Calcium Binding to Calmodulin and Its Globular Domains*

(Received for publication, November 5, 1990)

Sara Linse, Anna Helmersson, and Sture Forsén

From Physical Chemistry 2, Lund University, Chemical Centre, S-221 00 Lund, Sweden

The macroscopic Ca²⁺-binding constants of bovine calmodulin have been determined from titrations with Ca²⁺ in the presence of the chromophoric chelator 5,5'-Br₂BAPTA in 0, 10, 25, 50, 100, and 150 mM KCl. Identical experiments have also been performed for tryptic fragments comprising the N-terminal and Cterminal domains of calmodulin. These measurements indicate that the separated globular domains retain the Ca²⁺ binding properties that they have in the intact molecule. The Ca²⁺ affinity is 6-fold higher for the Cterminal domain than for the N-terminal domain. The salt effect on the free energy of binding two Ca²⁺ ions is 20 and 21 kJ·mol⁻¹ for the N- and C-terminal domain, respectively, comparing 0 and 150 mM KCl. Positive cooperativity of Ca²⁺ binding is observed within each globular domain at all ionic strengths. No interaction is observed between the globular domains. In the N-terminal domain, the cooperativity amounts to 3 kJ·mol⁻¹ at low ionic strength and ≥ 10 kJ·mol⁻¹ at 0.15 M KCl. For the C-terminal domain, the corresponding figures are $9 \pm 2 \text{ kJ} \cdot \text{mol}^{-1}$ and $\geq 10 \text{ kJ} \cdot \text{mol}^{-1}$. Two-dimensional ¹H NMR studies of the fragments show that potassium binding does not alter the protein conformation.

Calmodulin is a regulatory Ca²⁺-binding protein which transmits a transiently increased intracellular Ca²⁺ concentration to an activation of specific enzymes. This is possible because of substantial rearrangement of the calmodulin molecule on Ca²⁺ binding. The crystal form of Ca²⁺-loaded calmodulin (Babu *et al.*, 1985, 1988; Kretsinger and Weissman, 1986) resembles a dumbbell with two globular domains separated by a central helix. Small angle x-ray scattering studies (Heidorn and Trewhella, 1988) indicate that calmodulin in solution also folds into two separate globular lobes, which on average are closer together than in the crystal state, owing to flexibility in the interconnecting helix. ¹H NMR studies aiming at a high resolution structure of calmodulin in solution have been initiated (Ikura *et al.*, 1990).

Calmodulin contains four relatively high affinity Ca^{2+} sites $(K_a = 10^6-10^7 \text{ M}^{-1} \text{ at low ionic strength})$ which have a helixloop-helix conformation, so-called EF-hands (Kretsinger and Nockolds, 1973). Each globular domain contains two such sites, which enables cooperative calcium binding. The sites in the C-terminal domain have higher Ca^{2+} affinity than those in the N-terminal domain (Thulin *et al.*, 1984; Wang *et al.*, 1984; Martin *et al.*, 1985). Because of its biological importance as a regulator of cellular functions, calmodulin has been the focus of numerous biophysical studies (for a review see Forsén et al., 1986).

Several studies of the Ca²⁺-binding properties of calmodulin, at different conditions as regards choice of buffer and ionic strength, have been reported to date (see for example Dedman et al., 1977; Jarret and Kyte, 1979; Crouch and Klee, 1980; Cox et al., 1981; Haiech et al., 1981; Keller et al., 1982; Yoshida et al., 1983; Ogawa and Tanokura, 1984; Burger et al., 1984; Iida and Potter, 1986; for recent reviews see Forsén et al., 1986 and Cox et al., 1988). Some of these studies are apparently contradictory and report either four noninteracting sites with identical or different Ca²⁺ affinities or positive cooperativity between at least two sites. Part of the apparent controversy is likely to be due to the different methods of analyzing the primary data (Forsén et al., 1986). In addition, binding data obtained for a system with two slightly different pairs of sites with cooperativity within each pair often closely resembles the data for a system with four equivalent and noninteracting sites (Wang, 1985). Therefore, any method adopted for determining Ca2+-binding constants of calmodulin must provide accurate measurements of the free Ca²⁺ concentration or a parameter related to this quantity. To take maximum advantage of the accuracy of the chosen method, least squares fitting should be done *directly* to the *measured* parameter.

In the present work, we show that titrations in which calmodulin competes for calcium with a chromophoric chelator $(5,5'-Br_2BAPTA)^1$ can distinguish between cooperative and independent binding. The absorbance of the chelator as a function of total Ca²⁺ concentration reveals two consecutive processes in calmodulin, each involving cooperative binding of two Ca²⁺ ions. Studies of tryptic fragments comprising the N- and C-terminal domains help to identify these two processes and indicate that in the intact protein there is no cooperativity between the globular domains. Downloaded from www.jbc.org by guest, on December 24, 2009

EXPERIMENTAL PROCEDURES

Materials—Bovine testes calmodulin and its tryptic fragments were prepared as previously described (Andersson *et al.*, 1983; Vogel *et al.*, 1983), and the purity was checked by sodium dodecyl sulfate-gel electrophoresis, agarose gel electrophoresis, and ¹H NMR. The residual Ca²⁺ content was determined by atomic absorption spectroscopy or by comparing the difference between the fitted values of AMAX and AMIN (*cf.* below) with those of the same chelator solution containing 250 μ M EDTA instead of protein. 5,5'-Br₂BAPTA (Tsien, 1980) was from Molecular Probes (Eugene, Oregon). All other chemicals were of highest purity commercially available.

¹*H* NMR—¹H NMR spectra were obtained at 500.13 MHz on a GE-OMEGA 500 spectrometer, at 27 °C and pH 7.5 in H₂O.

 Ca^{2+} -binding Constants—Each protein (20-30 μ M) was titrated with Ca^{2+} in the presence of the tetrapotassium salt of 5,5'-

^{*} This work was supported by Swedish Natural Science Research Council (NFR) Grant K-KU-2545-300. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¹ The abbreviations used are: 5,5'-Br₂BAPTA, 5,5'-dibromo-1,2bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; TR₁C, tryptic fragment comprising residues 1–74 of bovine calmodulin; TR₂C, tryptic fragment comprising residues 78–148 of bovine calmodulin; NH, amide proton; C^{α}H, proton bound to α -carbon.

Br₂BAPTA (25-30 µM) and different concentrations of KCl, in 2 mM Tris/HCl buffer at pH 7.5 and 25 °C as previously described (Linse et al., 1987, 1988). Macroscopic Ca2+-binding constants were obtained from least squares fits directly to the data, i.e. to the absorbance at 263 nm as a function of total Ca^{2+} concentration. The analysis was based entirely on concentration. Two macroscopic binding constants $(K_1 \text{ and } K_2)$ were used in the case of each fragment and four (K_1, K_2, K_3) K_{3} , and K_{4}) in the case of intact calmodulin. Fixed parameters in the fit were KDQ = the Ca²⁺ dissociation constant of the chelator, CQ_i the chelator concentration at each titration point *i*, $CATOT_i$ = the total Ca^{2+} concentration at point *i*, including initial and added Ca^{2+} and CP_i = protein concentration (by weight of lyophilized protein) at point i. CQ_i , CP_i , and $CATOT_i$ include corrections for the dilutions caused by Ca^{2+} additions. Variable parameters in the fit were K_1 through K₄, AMAX, AMIN, and F. AMAX and AMIN are the absorbances one would measure for the initial solution if it was completely Ca²⁺-free or contained saturating amounts of Ca²⁺, respectively. F is a correction factor that accounts for the fact that the protein concentration obtained by weight is not correct owing to the presence of residual water in the lyophilized protein. In our experience, no currently used method for protein concentration determination provides values that are more accurate than the experimental Ca^{2+} titration data itself (in the case of strong Ca^{2+} binding). This validates the use of F as an adjustable parameter (cf. below). For each set of variable parameters, the Newton-Raphson method was used to solve for the free Ca^{2+} concentration, Y, at each titration point, *i*, from the following equation

$$CATOT_{i} - Y - \frac{Y \cdot CQ_{i}}{Y + KDQ} - \frac{F \cdot CP_{i} \cdot \sum_{k=1}^{N} \left(kY^{k} \cdot \prod_{j=1}^{k} K_{j}\right)}{1 + \sum_{k=1}^{N} \left(Y^{k} \cdot \prod_{j=1}^{k} K_{j}\right)} = 0$$

where N = 4 in the case of intact calmodulin and N = 2 for each fragment. In this equation, the last and next to last terms equal the protein-bound calcium and chelator-bound calcium, respectively. The absorbance of 5.5'-Br₂BAPTA at 263 nm decreases when it binds Ca²⁺, and the absorbance at point *i* can then be calculated as

 $Abs_{calculated,i} =$

$[AMAX - (AMAX - AMIN)Y/(Y + KDQ)]CQ_i/CQ_1$

where CQ₁ is the initial chelator concentration. Thus, the changes in absorbance at 263 nm were assumed to arise from the chelator only. (It was experimentally verified that the changes in A_{263} on calcium addition to 30 μ M calmodulin were neglible as compared to 30 μ M chelator.) The error square sum, ESS, was obtained by summing over all points in the titration

$$\mathrm{ESS} = \Sigma (\mathrm{Abs}_{\mathrm{calculated},i} - \mathrm{Abs}_{\mathrm{measured},i})^2$$

The variable parameters were iterated in a separate procedure until an optimal fit (minimum ESS) was found. This procedure is based on numerical evaluation of the first and second derivative of ESS with respect to each parameter. The uncertainties in the final values of the parameters were estimated as previously described (Linse et al., 1991) and do not include errors in the Ca^{2+} affinities for the chelator, which have been reported for 0, 50, 10, and 150 mM KCl (Linse et al., 1991). Here determined values are KDQ = $1.8 \cdot 10^{-7}$ M at 10 mM KCl, and KDQ = $4.4 \cdot 10^{-7}$ M at 25 mM KCl. To make sure our results are not biased by the previously determined stoichiometry of four high affinity sites in calmodulin, the fitting program was forced to use three or five sites, respectively, when analyzing the titration data for intact calmodulin. When all variable parameters (including the protein concentration) were allowed to adjust their values, the error square sum of the optimal fit was 10-fold higher than for the case of four high affinity sites.

pH Titrations—pH titrations (from pH 6.5–11) were performed in 0 and 150 mM KCl in order to assess any salt effect on the pK_a values of ionizable groups which affect the Ca²⁺ affinity of calmodulin. Each fragment was first dissolved in 2 mM Tris/HCl buffer (at pH 7.5) containing 25 μ M 5,5'-Br₂BAPTA and 0 or 0.15 M KCl. Small portions of Ca²⁺ were added and followed by measurements of the absorbance at 263 nm (A₂₆₃), until the system was approximately half-saturated. pH was then adjusted (with HCl) to 6.5, and A₂₆₃ was recorded. The pH was adjusted in steps of ≈0.25 by adding small amounts (2–5 μ l) of NH₃, and A₂₆₃ was recorded at each step. The measured A₂₆₃ was corrected for the dilutions caused by NH₃ additions and plotted versus pH. Since A_{263} reports the Ca²⁺ saturation level of the chelator, the Ca²⁺ affinity of which is constant in the pH interval 6.5–11 (Tsien, 1980), the plot gives a qualitative measure of pH effects on the Ca²⁺ affinity of the protein.

RESULTS AND DISCUSSION

The aim of the present work was to perform a detailed investigation of the Ca2+ affinity and cooperativity of calmodulin and its tryptic fragments. Titrations with Ca²⁺ in the presence of a chromophoric chelator have proven accurate enough to discriminate cooperative binding from independent binding (Linse et al., 1987, 1988). Least squares fits to such titrations provide macroscopic Ca²⁺-binding constants, which refer to the binding of the first, second, third, and so on Ca²⁺ ion to the protein, irrespective of what site is occupied in the protein. Three examples of experimental data with the chelator 5,5'-Br₂BAPTA (and intact calmodulin, TR₁C, or TR₂C, respectively) are shown in Fig. 1A together with the curves of best fit. Fig. 1B displays calculated curves for the chelator and a two-site protein with either two equally strong and noninteracting sites, positive cooperativity, or sequential binding. Evidently, positive cooperativity and sequential binding both result in S-shaped curves, but the curvature is of opposite sign. The trends in the experimental curves in Fig. 1A thus indicate cooperative binding. For intact calmod-

FIG. 1. A, examples of experimental data, absorbance at 263 nm versus total calcium concentration (CATOT) from titrations in the presence of 5,5'-Br₂BAPTA, for intact calmodulin (\bullet), TR₁C (O), and TR_2C (\blacktriangle). --, optimal curves obtained by least squares fitting to the data points. The data have been normalized such that CATOT = 1.0 corresponds to total chelator concentration plus 2 times the protein concentration (fragments) or total chelator concentration plus 4 times the total protein concentration (calmodulin). For comparison, the three curves have been drawn with their respective AMAX and AMIN values at the same level. The actual values for the three titrations shown are: for intact calmodulin AMAX = 0.608 and AMIN = $0.220 (25.0 \ \mu M \ 5.5' - Br_2 BAPTA)$; for TR₁C, 0.557 and 0.128 (27.5 µM); and for TR₂C, 0.575 and 0.185 (25.0 µM). B, calculated curves for a two-site protein (25 μ M) in the presence of 5,5'- Br_2BAPTA (25 μM) with the following values of the two macroscopic Ca²⁺-binding constants of the protein: ----, $K_1 = 2 \times 10^7$ M⁻¹ and K_2 $= 5 \times 10^6$ M⁻¹ as for equally strong and independent sites; - - , $K_1 =$ 1×10^8 M⁻¹ and $K_2 = 1 \times 10^6$ M⁻¹ as for sequential binding;, K_1 = $1 \times 10^6 \text{ M}^{-1}$ and $K_2 = 1 \times 10^8 \text{ M}^{-1}$ as for positive cooperativity.

ulin we can in fact see two consecutive, cooperative processes, each resembling the binding curve for one of the fragments. Fig. 2 shows an analysis of the precision in the different parameters obtained in the least squares fitting to the data for intact calmodulin as displayed in Fig. 1A. This analysis confirms positive cooperativity and that only a narrow range of values of the protein concentration $(F \cdot \text{CPROT}_1)$ give acceptable fits to the experimental data.

Chelator-Protein Interaction-One potential problem with the method used here is that the chelator might bind to the protein and that such an interaction could alter the Ca²⁺ affinity for the chelator and/or the protein. Chiancone et al. (1986) have used static difference absorbance experiments to show that the parent compound (BAPTA) interacts with calmodulin at low ionic strength. The concentration ranges used in that study were 220-260 μM for BAPTA and 18-75 μ M for calmodulin. The product of these two concentrations was thus 10- to 30-fold higher than that in the present work. When applying the same method as that described by Chiancone et al. (1986) to 30 μ M 5.5'-Br₂BAPTA and 30 μ M calmodulin at low ionic strength, no interaction could be detected (detection limit $\Delta A \approx \pm 0.001$, data not shown). We find it reasonable to assume that interaction between chelator and protein is not an important factor in the present experiments.

 Ca^{2+} Binding to the Tryptic Fragments—Each fragment binds two Ca²⁺ ions with affinities in the range accessible with the chelator used in this study ($\approx 10^{6}-10^{8}$ M⁻¹ at low ionic strength). The two macroscopic binding constants, K_1 and K_2 , obtained for TR₁C and TR₂C at different KCl concentrations are summarized in Table I. K_1 and K_2 , expressed in molar concentration units, can be used to calculate the free energy of binding of two Ca²⁺ ions, $\Delta G_{tot} = -RT \ln (K_1K_2)$. For both fragments and at all salt concentrations, we find that $K_2 > K_1/4$ which implies positive cooperativity. (Note $K_2 > K_1/4$ always implies positive cooperativity, but if the two sites do not have identical affinities, positive cooperativity can exist even if $K_2 < K_1/4$.)

The cooperativity in a two-site system can be characterized by $\Delta\Delta G$, the effect of Ca²⁺ binding to one of the sites on the free energy of Ca²⁺ binding to the other site (Weber, 1975).

$$\Delta \Delta G = \Delta G_{I,II} - \Delta G_{I} = \Delta G_{II,I} - \Delta G_{II}$$
$$= -RT \ln(K_{I,II}/K_{I}) = -RT \ln(K_{I,II}/K_{II})$$

where $\Delta G_{I,II}$ is the free energy of Ca²⁺ binding to site I when a Ca²⁺ ion is already bound to site II (cf. Fig. 3A) and $K_{I,II}$ etc. are the corresponding microscopic (site) binding constants. The titrations in the presence of 5,5'-Br₂BAPTA do not allow one to determine the distribution of Ca²⁺ between the sites of the protein and hence yield only the macroscopic binding constants. However, one can use the relations between macroscopic and microscopic binding constants ($K_1 = K_I + K_{II}$ and $K_1K_2 = K_IK_{II,II} = K_{II}K_{I,II}$) and write

$$-\Delta\Delta G = RT \ln(4K_2/K_1) + RT \ln((\eta + 1)^2/4\eta)$$

where $\eta = K_{\rm II}/K_{\rm I}$. The second term is zero for $\eta = 1$ (equally strong sites), and we may thus obtain a lower limit of $-\Delta\Delta G$ solely from the macroscopic binding constants as

$$-\Delta\Delta G_{\eta=1} = RT \ln(4K_2/K_1)$$

(Linse et al., 1987, 1988). Thus, it is apparent from the results in Table I that each fragment binds two Ca²⁺ ions with positive cooperativity and relatively high affinity. At low ionic strength, the Ca²⁺ affinity for the C-terminal fragment, TR₂C, is on average 6-fold higher than for TR₁C if we compare $\sqrt{(K_1K_2)}$. There is a considerable decrease in the Ca²⁺ affinity on going from low ionic strength conditions to 150 mM KCl. For TR₂C, the product of K_1 and K_2 is reduced 5000-fold, corresponding to a 21 kJ·mol⁻¹ increase in ΔG_{tot} , and for TR₁C the corresponding figures are 3200-fold and 20 kJ·mol⁻¹.

 K^+ Binding—On the assumption that the decrease in the Ca²⁺ affinity of calmodulin that occurs on adding KCl arises solely from competition between K⁺ and Ca²⁺, Haiech et al. (1981) have concluded that potassium binds competitively to the Ca²⁺ sites. Part of the KCl effect could, however, be simply due to nonspecific ionic strength effects: screening of electrostatic interactions and change in activity coefficients. To investigate this point, two-dimensional ¹H NMR COSY spectra were recorded for Ca²⁺-depleted tryptic fragments at pH 7.5, 27 °C in the absence and presence of 150 mM KCl. The NH and C^aH chemical shifts of nearly all NH-C^aH crosspeaks were measured (a small number were missing owing to fast exchange). For TR₁C, the average shift difference between 0 and 150 mM KCl was 0.02 ppm for NH and 0.01 ppm for $C^{\alpha}H$, the largest difference being 0.07 ppm. For TR₂C, the average shift difference was 0.01 ppm for both NH and C^aH, the largest difference being 0.04 ppm. These results are very similar to what was found in the case of calbindin D_{9k} and indicate that any binding of K⁺ ions to calmodulin has only a minimal effect on the protein conformation. Thus, the effect of KCl on the Ca^{2+} affinities of the proteins is nonspecific. In the apo form of the protein, it is likely that the Ca²⁺ ligands repel each other and cannot fold in the proper conformation for Ca²⁺ coordination. It has been suggested that the charge on K⁺ is too low to overcome the ligand repulsion and that K⁺-binding would not result in the same arrangement of the ligands as in the Ca²⁺-bound state (Snyder et al., 1990).

Ca²⁺ Binding to Calmodulin—The four macroscopic binding

FIG. 2. Minimum error square sum (ESS) versus (A) $-\Delta G_{tot}^{12}$ (O), $-\Delta\Delta G_{\pi=1}^{12}$ (**B**) (0). $-\Delta G$ (●), $-\Delta\Delta G_{\eta=1}^{34}$ (\bullet), and (C) $F \cdot CPROT_1$ (**D**). The experimental data for intact calmodulin as displayed in Fig. 1 has been analyzed as regards the dependence of ESS on the values of the different parameters. Each point in the curve for $\Delta G_{\rm tot}^{12}$ is obtained by keeping the product of K_1 and K_2 (and hence ΔG_{tot}^{12}) constant while letting AMAX, AMIN, F, K₃, K₄, and the individual values of K_1 and K_2 adjust their values to obtain the lowest possible ESS for the specific value of $\Delta G_{\text{tot}}^{12}$. Points for the other parameters are obtained in a similar fashion.

SBMB

The Journal of Biological Chemistry

TABLE I

Macroscopic binding constants of TR_1C and TR_2C

 $\Delta G_{\text{tot}} = -RT \ln (K_1 K_2)$ and $-\Delta \Delta G_{\eta=1} = RT \ln (4K_2/K_1)$. lgK stands for ¹⁰log K. The uncertainties are ± 0.2 in lg K_1 and lg K_2 , and ± 0.5 in ΔG_{tot} , unless otherwise stated. Note that lg $(K_1 K_2)$ is more well determined than the individual lg K_1 and lg K_2 . The uncertainties for lg K_1 and lg K_2 are linked such that if the value for one is underestimated by 0.1 then the value for the other is overestimated by ≈ 0.1 .

[KC1]	TR ₂ C				TR ₁ C			
	lgK_1	$\lg K_2$	$\Delta G_{ m tot}$	$-\Delta\Delta G_{\eta=1}$	$\lg K_1$	$\lg K_2$	$\Delta G_{ m tot}$	$-\Delta\Delta G_{\eta=1}$
тМ			$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$			$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$
Low	6.9	7.7	-83.4	8.5 ± 1.5	6.56 ± 0.05	6.54 ± 0.05	-74.7 ± 1.0	3.3 ± 0.5
50	5.1	6.8	-68.9	≥10	4.8 ± 0.2	5.4 ± 0.2	-58.5 ± 1.5	6.8 ± 1.5
100	5.0	6.4	-65.5	≥10	4.0 ± 0.3	5.8 ± 0.3	-56.0 ± 1.5	≥10
150	4.8	6.1	-62.4 ± 1.0	≥10	4.0 ± 0.3	5.6 ± 0.3	-54.9 ± 2.0	≥10

G

FIG. 3. A, free energy diagram for Ca^{2+} binding to a two-site protein. B, free energy diagram for Ca^{2+} binding to a four-site protein in which K_{III} and $K_{IV} \gg K_I$ and K_{II} . The free Ca^{2+} ions are not included in these diagrams, but, of course, contribute to the free energies.

constants, K_1 , K_2 , K_3 , and K_4 , of calmodulin at different KCl concentrations are summarized in Table II. In this case, we have calculated the free energy of binding four Ca²⁺ ions, $\Delta G_{\text{tot}} = -RT \ln (K_1 K_2 K_3 K_4)$. We note that at all KCl concentrations the values of ΔG_{tot} for calmodulin equals the sum of the ΔG_{tot} values for the tryptic fragments.

 Ca^{2+} binding to a protein with four Ca^{2+} sites could be exceedingly complex due to possible interactions between any pair among the four sites. The analysis is simplified if two of the sites have considerably higher Ca^{2+} affinity than the other two. For example, if K_{III} and K_{IV} are much greater than K_{I} and K_{II} , then the sites bind in a semisequential manner as shown in Fig. 3B and

$$K_{1} \approx K_{\text{III}} + K_{\text{IV}}$$

$$K_{1}K_{2} \approx K_{\text{III}}K_{\text{IV,III}} = K_{\text{IV}}K_{\text{III,IV}}$$

$$K_{3} \approx K_{\text{I,(III and IV)}} + K_{\text{II,(III and IV)}}$$

 $K_3K_4 \approx K_{I,(III \text{ and } IV)}K_{II,(I \text{ and } III \text{ and } IV)} = K_{II,(III \text{ and } IV)}K_{I,(II \text{ and } III \text{ and } IV)}$

where $K_{I,(III and IV)}$ is the site binding constant for site I when Ca^{2+} is already bound to sites III and IV, and so on (cf. Fig.

TABLE II

Macroscopic binding constants of calmodulin

lgK stands for ¹⁰log K. The uncertainties are ± 0.2 in lgK₁ and lgK₂ unless otherwise stated. Note that lg(K_1K_2) and lg(K_3K_4) are more well determined than the individual lgK values. The uncertainties for lgK₁ and lgK₂ (or lgK₃ and lgK₄) are linked such that if the value for 1 is underestimated by 0.1 then the value for the other is overestimated by ≈ 0.1 .

lol^{-1}
± 1.5
± 1.5
± 1.5
± 2.0
± 2.0
± 3.5

TABLE III

Free energy of binding the first two $(\Delta G_{tot}^{12} = -RTln (K_1K_2))$ and last two $(\Delta G_{tot}^{44} = -RTln (K_3K_4)) Ca^{2+}$ ions to calmodulin and a lower limit of the cooperativity within each pair $(-\Delta \Delta G_{\eta=1}^{12} = RTln (4 K_2/K_1))$ and $-\Delta \Delta G_{\eta=1}^{44} = RTln (4 K_2/K_2)$ respectively)

$ana - \Delta \Delta G_{\eta=1} - KT th (4 K_4/K_3), respectively)$								
[KCl]	$\Delta G_{ m tot}^{12}$	$-\Delta\Delta G_{\eta=1}^{12}$	$\Delta G_{ m tot}^{ m 34}$	$-\Delta\Delta G_{\eta=1}^{34}$				
тM	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$	$kJ \cdot mol^{-1}$				
Low	-83.5 ± 0.5	8.0 ± 1.5	-73.6 ± 1.0	3.7 ± 0.5				
50	-69.0 ± 0.5	≥ 10	-57.6 ± 1.5	9.0 ± 1.5				
100	-65.7 ± 0.5	≥10	-56.9 ± 1.5	≥10				
150	-62.4 ± 1.0	≥10	-53.3 ± 2.5	≥10				

3B). We can calculate the free energy of binding the first two $(\Delta G_{\text{tot}}^{12} = -RT \ln [K_1 K_2])$ and last two $(\Delta G_{\text{tot}}^{34} = -RT \ln [K_3 K_4])$ Ca²⁺ ions and lower limits of the cooperativity within these pairs $(-\Delta\Delta G_{n=1}^{12} = RT \ln (4 K_2/K_1) \text{ and } -\Delta\Delta G_{n=1}^{34} = RT \ln (4 K_2/K_1)$ K_4/K_3), respectively). The values of the four macroscopic binding constants show that the sites in calmodulin are grouped into two pairs of different strength, each pair displaying positive cooperativity. If we calculate $\Delta G_{\text{tot}}^{12}$, $\Delta G_{\text{tot}}^{34}$ $-\Delta\Delta G_{\eta=1}^{12}$, and $-\Delta\Delta G_{\eta=1}^{34}$ (Table III) and compare with the results for the fragments (Table I), we can conclude that the two sites of the C-terminal domain in calmodulin bind Ca²⁴ most strongly in a cooperative manner. The N-terminal domain binds Ca²⁺ 6 times more weakly but also cooperatively. The condition K_{III} and $K_{IV} \gg K_I$ and K_{II} does not hold strictly for calmodulin. The above treatment nevertheless gives lower limits to the cooperativity, and no false indications of positive cooperativity could arise. As can be seen in Fig. 2, the precision in $\Delta G_{\text{tot}}^{12}$ and $\Delta G_{\text{tot}}^{34}$ (or the products $K_1 K_2$ and $K_3 K_4$) is high, whereas the precision in $\Delta \Delta G_{\eta=1}^{12}$ and $\Delta \Delta G_{\eta=1}^{34}$ (or the ratios K_2/K_1 and K_4/K_3) is considerably lower.

Since the two globular domains of calmodulin bind in a sequential manner, it is not straightforward to assess whether Ca^{2+} binding to one globular domain affects the Ca^{2+} affinities

The Journal of Biological Chemistry

of the sites in the other domain. However, the free energy values calculated for intact calmodulin (Table III) are, within the error limits, identical with those of the isolated fragments (Table I). Thus, the globular domains in calmodulin appear to bind Ca²⁺ independently of each other. In contrast, cooperativity between the globular domains has been observed when calmodulin is complexed with peptides or fragments of target enzymes (Yazawa et al., 1987; Ikura et al., 1989).

Salt Effects on pK_{a} Values of Ionizable Groups—The pH titrations of the fragments in the presence of the chelator and half-saturationg concentrations of Ca²⁺ show different behavior at 0 and 150 mM KCl. For both fragments, it is found that at low ionic strength there is a considerable increase in Ca²⁺ affinity when pH is raised from 6.5 to 8.5, whereas at 150 mM KCl the Ca^{2+} affinity is constant in the same pH interval. It thus seems that KCl in some way affects the ionizable groups in the pH range 6.5-8.5. It is not possible to judge from the present experiments whether these effects are predominantly nonspecific or if K⁺ ions compete with protons for specific side chains. The linewidth of the ³⁹K NMR signal is considerably increased in the presence of calmodulin² which indicates that K^+ ions are weakly associated to calmodulin (cf. a similar study on calbindin D_{9k}: Linse et al., 1991). In any case, theoretical treatment of the Ca²⁺ affinity of calmodulin at pH 7.5 is likely to overestimate the salt effects, if the protein surface charge is kept the same at all salt concentrations. In addition, the pH titrations show for both fragments a considerable increase in Ca²⁺ affinity in the pH range 9-11, both at low and high salt concentration. The latter effect is most likely a result of deprotonation of lysine side chains. If H⁺ binding to some ionizable groups affects pK_{Ca} , Ca^{2+} binding will affect pK_a of the same ionizable groups. In fact, Ca^{2+} binding to calmodulin and its tryptic fragments has been reported to result in proton uptake or release (Milos et al., 1986; Sellers et al., 1991).

Comparison with Previous Studies-Many of the previous studies of Ca²⁺ binding to calmodulin have failed to distinguish between cooperative and independent binding, either because the method used is not sensitive enough or the data analysis has extracted information (e.g. affinities for individual sites) that is not present in the data itself. Nevertheless, if we disregard all studies that assume identical and independent sites, the values for the products of the first two and last two macroscopic binding constants $(K_1K_2 \text{ and } K_3K_4)$ should be closely similar in all studies that are free from large systematic errors. The values reported here for $lg(K_1K_2)$ and $lg(K_3K_4)$ of calmodulin in 150 mM KCl and 2 mM Tris/HCl (10.9 and 9.3, respectively), fall in the range of those of previous studies at comparable conditions (10.4–11.1 and 8.0– 9.4, respectively). To our knowledge no measurements have previously been performed at an ionic strength as low as in the present work (0 M KCl, 2 mM Tris/HCl). We may, however, note that the results we report for 10 mM KCl and 2 mM Tris/HCl ($\lg(K_1K_2) = 13.6$ and $\lg(K_3K_4) = 12.0$) are, as

Conclusion-A detailed reinvestigation of the calcium-binding constants of calmodulin, using the chromophoric chelator 5,5'-Br₂BAPTA, has provided strong evidence for cooperative Ca²⁺ binding within each globular domain, both at low and high ionic strength. There is no indication of cooperativity between the two domains. Rather, comparisons with the tryptic fragments strongly suggest that the two domains bind Ca²⁺ independently of each other. The Ca²⁺ affinities of the sites in the C-terminal domain are on average 6-fold higher than those of the sites in the N-terminal domain.

Acknowledgments-We thank Eva Thulin for the purification and preparation of Ca²⁺-free proteins. The helpful comments on the manuscript by Stephen R. Martin, Mill Hill, are gratefully acknowledged. The NMR spectrometer was purchased with generous grants from the Knut and Alice Wallenberg Foundation and the Swedish Council for Planning and Coordination of Research (FRN).

REFERENCES

- Andersson, A., Forsén, S., Thulin, E. & Vogel, H. J. (1983) Biochemistry 22, 2309-2313
- 2309-2313
 Babu, Y. S., Sack, J. S., Greenhough, T. G., Bugg, C. E., Means, A. R. & Cook, W. J. (1985) Nature 315, 37-40
 Babu, Y. S., Bugg, C. E. & Cook, W. J. (1988) J. Mol. Biol. 204, 191-204
 Burger, D., Cox, J. A., Comte, M. & Stein, E. A. (1984) Biochemistry 23, 1966-
- 1971 Chiancone, E., Thulin, E., Boffi, A., Forsén, S. & Brunori, M. (1986) J. Biol.
- Chiancone, E., Thulin, E., Boffi, A., Forsén, S. & Brunori, M. (1986) J. Biol. Chiancone, E., Thulin, E., Boffi, A., Forsén, S. & Brunori, M. (1986) J. Biol. Chem. 261, 16306-16308
 Cox, J. A., Malnoë, A. & Stein, E. A. (1981) J. Biol. Chem. 256, 3218-3222
 Cox, J. A., Comte, M., Mamar-Bachi, A., Milos, M. & Schaer, J.-J. (1988) in Calcium and Calcium Binding Proteins (Gerday, C., Bolis, L. & Gilles, R., eds) pp. 141-162, Springer Verlag, Berlin
 Crouch, T. H. & Klee, C. B. (1980) Biochemistry 19, 3692-3698
 Dedman, J. R., Potter, J. D., Jackson, R. L., Johnson, J. D. & Means, A. R. (1977) J. Biol Chem. 252, 8415-8422
 Forsén, S., Vogel, H. J. & Drakenberg, T. (1986) in Calcium and Cell Function (Cheung, W. Y., ed) Vol. 6, pp. 113-157, Academic Press, New York
 Haiech, J., Klee, C. B. & Demaile, J. G. (1981) Biochemistry 20, 3890-3897
 Heidorn, D. B. & Trewhella, J. (1988) Biochemistry 27, 909-915
 Iida, S. & Potter, J. D. (1986) J. Biochem. (Tokyo) 99, 1765-1772
 Ikura, M., Hasegawa, N., Aimoto, S., Yazawa, M., Yagi, K. & Hikichi, K. (1989) Biochem. Biophys. Res. Commun. 161, 1233-1238
 Ikura, M., Kay, L. E. & Bax, A. (1990) Biochemistry 29, 4659-4667
 Jarrett, H. W. & Kyte, J. (1979) J. Biol Chem. 254, 8237-8244
 Keller, C. H., Olwin, B. B., LaPorte, D. C. & Storm, D. R. (1982) Biochemistry 21, 156-162

Downloaded from www.jbc.org by guest, on December 24, 2009

- 21, 156-162
 21, 156-162
 Kretsinger, R. H. & Nockolds, C. E. (1973) J. Biol. Chem. 248, 3313-3326
 Kretsinger, R. H. & Weissman, L. J. (1986) J. Inorg. Biochem. 28, 289-302
 Linse, S., Brodin, P., Drakenberg, T., Thulin, E., Sellers, P., Elmdén, K., Grundström, T. & Forsén, S. (1987) Biochemistry 26, 6723-6735
 Linse, S., Brodin, P., Johansson, C., Thulin, E., Grundstöm, T. & Forsén, S. (1988) Nature 335, 651-652
 Linse, S., Johansson, C., Brodin, P., Grundström, T., Drakenberg, T. & Forsén, S. (1988) Nature 335, 651-652
 Martin, S. R., Andersson Teleman, A., Bayley, P. M., Drakenberg, T. & Forsén, S. (1985) Eur. J. Biochem. 151, 543-550
 Milos, M., Schaer, J.-J., Comte, M. & Cox, J. A. (1986) Biochemistry 25, 6279-6287
 Ogawa, Y. & Tanokura. M. (1984) J. Biochem. (Tabua) 95, 10, 92

- Ogawa, Y. & Tanokura, M. (1984) J. Biochem. (Tokyo) **95**, 19-28 Sellers, P., Laynez, J., Thulin, E. & Forsén, S. (1991) Biophys. Chem. **39**, 199-
- 204
- 204
 Snyder, E. E., Buoscio, B. W. & Falke, J. J. (1990) Biochemistry 29, 3937-3943
 Thulin, E., Andersson, A., Drakenberg, T., Forsén, S. & Vogel, H. J. (1984) Biochemistry 23, 1862-1870
 Tsien, R. (1980) Biochemistry 19, 2396-2404
 Vogel, H. J., Lindahl, L. & Thulin, E. (1983) FEBS Lett. 157, 241-246
 Wang, C.-L. A. (1985) Biochem. Biophys. Res. Commun. 130, 426-430
 Wang, C.-L. A., Leavis, P. C. & Gergely, J. (1984) Biochemistry 23, 6410-6415
 Yazawa, M., Ikura, M., Hikichi, K., Ying, L. & Yagi, K. (1987) J. Biol. Chem. 262, 10951-10954
 M. Minowa, O. & Yagi, K. (1983) J. Biochem. (Tohya) 94, 1025-1022

- Yoshida, M., Minowa, O. & Yagi, K. (1983) J. Biochem. (Tokyo) 94, 1925-1933

BMB

8054

² T. Drakenberg, personal communication.

expected, only slightly lower than those published by Haiech et al. (1981). For 0 M KCl and 10 mM Tris/HCl, pH 7.55, they report $lg(K_1K_2) = 13.7$ and $lg(K_3K_4) = 12.1$.