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Unraveling the cerebellar cortex: cytology and cellular
physiology of large-sized interneurons in the granular layer
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Neuronal network behaviors emerge from complex interactions between excitatory relay cells, principal cells and inhibitory
interneurons. Therefore, characterizing homogeneous cell types and their properties is an essential step towards understanding
information processing in the brain. The cerebellar cortex is generally described as a repetitive circuit composed of only five cell
types. However, recent studies have revealed an unexpected diversity in the morphological, neurochemical and electro-
physiological properties of the large-sized granular layer interneurons. These data are reviewed here with an emphasis on the
synaptic interactions of the different cell types within the cerebellar cortex. The existence of a complex network of excitatory
and inhibitory interneurons controlling the spatial and temporal pattern of granule cell firing is documented, providing insights
into the cellular and synaptic processes underlying oscillations and synchronization in the cerebellar cortex.
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Introduction

The cerebellar cortex is generally described as a repetitive
circuit composed of only five cell types: Purkinje cells,
granule cells, Golgi cells and the molecular layer inter-
neurons, stellate and basket cells. Because of this pre-
sumed simplicity, it has been used as a model to study
various aspects of neuronal transmission. Recent experi-
mental data, however, indicate that the cerebellar cortex,
though highly organized, represents a fairly complex
structure as schematically summarized in Figure 1.

In order to understand information processing in the
cerebellum, an accurate description of the fundamental
cortical circuitry and the complex interactions between
excitatory relay cells, principal cells and inhibitory
interneurons is essential. Most cerebellar theories gave
little consideration to the function of the granular layer,
and focussed instead on the output side of the cortical
circuitry: the Purkinje cells.! The granular layer, how-
ever, harbors 98% of the cerebellar neurons, most of
which are small-sized granule cells,> and receives the
mossy fiber system, which is numerically the most
important input to the cerebellum.*> Larger cells within
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the granular layer are usually referred to as Golgi cells.
However, large granular layer interneurons represent a
heterogeneous population, and recent studies have
revealed an unexpected diversity in the morphological,
neurochemical and electrophysiological properties of
these interneurons. These data are reviewed here with
an emphasis on the synaptic interactions of the different
cell types within the cerebellar cortex. We will show that
all these interneurons, which have been classified into
unipolar brush cells, Golgi cells and Lugaro cells (Figure
2A), control directly or indirectly the mossy fiber to
granule cell relay, and may shape the spatial and temporal
firing patterns of different granule cell populations
converging onto common Purkinje cells.

Despite their abundance, we will not discuss granule
cell properties in detail. In short, these excitatory cells
receive an excitatory mossy fiber input which activates
both AMPA and NMDA receptors® and are inhibited by
Golgi cells (see further). The mossy fiber to granule cell
synapse demonstrates many forms of plasticity. Short-
term heterosynaptic interactions exist with the GABA
system (see further under Golgi cells). Long-term
plasticity is present as a presynaptic form of long-term
potentiation’’® that can be induced by high frequency
stimulation (see Ref. 9 for recent review). This stimula-
tion protocol induces at the same time changes in the
spike threshold of the activated granule cell.'® Granule
cells in turn relay the mossy fiber input onto Purkinje
cells, a process which demonstrates plasticity as well.’
Finally, although granule cells express the calcium-
buffering protein calretinin'! their content is much
smaller than that of Lugaro or unipolar brush cells (see
further).
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Figure 1

Schematic overview of cerebellar neurotransmission. The cerebellar
cortex is indicated by the shaded area. Inhibitory neurons and
synapses are in black. Excitatory neurons and synapses are in blue.
Modulatory projections are in gray. Arrows indicate the orientation
of projections. The small encircled area represents the glomerulus.
The granular layer receives two types of extrinsic mossy fibers: those
of extracerebellar origin representing the main cerebellar input, and
nucleocortical projections from neurons in the cerebellar nuclei.
Granule cells relay the mossy fiber input onto Purkinje cells, the sole
output of the cerebellar cortex. Additionally, the axons of UBCs
form a system of cortex-intrinsic mossy fibers controlling the mossy
fiber to granule cell relay in synergy with the inhibitory actions of
Golgi cells and Lugaro cells. Abbreviations: ACH, acetylcholine; B,
basket cell; CF, climbing fiber; CN, cerebellar nuclei; DOP,
dopamine; GC, Golgi cell; gl, glomerulus; GLU, glutamate;
GLY, glycine; Gr, granule cell; LC, Lugaro cell; MF, mossy fiber;
NA, noradrenaline; NO, nitric oxide; PC, Purkinje cell; PF, parallel
fiber; S, stellate cell; UBC, unipolar brush cell; 5-HT, serotonin.

Unipolar Brush Cells

About 25 years ago, a new type of granular layer
interneuron, now called the unipolar brush cell (UBC),
was described.? It was characterized by the size of its cell
body, twice as big as granule cells, and by its pale
appearance in Nissl stain, hence the denomination ‘pale
cell’. The morphology of this new cell type was first
described by S Hockfield, following the production of a
specific monoclonal antibody (Rat-302).'> UBCs, then
called ‘monodendritic cells’, also showed immunoreac-
tivity for chromogranin A and calretinin.'®'®> They are

intermediate in size between granule cells and Golgi cells,
and usually carry only one short dendritic trunk that
terminates in a paint brush-like bush of dendrioles!®
(Figure 2C). Due to their size and location, UBCs are
frequently mistaken for medium-sized Golgi cells.

The UBC dendritic brush forms an extensive synaptic
junction with a single mossy fiber featuring multiple
presynaptic release sites opposed to a continuous post-
synaptic density,'” making the mossy fiber-UBC synapse
one of the largest in the vertebrate central nervous
system.'® This synapse may have been mistaken in
electron microscopy for the synapse en marron,'® which
was described as the articulation found between the
expanded mossy fiber axon and a Golgi cell soma.> The
unique ultrastructure of the mossy fiber-UBC synapse
ensures the entrapment of glutamate released by a mossy
fiber terminal within the giant synaptic cleft, and hence
the prolonged activation of ionotropic glutamate recep-
tors located on the postsynaptic UBC.' The resulting
long-lasting epsp evokes, in response to a single pre-
synaptic mossy fiber stimulus, a train of action potentials
that lasts tens of milliseconds."’

UBCs are glutamatergic.?® The UBC axon ramifies
locally within the granular layer and gives rise to 1-3
branches that typically end in knobby terminals resem-
bling mossy fiber rosettes surrounded by dendrites of
granule cells and/or other UBCs.?'™? In this way, the
axons of UBCs generate an extensive system of cortex-
intrinsic mossy fibers constituting a form of distributed
excitation onto granule cells and other UBCs.?° As a
consequence, the synaptic excitation of UBCs by mossy
fiber input can drive a large population of granule cells.?!
This powerful feed-forward amplification system of the
UBC network is associated with vestibular afferents,?’
and is particularly dense in the vestibulocerebellum as
well as in the cochlear nucleus.'® The function of UBC is
modulated by inhibitory inputs formed on UBC den-
drioles by presumed Golgi cell axonal boutons.!” This
inhibitory control is discussed in the following section.

Golgi Cells

Golgi cells were first described by Camillo Golgi.?* They
are a population of irregularly rounded or polygonal
interneurons that can be almost as large as Purkinje cells.
Their cell bodies are found dispersed throughout the
granular layer and emit numerous radiating dendrites’
(Figure 2B). Golgi cell apical dendrites ascend towards
the molecular layer, where they ramify profusely and are
contacted by the axons of granule cells.??> In addition,
several basolateral dendrites extend in the granular layer,
where they are contacted by mossy fibers.”?® Whether
Golgi cells receive also a climbing fiber input>?7 is still a
matter of debate.

The Golgi cell axon ramifies inside the granular layer,
giving rise to an elaborate axonal plexus>° that contacts
thousands of granule cells®® as well as UBCs.!” Golgi
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Figure 2

Large interneurons in the granular layer of the rat cerebellum, revealed by double immunofluorescence histochemistry against the
unidentified cytoplasmic antigen Rat-303 (red Cy3-fluorescence) and calretinin (green FITC-fluorescence). A third column of images
depicted on the right reveals co-localization (yellow) of both neurochemical markers by combining respective single-labeled images. (A)
High magnification overview of the granular layer showing three distinct types of large interneurons: a Rat-303-positive Golgi cell (arrow),
CRT-positive UBCs (asterisks) and a Rat-303/CRT-positive Lugaro cell (arrowhead). (B) Rat-303-positive Golgi cells have a large,
rounded or polygonal cell body with radiating dendritic arborizations extending in all directions. (C) CRT-positive UBCs exhibit a single,
characteristic paint brush-like dendritic tree. (D) Rat-303/CRT-positive Lugaro cells are located just underneath the Purkinje cell layer.
Their spindle-shaped soma emits from opposite poles two thick dendrites in the sagittal plane, parallel to the Purkinje cell layer. (E) Rat-
303-positive Golgi cell (arrow) and Rat-303/CRT-positive large interneuron (open arrowhead) with quite similar morphologies, lying
closely together in the middle of the granular layer. Abbreviations: GL, granular layer; ML, molecular layer; PC, Purkinje cell layer; WM,
white matter. Scale bars =20 um (A, D, E) and 10 um (B, C). Adapted from Ref. 57.

cells are inhibitory®?° and use both GABA and glycineas UBCs are mediated by both GABA, and glycine
their neurotransmitters.?°~>® However, the postsynaptic receptors,’’ the ipscs recorded from granule cells are
target cells do not always express receptors to both mediated purely by GABA, receptors.”> Moreover,
neurotransmitters. Whereas the ipscs recorded from granule cells express extrasynaptic high-affinity GABAA
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Figure 3

Synaptic and spillover-mediated transmission in the cerebellar
glomerulus. Excitatory neurons and projections are in gray.
Inhibitory neurons and projections are in black. Solid arrows
indicate synaptic transmission; dashed arrows indicate spillover-
mediated transmission. Presynaptic release sites are indicated by
thickening of the membrane. Upon activation, mossy fiber
terminals release glutamate that, in turn, activates postsynaptic
NMDA and AMPA receptors located on granule cell dendrites.
Granule cells also receive an inhibitory input from Golgi cells:
GABA released from Golgi cell terminals acts through postsynaptic
GABA, receptors. In addition, GABA diffuses outside of the Golgi
cell-granule cell synaptic cleft and activates high-affinity a4 subunit-
containing GABA, receptors located extrasynaptically on dendrites
of both directly connected and neighboring granule cells. Spillover
of GABA also modulates mossy fiber input through GABAg
receptors located on mossy fiber terminals. Furthermore, diffusion
of glutamate outside of the mossy fiber-granule cell synaptic cleft
inhibits GABA release from Golgi cells through the activation of
mGIluR2/3 receptors located at the Golgi cell axon. Finally,
diffusion of glutamate may also improve transmission efficiency at
neighboring mossy fiber-granule cell connections by activating
synaptic AMPA receptors. Abbreviations: GC, Golgi cell; GLU,
glutamate; Gr, granule cell; MF, mossy fiber.

receptors containing the o4 subunit.’> These receptors
are activated by diffusion of GABA outside of the
synaptic cleft, and their activation is 10-fold more
persistent than that of the low-affinity intrasynaptic
receptors.>* GABA spillover activates also high-affinity
receptors on neighboring but not directly connected
granule cell dendrites®® In this way, GABA spillover
contributes to the regulation of granule cell excitability,
both by providing an inhibitory input that operates on a
prolonged time scale compared to conventional Golgi
cell-granule cell ipsps, and by increasing the number of
Golgi cells inhibiting a given granule cell.>*
Spillover-mediated neuronal transmission, which is

determined by transmitter diffusion,>® receptor affinity>*
and efficacy of transmitter uptake,’® has been shown to
affect several aspects of Golgi cell function. This is due to
the fact that Golgi cell axons, granule cell dendrites and
mossy fiber rosettes articulate synaptically inside glom-
erular structures that are ensheathed in glial processes.>”
Spillover of GABA, released from Golgi cell axonal
terminals, also modulates mossy fiber afferent input to
the cerebellar cortex through GABAg receptors located
on mossy fiber rosettes.’® These GABAg receptors are
activated when GABA release is increased by stimulating
Golgi cell input, resulting in a reduced glutamate release
from the mossy fibers. Furthermore, glutamate release is
more profoundly inhibited by GABAg receptors when
mossy fiber firing rate is low.>® In the other direction,
spillover of glutamate released from mossy fiber rosettes
inhibits GABA release from Golgi cells through the
activation of type II metabotropic glutamate receptors
(mGluR2/3) located at the Golgi cell axon.’**° Both
mechanisms are likely to boost the efficacy of mossy fibers
firing at higher rates. These spillover effects, schemati-
cally summarized in Figure 3, clearly indicate the
complex nature of Golgi cell neurotransmission and the
subtle control exerted by Golgi cells on granule cell
excitability. Recently, spillover of glutamate has also been
suggested to improve transmission efficiency at neighbor-
ing mossy fiber-granule cell connections by both reducing
the variability and increasing the amplitude and duration
of AMPA receptor epscs.*!

The mossy fiber-Golgi cell-granule cell and parallel
fiber-Golgi cell-granule cell disynaptic loops constitute,
respectively, feedforward and feedback inhibitory cir-
cuits.***> This connectivity led to the widely accepted
theory that Golgi cells perform a gain control func-
tion>***> which is assumed to set the threshold for
granule cell firing, keeping the excitation of local granule
cells by mossy fibers within operational bounds. How-
ever, as described above, recent experimental and
modeling studies have indicated other functions for the
Golgi cell inhibition. The central role of spillover-
mediated inhibition for the control of granule cell
excitability was established in transgenic mice. Suppres-
sing a-mediated spillover inhibition by homologous
recombination techniques lead to the compensatory
over-expression of a voltage-independent potassium
conductance acting as a leak conductance and resulting
in a decreased excitability.*® Furthermore, the physio-
logical importance of extrasynaptic inhibition was de-
monstrated by pharmacological block which enhanced
granule cell and Purkinje cell responses to mossy fiber
stimulations.*” Because extrasynaptic inhibition occurs at
the level of the glomerulus, it may allow for suppression
of single mossy fiber inputs.*®

Golgi cells fire vigorously in response to stimulation,?®
causing a pronounced phasic inhibition of granule cells in
addition to the slower spillover inhibition. Golgi cells can
be effectively stimulated both through the feedforward
mossy fiber pathway and feedback parallel fiber pathway,
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Large receptive fields and multiple response patterns of Golgi cells resulting from converging parallel and mossy fiber inputs. (A) Schematic
representation of the extracellular single-unit recording site in Crus IIa of the rat cerebellar cortex. (B) Same on a transverse section, with
the position of the recording site inside the granular layer. (C) Golgi cell responses evoked by tactile stimulation. The same stimulus (1 mm
probe, 1 Hz) was applied to eight different locations in the rat face. High resolution post stimulus time histograms (PSTHs) based on
stimulation of each of the locations (200 trials each) including the gaussian fit for each of the peaks are shown. The exact location from
which each of the response profiles were evoked is indicated on graphical representations of the rat’s face, contra- and ipsilateral to the
recording site. The relation between the receptive field size and spike timing is illustrated. PSTH profiles with an early double peak are
evoked from a restricted facial region (black area), while those showing an early single peak cover large parts of the rat’s face on both sides
(shaded area). The largest receptive fields are observed for responses that include a late component (white area). The early component of
the Golgi cell response reflects trigemino-cerebellar input, whereas the late component reflects cortico-pontine input. Early double peaks
are caused by direct mossy fiber input onto Golgi cells and have therefore a very short latency and can only be evoked from a restricted area.

Other responses are parallel fiber mediated and comprise a very large and bilateral receptive field. Adapted from Ref. 49.

leading to large receptive fields and multiple response
patterns>®*° (Figure 4). Modeling studies have predicted
that the feedback pathway can synchronize both Golgi
cells and granule cells along the parallel fiber beam when
the granular layer network is activated by mossy fiber
input.’® In other words, phasic Golgi cell inhibition will
exert a strong effect on the timing of spikes in post-
synaptic granule cells. Synchronous Golgi cell activity
causes coherent spiking of local groups of granule cells
leading to complex temporal patterns of multiple syn-
chronized waves of spikes along the parallel fiber beam.’
Partial experimental support for this temporal structure
of parallel fiber activity caused by Golgi cells was
obtained in anesthetized rats. It was demonstrated that
Golgi cells along the parallel fiber beam fire loosely
synchronized, while those not receiving common parallel
fiber activity do not’’*? (Figure 5). Moreover, as
predicted, synchrony increases with network activity
both during spontaneous firing’? and during stimulus
evoked responses.’>

Finally, it must be noted that Golgi cell responses are
also shaped by inhibitory inputs and intrinsic properties

which have not been studied in great detail. Golgi cells
show a strong after hyperpolarization,?> which probably
causes the long period of suppressed activity that follows
the spiking response after stimulation.?®>> The extra-
synaptic inhibition may compensate for the lack of phasic
inhibition during this absence of Golgi cells spiking.
Golgi cells receive inhibitory projections from stellate/
basket cells.>** These synapses are GABAergic and will
provide feedforward inhibition upon activation of the
parallel fibers.?’ Therefore, the time scale for parallel
fibers epsps summation in Golgi cells is probably short.
Golgi cells receive another inhibitory input from a
different type of interneuron, the Lugaro cell.’* The
nature of this input and its relevance for Golgi cell control
is discussed in the following section.

Lugaro Cells

Besides Golgi cells, Camillo Golgi described a second
type of large interneurons in the granular layer.?* It was
originally characterized by a fusiform soma lying directly
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Figure 5

Responses of two pairs of Golgi cells to punctate and brush stimulation. Golgi cells aligned along the transverse axis of a folium fire
synchronized (pair 1-2), both during spontaneous activity and during evoked responses. Conversely, Golgi cells positioned along the
parasagittal axis (no common parallel fiber input; pair 1-3) do not develop precise coherent firing. (A) Golgi cell responses to punctate
stimulation (1 mm probe, 1 Hz): PSTHs counting the number of spikes over 200 trials. Golgi cells respond with both an early and a late
excitatory component followed by a silent period. (B) Golgi cell responses to brush stimulation, used to provide a continuous activation.
The stimulus was carefully centered at the locus of punctate stimulation and consisted of a peripheral stimulation of a larger facial area
using a manual brush. Stimulation was presented in blocks of 100 s (ON period) alternated with 100-s blocks without stimulation (OFF
period), indicated by gray and white blocks, respectively. The mean Golgi cell activity increases during brush stimulation. (C) Cross-
correlation histograms (CCH; bin width 1 ms) during OFF (Rest) and ON (Brush) periods expressed as Z score. Dashed lines indicate the
significance level, Z = 3. Simultaneously recorded Golgi cells aligned along the coronal axis of a folium (pair 1-2) show high levels of
synchronization at rest. Sagittally oriented pairs of Golgi cells (pair 1-3) lack synchrony at rest (Z < 3). Brush stimulation leads to an
increased synchronization of coronal oriented pairs of Golgi cells (lower left panel). Although sagittal pairs of Golgi cells respond to brush
and punctate paradigms, they never develop precise coherent firing (lower right panel): brush stimulation results in a very wide central peak
which coincide with the shuffled CCH (thin gray line). Adapted from Ref. 53.

Insight into the functional role of Lugaro cells in the
corticocerebellar network has been gained recently.

beneath the Purkinje cell layer, giving off dendrites from
its opposite poles (Figure 2D). These dendrites ran

parallel to the Purkinje cell layer, and occasionally
extended in the granular layer. A more complete
description of this fusiform cell was given by Ernesto
Lugaro,’® and was therefore named after him. Because
they share some morphological characteristics with other
large granular layer interneurons, Lugaro cells have been
frequently classified as Golgi cells.’® As a consequence,
Lugaro cells have often been omitted from the descrip-
tion of neuronal cell types of the cerebellar cortex.**°
However, its classification as a distinct cell type was
firmly established by the production of a specific anti-
body,’° and has been confirmed using other immunobhis-
tochemical markers.>”

Lugaro cells are inhibitory interneurons that possess
two types of axonal plexi.’® The first plexus is parasagit-
tally oriented and consists of a thin varicose axon
originating from the cell body. Although the axon may
run for some distance in the granular layer and even in the
white matter, it always ascends back to the molecular
layer, where it gives rise to a profuse plexus in the vicinity
of its parent cell body.”® The second axonal plexus is
restricted to the molecular layer and consists of thick,
partly myelinated transversal fibers running parallel to the
parallel fibers,”®>® and may have been mistaken for
myelinated parallel fibers.°® These fibers represent, with
the parallel fibers, the only pathway for transverse
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Figure 6

Serotonin (5-HT) induces a mixed GABAergic and glycinergic inhibition at Lugaro cell-Golgi cell connections. (A) High magnification of
a calretinin-labeled Lugaro cell located between two immunonegative Purkinje cells in the sagittal plane. Two dendrites (arrows) originate
from opposite poles of the fusiform cell body. Above the Purkinje cell bodies, immunoreactive spots (arrowheads) are observed
corresponding to transversally cut Lugaro cell axonal fibers. Scale bar = 10 um. (B) Schematic drawing of a cerebellar lobule cut in the
sagittal plane, showing the morphological configuration of a Lugaro cell. Four axon collaterals are depicted in the transverse orientation,
which is the orientation of the parallel fibers. Abbreviations in A and B: GL, granular layer; ML, molecular layer; PC, Purkinje cell. (C)
Current-clamp recordings of a Lugaro cell in rat cerebellar slices demonstrate that the spontaneously inactive Lugaro cell is reversibly
excited by serotonin. (D) Summary of the effect of serotonin on the spike firing frequency of a Lugaro cell. (E) The serotonin-induced
activation of Lugaro cells evokes large ipscs in Golgi cells, which dominate the spontaneous activity evoked by stellate/basket cells. (F)
Summary of the effect of serotonin on the frequency of large-amplitude ipscs recorded from a Golgi cell. (G) Summary of a series of
experiments recorded from Golgi cells, illustrating that (1) gabazine, a GABA, receptor inhibitor, completely blocks spontaneous ipscs but
not serotonin-evoked ipscs, and (2) strychnine blocks serotonin-induced ipscs in the presence of gabazine. (H) Reciprocally, serotonin
evokes GABAergic ipscs in Golgi cells in the presence of strychnine. Consequently, besides a pure GABAergic inhibition from stellate/
basket cells, Golgi cells receive a mixed GABAergic and glycinergic inhibition from Lugaro cells. Adapted from Refs 54, 59, 66.

information flow in the cerebellar cortex®® (Figure 6A— contacting stellate/basket cells®! and the transverse fibers
B). Lugaro cells contact exclusively other inhibitory contacting Golgi cells.”* The Lugaro cell-Golgi cell
interneurons: with the parasagittal axon preferentially projection was the first connection in the cerebellum in
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which functional co-transmission by GABA and glycine
had been demonstrated®*%? (Figure 6C-H). Here, again,
glycine receptor expression is target-specific as they are
absent at Lugaro cell contacts to stellate/basket cells.

The synaptic inputs onto Lugaro cells remain less
documented. Purkinje cell collaterals, forming a beaded
plexus just beneath the Purkinje cell layer,°> are the only
presynaptic elements identified to contact Lugaro cell
somata and proximal dendrites.®* These contacts may
account for the pericellular nests made by Purkinje cell
recurrent collaterals around some granular layer inter-
neurons described by Cajal.®®> Although the ascending
axon of granule cells might contact Lugaro cells, no
glutamatergic inputs to Lugaro cells have been identified
so far. As a first approximation, Lugaro cells will exert a
feedback inhibitory control on Purkinje cells®! through a
trisynaptic inhibitory circuit, but its function may be way
more complex. Given the peculiar transverse organiza-
tion of their axons, Lugaro cells might play a role in the
synchronization of Golgi cells found along the same
parallel fiber beam,’® and in particular it may organize the
widespread oscillations recorded from the granular layer
in the awake animal at rest. In contrast to all other
cerebellar cells, the main excitatory input to Lugaro cells
is performed by serotonergic modulation acting through
volume transmission®® (Figure 6C-H). Consequently, it
has been proposed that the Lugaro cell is a serotonin-
driven intracortical switch involved in the processing of
mossy fiber information.®®

Other Subclasses of Interneurons in the
Granular Layer?

The existence of the three above-described classes of
interneurons is now firmly established, but additional
complexity has been reported in the granular layer
circuitry. Initially, Ramoén y Cajal identified four types
of Golgi cells based on the extent and location of their
axonal plexus.®®> A more prevalent view divides Golgi
cells into small and large Golgi cells.?> Recent morpho-
logical analysis does not support this division, but Golgi
cells in the vermis appeared on average larger than Golgi
cells in the hemispheres.’” Besides morphological hetero-
geneity, neurochemical variation within the Golgi cell
population has been described. Only 90% of the Golgi
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