Jacobi's four square theorem

Shruthi Sridhar

MATH 6120 final presentation

2 May, 2017

The Four Square Theorem

Theorem

Let $n \in \mathbb{N}$, then,

$$r_4(n) = \#\{(a, b, c, d) \in \mathbb{Z}^4 \mid a^2 + b^2 + c^2 + d^2 = n\} = \sum_{d \mid n, d \notin 4\mathbb{Z}} 8d$$

The Four Square Theorem

Theorem

Let $n \in \mathbb{N}$, then,

$$r_4(n) = \#\{(a, b, c, d) \in \mathbb{Z}^4 \mid a^2 + b^2 + c^2 + d^2 = n\} = \sum_{d \mid n, d \notin 4\mathbb{Z}} 8d$$

Theta functions

Define
$$\theta(z) = \sum_{m \in \mathbb{Z}} e^{2\pi i z m^2}$$
 on \mathbb{H} .
 $\theta(z)^k = \sum_{n \in \mathbb{Z}} \left(\sum_{\substack{(a_1, \dots, a_k) \mid \sum a_i^2 = n}} 1 \right) e^{2\pi i z n} = \sum_{n \in \mathbb{Z}} r_k(n) e^{2\pi i z n}$
So, $\theta(z)^4 = \sum_{n \in \mathbb{Z}} r_4(n) e^{2\pi i z n}$

Modular forms on SL(2, \mathbb{Z})

Definition

Let k be any integer. A holomorphic function $f : \mathbb{H} \to \mathbb{C}$ is a *modular form* of weight k if

•
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}).$

• f is holomorphic at ∞ .

Modular forms on SL(2, \mathbb{Z})

Definition

Let k be any integer. A holomorphic function $f : \mathbb{H} \to \mathbb{C}$ is a *modular form* of weight k if

•
$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}).$

• f is holomorphic at ∞ .

Holomorphic at infinity

We have $f(z+1) = (1)^k f(z) = f(z)$. Hence $f(z) = g(e^{2\pi i z})$ for some holomorphic $g : D \setminus \{0\} \to \mathbb{C}$. Thus g(q) has a laurent series $g(q) = \sum_{n=-\infty}^{\infty} a_n q^n$ where $q = e^{2\pi i z}$.

We say f is holomorphic at ∞ if $a_n = 0$ for all n < 0. Additionally, f is a cusp form if $a_0 = 0$

Modular forms on SL(2, \mathbb{Z})

Example

Consider the functions $G_k(z) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(mz+n)^k}$ for $k \ge 3$.

 $SL(2,\mathbb{Z})$ is generated by matrices $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Hence it is sufficient to check condition (1) for these matrices.

Clearly
$$G_k(z+1) = G_k(z)$$
. Also,
 $G_k\left(\frac{-1}{z}\right) = \sum_{(m,n)\in\mathbb{Z}^2\setminus(0,0)} \frac{1}{(m\frac{-1}{z}+n)^k} = z^k \sum_{(m,n)\in\mathbb{Z}^2\setminus(0,0)} \frac{1}{(nz+m)^k} = z^k G_k(z)$

It can be shown that $G_k(z)$ is holomorphic at infinity by showing it is bounded by the value at $\omega = e^{2\pi i/3}$ and furthermore

$$G_k(\infty) = \lim_{z \to \infty} \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(mz+n)^k} = \sum_{n \in \mathbb{Z} \setminus 0} \frac{1}{n^k} = 2\zeta(k)$$

The vector space of modular forms of weight k is denoted by \mathcal{M}_k and the space of cusp forms by S_k

Theorem

The space $\mathcal{M} = \bigoplus_{k \in \mathbb{Z}} \mathcal{M}_k$ of all modular forms on $SL(2,\mathbb{Z})$ is isomorphic to $\mathbb{C}[G_4, G_6]$

Proof Sketch

We obtain a bound on dimension of \mathcal{M}_k by computing a contour integral around the fundamental domain of the action of $SL(2,\mathbb{Z})$ on \mathbb{H}

Proof Sketch

f be a non-zero modular form of weight k. Let $v_p(f) = \text{degree of zero at p.}$ Then, $v_{\infty}(f) + \frac{1}{2}v_i(f) + \frac{1}{3}v_{\omega}(f) + \sum_{p \in \mathbb{H}/\Gamma} v_p(f) = \frac{k}{12}$ $\xrightarrow{-1/2 \qquad 0 \qquad 1/2}$

This gives us that $M_k = 0$ for $k \le 2$ and odd kFurthermore, we can establish the following isomorphisms:

$$\mathcal{M}_k \cong S_k \oplus \mathbb{C}G_k$$
 and $M_{k-12} \cong S_k$

The second comes from recognizing $\triangle = 60^3 (G_4(z))^3 - 27 \cdot 140^2 (G_6(z))^2$ is a cusp form of weight 12.

Using the isomorphisms, one can show that \mathcal{M}_k has dimension 1 for k = 4, 6, 8, 10 and explicitly producing basis elements: $G_4, G_6, (G_4)^2, G_4 G_6$ respectively.

For higher k, the dimension of the space is $\lfloor k/12 \rfloor$ from the second isomorphism and a basis for the space is $\{G_4^a G_6^b \mid 4a + 6b = k\}$ proving the theorem.

Congruence subgroups of SL(2, \mathbb{Z})

Definition

The principle congruence subgroup of level N is denoted:

$$\Gamma(N) = \left\{ \begin{array}{cc} a & b \\ c & d \end{array} \right\} \in SL(2,\mathbb{Z}) \left| \begin{array}{cc} a & b \\ c & d \end{array} \right\} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

A congruence subgroup Γ of level N is any subgroup of $SL(2,\mathbb{Z})$ such that $\Gamma(N) \subset \Gamma \subset SL(2,\mathbb{Z})$.

We will focus on the congruence subgroup

$$\Gamma_0(N) = \left\{ \begin{array}{cc} a & b \\ c & d \end{array} \right\} \in SL(2,\mathbb{Z}) \left| \begin{array}{cc} a & b \\ c & d \end{array} \right\} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod N \right\}$$

Modular forms on subgroups

Let
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})$$
 and $f : \mathbb{H} \to \mathbb{C}$ holomorphic. Define

$$f[\gamma]_k = j(\gamma, z)^{-k} f(\gamma(z))$$
 where $j(\gamma, z) = cz + d$ and $\gamma(z) = rac{az+b}{cz+d}$

Definition

Let k be any integer and Γ be a congruence subgroup. A holomorphic function $f : \mathbb{H} \to \mathbb{C}$ is a *modular form* of weight k with respect to Γ if

- $f[\gamma]_k = f(z)$ for all $\gamma \in \Gamma$.
- $f[\gamma]_k$ is holomorphic at ∞ for all $\gamma \in SL(2,\mathbb{Z})$.

The condition $f[\gamma]_k = f(z)$ for all $\gamma \in \Gamma$ is consistent with condition 1 for modular forms of $SL(2, \mathbb{Z})$.

If
$$f[\gamma]_k(z) = f(z)$$
, then $(cz + d)^{-k} f(\frac{az+b}{cz+d}) = f(z)$ giving us
 $f(\frac{az+b}{cz+d}) = (cz + d)^k f(z)$

The vector space of modular forms of weight k over Γ is denoted by $\mathcal{M}_k(\Gamma)$

Note

 $j(\gamma\gamma', z) = j(\gamma, \gamma'(z))j(\gamma', z)$ and $f[\gamma\gamma']_k = (f[\gamma']_k)[\gamma]_k$. Thus checking the first condition is equivalent to checking it for a generating set of Γ

The space $\mathcal{M}_2(\Gamma_0(4))$ and the Theta function

Theorem $\theta(z)^4$ is an element of $\mathcal{M}_2(\Gamma_0(4))$ Proof

First we note that $\Gamma_0(4)$ is generated by $\pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}$ Clearly $\theta(z) = \sum_{m \in \mathbb{Z}} e^{2\pi i z m^2} = \theta(z+1)$

We use the Poisson summation formula: $\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n)$ (where \hat{f} is the fourier transform of f) to show $\theta(\frac{-1}{4z}) = \sqrt{-2iz}\theta(z)$ Defining $f(x) = e^{-\pi tx^2}$ gives us

$$\hat{f}(n) = \int_{-\infty}^{\infty} e^{-\pi t x^2 - 2\pi i x n} dx = e^{\frac{\pi n^2}{t}} \int_{-\infty}^{\infty} e^{-\pi t (x - \frac{n i}{t})^2} dx$$
$$= e^{\frac{\pi n^2}{t}} \int_{-\infty}^{\infty} e^{-\pi t x} dx = \frac{1}{\sqrt{t}} e^{\frac{\pi n^2}{t}}$$

Proof (contd.) ... $\hat{f}(n) = \frac{1}{\sqrt{t}} e^{\frac{\pi n^2}{t}}$ Substituting $z = \frac{-t}{2i}$ gives us $\theta\left(\frac{-1}{4\pi}\right) = \sum e^{\frac{\pi}{t}n^2} = \sqrt{t} \sum e^{-\pi tn^2} = \sqrt{-2iz}\theta(z)$ This implies $\theta\left(\frac{z}{4z+1}\right) = \theta\left(\frac{-1}{4(\frac{1}{z}-1)}\right)$ $= \sqrt{2i(\frac{1}{4z}+1)\theta(\frac{-1}{4z}-1)}$ $=\sqrt{2i(\frac{1}{4z}+1)}\theta(\frac{-1}{4z})$ $=\sqrt{2i(\frac{1}{4z}+1)\sqrt{-2iz}} \theta(z)$ $=\sqrt{4z+1} \theta(z)$

Raising to the fourth power proves the modularity of $\theta(z)^4$.

Modular forms on subgroups

Modular forms (of weight 2k) can be as k forms invariant of the Γ action: $\gamma : z \mapsto \frac{az+b}{cz+d}$

Definition

Let k be any integer and Γ be a congruence subgroup. A holomorphic function $f : \mathbb{H} \to \mathbb{C}$ is a *modular form* of weight 2k with respect to Γ if

- $f(z)(dz)^k$ is a k form defined on \mathbb{H}/Γ
- $f[\gamma]_k$ is holomorphic at ∞ for all $\gamma \in SL(2,\mathbb{Z})$.

This is equivalent to the previous definition because $d(\gamma(z)) = d(\frac{az+b}{cz+d}) = \frac{ad-bc}{(cz+d)^2}dz = \frac{dz}{(cz+d)^2}$ Hence,

$$f(\gamma(z))(d\gamma(z))^k = f(\gamma(z))rac{(dz)^k}{(cz+d)^{2k}} = f(z)(dz)^k \ \iff (cz+d)^{-2k}f(\gamma(z)) = f(z)$$

Dimension of $\mathcal{M}_2(\Gamma_0(4))$

Modular forms of weight 2 can be thought of as 1-forms on the Riemann surface $\mathbb{H}/\Gamma_0(4)$. We find a fundamental domain of \mathbb{H} for this action by $\Gamma_0(4)$.

Since the translation matrix:
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 is
in the subgroup, the fundamental
domain is contained in $\{|\text{Im}(z)| \le \frac{1}{2}\}$.
For each matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$, draw

semicircles centered at $\frac{a}{c}$ with radius $\frac{1}{|c|}$.

The fundamental domain for the action by $\Gamma_0(4)$ is the region outside the largest semicircles.

Dimension of $\mathcal{M}_2(\Gamma_0(4))$

The fundamental domain under appropriate identification is a sphere with 3 punctures.

Any 1-forms on this thrice punctured sphere can have simple poles at each of the punctures. Thus the space of 1-forms is generated by 2 elements: $\frac{dz}{z}$ and $\frac{dz}{z-1}$. The 1-form $a\frac{dz}{z} + b\frac{dz}{z-1}$ has simple poles at 0 and 1. It also has a simple pole at infinity:

Set $\xi = \frac{1}{z}$. $d\xi = \frac{-1}{z^2}dz$. So the 1-form becomes: $-a\frac{d\xi}{\xi} - b\frac{d\xi}{\xi(1-\xi)}$ which has a simple pole at $\xi = 0$

Thus dim $\mathcal{M}_2(\Gamma_0(4)) = 2$

There are general formulas for the dimension of the space of modular forms of weight k over a subgroup Γ .

$$\dim \mathcal{M}_k(\Gamma) = (k-1)(g-1) + \left\lfloor \frac{k}{4} \right\rfloor e_2 + \left\lfloor \frac{k}{3} \right\rfloor e_3 + \frac{k}{2} e_{\infty}$$

where g is the genus of the Riemann surface \mathbb{H}/Γ e_2 is the number of orbits of elliptic points of order 2 e_3 is the number of orbits of elliptic points of order 3 e_{∞} is the number of orbits of cusps

Almost invariance of G_2

The function $G_2(z) = \sum_{(m,n)\in\mathbb{Z}^2\setminus 0} \frac{1}{(mz+n)^2}$ isn't absolutely convergent. However it is conditionally convergent written as

 $\sum_{m\in\mathbb{Z}}\sum_{n\in\mathbb{Z}_m}\frac{1}{(mz+n)^2} \text{ where } \mathbb{Z}_m=\mathbb{Z}\setminus 0 \text{ if } m=0 \text{ and } \mathbb{Z} \text{ otherwise.}$

Consider
$$\pi \cot \pi z = \frac{1}{z} + \sum_{d=1}^{\infty} \frac{1}{z-d} + \frac{1}{z+d}$$
.

Also,
$$\pi \cot \pi z = \pi \frac{\cos \pi z}{\sin \pi z} = \pi i \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} = -\pi i - 2\pi i \sum_{n=0}^{\infty} e^{2\pi i n z}$$

Taking the derivative of $\pi \cot \pi z$, $\sum_{d=-\infty}^{\infty} \frac{1}{(z+d)^2} = -4\pi^2 \sum_{n=0}^{\infty} ne^{2\pi i n z}$

Almost invariance of G_2

$$\begin{aligned} G_{2}(z) &= \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}_{m}} \frac{1}{(mz+n)^{2}} \\ &= \sum_{n \neq 0} \frac{1}{n^{2}} + \sum_{m > 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^{2}} + \sum_{m < 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^{2}} \\ &= 2\zeta(2) + 2 \sum_{m > 0} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^{2}} \\ &= 2\zeta(2) + 2 \sum_{m > 0} -4\pi^{2} \sum_{n=0}^{\infty} ne^{2\pi i nmz} = 2\zeta(2) - 8\pi^{2} \sum_{n=1}^{\infty} \sigma(n)e^{2\pi i nz} \end{aligned}$$
We have $\Big| \sum_{m > 0} \sum_{n=0}^{\infty} ne^{2\pi i nmz} \Big| \leq C \sum_{m > 0}^{\infty} \frac{1}{|(1-e^{2\pi i zm})^{2}|} \leq C$

$$C' \sum_{m>0}^{\infty} |e^{-4\pi i m z}| = \frac{C''}{1 - |e^{-4\pi i z}|}$$

Almost invariance of $G_2(z)$

It is clear that
$$G_2(z) = 2\zeta(2) - 8\pi^2 \sum_{m>0} \sum_{n=0}^{\infty} ne^{2\pi i nmz} = G_2(z+1)$$

With more computation, one can show that

$$G_2\left\lfloor \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rfloor_2(z) = G_2(z) - \frac{2\pi i}{z}$$

Inductively one shows $G_2[\gamma]_2(z) = G_2(z) - \frac{2\pi i c}{cz+d}$ where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$

If we define $G'_2(z) = G_2(z) - \frac{\pi}{Im(z)}$, the above statement gives $G'_2[\gamma]_2(z) = G'_2(z)$ but G'_2 is not holomorphic.

Consider the functions $G_{2,N}(z) = G_2(z) - NG_2(Nz)$.

By straightforward computation $G_{2,N}[\gamma]_2 = G_{2,N}(z)$ for all $\gamma \in \Gamma_0(N)$.

If we can prove these are holomorphic at ∞ , we have $G_{2,N} \in \mathcal{M}_2(\Gamma_0(N))$. So, $G_{2,4} \in \mathcal{M}_2(\Gamma_0(4))$ and $G_{2,2} \in \mathcal{M}_2(\Gamma_0(2)) \subseteq \mathcal{M}_2(\Gamma_0(4))$

A bounding theorem

Theorem

Let $f : \mathbb{H} \to \mathbb{C}$ be weakly modular on \mathbb{H} , with respect to Γ , a congruence subgroup of level N. If there exist positive constants C, r, such that the Fourier expansion of f satisfies $f(z) = \sum_{n \ge 0} a_n e^{2\pi i n z/N}$ with $a_n \le Cn^r$ for all n > 0, then

$$|f(z)| \leq C_0 + C\left(\int_0^\infty t^r e^{-2\pi t y/N} dt\right) + \frac{C_1}{y^r}$$

Proof

We have $|f(z)| \le |a_0| + \sum_{n>0} Cn^r e^{-2\pi i n y/N}$.

Consider the function $g(t) = t^r e^{-2\pi t y/N}$.

$$g'(t)>0$$
 when $t\in(0,rac{rN}{2\pi y})$ and $g'(t)<0$ when $t>rac{rN}{2\pi y}$

Proof (contd.)

... Calling
$$k = \left\lfloor \frac{rN}{2\pi y} \right\rfloor$$
, we get $\sum_{1}^{k-1} n^r e^{-2\pi i n y} < \int_{0}^{k} t^r e^{-2\pi t y/N} dt$ and
 $\sum_{k+2}^{\infty} n^r e^{-2\pi i n y} < \int_{k}^{\infty} t^r e^{-2\pi t y/N} dt$

Thus

$$\begin{split} |f(z)| &\leq |a_0| + C \bigg(k^r e^{-2\pi k y/N} + (k+1)^r e^{-2\pi (k+1)y/N} \\ &+ \sum_{1}^{k-1} n^r e^{-2\pi i n y} + \sum_{k+2}^{\infty} n^r e^{-2\pi i n y} \bigg) \\ &\leq C_0 + C \bigg(\int_0^\infty t^r e^{-2\pi t y/N} dt \bigg) + \frac{C_1}{y^r} \end{split}$$

Theorem

If a weakly modular function satisfies the above condition on fourier coefficients, it is a modular form with respect to Γ .

Proof

For all $\gamma \in SL(2,\mathbb{Z})$, we need $f[\gamma]_k$ to be holomorphic at ∞ . $f[\gamma]_k$ is invariant under $\gamma^{-1}\Gamma\gamma$ and hence has a Laurent expansion: $f[\gamma]_k = \sum_{n \in \mathbb{Z}} b_n e^{2\pi i n z/N}$.

As
$$z \to \infty$$
,
 $|f[\gamma]_k| = (cz + d)^{-k} f(\gamma(z)) = O(y^{-k}) O((Im(\gamma(z))^{-r}) = O(y^{r-k})$

Thus, $\lim_{z\to\infty} |f[\gamma]_k e^{2\pi i z/N}| = \lim_{z\to\infty} O(y^{r-k}) e^{-2\pi y/N} \to 0$

Elements of $\mathcal{M}_2(\Gamma_0(4))$

The functions $G_{2,2}$ and $G_{2,4}$ have fourier expansions as follows:

$$\begin{aligned} G_{2,2}(z) &= G_2 - 2G_2(2z) \\ &= 2\zeta(2) - 8\pi^2 \sum_{n=1}^{\infty} \sigma(n) e^{2\pi i z n} - 2\left(2\zeta(2) - 8\pi^2 \sum_{n=1}^{\infty} \sigma(n) e^{4\pi i z n}\right) \\ &= -\frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \left(\sum_{d|n, d \notin 2\mathbb{Z}} d\right) e^{2\pi i z n} \end{aligned}$$

Similarly,
$$G_{2,4}(z) = -\pi^2 - 8\pi^2 \sum_{n=1}^{\infty} \left(\sum_{d|n,d\notin 4\mathbb{Z}} d\right) e^{2\pi i z n}$$

The fourier coefficients are bounded by $8\pi^2\sigma(n) \le 8\pi^2n^2$ hence, $G_{2,2}, G_{2,4} \in \mathcal{M}_2(\Gamma_0(4))$

Proving Jacobi's four square theorem

We have the following:

- $\theta^4(z) \in \mathcal{M}_2(\Gamma_0(4))$
- dim $\mathcal{M}_2(\Gamma_0(4)) = 2$
- $G_{2,2}$ and $G_{2,4}$ are a basis for $\mathcal{M}_2(\Gamma_0(4))$

Thus,
$$heta^4(z) = aG_{2,2} + bG_{2,4}.$$

$$1 + 8e^{2\pi i z} + \dots = \frac{-a\pi^2}{3}(1 + 24e^{2\pi i z} + \dots) - b\pi^2(1 + 8e^{2\pi i z} + \dots)$$

Comparing coefficients gives us

$$heta^4(z) = rac{-1}{\pi^2} G_{2,4} = \sum_{n \in \mathbb{Z}} \Big(8 \sum_{d \mid n, d
otin 4 \mathbb{Z}} d \Big) e^{2\pi i z n}$$

- https://web.stanford.edu/~aaronlan /assets/landesman_junior_paper.pdf
- Diamond, Fred, and Shurman, Jerry. A First Course in Modular Forms. New York: Springer, 2005.
- ► Serre, J.-P. A Course in Arithmetic. New York: Springer, 1973