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SUMMARY

Long-term potentiation (LTP) of mossy fiber EPSCs
in the cerebellar nuclei is controlled by synaptic inhi-
bition from Purkinje neurons. EPSCs are potentiated
by a sequence of excitation, inhibition, and disinhibi-
tion, raising the question of how these stimuli interact
to induce plasticity. Here, we find that synaptic exci-
tation, inhibition, and disinhibition couple to different
calcium-dependent signaling pathways. In LTP
induction protocols, constitutively active calcineurin
can replace synaptic excitation, and constitutively
active a-CaMKII can replace calcium influx associ-
ated with resumption of spiking upon disinhibition.
Additionally, nimodipine can replace hyperpolariza-
tion, indicating that inhibition of firing decreases Ca
influx through L-type Ca channels, providing a neces-
sary signal for LTP. Together, these data suggest
that potentiation develops after a calcineurin priming
signal combines with an a-CaMKII triggering signal if
and only if L-type Ca current is reduced. Thus, hyper-
polarization induced by synaptic inhibition actively
controls excitatory synaptic plasticity in the cere-
bellar nuclei.

INTRODUCTION

Coincidence detection is a central component of cellular plas-

ticity rules that are thought to underlie associative learning. In

many quiescent neurons, coincidence detection depends on

NMDA receptors that open only when glutamate binding coin-

cides with membrane depolarization, permitting a calcium influx

that drives long-term potentiation (LTP) (Kelso et al., 1986; Sastry

et al., 1986; Bliss and Collingridge, 1993; Malenka et al., 1988;

Lisman, 1989; McGlade-McCulloh et al., 1993). By contrast, in

neurons of the cerebellar nuclei, which fire spontaneously, alter-

native plasticity mechanisms have emerged. In these cells,

which receive strong inhibitory input from Purkinje cells as well

as excitatory input from mossy fibers, pairing NMDA receptor

activation with postsynaptic spiking fails to potentiate EPSCs

(Aizenman and Linden, 1999; Pugh and Raman, 2006). Instead,

a synapse-specific LTP is induced by a repeated sequence of
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high-frequency excitation, hyperpolarization, and the relief of

inhibition (Pugh and Raman, 2006, 2008). This induction protocol

resembles stimuli that occur during delay eyelid conditioning,

suggesting that this form of potentiation may be relevant to asso-

ciative motor learning (McCormick and Thompson, 1984;

Medina and Mauk, 1999; Hesslow et al., 1999; Jirenhed et al.,

2007). Moreover, the requirement for both excitation and inhibi-

tion supports models of cerebellar learning predicting that

potentiation of EPSCs in targets of Purkinje neurons is controlled

by synaptic inhibition (Miles and Lisberger, 1981; Medina and

Mauk, 1999).

This type of LTP raises the mechanistic question of how inhi-

bition might interact with excitation to generate plasticity. Both

excitation and disinhibition elicit calcium influx, via NMDA recep-

tors and voltage-gated calcium channels, respectively, consis-

tent with the calcium dependence of potentiation (Pugh and

Raman, 2006). Additionally, inhibiting either calcineurin or CaM-

KII prevents LTP induction, consistent with the idea that plas-

ticity requires activity of multiple calcium-dependent enzymes.

Moreover, the relative timing of the stimuli determines the effi-

cacy of induction protocols: to generate LTP, excitation must

precede disinhibition by less than 400 ms. These data suggest

that excitation first primes activated synapses and a well-timed

disinhibition then triggers potentiation (Pugh and Raman,

2008). Nevertheless, a central question is whether hyperpolar-

ization serves only to facilitate calcium influx upon disinhibition

(Llinás and Mühlethaler, 1988; Aizenman et al., 1998) or whether

it also provides an independent signal, possibly by reducing

tonic calcium levels generated by spontaneous firing (Muri and

Knöpfel, 1994; Nelson et al., 2003, 2005; Pugh and Raman,

2008; Zheng and Raman, 2009). Distinguishing between these

possibilities, however, is complicated by the fact that inhibition

and disinhibition are electrophysiologically coupled.

In the present study, we reasoned that if different components

of the induction protocol activate different signaling pathways,

then inhibition and disinhibition might be dissociated biochemi-

cally. Therefore, to address the question of how NMDA recep-

tors, voltage-gated calcium channels, and inhibition activate

signaling pathways that induce mossy-fiber LTP, we applied

modified induction protocols to cerebellar nuclear neurons

infused with activated enzymes. We found that during LTP

induction, activated calcineurin could replace excitatory

synaptic stimulation and activated CaMKII could replace disinhi-

bition. When excitation and disinhibition were both mimicked by

activated enzymes, however, EPSCs were potentiated only
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Figure 1. Calcineurin Substitutes for Synaptic Excitation in the

Mossy Fiber LTP Protocol

(A) EPSC amplitudes before and after hyperpolarizing steps (‘‘hyp only’’; t = 0;

upper inset, left) and the standard induction protocol (‘‘standard’’; t = 15 min;

upper inset, right). Right lower insets: example EPSCs before and after the two

induction protocols. Scale bar, 10 ms.

Neuron

Inhibitory Gating of LTP in the Cerebellar Nuclei
when intracellular calcium was reduced by buffering, L-type

calcium channel blockade, or hyperpolarization. Thus, synaptic

inhibition plays the active signaling role of reducing calcium

influx through L-type calcium channels, which is necessary to

permit specific calcium-dependent enzymes to induce LTP.
RESULTS

In the cerebellar nuclei, mossy-fiber-mediated EPSCs are poten-

tiated by a repeated sequence of synaptic excitation, inhibition

(either by synaptic stimulation or by hyperpolarizing current

injection), and disinhibition that evokes voltage-gated calcium

influx (Pugh and Raman, 2006, 2008). In the present experi-

ments, LTP was elicited in spontaneously firing cerebellar

nuclear cells with a 100 Hz, 150 ms train of EPSPs, followed by

an �20 mV hyperpolarizing current injection that silenced firing

for 250 ms before disinhibition and the resumption of spiking.

This stimulus was applied 30 times at 0.2 Hz. This protocol elicits

LTP in tissue from P13–16 mice (Figure 1A, right), as well as in

older animals, P28–32 (Figure S1; EPSC change, 29.9% ±

11.4%, n = 6; p < 0.05). Previous work indicates that the LTP

induced by this standard protocol requires calcium influx, likely

through NMDA receptors and voltage-gated calcium channels,

and it is prevented by blockers of the calcium-dependent

enzymes calcineurin and CaMKII (Pugh and Raman, 2006,

2008). To test whether synaptic excitation and disinhibition

couple differentially to these enzymes, we infused cerebellar

nuclear neurons with activated enzymes and applied modified

induction protocols that restricted the sources of calcium influx

to either voltage-gated channels or synaptic receptors. Because

NMDA receptor activation stimulates calcineurin at other

synapses (Mulkey et al., 1994), we first tested whether constitu-

tively active calcineurin (CaN*) could replace synaptic excitation

in inducing LTP. In these experiments, the induction protocol

consisted of only a hyperpolarizing current step that interrupted

spontaneous spiking, with no synaptic excitation. With control

intracellular solutions, this protocol did not potentiate EPSCs

(Figures 1A and 1C; EPSC change, 1.25% ± 8.5%; n = 8;

p > 0.05, baseline versus postconditioning), although EPSCs

could still be potentiated by the standard protocol (Figure 1A).

With intracellular CaN* (100 U/ml), however, EPSCs potentiated

by 20.4% ± 4.8% (Figures 1B and 1C; n = 13; p < 0.01), reaching

36.7% ± 10.6% at 24 min after the induction protocol. After

CaN*-mediated LTP, EPSC amplitudes did not further increase

in response to the standard protocol (Figure 1B; EPSC change

5 min pre versus post standard protocol: �16.0% ± 7.0%; n = 6;
(B) EPSC amplitudes in the presence of active calcineurin (CaN*) before and

after the hyperpolarizing step conditioning protocol (applied at t = 0; upper

inset, left) and the standard induction protocol (applied at t = 25 min; upper

inset, right). Right lower insets show example EPSCs before and after the

two protocols.

(C) Mean EPSC amplitudes before and after hyperpolarizing steps in neurons

infused with CaN* (closed circles; n = 11) or in control conditions (open trian-

gles; n = 8). Error bars represent SEM.

(D) Mean EPSC amplitudes before and after 3 s hyperpolarizing steps applied

either with synaptic stimulation (open triangles; n = 6) or in the presence of

CaN* (closed circles; n = 6).
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Figure 2. CaN* Combines Specifically with Disinhibition and

Requires CaMKII to Induce LTP

(A) Upper panel: Examples of alternative induction protocols combined with

CaN* infusion. Lower panel: Mean EPSC amplitudes before and after the

protocols shown above; tonic hyperpolarization (circles; n = 6), spontaneous

firing (squares; n = 7), synaptic excitation (down triangle; n = 8).

(B) EPSC amplitudes in neuron infused with CaN* and CaMKII inhibitory

peptide (fragment 290–309, 25 mM) before and after a hyperpolarizing step

conditioning protocol at t = 0. Inset conventions as in Figure 1.

(C) Mean EPSC amplitudes before and after hyperpolarizing step only protocol

in neurons infused with CaN* and CaMKII inhibitors (inhibitory peptide, n = 9;

KN-62, n = 1).
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p > 0.05), demonstrating that enzyme-induced LTP occluded

synaptically driven LTP. These results suggest that synaptic

excitation activates calcineurin during LTP induction, implicating

calcineurin in priming synapses for subsequent potentiation.

For protocols to be effective at inducing LTP, excitation must

precede the offset of inhibition by no more than 400 ms (Pugh

and Raman, 2008), suggesting that the putative priming signal

has a limited lifetime. To test whether the temporal constraints

on the inhibition-disinhibition sequence might be relieved by

tonic activation of calcineurin, we assessed the efficacy of induc-
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tion by synaptic excitation or CaN* when the period of hyperpo-

larization was prolonged. When the hyperpolarizing current

injection after the train of synaptic stimuli was prolonged more

than 10-fold (3 s), EPSCs were not significantly potentiated

(EPSC change, 10.5% ± 6.4%, n = 6; p > 0.1). Conversely,

when CaN* replaced synaptic excitation, EPSCs increased by

35.6% ± 8.3% (Figure 1D, n = 6; p < 0.05), reaching 36.5% ±

10.5% at 24 min after the induction protocol. Thus, in the pres-

ence of CaN*, LTP induction indeed became insensitive to the

duration of hyperpolarization, suggesting that a decay in calci-

neurin activity after synaptic stimulation defines the temporal

window in which combined excitation and disinhibition can elicit

LTP.

Because the hyperpolarizing step protocol includes sponta-

neous firing, inhibition, and resumption of firing, we next exam-

ined which of these features interact with CaN* to generate

LTP. We began by testing whether spontaneous firing in the

presence of CaN* was sufficient to induce LTP. Although spon-

taneous action potentials alone generate substantial voltage-

gated calcium influx (Zheng and Raman, 2009), the combination

of CaN* and spiking did not potentiate EPSCs (Figure 2A; EPSC

change, �8.1% ± 4.2%, n = 7; p > 0.05). Tonically hyperpolariz-

ing neurons to�70 mV in the presence of CaN*, however, did not

lead to potentiation either (Figure 2A; EPSC change, �9.8% ±

6.3%, n = 6; p > 0.05). Finally, CaN* infusion along with synaptic

excitation also failed to induce LTP (Figure 2A; �14.1% ± 9.6%,

n = 8; p > 0.05). Together, these data suggest that signals gener-

ated by both action potential firing and inhibition are necessary

to induce LTP in the presence of CaN*.

Because blockade of CaMKII activity interferes with LTP

induction (Pugh and Raman 2008), we next investigated whether

the pattern of inhibition and disinhibition might activate CaMKII

within the protocol that included only the hyperpolarizing step.

Including a CaMKII inhibitor with CaN* indeed prevented EPSCs

from potentiating in response to hyperpolarizing steps that inter-

rupted firing (Figures 2B and 2C; EPSC change 5.8% ± 7.2%,

n = 10; p > 0.1), supporting the hypothesis that activation of

CaMKII provides the signal that triggers potentiation.

We next tested whether inhibition acted as an independent

signal in the LTP protocol. If hyperpolarization were simply

required to activate CaMKII upon disinhibition, then a modified

induction protocol consisting only of synaptic excitation in the

absence of inhibition should induce LTP with constitutively

active a-CaMKII (CaMKII*) added to the intracellular solution.

These experiments required the addition of a-CaMKII as well

as Ca and CaM to activate the a-CaMKII. We therefore verified

that the addition of free Ca did not significantly affect LTP by

testing the efficacy of the standard protocol with 50 nM free

Ca in the intracellular solution. Indeed, under these conditions,

LTP developed normally in all cells (EPSC change 45.0% ±

15.2%, n = 4). With either control intracellular solutions or infu-

sion of heat-inactivated a-CaMKII, synaptic excitation alone of

spontaneously firing neurons induced a significant depression

of EPSCs (Figures 3A and 3D; control: EPSC change, �18.6% ±

6.3%, n = 6; p < 0.05; heat-inactivated CaMKII: EPSC

change �25.2% ± 8.5%, n = 6; p < 0.05; p > 0.5 versus control).

These data are consistent with previous work demonstrating

LTD induction by repeated, high-frequency trains of excitation



Figure 3. Constitutively Active CaMKII* Combines with Synaptic

Excitation and Hyperpolarization to Trigger LTP

(A) EPSC amplitudes in the presence of heat-inactivated CaMKII (HI-CaMKII)

before and after trains of EPSPs.

(B) EPSC amplitudes in the presence of active CaMKII (CaMKII*) before and

after trains of EPSPs delivered to a spontaneously firing neuron.

(C) EPSC amplitudes before and after excitatory synaptic trains delivered to

a neuron held at �65 mV (inset).

(D) Mean EPSC amplitudes before and protocols illustrated in (A)–(C): neurons

infused with either HI-CaMKII or no enzyme (open triangles; n = 6 in each
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applied to depolarized cells (Zhang and Linden, 2006; Pugh and

Raman, 2008). When CaMKII* (200 nM) was included in the

pipette, however, EPSC amplitudes did not depress, but instead

remained stable (Figures 3B and 3D; change in EPSC 4.4% ±

9.0%, n = 10; p > 0.5). Similar results were obtained when

synaptic excitation was prolonged to 250 ms (EPSC

change, �9.5 ± 10.6, n = 13; p > 0.1). EPSCs also remained

stable in the presence of CaMKII* when the induction protocol

included only spontaneous firing in the absence of synaptic exci-

tation, with or without a hyperpolarizing current injection (EPSC

change, �7.0% ± 10.0%, n = 6; p > 0.5; and �6.7% ± 6.8%;

n = 6; p > 0.1). Thus, although CaMKII* interfered with the devel-

opment of LTD following EPSP trains, in none of these protocols

did it trigger LTP.

These observations raised the possibility that hyperpolariza-

tion as well as CaMKII* might be necessary for LTP induction.

We therefore applied trains of synaptic excitation to neurons

voltage-clamped to �65 mV. Under these conditions, mossy-

fiber stimulation still elicits synaptic calcium influx owing to

weak Mg2+ block of NMDA receptors (Audinat et al., 1990;

Anchisi et al., 2001; Pugh and Raman, 2006, 2008). With intracel-

lular CaMKII*, this protocol potentiated EPSCs (Figures 3C

and 3D; EPSC change, 20.7% ± 6.7%, n = 6; p < 0.05;

23.4% ± 5.4% after 24 min), while with heat-inactivated CaMKII,

EPSCs depressed (EPSC change, �32.0 ± 12.8, n = 8; p < 0.05;

p < 0.01 versus CaMKII*). These data indicate that CaMKII* can

indeed replace disinhibition. Importantly, however, they also

suggest that the hyperpolarizing step during the LTP induction

protocol plays a signaling role distinct from setting up postinhibi-

tory firing that activates CaMKII.

To explore further the relationship between membrane

potential and the Ca-dependent pathways, we tested whether

the combination of CaMKII* and CaN* was sufficient to induce

plasticity by monitoring EPSCs in neurons held at �70 mV that

were dialyzed with one or both enzymes. With both CaN* and

CaMKII* present, EPSC amplitudes significantly increased

over 20 min (Figures 4A and 4C; EPSC change, 18.6% ±

4.8%, n = 15; p < 0.01, reaching 35.8% ± 13.5% after

25 min), and this run-up occluded LTP induction by the stan-

dard protocol (Figure 4A; EPSC change �14.7% ± 14.5%,

n = 3). EPSC amplitudes remained stable when only one of

the enzymes was included, however (Figures 4B and 4C;

EPSC change, 2.98% ± 7.0%, n = 11; p > 0.5). These results

indicate that the activation of both enzymes generates an

LTP-like run-up of EPSC amplitude at �70 mV. Because hyper-

polarization was a necessary component of effective induction

protocols, we reasoned that a tonic calcium load produced by

activation of voltage-gated channels during firing (Zheng and

Raman, 2009) might interfere with LTP induction. To test this

possibility, we repeated the coinfusion experiment in cells held

at �40 mV, a potential that activates voltage-gated calcium

channels in nuclear cells (Zheng and Raman, 2009). In contrast

to responses at �70 mV, EPSCs ran down in amplitude at

�40 mV (Figures 5A and 5D, EPSC change, �13.2% ± 2.3%,
condition; pooled); CaMKII* with spontaneous firing (circles; n = 10); or CaM-

KII* in voltage-clamped neurons (closed triangles; n = 6).

Neuron 66, 550–559, May 27, 2010 ª2010 Elsevier Inc. 553



Figure 4. EPSC Amplitudes Run Up with CaN* and CaMKII* Infused

Together in Neurons Held at �70 mV

(A) EPSC amplitudes at �70 mV in a neuron infused with both CaN* and

CaMKII*. The standard conditioning protocol was delivered at t = 27 min

(upper inset).

(B) EPSC amplitudes in a neuron infused only with CaMKII*.

(C) Mean EPSC amplitudes in neurons held at �70 mV and infused with both

CaN* and CaMKII* (circles; n = 17) or either enzyme alone (triangles; n = 11).

Figure 5. Calcium Blocks CaN*/CaMKII*-Induced EPSC Run Up

(A) EPSC amplitudes in neurons infused with both CaN* and CaMKII* and held

at�40 mV (open circles) and at�70 mV (closed circles). EPSC amplitudes were

normalized to the first ten measurements at each voltage. Scale: 200 pA, 10 ms.

(B) EPSCs recorded at �40 mV in neurons infused with 10 mM BAPTA, CaN*,

and CaMKII*.

(C) EPSCs at �40 mV in neurons infused with CaN* and CaMKII* during bath

application of 10 mM nimodipine.

(D) Mean EPSC amplitudes at�40 mV for neurons infused with both CaN* and

CaMKII* in control solutions (open triangles; n = 9), with BAPTA (circles; n = 7),

or in nimodipine (closed triangles; n = 6).
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n = 9; p < 0.005). In a subset of these neurons (7/9), the voltage

was switched to �70 mV, which reversed the downward trend,

instead permitting EPSCs to increase in amplitude (Figure 5A,

EPSC change from the point of switch, 9.1% ± 4.0%; n = 7;

p < 0.005 versus changes at �40 mV). Thus, the CaN*/

CaMKII*-dependent EPSC run-up was voltage sensitive, raising

the possibility that the standing calcium influx that is predicted

to occur at �40 mV interferes with run-up.

To test more directly whether intracellular calcium inhibited the

LTP-like run-up of EPSC amplitude, neurons held at�40 mV were

infused with the fast calcium chelator BAPTA (10 mM), along with

CaN* and CaMKII*. Under these conditions, rather than running

down, EPSC amplitudes tended to increase (Figures 5B and 5D;
554 Neuron 66, 550–559, May 27, 2010 ª2010 Elsevier Inc.



Figure 6. CaN* and Spontaneous Firing Induce LTP without Hyper-

polarization in the Presence of the L-type Ca Channel Blocker Nimo-

dipine

(A) EPSCs before and after conditioning protocol of CaN* and spontaneous

firing in the presence of nimodipine (10 mM).

(B) Mean EPSC amplitudes before and after conditioning protocols with nimo-

dipine present (open circles; n = 5) or absent (triangles; data from Figure 2).

(C) Diagram summarizing the interaction of Ca-dependent pathways that regu-

late LTP. Ca influx through NMDA receptors activates calcineurin. Activation of

a-CaMKII by Ca influx through voltage-dependent Ca channels (VDCC) trig-

gers LTP if the suppressive effect of L-type Ca current is reduced by hyperpo-

larization-driven closure of these channels.
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EPSC change, 14.9% ± 9.8%, n = 7; p < 0.05 versus �40 mV

EGTA control), reaching 21.2% ± 15.9% after 25 min. Moreover,

this run-up was indistinguishable from that measured at�70 mV

(p > 0.5). Finally, because sustained calcium influx at �40 mV is

likely to include a large contribution of L-type calcium current in

these neurons (Zheng and Raman, 2009), we tested whether

blocking L-type calcium channels might permit run-up at

�40 mV even with normal buffering (1 mM EGTA). Indeed, in

the presence of nimodipine (10 mM), EPSCs significantly

increased (Figures 5C and 5D, EPSC change, 10.3% ± 7.4%,

n = 6; p < 0.05 versus�40 mV; p > 0.1 versus�70 mV), reaching

15.1% ± 5.9% after 25 min. Thus, calcium influx, at least in part

through L-type calcium channels, prevents CaN*/CaMKII*-

induced potentiation, suggesting that the drop in calcium

induced by hyperpolarization provides a distinct and necessary

signal in generating LTP.
If the primary role of inhibition is to create a permissive condi-

tion for LTP by deactivating L-type calcium channels, then nimo-

dipine should be able to replace the hyperpolarizing step in the

induction protocol. If, however, hyperpolarization also recruits

T-type or other low-voltage-activated channels that must acti-

vate upon disinhibition, then LTP will not proceed without a hy-

perpolarizing step, even when L-type channels are blocked. To

distinguish between these possibilities, we tested whether the

presence of nimodipine could convert the ineffective protocol

of spontaneous firing with activated CaN* without hyperpolariza-

tion (Figure 2A) into one that generated LTP. Under these condi-

tions, EPSCs potentiated by 25.9% ± 9.1% (Figures 6A and 6B;

n = 5; p < 0.05), reaching 32.7% ± 9.1% after 25 min, in contrast

to EPSCs recorded with the same stimuli without nimodipine,

which did not potentiate. These results rule out the idea that

disinhibition itself provides a specific calcium signal for LTP

induction. Instead, they support the idea that spontaneous firing

maintains a basal activation of a-CaMKII (Nelson et al., 2003) as

a result of calcium influx through high-voltage-activated (HVA)

Ca channels, but that L-type current alone prevents LTP induc-

tion. Inhibition therefore plays the direct role of suppressing L-

type current, thereby allowing LTP to proceed.

DISCUSSION

Together, the results demonstrate that excitation, inhibition, and

firing each regulate calcium in distinct ways to potentiate mossy-

fiber EPSCs in the cerebellar nuclei. Synaptic excitation acti-

vates the calcium-dependent phosphatase calcineurin; inhibi-

tion prevents spiking, thereby decreasing calcium influx through

L-type calcium channels; and the resumption of firing upon disin-

hibition restores the spike-dependent calcium influx that acti-

vates a-CaMKII. The data support a model in which calcineurin

primes synapses for later potentiation, and the reduction in tonic

calcium by inhibition creates a condition that is permissive for

potentiation, which is then triggered by a-CaMKII. Further, they

illustrate that the hyperpolarization associated with synaptic inhi-

bition actively controls synaptic plasticity by regulating L-type

calcium-channel-dependent processes that otherwise prevent

the induction of potentiation (Figure 6C).

Calcineurin and Mossy-Fiber LTP
Within the standard induction sequence of synaptic excitation,

inhibition, and disinhibition, CaN* successfully substituted for

synaptic excitation. Precedent for a role for phosphatases in

inducing LTP comes from the postsynaptic LTP of parallel fibers

onto Purkinje cells (Belmeguenai and Hansel, 2005). Since

mossy fiber LTP in the cerebellar nuclei is prevented by antago-

nists of NMDA receptors (Pugh and Raman, 2006), it seems likely

that trains of EPSPs normally activate endogenous calcineurin

via calcium influx through NMDA receptors. Moreover, the

synapse specificity of LTP (Pugh and Raman, 2008) suggests

that the action of calcineurin generally serves to prime activated

synapses for potentiation. Here, we observe that synaptic exci-

tation followed by long hyperpolarizations did not induce LTP,

but that, in the presence of constitutively active calcineurin,

long hyperpolarizations did not prevent potentiation. These

data suggest that the priming signal decays within a few hundred
Neuron 66, 550–559, May 27, 2010 ª2010 Elsevier Inc. 555
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milliseconds, during which time the resumption of firing, presum-

ably restoring a-CaMKII activity, is required for triggering to

occur.

Interestingly, CaN* was not only able to replace synaptic stim-

ulation in effective induction protocols, but it also made EPSCs

less susceptible to a net long-term depression. At least four stim-

ulus protocols have been shown to induce long-term depression

in cerebellar nuclear cells, all of which consist of brief, high-

frequency trains of synaptic excitation that neither overlap with

nor are closely followed by a hyperpolarization (Figure 3, Zhang

and Linden, 2006, Pugh and Raman, 2008). When CaN* replaces

synaptic stimulation, however, similar protocols fail to depress

EPSCs (Figure 2), suggesting that CaN* biases EPSCs toward

potentiation. Consistent with this idea, blocking calcineurin acti-

vation during the standard protocol elicits LTD (Pugh and

Raman, 2008). Together, these data raise the possibility that

high-frequency stimulation of glutamatergic afferents couples

to multiple pathways in cerebellar nuclear neurons, some of

which favor depression and others of which favor potentiation.

Increasing calcineurin activity shifts the balance toward LTP,

which may be accomplished either by preventing depression

or by simply outweighing it to produce a net potentiation.

Disinhibition and a-CaMKII Activation
Multiple experiments support the conclusion that activation of a-

CaMKII is necessary to trigger potentiation of primed synapses.

Because CaN* in spontaneously firing cells induces LTP as long

as L-type Ca channels are blocked, it appears likely that Ca influx

through HVA calcium channels that open during spontaneous

action potentials is sufficient to activate a-CaMKII. Importantly,

this observation rules out the possibility that CaMKII activation

is coupled specifically to the activation of T-type or other LVA

channels. In previous work, we found that LVA calcium channels

activated after periods of strong hyperpolarization of voltage-

clamped neurons were sufficient to trigger LTP (Pugh and

Raman, 2006), consistent with the idea that it is possible to acti-

vate a-CaMKII by calcium influx associated specifically with

disinhibition. Because of the high density of T-type calcium

currents in the cerebellar nuclei (Llinás and Mühlethaler, 1988;

Molineux et al., 2006), these data initially seemed to support

a specific role for T-type channel activation. Subsequent studies,

however, demonstrated that the relief of synaptic inhibition does

not elicit sizeable T-type currents because inhibition hyperpolar-

izes these neurons to voltages that permit only little T-channel

recovery (Alviña et al., 2008; Zheng and Raman, 2009). Never-

theless, synaptically mediated inhibition is sufficient to induce

LTP (Pugh and Raman, 2008), indicating that calcium influx

through high-voltage-activated channels is sufficient to trigger

LTP. Moreover, although spontaneous firing opens calcium

channels that support a tonic calcium load, Ca levels do not

rise above baseline upon synaptic disinhibition (Zheng and

Raman, 2009). Thus, within the standard protocol, disinhibition

evokes neither a special source of calcium, nor a particularly

large calcium signal.

The present results provide more direct evidence that activa-

tion of a-CaMKII does not depend on calcium influx specifically

associated with disinhibition, but that it is already activated in the

basal state by the spikes that precede inhibition, as observed in
556 Neuron 66, 550–559, May 27, 2010 ª2010 Elsevier Inc.
the medial vestibular nuclei (Nelson et al., 2003, 2005). Neverthe-

less, with synaptic activation of calcineurin, the duration of

hyperpolarization cannot be indefinitely prolonged, suggesting

that a-CaMKII activity, too, falls off with inhibition. It therefore

seems likely that the calcium influx associated with postinhibi-

tory firing restores a-CaMKII activity, providing a necessary

signal for induction of LTP.
Inhibition and Permissive Conditions for LTP
Inhibition during the induction protocol does not, however,

simply set up disinhibition; rather, it plays a distinct and neces-

sary role in LTP induction by reducing L-type Ca current that

interferes with the induction of plasticity. Tonic spiking therefore

prevents potentiation, even in the face of synaptic excitation and

basal activation of a-CaMKII, while synaptic inhibition actively

regulates the strengthening of excitatory synapses by

decreasing or interrupting ongoing action potentials and thereby

reducing calcium influx through L-type channels. Thus, even in

the absence of postinhibitory (rebound) bursts of action poten-

tials that evoke calcium influx, inhibition can couple to calcium-

dependent intracellular signaling pathways in a manner that is

relevant to plasticity. A similar situation exists in the medial

vestibular nuclei, in which long-term increases in intrinsic excit-

ability can be induced by repeated periods of inhibition. There,

however, the reduction in basal firing and consequent drop in

calcium levels decreases a-CaMKII activity, modulating ion

channels that mediate excitability (Nelson et al., 2005), whereas,

in the cerebellar nuclei, inhibition relieves a calcium-dependent

repressor of potentiation that is coupled to L-type calcium

channels.
Molecular Mechanisms of LTP Expression
An interesting feature of mossy fiber LTP in the cerebellar nuclei

is its dependence on a kinase and phosphatase that antagonize

one another in other cell types. For example, in hippocampal

CA1 pyramidal neurons, CaMKII and calcineurin are mutually

inhibitory and trigger LTP and LTD, respectively (McGlade-

McCulloh et al., 1993; Mulkey et al., 1994; Lledo et al., 1995;

Lisman, 1989; Lisman and Zhabotinsky, 2001). The present

data nevertheless suggest a straightforward model in which

calcineurin and a-CaMKII can work together to induce LTP.

Since the paired-pulse ratio and the variance of EPSC ampli-

tudes remain unchanged after potentiation cerebellar mossy

fiber LTP is likely expressed postsynaptically (Pugh and Raman,

2008). At calcineurin-primed synapses, a-CaMKII may (directly

or indirectly) facilitate the insertion of AMPA receptors, while

a distinct calcium-dependent process facilitates internalization

of AMPA receptors. With high tonic calcium levels attained by

spontaneous and driven firing of action potentials, synaptic

strength may be actively maintained by balanced receptor turn-

over. With tonic low calcium, synaptic strength may be passively

maintained by little or no turnover. When inhibition is followed by

disinhibition, however, the changes in tonic calcium may affect

the calcium-dependent signaling pathways differentially,

yielding a net increase in the action of a-CaMKII and/or downre-

gulation of the processes driving internalization. In this way,

insertion may be favored over internalization, inducing LTP.
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Cellular Plasticity in the Cerebellar Nuclei and Learning
The original mossy-fiber LTP protocol was designed to approx-

imate predicted cerebellar activity during delay eyelid condi-

tioning (Pugh and Raman, 2006; McCormick and Thompson,

1984). Although in subsequent studies (Pugh and Raman,

2008; the present work) we have reduced the protocol to iden-

tify the minimal stimuli necessary to induce plasticity, this form

of LTP, which persists to ages at which delay eyelid condi-

tioning is robust (Stanton et al., 1992), remains of interest

because of its potential relevance to learning. In delay eyelid

conditioning, animals are trained to associate conditioned

stimuli, carried by mossy fibers, with unconditioned stimuli,

carried by inferior olivary fibers (McCormick and Thompson,

1984, Mauk et al., 1986; Steinmetz et al., 1989; Hesslow

et al., 1999). Because mossy fibers and inferior olivary fibers

excite, directly or indirectly, both cerebellar nuclear cells and

Purkinje cells, excitation and inhibition are predicted to coin-

cide in cerebellar nuclear cells. Disinhibition is expected to

occur as Purkinje cells transiently pause after the complex

spike evoked by unconditioned stimulus, or, after training, at

the end of the conditioned stimulus (Jirenhed et al., 2007).

The present data suggest that the patterns of activity predicted

to occur during learning should be sufficient to activate calci-

neurin through synaptic excitation, to lower calcium influx

through L-type Ca channels via inhibition from concerted Pur-

kinje cell activity, and to activate a-CaMKII upon disinhibition

and resumption of firing, as Purkinje cell firing pauses. In this

way, it is possible that synaptic excitation in the cerebellar

nuclei is potentiated in vivo during conditioning. Such plasticity

has the potential to work in parallel with plasticity in the cere-

bellar cortex that occurs during cerebellar learning (Koekkoek

et al., 2003, 2005; Hansel et al., 2006; Jirenhed et al., 2007),

by increasing the responsiveness of cerebellar nuclear cells

to conditioned stimuli.

In addition to mossy-fiber LTP, cerebellar nuclear neurons

express several other forms of cellular plasticity (Zheng and

Raman, 2010), some of which appear well suited to work in

concert with mossy-fiber LTP, and others of which seem likely

to oppose it. For instance, low calcium influx through NMDA

receptors or L-type calcium channels leads to an LTD of inhibi-

tory synaptic responses, whereas high calcium influx through

the same channels potentiates synaptic inhibition (Morishita

and Sastry, 1993, 1996; Aizenman et al., 1998; Ouardouz and

Sastry, 2000). Thus, the conditions favoring depression of inhibi-

tion are similar to those that favor potentiation of excitation,

namely, when excitatory synapses are activated but inhibition

is nevertheless effective at suppressing action potential firing.

Conversely, strong excitation without inhibition not only

increases inhibitory strength but also promotes depression of

EPSCs (Zhang and Linden, 2006; the present data). In addition,

bursts of spikes, evoked either by EPSPs or after IPSPs, trigger

increases in intrinsic excitability (Aizenman and Linden, 2000;

Zhang et al., 2004); these changes, too, might be elicited by stim-

ulus patterns associated with mossy-fiber LTP. Thus, strength-

ening excitation, weakening inhibition, and increasing intrinsic

excitability may work together to increase cerebellar output

and thereby contribute to conditioned responses as well as other

forms of cerebellar learning.
EXPERIMENTAL PROCEDURES

Preparation of Tissue

Parasagittal cerebellar slices were prepared from 13- to 16-day-old C57BL/6

mice (Charles River Laboratories) in accordance with institutional guidelines

for animal care and use. Mice were deeply anesthetized with isofluorane and

transcardially perfused with ice-cold artificial cerebrospinal fluid (ACSF) con-

taining (in mM) 123 NaCl, 3.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 1.5 CaCl2,

1 MgCl2, 10 glucose, and equilibrated with 95/5% O2/CO2. Mice were then

rapidly decapitated and the brains removed into ice-cold ACSF. Slices

(300 mm thick) were cut on a Vibratome (Leica VT 100S) and incubated in

warmed (35�C), oxygenated ACSF for at least 1 hr before recording. In young

adult (P28–32) mice, slices were cut in ACSF in which 210 mM sucrose

replaced NaCl (Kirov et al., 2004).

Electrophysiological Recording

Cerebellar slices were transferred to a recording chamber perfused continu-

ously with warmed (33�C–37�C), oxygenated ACSF containing the GABAA

receptor antagonist SR95531 (10 mM) at a flow rate of 2–4 ml/min. Slices

were visualized with IR-DIC microscopy, and recordings were made from large

neurons primarily within the interpositus and lateral cerebellar nuclei (soma

diameters > 15 mm). Voltage- and current-clamp recordings were made with

a Multiclamp 700B amplifier (Molecular Devices) and pClamp 10.0 data acqui-

sition software (Molecular Devices). Series resistance was compensated

25%–55%. Data were filtered at 2 kHz and sampled at 10 kHz.

For experiments involving both voltage- and current-clamp recordings,

borosilicate patch pipettes were pulled to tip resistances of 2–4 MU and filled

with an internal solution containing (in mM) 130 K-gluconate, 2 Na-gluconate, 6

NaCl, 10 HEPES, 2 MgCl2, 1 EGTA, 14 Tris-creatine phosphate, 4 MgATP, 0.3

Tris-GTP, and 10 sucrose. In experiments in which cells were voltage-clamped

at �40 mV, the internal solution was supplemented with 600 mM QX-314, and

K-gluconate was replaced with Cs-methanesulfonate. Where indicated in the

text, 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA;

10 mM) replaced EGTA in the internal solution.

For experiments with added free intracellular Ca, 0.1 mM CaCl2 was added

to the intracellular solution, which is calculated to produce a free calcium

concentration of 50 nM under our buffering conditions (CaEGTA calculator

TS v1.3; Patton et al., 2004).

Excitatory synaptic currents and potentials were evoked by stimulating the

white matter surrounding the cerebellar nuclei with 0.1 ms current pulses

(<1 mA; Isoflex Stimulus Isolation Unit; AMPI) delivered through a concentric

bipolar electrode (FHC). Mossy fibers form the bulk of this input, although

a contribution from climbing fiber collaterals entering the nuclei cannot be

excluded (Chan-Palay, 1977). Except as noted, baseline EPSCs (paired

pulses, 50 ms interval) were recorded at �65 mV every 15 s for 7–10 min.

The recording configuration was then switched to current-clamp mode and

current injections and/or EPSP trains were delivered 30 times, every 5 s.

EPSCs were then monitored in current clamp for at least 25 min. Inhibition

was mimicked with current injections (�200 to�600 pA) that interrupted firing

and hyperpolarized the membrane by about�20 mV. In experiments including

long hyperpolarizing steps, 500 ms square current injections were ramped

back to 0 pA over 2.5 s, resulting in a mean interruption of firing of 2.7 s. In

all recordings of EPSCs, a 100 ms, �10 mV test step was delivered on each

sweep to monitor recording stability and access resistance. Recordings

were aborted if neurons were unstable or if an increase in access resistance

indicated resealing.

Enzymes, Drugs, and Other Chemicals

Chemicals were obtained from Sigma-Aldrich, with the exception of SR95531

and KN-62 (Tocris). For CaN*, recombinant human myristolated calcineurin

(PP2B) was obtained at 100 U/ml (Biomol International) and diluted 1:500 in

internal solution before use. Fresh dilutions were made hourly. For CaMKII*,

a truncated monomer of the a-CaMKII (residues 1–325; New England BioLabs)

was activated in vitro by incubating CaMKII in a reaction buffer containing

400 mM ATPgS, 1.2 mM calmodulin, 0.5 mM CaCl2, 10 mM NaCl, 5 mM HEPES,

and 2 mM MgCl2 in water for 10 min (McGlade-McCulloh et al., 1993; Lledo

et al., 1995). This solution was diluted 10-fold in the internal solution during
Neuron 66, 550–559, May 27, 2010 ª2010 Elsevier Inc. 557
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recordings, to a final concentration of 200 nM. In interleaved control experi-

ments, a-CaMKII was denatured by heating at 70�C for 25–35 min before incu-

bation in reaction buffer.

Data Analysis

Peak amplitudes of synaptic currents were measured with Neuromatic (http://

ThinkRandom.com) in IgorPro (Wavemetrics). Data are reported as mean ±

SEM. EPSC amplitudes in each cell were normalized to the mean baseline

(preconditioning) EPSC amplitude. To generate plots of population data, every

ten sequentially evoked EPSCs (first EPSC only of paired EPSCs) were aver-

aged for each cell. For statistical analysis, EPSC amplitudes from 5 min post-

conditioning to the end of the recording were averaged and compared to the

mean baseline amplitude. To facilitate comparisons between conditions, we

also report the average percent change in EPSC amplitude measured 24–25

min after application of the induction protocol. In run-up/run-down experi-

ments, the baseline was taken as the average of the first ten EPSCs, which

were compared to the mean of the EPSC amplitudes measured during the

last 5 min of recording. Statistical significance was assessed with either paired

(where possible) or unpaired, two-tailed Student’s t tests, with significance

taken to be p < 0.05. In some traces, stimulus artifacts have been digitally trun-

cated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure and can be found with this
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