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Bayesian formalizations of learning are a revolution-
ary advance over traditional approaches. Bayesian mod-
els assume that the learner maintains multiple candidate 
hypotheses with differing degrees of belief, unlike tra-
ditional models that assume the learner has a punctate 
state of mind. Bayesian models can account for some as-
sociative learning phenomena that are very challenging 
for traditional approaches. Perhaps more important, but 
even less prominent in the associative learning literature, 
is the fact that Bayesian models provide a foundation for 
models of active learning. Because Bayesian models rep-
resent degrees of belief across multiple hypotheses, the 
active learner can assess which possible probing of the 
environment is most likely to achieve beliefs that reduce 
uncertainty or make some hypotheses highly probable. 
Traditional models, by contrast, typically treat the learner 
as a passive recipient of information, and such models 
offer no predictions for how a real learner would actively 
probe its environment.

This article is divided into two main parts. The first is a 
selective review of Bayesian models of associative learn-
ing. Two different Bayesian models are described in detail 
and compared with the traditional Rescorla–Wagner (1972) 
model. The behavior of the models is illustrated by appli-
cations to some well-known phenomena, such as backward 
blocking. The review also indicates how the specific mod-
els are situated in the larger space of all possible Bayesian 
models, which offers a remarkably liberating cornucopia 
of representational options for models of learning.

The second part of the article focuses on active learning. 
Two different goals for active learning are reviewed, and the 

predictions of the two Bayesian models are presented. This 
article is the first application of active-learning formalisms 
to models of associative learning. The derivations and sim-
ulations demonstrate that different combinations of knowl-
edge representations and active-learning goals generate dif-
ferent predictions, some of which are already informed by 
results in the literature. The broad framework that combines 
Bayesian models of passive learning with various goals for 
active learning is a gold mine for new research.

TradiTional and Bayesian Theories

In traditional cognitive models, the learner’s knowledge 
at any given moment is represented as a specific state. 
For example, the learner may have an associative weight 
of 0.413 between “tone” and “shock,” or the learner may 
know that the concept “cat” has a value of 0.289 on the 
scale of ferocity. When new information is delivered by 
the world, the values may change. For example, if another 
instance of shock preceded by a tone occurs, the asso-
ciative weight might then increase to 0.582. On the other 
hand, if a cat snuggles up and purrs, that concept’s ferocity 
value might decrease to 0.116. The punctate values com-
prise the totality of the learner’s knowledge.

Bayesian approaches assume a radically different men-
tal ontology, in which the learner entertains an entire spec-
trum of hypothetical values for every descriptor. For ex-
ample, the association between “shock” and “tone” might 
be anything on an infinite continuum, and the learner’s 
knowledge consists of a distribution of believabilities over 
that continuum. The learner may believe most strongly in 
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ditional approach is represented by the Rescorla–Wagner 
model. That model was selected both because it is well-
known and because it has a direct Bayesian generalization, 
known as the Kalman filter. A second Bayesian model is 
also presented because, as we will see, it makes differ-
ent predictions for active learning. This second Bayesian 
model is the noisy-logic gate.

All of the models will be applied to a basic experi-
mental procedure for assessing learning. In discrete tri-
als, cues are presented, and the learner is to predict the 
outcome. Typically, the learner’s prediction is prompted 
and recorded on each trial before the actual outcome is re-
vealed. For example, the learner might have to learn which 
foods cause or prevent nausea in a particular patient. In 
each trial, a meal is presented consisting of a small num-
ber of foods (the cues) ingested by the patient, and the 
outcome is whether or not the patient suffered nausea after 
the meal. The learner is informed that some foods may be 
antiemetic—that is, they prevent nausea that might other-
wise be induced by other foods.

The ith cue is denoted by ci, with ci 5 1 if the cue is 
present and ci 5 0 if it is absent. When several cues are 
available, the column vector containing the cue values is 
denoted c.

The outcome is denoted t (for teacher), with t 5 1 if 
the outcome is present and t 5 0 if it is absent. Differ-
ent models, described below, make different predictions 
regarding the outcome, whose anticipated value is de-
noted a. Through learning, the anticipated value a should 
get closer to the correct outcome t.

An organism’s knowledge is what generates an an-
ticipated outcome after cues are perceived. The learner’s 
knowledge can be formalized by a theorist in many differ-
ent ways; the complexity of the formalization depends on 
the modeler’s imagination and the complexity of the learn-
ing phenomena that are being addressed. In traditional as-
sociative models, the learner’s knowledge is formalized 
simply as an associative weight between each cue and the 
outcome, and the weighted cues are integrated in some 
simple way. The weight from the ith cue is denoted wi, 
which can have a positive or a negative value. When there 
are several cues, the column vector containing the weight 
values from the cues is denoted w.

In traditional associative learning models, the learner’s 
knowledge is assumed to consist of a single weight value 
on each cue. For example, the learner might currently be-
lieve that the first cue should have a weight of w1 5 0.9 
and the second cue a weight of w2 5 0.3. Learning con-
sists of changing those weight values after observing a 
new occurrence of cues and outcome. For example, if the 
learner observes Cue 2 with an outcome, then the adjusted 
weight values might be w1 5 0.9 (unchanged) and w2 5 
0.4 (larger than before).

In Bayesian associative learning models, the learner’s 
knowledge is assumed to entertain simultaneously all 
possible combinations of weight values, with a degree 
of believability for each combination. At any moment in 
time, the learner believes most strongly in some particular 
weight combination, but also believes somewhat in others, 
and even less strongly in yet others. As mentioned before, 

a value of 0.413 but also have some belief in values larger 
or smaller. Entertaining an infinite space of hypothetical 
values does not imply the need for an information proces-
sor of infinite capacity, for infinite belief distributions can 
be represented with small sets of values. For example, a 
normal distribution, which extends over an infinite space, 
is fully represented by its mean and variance. Also, an arbi-
trary infinite distribution can be represented by a finite set 
of sample values, just as a sample histogram approximates 
the underlying distribution that generated the sample.

The distribution of believabilities can be joint over mul-
tiple variables, and therefore correlations among variables 
can be captured. For example, the learner may believe that 
higher values of association between “tone” and “shock” 
are correlated with higher values of cat ferocity.

The distribution of beliefs expresses the learner’s uncer-
tainty: The more spread out the beliefs, the greater the un-
certainty. Traditional models, with punctate values, have 
no natural way of representing the learner’s uncertainty, 
whereas Bayesian models represent it inherently.

Learning in a Bayesian model is shifting of beliefs. 
When there is another occurrence of a tone with a shock, 
higher values of association are more believable. The dis-
tribution of believable values also narrows in that case, 
because the additional experience makes the learner more 
certain about the relation between tone and shock.

Bayesian reasoning relies on trade-offs among the be-
lievabilities of the available hypotheses. We intuitively use 
these trade-offs in everyday reasoning. In the everyday 
“logic of exoneration,” if one suspect confesses, an unaffili-
ated suspect is exonerated. In general, increasing the believ-
ability of some hypotheses necessarily decreases the believ-
ability of others; that is, the others are exonerated. Later in 
this article, we will encounter the phenomenon of backward 
blocking, which can be explained in a Bayesian framework 
by the logic of exoneration. A complementary form of ev-
eryday reasoning is Holmesian deduction: “How often have 
I said to you that when you have eliminated the impossible, 
whatever remains, however improbable, must be the truth?” 
So said Sherlock Holmes in Arthur Conan Doyle’s novel 
The Sign of Four (1890, ch. 6). In other words, decreasing 
the believability of some hypotheses necessarily increases 
the believability of the remaining hypotheses. Later on, we 
will encounter the phenomenon of reduced overshadowing, 
which can be explained in a Bayesian framework by the 
logic of Holmesian deduction.

There are at least two advantages of Bayesian over tra-
ditional models. First, because Bayesian models can keep 
track of multiple combinations of hypothetical values and 
their believabilities, they can account for some learning be-
haviors that are challenging for traditional models. Second, 
because Bayesian models inherently represent the degree 
of uncertainty, they can be used to guide active learning, 
which (in one formulation) attempts to probe the environ-
ment for information that will rapidly reduce uncertainty.

examples: one Traditional 
and Two Bayesian Models

The vague informal ideas discussed above are clarified 
by concrete examples presented in this section. The tra-
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squared error, (t 2 a)2, yields the following formula for 
adjusting the weights:

	 Dw 5 l(t 2 a)  c

 5 l(t 2 wTc)  c, (3)

where Dw denotes the changes in the weights and l . 0 
is a learning rate parameter that governs the overall speed 
of learning in the model. The weights are typically all as-
sumed to begin at 0 and then to change according to Equa-
tion 3 on each trial.

The crucial point to understand about the Rescorla–
Wagner model is that it represents the learner’s knowl-
edge as a single, punctate combination of associative 
weights, w. At any given moment in time, the learner’s 
knowledge is completely specified by a single weight 
value on each cue. When the information from the next 
trial is presented, those weight values change, but the up-
dated knowledge is still a single weight value on each cue. 
There is no representation of alternative weight combina-
tions that might also account for the cue–outcome expe-
riences. Nor is there any representation of the learner’s 
uncertainty about the weight values.

The Kalman filter. The Kalman filter was originally 
developed in the context of least-squares estimation for 
dynamic systems (Kalman, 1960), and a Bayesian formu-
lation and tutorial was presented by Meinhold and Sing-
purwalla (1983). The Kalman filter was introduced to 
associative learning theorists by Sutton (1992). More re-
cently, the filter has been used by Dayan and colleagues to 
model various phenomena in associative learning (Dayan, 
Kakade, & Montague, 2000; Kakade & Dayan, 2002).

In the Kalman filter applied to associative learning, there 
are two crucial enhancements to the Rescorla–Wagner 
model that make it Bayesian. First, the anticipated outcome 
is not just the specific weighted sum of cue activations, as 
in Equation 2. Instead, it is expressed as a degree of belief 
over all possible outcome values. The degree of belief in 
outcome value a is expressed as a normal probability distri-
bution centered on the weighted sum of cue activations:

 p(a | c, w, n) 5 N(a | wTc, n), (4)

where N(a | m, n) denotes a normal density on a with mean 
m and variance n. Thus, the Kalman filter says that the 
most likely outcome is the weighted sum of the cues, but 
outcomes a little larger or smaller are also somewhat be-
lievable. The value of the outcome variance, n, is a free pa-
rameter in the model; it not only expresses the uncertainty 
of prediction, but also affects the rate of learning, as will 
be shown below.

The second crucial enhancement to the Rescorla– 
Wagner model that makes the Kalman filter Bayesian 
involves knowledge representation. The learner’s knowl-
edge in the Kalman filter is not only a single weight value 
on each cue. Instead, the learner entertains all possible 
weight combinations across the cues, with each possible 
combination having a degree of belief. In the Kalman fil-
ter, the distribution of beliefs is assumed to be a multivari-
ate normal distribution, centered on some mean weight m. 
The covariance matrix of the multivariate normal distribu-

an infinite belief distribution can be represented by a fi-
nite set of values. The distribution of degrees of believ-
ability is formally described as a probability distribution. 
This formalization implies that all believabilities are non-
negative and that, across the space of all possible weight 
combinations, the believabilities sum to 1. In a Bayesian 
model, the belief distribution is denoted p(w).

The other key difference between Bayesian and tradi-
tional models is that Bayesian models generate probabi-
listic rather than deterministic anticipations. Instead of 
predicting that the outcome will have a specific value a, 
Bayesian models predict a probability for each possible an-
ticipated value. The prediction is that some value a is most 
probable, but that other values, a bit higher or lower, are 
also possible with somewhat lesser probability. The prob-
ability of the possible anticipated values, given the current 
cues and current knowledge, is denoted p(a | c, w).

Learning in a Bayesian model consists of changing the 
belief distribution after observing a new occurrence of 
cues and outcome. The normatively correct way to change 
beliefs is provided by Bayes’s rule:
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This rule says that the learned believability of a particu-
lar combination of weights after observing some specific 
cues and outcomes, denoted p(w | t, c), is proportional to 
the believability of that weight combination before the 
observation, denoted p(w), multiplied by the probability 
that the observation would occur for that weight value, 
denoted p(t | c, w). The believability of the weights after 
the observation is called the posterior distribution, and 
the believability of the weights before the observation is 
called the prior distribution. The probability of the obser-
vation, for a particular weight combination, is called the 
likelihood function of the weights.

The denominator of Equation 1 contains an integral that 
evaluates to a constant, p(t | c). This value is sometimes 
called the evidence for the model. It indicates the degree 
to which the observed outcome t is anticipated, when aver-
aged across all possible values of the weights, scaled pro-
portionally to their believabilities. The integral is rarely 
easy to determine with formulas alone, and therefore so-
phisticated numerical approximations must be used. The 
last two decades have produced tractable computational 
methods for these approximations, and hence there is 
great interest in Bayesian approaches. This integral will 
appear again later in the article, in the context of active 
learning, but for now it can be ignored.

The rescorla–Wagner model. In the Rescorla– 
Wagner model, the predicted or anticipated outcome a is 
the weighted sum of the cue activations:

 a 5 Si wici

 5 wTc,  (2)

where wT is the vector transpose of the column vector w. 
Learning consists of decreasing the error between the cor-
rect and the anticipated outcome. Gradient descent on the 
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The Rescorla–Wagner learning rate l (Equation 3) has 
been replaced by the Kalman filter term in square brackets 
(Equation 6) involving the outcome uncertainty n and the 
belief uncertainty C. In particular, if only cue ci is present 
and all others are absent, the effective learning rate on that 
cue is [n 1 cTCc]21 5 Vi/[n 1 Vi], where Vi is the variance 
of the belief on the ith associative weight. In other words, 
when the uncertainty Vi is larger, learning is faster. This 
is a general property of Bayesian learning: When belief 
about a parameter, such as an associative weight, is highly 
uncertain, observational data have a rapid influence on 
changing that belief. On the other hand, when belief about 
a value is already highly certain, new data do not budge 
the belief very much.

In the Rescorla–Wagner learning rule (Equation 3), the 
rightmost term is the cue activation, c. This implies that 
when a cue is absent—that is, when ci 5 0—the weight 
on the cue does not change. In the Kalman filter formula 
for the change of mean, the rightmost term is the cue vec-
tor times the covariance matrix—that is, Cc. This implies 
that when a cue is absent, the mean weight on the cue 
might nevertheless change, if other cues are present that 
are correlated with the absent cue. This characteristic will 
be important for the Kalman filter’s behavior when it is 
applied to the procedure known as backward blocking, to 
be described later.

The updating equation for the covariance of the beliefs 
across weights, Equation 7, is similar to that for the mean 
of the beliefs. A curious and important difference, though, 
is that the covariance of the beliefs does not depend on 
the actual outcome t. The covariance of the beliefs in the 
weights depends only on the particular cue combinations 
that have appeared! This independence from the actual 
outcome is a characteristic of the Kalman filter model but 
is not true of Bayesian models generally, as we will see 
below.

In summary, these are the main points to understand 
about the Kalman filter model. At its core is the linear as-
sociator of the Rescorla–Wagner model, but the Kalman 
filter makes the anticipated outcome probabilistic and en-
tertains all possible weight combinations with different 
degrees of belief. The belief distribution across weights is 
assumed to begin as multivariate normal, and a pleasing 
mathematical result is that Bayesian updating of the belief 
distribution maintains the multivariate normal shape of 
that distribution. Because the distribution remains mul-
tivariate normal, the beliefs of the learner at any given 
moment can be summarized by the mean vector and cova-
riance matrix of the multivariate normal.

The noisy-logic gate. Whereas the Kalman filter as-
sumes that the output can be any value, the noisy-logic 
gate (see, e.g., Danks, Griffiths, & Tenenbaum, 2003; Lu, 
Yuille, Liljeholm, Cheng, & Holyoak, 2006; Yuille & Lu, 
in press) assumes that the output is 1 or 0. This is natural 
in many associative learning scenarios, when the outcome 
to be predicted does not vary in its magnitude across trials. 
The cues in this paradigm can, in principle, have values in 
the interval [0, 1], but typically they also are assumed to 
be discretely valued, with ci [ {0, 1}.

tion is denoted C. The degree of belief in a weight combi-
nation w is expressed as the multivariate normal density:

p(w) 5 N(w | m, C )

5 [(2π)n | det(C ) | ]21/2 exp[20.5(w 2 m)T

 C21(w 2 m)], (5)

where n is the number of cues and det(C ) is the deter-
minant of the covariance matrix. The covariance matrix 
captures the current uncertainty of the learner’s beliefs; 
its ith diagonal element is the variance of the belief re-
garding weight wi. When that variance is large, there 
is large uncertainty regarding the value of wi. The off-
diagonal elements of the covariance matrix describe the 
learner’s knowledge of trade-offs between weight values. 
We will see concrete examples of this in the applications 
described below.

The Kalman filter also allows for incorporating un-
learned linear dynamics into the weight changes. These 
dynamic changes are imposed by the theorist “from the 
outside” as an additional influence on the associative 
weights, unrelated to learning from cues and outcomes. 
In the applications of Dayan and colleagues (Dayan et al., 
2000; Kakade & Dayan, 2002), this additional dynamic 
is assumed to be a random diffusion process, such that 
the passage of time increases uncertainty without chang-
ing the mean belief. The degree of noise added with each 
trial is a free parameter. In the simulations that I describe 
below, I have set the unlearned dynamic component to 0. 
Without any unlearned dynamic component, the simula-
tions reveal the pure learning aspects of the model. When 
nonzero dynamic noise is introduced, the qualitative re-
sults remain the same in many situations.

Learning in the Kalman filter means shifting the de-
gree of belief over all of the possible weight combinations, 
to take into account the observed cues and outcome. The 
mathematically correct way to do this is with Bayes’s rule, 
in Equation 1. It turns out—and this is the beauty of the 
Kalman filter—that when Bayes’s rule is applied to the 
likelihood formula in Equation 4 and the prior formula 
in Equation 5, the resulting expression for the updated 
beliefs, known as the posterior distribution, is again a mul-
tivariate normal distribution over the possible weights. In 
other words, if the beliefs begin as a multivariate normal 
distribution, then, after observing some cues and an out-
come, the new beliefs are still distributed in the form of a 
multivariate normal, but with some new mean and covari-
ance. The updating equations for the mean and covariance 
of the beliefs have the following form:

	 Dm 5 [n 1 cTCc]21 (t 2 mTc)Cc (6)

	 DC 5 2[n 1 cTCc]21 CccTC. (7)

Notice that the updating equation for the mean (Equa-
tion 6) is much like the updating equation for weights in 
the Rescorla–Wagner model (Equation 3). In Equation 6, 
the term in parentheses, (t 2 mTc), is analogous to the term 
(t 2 wTc) in Equation 3. Thus, both the Kalman filter and 
the Rescorla–Wagner model incorporate the prediction 
error as a factor in learning.
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influences of the cues interact according to a probabilis-
tic, or “noisy,” logical combination, as in Equation 8. The 
weights on the cues can take on values between 21 and 
11. The initial knowledge state is a diffuse prior belief 
distribution over the space of all possible weight combi-
nations, and learning proceeds according to Bayes’s rule. 
Unfortunately, no simple formula exists for updating the 
belief distribution, and therefore a numerical approxima-
tion must be used.

application to Backward Blocking
The three models defined above are here applied to the 

associative learning paradigm known as backward block-
ing. Table 1 shows the training structure for the backward-
blocking procedure. There are two cues, cleverly denoted 
Cue 1 and Cue 2. The first phase of training comprises 
10 trials in which both cues occur with the outcome. The 
second phase of training has 10 trials in which only Cue 1 
occurs along with the outcome. Cue 2 does not appear in 
the second phase of training. The phenomenon of interest 
is that when Cue 2 is tested by itself at the end of the sec-
ond phase, it evokes less anticipation of the outcome than 
when it is tested by itself at the end of the first phase. In 
other words, despite the fact that Cue 2 did not appear in 
the second phase, it has, apparently, been retrospectively 
revalued and has lost associative strength (Shanks, 1985). 
This result is called blocking because the associative 
strength of the second cue has apparently been blocked, 
or diminished, by the subsequent learning of the first cue, 
and the procedure is called backward because the phases 
of training are reversed relative to the classic blocking 
paradigm (Kamin, 1968).

Figure 1 shows the behavior of the Rescorla–Wagner 
model when trained with the backward-blocking structure 
in Table 1. The left set of panels shows the initial state of 
the model. In particular, the lower left panel displays a 
dot at the origin, which indicates that the two cue weights 
begin at (0, 0). The spikes in the adjacent panels merely 
show the same information, but only for one cue at a time. 
The middle set of panels shows the state of the weights 
after the first phase of training. Because both cues have 
occurred on every trial until this time, the weights on the 
two cues are equal, in this case 0.413. The right set of pan-
els shows the state of the weights after the second phase 
of training. Notice that the weight on the first cue has in-
creased, which makes sense because it has occurred by 
itself with the outcome during the second phase. Notice 
that the weight from the second cue has not declined dur-
ing the second phase; it is still at 0.413. In other words, 
the Rescorla–Wagner model does not exhibit backward 

In a noisy-logic gate, a positive weight on a cue indi-
cates the probability that the outcome will occur if that cue 
is present by itself. Thus, positive weights must be in the 
interval [0, 1]. When several positively weighted cues are 
present simultaneously, the outcome fails to occur only if 
all of the cues happen not to generate the outcome. For-
mally, for positively weighted cues, the outcome occurs 
with probability 1 2 pi(1 2 wi)

ci. This function imple-
ments a probabilistic version of logical OR.

A negative weight on a cue indicates that the cue is 
preventative. If the negatively weighted cue occurs in a 
context that otherwise would produce the outcome, the 
probability of the outcome is reduced to (1 1 wi)

ci. Thus, 
negative weights must be in the interval [21, 0]. When 
several negatively weighted cues occur simultaneously, 
the probability of the outcome is only p i(1 1 wi)

ci. This 
function implements a probabilistic version of logical 
AND-NOT.

Combining the generative and preventative influences 
yields the following likelihood function for a noisy-logic 
gate:
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For example, suppose we have two cues with positive 
weights of 1.9. If one of the cues is present, Equation 8 
implies that the probability of the outcome is .90. If 
both cues are present, the probability of the outcome is 
1 2 (1 2 .9)(1 2 .9) 5 .99. Thus, when more positively 
weighted cues are present, the probability of the outcome 
increases. Consider instead a case with two cues, but this 
time one has a weight of 1.9 and the other of 2.9. In this 
case, when both cues are present, the probability of the 
outcome is only [1 2 (1 2 .9)][1 1 (2.9)] 5 .09.

A Bayesian approach to the noisy-logic model is to as-
sume that the learner begins with diffuse beliefs centered 
at 0. This could be a uniform distribution over the weight 
space [21, 11]N, or it could be some other distribution.

Learning consists of adjusting the belief distribution 
according to Bayes’s rule when an observation of cues and 
outcome occurs. Unfortunately, there is no simple itera-
tive formula for Bayesian learning in a noisy-logic gate, 
because the integral in Bayes’s rule (Equation 1) does not 
have a simple form. Therefore, numerical approximation 
is used instead. In the examples shown below, the weight 
space is approximated by a fairly dense grid. Instead of 
taking an integral over an infinite number of weight com-
binations in the continuous weight space, a large but finite 
number of specific weight combinations are summed over. 
The degree of belief in each possible weight combination 
is computed according to Bayes’s rule, with the integral 
replaced by a summation. The application in the next sec-
tion will provide a concrete example.

In summary, the noisy-logic model treats the outcome 
as a binary present/absent value, with each cue either in-
creasing or decreasing the probability of the outcome. The 

Table 1 
structure of the Training Trials for 
the Backward-Blocking Paradigm

 Phase  Freq.  Cue 1  Cue 2  Outcome  

I 10 1 1 1
II 10 1 0 1

Note—Cells with a 1 indicate the presence of a cue or outcome. Cells 
with a 0 indicate the absence of a cue or outcome.
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Kalman filter keeps track of all of those believable weight 
combinations, which have a negative covariance.

The right set of panels shows the beliefs after the sec-
ond phase of training. The mean of the first weight has 
increased (to 0.763). Importantly, the mean of the weight 
from Cue 2 has decreased, from 0.417 to 0.169. In other 
words, the Kalman filter shows backward blocking, unlike 
the Rescorla–Wagner model.

The specific mathematical reason that the Kalman fil-
ter decreases the mean weight of Cue 2, even when that 
cue is absent, is the negative correlation between Cue 2 
and Cue 1. Recall from Equation 6 that the change of 
mean weight is proportional to Cc, not just to c as in the 
Rescorla–Wagner model. Therefore, the change of the 
mean for w2 is proportional to the covariance of Cue 2 
and Cue 1, which is negative. This negative factor is a 
direct consequence of Bayesian updating of beliefs and is 
analogous to the heuristically motivated formalizations of 
negative activation for absent cues suggested by previous 
theorists (see Markman, 1989; Tassoni, 1995; Van Hamme 
& Wasserman, 1994).

The intuitive reason that the Kalman filter can change 
its mean belief about Cue 2, even when Cue 2 does not 
appear, is that the believabilities of the weight combina-

blocking. This failing can be deduced from the learn-
ing rule itself: Equation 3 reveals that a weight does not 
change when the corresponding cue value is 0.

Figure 2 shows the results of training the Kalman filter 
on the backward-blocking procedure of Table 1. All pos-
sible weight combinations have some nonzero degree of 
believability. The left set of panels shows the prior beliefs 
of the model, which make the neutral weight combination 
(0, 0) the most believable, and more extreme weight com-
binations less believable, with probability dropping off 
according to a bivariate normal distribution.

The middle set of panels shows the beliefs after the first 
phase of training. The belief distribution is still bivariate 
normal, but with a different set of means and covariance 
matrix than at the start. In particular, the mean belief on 
each weight is the same, in this case 0.417. Importantly, the 
contour graph reveals that the beliefs regarding the weights 
have a negative covariance. This negative covariance re-
veals which weight combinations are consistent with the 
observations seen to this time. The only observations seen 
so far have had both cues present with the outcome. Cer-
tainly one weight combination consistent with those ob-
servations would be (0.5, 0.5), but other weight combina-
tions, such as (0, 1) and (1, 0), would also be consistent. The 
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Figure 1. The rescorla–Wagner model after training with the backward-blocking structure in Table 1. The left panels 
show the weights prior to training. The middle panels show the weights after Training Phase i, and the right panels show 
the weights after Training Phase ii. For this simulation, the learning rate λ in equation 3 was arbitrarily set to 0.08.
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216    KruschKe

In summary, the Rescorla–Wagner model does not ex-
hibit backward blocking, but both Bayesian models do. 
The Kalman filter can be thought of as a direct Bayesifica-
tion of the Rescorla–Wagner model, in that both models 
generate an anticipated outcome that is a weighted sum 
of the cues. The noisy-logic model uses a different func-
tion to combine weighted cue information. Both Bayesian 
models qualitatively exhibit backward blocking because 
they implement the logic of exoneration: If Cue 1 is re-
sponsible for the outcome, then Cue 2 probably is not. 
Later in this article, the two Bayesian models will be 
shown to make different predictions for active learning. 
Before taking up this topic, however, I will explore the 
space of possible Bayesian models a bit more.

other Bayesian Models of associative learning
As illustrated above by the application of both the Kal-

man filter and noisy-logic models to backward blocking, 
there is no single Bayesian model for a particular situation. 
Different Bayesian models can make different predictions. 
In this section, I describe another class of Bayesian mod-
els for associative learning, called generative models. 
These address the fact that learners learn about the cues, 
as well as cue–outcome correspondences, during associa-
tive learning. I then describe an overarching framework 
in which the learner’s theory of the domain determines 
the space of hypotheses over which Bayesian learning is 
executed. This framework helps answer the question of, 
for example, whether a Kalman filter or a noisy-logic 
model is more appropriate for a particular learning situ-
ation. Finally, I describe an even broader framework that 
considers learning at different levels of analysis, such that 
components within a learning system might conduct lo-
cally Bayesian learning, whereas the system as a whole 
might not be globally Bayesian. Systems of locally Bayes-
ian models can address learning phenomena that are chal-
lenging for globally Bayesian models.

Generative versus discriminative models. The Kal-
man filter and the noisy-logic gate both associate cues 
with outcomes, not cues with other cues or outcomes with 

tions trade off: When the model increases believability 
in weight combinations such as (1, _) during the second 
phase, it has to decrease believability in weight combina-
tions such as (_ , 1). Even more intuitively, the model is 
reasoning this way: If Cue 1 is responsible for the out-
come, then Cue 2 probably is not. This is the everyday 
logic of exoneration.

Figure 3 shows the results of training the noisy-logic 
gate with the backward-blocking structure in Table 1. 
The left panels show the distribution of beliefs prior to 
training. To make the initial state comparable to that of 
the Kalman filter, the prior belief was set to a bivariate 
normal distribution with a covariance matrix equal to the 
identity matrix. The distribution was truncated at 61 (be-
cause the weights in the noisy-logic model are restricted 
to that range) and then renormalized so that the total be-
lief probability across all possible weight combinations 
was 1.0.

The middle set of panels shows the state of the beliefs 
after the first phase of training. The beliefs regarding 
the two weights are symmetric, because both cues have 
appeared in every trial. Notice that weight values near 
11.0 are believed in more strongly than smaller positive 
weights, and negative weight values have very weak belief 
probability. The contour plot reveals that the joint belief 
distribution is not bivariate normal. Instead, it is bimodal, 
with one peak near (0, 1) and the other near (1, 0). In 
words, the joint distribution suggests that either Cue 1 or 
Cue 2 indicates the outcome, but maybe not both.

The right set of panels shows the state of the beliefs after 
the second phase of training. The model now loads most 
of its belief regarding Cue 1 on high weight values, but 
it has shifted beliefs regarding weights on Cue 2 toward 
lower values. In other words, the noisy-logic model shows 
backward blocking. The intuitive reason for this back-
ward blocking is, as in the Kalman filter, the logic of ex-
oneration: In the second phase, weights of the form (1, _) 
are consistent with the Phase II observations. As beliefs 
in those weight combinations increase, beliefs in other 
weight combinations, such as (_ , 1), must decrease.
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Figure 3. The noisy-logic gate after training with the backward-blocking structure in Table 1. The left panels show the 
distribution of beliefs prior to training. The middle panels show the distribution of beliefs after Training Phase i, and 
the right panels show the distribution after Training Phase ii. For this simulation, each weight interval [21, 11] was 
arbitrarily divided into 33 equally spaced points, yielding 332 5 1,089 weight combinations. The prior probability was a 
(truncated) bivariate normal distribution with a standard deviation of 1, renormalized so that the total probability was 
1.0 across the 1,089 weight combinations.
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less show a transition to conditioned inhibition through 
continued training.

The point of this subsection has not been to claim that 
Bayesian models are uniquely capable of showing a transi-
tion from second-order conditioning to conditioned inhi-
bition. On the contrary, there may, in principle, be many 
non-Bayesian models that produce such behavior. Rather, 
the point has been to illustrate two additional aspects of 
Bayesian models: First, the Bayesian approach can be 
applied to generative as well as discriminative models, 
and second, the prior beliefs in a Bayesian model can be 
crucial to its behavior. The next subsection again empha-
sizes the important role of prior beliefs, but over a much 
broader hierarchy of model representations.

Theories to generate hypothesis spaces. In the previ-
ous sections, I described three different Bayesian models of 
associative learning—namely, the Kalman filter, the noisy-
logic gate, and a generative model. All three use weighted 
connections to cues and outcomes, but with different ar-
chitectures and functional forms. Where do these archi-
tectures and functional forms come from? And how does a 
researcher, or a learner, decide which model best accounts 
for data? An answer to these questions comes naturally from 
a hierarchical Bayesian framework, in which higher-level 
theories generate specific model spaces and Bayesian learn-
ing updates beliefs within the model spaces and across theo-
ries simultaneously. The general approach is described by 
Tenenbaum, Griffiths, and Kemp (2006) and Tenenbaum, 
Griffiths, and Niyogi (2007). Specific examples of its ap-
plication have been presented by Kemp, Perfors, and Tenen-
baum (2004), Griffiths and Tenenbaum (2007), and Good-
man, Tenenbaum, Feldman, and Griffiths (2008).

In the general approach, the first step is to define the 
learner’s theory of the domain being learned about. One 
aspect of the theory is the learner’s ontology of the do-
main. For example, are there different classes of entities, 
such as cues, outcomes, and latent causes? What are the 
allowed predicates—that is, the properties—of these enti-
ties? For example, can an outcome have only the values 
“present/absent,” or can an outcome have a continuum of 
possible values? Another aspect of the theory is the set 
of allowed relations among entities, which defines the 
implications of some predicates for other predicates. For 
example, one allowed implication may be as follows: If 
a cue is present, it may be true that an outcome is pres-
ent. A final aspect of the theory specifies the functional 
form of the relationships. For example, the activations of 
cues could be combined via weighted summation to pro-
duce an outcome activation, as in the Kalman filter, or via 
weighted products, as in the noisy-logic gate.

The fully specified theory then generates the space of 
all possible hypotheses. Every allowed combination of 
entities and their predicates, relations, and function forms 
is placed into a hypothesis space. In this way, instead of 
the hypothesis space being a heuristic assumption by the 
theorist, its assumptions are made explicit and attributed 
to the learner’s theory regarding the domain. Even more 
importantly, the theory establishes the prior distribution 
of beliefs over the hypothesis space. One especially use-
ful way to establish the prior is to have the space of hy-

cues. These models are sometimes called discriminative 
because they discriminate among cues to predict an out-
come. This aspect of the Kalman and noisy-logic models 
is explicit in the form of their likelihood functions, which 
specify the probability of an outcome value given a cue 
combination and the model’s weight value: p(a | c, w)—
for example, Equations 4 and 8.

Other models can be invented, however, that learn the 
cues too. These models are called generative because they 
generate the cue values, rather than merely discriminate 
among them. Formally, the likelihood function of a gener-
ative model specifies the probability of a combination of 
outcome value with cue values, given the model’s weights: 
p(a, c | w).

A recent application of a generative Bayesian model 
to associative learning comes from Courville and col-
laborators (Courville, Daw, Gordon, & Touretzky, 2004; 
Courville, Daw, & Touretzky, 2006). In their specific 
formulation, every cue and outcome is assumed to be a 
binary-valued feature. These features are linked to under-
lying latent causes. These causes are not explicit in the 
observable features; they are hypothetical constructs in 
the mind of the learner. The task for the learner is to figure 
out which are the most plausible combinations of latent 
causes to account for the observed cue and outcome com-
binations. Each hypothetical latent-cause combination has 
particular weighted associations with particular cues and 
outcomes, and each hypothetical cause has a degree of 
believability. Since this is a Bayesian framework, there 
is a vast space of candidate latent causes, and learning 
consists of shifting degrees of belief across the candidate 
latent causes, such that the ones most consistent with the 
observations become more strongly believed.

The system begins with prior beliefs that emphasize 
“simple” structures—that is, those with few latent causes, 
few features connected to the causes, and small magnitude 
weights. As data are observed during training, the prior 
bias on simplicity can be overwhelmed by complexity in 
the data. The prior bias on simplicity, with a transition 
to more complex beliefs through training, has been fruit-
fully used to account for learners’ transition from second-
order conditioning to conditioned inhibition (Courville 
et al., 2004) . In conditioned inhibition, the learner experi-
ences cases of Cue 1 producing the outcome, along with 
many other cases of the combination of Cues 1 and 2 not 
producing the outcome. When subsequently tested with 
Cue 2 alone, the learner does not anticipate an outcome. 
Indeed, if Cue 2 is combined with another cue that has 
been previously learned to indicate the outcome, then the 
outcome is still not anticipated. In other words, Cue 2 
has been learned to be an inhibitor of the outcome. Both 
the Kalman filter and the noisy-logic gate can show such 
conditioned inhibition. Curiously, however, if the train-
ing contains only a few, rather than many, cases of Cue 1 
with Cue 2 not producing the outcome, Cue 2 is often 
learned to be a positive indicator of the outcome rather 
than an inhibitor (Yin, Barnet, & Miller, 1994). It is as if 
the learner has inferred a second-order link to the outcome 
via Cue 1. Neither the Kalman filter nor the noisy-logic 
gate can exhibit second-order conditioning at all, much 
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There has been debate as to whether or not individual 
people are Bayesian in their learning, because some sim-
ple learning behaviors are prima facie not Bayesian (e.g., 
see the references cited in Kruschke, 2006b). One way 
to address this problem is to rethink the level of analysis. 
Whereas individual learning might not be Bayesian, inte-
rior components of the learner might be. The main mes-
sage of this subsection is that the level of analysis should 
not be taken for granted, and locally Bayesian learning 
need not behave the same as globally Bayesian learning.

FroM Passive To acTive learninG

The learning models discussed up to this point have all 
assumed that the learner is a passive observer. In most 
real learning situations, however, the learner has the op-
portunity to explore or manipulate the world in order to 
extract information that is believed will be useful. The 
learner actively selects the next query rather than waiting 
for whatever the world happens to display next.

Traditional models of associative learning have few, if 
any, ways to select a useful query for the next learning 
trial. Current knowledge is represented only by a specific 
set of weight values, with no indication of which are more 
or less certain than the others. Therefore, the model pro-
vides no guidance as to which weight values need to be 
bolstered by additional data.

Bayesian models, on the other hand, inherently repre-
sent uncertainty, with each candidate weight combination 
carrying a belief probability. Depending on the exact goal 
of the learner, the distribution of beliefs can be used to 
select a query that is likely to yield much more useful in-
formation than would a random event passively observed. 
The present article is the first application of active learn-
ing to Bayesian models of associative learning.

“active learning” in Traditional Theories
The phrase active learning has been used in a different 

way from the one in this section by some proponents of 
traditional theories. In particular, Spence (1950, p. 169) 
wrote: “Quite contrary to its opponents’ claims, then, the 
S–R theory does not assume that the animal passively re-
ceives all the physically present stimuli. . . . The early stages 
of learning situations . . . involve, as an important part of 
them, the acquisition of . . . receptor exposure adjustments 
that provide the relevant cue. Such learning is itself an ac-
tive, trial-and-error process . . .” (emphasis added).

Despite the fact that Spence (1950) called the selection 
of relevant cues an active process, it is not active in the 
sense I mean here. Selective attention, in traditional theo-
ries, merely filters or amplifies stimuli that are controlled 
entirely by the experimenter and are passively received 
by the learner. A variety of models created in recent years 
have addressed the learning of selective attention (see, e.g., 
Kruschke, 2001). These models learn what cues to attend 
to, given stimuli that are passively received. Indeed, Spiker 
(1977, p. 99) argued that this sort of learning should not be 
called “active,” but should instead be called “reactive.”

For learning to be active in the sense meant here, the 
learner must have the potential to manipulate the next 

potheses specified by a generative grammar on entities, 
predicates, and functional forms. Each production rule 
in the grammar specifies how particular hypotheses are 
generated from a root. Each production rule has a prob-
ability of application, and the probability of a hypothesis 
is the product of the probabilities of the productions used 
to generate it. There is insufficient space here to review 
the details of this approach; the reader is encouraged to 
consult Goodman et al. (2008) and Kemp (2008) for de-
tailed examples.

The Bayesian approach encourages hierarchical mod-
els, wherein it is natural to suppose that the learner has 
multiple candidate theories that might apply to any given 
learning domain. The learner learns which hypotheses 
within a theory are most believable and, simultaneously, 
which theories are most believable. For example, a learner 
could entertain one theory that generates Kalman hypoth-
eses and a second theory that generates noisy-logic hy-
potheses. The Bayesian learner will shift beliefs regarding 
the theories in the same way she or he shifts beliefs regard-
ing hypotheses within theories. The Bayesian approach 
offers a natural formalism wherein the representational 
richness of complex learning can be accommodated.

locally Bayesian learning. All the models discussed 
above have a shared assumption, that the entity that learns 
is an individual: an individual person, an individual rat, an 
individual pigeon. Other levels of analysis are possible, 
however. Within an individual person, single neurons can 
be modeled as learning entities (see, e.g., Deneve, 2008). 
Likewise, across individual persons, committees or hier-
archies of people can be modeled as learning entities (e.g., 
Akgün, Byrne, Lynn, & Keskin, 2007). Any of these learn-
ing entities could be modeled, in principle, as a Bayesian 
learner. If a component of a system learns in a Bayesian 
manner, what is the resulting behavior of the molar system 
that combines the components? The answer must depend 
on how the components are combined.

One approach to locally Bayesian learning is to assume 
a hierarchy of learners, who get information from only 
their immediate inferiors or superiors in the hierarchy. 
The environmental cues and outcomes impinge on learn-
ers only at the bottom and top of the hierarchy. Learners 
embedded in the middle of the hierarchy have no direct 
contact with the cues and outcomes, but instead get infor-
mation that has been transformed by their inferiors and 
superiors. Nevertheless, each learner adjusts its beliefs in 
a Bayesian manner, on the basis of the information it is 
given. This sort of structure may occur in many domains, 
from brains to corporations.

Locally Bayesian learning has been applied to phenom-
ena from associative learning (Kruschke, 2006a, 2006b). 
In that application, one level of the hierarchy learned which 
cues to attend to, and the next level learned associations 
from attended cues to outcomes. This locally Bayesian 
learning model was able to exhibit phenomena that other 
Bayesian models cannot. In particular, when the hypothesis 
space was changed to include all possible combinations of 
attentional allocation and associations, the resulting glob-
ally Bayesian model could not account for some human be-
havior that the locally Bayesian model mimicked.
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distribution comes from information theory and is called 
the entropy of the distribution. I will use the term uncer-
tainty instead. The uncertainty of a probability distribution 
p(w) is

 U p pi i
i

w w= − ( ) ( )∑ log ( ) ,w  (9)

where the sum is over all possible values that w can have. 
When w is a continuous variable, the corresponding for-
mula becomes an integral instead of a finite sum (and, 
technically, the result is referred to as the differential en-
tropy). The uncertainty is maximized when p(w) is uni-
form, and minimized when p(w) is a spike.

What we would like to do is select a cue c so that when 
the outcome a is observed, the uncertainty Uw | a,c of the 
posterior distribution p(w | a, c) is as small as possible. Un-
fortunately, we do not know in advance what the outcome a 
will be when c occurs, but we can guess on the basis of our 
current beliefs. The probability of outcome value a, given 
cue c and particular associative weights w, is specified by 
the likelihood formula for the model, p(a | c, w). The degree 
to which we expect outcome value a for cue c, averaged 
across all possible associative weights, is just the sum of 
the probabilities of a for any particular w value, weighted 
by the probability that we believe in each particular w. 
Mathematically, p(a | c) 5 e dw p(a | c, w) p(w). (This is the 
denominator of Bayes’s rule—Equation 1—when a 5 t.) 
Once we have determined the probability of each outcome 
value a given cue c, we can determine the expected poste-
rior uncertainty if cue c were to occur:

 EU da p a Uw ( ) ( | ) w| ,c c c= ∫ a .  (10)

An active learner’s goal is to determine the cue c that 
minimizes expected uncertainty in Equation 10, and then 
to probe with that cue. The resulting observed outcome 
should yield, on average, a relatively large reduction in 
uncertainty regarding the associative weights.

It turns out that Equation 10 is particularly simple to 
compute for the Kalman filter. The uncertainty of a multi-
variate normal distribution depends on its covariance ma-
trix, not on its mean. Importantly, for the Kalman filter, 
the covariance matrix depends only on the cues, not the 
outcomes, as can be gleaned from Equation 7. Therefore, 
the integral in Equation 10 collapses into merely the un-
certainty of a multivariate normal, which is well-known: 
U 5 0.5 log[(2eπ)n | det(C ) | ], where C is the covariance 
matrix after updating with the candidate c.

For the noisy-logic model, Equation 10 is also easy to 
compute, because there are only two possible outcome val-
ues. Therefore, the integral reduces to a sum over the two 
possible values of the outcome: EUw(c) 5 p(a 5 1 | c)	 
Uw | a51,c 1 p(a 5 0 | c) Uw | a50,c. The values for p(a | c) and 
Uw | a,c are approximated by summing over the grid on the 
associative weights.1

expected Uncertainty after Backward Blocking
Figures 2 and 3 display the expected uncertainties if 

the model were to probe next with either Cue 1 by itself—
denoted “Probe: 1 0”—or Cue 2 by itself—“Probe: 0 1.” 
An active learner whose goal is to reduce uncertainty as 

stimulus, to intervene in the world. Active learning in-
volves choosing which cues or cue combinations would 
be most informative to learn about. These cues might or 
might not be the ones that have been attended to; indeed, 
the cues that one has learned to ignore are often also 
those about which one is most uncertain, and therefore 
the cues that one would like to learn about the most. The 
cues that an active learner would choose to learn about 
are not necessarily the ones that would be delivered in an 
experimenter-chosen reinforcement schedule. Examples 
are presented in the subsequent sections.

Minimizing expected Uncertainty
When the learner has the opportunity to seek new infor-

mation for learning, what type would be the best to seek? 
What is the precise goal to be achieved by active learning? 
Although there are many possible goals, I will focus here 
on maximizing the expected information gain. Nelson 
(2005) summarized several different goals that an active 
learner might plausibly have, and he reviewed a number 
of articles in the psychological literature that utilized ex-
pected information gain as the goal for the learner. Ex-
pected information gain (or closely related goals) has also 
been used extensively by researchers in machine learning 
and artificial intelligence (e.g., Denzler & Brown, 2002; 
Laporte & Arbel, 2006; Paletta, Prantl, & Pinz, 2000; 
Tong & Koller, 2001a, 2001b).

Intuitively, the goal is to seek the information that will 
probably reduce uncertainty by the greatest amount. As 
an example, suppose that you experienced the backward-
blocking procedure, as in Table 1. During the training, 
you experienced some trials of Cues 1 and 2 occurring 
together with the outcome, and you experienced other tri-
als of Cue 1 alone occurring with the outcome. At the end 
of training, which cue would you be most uncertain about? 
If allowed to actively create a trial in which a cue occurred 
by itself, which cue would you probe? Intuitively, it seems 
that the status of Cue 1 would be fairly certain, because it 
had occurred by itself in several trials with the outcome. 
You would be less certain about Cue 2, because it had oc-
curred only with Cue 1, so whether or not it independently 
predicted the outcome would not be clear. Therefore, a 
probe of Cue 2 by itself, to see whether or not the out-
come occurred, would reduce uncertainty a lot. Presenting 
Cue 1 by itself, on the other hand, would merely confirm 
the already known. Thus, probing with Cue 2 would maxi-
mize the expected information gain. This intuition is now 
given a precise formal definition.

First we must define the uncertainty of the current 
knowledge state. In Bayesian associative models, knowl-
edge is a probability distribution over possible associative 
weight combinations. When that probability distribution 
is tightly peaked over a specific weight combination, the 
model is very certain that those weight values are the ones 
that best account for the observed data. When the prob-
ability distribution is flat and spread out over vast regions 
of the weight space, the model is then very uncertain about 
what weights best account for the observations. Thus, un-
certainty corresponds to the flatness or spread of the belief 
distribution. A natural measure of spread of a probability 
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learners were asked, “If you had the possibility to see one 
additional event, would you like to see what would hap-
pen if the patient only ate [Food Cue 2] or would you like 
to see what would happen if the patient only ate [Food 
Cue 4]?” (Vandorpe & De Houwer, 2006, p. 1134). The 
results confirmed the prediction: Every learner preferred 
to test Food Cue 2—that is, the blocked cue—instead of 
the reduced overshadowed one. Learners also made rat-
ings of how useful it would be to test with Cue 2 or Cue 4. 
Ratings of usefulness were far higher for the blocked than 
for the reduced overshadowed cue.

When the Kalman filter is trained with the items in 
Table 2, it shows equal uncertainty for the blocked and 
reduced overshadowed cues. The precise results are dis-
played on the left side of Figure 4. The expected uncer-
tainty after probing with the blocked cue (Probe: 0 1 0 0) 
is 3.567, which is exactly the same as what would be ex-
pected after probing with the reduced overshadowed cue 
(Probe: 0 0 0 1). This equivalence is not merely a coinci-
dence, but is mathematically implied by the nature of the 
Kalman filter. As was mentioned above, the uncertainty of 
the Kalman filter is determined by its covariance matrix, 
and the covariance matrix depends only on the cue struc-
ture, not the outcomes. The cue structures for blocking 
and reduced overshadowing are identical: Both structures 
involve a single cue occurring on some trials and that cue 
occurring with another on other trials. Because the cue 
structure is the same, the covariance matrix is the same. 
The equivalence of the covariances can be seen on the left 
side of Figure 4: The panel that displays the Cue 2 weight 
against the Cue 1 weight shows the same oval pattern as 
the panel that displays the Cue 4 against the Cue 3 weight, 
with merely the mean differing between panels. Thus, the 
Kalman filter does not show the difference in uncertainty 
that people show between blocked and reduced overshad-
owed cues.

When the noisy-logic gate is trained with the items in 
Table 2, it shows differential uncertainty for the blocked 
and reduced overshadowed cues, as people do. The precise 
results are displayed on the right side of Figure 4. The 
panels on the diagonal show that this model has fairly 
strong beliefs about the reduced overshadowed cue (Cue 4 
weight) but relatively diffuse beliefs about the blocked cue 
(Cue 2 weight). The expected uncertainty after probing 
with the blocked cue (Probe: 0 1 0 0) is 0.538, which is less 
than the expected uncertainty of 0.549 after probing with 
the reduced overshadowed cue (Probe: 0 0 0 1). In other 
words, the noisy-logic gate predicts that it would be more 

quickly as possible should choose the probe that yields 
the lowest expected uncertainty. The rightmost panel of 
Figure 2 shows that the Kalman filter yields a lower uncer-
tainty if Cue 2 is probed (1.463 vs. 1.444 for the two cues). 
The rightmost panel of Figure 3 shows that the noisy-logic 
model also yields a lower uncertainty if Cue 2 is probed 
(0.568 vs. 0.543). The magnitudes of the expected uncer-
tainties should not be compared across models, because 
they are on different scales. In this application, therefore, 
the two models agree with each other and with the intu-
ition explained at the beginning of this section: We are 
fairly confident that Cue 1 predicts the outcome, because 
we have seen many cases of exactly that, but we are uncer-
tain about Cue 2, because we have never seen it by itself. 
Therefore, a probe involving only Cue 2 would be more 
informative than a probe involving only Cue 1.

expected Uncertainty after Blocking 
and reduced overshadowing

Another well-established phenomenon in associative 
learning is called mutual overshadowing of cues. Two 
cues that always occur together, along with an outcome, 
seem to acquire less associative strength than either cue 
would if it occurred alone with the outcome the same 
number of times. This pattern of training occurs in the 
first phase of backward blocking (see Table 1), and the 
mutual overshadowing of associative strengths is exhib-
ited by the Rescorla–Wagner model, the Kalman filter, 
and the noisy-logic gate (see the middle panels of Figures 
1, 2, and 3).

In the so-called reduced overshadowing procedure, the 
training of two cues with an outcome is preceded by a 
phase in which one of the cues occurs alone and with no 
outcome. In this way, the learner is given the opportunity 
to notice that one of the cues does not indicate the out-
come. Subsequently, the two cues occur together, and the 
outcome does occur. By the logic of Holmesian deduction, 
described in the introduction, the second cue should gar-
ner greater association with the outcome, because the first 
cue is not responsible. In other words, the overshadowing 
of the second cue by the first should be reduced.

Reduced overshadowing and (forward) blocking have 
been studied by Vandorpe and De Houwer (2006), who 
predicted that learners should have very different uncer-
tainties about a blocked cue versus a reduced overshad-
owed cue. Vandorpe and De Houwer reasoned that a 
blocked cue can be ambiguous, because of the intuitions 
discussed earlier, but a reduced overshadowed cue is much 
less ambiguous, because it clearly does predict the out-
come. Vandorpe and De Houwer trained people with the 
structure shown in Table 2. Learners were instructed that 
they were to figure out what foods produced an allergic 
reaction in a particular fictitious patient. On each trial of 
training, a learner was shown a “meal” that the patient 
consumed and whether or not an allergic reaction fol-
lowed. Each meal consisted of one or more foods. Each 
cue in Table 2 corresponds to a particular food (mush-
rooms, kiwi, fish, or potatoes) that could be present or ab-
sent in the meal. After training on the 24 meals in Table 2, 

Table 2 
structure of the Training Trials 

for reduced overshadowing and Blocking

Phase  Freq.  Cue 1  Cue 2  Cue 3  Cue 4  Outcome

I 6 1 0 0 0 1
6 0 0 1 0 0

II 6 1 1 0 0 1
6 0 0 1 1 1

Note—Cells with a 1 indicate the presence of a cue or outcome. Cells 
with a 0 indicate the absence of a cue or outcome.
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in this situation has yet to be conducted. When such an 
experiment is conducted, the experimenter will have to 
be careful to ensure that learners know that cues can pre-
vent or inhibit an outcome. This framing enables Cue 2 to 
be particularly ambiguous, because it could be a strong 
predictor of the outcome if Cue 3 can be a preventer or 
inhibitor of the outcome. This ambiguity is revealed in the 
middle of the bottom row on the right of Figure 5, where 
the contours reveal peaks at w2, w3 5 0, 0 and at w2, w3 5 
11, 21. If, in some other framing of the situation, cues 
cannot be inhibitory, then Cue 2 is not ambiguous. In par-
ticular, Cue 2 could not generate the outcome, because if 
it did, it would also generate the outcome when presented 
with Cue 3, because Cue 3 could not inhibit Cue 2’s influ-
ence. There might be other training structures as well in 
which the Kalman filter and noisy-logic models make dif-
ferent predictions regarding the uncertainty of cues.

an alternative Goal for active learning: 
Maximizing the Probability of 
the Most Probable hypothesis

Whereas minimizing the expected uncertainty is a rea-
sonable goal for active learning, it is not the only possible 
one. Nelson (2005) explored several others goals, one of 
which is “probability gain” (Baron, 1985), which I will 
refer to simply as max p. According to max p, the goal 
of learning is to have a belief distribution with the tallest 

useful to probe with the blocked cue than with the reduced 
overshadowed cue, just as human learners report.

expected Uncertainty for an ambiguous cue
The previous section showed a case in which the Kal-

man filter predicts equal informativeness for two cues, 
whereas the noisy-logic model predicts different infor-
mativeness for the two. This section describes a situation 
in which the Kalman filter and noisy-logic models make 
ordinally opposite predictions about the relative informa-
tiveness of two cues.

Table 3 shows the training structure for an ambiguous-
cue situation. There are three cues altogether. Whenever 
Cue 1 occurs, the outcome occurs. Whenever Cue 3 oc-
curs, the outcome does not occur. But Cue 2 occurs only 
in conjunction with one of the other cues, so Cue 2 is am-
biguous. After training with these cases, which cue would 
be most informative to see by itself ? Intuitively, Cue 2 is 
the most ambiguous and is the one we would want to see 
by itself, in order to resolve this ambiguity.

The left panels of Figure 5 show the results of train-
ing the Kalman filter with the ambiguous-cue structure 
in Table 3. The information on the left shows that, among 
the single-cue probes, the ambiguous cue (Probe: 0 1 0) 
has the highest expected uncertainty. In other words, the 
ambiguous cue is the least informative cue to probe, ac-
cording to the Kalman filter.

The right panels of Figure 5 show the results of train-
ing the noisy-logic gate with the structure in Table 3. The 
information on the right shows that, among the single-cue 
probes, the ambiguous cue (Probe: 0 1 0) has the low-
est expected uncertainty. In other words, the ambiguous 
cue is the most informative cue to probe, according to this 
model.

Whereas intuition agrees with the noisy-logic gate, a 
controlled experiment measuring human performance 
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Figure 4. results after training on the reduced overshadowing and blocking procedure in Table 2. The left panels show 
the Kalman filter, and the right panels show the noisy-logic gate.

Table 3 
structure of the Training Trials for 

the ambiguous-cue Paradigm

 Freq.  Cue 1  Cue 2  Cue 3  Outcome  

10 1 1 0 1
10 0 1 1 0

Note—Cells with a 1 indicate the presence of a cue or outcome. Cells 
with a 0 indicate the absenc e of a cue or outcome.
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has a lower uncertainty (as shown in the figure), whereas 
the right distribution has a larger maximal probability. If 
these are the two posterior distributions for two differ-
ent probes, which probe should be used? Which posterior 
distribution is more desirable? If our goal is minimizing 
uncertainty, we should choose the probe that produces 
the left distribution; if our goal is maximizing the highest 
probability, we should choose the one that produces the 
right distribution.

The purpose of this section is to consider max p for 
the Kalman filter and the noisy-logic gate when they are 
applied to the learning paradigms discussed in the pre-
vious sections. It will be shown that the predictions of 
the Kalman filter with max p do not differ from the same 
model’s predictions with minimal expected uncertainty. In 
one case, however, the predictions of the noisy-logic gate 

possible peak, or, more colloquially, to have something 
you can really believe in.

In many cases, a distribution with a lower uncertainty 
than another distribution will also have a higher maxi-
mal probability. For example, in a univariate normal dis-
tribution, when the variance decreases, the uncertainty 
decreases and the maximal probability increases. This 
(reverse) ordinal correspondence of uncertainty and maxi-
mal probability does not always hold, however. Consider, 
for example, the two distributions shown in Figure 6, 
which involve only three possible hypotheses; these hy-
potheses could be three possible values for an associative 
weight. The left distribution has a probability of .5 on two 
hypotheses and probability 0 on the third. The right dis-
tribution has probability .6 on one hypothesis and equal 
probabilities of .2 on the other two. The left distribution 
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Figure 5. The left panels show the Kalman filter after training with the ambiguous-cue structure in Table 3. The right 
panels show the noisy-logic gate after training with that ambiguous-cue structure.
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for Cues 2 and 4, whereas the noisy-logic model predicts a 
much larger preference for Cue 2 than for Cue 4. In other 
words, even under the active-learning goal of maximizing 
the expected maximal probability, the predictions from the 
Kalman filter are disconfirmed by the data from Vandorpe 
and De Houwer (2006). The noisy-logic model makes the 
correct predictions under both active-learning goals.

When applied to the ambiguous-cue structure of 
Table 3, the Kalman filter has the same preferences with 
max p as it did with minimal expected uncertainty. The 
lower row of Figure 7 shows that the Kalman filter slightly 
(and equally) prefers to probe with Cues 1 and 3, not the 
ambiguous Cue 2. The noisy-logic model, on the other 
hand, shows a different preference with max p than it did 
with minimal expected uncertainty. Here, the noisy-logic 
model prefers to probe with the ambiguous Cue 2, but 
also shows equal preference for Cue 1. In summary, the 
ambiguous-cue structure is a good design for distinguish-
ing between models of active learning in associative learn-
ing paradigms.

The FUTUre oF associaTive 
learninG Theory

In the preceding sections, I have shown that the Kal-
man filter as a model of passive learning, combined with 
either of two goals for active learning, makes at least one 
prediction disconfirmed by human performance. On the 
other hand, the noisy-logic gate with Bayesian updating as 
a model of passive learning, combined with either of two 
goals for active learning, survives that particular test.

A new, ambiguous-cue structure was introduced, for 
which the Kalman filter and noisy-logic gate make differ-
ent predictions for active learning. Moreover, the noisy-
logic gate makes different predictions for minimizing un-
certainty than for maximizing maximal probability.

As illustrated by the preceding sections, there are nu-
merous Bayesian models of passive associative learning 
and numerous goals for active learning. The combinations 
generate a rich space of models that are ripe for explora-
tion. The models suggest new experimental paradigms that 
explore human and animal preferences in active learning.

Different situations may be modeled better by different 
representational models. For example, if an associative 
learning problem is framed in terms of continuously val-
ued cues, such as drug dosage, with continuously valued 
outcomes, such as symptom severity, a model such as the 
Kalman filter might better capture human learning than 
would the noisy-logic gate. On the other hand, if a learning 
problem is framed in terms of discrete “present/absent” 
outcomes, a noisy-logic gate might better match human 
learning. People may have many representational models 
available and may use different ones in different situations, 
depending on their theories of the domain and the extents 
to which the various models accommodate experience. As 
described in an earlier section, the Bayesian framework 
encourages the modeler to explicitly specify hierarchies of 
generative theories for models that may populate the mind 
of the learner. The learner then makes Bayesian shifts of 
beliefs over the parameters of the hierarchy.

with max p do differ from its predictions with minimal 
expected uncertainty.

The mathematical form of max p must first be expli-
cated for the Kalman filter and noisy-logic models. As 
with the goal of minimizing expected uncertainty, when 
we probe with a candidate cue combination, c, we do not 
know what the outcome t will be; we merely have expecta-
tions based on our current beliefs. We therefore can only 
choose among candidate probes according to what we 
currently expect to happen if we probe with them. Just 
as we computed the expected uncertainty of the posterior 
distribution for a candidate probe (Equation 10), we can 
compute the expected maximal probability (EMP) for a 
candidate cue combination:

 EMP da p a p aw w
c c w c( ) ( | ) max ( | , )= ∫ .  (11)

The learner will probe with the cue combination c that 
maximizes EMPw(c).

For the Kalman filter, the distribution of beliefs regard-
ing weights is multivariate normal, and the maximally 
probable weight is the mean weight, m. The probability 
density at that mean depends only on the covariance ma-
trix, and the covariance matrix depends only on the cues, 
not on the outcome (Equation 7). Therefore, the term maxw 
p(w | a, c) does not depend on a and is a constant—namely, 
the denominator of Equation 5—whereby EMP 5 [(2π) n  
|  det(C ) | ]21/2, where C is the covariance matrix after up-
dating with candidate probe c.

For the noisy-logic model, Equation 11 is also easy to 
compute, because there are only two possible outcome 
values. Therefore, the integral reduces to a sum over 
the two possible values of the outcome a: EMPw(c) 5 
p(a 5 1 | c) maxw p(w | a 5 1, c) 1 p(a 5 0 | c) maxw 
p(w | a 5 0, c). The value for p(a | c) is approximated by 
summing over the grid on the associative weights, and the 
maximum is approximated by the maximal value over the 
grid points.

expected maximal probabilities for backward 
blocking, reduced overshadowing, and ambiguous 
cues. When the Kalman filter and noisy-logic models 
are combined with active learning by maximizing the ex-
pected maximal probability, they produce the same pref-
erences for probes in backward blocking. Both models 
prefer to probe with the blocked cue (Cue 2 in Table 1), 
since this probe is expected to produce a posterior distri-
bution with a higher maximum than would be produced 
with the other cue. The upper panels of Figure 7 show 
the exact value of the expected maximal probability for 
each probe. The posterior distributions in Figure 7 are the 
same as in the corresponding previous figures; only the 
values regarding the expected maximal probabilities are 
new. In summary, after backward blocking, both models, 
under both active-learning goals, prefer to probe with the 
blocked cue.

When applied to reduced overshadowing and (forward) 
blocking, active learning for max p generates the same 
preferences as active learning for reduced uncertainty. In 
particular, as can be seen in the middle row of Figure 7, 
the Kalman filter with max p predicts equal preferences 
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sarily behave in the same way as the traditional model; the 
Kalman filter, for instance, does not behave in the same 
way as the Rescorla–Wagner model. But the Bayesified 
version may fruitfully retain some of the critical repre-
sentational insights that the traditional model embodies. 
For example, the configural model of Pearce (1994) can 

Bayesian approaches do not necessarily supersede 
the insights of traditional models; instead, they can ex-
tend traditional models. Just as the Kalman filter can be 
thought of as a Bayesification of the Rescorla–Wagner 
model, other traditional models can also be Bayesified. A 
Bayesified version of a traditional model will not neces-
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Figure 7. expected maximal probabilities for single-cue probes. The left panels show the Kalman filter, and the right 
panels show the noisy-logic gate. The upper section shows the probabilities after backward blocking, the middle section 
after blocking and reduced overshadowing, and the lower section after ambiguous-cue training.
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framework. Traditional theories emphasized simple asso-
ciative weights between cues and outcomes. Connection-
ist models continued with this commitment to weighted 
associations but considered more complex connective 
architectures. Contemporary and future theories will use 
a variety of more complex representations to capture a 
learner’s knowledge. These representations will them-
selves be learned according to selection from a hierarchy 
of possibilities dictated by the theories brought to bear by 
the learner. The new Bayesian framework demands that 
a theorist be explicit about what representational options 
are available to the learner and at just what level of analy-
sis the Bayesian learning is assumed to take place.

The Bayesian framework provides a natural launching 
pad for exploring active learning. Active learners manipu-
late and intervene in their world. Future research in asso-
ciative learning will investigate active learners, including 
the costs of information gathering and the benefits of the 
information learned. As active researchers, we learn about 
the mind by probing it with experiments that are not too 
costly, but that we expect to yield results that will strongly 
influence our beliefs about different theories.
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