information, e.g. from 
NMR data (102, 107), of the extent to which the cooperative interaction 
between the two calcium-binding domains of CAM affects the affinity for 
Ca2+ in the respective binding loops. In yeast-CAM an interaction between 
the domains seems to affect the Ca2+ -binding properties ( l  06), but the 
amino acid sequence of this CAM form is sufficiently different from 
vertebrate CAM--especially in the binding loops of the EF-hands-to 
account for this special behavior. The relation between the Ca2+ -binding 
behavior and the differences observed in the physiological functions of 
yeast-CAM compared to the vertebrate forms remain unresolved. 

Cooperativity and the Time-Dependent Properties 
of Ca2+ -binding Structures 

Interest in the determination of the binding constants and the elucidation of 
inter- and intradomain cooperativity is motivated in part by the expectation 
that once the binding has been characterized, it may be possible to alter, 
through selective mutation, both the affinity for Ca2+ and the cooperativity, 
so as to affect the calcium dependence of physiological and pharmacological 
processes. However, results from the binding studies carried out so far on 
CAM (see above), as well as on other members of the EF-hand family of 
Ca-binding proteins (e.g. see 23, 48, 71, 73, 74, 88, 112), have indicated 
that simply measuring the binding constants is not sufficient for identifying 
amino acid residues that would be good candidates for effecting a desired 
change in the calcium-binding properties. Rather, the experimental ap
proaches applied to study the structural consequences of ci+ binding have 
disclosed a complex array of structural changes and dynamic responses to 
the sequential occupation of the calcium-binding sites (e.g. see 3, 11, 24, 
25,27,41,65,74,84, 104, 105, 125). In some cases, specific mutations 
in the EF-hands, designed to produce significant effects on Ca2+ binding, 
yielded unexpected results (107, 130). To achieve control of CAM's func
tions through specifically designed structural modifications will require 
detailed knowledge of how the binding of ci+ is controlled by the other 
parts of the protein's structure that affect the Ca2+-binding elements, and 
how this structural control is affected by individual amino acid residues. 
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Recent examples show that such insight at atomic detail can be obtained 

for the calcium-binding proteins from computational investigations of their 

structural and dynamic properties (e.g. see I, 84-86, 92, il l, 118, 137, 
138). using molecular simulation techniques that are based on the theoretical 
methods of classical physics and statistical mechanics. The significant 
potential of these approaches in the exploration of insights obtained from 

experimental measurements has been reviewed and evaluated critically (e.g. 

see 13,49,51,79,121,123,124,134,136). To illustrate the nature of 

the detailed structural and mechanistic information that is attainable from 

such methods, we briefly review results obtained recently for the small 

Ca
2+ 

-binding protein. caibindinD9ko which consists almost entirely of two 
EF-hand motifs (114). 

The effects of Ca2+ -binding to caibindinD9k were explored experimentally 

and computationally to help identify the type of changes in the properties 

of EF-hand proteins that may determine their function. CaibindinD9k (CAB), 
the smallest EF-hand protein to be characterized structurally both in the 

crystal (114) and in solution (2, 105), is a calcium storage protein that 

binds the two Ca
2+ 

ions into EF-hands I and II with a cooperativity of 
around 1.4 Kcallmol (70, 73). A recent series of articles (2, 3, 64, 104, 
105) report on the structure and internal dynamics of apo-, singly, and 
doubly occupied CAB, studied using I H-NMR spectroscopy. A major 
conclusion from these studies is that the structure of CAB is quite insensitive 

to the extent of Ca2+ occupancy, in contrast to the expectations for 
Ca-binding regulatory proteins such as CAM. However, these studies found 
significant effects of Ca2+ -binding in the form of a substantially greater 
degree of flexibility in the apo-form than in either the singly occupied or 

the holo-form of the protein, and in the modification of the local dynamic 
properties of the protein (3). The significant reduction in the flexibility of 

the protein observed with the binding of the first Ca2+ led Akke et al (3) 
to suggest a model in which the main source of cooperativity in the binding 
of Ca

2+ 
to the EF-hands in CAB is the entropic effects arising from changes 

in the dynamics of the protein with different levels of Ca occupancy. 

To explore the detailed effects of Ca2+ binding in the EF-hands of CAB 
on the dynamics of the protein, computational simulations with the methods 
of molecular dynamics (MD) (12, 13, 51, 124) were carried out (84) on 
doubly occupied CAB (CABi), singly occupied CAB (CAB I with CaH 

only in EF-hand II), and apo-CAB (CABo). Comparisons of the structures 
obtained from the MD simulations to the results from NMR and hydrogen 
exchange measurements of Akke et al (3) showed very good agreement. 

First, the RMS differences among the three structures obtained from the 
simulations for the three CAB forms were less than 1.2A, which indicated 
the same insensitivity of the structure to changes in CaH occupancy as was 
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observed from the NMR measurements (3). Further agreement between the 
properties revealed from experimental (3) and computational results (84) 
was established from comparisons of the observed changes in the local 
dynamic properties, such as the description of the local unfolding that 
determines the surface accessibilities of main chain amide groups and is 
measured by hydrogen exchange rates (see 3 and references therein). 

In agreement with Akke et al (3), who concluded that the flexibility of 
CAB increases in the order CABo > CAB ,2':CAB2, the calculated RMS 
fluctuations of all the protein atoms show the same rank order (84). In 
addition, both NMR measurements and the simulations indicate that the 
largest reduction in molecular flexibility takes place with the binding of the 
first Ca2+ , while binding the second Ca2+ causes at most a small additional 
reduction. This agreement between the results from MD simulations and 
NMR measurements made it attractive to estimate the magnitude of the 
entropic contribution to the cooperative effect in Ca2+ -binding to the EF
hands of CAB. The calculations were based on an approximation of the 
method proposed by Karplus & Kushick (50), which involved a truncation 
of the matrix of the covariances of the fluctuations of the atomic coordinates 
(84). The diagonal elements of the covariance matrix are the mean square 
fluctuations that increase the configurational entropy, while the off diagonal 
elements are a measure of the correlations between atomic fluctuations and 
therefore decrease the entropy. A first approximation of the configurational 
entropy can be formulated as 

LlS(A�B) = Rln(RMSB/RMSA), 

where the covariance matrix has been condensed to just the average RMS 
fluctuation of the entire molecule given above. Thus for the binding of the 
first Ca2+, the entropic contribution becomes (84) 

LlG(CAB�CABl) = -RTln [RMS(CABJ)/RMS(CABo)J. 

A similar expression is obtained for binding the second ci+, i.e. the 
process CABl�CAB2' However, because the binding of the second Ca

2+ 

induces only a small change in flexibility, the latter contribution is negligible. 
The main entropic component of the free energy of Ca2+ binding to CAB 
obtains from the process CAB�CAB 1 because the major loss of flexibility 
is due to binding the first Ca2+. The entropic contribution to the cooperativity 
is negative because the protein becomes rigid upon Ca2+ binding. The 
calculated values (84) are in reasonably good agreement with the experi
mental trends, which lends further support to the proposal (3) that cooperativ
ity in CAB is due to the larger change in the dynamic behavior of the 
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protein that occurs on binding the first calcium, compared to binding the 
second one. 

Such effects of Ca2+ -binding on protein dynamics can be expected to 
occur within the N- and C-terminal domains of CAM, each of which contains 
a pair of EF-hands. However, the changes induced by Ca2+ -binding in the 
structural properties of CAM that are more directly relevant to its functional 
properties are also likely to involve the tether helix that determines the 
mutual orientation and the distance between the two domains (cf the two 
conformations of CAM in Figure 1). The functional significance of these 
changes in the mutual orientation of the Ca-binding domains stems from 
the presence of characteristic hydrophobic regions in these domains. The 
properties of these regions are modified, as discussed below, in the Ca2 

� -
loaded form of CAM, which prepares the molecule for specific interactions 
with target proteins. 

STRUCTURAL VARIABILITY OF CALMODULIN IN 

SOLUTION 

Comparison of the crystal structure of isolated CAM (5, 15) with the 
structure obtained from NMR spectroscopy for CAM complexed with M13, 
a 26-residue peptide representing the CAM-binding region in the enzyme 
myosin light chain kinase (45, 47), shows two types of structural changes 
that occur upon complex formation: (a) a reorientation of the two globular 
domains, and (b) a compaction of the structure that brings the two domains 
closer together to envelop and interact with the CAM-binding region of the 
target protein. Using the four Ca2+ ions to define a virtual dihedral angle 
(as outlined in Reference 92), the reorientation of the domains can be 
quantified as a change in the angle values from -1340 in the crystal structure 
to 109° in the complex. The compaction is quantifiable through the radius 
of gyration (e.g. see 31, 85), which decreases from 22 to 17A.. 

Experimental approaches have been used to characterize the flexibility of 
the tether (e.g. see 7, 90) and the departure of the solution structure of 
uncomplexed CAM from the extended form observed in the crystal (e.g. 
see 31, 128). The results from small angle X-ray scattering (SAXS) 
experiments, which suggest some compaction of CAM in solution relative 
to the crystal structure, were somewhat inconclusive since different authors 
did not agree in their interpretation of the SAXS results (31, 101). We 
showed, however, that the observed solution pair distribution function of 
CAM obtained from SAXS experiments (e.g. see 31, 77) could be ration
alized by assuming an equilibrium between structures in various states of 
reorientation and compaction (85) (the compacted structure shown in Figure 
1 right illustrates one of the conformations visited by CAM). This obser-
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vation agrees with results from NMR spectroscopy (7) and with inferences 
from energy transfer studies on CAM and troponin-C, which indicate that 
the two lobes move closer together when the pH is raised from 5.5 to 7.4 
(e.g. see 128,129). 

The agreement between observations from experiment and from compu
tational simulation, which suggests that the structure of CAM in solution 
can access various configurations and the potential importance of this 
dynamic variability in structure for the function of CAM, made it worthwhile 
to inquire how this flexibility is controlled. The exploration of the mechanism 
by which the structural elements of CAM and their interactions determine 
the time-dependent behavior of the molecule was carried out by analyzing 
the dynamic structural details provided by the MD simulations (92). 

A Mechanism of Compaction 

Careful analysis of the time evolution of interactions between individual 
amino acid residues comprising the peptide chain from several MD trajec
tories (92) revealed a pattern of H-bonds that form and are severed during 
the simulations. A structural analysis of these time-dependent H-bonding 
patterns was carried out (92) to determine whether any could be directly 
involved in facilitating the compaction process. The formation of H-bonds, 
which connected groups in different elements of secondary structure and 
persisted for a long simulation period, were deemed the most likely candi
dates for key interactions in the compaction mechanism because these would 
be the most likely to stabilize structural changes. 

The analysis identified three arginine residues (Arg74, Arg 86, and 
Arg90), which appeared to be involved in H-bonding patterns that met the 
criteria defined above. Typical in this context was the behavior of Arg74, 
which was found to form a new H-bond to the carbonyl group of Val55 
(see hydrogen-bonding patterns in Figure 2) after only 18.5 psec of simu
lation and to maintain other interactions, all in a manner suggestive of a 
reversible compaction trigger (see below). The bond to Val55 forms at a 
time when the orientation of the globular domains begins to change from 
the trans-like orientation observed in the X-ray structure to one that is more 
cis-like. Figure 2 shows that the H-bond to Glu67 persists throughout the 
early part of the trajectory, but breaks sometime between 29 and 85 psec 
into the trajectory. Also in that time period, an additional H-bond forms 
with Glu54. The H-bonding pattern of Arg74 shares a characteristic of all 
three arginines, namely, an H-bond anchoring the residue to a nearby residue 
(Thr70 for Arg74). The pattern of first latching onto Glu67 , then Va155, 
with the bond to Glu67 subsequently being broken and replaced by an 
attachment to Glu54, is suggestive of a ratcheting process where one end 
of the chain remains firmly anchored (to Thr70) and the other end of the 
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Figure 2 Schematic representation of the time-dependent evolution of the hydrogen bonding 
pattern involving Arg74 in molecular dynamics simulations of calmodulin. The two-dimensional 
structural representation is derived from snapshots of the structure taken at successive stages of 
the simulation. (Top left) at 17 psec; (top right) at 18.5 psec; (middle right) at 19 psec; (middle 
left) at 29 psec; (lower left) at 85 psec. 
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residue draws in successive attachment sites from more distant parts of the 
structure. 

Several additional noteworthy aspects of the involvement of Arg74 in the 
compaction process may be seen from Figure 2. At all times there are at 
least two residues attached to the guanidinium moiety of Arg74, and from 
19 psec onward all the guanidinium protons are involved in H-bonding. 
Perhaps in this way the potential for this group to stabilize intermediate 
structures is optimally exploited. Also of interest is the involvement of 
waters in the dynamics of the H-bonding patterns. Figure 2 shows that 
waters were involved in the H-bonding process and, in fact, continuously 
surrounded Arg74 (see 92). 

A similar H-bonding pattern was <ilso observed for Arg90, which was 
anchored to Glu87, with the residues involved in the ratcheting process 
including Asn97 and Gly96. At one point in the trajectory the carbonyl 
oxygen of Arg86 was linked to Arg90, thus forming a common H-bonding 
network, perhaps coordinating the movement of both. In these two latter 
cases, water again participated intimately in the continuously altering H
bonding networks. Finally, it is noteworthy that for both Arg74 and Arg90, 
residues from the Ca2+ -binding loops were involved in the H-bonding 
patterns, and that the time evolution of the interaction energies of Arg74 
and Arg90 with the rest of the protein structure (see 92) also supported their 
involvement in the compaction process. The function of Arg74 and Arg90 
in facilitating the reversible compaction appeared the clearest, but the role 
of Arg86 was not clear, i.e. whether it was driving or responding to structural 
change. 

To test how essential these residues are for compaction, the simulation 
was repeated, but in each run, one of these residues was mutated to alanine. 
Thus three additional simulations were carried out (K Haydock et al, 
unpublished) for the three mutated forms of CAM: Arg 74 to Ala74 (R74A), 
Arg86 to Ala86 (R86A), and Arg90 to Ala90 (R90A), using identical 
simulation conditions as one of the simulations on wild-type CAM, which 
yielded a compacted structure (i.e. CAMlO in Reference 92). In all three 
mutations, the two lobes of CAM reoriented: for the wild-type CAM,- the 
virtual dihedral angle between the four Ca2+ (see above) was -72°, and 
for the three mutants, the values were -77,18, and -43° for R74A, R86A, 
and R90A, respectively). The R74A mutant assumed nearly the same 
orientation as the wild-type CAM. The domains of the R86A mutant assumed 
quite a different disposition, but one that is close to the orientation from 
another simulation on the wild-type protein in which the conditions were 
altered (see Table 1 in Reference 85). The R90A mutant achieved an 
interdomain orientation intermediate between R74A and R86A. However, 
only R86A compacted, whereas both R74A and R90A became somewhat 
more extended than the starting (X-ray) structure. The simulations therefore 
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indicate that Arg74 and Arg90 (perhaps in concert with Arg86), but not 
Arg86 alone, are essential for compaction. The H-bonding patterns around 
the residues that were not mutated still underwent the characteristic changes 
described above for the simulation on the wild type, but when one of the 
two essential residues (Arg74 or Arg90) was absent, compaction did not 
occur. 

It is also noteworthy that both Arg74 and Arg90 seemed to contribute in 
important ways to the stability of the structure. Thus the CAM mutants 
R74A and R90A exhibited large and persistent fluctuations in their radii of 
gyration and in their interdomain orientations over relatively long periods 
of time. In contrast, the structural changes in the simulations of the wild-type 
CAM and the R86A mutant always took place in the first part of the run 
(although these changes took longer in some cases than in others), and 
subsequently the overall structures remained quite stable in the compacted 
form. These observations help support the main conclusion of these computer 
mutation experiments, namely that Arg74 and Arg90 play crucial roles in 
controlling the molecular flexibility that CAM requires for its functional 
viability. 

THE TIME-DEPENDENT STRUCTURE OF 

HYDROPHOBIC PATCHES IN CALMODULIN 

An early observation from experimental studies of structure-function rela
tionships in CAM was the exposure to the solvent environment of clusters 
of hydrophobic residues following the binding of Ca2+ (e.g. see 67, 115). 
The steric adjacency of these hydrophobic residues caused these regions to 
be viewed as hydrophobic patches. Biochemical experiments, as well as 
structure determinations, have implicated these hydrophobic patches in the 
mode of action of CAM in the cell (90, 91, 115, 116). The recent structure 
of CAM complexed to a peptide (MI3) representing the binding domain of 
skeletal muscle myosin light chain kinase (MLCK), obtained from NMR 
spectroscopy (45) and from X-ray crystallography (81), confirms the im
portance of interactions between specific hydrophobic residues in CAM and 
its target protein. As it becomes clear that degrees of Ca2+ occupancy 
determine both structural and dynamic properties of EF-hand proteins (see 
section above), the nature of the relationship between Ca-binding and the 
induced, specific structural changes in the hydrophobic patches becomes a 
tantalizing question. Significant insight into this question can be gained by 
examining the structural details of these patches, which are so intimately 
related to CAM/target binding, and by comparing their disposition in the 
CAM structures from X-ray crystallography, from NMR spectroscopy, and 
from computational simulations. An important consideration here is that 
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both X-ray crystallography and NMR spectroscopy provide a time-averaged 
picture of the disposition of the hydrophobic patches, whereas the simulations 
provide the additional insight of the time evolution of the structural changes. 
As discussed below, it is the availability of this information on structural 
dynamics that allows the formulation of a mechanism for target selectivity 
in the actions of CAM. 

Selectivity in CAM Binding to Target Proteins 

Figure 3a-d displays space-filling CPK representations of the molecular 
structure of CAM for a comparison of the hydrophobic patches in the 
molecular structures obtained from crystallography (5), NMR spectroscopy 
(45), and computational simulations (85, 92), respectively. Only the N-ter-

e 

c D 

Figure 3 Space filling representations of the target-binding face of the N-terminal domain in 
various conformations of calmodulin. (a) The crystallographic structure (as in Figure I left). (b) 
The structure from NMR spectroscopy (45). (c) The structure from molecular dynamics simulation 
(as in Figure 1 right). (d) The structure obtained from an alternative molecular dynamics simula
tion (92), Atoms involved in interactions with the M13 peptide from the CAM-binding domain 
of skeletal muscle myosin light chain kinase (residues 577-602) are darkly shaded; the other 
atoms are lightly shaded. Residues 12-76 in all the CAM structures shown were superimposed 
on the N-terminal segment of the structure from NMR spectroscopy to obtain the equivalent views 
shown. 
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minal segment (residues 1-76) is shown, in a perspective that is "looking 
into" the domain head-on (the tether, residues 77-83, is included in the 
Kendrew representation). To secure the same orientation in the display of 
each structure, residues 1 2-76 of the structures from the crystal and from 
the computational simulations were superimposed on the corresponding 
segment of the N-terminal domain of the NMR structure. Charged and polar 
residues, as well as hydrophobic residues (dark area in Figure 3) have been 
identified from the NMR studies (45) as being involved in binding to M l3. 
The exposed surfaces of these polar and hydrophobic residues provide regions 
of interaction with the target peptide and constitute a surface area relevant 
to binding (SARB). The SARB is defined quantitatively for the interaction 
of CAM with M13 by taking the difference in solvent accessible surface 
area between the CAM/Ml3 holo- and apo- structures (i.e. the NMR 
structure with and without the Ml3 peptide). 

The overall configuration of the residues in the SARB, with the hydro
philic residues framing several hydrophobic regions on the outside, is similar 
in all the cases shown. Nevertheless, there are several key differences: 
comparison of the structures from X-ray crystallography and NMR spec
troscopy reveals that in the latter structure the entire domain appears to 
span a larger space, albeit with several holes; importantly, the disposition 
of the hydrophobic patches differs in the crystal and in solution. In the 
NMR structure in solution, the patches have spread out and form several 
distinct islands. The conformations of the hydrophilic residues have also 
changed, and in the particular view shown, the Ca2+ ion is accessible to 
the solvent in the NMR structure, but not in the crystal structure. 

The SARB construct defined for the particular M13 target makes it 
possible to track the time-dependent developments in the target-binding 
potential of CAM by following its behavior in a computational simulation 
of CAM dynamics. The working hypothesis is that the accessibility of this 
surface area, which is relevant to the binding of a particular target, will 
change with time, as it changes with the binding of Ca2+ and of various 
peptides (e.g. see 46, 52-54, 67, 115, 119). The mechanistic implication 
is that the dynamic changes in the SARB will determine the time-dependence 
of the binding probability for certain targets. As different targets are likely 
to require different SARB, these changes are likely to constitute a time-de
pendent (and Ca2+ occupancy-dependent) scheme for achieving selectivity 
in the physiological actions of CAM. 

It is clear from Figure 3 that the three-dimensional configuration of the 
SARB for M 13 defined from the NMR structure is different from the 
surface outlined by the same residues in the crystal structure of CAM. 
Examination of the same area in the results from the MD simulations 
performed on isolated CAM (with various solvent models, but no binding 
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peptides or inhibitors) provides SARB shapes that are time-dependent. An 
average structure (obtained from the last part of the simulation trajectory) 
could mimic the properties of a relevant SARB conformation. However, 
in the absence of a target protein, the hydrophobic patches would evolve 
further to what could become a nonbinding configuration. The results of 
the computational simulation can be explored for the time-dependent 
appearance of the appropriate SARB configuration. For example, such a 
search for potentially significant structures was performed on the trajectory 
of the computational simulations by comparing the developments in the 
SARB, starting from the crystal structure (5) (which is the starting point 
for the dynamics simulations) (85, 92) and going towards the structure 
of CAM in the complex with M 13 [rom the NMR measurement (45). 
To quantify the changes , a numerical value was calculated for the 

solvent-accessible-surface area (SASA) using the GEPOL algorithm (93, 
103). The SASA of the 39 interacting residues in the SARB was calculated 
for the NMR and crystal structures of CAM, and it was found that the 
SASAs of 28 residues were larger in the NMR than in the crystal structure, 
while in the remaining 11 residues the SASAs of the NMR structure were 
smaller. The SASAs for a series of snapshots from several dynamics 
trajectories were calculated for each of the 39 interacting residues, and 
the value was compared to the SASAs obtained for these residues in the 
X-ray structure and checked for qualitative agreement with the trend found 
[or the change in SASAs between the NMR and crystal structures. The 
agreement in the preparation of the SARB for binding (i.e. the transition 

from the crystal structure to the NMR structure) tended to improve early 

in the trajectory, persisted briefly, and then became less good. For 
example, for CAMI0 (defined in Reference 92), the change in SASA 
was correctly predicted for 20 residues from the snapshot at 20 psec, 27 
residues were correctly predicted at 40 psec, but for the average structure 
obtained from the last part of the simulation (286-326 psec), the agreement 
was reduced to 24 residues. This trend was observed for all the trajectories 
examined, independently of how well the changes in accessible surface 
area agreed with the observed changes between the NMR and crystal 
structures. However, it is important to emphasize that even the final 
average structures resulting from the computational simulations maintain 
a SARB that is closer to that defined by the NMR structure than the 
crystal structure. Thus in both CAM2 and CAMlO structures (see 85, 92, 
respectively), the patches have spread out relative to the X-ray structure, 
with the tendency to form islands similar to those seen in the NMR 
structure. This further illustrates the agreement between the computed and 
observed structures and lends support to the analysis of the time-dependent 
features in the SARB defined for CAM from computational studies. 
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The Role of the Central Tether Helix in the Interactions of 
CAM with Its Targets 

Residues 73-82 constitute the tether connecting the two Ca2+ -binding 
domains on which the SARB for a specific target can be identified. This 

tether region is helical in the crystal structure of CAM, but dissolves into 

a flexible loop in the complex with M13 (45, 47, 81). In both the CAM2 
and CAMlO structures obtained from the computational simulations (85, 

92), this is also an important region of flexible structural rearrangement 
that contributes to the reorientation of the domains and to subsequent 
compaction (e.g. see Figure 1 right). The special dynamic properties of this 

region were also identified in the NMR structure of the uncomplexed CAM 
(7). It is of interest that between residues 73 to 82, only Met76 and Ser81 
interact with M13 and, in fact, their interaction is marginal because binding 

of M 13 decreases the SASA of these two residues by less than 4% even 
though about 80% of the maximum SASA is exposed in the apo-NMR 

structure. This lack of interaction between M13 and the tether suggests that 

the structural changc observed between the crystal and NMR structures of 
the CAMlM13 complex is not the result of interactions of M13 with the 

tether. This conclusion is supported by two further observations: first, 
structures obtained from various trajectories suggest that CAM's flexibility 
may result from distortions in different parts of the linker (92). Moreover, 

as mentioned above, the pair distribution functions observed from SAXS 
experiments in solution (31, 77) can be rationalized as we described (85) 
by assuming an eqUilibrium between structures in various states of compac
tion and reorientation. Second, the Ca-binding studies by Forsen et al (e.g. 

see 72, 73) discussed above failed to detect interdomain cooperativity in 
the binding. Certainly, a very flexible tether, which assumes a continuously 
variable range of conformations in solution (7), is unlikely to be involved 

in transmitting information between the two lobes. Rather, the early obser
vations of the importance of such flexibility (e.g. see 90, 91, 94, 95) are 
likely to reflect the role of the flexible tether in placing the SARBs (evolving 
in the two separate domains) into positions appropriate for interaction with 
the target (for some recent discussions, see 30, 87, 99). Early mutation 
studies designed to determine the functional significance of the central helix 
of CAM (96) reached similar conclusions with regard to the role of this 
structure in the appropriate positioning of the sites required for specific 
interaction with the target protein. 

Since the exposure of hydrophobic residues in the crystal and NMR 
structures was similar, the prediction from model building of the residues 
that interact with such peptides as M 13 (e.g. see 91, 94) or with CAM 
inhibitors (108) was quite successful. In the specific case of MI3, it was 
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necessary to assume some deformation of CAM in order to bring the domains 
closer together, and here the modeling was less successful (assuming a 
single kink in Ser81), since both the NMR and the crystal data for the 
complex (45, 81) ultimately showed that the domains came closer together 
because the tether was deformed into an extended loop with complete loss 
of helicity. The .structures generated by the dynamics calculations predicted 
(85, 92) that compaction resulted from tether distortion over its entire length 
(residues 73-84), a development that is much closer to the dissolution 
exhibited by the NMR structures (7, 45) than the models that assumed a 
localized kink resulting from an alteration in the <I> and I\J angles of a single 
residue. This difference in results obtained from model building compared 
to computational simulation clearly illustrates the advantage of the latter 
(see also 137), in which the time evolution of the structure is obtained 
through a straightforward application of Newton's laws of motion, and the 
inherent approximations and errors are, in principle, correctable (e.g. see 
13, 51, 68,78, 79, 121-124, 132-134). 

CONCLUDING REMARKS 

The mechanistic insight provided by the analysis of structure and dynamics 
of the CAM molecule outlined in this review suggests several novel 
possibilities for modulating the physiological functions of CAM. First, of 
course, is alteration of ci+ binding. An obvious approach is to alter one 
or more residues in the Ca-binding regions but, as discussed here, attempted 
changes through mutations suggested by the average structure of the molecule 
have not always led to the expected results. An alternative, more subtle 
type of structural manipulation, suggested from the results of the computa
tional simulations would be to change the dynamic behavior of the apo
structure relative to the fully Ca2+ -loaded CAM. The specific modifications 
can be probed with computational simulations, and the results can be directly 
tested experimentally. However, the mechanisms of the measured effects 
on activity may still be difficult to interpret because at present it is not 
clear which of the two components of the structural dynamics, i.e. com
paction in solution, or flexibility (or both), is the controlling factor in 
CAM's activity. The most complex, but perhaps the most effective, muta
tions would be aimed at altering the structures of the hydrophobic patches. 
Here, the simulation techniques might be an extremely powerful tool in 
searching for effective mutations, since the experimental or modeling ap
proaches would essentially have to proceed by trial and error. 

From this review it should be clear that the study of the structural and 
dynamic properties of calmodulin and related Ca-binding proteins provides 
a potentially rich source for gaining the type of mechanistic insights that 
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will be required to implement structurally defined design strategies (138) 
in developing engineered proteins with desirable properties. At the same 
time, it is evident that the application of computer simulation techniques to 
this class of proteins has only just begun and that considerable work will 
be required to provide a generally useful body of mechanistic information. 
The main motivation for continuing this effort is that these techniques reveal 
time-dependent structural properties that appear to be crucial to the behavior 
of the system and are more difficult to evaluate with other methods. 
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