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Cerebellar Guidance of Premotor Network 
Development and Sensorimotor Learning 
S h e r w i n  E. H u a  a n d  J a m e s  C. H o u k  1 

Department of Physiology 
Northwestern University Medical School 
Chicago, Illinois 60611-3008 

Abstract 

Single u n i t  a n d  i m a g i n g  s tud ies  have  
s h o w n  t h a t  t he  c e r e b e l l u m  is e spec i a l l y  
act ive  d u r i n g  t he  a c qu i s i t i on  p h a s e  o f  
c e r t a i n  m o t o r  a n d  cogn i t ive  tasks .  These  
da ta  a re  c o n s i s t e n t  w i t h  t h e  h y p o t h e s i s  t h a t  
p a r t i c u l a r  s e n s o r i m o t o r  p r o c e d u r e s  a re  
a c q u i r e d  a n d  s t o r e d  in  t h e  c e r e b e l l a r  c o r t e x  
a n d  t h a t  th i s  k n o w l e d g e  c a n  t h e n  be  
e x p o r t e d  to t he  c e r e b r a l  c o r t e x  a n d  
p r e m o t o r  n e t w o r k s  fo r  m o r e  ef f ic ient  
execu t ion .  In  th i s  ar t ic le  w e  p r e s e n t  a m o d e l  
to i l lus t ra te  h o w  t he  c e r e b e l l a r  c o r t e x  m i g h t  
gu ide  t he  d e v e l o p m e n t  o f  cor t ica l - -cerebel la r  
n e t w o r k  c o n n e c t i o n s  a n d  h o w  a s i m i l a r  
m e c h a n i s m  o p e r a t i n g  in  t he  adu l t  cou ld  
m e d i a t e  t h e  e x p o r t a t i o n  o f  s e n s o r i m o t o r  
k n o w l e d g e  f r o m  t h e  c e r e b e l l u m  to t he  
m o t o r  cor tex .  The  m o d e l  cons i s t s  o f  a 
t h r e e - l a y e r e d  r e c u r r e n t  n e t w o r k  
r e p r e s e n t i n g  t he  ce r ebe l l o - t ha l amocor t i c a l -  
p o n t o - c e r e b e l l a r  l i m b  p r e m o t o r  n e t w o r k .  
The  c e r e b e l l a r  c o r t e x  is n o t  exp l i c i t l y  
m o d e l e d .  Our  s i m u l a t i o n s  s h o w  tha t  
H e b b i a n  l e a r n i n g  c o m b i n e d  w i t h  w e i g h t  
n o i a n a l i z a t i o n  a l lows t he  e m e r g e n c e  o f  
r e c i p r o c a l  a n d  m o d u l a r  s t r u c t u r e  in  t he  
l i m b  p r e m o t o r  n e t w o r k .  Rec ip roca l  
c o n n e c t i o n s  a l low act iv i ty  to  r e v e r b e r a t e  
a r o u n d  speci f ic  loops .  M o d u l a r i t y  o r gan i ze s  
t he  c o n n e c t i o n s  in to  speci f ic  c h a n n e l s .  
F u r t h e r m o r e ,  w e  s h o w  t h a t  c e r e b e l l a r  
l e a r n i n g  can  be  e x p o r t e d  to m o t o r  c o r t e x  
t h r o u g h  t h e s e  m o d u l a r  a n d  r e c i p r o c a l  
p r e m o t o r  c i rcui ts .  In  pa r t i cu la r ,  w e  s imu la t e  
d e v e l o p m e n t a l  a l i g n m e n t  o f  v i s u o m o t o r  
r e l a t i ons  a n d  t h e i r  r e a l i g n m e n t  as a 
c o n s e q u e n c e  o f  p r i s m  e x p o s u r e .  The  

1Corresponding author. 

e x p o r t a t i o n  o f  s e n s o r i m o t o r  k n o w l e d g e  
f r o m  t h e  c e r e b e l l u m  to t he  m o t o r  c o r t e x  
m a y  a l low fas te r  a n d  m o r e  ef f ic ient  
e x e c u t i o n  o f  l e a r n e d  m o t o r  r e s p o n s e s .  

Introduct ion 

It is now well established that the cerebellum 
plays an important role in sensorimotor learning 
(Thompson 1986; Ito 1989; Thach et aI. 1992; 
Houk et al. 1996; Raymond et al. 1996). Although 
cerebellar patients are able to make a wide range of 
movements, their ability to adapt to challenging 
conditions is severely impaired (Thach et al. 1992). 
In addition to basic movement  skills, imaging stud- 
ies show that the cerebellum is involved in com- 
plex sensorimotor functions that include cognitive 
components  (Kim et al. 1994; Raichle et al. 1994; 
Friston et al. 1992). 

Although the parallel fiber-Purkinje cell (PC) 
synapse is undoubtedly one important site at 
which learning takes place (Marr 1969; Albus 
1971; Ito 1989; Berthier et al. 1993), learning 
mechanisms are widespread, and sensorimotor 
learning is undoubtedly a distributed function 
(Houk and Barto 1992; Bloedel et al. 1996). The 
storage capacity of the cerebellar cortex is quite 
enormous (Gilbert 1974; Tyrrell and Willshaw 
1992), so one possibility is that a diversity of com- 
plex sensorimotor memories are stored in the cer- 
ebellum and that during practice, these programs 
are exported to premotor  networks for more effi- 
cient execution (Galiana 1986; Houk and Barto 
1992). Consistent with this hypothesis, single unit 
activity in the cerebellum is particularly intense 
during the acquisition phase of conditioned fore- 
limb movements (Milak et al. 1995). Similarly, im- 
aging studies indicate the most intense cerebellar 
activations when  sensorimotor tasks are being 
learned (Friston et al. 1992; Ebner et al. 1996). 
Cognitive functions of the cerebellum could simi- 
larly be exported to the cerebral cortex to improve 
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the efficiency of thinking (Houk 1997). Positron 
emission tomography (PET) studies showed that 
metabolic activity associated with a cognitive verb- 
finding task moved from the lateral cerebellum to a 
cortical site with practice (Raichle et al. 1994). 
These results, along with previous studies showing 
that cerebellar damage hinders normal motor learn- 
ing but not the retention of motor memories, sug- 
gest that the cerebellar cortex can export learning 
of motor and cognitive tasks to premotor and cor- 
tical sites. 

Although cerebellar learning has been mod- 
eled extensively, mechanisms whereby cerebellar 
knowledge might be exported to premotor and 
cortical sites have not received much attention. 
Here we explore this issue with respect to limb 
movement control. The premotor network that 
controls voluntary movements of the limb consists 
of a cerebello-thalamo-cortico-ponto-cerebellar cir- 
cuit regulating motor cortical output and a cer- 
ebello-rubro-reticulo-cerebellar brain stem circuit 
regulating red nucleus output (for review, see 
Houk et al. 1993). Experiments have shown that 
the brain stem circuit exhibits reverberatory activ- 
ity generated by recurrent positive feedback in the 
network (Tsukahara et al. 1983; Keifer et al. 1992; 
Keifer 1996). Workers using modeling efforts have 
assumed that the limb premotor network is com- 
prised of reciprocal and topographically specific 
connections that segregate the control of move- 
ment into computational modules, each of which 
generates an elemental motor command (Houk et 
al. 1990; Berthier et al. 1993). Such specificity in 
the premotor circuits may allow activity patterns to 
be readily shaped by inhibitory output from cer- 
ebellar PCs to coordinate populations of motor cor- 
tical and red nucleus commands (Houk et al. 
1993). Developmental plasticity leading to the for- 
mation of the postulated premotor modules might 
represent a neonatal phase of the adult plasticity 
involved in the exportation process. 

In addition to the formation of the premotor 
network, developmental alignment of premotor 
circuits with cortico-cortical connections may 
guide the organization of sensorimotor maps in the 
cortex. For example, monkeys deprived of sight of 
their hands and body during development showed 
difficulty making and adapting visually guided 
movements later in life (Bauer and Held 1971). 
Thus, the establishment of these visuo-motor maps 
during development may be important for normal 
visuo-motor adaptation guided by cerebellar and 
premotor circuits later in life. 

In this study we provide a computational 
model that first simulates the development of spe- 
cific reciprocal circuits in the premotor network. 
Later in development, these reciprocal circuits 
guide the alignment of visuo-motor maps in cor- 
rico-cortical connections. After these two develop- 
mental stages are completed, the model simulates 
the exportation of cerebellar learning to cortico- 
cortical networks for a visuo-motor adaptation task 
analogous to prism adaptation of limb movements. 
To simplify the model, cerebellar learning is not 
explicitly modeled. Previous modeling efforts have 
dealt with cerebellar learning of visuomotor rela- 
tions (Berthier et al. 1993). Instead, we focus on 
plasticity in premotor and cortical networks that is 
guided by the cerebellum. 

The centerpiece of the model is the cerebello- 
thalamo-cortico-ponto-cerebellar recurrent net- 
work. Because the thalamo-cortical circuit is itseff a 
recurrent network within the larger recurrent pre- 
motor network, we simplify the network by incor- 
porating the recurrent thalamo-cortical circuit into 
a single layer of units having lateral connections 
and serf-connections. The serf-connections on this 
layer represent specific thalamo-cortical reciprocal 
loops that allow cortical activity to persist through 
thalamic connections. Lateral connections repre- 
sent intrinsic cortical connectivity as well as lim- 
ited divergence of thalamo-cortical recurrent con- 
nections. The incorporation of the thalamo-cortical 
circuit into a single layer is justified by experimen- 
tal evidence demonstrating topographic specificity 
in reciprocal thalamo-cortical connections (Ma and 
Juliano 1991; Ghosh et al. 1994). Additionally, we 
have previously demonstrated that any twoqayered 
recurrent network will develop reciprocal and 
symmetric connections through Hebbian learning 
(S.E. Hua, F.A. Mussa-Ivaldi, and J.C. Houk, un- 
publ.). The reciprocal connections in such two- 
layered networks can be approximated by a single 
composite weight matrix constructed by the prod- 
uct of the feed-forward and feedback weight ma- 
trices in the network. For topographically orga- 
nized reciprocal networks, the composite weight 
matrix has a banded diagonal structure, which is 
equivalent to having serf-weights and lateral con- 
nections. 

Our simulations show that Hebbian learning 
during the early developmental stage allows the 
formation of reciprocal and modular connections 
in the premotor network. Reciprocity exists when 
activity initiated in a unit will return to that unit 
after traveling through multisynaptic connections 
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in the ne twork  (self-connections are reciprocal  but  
are not  considered in this study). Modularity exists 
w h e n  a group of cells in the ne twork  has stronger 
connect ions  wi th  cells in the same group than wi th  
cells in other  groups. We also define computa- 
tional or graded modulari ty  as a subclass of  modu- 
larity in w h i c h  cells have a uniformly graded dis- 
t r ibution of connect ions  that varies wi th  funct ional  
or topographic  similarity. For example ,  cortical 
units that have stronger connect ions  wi th  units 
having similar directional tuning or orientation se- 

lectivity have graded modularity.  
Deve lopment  of the p remotor  ne twork  is 

guided by spontaneous  PC dis inhibi t ion of neigh- 
boring nuclear  cells. Once  deve lopment  of the pre- 
motor  ne twork  has occurred,  the cerebe l lum is 
able to direct the a l ignment  of visuo-motor maps  in 
the cortex. Furthermore,  the cerebe l lum can direct 
learning and real ignment  of cortico-cortical cir- 
cuits by expor t ing cerebel lar  learning to cortical 
sites. After learning, cortico-cortical connect ions  in 
our model  are able to initiate movemen t s  in the 
correct  direct ion in a visuo-motor adaptation task 
wi thout  direct control  by  the cerebel lum.  

Materials and Methods 

The model  p remotor  ne twork  is compr ised  of 
a three-layered recurrent  ne twork  represent ing the 
cerebel lar  nucleus,  the motor  cor t ical- thalamic cir- 
cuit, and the pont ine  nucleus,  as schemat ized in 
Figure 1 (CBN, MC, and PN, respectively).  A fourth 
layer represent ing  cortical regions that specify vi- 
sual target information (sensory cortex) projects to 
the motor  cortex. These cortico-cortical connec- 
tions are assumed to develop after connect ions  in 
the p remotor  ne twork  have organized. Each layer 
of  units is wrapped ,  mean ing  the ends were  con- 
nected,  to reduce border  effects. Thus, effectively, 
each layer is circular in topology. 

In the cerebel lar  nucleus  layer, we  assume for 
simplici ty that each PC inhibi ts  a cluster of three 
ne ighbor ing  nuclear  cells. This topographic  ar- 
rangement  allows bet ter  visualization of the effects 
of  correlated PC dis inhibi t ion through the topog- 
raphy of resulting premotor  connect ions.  During 
the deve lopment  of the p remotor  loop, nuclear  
cells have spontaneous  activity, such that w h e n  
inhibi t ion from a PC is removed,  the cluster of 
nuclear  cells that received its inhibi t ion becomes  
active. Later, after the p remotor  ne twork  has de- 
veloped,  we  assume that cerebel lar  nuclear  cells 

DDDDDDDrIDDDD Sensory 

r 
DDDDDDDDDDDD MC 

B O , i  Pc [] 
[] [] 
[] [] 
[] [] 
[] [] 

PN CBN 

Figure 1: Schematic diagram of the network. The 
three-layered premotor network is comprised of the mo- 
tor cortico-thalamo-cortical (MC) layer, the pontine (PN) 
layer, and the cerebellar nuclear (CBN) layer. Adaptable 
cortico-cortical connections exist between the sensory 
layer and the MC layer. PC inhibition regulates the CBN 
layer. 

are no longer spontaneously  active. Instead, excit- 
atory pont ine  inputs are necessary in addit ion to 
PC dis inhibi t ion to activate nuclear  cells. No inhibi- 
tory in terneurons  are inc luded in the cerebel lar  
nuclear  layer. 

Cerebellar  nuclear  activation is t ransmit ted to 
the motor  cor tex via thalamic connect ions.  For 
simplici ty the reciprocal  cor t ical- thalamic circuit  
is represented  by a single layer of units (MC layer) 
wi th  lateral excitatory connect ions  and self con- 
nections. Serf-connections represent  reciprocal  
cortico-thalamic connect ions,  whereas  lateral con- 
nect ions  represent  bo th  the intrinsic cortical con- 
nect ions  as wel l  as divergent  cortico-thalamo-cor- 
tical connect ions.  Additionally, inhibi tory interneu- 
rons are inc luded to stabilize cortical activity. 

The pont ine  layer is a relay layer wi thout  ex- 
ternal inputs other  than the MC layer and wi thout  
intrinsic lateral excitatory connect ions.  Inhibi tory 
in terneurons  are included on this layer. Histologi- 
cal studies have demonstra ted  the exis tence  of 
pr incipal  relay cells that project  to the cerebe l lum 
as wel l  as inhibi tory in terneurons  in the pont ine  
nucleus  (Brodal and Bjaalie 1992). 

We assume that cortico-cortical connect ions  
develop after the basic organization of the premo- 
tor loop has been  laid down. After this point,  we  
fix the connect ions  in the p remotor  loop and allow 
cerebel lar  learning to direct the a l ignment  and re- 
a l ignment  of the feed-forward connect ions  from 
the sensory layer to the motor  cortex. The sensory 
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layer represents  cortical regions such as parietal 
cor tex  or ventral  p remotor  cor tex that provide in- 
format ion about visual targets to w h i c h  move- 
ments  are to be made.  The spatially correlated ex- 
ternal inputs  represent ing  visual target information 
are i m p l e m e n t e d  in the mode l  as a cluster of three 
ne ighbor ing  units on the sensory layer. Addition- 
ally, a cor responding  PC is turned off resulting in 
the dis inhibi t ion of three ne ighbor ing  cerebel lar  
nuclear  cells. The concur ren t  activation of premo- 
tor cortical units and dis inhibi t ion of cerebel lar  
nuclear  cells drives the format ion of an appropriate  
cortico-cortical mapping.  

Two dynamics  occur  s imultaneously in the 
network,  namely  activation dynamics  and synaptic 
efficacy or learning dynamics  (S.E. Hua, F.A. Mussa- 
Ivaldi, and J.C. Houk, in prep.).  The activation 
states of all units are updated  asynchronously  and 
are governed by the additive model,  

xj( t + dt) = [1 
xj(t) + - ~ xj(t) + ~ Wji(t)(r[xi(t)] + bj(t) -~ 

i 

w h e r e  x~(t) represents  the instaneous activation 
state ff [xj(t)] is the activation funct ion whose  value 
is comparable  to firing rate, Wji(t ) is the synaptic 
we igh t  f rom unit  i to unit  j ,  RC is the t ime constant  
for activation dynamics,  and bj(t) represents  the 
time-varying inputs.  

The activation rule used in the simulations is 
p iecewise  and is similar to Anderson 's  brain-state- 
in-a-box model  (Anderson et al. 1977): 

or(x) = if 0 < x < 1 

ifx---< 0 

Learning occurs by  dWji( t )  = ~ j [ x j ( t ) ]~[x i ( t ) ]d t  , 
the general  Hebbian  update  rule whe re  a is the 
learning rate and "r w is the t ime constant  for con- 
t inuous learning. Becuase Hebbian  learning in this 
form is general ly unstable  (Miller and MacKay 
1994), w e  impose  bo th  presynapt ic  and postsyn- 
aptic normalizat ion as a means  of stabilizing Heb- 
bian learning. 

Wj,(t + dt) = 8[ Wj,(t) ]post[ Wji( t )  + dWj,(t) ]8[ Wj,.(t) ]pre 

where  the coefficient for presynapt ic  normaliza- 
tion is def ined by 

Xpre 
8[Wji( t ) ]pre  = ~ [ W b ; ( t )  + dWb,(t)] 

h 
and the coefficient for postsynapt ic  normalizat ion 
is def ined by 

Xpost 
8[Wji(t)]p~ = s  + dWjb(t)] 

h 

Xpr e is the limit on the sum of all weights  from each 
presynapt ic  unit, and Xpost is the limit on the sum 
of all weights  onto each postsynapt ic  unit. For 
bo th  normalizat ion condi t ions to be satisfied, the 
condi t ion Xpr e = Xpost must  hold. (For presynapt ic  
normalization, we  h a v e  EjN=I Wji = Xpre" For postsyn- 
aptic normalizat ion we  have ~N1w1. / = Xpost" Be- 
c a  S N N _ - Pc iv 

U e E i= I  E j= I  w j i  - XXpre  and •i=a Xi=I Wji = 
NXpost, it follows that Xpost = Xpre must  hold if both  
normalizat ion condit ions are to be satisfied.) Al- 
though both  learning and activation dynamics  
evolve simultaneously,  the dynamics  for weight  up- 
date are s lower than that for changes in the instan- 
taneous firing rate, that is, RC << -r w. Typically, RC 
= 1, a- w - 1000, d t =  0.1, and o~ = 1. 

In addit ion to the excitatory project ion neu- 
rons descr ibed above, l inear inhibi tory interneu- 
rons are inc luded in the cortical and pont ine  layers. 
Each in te rneuron  inhibits  only one project ion neu- 
ron wi th  a weight  of  -1  and receives excitatory 
input  from all project ion units on the previous 
layer wi th  a weight  equal  in magni tude  to the mean  
of all excitatory weights  of  project ion units. We 
assume that inhibi tory in terneurons  have fast dy- 
namics  such that the t ime delay through the inter- 
neurons  is negligible compared  wi th  the direct ex- 
citatory connect ions.  Finally, noise is added to the 
weights  at each t ime step at _+10% of the value of 
the largest weight.  This noise represents  spontane- 
ous synaptic sprouting and elimination. 

Results 

The inf luence of cerebel lar  output  on the 
learning and deve lopment  of downs t ream circuits 
is s imulated in three stages. In the first stage, ini- 
tially random connect ions  in the recurrent  premo- 
tor ne twork  are organized into specific reciprocal  
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circuits. Cerebellar activation during this develop- 
mental stage allows the alignment of specific PCs 
with specific reciprocal channels in the premotor  
circuit. In the second stage, premotor  circuits are 
assumed to have passed the critical period of de- 
velopment and are no longer plastic. Visuo-motor 
maps in cortico-cortical projections are aligned by 
simultaneous presentation of visual target input to 
both the sensory layer and the cerebellar cortex. 
We assume that the cerebellar cortex has already 
learned how to command movements to these vi- 
sual targets. In the third stage, cerebellar knowl- 
edge about prism distortion is exported to cortico- 
cortical connections through activation of specific 
premotor  pathways. 

DEVELOPMENT OF THE PREMOTOR CIRCUIT 

The feedback circuit consists of a cerebellar 
nuclear layer, a cortical-thalamic layer, and a pon- 
tine layer as schematized in Figure 1. Each of the 
three projections in this circuit was initialized with 
random connections. The only external input to 
the network at this stage was PC inhibition of 
nuclear units. During development, we assumed 
that PCs are spontaneously active with intermittent 
periods of inactivity. We simulated intermittent PC 
inactivity by activating neighboring clusters of cer- 
ebellar nuclear cells for 75 time steps, a conserva- 
tive number  of steps to ensure network settling. 

Under these developmental conditions, the 
connections in the feedback circuit developed re- 
ciprocal connections, as shown in Figure 2. Figure 
2, a-c, shows the weight matrices for the cerebel- 
Io-MC, MC-pontine, and ponto-cerebellar projec- 
tions, respectively. Figure 2, d-f, shows the corre- 
sponding composite matrices for the cerebellar, 
MC, and pontine layers, respectively. Each com- 
posite matrix shows the effective connections that 
a layer makes with itself through the feedback con- 
nections in the network and is calculated by the 
product  of the three individual weight matrices, 
taken in reverse order. The diagonal terms of the 
composite matrix represent the effective connec- 
tion that a single unit makes with itself through the 
network; thus the diagonal terms give a measure of 
the degree of reciprocity in the network. 

Figure 2a shows that the cerebello-MC projec- 
tion developed a smooth topographic map. The 
MC-pontine and ponto-cerebellar projections de- 
veloped partial topographic maps. The MC-pon- 
tine projection, shown in Figure 2b, has topo- 
graphic receptive fields but discontinuous projec- 
tion fields, such that neighboring MC units (labeled 
as layer 2) project to similar, topographically dis- 
continuous pontine units. On the other hand, the 
ponto-cerebellar projection, shown in Figure 2c, 
has topographic projection fields but discontinu- 
ous receptive fields, such that neighboring cerebel- 
lar units have similar but discontinuous receptive 
fields. 

& 
6 /  

Figure 2" Weight matrices (a-c) and 
composite matrices (d-f) of the premotor 
network after the first developmental 
phase of Hebbian learning. (a) The 
weight matrix W21 from the cerebellar 
layer (layer 1) to the MC layer (layer 2); 
(b) the weight matrix W32 from the MC 
layer to the pontine layer (layer 3); (c) the 
weight matrix Wl 3 from the pontine layer 
to the cerebellar layer; (d) the composite 
matrix for the cerebellar layer, con- 
structed by the product of the three 
weight matrices W~3W32W2~; (e) the 
composite matrix for the MC layer, i.e., 
W21W ~ 3W32; (f) the composite matrix for 
the pontine layer, i.e., W32W21W13. 
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These weight maps are consistent with the 
correlation structure between individual units on 
each of the three layers. Both the MC and cerebel- 
lar layers have topographically correlated activity. 
Correlation of MC units arises from lateral connec- 
tions between neighboring units. On the other 
hand, correlation of cerebellar nuclear cells is gen- 
erated by correlated disinhibition by each PC. 
Units on the pontine layer do not have any corre- 
lation in activity imposed by the network architec- 
ture. Thus, the cerebello-MC projection between 
two layers with correlated activity develops a fully 
topographic map. The MC-pontine projection 
from a layer with correlated activity to a layer with- 
out correlations develops topographic receptive 
fields but nontopographic projection fields. The 
ponto-cerebellar projection from a layer without 
correlations to a layer with correlated activity de- 
velops topographic projection fields but non-topo- 
graphic receptive fields. 

As defined above, the composite matrix shows 
the multisynaptic connections that a unit makes 
with all other units on the same layer. The com- 
posite matrix for the cerebellar layer (Fig. 2d) is 
banded diagonal. This matrix structure shows that 
activity initiated in a cerebellar unit will travel 
through the other two layers and will return not 
only to that unit, by reciprocal connections as il- 
lustrated by the diagonal terms, but will also travel 
to neighboring cerebellar units, as exemplified by 
off-diagonal terms. The composite matrix for the 
MC, shown in Figure 2e, has a similar banded di- 
agonal structure. In contrast, the composite matrix 
for the pontine nucleus, shown in Figure 2f, is a 
symmetric but otherwise disorganized matrix with 
prominent diagonal terms. 

Once again, these composite matrices are con- 
sistent with the correlation structure between in- 
dividual units on each layer. First, all three com- 
posite matrices have prominent diagonal terms. Di- 
agonal terms on a composite matrix represent 
reciprocal connections that allow activity to travel 
through the network and return to the units from 
which the activity originated. Second, all three 
composite matrices are symmetric. Symmetry 
shows that the influence of unit A on unit B is the 
same as that of unit B on unit A through multisyn- 
aptic connections in the network. Finally, for lay- 
ers with correlated activity, the composite matrix 
is banded, representing a propensity for recurrent 
activity to return not only to units that initiated the 
activity but also to neighboring units that have cor- 
related activity. In contrast, the pontine nucleus 

does not have correlated activity, and the organi- 
zation of its composite matrix is less obvious. 

ALIGNMENT OF CORTICAL VISUO-MOTOR MAPS 

In this section we describe a model of the de- 
velopmental alignment of cortico-cortical connec- 
tions guided by cerebellar cortical activity. Visual 
target information is simultaneously provided to 
the sensory layer and to PCs in the cerebellar cor- 
tex (Fig. 1). We assume that the connections from 
sensory to MC layer are initially random, whereas 
the cerebellar cortex has already learned to use this 
sensory input to guide movements to appropriate 
endpoints. Experimental studies of the thalamo- 
cortical projection supports a critical period during 
development, after which plasticity is reduced 
(Iriki et al. 1991; Craft and Malenka 1995; Fox et al. 
1996), and on this basis we assume that the plas- 
ticity of intrinsic premotor connections is turned 
off after the maturation of these connections. Cor- 
tico-cortical connections, however, remain plastic 
throughout development and adulthood (Iriki et al. 
1991). Stable premotor connections allow the cer- 
ebellum to export motor learning to cortico-corti- 
cal sites by way of reliable connections. 

In our model we presented visual target inputs 
to the sensory cortex and cerebellar cortex con- 
currently. For example, if units n - 1, n, and n + 1 
were activated at the target layer, cerebellar units 
n - 1, n, and n + 1 were simultaneously disinhib- 
ited. All other cerebellar units were continually in- 
hibited by full PC inhibition. These concurrent in- 
puts were presented for 75 time steps and were 
chosen randomly. Our implementation of concur- 
rent target input is only a simplification of the ac- 
tual pathway by which these two areas receive 
concurrent inputs. In reality, visual target input is 
relayed to the cerebellum by way of the cortico- 
pontine and the mossy fiber projection to the cer- 
ebellum (Brodal and Bjaalie 1992). 

Additionally, after the first developmental 
stage during which the basic architecture of the 
premotor weights are established, the gain of the 
network is allowed to increase. Electrophysiologic 
evidence shows that immature cortical neurons are 
less responsive than mature units (Prince and Hu- 
guenard 1988). Additionally, an increase in gain 
may occur by the maturation of neuromodulatory 
inputs such as cholinergic or noradrenergic inputs 
(McCormick 1989). We model a growth in net- 
work gain by increasing the size of the normaliza- 
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tion constant • from 0.5 to 5.0 after the first de- 
velopmental stage. This growth in weights effec- 
tively increases the gain of the input-output  
transformation performed by each unit, allowing 
activity to reverberate in the circuit. 

Figure 3 shows that the feed-forward projec- 
tion between the sensory cortex and the MC layer 
developed a continuous topographic map. Figure 
3a shows the initial random cortico-cortical map. 
After paired target inputs were given to the target 
layer and cerebellar layer, the cortico-cortical pro- 
jection, shown in Figure 3b, developed a topo- 
graphic map that corresponds closely to the cer- 
ebello-MC projection. 

VISUO-MOTOR LEARNING 

After the development and alignment of both 
the premotor circuit and the cortico-cortical pro- 
jection, the network was subjected to a visual per- 
turbation task in which  the input to the visual cor- 
tex is shifted by four units. This shift in visual input 
is analogous to a prism adaptation task in which  
subjects wear prism goggles that shift visual space. 
A shift in visual inputs causes a shift in the pattern 
of PC deactivation, resulting in a movement  error. 
We assumed that this movement  error allows the 
cerebellum to learn the new visuo-motor mapping 
so that the correct movement  can be made, com- 
pensating for the shift in visual target input. A pre- 
vious modeling study has demonstrated that long- 
term depression at the parallel fiber synapse on 
PCs in an adjustable pattern generator (APG) 
model can simulate the reprogramming of move- 
ments to shifted sensory inputs (Berthier et al. 
1993). In the present model, we assumed that the 
cerebellum has learned the new sensorimotor pro- 

gramming. Thus, even though visual target input is 
shifted at the sensory cortex, cerebellar cortical 
activity has learned to compensate by disinhibiting 
the unshifted pattern of cerebellar nuclear cells, 
allowing the correct movement  to be initiated. 
Thus, shifted visual target input is paired with an 
unshifted disinhibition of cerebellar nuclear cells 
because of cerebellar learning of the new mapping. 
For example, if units n - 1, n, and n + 1 were ac- 
tivated at the sensory layer, cerebellar units n + 3, 
n +  4, and n + 5 received PC disinhibition, 
whereas all other cerebellar units were continually 
inhibited by full PC inhibition. The paired inputs 
were presented for 75 time steps and were chosen 
randomly. 

Figure 3c shows that the feed-forward projec- 
tion between the sensory layer and the MC layer 
developed a continuous and shifted topographic 
map. When compared with the topographic map 
in the nonshifted case (Fig. 3b), the topographic 
map in the shifted case is appropriately shifted by 
four units. Thus, activation of the appropriate out- 
put by the cerebellum allows the appropriate ad- 
aptation by cortico-cortical connections. 

ACTIVATION DYNAMICS DURING DEVELOPMENT 
AND LEARNING 

So far we have discussed only the pattern of 
weights that arise during development and learn- 
ing. However, it is important to look at the behav- 
ior of the activation dynamics that occur with each 
pattern of connections. The activation dynamics at 
three stages of development are shown. First we 
show the behavior of the network after the first 
stage when  the premotor network has fully devel- 
oped but when  the cortico-cortical connections 

Figure 3: Development and adaptation in the cortico-cortical projection. (a) The initially random weight matrix; (b) the 
topographically organized cortico-cortical projection formed after the second developmental stage of visuo-motor align- 
ment; (c) the shifted cortico-cortical projection after adaptation of a visuo-motor task in the learning phase. 
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were  still random, as shown  in Figure 3a. Second, 
we  show that after the second stage w h e n  the cor- 
rico-cortical connec t ions  have formed, motor  activ- 
ity can be initiated and driven by cortico-cortical 
connec t ions  alone. Finally, we  show that after cer- 
ebellar  learning of the visuo-motor task has been  
expor ted  to the cortex, cortico-cortical connec- 
tions were  able to initiate motor  activity in the 
appropriate  direct ion to compensa te  for the 
shifted visual input.  

Figure 4 shows the dynamic  behavior  of a net- 
work  after the first deve lopmenta l  stage. The pre- 
motor  ne twork  has formed reciprocal  connect ions,  
and the weights  have g rown in size so that the gain 
of the ne twork  has increased. The project ion from 
the sensory cortex to the MC has not  yet devel- 
oped and still has r andom connect ions.  Figure 4, 

Figure 4: Activation dynamics for a network after the 
first developmental stage. This network has a mature 
premotor circuit but random cortico-cortical connec- 
tions (Fig. 3a). (a-c) Activation dynamics over time of the 
cerebellar, pons, and MC layers when four inputs are 
given to the sensory cortex. Inputs are given to neigh- 
boring clusters of three units centered on units 2, 7, 11, 
and 14. Each input is held on for 105 time steps con- 
comitant with disinhibition of the corresponding cer- 
ebellar units. The unit number is represented on the 
horizontal axis, whereas the number of time steps is 
represented on the vertical axis. (d) Temporal evolution 
of the population direction vector for each of the four 
inputs given to the network. Each dot represents the 
population vector calculated at a particular time step. 
The population vector is calculated by a vector summa- 
tion of the individual direction vectors for each unit. For 
each unit the amplitude of its individual vector equals its 
firing rate, whereas the preferred direction is calculated 
by the following equation (unit number/16)*2*PI. 

a-c, shows the activation states of  the cerebellar,  
pont ine,  and MC layers, respectively, w h e n  four 
sets of  input  were  sequential ly p resen ted  to both  
the sensory cortex and the cerebel lum.  In these 
dynamic  simulations, each of the four inputs  was 
turned on for 105 t ime steps to fully demonstra te  
that the ne twork  settles to a steady state. The cer- 
ebellar  layer shows four blocks of activation that 
cor respond to the four sets of  input,  each causing 
dishlhibi t ion of a cluster of cerebel lar  nuclear  cells. 
After the presentat ion of each n e w  input,  activity 
in the MC layer was initially disorganized. How- 
ever, after activity had traveled through the premo- 
tor loop, the appropriate  pat tern of PC inhibi t ion 
al lowed premotor  activity, and thus motor  cortical 
activity, to be reshaped correctly. 

Figure 4d shows the popula t ion  direct ion vec- 
tor in cartesian coordinates for each of the four 
inputs. Each point  represents  an instantaneous 
popula t ion  vector. Because the ends of each layer 
are connected,  the 16 units on each layer can each 
represent  movemen t  in a part icular direct ion on a 
two-dimensional  plane spanning 360 ~ The popu- 
lation vector  is calculated by the spatially we igh ted  
average of the activations of the 16 units on the MC 
layer, wi th  the direct ion specifity of each unit  be- 
ing distr ibuted about circular layer in 22.5 ~ inter- 
vals. Figure 4d shows that the popula t ion  vectors 
f rom each of the four inputs  were  initially disor- 
dered but  became  directed at the four appropriate  
m o v e m e n t  directions after PC inhibi t ion had re- 
shaped the activity in the p remotor  network.  

Figure 5 shows the behavior  of  a ne twork  after 
the second developmenta l  stage w h e n  the cortico- 
cortical project ion has al igned wi th  p remotor  cir- 
cuits. In this simulation we  removed cerebel lar  dis- 
inhibit ion,  such that the visual target input  is only 
given to the sensory cortex. This ar rangement  
simulates a ne twork  whe re  motor  learning has al- 
ready been  expor ted  to cortical sites, and cerebel- 
lar control  is no longer needed.  Thus, the move- 
ment  can be initiated directly by cortico-cortical 
connect ions.  The cerebellar  nuclear  layer, in Fig- 
ure 5a, is silent throughout  the sequential  presen- 
tation of four sets of  inputs. The MC layer shows 
four distinct blocks of activity cor responding  to 
the correct  sequence  of motor  activity as specif ied 
by the sensory cortical layer. The pont ine  layer 
shows clustered discont inuous activity as a result 
of  MC activation. Figure 5d shows the popula t ion  
direct ion vectors of the MC layer. The four distinct 
m o v e m e n t  directions cor respond to the four differ- 
ent target inputs given to the sensory cortex. Note 
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rectly activate the correct  pat tern of MC units to 
compensa te  for the shift in visual target space. Fig- 
ure 7d shows that the popula t ion  direct ion vector  
grows directly in the correct  direct ion through the 
real igned cortico-cortical connect ions.  

Figure 5: Activation dynamics for a network after the 
second developmental stage. The network has a mature 
premotor circuit and an aligned cortico-cortical map 
(Fig. 3b). All conventions are the same as that in Fig. 4, 
except no cerebellar disinhibition occurs in this simula- 
tion. 

that wi th  each  input,  the popula t ion  vector  initially 
grows in ampli tude,  and then  the popula t ion  vec- 
tor remains f ixed at a part icular direct ion and am- 
plitude. 

Figures 6 and 7 show the behavior  of a net- 
work  that is exposed  to a visuo-motor adaptation 
task. Figure 6 shows the activation dynamics  after 
the cerebe l lum has learned to compensa te  for the 
4-unit shift in visual target space but  before expor- 
tation of the learning to cortical sites. Because the 
cortico-cortical connect ions  have not  adapted to 
the shift in target space, visual inputs  to the sen- 
sory layer initially activate inappropr ia te  motor  
units in the MC by direct cortico-cortical connec- 
tions. However,  because the cerebe l lum has 
learned to compensa te  for visual shift, the MC is 
able to attain the correct  pat tern of activation by 
PC shaping of p remotor  activity, shown  in Figure 
6c. Figure 6d shows the shift or rotation of the 
direct ion vector  that occurs  w h e n  cerebel lar  inhi- 
bi t ion guides the behavior  of MC activity. 

After cerebel lar  learning of the visuo-motor 
task has been  expor ted  to the cortex, the cortico- 
cortical project ion directs the appropriate  pat tern 
of MC activity in response  to the shifted target 
inputs. Figure 7 shows a simulat ion whe re  expor- 
tation of learning has already taken place, and the 
cerebe l lum no longer  responds  to the visual input.  
Figure 7a shows that the cerebel lar  nucleus  has no 
activity. Instead, the sensory cortex is able to di- 

D i s c u s s i o n  

These model ing  studies demonstra te  that cer- 
ebellar  output  could be used to guide the develop- 
ment  of p remotor  circuits as wel l  as to direct sen- 
sorimotor learning in cortico-cortical connect ions.  
Spontaneous PC disinhibi t ion wi th  r ebound  activa- 
tion of cerebel lar  nuclear  units a l lowed the forma- 
t ion of reciprocal  connect ions  in the p remotor  net- 
work. These reciprocal  connect ions  permit  activity 
to persist  and reverberate in specific computa-  
tional modules.  After deve lopment  of the p remotor  
ne twork  is completed,  paired target information to 
a visual sensory area of cor tex and to the cerebel lar  
cor tex al lowed the a l ignment  of cortico-cortical 
maps. W h e n  visual target information is misal igned 
wi th  movement ,  mimick ing  pr ism adaptation, cer- 
ebellar  learning of the misa l ignment  directs realign- 
ment  of  cortico-cortical connect ions.  After realign- 

Figure 6: Activation dynamics for a network after the 
second developmental stage but subjected to a visuo- 
motor task. The network has a mature premotor circuit 
and an aligned cortico-cortical map (Fig. 3b). Inputs to 
the sensory cortex are shifted four units from the correct 
target. We assumed that the cerebellum has learned this 
visuo-motor mapping and disinhibits nuclear cells that 
are shifted by four units from the inputs given to sensory 
cortex. All other conventions are the same as that in 
Fig. 4. 
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Figure 7: Activation dynamics for a network that has 
learned the visuo-motor task. The premotor circuit re- 
mains unchanged, but the cortico-cortical map is shifted 
as shown in Fig. 3c. Inputs to the sensory cortex are 
shifted by four units from the correct target. A corre- 
sponding shift in cortico-cortical connections alone, 
without disinhibition in the cerebellum, can compensate 
for the shift in visual inputs. All other conventions are 
the same as that in Fig. 4. 

ment of cortical connections is accomplished, cor- 
tical areas supplying visual target information are 
able to initiate movement in the appropriate direc- 
tion to move toward a target without further in- 
volvement of the cerebellum. Elimination of cer- 
ebellar involvement is advantageous, as it shortens 
the control pathway for responses that are used 
frequently, thus forming what has been referred to 
as "sensorimotor habits" (Houk and Barto 1992). 

MODELING ASSUMPTIONS 

Synaptic plasticity simulated in the present 
model resulted from Hebbian learning coupled 
with weight normalization. Hebbian learning is 
thought to be implemented by the NMDA channel 
(Brown et al. 1990) and has been demonstrated in 
several regions of the CNS including the cerebral 
cortex (Bear and Kirkwood 1993). Labeling studies 
have demonstrated NMDA labeling in cortex, thala- 
mus, pons, and cerebellar nuclei (Petralia et al. 
1994). These studies suggest that Hebbian learning 
could occur at each of the layers in the present 
model. 

Labeling studies have shown that NMDA re- 
ceptor subunits have differential expression pat- 

terns during development (Zhong et al. 1995). 
Thus, different levels of plasticity could occur dur- 
ing development. In the present model we as- 
sumed that plasticity in the premotor network oc- 
curred during early development. Several experi- 
mental studies show that the thalamo-cortical 
connection has a critical period for synaptic plas- 
ticity after which plasticity is reduced (Fox et al. 
1996). Such a critical period has been demon- 
strated for several sensory cortical areas (Fox and 
Zahs 1994). In addition, Iriki et al. (1991) have 
shown that adult thalamo-cortical connections to 
motor cortex are less plastic when compared with 
cortico-cortical connections to the motor cortex. 
Although these studies strongly suggest that 
thalamo-cortical synapses become less plastic after 
early development when compared with cortico- 
cortical synapses, little is known about synaptic 
plasticity at other synapses in the premotor circuit. 
Further studies are needed to confirm the assump- 
tion that premotor synapses become less plastic 
after early development. 

Hebbian learning is generally unstable because 
it only specifies a weight increment. Most models 
of recurrent networks include a weight decay 
mechanism to limit learning (Shinomoto 1987). In 
the present model, we used dual weight normal- 
ization to stabilize synaptic learning. Forms of 
weight normalization exist biologically at the level 
of nuclei (Hayes and Meyer 1988a,b) and at the 
level of neurons (Markram and Tsodyks 1996). Fur- 
thermore, most models of Hebbian learning in 
feed-forward networks utilize weight normaliza- 
tion (Whitelaw and Cowan 1981; Miller et al. 1989; 
Miller 1994). Such models can simulate the devel- 
opment of feed-forward pathways such as topo- 
graphic maps, ocular dominance columns, and ori- 
entation domains. We have shown recently that 
weight normalization with Hebbian learning is ef- 
fective in recurrent networks (S.E. Hua, F.A. Mussa- 
Ivaldi, and J.C. Houk, unpubl.). In that study 
weight normalization in a two-layered recurrent 
network allowed the formation of symmetric, re- 
ciprocal, and modular connections. 

During the transition from the first to the sec- 
ond developmental phases, we assumed that syn- 
aptic weights in the premotor network grew in 
strength. This growth allows the mature premotor 
circuit to have sufficient network gain to sustain 
reverberatory activity. This up-regulation in the 
strength of synapses was accomplished by an in- 
crease in the normalization constant. There are 
two mechanisms that could accomplish such a 
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transition in weight. First, during development, 
weights could undergo a gradual increase in the 
size of connections or neuronal responsiveness as 
neurons mature. Immature cortical neurons have 
been found to be less responsive than adult neu- 
rons (Prince and Huguenard 1988). Second, an in- 
crease in responsiveness can be achieved by modu- 
latory neural transmitters. Cholinergic and adren- 
ergic input have been shown to have both 
inhibitory and excitatory effects on cortical excit- 
ability (McCormick 1989). Both of these mecha- 
nisms could exist to allow an increased network 
gain after premotor connections are formed. 

During the late developmental and learning 
phases, visual target information is provided simul- 
taneously to the sensory cortical layer and to PCs. 
During the prism adaptation task, rotated target 
information is again provided to both layers, but 
the PCs are assumed to have learned the correct 
counter-rotation to achieve the appropriate move- 
ment. For simplicity, we did not explicitly include 
cerebellar learning in this model. Instead, we as- 
sumed that the cerebellum would be able to learn 
this counter-rotation to achieve the proper move- 
ment in spite of rotated target information. Previ- 
ously, we have shown that an APG model of cer- 
ebellar function can learn the alignment between 
target and movement direction as well as adapt to 
visual distortion (Berthier et al. 1993). This model 
is consistent with the Marr-Albus theory of parallel 
fiber-PC synapse modification by error signals 
from climbing fibers (Marr 1969; Albus 1971). In 
the present model, learning at the cerebellar cor- 
tex is then transmitted through premotor networks 
to modify cortico-cortical connections. 

Of the modeling assumptions presented 
above, the architecture of the network, Hebbian 
learning with weight normalization, and develop- 
mental windows of plasticity are assumptions with 
a fair amount of experimental support. The as- 
sumption involving growth in network gain after 
premotor circuits have developed is more specula- 
tive. We have shown previously that in recurrent 
networks that learn, low network gain allows the 
formation of modules that provide a more accurate 
representation of the set of inputs (S.E. Hua, F.A. 
Mussa-Ivaldi, and J.C. Houk, in prep.). If network 
gain is high during learning, reciprocal and modu- 
lar connections still develop, but internal feedback 
overshadows the contribution to loop activity by 
external inputs. However in the present model, PC 
inhibition may be able to control high levels of 
feedback activity in the recurrent network. 

We propose two major predictions of the 
model. First, the development of reciprocal and 
modular connections is a robust feature of the 
model. Thus, the model predicts that anatomical 
labeling studies should find results consistent with 
reciprocal and modular connectivity. We propose 
that simultaneous labeling of a single motor corti- 
cal cell by a retrograde and anterograde viral tracer 
would allow double labeling of cells involved in 
the same module in other layers of the network. 
The second prediction involves electrophysiologi- 
cal evidence for the rotation of the population vec- 
tor after exportation is complete and is presented 
in a later section on computational modules. 

TOPOGRAPHIC ALIGNMENT OF THE NETWORK 

Although we describe the topographic organi- 
zation of the weights in this study, the weights may 
be described more accurately in terms of func- 
tional topology. Because the layers are of one di- 
mension and wrapped, it is difficult to directly ap- 
ply the topography of these layers to the three- 
dimensional brain. More important, the topological 
organization of the connections come from the 
correlation structure of the inputs and of the net- 
work activity. We allowed the inputs (cortical and 
PC) to be topographically correlated so that the 
organization of the connections would be easier to 
visualize. However, such topographic correlations 
need not exist. Instead, the correlations used in 
this model belong to a more general class of topo- 
logic or functional correlations. Neighboring units 
on each layer do not necessarily represent spatial 
neighbors; instead, neighboring units are func- 
tional neighbors. Correlated PC activity represents 
correlations of directional tuning or muscle syner- 
gies and not necessarily spatial topographic rela- 
tionships. Thus, the actual topographic layout of 
modularity in the three-dimensional brain is diffi- 
cult to predict from this study, because the results 
predict mainly functional topology. Additionally, 
simple functional topologic relationships such as 
orientation tuning have complex two-dimensional 
topography in the visual cortex. 

COMPUTATIONAL MODULES FOR ELEMENTAL 
MOTOR COMMANDS 

The present results illustrate that reciprocity is 
a natural outcome of Hebbian learning in recurrent 
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networks .  Strict reciproci ty  exists w h e n  activity 
initiated in one unit  will only re turn  to that one 
unit  wi thou t  d ivergence to o ther  units on that 
layer. In contrast ,  the  p resen t  simulation results 
s h o w  that  reciprocal  connect ions  wi th  divergent  
recur ren t  connect ions  develop in the p r emo to r  cir- 
cuit. The divergent  connect ions  are made  b e t w e e n  
units having correla ted activity such as neighbor- 
ing cortical units wi th  lateral connect ions  or  neigh- 
boring cerebel lar  nuclear  units wi th  c o m m o n  PC 
disinhibition. Whereas  reciprocal  connect ions  sus- 
tain activity in a part icular  p r e m o t o r  circuit, diver- 
gent  recurrent  connect ions  allow recru i tment  of 
p r emo to r  circuits wi th  similar functional  proper-  
ties, that  is, correlated activity. Highly correlated 
p r e m o t o r  circuits wi th  strong, divergent  intercon- 
nect ions are considered as computa t ional  modules  
that coopera te  to p roduce  an elemental  motor  
c o m m a n d  (Honk et al. 1993). Weaker  divergent  
connect ions  b e t w e e n  different modules  serve to 
combine  elemental  moto r  commands  under  the 
guidance of  the cerebel lar  cortex.  

In the p resen t  model,  divergent  connect ions  
allow the popula t ion  direct ion vec tor  to rotate 
f rom a shifted visual target  to the  cor rec ted  move- 
men t  direct ion derived f rom cerebellar  learning 
(see also Eisenman et al. 1991). Although the  visuo- 
moto r  task simulated in the present  model  was  
pr ism learning, the  p resen t  results provide similar 
popula t ion  behavior  as that  seen in the rotation of 
the popula t ion  direct ion vec tor  in monkey  motor  
cor tex  (Lurito et al. 1991). In these  exper iments ,  
monkeys  made  arm movemen t s  (hand-held ma- 
n ipulandum) to one of eight equally spaced target 
lights placed in a circle a round the  starting posit ion 
on a two-dimensional  surface. In terspersed  wi th  
direct  arm movemen t s  to dimly lit targets, mon- 
keys w e r e  t rained to make  arm movements  90 ~ 
counterc lockwise  (CCW) to a bright target light. 
Motor cortical single unit  recording showed  that 
the popula t ion direct ion vec tor  initially points  to- 
ward  the nonro ta ted  target  light and subsequent ly  
rotates to the 90 ~ CCW target. 

Rotation of the popula t ion  vec tor  similar to the 
expe r imen t  of Lurito et al. (1991) is seen in the 
p resen t  model  w h e n  the cerebel lum has learned 
the n e w  visuo-motor mapp ing  but  this learning has 
not  yet been  expor t ed  to the motor  cor tex  (Fig. 6). 
After cerebel lar  learning has been  expor ted  to the 

cortex,  the  popula t ion  vec tor  no longer  rotates be- 
cause cortico-cortical connect ions  have learned to 
initiate m o v e m e n t  in the correct  direct ion (Fig. 7). 
These results predic t  that  if monkeys  were  trained 

on only the rotated arm movements ,  rotat ion of  the 
popula t ion vec tor  wou ld  diminish as cerebel lar  
learning is expor ted  to cortical sites. Our  results 
fur ther  suggest that  the p resence  of  the  rotat ing 
popula t ion vec tor  in monkey  exper imen t s  may  oc- 
cur  at a stage whe re  the cerebel lum has learned the 
correct  visuo-motor mapping,  but  this learning has 
not  been  expor ted  to the cortex.  It is possible that  
the intermixing of nonro ta ted  and rota ted move- 
ments  in the  same block may have s lowed the  ex- 
por ta t ion of the rotated visuo-motor task. 

The presen t  model  demonst ra tes  that the ini- 
tiation of movements  in the appropr ia te  direct ion 
can be expor ted  f rom the cerebel lum to cortical 
sites. This model  is a first s tep in describing the 
expor ta t ion  of both  movemen t  initiation and ex- 
ecut ion to motor  cortex.  We have s h o w n  previ- 
ously that the APG model  of  cerebel lar  funct ion 
programs  movemen t  execut ion  by a dynamic pat- 
tern of PC activation. In this way,  movemen t s  are 
terminated  by the activation of  PCs. The exporta-  
tion of  movemen t  execut ion  and terminat ion to 
cortical ne tworks  remains a difficult p rob lem and 
will be approached  in future model ing efforts. 
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