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Preface

The goal of this text is to calculate the trace of a Hecke correspondence
composed with a (big enough) power of the Frobenius automorphism at a
good place on the intersection cohomology of the Baily-Borel compactifi-
cation of certain Shimura varieties, and then to stabilize the result for the
Shimura varieties associated to unitary groups over Q.

The main result is theorem 8.4.3. It expresses the above trace in terms
of the twisted trace formula on products of general linear groups, for well-
chosen test functions.

Here are two applications of this result. The first (corollary 8.4.5) is about
the calculation of the L-function of the intersection complex of the Baily-
Borel compactification :

Theorem A Let E be a quadratic imaginary extension of Q, G = GU(p, q)
one of the unitary groups defined by using E (cf 2.1), K a neat open compact
subgroup of G(Af ), MK(G,X ) the associated Shimura variety (cf 2.1 and
1.1) and V an irreducible algebraic representation of G. Denote by ICKV
the intersection complex of the Baily-Borel compactification of MK(G,X )
with coefficients in V . Let EG be the set of elliptic endoscopic groups
G(U∗(n1)×U∗(n2)) of G, where n1, n2 ∈ N are such that n1 + n2 = p+ q
and that n2 is even. For every H ∈ EG, let ΠH be the set of equivalence
classes of automorphic representations of H(AE).

Assume that K is small enough. Then there exist, for every H ∈ EG, an
explicit finite set RH of algebraic representations of LHE and a family of
complex numbers (cH(πH , rH))πH∈ΠH ,rH∈RH

, almost all zero, such that, for
every finite place ℘ of E above a prime number where K is hyperspecial,

logL℘(s, ICKV ) =
∑

H∈EG

∑
πH∈ΠH

∑
rH∈RH

cH(πH , rH) logL(s− d

2
, πH,℘, rH),

where d = pq is the dimension of MK(G,X ).

See the statement of corollary 8.4.5 for more details. The second applica-
tion is corollary 8.4.9. We give a simplified statement of this corollary and
refer to 8.4 for the definitions :

Theoreme B Let n be a positive integer that is not dividible by 4 and
E an imaginary quadratic extension of Q. Denote by θ the automorphism
g 7−→ tg−1 of RE/QGLn,E . Let π be a θ-stable cuspidal automorphic rep-
resentation of GLn(AE) that is regular algebraic. Let S be the union of
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the set of prime numbers that ramify in E and of the set of prime numbers
under finite places of E where π is ramified. Then there exists a number
field K, a positive integer N and, for every finite place λ of K, a continuous
finite-dimensional representation σλ of Gal(Q/E) with coefficients in Kλ,
such that :

(i) The representation σλ is unramified outside of S ∪ {`}, where ` is the
prime number under λ, and pure of weight 1− n.

(ii) For every place ℘ of E above a prime number p 6∈ S, for every finite
place λ 6 |p of K,

logL℘(s, σλ) = N logL(s+
n− 1

2
, π℘).

In particular, π satisfies the Ramanujan-Petersson conjecture at every
finite unramified place.

There is also a result for n dividible by 4, but it is weaker and its statement
is longer. See also chapter 7 for applications of the stabilized fixed point
formula (corollary 6.3.2) that do not use base change to GLn.

The method used in this text is the one developed by Ihara, Langlands and
Kottwitz : comparison of the fixed point formula of Grothendieck-Lefschetz
and of the trace formula of Arthur-Selberg. In the case where the Shimura
variety is compact and where the group has no endoscopy, this method is
explained in the article [K10] of Kottwitz. Using base change from unitary
groups to GLn, Clozel deduced from this a version of corollary B with sup-
plementary conditions on the automorphic representation at a finite place
(cf [Cl5] and the article [CL] of Clozel and Labesse). The case of a compact
Shimura variety (more generally, of the cohomology with compact support)
and of a group that might have non-trivial endoscopy is treated by Kottwitz
in the articles [K11] and [K9], modulo the fundamental lemma. For unitary
groups, the fundamental lemma (and the twisted version that is used in the
stabilization of the fixed point formula) is now known thanks to the work of
Laumon-Ngo ([LN]), Hales ([H2]) and Waldspurger ([Wa1], [Wa2], [Wa3]);
note that the fundamental lemma is even known in general thanks to the
recent article of Ngo ([Ng]).

The case of GL2 over Q (ie of modular curves) has been treated in the
book [DK], and the case of GL2 over a totally real number field in the article
[BL] of Brylinski and Labesse. In these two cases, the Shimura variety is
non-compact (but its Baily-Borel compactification is not too complicated)
and the group has no endoscopy.

One of the simplest cases where the Shimura variety is non-compact and
the group has non-trivial endoscopy is that of the unitary group GU(2, 1).
This case has been studied in the book [LR]. For groups of semi-simple
rank 1, Rapoport proved in [Ra] the (unstabilized) fixed point formula in
the case where the Hecke correspondance is trivial. The stabilized fixed
point formula for the symplectic groups GSp2n is proved in [M3] (and some
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applications to GSp4 and GSp6, similar to corollary A, are given). In
[Lau1] and [Lau2], Laumon obtained results similar to corollary B for the
groups GSp4, by using the cohomology with compact support (instead of
the intersection cohomology).

Finally, note that Shin obtained recently results analogous to corollary
B, and also results about ramified places, by using the cohomology of Igusa
varieties attached to compact unitary Shimura varieties (cf [Shi1], [Shi2],
[Shi3]). This builds on previous work of Harris and Taylor ([HT]).

We give a quick description of the different chapters.
Chapter 1 contains “known facts” about the fixed point formula. When

the Shimura variety is associated to a unitary group over Q and the Hecke
correspondence is trivial, the fixed point formula has been proved in [M1]
(theorem 5.3.3.1). The article [M2] contains the theoretical tools needed
to treat the case of non-trivial Hecke correspondences for Siegel modular
varieties (proposition 5.1.5 and theorem 5.2.2), but does not finish the cal-
culation. We generalize here the results of [M2] under certain conditions
on the group (that are satisfied by unitary groups over Q and by symplectic
groups), then use them to calculate the trace on the intersection cohomology
of a Hecke correspondence twisted by a high enough power of Frobenius in
the case when the Shimura variety and the boundary strata of its Baily-Borel
compactification are of the type considered by Kottwitz in his article [K11]
(ie PEL of type A or C). The result is given in theorem 1.7.1.

Chapters 2 to 6 treat the stabilization of the fixed point formula for unitary
groups over Q. We prove conjecture (10.1) of the article [K9] (corollary
6.3.2). Kottwitz stabilized the elliptic part of the fixed point formula in
[K9], and the method of this book to stabilize the terms coming from the
boundary is inspired by his method. The most complicated calculations are
at the infinite place, where we need to show a formula for the values at certain
elements of the stable characters of discrete series (proposition 3.4.1). This
formula looks a little like the formulas established by Goresky, Kottwitz et
MacPherson ([GKM] theorems 5.1 et 5.2), though it has less terms. This is
special to unitary groups : the analogous formula for symplectic groups (cf
section 4 of [M3]) is much more complicated, and more different from the
formulas of [GKM].

In chapter 2, we define the unitary groups over Q that we will study, as
well as their Shimura data, and we recall some facts about their endoscopy.

Chapter 3 contains the calculations at the infinite place.
Chapter 4 contains explicit calculations, at an unramified place of the

group, of the Satake transform, the base change map, the transfer map and
the twisted transfer map, and a compatibility result for the twisted transfer
and constant term maps.

In chapter 5, we recall the stabilization by Kottwitz of the geometric side
of the invariant trace formula when the test function is stable cuspidal at
infinity (cf [K13]). This stabilization relies on the calculation by Arthur of
the geometric side of the invariant trace formula for a function that is sta-
ble cuspidal at infinity (cf [A6] formula (3.5) and theorem 6.1), and uses
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only the fundamental lemma (and not the weighted fundamental lemma).
Unfortunately, this result is unpublished. Chapter 5 also contains the nor-
malization of the Haar measures and of the transfer factors, the statement
of the fundamental lemmas that we use and a summary of the results that
are known about these fundamental lemmas.

In chapter 6, we put the results of chapters 2, 3 and 4 together and stabilize
the fixed point formula.

Chapter 7 gives applications of the stabilized fixed point formula that do
not use base change to GLn. First, in section 7.1, we show how to make
the results of this chapter formally independent from Kottwitz’s unpublished
article [K13] (this is merely a formal game, because of course a large part
of this book was inspired by [K13] in the first place). In 7.2, we express the
logarithm of the L-function of the intersection complex at a finite place above
a big enough prime number as a sum (a priori with complex coefficients) of
logarithms of local L-functions of automorphic representations of unitary
groups. We also give, in section 7.3, an application to the Ramanujan-
Petersson conjecture (at unramified places) for certain discrete automorphic
representations of unitary groups.

Chapter 8 gives applications of the stabilized fixed point formula that
use base change to GLn. In section 8.1, we recall some facts about non-
connected groups. In sections 8.2 and 8.3, we study the twisted trace formula
for certain test functions. We give applications of this in 8.4; in particular,
we obtain another formula for the L-function of the intersection complex,
this time in terms of local L-functions of automorphic representations of
general linear groups. The simple twisted trace formula proved in this chap-
ter implies some weak base change results; these have been worked out in
section 8.5.

In chapter 9, we prove the particular case of the twisted fundamental
lemma that is used in the stabilization of the fixed point formula in the
article [K9] of Kottwitz, the article [Lau1] of Laumon and chapter 6. The
methods of this chapter are not new, and no attempt was made to obtain the
most general result possible. Waldspurger showed in [Wa3] that the twisted
fundamental lemma for the unit of the Hecke algebra is a consequence of the
ordinary fundamental lemma (and, in the general case, of the non-standard
fundamental lemma). We show that, in the particular case that we need,
the twisted fundamental lemma for the unit of the Hecke algebra implies
the twisted fundamental lemma for all the functions of the Hecke algebra.
The method is the same as in the article [H2] of Hales (ie it is the method
inspired by the article [Cl3] of Clozel, and by the remark of the referee of
this article).

The appendix by Robert Kottwitz contains a comparison theorem between
the twisted transfer factors of [KS] and of [K9]. This result is needed to
use the twisted fundamental lemma in the stabilization of the fixed point
formula.

It is a great pleasure for me to thank Robert Kottwitz and Gérard Laumon.
Robert Kottwitz very kindly allowed me to read his unpublished manuscript
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[K13], that has been extremely helpful to me in writing this text. He also
helped me fix a problem in the proof of proposition 8.2.3, pointed out several
mistakes in chapter 9 and accepted to write his proof of the comparison
of twisted transfer factors as an appendix of this book. Gérard Laumon
suggested that I study the intersection cohomology of non-compact Shimura
varieties and has spent countless hours patiently explainig the subject to me.
I also thank Jean-Loup Waldspurger for sending me a complete version of
his manuscript [Wa3] on twisted endoscopy before it was published.

I am grateful to the other mathematicians who have answered my ques-
tions or pointed out simpler arguments to me, in particular Pierre-Henri
Chaudouard, Laurent Fargues, Günter Harder, Colette Moeglin, Bao Chau
Ngo, Sug Woo Shin and Marie-France Vignéras (I am especially grateful
to Sug Woo Shin for repeatedly correcting my misconceptions about the
spectral side of the twisted trace formula).

Finally, I would like to express my gratitude to the anonymous referee for
finding several mistakes and inaccuracies in the first version of this text.

This text was written entirely while I was a Clay Research Fellow of the
Clay Mathematics Institute, and worked as a member at the Institute for
Advanced Study in Princeton. Moreover, I have been partially supported by
the National Science Foundation under agreements number DMS-0111298
and DMS-0635607.
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Chapter One

The fixed point formula

1.1 SHIMURA VARIETIES

The reference for this section is [P2] §3.
Let S = RC/RGm,R. Identify S(C) = (C ⊗R C)× and C× × C× using the

morphism a⊗ 1 + b⊗ i 7−→ (a+ ib, a− ib), and write µ0 : Gm,C −→ SC for
the morphism z 7−→ (z, 1).

The definition of (pure) Shimura data that will be used here is that of [P2]
(3.1), up to condition (3.1.4). So a pure Shimura datum is a triple (G,X , h)
(that will often be written simply (G,X )), where G is a connected reductive
linear algebraic group over Q, X is a set with a transitive action of G(R),
and h : X −→ Hom(S,GR) is a G(R)-equivariant morphism, satisfying
conditions (3.1.1), (3.1.2), (3.1.3) and (3.1.5) of [P2], but not necessarily
condition (3.1.4) (ie the group Gad may have a simple factor of compact
type defined over Q).

Let (G,X , h) be a Shimura datum. The field of definition F of the conju-
gacy class of cocharacters hx ◦ µ0 : Gm,C −→ GC, x ∈ X , is called the reflex
field of the datum. If K is an open compact subgroup of G(Af ), there is an
associated Shimura variety MK(G,X ), that is a quasi-projective algebraic
variety over F satisfying

MK(G,X )(C) = G(Q) \ (X ×G(Af )/K).

If moreover K is neat (cf [P1] 0.6), then MK(G,X ) is smooth over F . Let
M(G,X ) be the inverse limit of the MK(G,X ), taken over the set of open
compact subgroups K of G(Af ).

Let g, g′ ∈ G(Af ), and let K,K′ be open compact subgroups of G(Af )
such that K′ ⊂ gKg−1. Then there is a finite morphism

Tg : MK′(G,X ) −→MK(G,X ),

that is given on complex points by{
G(Q) \ (X ×G(Af )/K′) −→ G(Q) \ (X ×G(Af )/K)

G(Q)(x, hK′) 7−→ G(Q)(x, hgK)

If K is neat, then the morphism Tg is étale.
Fix K. The Shimura variety MK(G,X ) is not projective over F in gen-

eral, but it has a compactification j : MK(G,X ) −→ MK(G,X )∗, the
Satake-Baily-Borel (or Baily-Borel, or minimal Satake, or minimal) com-
pactification, such that MK(G,X )∗ is a normal projective variety over F
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and MK(G,X ) is open dense in MK(G,X )∗. Note that MK(G,X )∗ is not
smooth in general (even when K is neat). The set of complex points of
MK(G,X )∗ is

MK(G,X )∗(C) = G(Q) \ (X ∗ ×G(Af )/K),

where X ∗ is a topological space having X as an open dense subset and
such that the G(Q)-action on X extends to a continuous G(Q)-action on
X ∗. As a set, X ∗ is the disjoint union of X and of boundary components
XP indexed by the set of admissible parabolic subgroups of G (a parabolic
subgroup of G is called admissible if it is not equal to G and if its image
in every simple factor G′ of Gad is equal to G′ or to a maximal parabolic
subgroup of G′, cf [P1] 4.5). If P is an admissible parabolic subgroup of G,
then P(Q) = StabG(Q)(XP ); the P(Q)-action on XP extends to a transitive
P(R)-action, and the unipotent radical of P acts trivially on XP .

For every g,K,K′ as above, there is a finite morphism T g : MK′(G,X )∗ −→
MK(G,X )∗ extending the morphism Tg.

From now on, we will assume that G satisfies the following condition :
Let P be an admissible parabolic subgroup of G, let NP be its unipotent
radical, UP the center of NP and MP = P/NP the Levi quotient. Then
there exists two connected reductive subgroups LP and GP of MP such that
:

• MP is the direct product of LP and GP ;
• GP contains G1, where G1 is the normal subgroup of MP defined by

Pink in [P2] (3.6) (on page 220), and the quotient GP /G1Z(GP ) is
R-anisotropic;

• LP ⊂ CentMP
(UP ) ⊂ Z(MP )LP ;

• GP (R) acts transitively on XP , and LP (R) acts trivially on XP ;
• for every neat open compact subgroup KM of MP (Af ), KM ∩LP (Q) =

KM ∩ CentMP (Q)(XP ).

Denote by QP the inverse image of GP in P.

Remark 1.1.1 If G satisfies this condition, then, for every admissible parabolic
subgroup P of G, the group GP satisfies the same condition.

Example 1.1.2 Any interior form of the general symplectic group GSp2n

or of the quasi-split unitary group GU∗(n) defined in 2.1 satisfies the con-
dition.

The boundary of MK(G,X )∗ has a natural stratification (this stratifica-
tion exists in general, but its description is a little simpler when G satisfies
the above condition). Let P be an admissible parabolic subgroup of G.
Pink has defined a morphism XP −→ Hom(S,GP,R) ([P2] (3.6.1)) such that
(GP ,XP ) is a Shimura datum, and the reflex field of (GP ,XP ) is F . Let
g ∈ G(Af ). Let HP = gKg−1∩P(Q)QP (Af ), HL = gKg−1∩LP (Q)NP (Af ),
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KQ = gKg−1 ∩QP (Af ), KN = gKg−1 ∩NP (Af ). Then (cf [P2] (3.7)) there
is a morphism, finite over its image,

MKQ/KN (GP ,XP ) −→MK(G,X )∗ −MK(G,X ).

The group HP acts on the right on MKQ/KN (GP ,XP ), and this action fac-
tors through the finite group HP /HLKQ. Denote by iP,g the locally closed
immersion

MKQ/KN (GP ,XP )/HP −→MK(G,X )∗.

This immersion extends to a finite morphism

iP,g : MKQ/KN (GP ,XP )∗/HP −→MK(G,X )∗

(this morphism is not a closed immersion in general). The boundary of
MK(G,X )∗ is the union of the images of the morphisms iP,g, for P an ad-
missible parabolic subgroup of G and g ∈ G(Af ). If P′ is another admissible
parabolic subgroup of G and g′ ∈ G(Af ), then the images of the immer-
sions iP,g and iP ′,g′ are equal if and only if there exists γ ∈ G(Q) such
that P′ = γPγ−1 and P(Q)QP (Af )gK = P(Q)QP (Af )γ−1g′K; if there
is no such γ, then these images are disjoint. If K is neat, then KQ/KN

is also neat and the action of HP /HLKN on MKQ/KN (GP ,XP ) is free (so
MKQ/KN (GP ,XP )/HP is smooth).

The images of the morphisms iP,g, g ∈ G(Af ), are the boundary strata of
MK(G,X )∗ associated to P.

To simplify notations, assume from now on that Gad is simple. Fix
a minimal parabolic subgroup P0 of G. A parabolic subgroup of G is
called standard if it contains P0. Let P1, . . . ,Pn be the maximal standard
parabolic subgroups of G, with the numbering satisfying : r ≤ s if and only
if UPr

⊂ UPs
(cf [GHM] (22.3)). Write Nr = NPr

, Gr = GPr
, Lr = LPr

,
ir,g = iPr,g, etc.

Let P be a standard parabolic subgroup of G. Write P = Pn1 ∩· · ·∩Pnr ,
with n1 < · · · < nr. The Levi quotient MP = P/NP is the direct product
of Gnr and of a Levi subgroup LP of Lnr . Let CP be the set of n-uples
(X1, . . . , Xr), where :

• X1 is a boundary stratum of MK(G,X )∗ associated to Pn1 ;
• for every i ∈ {1, . . . , r−1}, Xi+1 is a boundary stratum of Xi associated

to the maximal parabolic subgroup (Pni+1 ∩Qni)/Nni of Gni .

Let C1
P be the quotient of G(Af )×Qn1(Af )×· · ·×Qnr−1(Af ) by the following

equivalence relation : (g1, . . . , gr) is equivalent to (g′1, . . . , g
′
r) if and only if,

for every i ∈ {1, . . . , r},

(Pn1∩· · ·∩Pni
)(Q)Qni

(Af )gi . . . g1K = (Pn1∩· · ·∩Pni
)(Q)Qni

(Af )g′i . . . g
′
1K.

Proposition 1.1.3 (i) The map G(Af ) −→ C1
P that sends g to the class

of (g, 1, . . . , 1) induces a bijection P(Q)Qnr (Af ) \G(Af )/K ∼−→ C1
P .
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(ii) Define a map ϕ′ : C1
P −→ CP in the following way : Let (g1, . . . , gr) ∈

G(Af )×Qn1(Af )× · · · ×Qnr−1(Af ). For every i ∈ {1, . . . , r}, write

Hi = (gi . . . g1)K(gi . . . g1)−1 ∩ (Pn1 ∩ · · · ∩Pni)(Q)Qni(Af )

and let Ki be the image of Hi ∩ Qni(Af ) by the obvious morphism
Qni(Af ) −→ Gni(Af ). Then ϕ′ sends the class of (g1, . . . , gr) to the n-
uple (X1, . . . , Xr), where X1 = Im(in1,g1) = MK1(Gn1 ,Xn1)/H1 and,
for every i ∈ {1, . . . , r − 1}, Xi+1 is the boundary stratum of Xi =
MKi(Gni ,Xni)/Hi image of the morphism iP,g, with P = (Pni+1 ∩
Qni)/Nni (a maximal parabolic subgroup of Gni) and g = gi+1Nni(Af ) ∈
Gni(Af ).

Then this map C1
P −→ CP is well-defined and bijective.

The proposition gives a bijection ϕP : P(Q)Qnr
(Af ) \G(Af )/K ∼−→ CP .

On the other hands, there is a map from CP to the set of boundary strata of
MK(G,X )∗ associated to Pnr , defined by sending (X1, . . . , Xr) to the image
ofXr inMK(G,X )∗. After identifying CP to P(Q)Qnr (Af )\G(Af )/K using
ϕP and the second set to Pnr (Q)Qnr (Af )\G(Af )/K using g 7−→ Im(inr,g),
this map becomes the obvious projection P(Q)Qnr (Af ) \ G(Af )/K −→
Pnr (Q)Qnr (Af ) \G(Af )/K.

Proof.

(i) As Qnr ⊂ Qnr−1 ⊂ · · · ⊂ Qn1 , it is easy to see that, in the definition
of C1

P , (g1, . . . , gr) is equivalent to (g′1, . . . , g
′
r) if and only if

(Pn1∩· · ·∩Pnr )(Q)Qnr (Af )gr . . . g1K = (Pn1∩· · ·∩Pnr )(Q)Qnr (Af )g′r . . . g
′
1K.

The results now follows from the fact that P = Pn1 ∩ · · · ∩Pnr .

(ii) We first check that ϕ′ is well-defined. Let i ∈ {1, . . . , r − 1}. If Xi =
MKi(Gni ,Xni)/Hi and Xi+1 is the boundary stratum Im(iP,g) of Xi,
with P and g as in the proposition, thenXi+1 = MK′(Gni+1 ,Xni+1)/H

′,
where H′ = gi+1Hig

−1
i+1 ∩ Pni+1(Q)Qni+1(Af ) and K′ is the image of

H′ ∩Qni+1(Af ) in Gni+1(Af ). As gi+1 ∈ Qni(Af ),

H′ = (gi+1 . . . g1)K(gi+1 . . . g1)−1∩(Pn1∩· · ·∩Pni)(Q)Qni(Af )∩Pni+1(Q)Qni+1(Af ).

On the other hand, it is easy to see that

(Pn1∩· · ·∩Pni)(Q)Qni(Af )∩Pni+1(Q)Qni+1(Af ) = (Pn1∩· · ·∩Pni+1)(Q)Qni+1(Af ).

Hence H′ = Hi+1, and Xi+1 = MKi+1(Gni+1 ,Xni+1)/Hi+1. It is also
clear that the n-uple (X1, . . . , Xr) defined in the proposition doesn’t
change if (g1, . . . , gr) is replaced by an equivalent r-uple.

It is clear that ϕ′ is surjective. We want to show that it is injective.
Let c, c′ ∈ C1

P ; write (X1, . . . , Xr) = ϕ′(c) and (X ′
1, . . . , X

′
r) = ϕ′(c′),

and suppose that (X1, . . . , Xr) = (X ′
1, . . . , X

′
r). Fix representatives

(g1, . . . , gn) and (g′1, . . . , g
′
n) of c and c′. As before, write, for every

i ∈ {1, . . . , n},
Hi = (gi . . . g1)K(gi . . . g1)−1 ∩ (Pn1 ∩ · · · ∩Pni)(Q)Qni(Af )
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H′
i = (g′i . . . g

′
1)K(g′i . . . g

′
1)
−1 ∩ (Pn1 ∩ · · · ∩Pni)(Q)Qni(Af ).

Then the equalityX1 = X ′
1 implies that Pn1(Q)Qn1(Af )g1K = Pn1(Q)Qn1(Af )g′1K

and, for every i ∈ {1, . . . , r−1}, the equality Xi+1 = X ′
i+1 implies that

Pni+1(Q)Qni+1(Af )gi+1Hi(gi . . . g1) = Pni+1(Q)Qni+1(Af )g′i+1H
′
i(g

′
i . . . g

′
1).

So (g1, . . . , gr) and (g′1, . . . , g
′
r) are equivalent, and c = c′.

�

1.2 LOCAL SYSTEMS AND PINK’S THEOREM

Fix a number field K. If G is a linear algebraic group over Q, let RepG be
the category of algebraic representations of G defined over K. Fix a prime
number ` and a place λ of K over `.

Let M be a connected reductive group over Q, L and G connected re-
ductive subgroups of M such that M is the direct product of L and G,
and (G,X ) a Shimura datum. Extend the G(Af )-action on M(G,X ) to
a M(Af )-action by the obvious map M(Af ) −→ G(Af ) (so L(Af ) acts
trivially). Let KM be a neat open compact subgroup of M(Af ). Write
H = KM ∩L(Q)G(Af ), HL = KM ∩L(Q) (an arithmetic subgroup of L(Q))
and K = KM ∩G(Af ). The group H acts on the Shimura variety MK(G,X ),
and the quotient MK(G,X )/H is equal to MH/HL(G,X ) (H/HL is a neat
open compact subgroup of G(Af )).

Remark 1.2.1 It is possible to generalize the morphisms Tg of 1.1 : If
m ∈ L(Q)G(Af ) and K′

M is an open compact subgroup of M(Af ) such that
K′

M ∩ L(Q)G(Af ) ⊂ mHm−1, then there is a morphism
Tm : M(G,X )/H′ −→M(G,X )/H,

where H′ = K′
M ∩ L(Q)G(Af ) and H = KM ∩ L(Q)G(Af ). This morphism

is simply the one induced by the injection H′ −→ H, h 7−→ mhm−1 (equiv-
alently, it is induced by the endomorphism x 7−→ xm of M(G,X )).

There is an additive triangulated functor V 7−→ FH/HLRΓ(HL, V ) from
the categoryDb(RepM) to the category of λ-adic complexes onMK(G,X )/H,1

constructed using the functors µΓ,ϕ of Pink (cf [P1] (1.10)) for the profi-
nite étale (and Galois of group H/HL) covering M(G,X ) −→MK(G,X )/H
and the properties of the arithmetic subgroups of L(Q). This construc-
tion is explained in [M1] 2.1.4. For every V ∈ ObDb(RepM) and k ∈ Z,
Hk FH/HLRΓ(HL, V ) is a lisse λ-adic sheaf on MK(G,X )/H, whose fiber is
(noncanonically) isomorphic to⊕

i+j=k

Hi(HL,Hj V ).

1Here, and in the rest of the book, the notation RΓ will be used to denote the right
derived functor of the functor H0.
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Remark 1.2.2 If Γ is a neat arithmetic subgroup of L(Q) (eg Γ = HL),
then it is possible to compute RΓ(Γ, V ) in the category Db(RepG), because
Γ is of type FL (cf [BuW], theorem 3.14).

We will now state a theorem of Pink about the direct image of the com-
plexes FH/HLRΓ(HL, V ) by the open immersion j : MK(G,X )/H −→MK(G,X )∗/H.
Let P be an admissible parabolique subgroup of G and g ∈ G(Af ). Write

HP = gHg−1 ∩ L(Q)P(Q)QP (Af ),

HP,L = gHg−1 ∩ L(Q)LP (Q)NP (Af ),

KN = gHg−1 ∩NP (Af ),

KG = (gHg−1 ∩QP (Af ))/(gHg−1 ∩NP (Af )),

and i = iP,g : MKG(GP ,XP )/HP −→MK(G,X )∗/H.
Then theorem 4.2.1 of [P2] implies the following results (cf [M1] 2.2) :

Theorem 1.2.3 For every V ∈ ObDb(RepM), there are canonical isomor-
phisms

i∗Rj∗FH/HLRΓ(HL, V ) ' FHP /HP,LRΓ(HP,L, V )
' FHP /HP,LRΓ(HP,L/KN , RΓ(Lie(NP ), V )).

The last isomorphism uses van Est’s theorem, as stated (and proved) in
[GKM] §24.

We will also use local systems on locally symmetric spaces that are not
necessarily Hermitian. We will need the following notation. Let G be a
connected reductive group over Q. Fix a maximal compact subgroup K∞
of G(R). Let AG be the maximal (Q-)split torus of te center of G, X =
G(R)/K∞AG(R)0 and q(G) = dim(X )/2 ∈ 1

2Z. Write

MK(G,X )(C) = G(Q) \ (X ×G(Af )/K)

(even though (G,X ) is not a Shimura datum in general, and MK(G,X )(C)
is not always the set of complex points of an algebraic variety). If K is
small enough (eg neat), this quotient is a real analytic variety. There are
morphisms Tg (g ∈ G(Af )) defined exactly as in 1.1.

Let V ∈ ObRepG. Let FKV be the sheaf of local sections of the morphism

G(Q) \ (V ×X ×G(Af )/K) −→ G(Q) \ (X ×G(Af )/K)

(where G(Q) acts on V×X×G(Af )/K by (γ, (v, x, gK)) 7−→ (γ.v, γ.x, γgK)).
As suggested by the notation, there is a connection between this sheaf
and the local systems defined above : if (G,X ) is a Shimura datum, then
FKV ⊗Kλ is the inverse image on MK(G,X )(C) of the λ-adic sheaf FKV
on MK(G,X ) (cf [L1] p 38 or [M1] 2.1.4.1)
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Let Γ be a neat arithmetic subgroup of G(Q). Then the quotient Γ \ X
is a real analytic variety. For every V ∈ ObRepG, let FΓV be the sheaf of
local sections of the morphism

Γ \ (V ×X ) −→ Γ \ X
(where Γ acts on V ×X by (γ, (v, x)) 7−→ (γ.v, γ.x) ).

Let K be a neat open compact subgroup of G(Af ), and let (gi)i∈I be a
system of representatives of the double quotient G(Q)\G(Af )/K. For every
i ∈ I, let Γi = giKg−1

i ∩G(Q). Then the Γi are neat arithmetic subgroups
of G(Q),

MK(G,X )(C) =
∐
i∈I

Γi \ X

and, for every V ∈ ObRepG,

FKV =
⊕
i∈I

FΓiV.

1.3 INTEGRAL MODELS

Notations are as in 1.1. Let (G,X ) be a Shimura datum such that Gad is
simple and that the maximal parabolic subgroups of G satisfy the condition
of 1.1. The goal here is to show that there exist integral models (ie models
over a suitable localization of OF ) of the varieties and sheaves of 1.1 and 1.2
such that Pink’s theorem is still true. The exact conditions that we want
these models to satisfy are given more precisely below (conditions (1)-(7)).

Fix a minimal parabolic subgroup P0 of G, and let (G1,X1), . . . , (Gn,Xn)
be the Shimura data associated to the standard maximal parabolic subgroups
of G. We will also write (G0,X0) = (G,X ). Note that, for every i ∈
{0, . . . , n}, P0 determines a minimal parabolic subgroup of Gi. It is clear
that, for every i ∈ {0, . . . , n}, the Shimura data associated to the maximal
parabolic subgroups of Gi are the (Gj ,Xj), with i+ 1 ≤ j ≤ n.

Remember that F is the reflex field of (G,X ). It is also the reflex field
of all the (Gi,Xi) ([P1] 12.1 and 11.2(c)). Let Q be the algebraic closure of
Q in C; as F is by definition a subfield of C, it is included in Q. For every
prime number p, fix an algebraic closure Qp of Qp and an injection F ⊂ Qp.

Fix a point x0 of X , and let h0 : S −→ GR be the morphism corresponding
to x0. Let w be the composition of h0 and of the injection Gm,R ⊂ S. Then
w is independant of the choice of h0 and it is defined over Q (cf [P2] 5.4). An
algebraic representation ρ : G −→ GL(V ) of G is said to be pure of weight
m if ρ ◦w is the multiplication by the character λ 7−→ λm of Gm (note that
the sign convention here is not the same as in [P2] 5.4).

Consider the following data :

• for every i ∈ {0, . . . , n}, a set Ki of neat open compact subgroups of
Gi(Af ), stable by G(Af )-conjugacy;

• for every i ∈ {0, . . . , n}, a subset Ai of Gi(Af ) such that 1 ∈ Ai;
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• for every i ∈ {0, . . . , n}, a full abelian subcategory Ri of RepGi , stable
by taking direct factors

satisfying the following conditions : Let i, j ∈ {0, . . . , n} be such that j > i,
and K ∈ Ki. Let P be the standard maximal parabolic subgroup of Gi

associated to (Gj ,Xj). Then :

(a) For every g ∈ Gi(Af ),

(gKg−1 ∩QP (Af ))/(gKg−1 ∩NP (Af )) ∈ Kj ,

and, for every g ∈ Gi(Af ) and every standard parabolic subgroup P′

of Gi such that QP ⊂ P′ ⊂ P,

(gKg−1 ∩P′(Q)NP ′(Af )QP (Af ))/(gKg−1 ∩ LP ′(Q)NP ′(Af )) ∈ Kj

(gKg−1 ∩P′(Af ))/(gKg−1 ∩ LP ′(Af )NP ′(Af )) ∈ Kj .

(b) Let g ∈ Ai and K′ ∈ Ki be such that K′ ⊂ gKg−1. Let h ∈ P(Q)QP (Af )\
G(Af )/K and h′ ∈ P(Q)QP (Af )\G(Af )/K′ be such that P(Q)QP (Af )hK =
P(Q)QP (Af )h′gK. Then there exists p ∈ LP (Q) and q ∈ QP (Af ) such
that pqhK = h′gK and that the image of q in Gj(Af ) = QP (Af )/NP (Af )
is in Aj .

(c) For every g ∈ Gi(Af ) and V ∈ ObRi,

RΓ(ΓL, RΓ(Lie(NP ), V )) ∈ ObDb(Rj),

where

ΓL = (gKg−1 ∩P(Q)QP (Af ))/(gKg−1 ∩QP (Af )).

Let Σ be a finite set of prime numbers such that the groups G0, . . . ,Gn

are unramified outside Σ. For every p 6∈ Σ, fix Zp-models of these groups.
Note

AΣ =
∏
p∈Σ

Qp.

Fix ` ∈ Σ and a place λ of K above `, and consider the following conditions
on Σ :

(1) For every i ∈ {0, . . . , n}, Ai ⊂ Gi(AΣ) and every G(Af )-conjugacy
class in Ki has a representative of the form KΣKΣ, with KΣ ⊂ Gi(AΣ)
and KΣ =

∏
p6∈Σ

Gi(Zp).

(2) For every i ∈ {0, . . . , n} and K ∈ Ki, there exists a smooth quasi-
projective scheme MK(Gi,Xi) on Spec(OF [1/Σ]) whose generic fiber
is MK(Gi,Xi).
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(3) For every i ∈ {0, . . . , n} and K ∈ Ki, there exists a normal scheme
MK(Gi,Xi)∗, projective over Spec(OF [1/Σ]), containing MK(Gi,Xi)
as a dense open subscheme and with generic fiber MK(Gi,Xi)∗. More-
over, the morphisms iP,g (resp. iP,g) of 1.1 extend to locally closed im-
mersions (resp. finite morphisms) between the models over Spec(OF [1/Σ]),
and the boundary of MK(Gi,Xi)∗ −MK(Gi,Xi) is still the disjoint
union of the images of the immersions iP,g.

(4) For every i ∈ {0, . . . , n}, g ∈ Ai and K,K′ ∈ Ki such that K′ ⊂ gKg−1,
the morphism T g : MK′(Gi,Xi)∗ −→MK(Gi,Xi)∗ extends to a finite
morphism MK′(Gi,Xi)∗ −→ MK(Gi,Xi)∗, that will still be denoted
by T g, whose restriction to the strata of MK′(Gi,Xi)∗ (including the
open stratum MK′(Gi,Xi)) is étale.

(5) For every i ∈ {0, . . . , n} and K ∈ Ki, there exists a functor FK from
Ri to the category of lisse λ-adic sheaves on MK(Gi,Xi) that, after
passing to the special fiber, is isomorphic to the functor FK of 1.2.

(6) For every i ∈ {0, . . . , n}, K ∈ Ki and V ∈ ObRi, the isomorphisms of
Pink’s theorem (1.2.3) extend to isomorphisms between λ-adic com-
plexes on the Spec(OF [1/Σ])-models.

(7) For every i ∈ {0, . . . , n}, K ∈ Ki and V ∈ ObRi, the sheaf FKV on
MK(Gi,Xi) is mixed ([D2] 1.2.2). If moreover V is pure of weight m,
then FKV is pure of weight −m.

The fact that suitable integral models exist for PEL Shimura varieties has
been proved by Kai-Wen Lan, who constructed the toroidal and minimal
compactifications of the integral models.

Proposition 1.3.1 Suppose that the Shimura datum (G,X ) is of the type
considered in [K11] §5; more precisely, we suppose fixed data as in [Lan]
1.2. Let Σ be a finite set of prime numbers that contains all bad primes (in
the sense of [Lan] 1.4.1.1). For every i ∈ {0, . . . , n}, let Ai = Gi(AΣ) and
let Ki be the union of the Gi(Af )-conjugacy classes of neat open compact
subgroups of the form KΣKΣ with KΣ ⊂

∏
p∈Σ

Gi(Zp) and KΣ =
∏

p6∈Σ

Gi(Zp).

Then the set Σ satisfies conditions (1)-(7), and moreover the schemes
MK(Gi,Xi) of (2) are the schemes representing the moduli problem of [Lan]
1.4.

Proof. This is just putting together Lan’s and Pink’s results. Condi-
tion (1) is automatic. Condition (2) (in the more precise form given in the
proposition) is a consequence of theorem 1.4.1.12 of [Lan]. Conditions (3)
and (4) are implied by theorem 7.2.4.1 and proposition 7.2.5.1 of [Lan]. The
construction of the sheaves in condition (5) is the same as in [P2] 5.1, once
the integral models of condition (2) are known to exist. In [P2] 4.9, Pink
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observed that the proof of his theorem extends to integral models if toroidal
compactifications and a minimal compactification of the integral model sat-
isfying the properties of section 3 of [P2] have been constructed. This has
been done by Lan (see, in addition to the results cited above, theorem 6.4.1.1
and propositions 6.4.2.3, 6.4.2.9 and 6.4.3.4 of [Lan]), so condition (6) is also
satisfied. In the PEL case, Gad is automatically if abelian type in the sense
of [P2] 5.6.2 (cf [K11] §5). So Gad

i is of abelian type for all i, and condition
(7) is implied by proposition 5.6.2 in [P2].

�

Remark 1.3.2 Let (G,X ) be one of the Shimura data defined in 2.1, and let
K be a neat open compact subgroup of G(Af ). Then there exist a finite set
S of primes such that K = KS

∏
p6∈S G(Zp), with KS ⊂

∏
v∈S G(Qv) (and

with the Z-structure on G defined in remark 2.1.1). Let Σ be the union of
S and of all prime numbers that are ramified in E. Then Σ contains all bad
primes, so proposition 1.3.1 above applies to Σ.

Remark 1.3.3 The convention we use here for the action of the Galois
group on the canonical model is that of Pink ([P2] 5.5), that is different
from the convention of Deligne (in [D1]) and hence also from the convention
of Kottwitz (in [K11]); so what Kottwitz calls canonical model of the Shimura
variety associated to the Shimura datum (G,X , h−1) is here the canonical
model of the Shimura variety associated to the Shimura datum (G,X , h).

Let us indicate another way to find integral models when the Shimura
datum is not necessarily PEL. The problem with this approach is that the
set Σ of “bad” primes is unknown.

Proposition 1.3.4 Let Ki and Ai be as above (and satisfying conditions
(a) and (b)). Suppose that, for every i ∈ {0, . . . , n}, Ki is finite modulo
Gi(Af )-conjugacy and Ai is finite. If Gad is of abelian type (in the sense
of [P2] 5.6.2), then here exists a finite set Σ of prime numbers satisfying
conditions (1)-(7), with Ri = RepGi

for every i ∈ {0, . . . , n}.
In general, there exists a finite set Σ of prime numbers satisfying conditions

(1)-(6), with Ri = RepGi for every i ∈ {0, . . . , n}. Let R′
i, 0 ≤ i ≤ n,

be full subcategories of the RepGi , stable by taking direct factors and by
isomorphism, containing the trivial representation, satisfying condition (c)
and minimal for all these properties (this determines the R′

i). Then there
exists Σ′ ⊃ Σ finite such that Σ′, the Ki and the R′

i satisfy condition (7).

This proposition will typically be applied to the following situation : g ∈
G(Af ) and K,K′ are neat open compact subgroups of G(Af ) such that
K′ ⊂ K ∩ gKg−1, and we want to study the Hecke correspondence (Tg, T1) :
MK′(G,X )∗ −→ (MK(G,X )∗)2. In order to reduce this situation modulo p,
choose sets Ki such that K,K′ ∈ K0 and that condition (a) is satisfied, and
minimal for these properties, sets Ai such that 1, g ∈ A0 and that condition
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(b) is satisfied, and minimal for these properties; take Ri = RepGi if Gad

is of abelian type and Ri equal to the R′
i defined in the proposition in

the other cases; fix Σ such that conditions (1)-(7) are satisfied, and reduce
modulo p 6∈ Σ.

Proof. First we show that, in the general case, there is a finite set Σ
of prime numbers satisfying conditions (1)-(6), with Ri = RepGi . It is
obviously possible to find Σ satisfying conditions (1)-(4). Proposition 3.6
of [W] implies that we can find Σ satisfying conditions (1)-(5). To show
that there exists Σ satisfying conditions (1)-(6), reason as in the proof of
proposition 3.7 of [W], using the generic base change theorem of Deligne
(cf SGA 4 1/2 [Th. finitude] théorème 1.9). As in the proof of proposition
1.3.1, if Gad is of abelian type, then condition (7) is true by proposition
5.6.2 of [P2]. In the general case, let R′

i be defined as in the statement of
the proposition. Condition (7) for these subcategories is a consequence of
proposition 5.6.1 of [P2] (reason as in the second proof of [P2] 5.6.6).

�

Remark 1.3.5 Note that it is clear from the proof that, after replacing Σ
by a bigger finite set, we can choose the integral models MK(Gi,Xi) to be
any integral models specified before (as long as they satisfy the conditions
of (2)).

When we later talk about reducing Shimura varieties modulo p, we will
always implicitely fix Σ as in proposition 1.3.1 (or proposition 1.3.4) and
take p 6∈ Σ. The prime number ` will be chosen among elements of Σ (or
added to Σ).

1.4 WEIGHTED COHOMOLOGY COMPLEXES AND INTER-

SECTION COMPLEX

Let (G,X ) be a Shimura datum and K be a neat open compact subgroup of
G(Af ). Assume that G satisfies the conditions of 1 and that Gad is simple.
Fix a minimal parabolic subgroup P0 of G and maximal standard parabolic
subgroups P1, . . . ,Pn as before proposition 1.1.3. Fix prime numbers p and
` as in the end of 1.3, and a place λ of K above `. In this section, we will
write MK(G,X ), etc, for the reduction modulo p of the varieties of 1.1.

Write M0 = MK(G,X ) and d = dimM0, and, for every r ∈ {1, . . . , n},
denote by Mr the union of the boundary strata of MK(G,X )∗ associated to
Pr, by dr the dimension of Mr and by ir the inclusion of Mr in MK(G,X )∗.
Then (M0, . . . ,Mn) is a stratification of MK(G,X )∗ in the sense of [M2]
3.3.1. Hence, for every a = (a0, . . . , an) ∈ (Z∪{±∞})n+1, the functors w≤a

and w>a of [M2] 3.3.2 are defined (on the category Db
m(MK(G,X )∗,Kλ) of

mixed λ-adic complexes on MK(G,X )∗). We will recall the definition of the
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intersection complex and of the weighted cohomology complexes. Remember
that j is the open immersion MK(G,X ) −→MK(G,X )∗.

Remark 1.4.1 We will need to use the fact that the sheaves FKV are mixed
with known weights. So we fix categories R0, . . . ,Rn as in 1.3, satisfying
conditions (c) and (7) of 1.3. If Gad is of abelian type, we can simply take
R0 = RepG.

Definition 1.4.2 (i) Let V ∈ ObRepG. The intersection complex on
MK(G,X )∗ with coefficients in V is the complex

ICKV = (j!∗(FKV [d]))[−d].

(ii) (cf [M2] 4.1.3) Let t1, . . . , tn ∈ Z ∪ {±∞}. For every r ∈ {1, . . . , n},
write ar = −tr + dr. Define an additive triangulated functor

W≥t1,...,≥tn : Db(R0) −→ Db
m(MK(G,X )∗,Kλ)

in the following way : for every m ∈ Z, if V ∈ ObDb(R0) is such that
all Hi V , i ∈ Z, are pure of weight m, then

W≥t1,...,≥tnV = w≤(−m+d,−m+a1,...,−m+an)Rj∗FKV.

Proposition 4.1.5 of [M2] admits the following obvious generalization :

Proposition 1.4.3 Let t1, . . . , tn ∈ Z be such that, for every r ∈ {1, . . . , n},
dr − d ≤ tr ≤ 1 + dr − d. Then, for every V ∈ ObR0, there is a canonical
isomorphism

ICKV 'W≥t1,...,≥tnV.

We now want to calculate the restriction to boundary strata of the weighted
cohomology complexes. The following theorem is a consequence of proposi-
tions 3.3.4 and 3.4.2 of [M2].

Theorem 1.4.4 Let a = (a0, . . . , an) ∈ (Z ∪ {±∞})n+1. Then, for every
L ∈ ObDb

m(MK(G,X ),Kλ) such that all perverse cohomology sheaves of
L are pure of weight a0, there is an equality of classes in the Grothendieck
group of Db

m(MK(G,X )∗,Kλ)) :

[w≤aRj∗L] =
∑

1≤n1<···<nr≤n

(−1)r[inr!w≤anr
i!nr

. . . in1!w≤an1
i!n1
j!L].

Therefore it is enough to calculate the restriction to boundary strata of the
complexes inr!w≤anr

i!nr
. . . in1!w≤an1

i!n1
j!FKV , 1 ≤ n1 < · · · < nr ≤ n. The

following proposition generalizes proposition 4.2.3 of [M2] and proposition
5.2.3 of [M1] :

Proposition 1.4.5 Let n1, . . . , nr ∈ {1, . . . , n} be such that n1 < · · · < nr,
a1, . . . , ar ∈ Z ∪ {±∞}, V ∈ ObDb(R0) and g ∈ G(Af ). Write P = Pn1 ∩
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· · · ∩ Pnr ; remember that, in 1.1, before proposition 1.1.3, we constructed
a set CP ' P(Q)Qnr (Af ) \G(Af )/K and a map from this set to the set of
boundary strata of MK(G,X )∗ associated to Pnr . For every i ∈ {1, . . . , r},
let wi : Gm −→ Gni

be the cocharacter associated to the Shimura datum
(Gni ,Xni) as in 1.3; the image of wi is contained in the center of Gni , and
wi can be seen as a cocharacter of MP . For every i ∈ {1, . . . , r}, write
ti = −ai + dni . Let

L = i∗nr,gRinr∗w>ar
i∗nr

. . . Rin1∗w>a1i
∗
n1
Rj∗FKV.

Then there is a canonical isomorphism

L '
⊕
C

TC∗LC ,

where the direct sum is over the set of C = (X1, . . . , Xr) ∈ CP that are sent
to the stratum Im(inr,g), TC is the obvious morphism Xr −→ Im(inr , g)
(a finite étale morphism) and LC is an λ-adic complex on Xr such that, if
h ∈ G(Af ) is a representative of C, there is an isomorphism

LC ' FH/HLRΓ(HL/KN , RΓ(Lie(NP ), V )<t1,...,<tr ),

where H = hKh−1∩P(Q)Qnr
(Af ), HL = hKh−1∩P(Q)Nnr

(Af )∩Lnr
(Q)Nnr

(Af ),
KN = hKh−1 ∩NP (Q)Nnr (Af ) and, for every i ∈ {1, . . . , r}, the subscript
> ti means that the complex RΓ(Lie(NP ), V ) of representations of MP is
truncated by the weights of wi(Gm) (cf [M2] 4.1.1).

Remember that the Levi quotient MP is the direct product of Gnr and of a
Levi subgroup LP of Lnr . Write ΓL = HL/KN andXL = LP (R)/KL,∞ALP

(R)0,
where KL,∞ is a maximal compact subgroup of LP (R) and ALP

is, as in
1.2, the maximal split subtorus of the center of LP ; also remember that
q(LP ) = dim(XL)/2. Then ΓL is a neat arithmetic subgroup of LP (Q), and,
for every W ∈ ObDb(RepLP

),

RΓ(ΓL,W ) = RΓ(ΓL \XL,FΓLW ).

Write

RΓc(ΓL,W ) = RΓc(ΓL \XL,FΓLW ).

If W ∈ ObDb(RepMP
), then this complex can be seen as an object of

Db(RepGnr
), because it is the dual of RΓ(ΓL,W

∗)[dim(XL)] (where W ∗ is
the contragredient of W ). Define in the same way a complex RΓc(KL,W )
for KL a neat open compact subgroup of LP (Af ) and W ∈ ObDb(RepLP

).

Corollary 1.4.6 Write

M = i∗nr,ginr!w≤ar i
!
nr
. . . in1!w≤a1i

!
n1
j!FKV.

Then there is a canonical isomorphism

M '
⊕
C

TC∗MC ,
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where the sum is as in the proposition above and, for every C = (X1, . . . , Xr) ∈
CP that is sent to the stratum Im(inr,g), MC is an λ-adic complex on Xr

such that, if h is a representative of C, then there is an isomorphism (with
the notations of the proposition)

MC ' FH/HLRΓc(HL/KN , RΓ(Lie(NP ), V )≥t1,...,≥tr )[−dim(AMP
/AG)].

Proof. Let V ∗ be the contragredient of V . The complex dual to M is :

D(M) = i∗nr,gRinr∗w≥−ar
i∗nr

. . . Rin1∗w≥−a1i
∗
n1
Rj∗D(FKV )

= i∗nr,gRinr∗w≥−ar i
∗
nr
. . . Rin1∗w≥−a1i

∗
n1
Rj∗(FKV ∗[2d](d))

= (i∗nr,gRinr∗w≥2d−ar i
∗
nr
. . . Rin1∗w≥2d−a1i

∗
n1
Rj∗FKV ∗)[2d](d).

For every i ∈ {1, . . . , r}, let si = −(2d− ai − 1) + dni
= 1− ti − 2(d− dni

).
By proposition 1.4.5,

D(M) '
⊕
C

TC∗M
′
C ,

with

M ′
C ' FH/HLRΓ(HL/KN , RΓ(Lie(NP ), V ∗)<s1,...,<sr )[2d](d).

Take MC = D(M ′
C). It remains to prove the formula for MC .

Let m = dim(NP ). By lemma (10.9) of [GHM],

RΓ(Lie(NP ), V )≥t1,...,≥tr ' RHom(RΓ(Lie(NP ), V ∗)<s1,...,<sr ,H
m(Lie(NP ),Q))[−m],

and Hm(Lie(NP ),Q) is the character γ 7−→ det(Ad(γ), Lie(NP ))−1 of MP

(only the case of groups G with anisotropic center is treated in [GHM],
but the general case is similar). In particular, HL/KN acts trivially on
Hm(Lie(NP ),Q), and the group wr(Gm) acts by the character λ 7−→ λ2(d−dnr )

(wr is defined as in proposition 1.4.5). Hence

MC ' FH/HLRΓc(HL/KN , RΓ(Lie(NP ), V )≥t1,...,≥tr )[a],

with

a = 2dnr+m+2q(LP )−2d = 2q(Gnr )+2q(LP )+dim(NP )−2q(G) = −dim(AMP
/AG).

�

Proof of proposition 1.4.5. Let C = (X1, . . . , Xr) ∈ CP . Let I1 be the
locally closed immersionX1 −→MK(G,X ) and, for everym ∈ {1, . . . , r−1},
denote by jm the open immersionXm −→ X∗

m and by Im+1 the locally closed
immersion Xm+1 −→ X∗

m (where X∗
m is the Baily-Borel compactification of

Xm). Define a complex LC on Xr by :

LC = w>ar
I∗rRjr−1∗w>ar−1I

∗
r−1 . . . w>a1I

∗
1Rj∗FKV.

Let us show by induction on r that L is isomorphic to the direct sum of
the TC∗LC , for C ∈ CP that is sent to the stratum Y := Im(inr,g). The
statement is obvious if r = 1. Suppose that r ≥ 2 and that the statement
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is true for r − 1. Let Y1, . . . , Ym be the boundary strata of MK(G,X )∗

associated to Pnr−1 whose adherence contains Y . For every i ∈ {1, . . . ,m},
let ui : Yi −→MK(G,X )∗ be the inclusion and let

Li = u∗iRinr−1∗w>ar−1i
∗
nr−1

. . . Rin1∗w>a1i
∗
n1
Rj∗FKV.

It is obvious that

L =
m⊕

i=1

i∗nr,gRui∗w>arLi.

Write P′ = Pn1 ∩ · · · ∩ Pnr−1 . Let i ∈ {1, . . . ,m}. By the induction
hypothesis, Li is isomorphic to the direct sum of the TC′∗LC′ over the
set of C ′ ∈ CP ′ that are sent to Yi, where LC′ is defined in the same
way as LC . Fix C ′ = (X1, . . . , Xr−1) that is sent to Yi; let us calculate
i∗nr,gRui∗w>arTC′∗LC′ . There is a commutative diagram, with squares carte-
sien up to nilpotent elements :

Y ′
I′ //

T

��

X∗
r−1

T C′

��

Xr−1
jr−1oo

TC′

��
Y // Y i Yi

oo

where Y ′ is a disjoint union of boundary strata of X∗
r−1 associated to the

parabolic subgroup (Pnr ∩Qnr−1)/Nrn−1 . Moreover, the vertical arrows are
finite maps, and the maps T and TC′ are étales. By the proper base change
isomorphism and the fact the functors w>a commute with taking the direct
image by a finite étale morphism, there is an isomorphism :

i∗nr,gRui∗w>ar
TC′∗LC′ = T∗w>ar

I ′
∗
Rjr−1∗LC′ .

The right hand side is the direct sum of the complexes

(T ◦ Ir)∗w>ar
I∗rRjr−1∗LC′ = TC∗LC ,

for Ir : Xr −→ X∗
r−1 in the set of boundary strata of X∗

r−1 included in Y ′

and for C = (X1, . . . , Xr). This calculations clearly imply the statement
that we were trying to prove.

It remains to prove the formula for LC given in the proposition. Again,
use induction on r. If r = 1, the formula for LC is a direct consequence of
Pink’s theorem (1.2.3) and of lemma 4.1.2 of [M2]. Supppose that r ≥ 2
and that the result is known for r − 1. Let C = (X1, . . . , Xr) ∈ CP , and
let h ∈ G(Af ) be a representative of C. Write P′ = Pr1 ∩ · · · ∩ Prn−1 ,
C ′ = (X1, . . . , Xr−1),

H = hKh−1 ∩P(Q)Qnr (Af ),

HL = hKh−1 ∩P(Q)Nnr (Af ) ∩ Lnr (Q)Nnr (Af ) = H ∩ Lnr (Q)Nnr (Af ),

KN = hKh−1 ∩NP (Q)Nnr (Af ),
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H′ = hKh−1 ∩P′(Q)Qnr−1(Af ),

H′
L = hKh−1∩P′(Q)Nnr−1(Af )∩Lnr−1(Q)Nnr−1(Af ) = H′∩Lnr−1(Q)Nnr−1(Af ),

K′
N = hKh−1 ∩NP ′(Q)Nnr−1(Af ).

By the induction hypothesis, there is a canonical isomorphism

LC′ ' FH′/H′LRΓ(H′
L/K

′
N , RΓ(Lie(NP ′), V )<t1,...,<tr−1).

Applying Pink’s theorem, we get a canonical isomorphism

LC ' w>ar
FH/HLRΓ(HL/H′

L, RΓ(H′
L/K

′
N , RΓ(Lie(Nnr−1), V )<t1,...,<tr−1))).

There are canonical isomorphisms

RΓ(HL/H′
L, RΓ(H′

L/K
′
N ,−)) ' RΓ(HL/KN , RΓ(KN/K′

N ,−))
' RΓ(HL/KN , RΓ(Lie(Nnr/Nnr−1),−))

(the last isomorphism comes from van Est’s theorem, cf [GKM] §24). On
the other hand, for every i ∈ {1, . . . , r − 1}, the image of the cocharacter
wi : Gm −→ Gni

is contained in the center of Gni
, hence it commutes with

Gnr−1 . This implies that

RΓ(Lie(Nnr
/Nnr−1), RΓ(Lie(Nnr−1), V )<t1,...,tr−1) = RΓ(Lie(Nnr

), V )<t1,...,<tr−1 ,

so that

LC ' w>ar
FH/HLRΓ(HL/KN , RΓ(Lie(Nnr ), V )<t1,...,<tr−1).

To finish the proof, it suffices to apply lemma 4.1.2 of [M2] and to notice
that the image of wr : Gm −→ Gnr commutes with Lnr (Q), hence also with
its subgroup HL/KN .

�

1.5 COHOMOLOGICAL CORRESPONDENCES

Notation 1.5.1 Let (T1, T2) : X ′ −→ X1 × X2 be a correspondence of
separated schemes of finite type over a finite field, and let c : T ∗1L1 −→ T !

2L2

be a cohomological correspondence with support in (T1, T2). Denote by Φ
the absolute Frobenius morphism of X1. For every j ∈ N, we will write Φjc
for the cohomological correspondence with support in (Φj ◦ T1, T2) defined
as the following composition of maps :

(Φj ◦ T1)∗L1 = T ∗1 Φj∗L1 ' T ∗1L1
c−→ T !

2L2.

First we will define Hecke correspondences on the complexes of 1.2. Fix M,
L and (G,X ) as in 1.2. Letm1,m2 ∈ L(Q)G(Af ) and K′

M ,K(1)
M ,K(2)

M be neat
open compact subgroups of M(Af ) such that H′ ⊂ m1H(1)m−1

1 ∩m2H(2)m−1
2 ,

where H′ = K′
M ∩ L(Q)G(Af ) and H(i) = K(i)

M ∩ L(Q)G(Af ). This gives
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two finite étale morphisms Tmi : M(G,X )/H′ −→ M(G,X )/H(i), i = 1, 2.
Write H(i)

L = H(i) ∩ L(Q) and H′
L = H′ ∩ L(Q). Let V ∈ ObRepM. For

i = 1, 2, write

Li = FH(i)/H
(i)
L RΓ(H(i)

L , V ).

By [P2] 1.11.5, there are canonical isomorphisms

T ∗mi
Li ' FH′/H′Lθ∗iRΓ(H(i)

L , V )

where θ∗iRΓ(H(i)
L , V ) is the inverse image by the morphism H′/H′

L −→
H(i)/H(i)

L , h 7−→ m−1
i hmi, of the complex of H(i)/H(i)

L -modules RΓ(H(i)
L , V ).

Using the injections H′
L −→ H(i)

L , h 7−→ m−1
i hmi, we get an adjonction mor-

phism θ∗1RΓ(H(1)
L , V )

adj−→ RΓ(H′
L, V ) and a trace morphism RΓ(H′

L, V ) Tr−→
θ∗2RΓ(H(2)

L , V ) (this last morphism exists because the index of H′
L in H(2)

L is
finite); these morphisms are H′/H′

L-equivariant. The Hecke correspondence

cm1,m2 : T ∗m1
L1 −→ T !

m2
L2 = T ∗m2

L2

is the map

T ∗m1
L1 ' FH′/H′Lθ∗1RΓ(H(1)

L , V )
adj−→ FH′/H′LRΓ(H′

L, V ) Tr−→ FH′/H′Lθ∗2RΓ(H(2)
L , V ) ' T ∗m2

L2.

Note that, if L = {1}, then this correspondence is an isomorphism.

Remarks 1.5.2 (1) Assume that K′
M ⊂ m1K

(1)
M m−1

1 ∩m2K
(2)
M m−1

2 , and
write K′

L = K′
M ∩L(Af ) and K(i)

L = K(i)
M ∩L(Af ). Using the methods

of [M1] 2.1.4 (and the fact that, for every open compact subgroup KL

of L(Af ), RΓ(KL, V ) =
⊕

i∈I RΓ(giKLg
−1
i ∩L(Q), V ), where (gi)i∈I is

a system of representatives of L(Q) \L(Af )/KL), it is possible to con-
struct complexes Mi = FK

(i)
M /K

(i)
L RΓ(K(i)

L , V ) and FK′M /K′LRΓ(K′
L, V ).

There is a correspondence

(Tm1 , Tm2) : MK′M /K′L(G,X ) −→MK
(1)
M /K

(1)
L (G,X )×MK

(2)
M /K

(2)
L (G,X ),

and a cohomological correspondence, constructed as above,

cm1,m2 : T ∗m1
M1 −→ T !

m2
M2.

(2) There are analogous correspondences, constructed by replacingRΓ(H(i)
L , V )

and RΓ(H′
L, V ) (resp. RΓ(K(i)

L , V ) and RΓ(K′
L, V )) with RΓc(H

(i)
L , V )

and RΓc(H′
L, V ) (resp. RΓc(K

(i)
L , V ) and RΓc(K′

L, V )). We will still
use the notation cm1,m2 for these correspondences.

Use the notations of 1.4, and fix g ∈ G(Af ) and a second open compact
subgroup K′ of G(Af ), such that K′ ⊂ K∩gKg−1. Fix prime numbers p and
` as in the end of 1.3. In particular, it is assumed that g ∈ G(Ap

f ) and that
K (resp. K′) is of the form KpG(Zp) (resp. K′pG(Zp)), with Kp ⊂ G(Ap

f )
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(resp. K′p ⊂ G(Ap
f )) and G(Zp) a hyperspecial maximal compact subgroup

of G(Qp). As in 1.4, we will use the notations MK(G,X ), etc, for the
reductions modulo p of the varieties of 1.1.

Let Φ be the absolute Frobenius morphism of MK(G,X )∗. For every
V ∈ ObDb(RepG) and j ∈ Z, let uj : (ΦjTg)∗FKV −→ T !

1FKV be the
cohomological correspondence Φjcg,1 on FKV (with support in (ΦjTg, T1)).

Let V ∈ ObDb(R0). By [M2] 5.1.2 et 5.1.3 :

• for every t1, . . . , tn ∈ Z ∪ {±∞}, the correspondence uj extends in a
unique way to a correspondence

uj : (ΦjT g)∗W≥t1,...,≥tnV −→ T
!

1W
≥t1,...,≥tnV ;

• for every n1, . . . , nr ∈ {1, . . . , n} such that n1 < · · · < nr and every
a1, . . . , ar ∈ Z ∪ {±∞}, the correspondence uj gives in a natural way a
cohomological correspondence on inr!w≤ar i

!
nr
. . . in1!w≤a1i

!
n1
j!FKV with

support in (ΦjT g, T 1); write inr!w≤ar i
!
nr
. . . in1!w≤a1i

!
n1
j!uj for this cor-

respondence.

Moreover, there is an analog of theorem 1.4.4 for cohomological correspon-
dences (cf [M2] 5.1.5). The goal of this section is to calculate the correspon-
dences inr!w≤ar i

!
nr
. . . in1!w≤a1i

!
n1
j!uj .

Fix n1, . . . , nr ∈ {1, . . . , n} such that n1 < · · · < nr and a1, . . . , ar ∈
Z ∪ {±∞}, and write

L = inr!w≤ar i
!
nr
. . . in1!w≤a1i

!
n1
j!FKV

u = inr!w≤ar i
!
nr
. . . in1!w≤a1i

!
n1
j!uj .

Use the notations of corollary 1.4.6. By this corollary, there is an isomor-
phism

L '
⊕

C∈CP

(iCTC)!LC ,

where, for every C = (X1, . . . , Xr) ∈ CP , iC is the inclusion in MK(G,X )∗ of
the boundary stratum image ofXr (ie of the stratum Im(inr,h), if h ∈ G(Af )
is a representative of C). Hence the correspondence u can be seen as a matrix
(uC1,C2)C1,C2∈CP

, and we want to calculate the entries of this matrix.
Let C′P be the analog of the set CP obtained when K is replaced with

K′. The morphisms T g, T 1 define maps Tg, T1 : C′P −→ CP , and these
maps correspond via the bijections CP ' P(Q)Qnr (Af ) \ G(Af )/K and
C′P ' P(Q)Qnr (Af ) \ G(Af )/K′ of proposition 1.1.3 to the maps induced
by h 7−→ hg and h 7−→ h.

Let C1 = (X(1)
1 , . . . , X

(1)
r ), C2 = (X(2)

1 , . . . , X
(2)
r ) ∈ CP , and choose repre-

sentatives h1, h2 ∈ G(Af ) of C1 and C2. Let C ′ = (X ′
1, . . . , X

′
r) ∈ C′P be such

that Tg(C ′) = C1 and T1(C ′) = C2. Fix a representative h′ ∈ G(Af ) of C ′.
There exist q1, q2 ∈ P(Q)Qnr (Af ) such that q1h′ ∈ h1gK and q2h

′ ∈ h2K.
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Let q1, q2 be the images of q1, q2 in Lnr (Q)Gnr (Af ). The following diagrams
are commutative :

X ′
r

iC′TC′ //

Tq1

��

MK′(G,X )∗

T g

��
X

(1)
r

iC1T
C(1) // MK(G,X )∗

X ′
r

iC′TC′ //

Tq2

��

MK′(G,X )∗

T 1

��
X

(2)
r

iC2T
C(2) // MK(G,X )∗

By corollary 1.4.6, there are isomorphisms

LC1 ' FH(1)/H
(1)
L RΓc(H

(1)
L /K(1)

N , RΓ(Lie(Nnr ), V )≥t1,...,≥tr )[a]

and

LC2 ' FH(2)/H
(2)
L RΓc(H

(2)
L /K(2)

N , RΓ(Lie(Nnr ), V )≥t1,...,≥tr )[a],

where t1, . . . , tr are defined as in proposition 1.4.5, a = −dim(AMP
/AG),

H(i) = hiKh−1
i ∩ P(Q)Qnr (Af ), H(i)

L = H(i) ∩ Lnr (Q)Nnr (Af ) and K(i)
N =

H(i) ∩Nnr (Af ). We get a cohomological correspondence

Φjcq1,q2
: (ΦjTq1

)∗LC1 −→ T !
q2
LC2 .

Define a cohomological correspondace

uC′ : (ΦjT g)∗(iC1TC1)!LC1 −→ T
!

1(iC2TC2)!LC2

by taking the direct image with compact support of the previous correspon-
dence by (iC1TC1 , iC2TC2) (the direct image of a correspondence by a proper
morphism is defined in SGA 5 III 3.3; the direct image by a locally closed
immersion is defined in [M2] 5.1.1 (following [F] 1.3.1), and the direct image
with compact support is defined by duality). Finally, write

NC′ = [K(2)
N : h2K′h−1

2 ∩Nnr
(Af )].

Proposition 1.5.3 The coefficient uC1,C2 in the above matrix is equal to∑
C′

NC′uC′ ,

where the sum is taken over the set of C ′ ∈ C′P such that Tg(C ′) = C1 and
T1(C ′) = C2.

This proposition generalizes (the dual version of) theorem 5.2.2 of [M2]
and can be proved exactly in the same way (by induction on r, as in the proof
of proposition 1.4.5). The proof of theorem 5.2.2 of [M2] uses proposition
2.2.3 of [M2] (via the proof of corollary 5.2.4), but this proposition is simply
a reformulation of proposition 4.8.5 de [P2], and it is true as well for the
Shimura varieties considered here.
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1.6 THE FIXED POINT FORMULAS OF KOTTWITZ AND GORESKY-

KOTTWITZ-MACPHERSON

In this section, we recall two results about the fixed points of Hecke corre-
spondences, that will be used in 1.7.

Theorem 1.6.1 ([K11] 19.6) Notations are as in 1.5. Assume that the
Shimura datum (G,X ) is of the type considered in [K11] §5, and that we
are not in case (D) of that article (ie that G is not an orthogonal group).
Fix an algebraic closure F of Fp. Let V ∈ ObRepG. For every j ≥ 1,

denote by T (j, g) the sum over the set of fixed points in MK′(G,X )(F) of
the correspondence (Φj ◦ Tg, T1) of the naive local terms (cf [P3] 1.5) of the
cohomological correspondence uj on FKV defined in 1.5. Then

T (j, g) =
∑

(γ0;γ,δ)∈CG,j

c(γ0; γ, δ)Oγ(fp)TOδ(φG
j ) Tr(γ0, V ).

Let us explain briefly the notations (see [K9] §2 and 3 for more detailed
explanations).

The function fp ∈ C∞c (G(Ap
f )) is defined by the formula

fp =
1lgKp

vol(K′p)
.

For every γ ∈ G(Ap
f ), write

Oγ(fp) =
∫
G(Ap

f )γ\G(Ap
f )

fp(x−1γx)dx,

where G(Ap
f )γ is the centralizer of γ in G(Ap

f ).
Remember that we fixed an injection F ⊂ Qp; this determines a place ℘

of F over p. Let Qnr
p be the maximal unramified extension of Qp in Qp, L

be the unramified extension of degree j of F℘ in Qp, r = [L : Qp], $L be a
uniformizer of L and σ ∈ Gal(Qnr

p /Qp) be the element lifting the arithmetic
Frobenius morphism of Gal(F/Fp). Let δ ∈ G(L). Define the norm Nδ of δ
by

Nδ = δσ(δ) . . . σr−1(δ) ∈ G(L).

The σ-centralizer of δ in G(L) is by definition

G(L)σ
δ = {x ∈ G(L)|xδ = δσ(x)}.

We say that δ′ ∈ G(L) is σ-conjugate to δ in G(L) if there exists x ∈ G(L)
such that δ′ = x−1δσ(x).

By definition of the reflex field F , the conjugacy class of cocharacters
hx ◦µ0 : Gm,C −→ GC, x ∈ X , of 1.1 is defined over F . Choose an element µ
in this conjugacy class that factors through a maximal split torus of G over
OL (cf [K9] §3 p173), and write

φG
j = 1lG(OL)µ($−1

L )G(OL) ∈ H(G(L),G(OL)).
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(H(G(L),G(OL)) is the Hecke algebra of functions with compact support
on G(L) that are bi-invariant by G(OL).) For every δ ∈ G(L) and φ ∈
C∞c (G(L)), write

TOδ(φ) =
∫
G(L)σ

δ \G(L)

φ(y−1δσ(y))dy.

Let T̂ be a maximal torus of Ĝ. The conjugacy class of cocharacters hx◦µ0,
x ∈ X , corresponds to a Weyl group orbit of characters of T̂; denote by µ1

the restriction to Z(Ĝ) of any of these characters (this does not depend on
the choices).

It remains to define the set CG,j indexing the sum of the theorem and
the coefficients c(γ0; γ, δ). Consider the set of triples (γ0; γ, δ) ∈ G(Q) ×
G(Ap

f )×G(L) satisfying the following conditions (we will later write (C) for
the list of these conditions) :

• γ0 is semi-simple and elliptic in G(R) (in there exists an elliptic maximal
torus T of GR such that γ0 ∈ T(R)).

• For every place v 6= p,∞ of Q, γv (the local component of γ at v) is
G(Qv)-conjugate to γ0.

• Nδ and γ0 are G(Qp)-conjugate.
• The image of the σ-conjugacy class of δ by the map B(GQp) −→
X∗(Z(Ĝ)Gal(Qp/Qp)) of [K9] 6.1 is the restriction of−µ1 to Z(Ĝ)Gal(Qp/Qp).

Two triples (γ0; γ, δ) and (γ′0; γ
′, δ′) are called equivalent if γ0 and γ′0 are

G(Q)-conjugate, γ and γ′ are G(Ap
f )-conjugate, and δ and δ′ are σ-conjugate

in G(L).
Let (γ0; γ, δ) be a triple satisfying conditions (C). Let I0 be the centralizer

of γ0 in G. There is a canonical morphism Z(Ĝ) −→ Z(Î0), and the exact
sequence

1 −→ Z(Ĝ) −→ Z(Î0) −→ Z(Î0)/Z(Ĝ) −→ 1

induces a morphism

π0((Z(Î0)/Z(Ĝ))Gal(Q/Q)) −→ H1(Q, Z(Ĝ)).

Denote by K(I0/Q) the inverse image by this morphism of the subgroup

Ker1(Q, Z(Ĝ)) := Ker(H1(Q, Z(Ĝ)) −→
∏

v place of Q
H1(Qv, Z(Ĝ))).

In [K9] §2, Kottwitz defines an element α(γ0; γ, δ) ∈ K(I0/Q)D (where,
for every group A, AD = Hom(A,C×)); this element depends only on the
equivalence class of (γ0; γ, δ). For every place v 6= p,∞ of Q, denote by
I(v) the centralizer of γv in GQv ; as γ0 and γv are G(Qv)-conjugate, the
group I(v) is an inner form of I0 over Qv. On the other hand, there exists
a Qp-group I(p) such that I(p)(Qp) = G(L)σ

δ , and this group is an inner
form of I0 over Qp. There is a similar object for the infinite place : in the
beginning of [K9] §3, Kottwitz defines an inner form I(∞) of I0; I(∞) is
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an algebraic group over R, anisotropic modulo AG. Kottwitz shows that,
if α(γ0; γ, δ) = 1, then there exists an inner form I of I0 over Q such that,
for every place v of Q, IQv and I(v) are isomorphic (Kottwitz’s statement is
more precise, cf [K9] p 171-172).

The set CG,j indexing the sum of the theorem is the set of equivalence
classes of triples (γ0; γ, δ) satisfying conditions (C) and such that α(γ0; γ, δ) =
1. For every (γ0, γ, δ) in CG,j , let

c(γ0; γ, δ) = vol(I(Q) \ I(Af ))|Ker(Ker1(Q, I0) −→ Ker1(Q,G))|.

Finally, the Haar measures are normalized as in [K9] §3 : Take on G(Ap
f )

(resp. G(Qp), resp. G(L)) the Haar measure such that the volume of Kp

(resp. G(Zp), resp. G(OL)) is equal to 1. Take on I(Ap
f ) (resp. I(Qp))

a Haar measure such that the volume of every open compact subgroup is
a rational number, and use inner twistings to transport these measures to
G(Ap

f )γ and G(L)σ
δ .

Remark 1.6.2 If K′ = K ∩ gKg−1, we may replace fp with the function
1lKpgKp

vol(Kp)
∈ H(G(Ap

f ),Kp) := C∞c (Kp \G(Ap
f )/Kp)

(cf [K11] §16 p 432).

Remark 1.6.3 There are two differences between the formula given here
and formula (19.6) of [K11] :

(1) Kottwitz considers the correspondence (Tg,Φj ◦ T1) (and not (Φj ◦
Tg, T1)) and does not define the naive local term in the same way as
Pink (cf [K11] §16 p 433). But is is easy to see (by comparing the defini-
tions of the naive local terms and composing Kottwitz’s correspondence
by Tg−1) that the number T (j, f) of [K11] (19.6) is equal to T (j, g−1).
This explains that the function of C∞c (G(Ap

f )) appearing in theorem

1.6.1 is vol(K′p)−11lgKp , instead of the function f̃p = vol(K′p)−11lKpg−1

of [K11] §16 p 432. (Kottwitz also takes systematically K′ = K∩gKg−1,
but his result generalizes immediately to the case where K′ is of finite
index in K ∩ gKg−1).

(2) Below formula (19.6) of [K11], Kottwitz notes that this formula is true
for the canonical model of a Shimura variety associated to the datum
(G,X , h−1) (and not (G,X , h)). The normalization of the global class
field isomorphism used in [K9], [K11] and here are the same (it is also
the normalization of [D1] 0.8 and [P2] 5.5). However, the convention for
the action of the Galois group on the special points of the canonical
model that is used here is the convention of [P2] 5.5, and it differs
(by a sign) from the convention of [D1] 2.2.4 (because the reciprocity
morphism of [P2] 5.5 is the inverse of the reciprocity morphism of [D1]
2.2.3). As Kottwitz uses Deligne’s conventions, what he calls canonical
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model of a Shimura variety associated to the datum (G,X , h−1) is what
is called here canonical model of a Shimura variety associated to the
datum (G,X , h).

Remark 1.6.4 Actually, Kottwitz proves a stronger result in [K11] §19
: For every γ ∈ G(Ap

f ), let N(γ) be the number of fixed points x′ in
MK′(G,X )(F) that can be represented by an element x̃ of M(G,X )(F)
such that there exists k ∈ K and g ∈ G(Af ) with Φj(x̃)g = x̃k and gk−1

G(Ap
f )-conjugate to γ (this condition depends only on x′, and not on the

choice of x̃). Then

N(γ) =
∑

δ

c(γ0; γ, δ)Oγ(fp)TOδ(φG
j ),

where the sum is taken over the set of σ-conjugacy classes of δ ∈ G(L)
such that there exists γ0 ∈ G(Q) such that the triple (γ0; γ, δ) is in CG,j (if
such a γ0 exists, it is unique up to G(Q)-conjugacy, because, for every place
v 6= p,∞ of Q, it is conjugate under G(Qv) to the component at v of γ).
Moreover, if x′ is a fixed point contributing to N(γ), then the naive local
term at x′ is Tr(γ`, V ) (where γ` is the `-adic component of γ).

Remark 1.6.5 Some of the Shimura varieties that will be used later are not
of the type considered in [K11] §5, so we will need another generalization of
Kottwitz’s result, in a very particular (and easy) case. Let (G,X , h) be a
Shimura datum (in the sense of 1.1) such that G is a torus. Let Y be the
image of X by the morphism h : X −→ Hom(S,G) (Y is a point because G
is commutative, but the cardinality of X can be greater than 1 in general;
remember that the morphism h is assumed to have finite fibers, but that
it is not assumed to be injective). Let G(R)+ be the subgroup of G(R)
stabilizing a connected component of X (this group does not depend on the
choice of the connected component) and G(Q)+ = G(Q) ∩ G(R)+. The
results of theorem 1.6.1 and of remark 1.6.4 are true for the Shimura datum
(G,Y) (in this case, they are a consequence of the description of the action
of the Galois group on the special points of the canonical model, cf [P2] 5.5).
For the Shimura datum (G,X ), these results are also true if the following
changes are made :

- multiply the formula giving the trace in theorem 1.6.1 and the formula
giving the number of fixed points in remark 1.6.4 by |X |;

- replace CG,j with the subset of triples (γ0; γ, δ) ∈ CG,j such that
γ0 ∈ G(Q)+.

This fact is also an easy consequence of [P2] 5.5.

The fixed point formula of Goresky, Kottwitz and MacPherson applies to
a different situation, that of the end of 1.2. Use the notations introduced
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there. Let V ∈ ObRepG, g ∈ G(Af ), and let K,K′ be neat open compact
subgroups of G(Af ) such that K′ ⊂ K ∩ gKg−1. This gives two finite étale
morphisms Tg, T1 : MK′(G,X )(C) −→MK(G,X )(C). Define a cohomolog-
ical correspondence

ug : T ∗gFKV
∼−→ T !

1FKV

as in the beginning of 1.5. The following theorem is a particular case of
theorem 7.14.B of [GKM] (cf [GKM] (7.17)).

Theorem 1.6.6 The trace of the correspondence ug on the cohomology
with compact support RΓc(MK(G,X )(C),FKV ) is equal to∑
M

(−1)dim(AM /AG)(nG
M )−1

∑
γ

ιM (γ)−1χ(Mγ)Oγ(f∞M)|DG
M (γ)|1/2Tr(γ, V ),

where the first sum is taken over the set of G(Q)-conjugacy classes of cuspidal
Levi subgroups M of G and, for every M, the second sum is taken over the
set γ of semi-simple M(Q)-conjugacy classes that are elliptic in M(R).

Let us explain the notations.

• f∞ =
1lgK

vol(K′)
∈ C∞c (G(Af )), and f∞M is the constant term of f∞ at M

(cf [GKM] (7.13.2)).
• Let M be a Levi subgroup of G. Let AM be the maximal (Q-)split

subtorus of the center of M and

nG
M = |NorG(M)(Q)/M(Q)|.

M is called cuspidal if the group MR has a maximal (R-)torus T such
that T/AM,R is anisotropic.

• Let M be a Levi subgroup of G and γ ∈ M(Q). Let Mγ be the cen-
tralizer of γ in M, Mγ = (Mγ)0,

ιM (γ) = |Mγ(Q)/Mγ(Q)|

and

DG
M (γ) = det(1−Ad(γ), Lie(G)/Lie(M)).

• χ(Mγ) is the Euler characteristic of Mγ , cf [GKM] (7.10).

Remark 1.6.7 According to [GKM] 7.14.B, the formula of the theorem
should give Tr(γ, V ∗) (or Tr(γ−1, V )) and not Tr(γ, V ). The difference
between the formula given here and that of [GKM] comes from the fact that
[GKM] uses a different convention to define the trace of ug (cf [GKM] (7.7));
the convention used here is that of SGA 5 III and of [P1].



main April 10, 2009

THE FIXED POINT FORMULA 25

1.7 THE FIXED POINT FORMULA

Use the notations introduced before proposition 1.5.3 and the notations of
1.6. Assume that the Shimura data (G,X ) and (Gi,Xi), 1 ≤ i ≤ n − 1,
are of the type considered [K11] §5, with case (D) excluded. (In particular,
Gad is of abelian type, so we can take R0 = RepG, ie choose any V ∈
ObDb(RepG).) Assume moreover that (Gn,Xn) is of the type considered
in [K11] §5 (case (D) excluded) or that Gn is a torus.

We want to calculate the trace of the cohomological correspondence

uj : (ΦjT g)∗W≥t1,...,≥tnV −→ T
!

1W
≥t1,...,≥tnV.

Assume that w(Gm) acts on the Hi V , i ∈ Z, by t 7−→ tm, for a certain
m ∈ Z (where w : Gm −→ G is the cocharacter of 1.3).

Let
f∞,p = vol(K′p)−11lgKp .

Let P be a standard parabolic subgroup of G. Write P = Pn1 ∩ · · · ∩Pnr ,
with n1 < · · · < nr. Let

TP = mP

∑
L

(−1)dim(AL/ALP
)(nLP

L )−1
∑
γL

ιL(γL)−1χ(LγL
)|DLP

L (γL)|1/2

∑
(γ0;γ,δ)∈C′Gnr ,j

c(γ0; γ, δ)OγLγ(f∞,p
LGnr

)OγL
(1lL(Zp))

δ
1/2
P (Qp)(γ0)TOδ(φ

Gnr
j )δ1/2

P (R)(γLγ0) Tr(γLγ0, RΓ(Lie(NP ), V )≥tn1+m,...,≥tnr +m),

where the first sum is taken over the set of LP (Q)-conjugacy classes of cus-
pidal Levi subgroups L of LP , the second sum is taken over the set of semi-
simple conjugacy classes γL ∈ L(Q) that are elliptic in L(R), and :

- L(Zp) is a hyperspecial maximal compact subgroup of L(Qp);

- mP = 1 if nr < n or if (Gn,Xn) is of the type considered in [K11] §5,
and mP = |Xnr | if nr = n and Gnr is a torus;

- C ′Gnr ,j = CGnr ,j if nr < n or if (Gn,Xn) is of the type considered in
[K11] §5, and, if Gn is a torus, C ′Gn,j is the subset of CGn,j defined in
remark 1.6.5.

Write also
TG =

∑
(γ0;γ,δ)∈CG,j

c(γ0; γ, δ)Oγ(f∞,p)TOδ(φG
j ) Tr(γ0, V ).

Theorem 1.7.1 If j is positive and big enough, then

Tr(uj , RΓ(MK(G,X )∗F, (W
≥t1,...,≥tnV )F)) = TG +

∑
P

TP ,

where the sum is taken over the set of standard parabolic subgroups of G.
Moreover, if g = 1 and K = K′, then this formula is true for every j ∈ N∗.
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Proof. For every i ∈ {1, . . . , n}, let ai = −ti −m + dim(Mi). For every
standard parabolic subgroup P = Pn1 ∩ · · · ∩Pnr , with n1 < · · · < nr, let

T ′P = (−1)r Tr(inr!w≤anr
i!nr

. . . in1!w≤an1
i!n1
uj).

Let

T ′G = Tr(uj , RΓ(MK(G,X )∗F, (j!FKV )F)).

Then, by the dual of proposition 5.1.5 of [M2] and by the definition of
W≥t1,...,≥tnV ,

Tr(uj , RΓ(MK(G,X )∗F, (W
≥t1,...,≥tnV )F)) = T ′G +

∑
P

T ′P ,

where the sum is taken over the set of standard parabolic subgroups of G. So
we want to show that T ′G = TG and T ′P = TP . Fix P 6= G (and n1, . . . , nr).
It is easy to see that

dim(AMP
/AG) = r.

Let h ∈ G(Ap
f ). Write

KN,h = hKh−1 ∩N(Af )

KP,h = hKh−1 ∩P(Af )

KM,h = KP,h/KN,h

KL,h = (hKh−1 ∩ LP (Af )NP (Af ))/KN,h

Hh = hKh−1 ∩P(Q)Qnr (Af )

HL,h = hKh−1 ∩ LP (Q)NP (Af ).

Define in the same way groups K′
N,h, etc, by replacing K with K′. If

there exists q ∈ P(Q)Qnr (Af ) such that qhK = hgK, let q be the im-
age of q in MP (Af ), and let uh be the cohomological correspondence on
FHh/HL,hRΓc(HL,h, RΓ(Lie(Nnr ), V )≥tn1 ,...,≥tnr

)[a] with support in (ΦjTq, T1)
equal to Φjcq,1 (we may assume that q ∈ P(Ap

f ), hence that q ∈ MP (Ap
f )).

This correspondence is called uC′ in 1.5, where C ′ is the image of h in C′P . If
there is no such q ∈ P(Q)Qnr (Af ), take uh = 0. Similarly, if there exists q ∈
P(Af ) such that qhK = hgK, let q be the image of q in MP (Af ), and let vh be
the cohomological correspondence on FKM,h/KL,hRΓc(KL,h, RΓ(Lie(NP ), V )≥tn1 ,...,≥tnr

)[a]
with support in (ΦjTq, T1) equal to Φjcq,1 (we may assume that q ∈ P(Ap

f )).
If there is no such q ∈ P(Af ), take vh = 0. Finally, let Nh = [KN,h : K′

N,h].
Let h ∈ G(Ap

f ) be such that there exists q ∈ P(Af ) with qhK = hgK. By
proposition 1.7.2 below,

Tr(vh) =
∑
h′

Tr(uh′),
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where the sum is taken over a system of representatives h′ ∈ G(Ap
f ) of the

double classes in P(Q)Qnr (Af ) \G(Af )/K′ that are sent to the class of h
in P(Af ) \G(Af )/K ′ (apply proposition 1.7.2 with M = MP , KM = KM,h,
m equal to the image of q in MP (Af )). On the other hand, by proposition
1.5.3,

T ′P = (−1)r
∑

h

Nh Tr(uh),

where the sum is taken over a system of representatives h ∈ G(Ap
f ) of the

double classes in P(Q)Qnr (Af ) \G(Af )/K′. Hence

T ′P = (−1)r
∑

h

Nh Tr(vh),

where the sum is taken over a system of representatives h ∈ G(Ap
f ) of the

double classes in P(Af ) \G(Af )/K′.
Let h ∈ G(Ap

f ). Assume that there exists q ∈ P(Ap
f ) such that qhK =

hgK. Let q be the image of q in MP (Ap
f ). Write q = qLqH , with qL ∈ LP (Ap

f )
and qH ∈ Gnr (A

p
f ). Let

f∞,p
G,h = vol(K′

M,h/K
′
L,h)−11lqH(KM,h/KL,h).

Notice that K′
L,h ⊂ KL,h ∩ qLKL,hq

−1
L . Let uqL

be the endomorphism of
RΓc(KL,h, RΓ(Lie(NP ), V )≥tn1 ,...,≥tnr

) induced by the cohomological cor-
respondence cqL,1.

To calulate the trace of vh, we will use Deligne’s conjecture, that has been
proved by Pink (cf [P3]) assuming some hypotheses (that are satisfied here),
and in general by Fujiwara ([F]) and Varshavsky ([V]). This conjecture (that
should now be called theorem) says that, if j is big enough, then the fixed
points of the correspondence between schemes underlying vh are all isolated,
and that the trace of vh is the sum over these fixed points of the naive local
terms. By theorem 1.6.1 and remarks 1.6.4 et 1.6.5, if j is big enough, then

Tr(vh) = (−1)rmP

∑
(γ0;γ,δ)∈C′Gnr ,j

c(γ0; γ, δ)Oγ(f∞,p
G,h )TOδ(φ

Gnr
j )

Tr(uqL
γ0, RΓc(KL,h, RΓ(Lie(NP ), V )≥tn1 ,...,≥tnr

)).

Let

f∞LP ,h = vol(K′
L,h)−11lqLKL,h

.

Then

f∞LP ,h = 1lLP (Zp)f
∞,p
LP ,h,

with f∞,p
LP ,h ∈ C∞c (LP (Ap

f )). By theorem 1.6.6, for every γ0 ∈ Gnr (Q),

Tr(uqL
γ0, RΓc(KL,h, RΓ(Lie(NP ), V )≥tn1 ,...,≥tnr

)) =
∑
L

(−1)dim(AL/ALP
)(nLP

L )−1
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∑
γL

ιL(γL)−1χ(LγL
)|DLP

L (γL)|1/2OγL
((f∞LP ,h)L) Tr(γLγ0, RΓ(Lie(NP ), V )≥tn1 ,...,≥tnr

),

where the first sum is taken over the set of conjugacy classes of cuspidal
Levi subgroups L of LP and the second sum is taken over the set of semi-
simple conjugacy classes γL of L(Q) that are elliptic in L(R). To show that
T ′P = TP , it is enough to show that, for every Levi subgroup L of LP , for
every γL ∈ L(Q) and every (γ0; γ, δ) ∈ CGnr ,j ,∑

h

NhOγL
((f∞LP ,h)L)Oγ(f∞,p

G,h ) = OγLγ(f∞,p
LGnr

)δ1/2
P (Qp)(γLγ0)OγL

(1lL(Zp))δ
1/2
P (R)(γ0),

where the sum is taken over a system of representatives h ∈ G(Ap
f ) of the

double classes in P(Af ) \G(Af )/K′ (with f∞LP ,h = 0 and f∞,p
G,h = 0 if there

is no q ∈ P(Af ) such that qhK = hgK).
Fix a parabolic subgroup R of LP with Levi subgroup L, and let P′ =

RGnrNP (a parabolic subgroup of G with Levi subgroup LGnr ). Fix a
system of representatives (hi)i∈I in G(Ap

f ) of P(Af ) \G(Af )/K′. For ev-
ery i ∈ I, fix a system of representatives (mij)j∈Ji in LP (Ap

f ) of R(Af ) \
LP (Af )/K′

L,hi
. Then (mijhi)i,j is a system of representatives of P′(Af ) \

G(Af )/K′. By lemma 1.7.4 below,

OγLγ(f∞,p
LGnr

) = δ
1/2

P ′(Ap
f )

(γLγ)
∑
i,j

r(mijhi)OγLγ(fP ′,mijhi
),

where

r(mijhi) = [(mijhi)K(mijhi)−1∩NP ′(Af ) : (mijhi)K′(mijhi)−1∩NP ′(Af )]

and fP ′,mijhi
is equal to the product of

vol(((mijhi)K′(mijhi)−1 ∩P′(Af ))/((mijhi)K′(mijhi)−1 ∩NP ′(Af )))−1

and of the characteristic function of the image in (LGnr
)(Ap

f ) = MP ′(Ap
f )

of (mijhi)gK(mijhi)−1 ∩P′(Ap
f ). Note that

r(mijhi) = Nhir
′(mij),

where

r′(mij) = [mijKL,hi
m−1

ij ∩NR(Af ) : mijK′
L,hi

m−1
ij ∩NR(Af )],

that

δP ′(Ap
f )(γLγ) = δR(Ap

f )(γL)δP (Ap
f )(γLγ),

and that

fP ′,mijhi = fR,mijf
∞,p
G,hi

,

where fR,mij
is the product of

vol((mijK′
L,hi

m−1
ij ∩R(Af ))/(mijK′

L,hi
m−1

ij ∩NR(Af )))−1
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and of the characteristic function of the image in L(Ap
f ) = MR(Ap

f ) of
(mijhi)gK(mijhi)−1 ∩R(Af )NP (Af ). By applying lemma 1.7.4 again, we
find, for every i ∈ I,∑

j∈Ji

r′(mij)OγL
(fR,mij ) = δ

−1/2

R(Ap
f )

(γL)OγL
((f∞,p

LP ,hi
)L).

Finally,∑
i∈I

NhiOγL
((f∞LP ,hi

)L)Oγ(f∞,p
G,hi

) = OγL
((1lLP (Zp))L)

∑
i∈I

NhiOγL
((f∞,p

LP ,hi
)L)Oγ(f∞,p

G,hi
)

= OγL
((1lLP (Zp))L)

∑
i∈I

NhiOγ(f∞,p
G,hi

)δ1/2

R(Ap
f )

(γL)
∑
j∈Ji

r′(mij)OγL
(fR,mij )

= OγL
((1lLP (Zp))L)δ1/2

R(Ap
f )

(γL)
∑
i∈I

∑
j∈Ji

r(mijhi)OγLγ(fP ′,mijhi
)

= OγL
((1lLP (Zp))L)δ1/2

R(Ap
f )

(γL)δ−1/2

P ′(Ap
f )

(γLγ)OγLγ(f∞,p
LGnr

)

= OγL
((1lLP (Zp))L)δ−1/2

P (Ap
f )

(γLγ)OγLγ(f∞,p
LGnr

).

To finish the proof, it suffices to notice that (1lLP (Zp))L = 1lL(Zp), that
δ
−1/2

P (Ap
f )

(γLγ) = δ
−1/2

P (Ap
f )

(γLγ0), that, as γLγ0 ∈ MP (Q), the product formula
gives

δ
−1/2

P (Ap
f )

(γLγ0) = δ
1/2
P (Qp)(γLγ0)δ

1/2
P (R)(γLγ0)

and that

δP (Qp)(γLγ0) = δP (Qp)(γL)δP (Qp)(γ0) = δP (Qp)(γ0)

if OγL
(1lL(Zp)) 6= 0 (because this implies that γL is conjugate in L(Qp) to an

element of L(Zp)).
If j is big enough, we can calculate T ′G using theorem 1.6.1 and Deligne’s

conjecture. It is obvious T ′G = TG.
If g = 1 and K = K′, then uj is simply the cohomological correspondence

induced by Φj . In this case, we can calculate the trace of uj , for every
j ∈ N∗, using Grothendieck’s trace formula (cf SGA 4 1/2 [Rapport] 3.2).

�

Proposition 1.7.2 Let M, L and (G,X ) be as in 1.2. Let m ∈ M(Af )
and let K′

M , KM be neat open compact subgroups of M(Af ) such that
K′

M ⊂ KM ∩ mKMm−1. Let KL = KM ∩ L(Af ) and K = KM/KL.
Consider a system of representatives (mi)i∈I of the set of double classes
c ∈ L(Q)G(Af ) \M(Af )/K′

M such that cmKM = cKM . For every i ∈ I, fix
li ∈ L(Q) and gi ∈ G(Af ) such that ligimi ∈ mimKM . Assume that the
Shimura varieties and the morphisms that we get from the above data have
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good reduction modulo p (in particular, KM and K′
M are hyperspecial at p,

and m,mi ∈ M(Ap
f ), gi ∈ G(Ap

f )). Let Fq be the field of definition of these
varieties and F be an algebraic closure of Fq.

For every i ∈ I, let Hi = miKMm−1
i ∩L(Q)G(Af ), Hi,L = Hi ∩L(Q) and

Ki = Hi/Hi,L. Fixe V ∈ ObRepG. Let

L = FKRΓ(KL, V )

Li = FKiRΓ(Hi,L, V )

M = FKRΓc(KL, V )

Mi = FKRΓc(Hi,L, V ).

Then, for every σ ∈ Gal(F/Fq),

(1)
∑
i∈I

Tr(σcligi,1, RΓ(MKi(G,X )F, Li,F)) = Tr(σcm,1, RΓ(MK(G,X )F, LF)).

(2)
∑
i∈I

Tr(σcligi,1, RΓc(MKi(G,X )F,Mi,F)) = Tr(σcm,1, RΓc(MK(G,X )F,MF)).

Proof. Write m = lg, with l ∈ L(Af ) and g ∈ G(Af ). We may assume
that mi ∈ L(Af ), hence gi = g, for every i ∈ I. Let K0 = Hi ∩G(Af ) =
mKMm−1 ∩G(Af ).

Point (1) implies point (2) by duality.
Let us prove (1). Let cm be the endomorphism of RΓ(KM , V ) equal to

RΓ(KM , V ) −→ RΓ(K′
M , V ) Tr−→ RΓ(KM , V ),

where the first map is induced by the injection K′
M −→ KM , k 7−→ m−1km,

and the second map is the trace morphism associated to the injection K′
M ⊂

KM . Define in the same way, for every i ∈ I, an endomorphism cligi
of

RΓ(Hi, V ). Then

RΓ(KM , V ) '
⊕
i∈I

RΓ(Hi, V )

and cm =
⊕
i∈I

cligi , so it is enough to show that this decomposition is

Gal(F/Fq)-equivariant. Let σ ∈ Gal(F/Fq). Then σ induces an endomor-
phism of RΓ(K0, V ) = RΓ(MK0

(G,X )F,FK0
VF), that will still be denoted

by σ, and, by the lemma below, the endomorphism of RΓ(KM , V ) (resp.
RΓ(Hi, V )) induced by σ is

RΓ(KM/(KM ∩ L(Af )), σ)

(resp. RΓ(Hi/(Hi ∩ L(Q)), σ)).

This finishes the proof.
�
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Lemma 1.7.3 Let M, L and (G,X ) be as in the proposition above. Let
KM be a neat open compact subgroup of M(Af ). Let KL = KM ∩M(Af ),
KG = KM ∩G(Af ), H = KM ∩L(Q)G(Af ), HL = KM ∩L(Q), K = KM/KL

and K′ = H/HL. Let V ∈ ObRepM and σ ∈ Gal(F/Fq). The element
σ induces an endomorphism of RΓ(KG, V ) = RΓ(MKG(G, X)F,FKGVF)
(resp. RΓ(KM , V ) = RΓ(MK(G,X )F,FKRΓ(KL, V )F), resp. RΓ(H, V ) =
RΓ(MK′(G,X )F,FK′RΓ(HL, V )F)), that will be denoted by ϕ0 (resp. ϕ,
resp. ϕ′). Then

ϕ = RΓ(KM/KG, ϕ0)

and

ϕ′ = RΓ(H/KG, ϕ0).

Proof. The two equalities are proved in the same way. Let us prove the first
one. Let Y = MKG(G,X ), X = MK(G,X ), let f : Y −→ X be the (finite
étale) morphism T1 and L = FKRΓ(KL, V ). Then, f∗L = FKGRΓ(KL, V )
by [P1] (1.11.5), and L is canonically a direct factor of f∗f∗L because f is
finite étale, so it is enough to show that the endomorphism of

RΓ(YF, f
∗L) = RΓ(KG, RΓ(KL, V )) = RΓ(KL, RΓ(KG, V ))

induced by σ is equal to RΓ(KL, ϕ0). The complex M = FKGV on Y is a
complex of KL-sheaves in the sense of [P2] (1.2), and RΓ(KL,M) = f∗L by
[P2] (1.9.3). To conclude, apply [P2] (1.6.4).

�

The following lemma of [GKM] is used in the proof of theorem 1.7.1. Let
G be a connected reductive group over Q, M a Levi subgroup of G and P
a parabolic subgroup of G with Levi subgroup M. Let N be the unipotent
radical of P. If f ∈ C∞c (G(Af )), the constant term fM ∈ C∞c (M(Af )) of
f at M is defined in [GKM] (7.13) (the fonction fM depends on the choice
of P, but its orbital integrals do not depend on that choice). For every
g ∈ M(Af ), let

δP (Af )(g) = |det(Ad(g), Lie(N)⊗ Af )|Af
.

Let g ∈ G(Af ) and let K′,K be open compact subgroups of G(Af ) such
that K′ ⊂ gKg−1. For every h ∈ G(Af ), let KM (h) be the image in M(Af )
of hgKh−1 ∩P(Af ),

fP,h = vol((hK′h−1 ∩P(Af ))/(hK′h−1 ∩N(Af )))−11lKM (h) ∈ C∞c (M(Af )),

and

r(h) = [hKh−1 ∩N(Af ) : hK′h−1 ∩N(Af )].

(Note that, if there is no element q ∈ P(Af ) such that qhK = hgK, then
KM (h) is empty, hence fP,h = 0.) Let

f = vol(K′)−11lgK
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and

fP =
∑

h

r(h)fP,h,

where the sum is taken over a system of representatives of the double quotient
P(Af ) \G(Af )/K′.

Lemma 1.7.4 ([GKM] 7.13.A) The functions fM and δ
1/2
P (Af )fP have the

same orbital integrals.

In [GKM], the “g” is on the right of the “K” (and not on the left), and
δ
−1/2
P (Af ) appears in the formula instead of δ1/2

P (Af ), but is is easy to see that
their proof adapts to the case considered here. There are obvious variants
of this lemma obtained by replacing Af with Ap

f or Qp, where p is a prime
number.

Remark 1.7.5 The above lemma implies in particular that the function
γ 7−→ Oγ(fM) on M(Af ) has a support contained in a set of the form⋃
m∈M(Af )

mXm−1, where X is a compact subset of M(Af )), because the sup-

port of γ 7−→ Oγ(fM) is contained in the union of the conjugates of KM (h),
for h in a system of representatives of the finite set P(Af ) \ G(Af )/K′.
Moreover, if g = 1, then we may assume that X is a finite union of compact
subgroups of M(Af ), that are neat of K is neat (because the KM (h) are
subgroups of M(Af ) in that case).
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Chapter Two

The groups

In the next chapters, we will apply the fixed point formula to certain unitary
groups over Q. The goal of this chapter is to define these unitary groups and
their Shimura data, and to recall the description of their parabolic subgroups
and of their endoscopic groups.

2.1 DEFINITION OF THE GROUPS AND OF THE SHIMURA

DATA

For n ∈ N∗, write

I = In =

 1 0
. . .

0 1

 ∈ GLn(Z)

and

An =

 0 1

. .
.

1 0

 ∈ GLn(Z).

Let E = Q[
√
−b] (b ∈ N∗ square-free) be an imaginary quadratic extension

of Q. The nontrivial automorphism of E will be denoted by . Fix once and
for all an injection E ⊂ Q ⊂ C, and an injection Q ⊂ Qp for every prime
number p.

Let n ∈ N∗ and let J ∈ GLn(Q) be a symmetric matrix. Define an
algebraic group GU(J) over Q by :

GU(J)(A) = {g ∈ GLn(E ⊗Q A)|g∗Jg = c(g)J, c(g) ∈ A×},
for every Q-algebra A (for g ∈ GLn(E ⊗Q A), we write g∗ = tg). The group
GU(J) comes with two morphisms of algebraic groups over Q :

c : GU(J) −→ Gm et det : GU(J) −→ RE/QGm.

Let U(J) = Ker(c) and SU(J) = Ker(c) ∩Ker(det).
The group SU(J) is the derived group of GU(J) and U(J). The groups

GU(J) and U(J) are connected reductive, and the group SU(J) is semi-
simple and simply connected.

Let p, q ∈ N be such that n := p+ q ≥ 1. Let

J = Jp,q :=
(
Ip 0
0 −Iq

)
,
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and set GU(p, q) = GU(J), U(p, q) = U(J) and SU(p, q) = SU(J). If
q = 0, we also write GU(p) = GU(p, q), etc. These groups are quasi-split
over Q if and only if |p−q| ≤ 1. The semi-simple Q-rank and the semi-simple
R-rank of GU(p, q) are both equal to min(p, q).

Let n ∈ N∗. Let

GU∗(n) =
{

GU(n/2, n/2) if n is even
GU((n+ 1)/2, (n− 1)/2) if n is odd .

The group GU∗(n) is the quasi-split inner form of GU(J), for every sym-
metric J ∈ GLn(Q). Write U∗(n) = Ker(c : GU∗(n) −→ Gm) and
SU∗(n) = Ker(det : U∗(n) −→ RE/QGm).

Finally, let GU∗(0) = GU(0, 0) = Gm, and (c : GU∗(0) −→ Gm) = id.
Let n1, . . . , nr ∈ N and let J1 ∈ GLn1(Q), . . . , Jr ∈ GLnr (Q) be symmet-

ric matrices. Write

G(U(J1)×· · ·×U(Jr)) = {(g1, . . . , gr) ∈ GU(J1)×· · ·×GU(Jr)|c(g1) = · · · = c(gr)}.

Similarly, write

G(U∗(n1)×· · ·×U∗(nr)) = {(g1, . . . , gr) ∈ GU∗(n1)×· · ·×GU∗(nr)|c(g1) = · · · = c(gr)}.

Remark 2.1.1 If the matrix J is in GLn(Z), then there is an obvious way
to extend GU(J) to a group scheme G over Z : for every Z-algebra A, set

G(A) = {g ∈ GLn(A⊗Z OE)|g∗Jg = c(g)J, c(g) ∈ A×}.

If ` is a prime number unramified in E, then GF`
is a connected reductive

algebraic group over F`.
In particular, this construction applies to the groups GU(p, q) and GU∗(n).

We now define the Shimura data. Let as before S = RC/RGm.
Let p, q ∈ N be such that n := p+ q ≥ 1, and let G = GU(p, q). If p 6= q

(resp. p = q), let X be the set of q-dimensional subspaces of Cn on which
the Hermitian form (v, w) 7−→ tvJp,qw is negative definite (resp. positive or
negative definite). Let x0 ∈ X be the subspace of Cn generated by the q
vectors en+1−q, . . . , en, where (e1, . . . , en) is the canonical basis of Cn.

The group G(R) acts on X via the injection G(R) ⊂ GLn(R ⊗Q E) '
GLn(C), and this action is transitive. Define a G(R)-equivariant morphism
h : X −→ Hom(S,GR) by

h0 = h(x0) =


S −→ GR

z 7−→

 zIp 0

0 zIq

 .

Then (G,X , h) is a Shimura datum in the sense of [P1] 2.1.
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The group S(C) = (C⊗R C)× is isomorphic to C××C× by the morphism
a ⊗ 1 + b ⊗ i 7−→ (a + ib, a − ib). Let r : Gm,C −→ SC be the morphism
z 7−→ (z, 1), and let µ = h0 ◦ r : Gm,C −→ GC.

Identify GE with a subgroup of GLn,E × GLn,E by the isomorphism
(RE/QGLn,Q)E ' GLn,E ×GLn,E that sends X ⊗ 1 + Y ⊗

√
−b to (X +√

−bY,X −
√
−bY ). Then, for every z ∈ (RE/QGm,Q),

µ(z) =
(

(z, 1)Ip 0
0 (1, z)Iq

)
.

Notation 2.1.2 Let p′ ∈ {1, . . . , n}. Define a cocharacter µp′ : Gm,E −→
GE by :

µp′(z) =
(

(z, 1)Ip′
0 (1, z)In−p′

)
.

2.2 PARABOLIC SUBGROUPS

Let G be a connected reductive algebraic group over Q. Fix a minimal
parabolic subgroup P0 of G. Remember that a parabolic subgroup of G is
called standard if it contains P0. Fix a Levi subgroup M0 of P0. Then a
Levi subgroup M of G will be called standard if M is a Levi subgroup of a
standard parabolic subgroup and M ⊃ M0. Any parabolic subgroup of G
is G(Q)-conjugate to a unique standard parabolic subgroup, so it is enough
to describe the standard parabolic subgroups.

Let p, q ∈ N be such that n := p + q ≥ 1. We are interested in the
parabolic subgroups of GU(p, q). As GU(p, q) = GU(q, p), we may assume
that p ≥ q. Then the matrix Jp,q is GLn(Q)-conjugate to

Ap,q :=

 0 0 Aq

0 Ip−q 0
Aq 0 0

 ,

so GU(p, q) is isomorphic to the unitary group G := GU(Ap,q), and it is
enough to describe the parabolic subgroups of G. A maximal torus of G is
the diagonal torus

T =


 λ1 0

. . .
0 λn

 , λ1, . . . , λn ∈ RE/QGm, λ1λn = · · · = λqλp+1 = λq+1λq+1 = · · · = λpλp ∈ Gm

 .
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The maximal split subtorus of T is

S =


λ



λ1 0
. . .

λq

Ip−q

λ−1
q

. . .
0 λ−1

1


, λ, λ1, . . . , λq ∈ Gm


if p > q, and

S =





λλ1 0
. . .

λλq

λ−1
q

. . .
0 λ−1

1


, λ, λ1, . . . , λq ∈ Gm


if p = q.

A minimal parabolic subgroup of G containing S is

P0 =


 A ∗

B
0 C

 , A, C ∈ RE/QBq, B ∈ RE/QGLp−q

 ∩G,

where Bq ⊂ GLq is the subgroup of upper triangular matrices.
The standard parabolic subgroups of G are indexed by the subsets of

{1, . . . , q} in the following way.
Let S ⊂ {1, . . . , q}. Write S = {r1, r1 + r2, . . . , r1 + · · · + rm} with

r1, . . . , rm ∈ N∗, and let r = r1 + · · · + rm. The standard parabolic sub-
group PS corresponding to S is the intersection of G and of the group

RE/QGLr1 ∗
. . .

RE/QGLrm

GU(Ap−r,q−r)
RE/QGLrm

. . .
0 RE/QGLr1


.

In particular, the standard maximal parabolic subgroups of G are the

Pr := P{r} =

 RE/QGLr ∗
GU(Ap−r,q−r)

0 RE/QGLr

 ∩G

for r ∈ {1, . . . , q}, and PS =
⋂

r∈S

Pr. Note that P0 = P{1,...,q}.
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Let NS (or NPS
) be the unipotent radical of PS , MS (or MPS

) the
obvious Levi subgroup (of block diagonal matrices) and AMS

the maximal
split subtorus of the center of MS . Write as before S = {r1, . . . , r1 + · · ·+
rm} and r = r1 + · · ·+ rm. Then there is an isomorphism

MS
∼−→ RE/QGLr1 × · · · ×RE/QGLrm ×GU(p− r, q − r)

diag(g1, . . . , gm, g, hm, . . . , h1) 7−→ (c(g)−1g1, . . . , c(g)−1gm, g)
.

The inverse image by this isomorphism of RE/QGLr1 × · · · ×RE/QGLrm is
called linear part of MS and denoted by LS (or LPS

). The inverse image
of GU(p− r, q − r) is called Hermitian part of MS and denoted by Gr (or
GPS

). Note that the maximal parabolic subgroups of G satisfy the condition
of 1.1.

2.3 ENDOSCOPIC GROUPS

In this section, we want to study the elliptic endoscopic triples for the groups
G defined in 2.1. It is enough to consider the quasi-split forms. We will use
the definition of elliptic endoscopic triples and of isomorphisms of endoscopic
triples given in [K4] 7.4 et 7.5.

Let n1, . . . , nr ∈ N∗ and G = G(U∗(n1)× · · · ×U∗(nr)); here we use the
Hermitian forms Ap,q of 2.2 to define G. We first calculate the dual group
Ĝ of G. As G splits over E, the action of Gal(Q/Q) on Ĝ factors through
Gal(E/Q). Let τ be the nontrivial element of Gal(E/Q).

Let ϕ be the isomorphism from GE ⊂ GLn1,E⊗E × · · · × GLnr,E⊗E to
Gm,E×GLn1,E×· · ·×GLnr,E that sends g = (X1⊗1+Y1⊗

√
−b, . . . ,Xr⊗

1 + Yr ⊗
√
−b) ∈ GE to (c(g), X1 +

√
−bY1, . . . , Xr +

√
−bYr). Let T be

the diagonal torus of G (a maximal torus of G) and B be the subgroup of
upper triangular matrices in G (this is a Borel subgroup of G because of the
choice of the Hermitian form). There is a canonical isomorphism

T = {((λ1,1, . . . , λ1,n1), . . . , (λr,1, . . . , λr,nr )) ∈ RE/QGn1+···+nr
m |

∃λ ∈ Gm,∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , ni}, λi,jλi,ni+1−j = λ}.

The restriction of ϕ to TE induces an isomorphism

TE
∼−→ Gm,E ×Gn1

m,E × · · · ×Gnr

m,E .

For every i ∈ {1, . . . , r} and j ∈ {1, . . . , ni}, let ei,j be the character of T
defined by

ei,j(ϕ−1((λ, (λ1,1, . . . , λ1,n1), . . . , (λr,1, . . . , λr,nr )))) = λi,j .

Then the group of characters of T is

X∗(T) = Zc⊕
r⊕

i=1

ni⊕
j=1

Zei,j ,
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and Gal(E/Q) acts on X∗(T) by

τ(c) = c

τ(ei,j) = c− ei,ni+1−j .

Hence the dual torus of T is

T̂ = C× × (C×)n1 × · · · × (C×)nr ,

with the action of Gal(E/Q) given by

τ((λ, (λi,j)1≤i≤r,1≤j≤ni)) = (λ
∏
i,j

λi,j , (λ−1
i,ni+1−j)1≤i≤r,1≤j≤ni).

The set of roots of T in Lie(G) is

Φ = Φ(T,G) = {ei,j − ei,j′ , 1 ≤ i ≤ r, 1 ≤ j, j′ ≤ ni, j 6= j′}.

The subset of simple roots determined by B is

∆ = {αi,j = ei,j+1 − ei,j , 1 ≤ i ≤ r, 1 ≤ j ≤ ni − 1}.

The group Gal(E/Q) acts on ∆ by :

τ(αi,j) = αi,ni−j .

For every n ∈ N∗, let Φn ∈ GLn(Z) be the matrix with entries

(Φn)ij = (−1)i+1δi,n+1−j .

The dual group of G is

Ĝ = C× ×GLn1(C)× · · · ×GLnr (C),

with T̂ immersed diagonally. The action of Gal(E/Q) that respects the
obvious splitting is :

τ((λ, g1, . . . , gr)) = (λ det(g1) . . .det(gr),Φ−1
n1

(tg1)−1Φn1 , . . . ,Φ
−1
nr

(tgr)−1Φnr ).

Proposition 2.3.1 For every i ∈ {1, . . . , r}, let n+
i , n

−
i ∈ N be such that

ni = n+
i + n−i . Suppose that n−1 + · · ·+ n−r is even. Set

s = (1, diag(

n+
1︷ ︸︸ ︷

1, . . . , 1,

n−1︷ ︸︸ ︷
−1, . . . ,−1), . . . , diag(

n+
r︷ ︸︸ ︷

1, . . . , 1,

n−r︷ ︸︸ ︷
−1, . . . ,−1)) ∈ Ĝ

H = G(U∗(n+
1 )×U∗(n−1 )× · · · ×U∗(n+

r )×U∗(n−r ))

and define

η0 : Ĥ = C× ×GLn+
1
(C)×GLn−1

(C)× · · · ×GLn+
r
(C)×GLn−r

(C)

−→ Ĝ = C× ×GLn1(C)× · · · ×GLnr (C)
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by

η0((λ, g+
1 , g

−
1 , . . . , g

+
r , g

−
r )) =

(
λ,

(
g+
1 0
0 g−1

)
, . . . ,

(
g+

r 0
0 g−r

))
.

Then (H, s, η0) is an elliptic endoscopic triple for G. The group Λ(H, s, η0)
of [K4] 7.5 is isomorphic to (Z/2Z)I , where I = {i ∈ {1, . . . , r}|n+

i = n−i }.
Moreover, the elliptic endoscopic triples for G determined by ((n+

1 , n
−
1 ), . . . , (n+

r , n
−
r ))

and ((m+
1 ,m

−
1 ), . . . , (m+

r ,m
−
r )) are isomorphic of and only if, for every i ∈

{1, . . . , r}, (n+
i , n

−
i ) = (m+

i ,m
−
i ) or (n+

i , n
−
i ) = (m−

i ,m
+
i ).

Finally, every elliptic endoscopic triple for G is isomorphic to one of the
triples defined above.

Note that an elliptic endoscopic triple (H, s, η0) is uniquely determined by
s and that, for every elliptic endoscopic triple (H, s, η0), the group HR has
an elliptic maximal torus.

Proof. Let (H, s, η0) be determined by ((n+
1 , n

−
1 ), . . . , (n+

r , n
−
r )) as above.

To show that (H, s, η0) is an endoscopic triple of G, we have to check
conditions (7.4.1)-(7.4.3) of [K4]. Conditions (7.4.1) and (7.4.2) are ob-
viously satisfied, and condition (7.4.3) is a consequence of the fact that
s ∈ Z(Ĥ)Gal(E/Q). (Note that the condition “n−1 + · · ·+ n−r even” is neces-
sary for s ∈ Z(Ĥ) to be fixed by Gal(E/Q).)

We next show that (H, s, η0) is elliptic. The center of Ĥ is

Z(Ĥ) = {(λ, λ+
1 In+

1
, λ−1 In−1

, . . . , λ+
r In+

r
, λ−r In−r ), λ, λ+

1 , λ
−
1 , . . . , λ

+
r , λ

−
r ∈ C×},

with the action of Gal(E/Q) given by

τ((λ, λ+
1 In+

1
, λ−1 In−1

, . . . , λ+
r I

+
nr
, λ−r In−r )) =

(λ(λ+
1 )n+

1 (λ−1 )n−1 . . . (λ+
r )n+

r (λ−r )n−r , (λ+
1 )−1In+

1
, (λ−1 )−1In−1

, . . . , (λ+
r )−1In+

r
, (λ−r )−1In−r ).

Hence
(
Z(Ĥ)Gal(E/Q)

)0

= C× × {1} ⊂ Z(Ĝ), and (H, s, η0) is elliptic.
We want to calculate the group of outer automorphisms of (H, s, η0). It

is the same to calculate the group of outer automorphisms of the endoscopic
data (s, ρ) associated to (H, s, η0) (cf [K4] 7.2 and 7.6). Let

I = {i ∈ {1, . . . , r}|n+
i = n−i }.

Let g ∈ Ĝ be such that Int(g)(η0(Ĥ)) = η0(Ĥ).
Let a, b ∈ N be such that a+ b = n > 0, and

G′ =
(

GLa 0
0 GLb

)
⊂ GLn.

If a 6= b, then the normalizer of G′ in GLn is G′. If a = b, then the
normalizer of G′ in GLn is generated by G′ and by

Ia,b :=
(

0 Ia
Ib 0

)
.
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By applying this remark to η0(Ĥ) ⊂ Ĝ, we find that g is in the subgroup of
Ĝ generated by η0(Ĥ) and by the elements (1, . . . , 1, In+

i ,n−i
, 1, . . . , 1), i ∈ I.

It is easy to see that all the elements of this group define automorphisms of
(s, ρ). Hence

Λ(H, s, η0) = Λ(s, ρ) = Aut(s, ρ)/ Int(Ĥ) ' (Z/2Z)I .

The statement about isomorphisms between the endoscopic triples defined
in the proposition is obvious.

Let (H, s, η0) be an elliptic endoscopic triple for G. We want to show that
(H, s, η0) is isomorphic to one of the triples defined above. We may assume
(without changing the isomorphism class of (H, s, η0)) that s ∈ T̂. We know
that Ker1(Q,G) = {1} by lemma 2.3.3 below, so condition (7.4.3) of [K4]
implies that the image of s in π0

(
(Z(Ĥ)/Z(Ĝ))Gal(Q/Q)

)
comes from an

element of Z(Ĥ)Gal(Q/Q). As (H, s, η0) is elliptic,

π0

(
(Z(Ĥ)/Z(Ĝ))Gal(Q/Q)

)
= (Z(Ĥ)/Z(Ĝ))Gal(Q/Q),

so the image of s in Z(Ĥ)/Z(Ĝ) comes from an element of Z(Ĥ)Gal(Q/Q).
We may assume that is s is fixed by Gal(Q/Q) (because replacing s by a
Z(Ĝ)-translate does not change the isomorphism class of (H, s, η0)).

Let us first suppose that r = 1. Write n = n1. We may assume that

s = (1,

 λ1Im1 0 0

0
. . . 0

0 0 λtImt

),

with λ1, . . . , λt ∈ C×, λi 6= λj if i 6= j and m1, . . . ,mt ∈ N∗ such that
m1 + . . .mt = n. Then Ĥ = Cent bG(s) ' C× ×GLm1(C)× · · · ×GLmt(C)
and Z(Ĥ) ' C× × (C×)t.

As (H, s, η0) is elliptic, we must have
(
Z(Ĥ)Gal(Q/Q)

)0

⊂ Z(Ĝ)Gal(Q/Q) ⊂

C× × {±In}. The only way Z(Ĥ)Gal(Q/Q)/Z(Ĝ)Gal(Q/Q) can be finite is if

Z(Ĥ)Gal(Q/Q) ⊂ C× × {±1}t.

But s = (1, λ1, . . . , λt) ∈ Z(Ĥ)Gal(Q/Q) and the λi are pairwise distinct, so
t ≤ 2. If t = 1, then s ∈ Z(Ĝ) and (H, s, η0) is isomorphic to the trivial
endoscopic triple (G, 1, id).

Suppose that t = 2. We may assume that λ1 = 1 and λ2 = −1. By
condition (7.1.1) of [K4],

τ((λ, λ1, λ2)) = (λλm1
1 λm2

2 , λ−1
w(1), λ

−1
w(2)),

for a permutation w ∈ S2. In particular, (−1)m2 = 1, so m2 is even.
It remains to determine the morphism ρ : Gal(Q/Q) −→ Out(Ĥ) associ-

ated to (H, s, η0) in [K4] 7.6. As the derived group of Ĝ is simply connected
and G splits over E, H also splits over E (cf definition 1.8.1 in [Ng]). So
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the action of Gal(Q/Q) on Ĥ factors through Gal(E/Q), and in particular ρ
factors through Gal(E/Q). By condition (7.4.2) of [K4], there exists gτ ∈ Ĝ
such that (gτ , τ) normalizes Ĥ in ĜoGal(Q/Q) and that ρ(τ) = Int((gτ , τ))

in Out(Ĥ). Hence gτ = gw0, with g ∈ Nor bG(Ĥ) and w0 =
(

0 Im1

Im2 0

)
.

Suppose first that m1 6= m2. Then Nor bG(Ĥ) = Ĥ, so ρ(τ) = Int((w0, τ)).
It is now clear that (H, s, η0) is isomorphic to one of the triples defined
above.

Suppose that m1 = m2. Then Nor bG(Ĥ) is the subgroup of Ĝ generated
by Ĥ and w0. Hence ρ(τ) = Int((1, τ)) or Int((w0, τ)). If ρ(τ) = Int((1, τ)),
then

Z(Ĥ)Gal(E/Q) ' {(λ, λ1, λ2) ∈ (C×)3|(λ1λ2)m1 = 1 and λ1 = λ−1
2 } = {(λ, λ1, λ

−1
1 ), λ, λ1 ∈ C×},

and s is not in the image of Z(Ĥ)Gal(E/Q). Hence ρ(τ) = Int((w0, τ)), and
(H, s, η0) is isomorphic to one of the triples defined above.

If r > 1, the reasoning is the same (but with more complicated notations).
�

Fix n+
1 , n

−
1 , . . . , n

+
r , n

−
r ∈ N such that n+

i +n−i = ni for every i ∈ {1, . . . , r}
and that n−1 + · · ·+n−r is even. Let (H, s, η0) be the elliptic endoscopic triple
for G associated to this data as in proposition 2.3.1. The derived group of G
is simply connected, so, by proposition 1 of [L2], there exists a L-morphism
η : LH := Ĥ o WQ −→ LG := Ĝ o WQ extending η0 : Ĥ −→ Ĝ. We want
to give an explicit formula for such a η.

For every place v of Q, we fixed an injection Q ⊂ Qv; this gives a morphism
Gal(Qv/Qv) −→ Gal(Q/Q), and we fix a morphism WQv −→WQ above this
morphism of Galois groups.

Let ωE/Q : A×/Q× −→ {±1} be the quadratic character of E/Q. (Note
that, for every prime number p unramified in E, the character ωE/Q is un-
ramified at p.)

The following proposition is the adaptation to unitary similitude groups
of [Ro2] 1.2 and is easy to prove.

Proposition 2.3.2 Let µ : WE −→ C× be the character corresponding
by the class field isomorphism W ab

E ' A×E/E× to a character extending
ωE/Q. We may, and will, assume that µ is unitary. 1 Let c ∈ WQ be
an element lifting the nontrivial element of Gal(E/Q). Define a morphism
ϕ : WQ −→ LG in the following way :

• ϕ(c) = (A, c), where

A = (1,

((
Φn+

1
0

0 (−1)n+
1 Φn−1

)
Φ−1

n1
, . . . ,

(
Φn+

r
0

0 (−1)n+
r Φn−r

)
Φ−1

nr

)
);

1In fact, in this case, we may even assume that µ is of finite order, but we will not
need this fact.
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• on WE , ϕ is given by

ϕ|WE
= (1,

((
µn−1 In+

1
0

0 µ−n+
1 In−1

)
, . . . ,

(
µn−r In+

r
0

0 µ−n+
r In−r

))
, id).

Then ϕ is well-defined, and η : LH −→ LG, (h,w) 7−→ (η0(h), 1)ϕ(w), is a
L-morphism extending η0.

For every place v of Q, let ϕv be the composition of ϕ and of the morphism
WQv −→ WQ. We have the following consequences of the properties of ϕ in
the proposition :

Let p be a prime number unramified in E, and fix σ ∈ WQp
lifting the

arithmetic Frobenius. Set r = 1 if p splits totally in E, and r = 2 if p is
inert in E. Then

ϕp(σr) = (1, (In1 , . . . , Inr ), σ
r).

On the other hand, there exists an odd integer C ∈ Z such that, for every
z ∈ C× = WC,

ϕ∞(z) = ((1, (B1(z), . . . , Br(z))), z),

with

Bi(z) =

(
zCn−i /2z−Cn−i /2In+

i
0

0 z−Cn+
i /2zCn+

i /2In−i

)
.

We finish this section by a calculation of Tamagawa numbers.

Lemma 2.3.3 (i) Let n1, . . . , nr ∈ N∗ and G = G(U∗(n1)×· · ·×U∗(nr)).
Then Ker1(Q,G) = {1}, and Z(Ĝ)Gal(E/Q) ' C× × {(ε1, . . . , εr) ∈
{±1}r|εn1

1 . . . εnr
r = 1}. Hence the Tamagawa number of G is

τ(G) =
{

2r if all the ni are even
2r−1 otherwise

.

(ii) Let F be a finite extension of Q and L = RF/QGLn,F , with n ∈ N∗.
Then τ(L) = 1.

Proof. Remember that, by [K4] 4.2.2 and 5.1.1, [K8] and [C], for every
connected reductive algebraic group G on Q,

τ(G) = |π0(Z(Ĝ)Gal(Q/Q))|.|Ker1(Q,G)|−1.

(i) It is enough to prove the first two statements. By [K11] §7, the canon-
ical morphism

Ker1(Q, Z(G)) −→ Ker1(Q,G)
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is an isomorphism. The center of G is {(λ1, . . . , λr) ∈ (RE/QGm)r|λ1λ1 =
· · · = λrλr}, so it is isomorphic to RE/QGm ×U(1)r−1 (by the map
(λ1, . . . , λr) 7−→ (λ1, λ2λ

−1
1 , . . . , λrλ

−1
1 )). As

H1(Q, RE/QGm) = H1(E,Gm) = {1},

it remains to show that Ker1(Q,U(1)) = {1}. Let c : Gal(Q/Q) −→
U(1)(Q) be a 1-cocyle representing an element of Ker1(Q,U(1)). Note
that U(1)(Q) ' Q×

, that Gal(Q/Q) acts on U(1)(Q) via its quotient
Gal(E/Q), and that τ ∈ Gal(E/Q) acts by t 7−→ t−1. In particular,
the restriction of c to Gal(Q/E) is a group morphism Gal(Q/E) −→
Q×

. As this restriction is locally trivial, the Čebotarev density the-
orem implies that c(Gal(Q/E)) = 1. So we can see c as a 1-cocycle
Gal(E/Q) −→ U(1)(Q). As Gal(E/Q) ' Gal(C/R) and c is locally a
coboundary, this implies that c is a coboundary.

By the description of Ĝ given above,

Z(Ĝ) = {(λ, λ1In1 , . . . , λrInr ), λ, λ1, . . . , λr ∈ C×},

with the action of Gal(E/Q) given by

τ((λ, λ1In1 , . . . , λrInr
)) = (λλn1

1 . . . , λnr
r , λ−1

1 In1 , . . . , λ
−1
r Inr ).

The second statement is now clear.

(ii) It suffices to show that Ker1(Q,L) = {1} and that Z(L̂)Gal(F/Q) is
connected. The first equality comes from the fact that

H1(Q,L) = H1(F,GLn) = {1}.

On the other hand, L̂ = GLn(C)[F :Q], with the obvious action of
Gal(F/Q), so Z(L̂)Gal(F/Q) ' C× is connected.

�

2.4 LEVI SUBGROUPS AND ENDOSCOPIC GROUPS

In this section, we recall some notions defined in section 7 of [K13]. Notations
and definitions are as in section 7 of [K4].

Let G be a connected reductive group on a local or global field F . Let
E(G) be the set of isomorphism classes of elliptic endoscopic triples for G
(in the sense of [K4] 7.4) and L(G) be the set of G(F )-conjugacy classes of
Levi subgroups of G. Let M be a Levi subgroup of G. There is a canonical
Gal(F/F )-equivariant embedding Z(Ĝ) −→ Z(M̂).

Definition 2.4.1 ([K13] 7.1) An endoscopic G-triple for M is an endoscopic
triple (M′, sM , ηM,0) for M such that :
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(i) the image of sM in Z(M̂′)/Z(Ĝ) is fixed by Gal(F/F );

(ii) the image of sM in H1(F,Z(Ĝ)) (via the morphism π0((Z(M̂′)/Z(Ĝ))Gal(F/F )) −→
H1(F,Z(Ĝ)) of [K4] 7.1) is trivial if F is local, and in Ker1(F,Z(Ĝ))
if F is global.

The G-triple (M′, sM , ηM,0) is called elliptic if it is elliptic as an endoscopic
triple for M.

Let (M′
1, s1, η1,0) and (M′

2, s2, η2,0) be endoscopic G-triples for M. An
isomorphism of endoscopic G-triples from (M′

1, s1, η1,0) to (M′
2, s2, η2,0) is

an isomorphism α : M′
1 −→ M′

2 of endoscopic triples for M (in the sense of
[K4] 7.5) such that the images of s1 and α̂(s2) in Z(M̂′

1)/Z(Ĝ) are equal.

Let (M′, sM , ηM,0) be an endoscopic G-triple for M. Then there is an
isomorphism class of endoscopic triples for G associated to (M′, sM , ηM,0)
in the following way (cf [K13] 3.7 et 7.4) : There is a canonical Ĝ-conjugacy
class of embeddings LM −→ LG; fix an element in this class, and use it
to see LM as a subgroup of LG. Define a subgroup M of LM as follows :
an element x ∈ LM is in M if and only if there exists y ∈ LM′ such that
the images of x and y by the projections LM −→ WF and LM′ −→ WF

are the same and that Int(x) ◦ η0 = η0 ◦ Int(y). Then the restriction to
M of the projection LM −→ WF is surjective, and M ∩ M̂ = η0(M̂′).
Moreover, M is a closed subgroup of LM. 2 Set Ĥ = Cent bG(sM )0, and
H = MĤ. Then H is a closed subgroup of LG, the restriction to H of the
projection LG −→ WF is surjective, and H ∩ Ĝ = Ĥ. Hence H induces
a morphism ρ : WF −→ Out(Ĥ). Moreover, there exists a finite extension
K of F and a closed subgroup HK of Ĝ o Gal(K/F ) such that H is the
inverse image of HK . 3 Hence ρ factors through WF −→ Gal(K/F ), and
ρ can be seen as a morphism Gal(F/F ) −→ Out(Ĥ). It is easy to see that
(sM mod Z(Ĝ), ρ) is an endoscopic datum for G (in the sense of [K4]),
and that its isomorphism class depends only on the isomorphism class of
(M′, sM , ηM,0). We associate to (M′, sM , ηM,0) the isomorphism class of
endoscopic triples for G corresponding to (sM mod Z(Ĝ), ρ) (cf [K4] 7.6).

Let EG(M) be the set of isomorphism classes of endoscopic G-triples
(M′, sM , ηM,0) for M such that the isomorphism class of endoscopic triples
for G associated to (M′, sM , ηM,0) is elliptic. There are obvious maps
EG(M) −→ E(M) and EG(M) −→ E(G). For every endoscopic G-triple

2[K13] 3.4 : Let K be a finite extension of F over which M′ and M split. Define a

subgroup MK of cM o Gal(K/F ) in the same way as M. This subgroup is obviously
closed, and M is the inverse image of MK .

3[K13] 3.5 : Let K′ be a finite extension of F over which G splits. The group bH is of

finite index in its normalizer in bG, so the group H is of finite index in its normalizer N in
LG. Hence the intersection of H with the subgroup bH×WK′ of N is a closed subgroup

of finite index of bH × WK′ ; so it is also an open subgroup. Hence H contains an open

subgroup of bH × WK′ , ie it contains a subgroup bH × WK , with K a finite extension of

K′. The sought-for group HK is bH×WK .
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(M′, sM , ηM,0) for M, let AutG(M′, sM , ηM,0) be the group of G-automorphisms
of (M′, sM , ηM,0) and ΛG(M′, sM , ηM,0) = AutG(M′, sM , ηM,0)/M′

ad(F ) be
the group of outer G-automorphisms; if M = G, we will omit the subscript
G.

Remember that we write nG
M = |NorG(M)(F )/M(F )| (cf 1.6).

Lemma 2.4.2 below is a particular case of lemma 7.2 of [K13]. As [K13]
is (as yet) unpublished, we prove lemma 2.4.2 by a direct calculation. As-
sume that G is one of the unitary groups of 2.1 (and that F = Q). If
(M′, sM , ηM,0) ∈ EG(M) and if (H, s, η0) is its image in E(G), then it is
easy to see that M′ determines a H(Q)-conjugacy class of Levi subgroups
of H. 4

Lemma 2.4.2 Assume that G is quasi-split. Let ϕ :
∐

(H,s,η0)∈E(G)

L(H) −→

C. Then∑
(H,s,η0)∈E(G)

|Λ(H, s, η0)|−1
∑

MH∈L(H)

(nH
MH

)−1ϕ(H,MH)

=
∑

M∈L(G)

(nG
M )−1

∑
(M′,sM ,ηM,0)∈EG(M)

|ΛG(M′, sM , ηM,0)|−1ϕ(H,MH),

where, in the second sum, (H, s, η0) is the image of (M′, sM , ηM,0) in E(G)
and MH is the element of L(H) associated to (M′, sM , ηM,0).

(As M′ and MH are isomorphic, we will sometimes write M′ instead of
MH .)

We will use this lemma only for functions ϕH that vanish when their
second argument is not a cuspidal Levi subgroup (see theorem 1.6.6 for
the definition of a cuspidal Levi subgroup). In that case, the lemma is an
easy consequence of lemma 2.4.3 below, that is proved in the same way as
proposition 2.3.1.

In the next lemma, we consider only the case of the group GU∗(n) in
order to simplify the notations. The case of G(U∗(n1) × · · · × U∗(nr)) is
similar.

Lemma 2.4.3 Let n ∈ N∗ and G = GU∗(n). Let T be the diagonal torus

of G, and identify T̂ with C× × (C×)n as in 2.3. Let M be a cuspidal
Levi subgroup of G. Then M is isomorphic to (RE/QGm)r×GU∗(m), with
r,m ∈ N such that n = m + 2r. Let TM be the diagonal torus of M. The

4In the case of unitary groups, this can be seen simply by writing explicit formulas
for H, M and M′. Actually, this fact is true in greater generality and proved in [K13]
7.4 (but we will not need this here) : with notations as above, the group M is a Levi
subgroup of H (for a suitable definition of “Levi subgroup” in that context), and gives a
conjugacy class of Levi subgroups of H because H is quasi-split.
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dual group M̂ is isomorphic to the Levi subgroup

C× ×



∗ 0
. . .

0 ∗
0

GLm(C)

0

∗ 0
. . .

0 ∗


(with blocks of size r,m, r) of Ĝ. Fix an isomorphism T̂M ' T̂ compatible
with this identification.

Then an element (M′, sM , ηM,0) of EG(M) is uniquely determined by sM .

If we assume (as we may) that sM ∈ T̂M ' T̂, then sM ∈ Z(Ĝ)({1} ×
{±1}n)Gal(Q/Q). For every A ⊂ {1, . . . , r} and m1,m2 ∈ N such that m =
m1 +m2 and that m2 is even, set

sA,m1,m2 = (s1, . . . , sr,

m1︷ ︸︸ ︷
1, . . . , 1,

m2︷ ︸︸ ︷
−1, . . . ,−1, sr, . . . , s1),

with si = −1 if i ∈ A and si = 1 if i 6∈ A. If r < n/2, then the set of
(1, sA,m1,m2) is a system of representatives of the set of equivalence classes
of possible sM . If r = n/2 (so m = 0), then every sM is equivalent
to a (1, sA,0,0), and (1, sA,0,0) and (1, sA′,0,0) are equivalent if and only if
{1, . . . , r} = A tA′.

Let sM = (1, (s1, . . . , sn)) ∈ ({1}×{±1}n)Gal(Q/Q). Let (M′, sM , ηM,0) be
the element of EG(M) associated to sM , and (H, s, η0) be its image in E(G).
Let n1 = |{i ∈ {1, . . . , n}|si = 1}, n2 = n − n1, m1 = |{i ∈ {r + 1, . . . , r +
m}|si = 1}|, m2 = m−m1, r1 = (n1−m1)/2, r2 = (n2−m2)/2 (r1 and r2 are
integers by the condition on sM ). Then H = G(U∗(n1) ×U∗(n2)), M′ =
(RE/QGm)r × G(U∗(m1) × U∗(m2)), and nH

M ′ = 2r(r1)!(r2)!. Moreover,
|ΛG(M′, sM , ηM,0)| is equal to 1 if M 6= G.

We end this section by recalling a result of [K13] 7.3. Assume again that
G is any connected reductive group on a local or global field F . Let M be
a Levi subgroup of G.

Definition 2.4.4 Let γ ∈ M(F ) be semi-simple. An endoscopic G-quadruple
for (M, γ) is a quadruple (M′, sM , ηM,0, γ

′), where (M′, sM , ηM,0) is an en-
doscopic G-triple for M and γ′ ∈ M′(F ) is a semi-simple (M,M′)-regular
element such that γ is an image of γ′ (the unexplained expressions in this sen-
tence are defined in [K7] 3). An isomorphism of endoscopic G-quadruples
α : (M′

1, sM,1, ηM,0,1, γ
′
1) −→ (M′

2, sM,2, ηM,0,2, γ
′
2) is an isomorphism of

endoscopic G-triples α : M′
1 −→ M′

2 such that α(γ′1) and γ′2 are stably
conjugate.

Let I be a connected reductive subgroup of G that contains a maximal
torus of G. There is a canonical Gal(F/F )-equivariant inclusion Z(Ĝ) ⊂
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Z(Î). Let KG(I/F ) be the set of elements in (Z(Î)/Z(Ĝ))Gal(F/F ) whose
image by the morphism (Z(Î)/Z(Ĝ))Gal(F/F ) −→ H1(F,Z(Ĝ)) (coming
from the exact sequence 1 −→ Z(Ĝ) −→ Z(Î) −→ Z(Î)/Z(Ĝ) −→ 1) is
trivial if F is local and locally trivial if F is global. 5 If I is included in M,
there is an obvious morphism KG(I/F ) −→ KM(I/F ).

Fix γ ∈ M(F ) semi-simple, and let I = CentM(γ)0. Let (M′, sM , ηM,0, γ
′)

be an endoscopic G-quadruple for (M, γ). Let I ′ = CentM′(γ′)0. As γ′ is
(M,M′)-regular, I ′ is an inner form of I (cf [K7] 3), so there is a canonical
isomorphism Z(Î) ' Z(Î ′). Let κ(M′, sM , ηM,0, γ

′) be the image of sM by
the morphism Z(M̂′) ⊂ Z(Î ′) ' Z(Î).

Lemma 2.4.5 The map (M′, sM , ηM,0, γ
′) 7−→ κ(M′, sM , ηM,0, γ

′) induces
a bijection from the set of isomorphism classes of endoscopic G-quadruples
for (M, γ) to KG(I/F ). Moreover, the automorphisms of endoscopic G-
quadruples for (M, γ) are all inner.

This lemma is lemma 7.1 of [K13]. It is a generalization of lemma 9.7 of
[K7] and can be proved in the same way.

5This definition is coherent with the definition of K(I0/Q) in 1.6 : in 1.6, I0 is the

centralizer of a semi-simple elliptic element, so (Z( bI0)/Z( bG))Gal(Q/Q) is finite.
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Chapter Three

Discrete series

3.1 NOTATIONS

Let G be a connected reductive algebraic group over R. In this chapter,
we form the L-groups with the Weil group WR. Remember that WR =
WCtWCτ , with WC = C×, τ2 = −1 ∈ C× and, for every z ∈ C×, τzτ−1 = z,
and that WR acts on Ĝ via its quotient Gal(C/R) 'WR/WC. Let Π(G(R))
(resp. Πtemp(G(R))) be the set of equivalence classes of irreductible (resp.
irreducible and tempered) admissible representations of G(R). For every
π ∈ Π(G(R)), let Θπ be the Harish-Chandra character of π (seen as a real
analytic function on the set Greg(R) of regular elements of G(R)).

Assume that G(R) has a discrete series. Let AG be the maximal (R-)split
torus in the center of G and G be an inner form of G such that G/AG is
R-anisotropic. Write q(G) = dim(X)/2, where X is the symmetric space
of G(R). Let Πdisc(G(R)) ⊂ Π(G(R)) be the set of equivalence classes of
representations in the discrete series.

The set Πdisc(G(R)) is the disjoint union of finite subsets called L-packets;
L-packets all have the same number of elements and are parametrized by
equivalence classes of elliptic Langlands parameters ϕ : WR −→ LG, or,
equivalently, by isomorphism classes of irreducible representations E of G(R).
Let Π(ϕ) (resp. Π(E)) be the L-packet associated to the parameter ϕ (resp.
to the representation E), and let d(G) be the cardinality of a L-packet of
Πdisc(G).

If π ∈ Πdisc(G(R)), we will write fπ for a pseudo-coefficient of π (cf [CD]).

For every elliptic Langlands parameter ϕ : WR −→ LG, write

SΘϕ =
∑

π∈Π(ϕ)

Θπ.

We are going to calculate the integer d(G) for the unitary groups of 2.1.
The following definition will be useful (this notion already appeared in the-
orem 1.6.6 and in section 2.4).

Definition 3.1.1 Let G be a connected reductive group over Q. Denote by
AG the maximal Q-split torus in the center of G. G is called cuspidal if the
group (G/AG)R has a maximal R-torus that is R-anisotropic.
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Let p, q ∈ N be such that p ≥ q and p + q ≥ 1. Let G = GU(p, q), and
use the Hermitian form Ap,q of 2.2 to define G. Then AG = GmIp+q. Let
T be the diagonal maximal torus of G. Let

Tell =





a1 0
. . .

0 aq

0
0 b1

. .
.

bq 0

0

c1 0
. . .

0 cp−q

0

0 bq

. .
.

b1 0
0

aq 0
. . .

0 a1





,

where ai, bi, ci ∈ RE/QGm are such that :{
aibi + aibi = 0 for 1 ≤ i ≤ q

a1a1 + b1b1 = · · · = aqaq + bqbq = c1c1 = · · · = cp−qcp−q
.

Then Tell is a maximal torus of G, and Tell/AG is R-anisotropic. So G is
cuspidal. Write

uG =
1√
2

 Iq 0 −(i⊗ i)Jq

0 (
√

2⊗ 1)Ip−q 0
(i⊗ i)Jq 0 Iq

 ∈ SU(p, q)(C).

Conjugacy by u−1
G is an isomorphism α : Tell,C

∼−→ TC. Use α to identify
T̂ell and T̂ = C× × (C×)p+q. Then the action of Gal(C/R) = {1, τ} on T̂ell

is given by :
τ((λ, (λ1, . . . , λp+q))) = (λλ1 . . . λp+q, (λ−1

1 , . . . , λ−1
p+q)).

Let ΩG = W (Tell(C),G(C)) and ΩG(R) = W (Tell(R),G(R)) be the Weyl
groups of Tell over C and R. The group ΩG 'W (T(C),G(C)) ' Sp+q acts
on T(C) by permuting the diagonal entries. The subgroup ΩG(R) of ΩG is
the group Sp × Sq if p 6= q, and the union of Sq × Sq and of the set of
permutations that send {1, . . . , q} to {q + 1, . . . , n} if p = q. Hence

d(G) =


(p+ q)!
p!q!

if p 6= q

(2q)!
2(q!)2

if p = q
.

Remark 3.1.2 The torus Tell is isomorphic to G(U(1)p+q) by the mor-
phism

βG :

 diag(a1, . . . , aq) 0 diag(b1, . . . , bq)Jq

0 diag(c1, . . . , cp−q) 0
Jqdiag(b1, . . . , bq) 0 diag(aq, . . . , a1)


7−→ (a1 − b1, . . . , aq − bq, c1, . . . , cp−q, aq + bq, . . . , a1 + b1).

These constructions have obvious generalizations to the groups G(U(p1, q1)×
· · · ×U(pr, qr)). (In particular, these groups are also cuspidal.)
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3.2 THE FONCTIONS ΦM (γ,Θ)

In this section, we recall a construction of Arthur and Shelstad.
Let G be a connected reductive group on R. A virtual character Θ on

G(R) is a linear combination with coefficients in Z of functions Θπ, π ∈
Π(G(R)). The virual character Θ is called stable if Θ(γ) = Θ(γ′) for every
γ, γ′ ∈ Greg(R) that are stably conjugate.

Let T be a maximal torus of G. Let A be the maximal split subtorus of
T and M = CentG(A) (a Levi subgroup of G). For every γ ∈ M(R), set

DG
M (γ) = det(1−Ad(γ), Lie(G)/Lie(M)).

Lemma 3.2.1 ([A6] 4.1, [GKM] 4.1) Let Θ be a stable virtual character on
G(R). Then the function

γ 7−→ |DG
M (γ)|1/2

R Θ(γ)

on Treg(R) extends to a continuous function on T(R), that will be denoted
by ΦM (.,Θ) or ΦG

M (.,Θ).

We will often see ΦM (.,Θ) as a function on M(R), defined as follows : if
γ ∈ M(R) is M(R)-conjugate to a γ′ ∈ T(R), set ΦM (γ,Θ) = ΦM (γ′,Θ); if
there is no element of T(R) conjugate to γ ∈ M(R), set ΦM (γ,Θ) = 0.

Remark 3.2.2 The function ΦM (.,Θ) on M(R) is invariant by conjugacy
by NorG(M)(R) (because Θ and DG

M are).

3.3 TRANSFER

We first recall some definitions from [K9] §7.
Let G be a connected reductive algebraic group over Q. For every maximal

torus T of G, let BG(T) be the set of Borel subgroups of GC containing T.
Assume that G has a maximal torus TG such that (TG/AG)R is anisotropic,
and let G be an inner form of G over R such that G/AG,R is anisotropic.
Write ΩG = W (TG(C),G(C)). Let ϕ : WR −→ LG be an elliptic Langlands
parameter.

Let (H, s, η0) be an elliptic endoscopic triple for G. Choose a L-morphism
η : LH −→ LG extending η0 : Ĥ −→ Ĝ (we assume that such a η exists),
and let ΦH(ϕ) be the set of equivalence classes of Langlands parameters ϕH :
WR −→ LH such that η◦ϕH and ϕ are equivalent. Assume that the torus TG

comes from a maximal torus TH of H, and fix an admissible isomorphism
j : TH

∼−→ TG. Write ΩH = W (TH(C),H(C)). Then j∗(Φ(TH ,H)) ⊂
Φ(TG,G), so j induces a map j∗ : BG(TG) −→ BH(TH) and an injective
morphism ΩH −→ ΩG; we use this morphism to see ΩH as a subgroup of
ΩG.
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Let B ∈ BG(TG), and let BH = j∗(B). Set

Ω∗ = {ω ∈ ΩG|j∗(ω(B)) = BH}
= {ω ∈ ΩG|ω−1(j∗(Φ(TH ,BH))) ⊂ Φ(TG,B)}.

Then, for every ω ∈ ΩG, there exists a unique pair (ωH , ω∗) ∈ ΩH × Ω∗
such that ω = ωHω∗. Moreover, there is a bijection ΦH(ϕ) ∼−→ Ω∗ defined
as follows : if ϕH ∈ ΦH(ϕ), send it to the unique ω∗(ϕH) ∈ Ω∗ such that
(ω∗(ϕH)−1 ◦ j,B,BH) is aligned with ϕH (in the sense of [K9] §7 p 184).

The Borel subgroup B also defines a L-morphism ηB : LTG −→ LG,
unique up to Ĝ-conjugacy (cf [K9] p 183).

We will use the normalization of the transfer factors of [K9] §7, that we
recall in the next definition.

Definition 3.3.1 For every γH ∈ TH(R), set (notations are as above) :

∆j,B(γH , γ) = (−1)q(G)+q(H)χB(γ)
∏

α∈Φ(TG,B)−j∗(Φ(TH ,BH))

(1− α(γ−1)),

where γ = j(γH) and χB is the quasi-character of TG(R) associated to the
1-cocyle a : WR −→ T̂G such that η ◦ ηBH

◦ ĵ and ηB .a are conjugate under
Ĝ.

Remark 3.3.2 (1) Let ϕH ∈ ΦH(ϕ) be such that ω∗(ϕH) = 1. After
replacing ϕ (resp. ϕH) by a Ĝ-conjugate (resp. a Ĥ-conjugate), we
can write ϕ = ηB ◦ ϕB (resp. ϕH = ηBH

◦ ϕBH
), where ϕB (resp.

ϕBH
) is a Langlands parameter for TG (resp. TH). Let χϕ,B (resp.

χϕH ,BH
) be the quasi-character of TG(R) (resp. TH(R)) associated to

ϕB (resp. ϕBH
). Then χB = χϕ,B(χϕH ,BH

◦ j−1)−1.

(2) Let ω ∈ ΩG. Write ω = ωHω∗, with ωH ∈ ΩH and ω∗ ∈ Ω∗. Then
∆j,ω(B) = det(ω∗)∆j,B , where det(ω∗) = det(ω∗, X∗(TG)).

Let p, q ∈ N be such that p ≥ q and that n := p+ q ≥ 1. Fix n1, n2 ∈ N∗
such that n2 is even and n1 + n2 = n. Let G be the group GU(p, q) and
(H, s, η0) be the elliptic endoscopic triple for G associated to (n1, n2) as
in proposition 2.3.1. In section 3.1, we defined elliptic maximal tori TG =
TG,ell and TH = TH,ell of G and H, and isomorphisms βG : TG

∼−→
G(U(1)n) and βH : TH

∼−→ G(U(1)n). Take j = β−1
G ◦ βH : TH

∼−→ TG.
(It is easy to see that this is an admissible isomorphism.) We also defined
uG ∈ G(C) such that Int(u−1

G ) sends TG,C to the diagonal torus T of GC.
This defines an isomorphism (not compatible with Galois actions in general)
T̂G ' T̂. The composition of this isomorphism and of the embedding T̂ ⊂ Ĝ
defined in 2.3 gives an embedding T̂G ⊂ Ĝ. Conjugacy by uG also gives an
isomorphism ΩG ' Sn. Via this isomorphism, ΩH = Sn1 ×Sn2 , embedded
in Sn in the obvious way.
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Remark 3.3.3 It is easy to give simple descriptions of the subset Ω∗ of ΩG

and of the bijection ΦH(ϕ) ∼−→ Ω∗ for a particular choice of B ∈ BG(TG).
Let

B = Int(uG)

 ∗ ∗
. . .

0 ∗

 .

Then

Ω∗ = {σ ∈ Sn|σ−1
|{1,...,n1} and σ−1

|{n1+1,...,n} are non-decreasing}.

As WC is commutative, we may assume after replacing η by a Ĝ-conjugate
that η sends {1} ×WC ⊂ LH to T̂G ×WC ⊂ LG. As moreover WC acts
trivially on Ĥ,

η((1, z)) = ((zazb,

(
za1zb1In1 0

0 za2zb2In2

)
), z), z ∈WC,

with a, b, a1, a2, b1, b2 ∈ C such that a − b, a1 − b1, a2 − b2 ∈ Z. Let ϕ :
WR −→ LG be an elliptic Langlands parameter. We may assume that ϕ|WC

is

z 7−→ ((zλzµ,

 zλ1zµ1 0
. . .

0 zλnzµn

), z),

with λ, µ, λ1, . . . , λn, µ1, . . . , µn ∈ C such that λ − µ ∈ Z, λi − µi ∈ Z for
every i ∈ {1, . . . , n} and that the λi are pairwise distinct. Then there is a
commutative diagram

ΦH(ϕ) ∼ // Ω∗

∼
vvmmmmmmmmmmmmmm

{I ⊂ {1, . . . , n}, |I| = n1}

∼

iiRRRRRRRRRRRRRR

where :

∗ the horizontal arrow is ϕH 7−→ ω∗(ϕH);

∗ the arrow on the right is ω∗ 7−→ ω−1
∗ ({1, . . . , n1});

∗ if I ⊂ {1, . . . , n} has n1 elements, write I = {i1, . . . , in1} and {1, . . . , n}−
I = {j1, . . . , jn2} with i1 < · · · < in1 and j1 < · · · < jn2 , and associate
to I the unique ϕH ∈ ΦH(ϕ) such that, for z ∈WC,

ϕH(z) = ((zλ−azµ−b,

 zλi1−a1zµi1−b1 0
. . .

0 zλin1−a1 zµin1−b1

 ,
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. . .

0 zλjn2−a2 zµjn2−b2

), z).

Remember that a Levi subgroup of G or H is called standard if it is a
Levi subgroup of a standard parabolic subgroup and contains the diagonal
torus. Let M be a cuspidal standard Levi subgroup of G, and let r ∈
{1, . . . , q} be such that M = M{1,...,r} ' (RE/QGm)r × GU(p − r, q − r).
Let (M′, sM , ηM,0) be an element of EG(M) (cf 2.4) whose image in E(G)
is (H, s, η0). There is a conjugacy class of Levi subgroups of H associated
to (M′, sM , ηM,0); let MH be the standard Levi subgroup in this class. If
m1,m2, r1, r2 are defined as in lemma 2.4.3, then

MH = H ∩

 Tr1 0 0
0 GU∗(m1) 0
0 0 Tr1

 ,

 Tr2 0 0
0 GU∗(m2) 0
0 0 Tr2

 ,

with

Tr1 =

 ∗ 0
. . .

0 ∗

 ⊂ RE/QGLr1 and Tr2 =

 ∗ 0
. . .

0 ∗

 ⊂ RE/QGLr2 .

Hence MH ' G(U∗(m1)×U∗(m2))× (RE/QGm)r1+r2 . Set

TMH
= TG(U∗(m1)×U∗(m2)),ell × (RE/QGm)r1+r2

TM = TGU(p−r,q−r),ell × (RE/QGm)r.

Then TMH
(resp. TM ) is an elliptic maximal torus of MH (resp. M). We

have isomorphisms

βG(U∗(m1)×U∗(m2)) × id : TMH
= TG(U∗(m1)×U∗(m2)),ell × (RE/QGm)r

∼−→ G(U(1)m1+m2)× (RE/QGm)r

β−1
GU(p−r,q−r) × id : G(U(1)p+q−2r)× (RE/QGm)r

∼−→ TGU(p−r,q−r),ell × (RE/QGm)r = TM .

Let

jM : TMH

∼−→ TM

be the composition of these isomorphisms (note that p+ q− 2r = m1 +m2).
As before, the isomorphism jM is admissible and induces maps jM∗ :

Φ(TMH
,H) −→ Φ(TM ,G) and j∗M : BG(TM ) −→ BH(TMH

) (and similar
maps if we replace G by M and H by MH). It is easy to see that all the



main April 10, 2009

DISCRETE SERIES 55

real roots of Φ(TM ,G) (resp. Φ(TM ,M)) are in jM∗(Φ(TMH
,H)) (resp.

jM∗(Φ(TMH
,MH))).

Define an element u ∈ GU(p− r, q− r)(C) in the same way as the elemnt
uG of 3.1, such that Int(u−1) sends TGU(p−r,q−r),ell,C to the diagonal torus
of GU(p − r, q − r)C. Let uM = diag(Ir, u, Ir)u−1

G ∈ G(C). Then Int(u−1
M )

sends TM,C onto TG,C. Similarly, we get uMH
∈ H(C) such that Int(u−1

MH
)

sends TMH
to TH,C. The following diagram is commutative :

TM,C
Int(u−1

M ) //

jM

��

TG,C

j

��
TMH ,C

Int(u−1
MH

)

// TH,C

Use conjugacy by uM (resp. uMH
) to identify ΩG (resp. ΩH) andW (TM (C),G(C))

(resp. W (TMH
(C),H(C))). If B ∈ BG(TM ), we use Int(u−1

M )(B) ∈ BG(TG)
to define (as before) a subset Ω∗ of ΩG and a bijection ΦH(ϕ) ∼−→ Ω∗.

By [K13] p 23, the morphism η determines a L-morphism ηM : LMH =
LM′ −→ LM, unique up to M̂-conjugacy and extending ηM,0. We use this
morphism ηM to define transfer factors ∆jM ,BM

, for every BM ∈ BM (TM )
: if γH ∈ TMH

(R), set

∆jM ,BM
(γH , γ) = (−1)q(G)+q(H)χBM

(γ)
∏

α∈Φ(TM ,BM )−jM∗(Φ(TMH
,BMH

))

(1−α(γ−1))

(note the sign), where γ = jM (γH), BMH
= j∗M (BM ) and χBM

is the quasi-
character of TM (R) associated to the 1-cocyle aM : WR −→ T̂M such that
ηM ◦ ηBMH

◦ ĵM and ηBM
.aM are M̂-conjugate.

The next proposition is a generalization of the calculations of [K9] p 186.

Proposition 3.3.4 Fix B ∈ BG(TM ) (that determines Ω∗ and ΦH(ϕ) ∼−→
Ω∗), et and let BM = B ∩M. Let γH ∈ TMH

(R) and γ = jM (γH). Then

∆jM ,BM
(γH , γ)ΦM (γ−1, SΘϕ) =

∑
ϕH∈ΦH(ϕ)

det(ω∗(ϕH))ΦMH
(γ−1

H , SΘϕH
).

Proof. Both sides of the equality that we want to prove depend on the
choice of the L-morphism η : LH −→ LG extending η0 : Ĥ −→ Ĝ. Let η′ be
another such L-morphism. Then the difference between η′ and η is given by
an element of H1(WR, Z(Ĥ)); let χ be the corresponding quasi-character of
H(R). Then, if we replace η by η′, the transfer factor ∆jM ,BM

is multiplied
by χ and the stable characters SΘϕH

, ϕH ∈ ΦH(ϕ), are multiplied by χ−1;
hence both sides of the equality are multiplied by χ(γH). It is therefore
enough to prove the proposition for a particular choice of η.

We choose η such that

η((1, τ)) = ((1,
(

0 In1

(−1)n1In2 0

)
), τ)
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and that, for every z ∈ C× = WC,

η((1, z)) = ((1,
(
zn2/2z−n2/2In1 0

0 z−n1/2zn1/2In2

)
), z).

We first recall the formulas for ΦM (., SΘϕ) and ΦMH
(., SΘϕH

). The ref-
erence for this is [A6] p 272-274. 1

Let Vϕ be the irreducible representation of G(R) corresponding to ϕ
and ξϕ be the quasi-character by which AG(R)0 acts on Vϕ. Let B0 =
Int(u−1

M )(B), Z be the maximal compact subgroup of the center of G(R)
and tG = Lie(TG). Define functions ρG and ∆G on tG(R) by :

ρG =
1
2

∑
α∈Φ(TG,B0)

α

∆G =
∏

α∈Φ(TG,B0)

(eα/2 − e−α/2)

(we use the same notations for characters on TG and the linear forms
on tG that are defined by differentiating these characters). Notice that
TG(R) = Z exp(tG(R)) (this is a general fact; here, TG(R) is even equal
to exp(tG(R))). The representation Vϕ corresponds to a pair (ζϕ, λϕ), where
ζϕ is a quasi-character of Z and λϕ is a linear form on tG(C), such that :

• λϕ is regular dominant;
• the morphism Z × tG(R) −→ C×, (z,X) 7−→ ζϕ(z)e(λϕ−ρG)(X), factors

through the surjective morphism Z × tG(R) −→ TG(R), (z,X) 7−→
z exp(X), and defines a quasi-character on TG(R), whose restriction to
AG(R)0 is ξϕ.

Note that the quasi-character z exp(X) 7−→ ζϕ(z)e(λϕ−ρG)(X) on TG(R) is
equal to the quasi-character χϕ,B0 defined in remark 3.3.2 (1). Remember
the Weyl character formula : if γ ∈ TG,reg(R) is such that γ = z exp(X),
with z ∈ Z and X ∈ tG(R), then

Tr(γ, Vϕ) = (−1)q(G)SΘϕ(γ) = ∆G(X)−1ζϕ(z)
∑

ω∈ΩG

det(ω)e(ωλϕ)(X).

Let R be a root system whose Weyl group W (R) contains −1. Then,
to every pair (Q+, R+) such that R+ ⊂ R and Q+ ⊂ R∨ are positive root
systems, we can associate an integer c(Q+, R+). The definition of c(Q+, R+)
is recalled in [A6] p 273.

1Note that there is a mistake in this reference. Namely, with the notations used below,
the formula of [A6] is correct for elements in the image of the map Z × tM (R) −→
TM (R), (z, X) 7−→ z exp(X), but it is not true in general, as claimed in [A6], that the
stable discrete series characters vanish outside of the image of this map. This is not a
problem here because the exponential map tM (R) −→ TM (R) is surjective unless M is a
torus, and, if M is a torus, elements in M(R) that are not in the image of the exponential
map are also not in Z(G)(R)Gder(R), so all discrete series characters vanish on these
elements. A formula that is correct in the general case can be found in section 4 of
[GKM].
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Let R be the set of real roots in Φ(TM ,G), R+ = R ∩ Φ(TM ,B) and
tM = Lie(TM ). If X is a regular element of tM (R), let

R+
X = {α ∈ R|α(X) > 0},

εR(X) = (−1)|R
+
X∩(−R+)|.

If ν is a linear form on tM (C) such that ν(α∨) 6= 0 for every α∨ ∈ R∨, let

Q+
ν = {α∨ ∈ R∨|ν(α∨) > 0}.

Define a function ∆M on tM (R) by

∆M =
∏

α∈Φ(TM ,BM )

(eα/2 − e−α/2).

As Int(uM ) sends TG(C) onto TM (C), Ad(uM ) defines an isomorphism
tM (C)∗ ∼−→ tG(C)∗.

Let γ ∈ TM,reg(R). If there exist z ∈ Z and X ∈ tM (R) such that
γ = z exp(X), then (formula (4.8) of [A6])

ΦM (γ, SΘϕ) = (−1)q(G)∆M (X)−1εR(X)ζϕ(z)
∑

ω∈ΩG

det(ω)c(Q+
Ad(uM )ωλ, R

+
X)e(Ad(uM )ωλ)(X).

There are similar objects, defined by replacing G by H, etc, and similar
formulas for the functions ΦMH

(., SΘϕH
).

Let γH ∈ TMH
(R) and γ = jM (γH); we want to prove the equality of the

proposition. We may assume that γ is regular in G (because the set of γH

such that jM (γH) is G-regular is dense in TMH
(R)). Note that, as TM are

TMH
are both isomorphic to RE/QGr

m × G(U(1)m1+m2), the exponential
maps tM (R) −→ TM (R) and tMH

(R) −→ TMH
(R) are surjective unless M

is a torus (ie m1 + m2 = 0). If M is a torus (so MH is also a torus) and
γH is not in the image of the exponential map, then c(γH) = c(γ) < 0, so
γ 6∈ Z(G)(R)Gder(R) and γH 6∈ Z(H)(R)Hder(R), and all discrete series
characters vanish on γ and γH ; so the equality of the proposition is obvious.

These remarks show that we may assume that there exists XH ∈ tMH
(R)

such that γ−1
H = exp(XH). Then γ−1 = exp(X), with X = jM (XH) ∈

tM (R). As all the real roots of Φ(TM ,G) are in jM∗(Φ(TMH
,H)), R is

equal to jM∗(RH). Hence R+
X = jM∗(R+

H,XH
) and εR(X) = εRH

(XH). On
the other hand, using the description of the bijection ΦH(ϕ) ∼−→ Ω∗ given
above and the choice of η, it is easy to see that, for every ϕH ∈ ΦH(ϕ),
ζϕH

= ζϕ and λϕH
= ω∗(ϕH)(λϕ) ◦ jM + ρH − ρG ◦ jM . As ρH − ρG ◦ jM is

ΩH -invariant and vanishes on the elements of R∨H , this implies that, for every
ϕH ∈ ΦH(ϕ) and ωH ∈ ΩH , Q+

Ad(u−1
M )ωHω∗(ϕH)λϕ

= jM∗(Q+

Ad(u−1
MH

)ωHλϕH

).

So we get :

(−1)q(H)
∑

ϕH∈ΦH(ϕ)

det(ω∗(ϕH))ΦMH
(γ−1

H , SΘϕH
)

= ∆MH
(XH)−1εR(X)

∑
ω∗∈Ω∗

det(ω∗)
∑

ωH∈ΩH

det(ωH)c(Q+

Ad(u−1
M )ωHω∗λϕ

, R+
X)
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eAd(u−1
M )(ωHω∗λϕ+ρH◦j−1

M −ρG)(X)

= (−1)q(G)∆MH
(XH)−1∆M (X)eρH(XH)−ρG(X)ΦM (γ−1, SΘϕ).

To finish the proof, it is enough to show that

(−1)q(G)+q(H)∆jM ,BM
(γH , γ) = ∆MH

(XH)−1∆M (X)eρH(XH)−ρG(X).

Let Φ+ = Φ(TM ,B), Φ+
H = jM∗(Φ(TMH

, j∗M (B))), Φ+
M = Φ(TM ,BM ),

Φ+
MH

= jM∗(Φ(TMH
, j∗M (BM ))). Then

∆MH
(XH)−1∆M (X)eρH(XH)−ρG(X) =

∏
α∈Φ+

M−Φ+
MH

(eα(X)/2 − e−α(X)/2)
∏

α∈Φ+−Φ+
H

e−α(X)/2

=
∏

α∈Φ+
M−Φ+

MH

(1− α(γ−1))
∏

α∈Φ+−(Φ+
H∪Φ+

M )

e−α(X)/2.

So it is enough to show that

χBM
(γ) =

∏
α∈Φ+−(Φ+

H∪Φ+
M )

e−α(X)/2.

Remember that χBM
is the quasi-character of TM (R) corresponding to the

1-cocyle aM : WR −→ T̂M such that ηM ◦ ηBMH
◦ ĵM and ηBM

.aM are

M̂-conjugate, where BMH
= j∗M (BM ). So the equality above is an easy

consequence of the definitions of ηBM
and ηBMH

and of the choice of η.
�

Remark 3.3.5 As ∆jM ,BM
(γH , γ) = 0 if γH is not (M,MH)-regular, the

right hand side of the equality of the proposition is non-zero only if γH is
(M,MH)-regular.

3.4 CALCULATION OF CERTAIN ΦM (γ,Θ)

As before, let G = GU(p, q), with p, q ∈ N such that p ≥ q and n :=
p + q ≥ 1. Fix s ∈ {1, . . . , q}, and set S = {1, . . . , s} and M = MS (with
notations as in 2.2). The goal of this section is to calculate ΦM (γ,Θ), for Θ
the character of a L-packet of the discrete series of G(R) associated to an
algebraic representation of GC and certain γ in M(R).

The linear part of M (resp. Ms) is LS = (RE/QGm)s (resp. Ls =
RE/QGLs), and its Hermitian part is Gs = GU(p − s, q − s). The group
LS is a minimal Levi subgroup of Ls. The Weyl group W (LS(Q),Ls(Q))
is obviously isomorphic to Ss, and we identify these groups; we extend the
action of Ss on LS to an action on M = LS × Gs, by declaring that the
action is trivial on Gs.

For every r ∈ {1, . . . , q}, let tr = r(r − n).
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Proposition 3.4.1 Let E be an irreducible algebraic representation of GC.
Let m ∈ Z be such that the central torus Gm,CIn of GC acts on E by
multiplication by the character z 7−→ zm. For every r ∈ {1, . . . , q}, let
t′r = tr + m. Choose an elliptic Langlands parameter ϕ : WR −→ LG
corresponding to E (seen as an irreducible representation of GU(n)(R) ⊂
GU(n)(C) ' G(C)), and let Θ = (−1)q(G)SΘϕ. Let γ ∈ M(R) be semi-
simple elliptic. Write γ = γlγh, with γl = (λ1, . . . , λs) ∈ (C×)s = LS(R)
and γh ∈ Gs(R). Then c(γ) = c(γh) > 0 unless M is a torus (ie s = q). If
c(γ) < 0, then ΦM (γ,Θ) = 0. If c(γ) > 0, then :

(i) If c(γ)|λr|2 ≥ 1 for every r ∈ {1, . . . , s}, then ΦM (γ,Θ) is equal to

2s
∑
S′⊂S
S′3s

(−1)dim(AM /AM
S′

)|W (LS(Q),LS′(Q))|−1

∑
σ∈Ss

|DMS′
M (σγ)|1/2

R δ
1/2
PS′ (R)(σγ)Tr(σγ,RΓ(Lie(NS′), E)<t′r,r∈S′).

(ii) If 0 < c(γ)|λr|2 ≤ 1 for every r ∈ {1, . . . , s}, then ΦM (γ,Θ) is equal to

(−1)s2s
∑
S′⊂S
S′3s

(−1)dim(AM /AM
S′

)|W (LS(Q),LS′(Q))|−1

∑
σ∈Ss

|DMS′
M (σγ)|1/2

R δ
1/2
PS′ (R)(σγ)Tr(σγ,RΓ(Lie(NS′), E)>t′r,r∈S′).

The notations RΓ(Lie(NS′), E)<t′r,r∈S′ and RΓ(Lie(NS′), E)>t′r,r∈S′ are
those of proposition 1.4.5.

Proof. Let γ ∈ M(R) be semi-simple elliptic. Use the notations of 3.3, in
particular of the proof of proposition 3.3.4. As γ is elliptic in M(R), we may
assume that γ ∈ TM (R). The fact that ΦM (γ,Θ) = 0 if c(γ) < 0 (and that
this can happen only if M is a torus) has already been noted in the proof of
proposition 3.3.4. So we may assume that c(γ) > 0.

The proofs of (i) and (ii) are similar. Let us prove (ii). Assume that
c(γ)|λr|2 ≤ 1 for every r ∈ S. As both sides of the equality we want
to prove are continuous functions of γ, we may assume that c(γ)|λr|2 <
1 for every r ∈ S and that γ is regular in G. Let X be an element of
tM (R) such that γ = exp(X) (remember that, as the torus TM is isomorphic
to (RE/QGm)s × G(U(1)n−2s), such a X exists if and only if c(γ) > 0).
Choose an element B of BG(TM ) such that B ⊂ PS . There is a pair (ζ, λG)
associated to E as in 3.3 (ζ is a quasi-character of Z, and λG ∈ tG(C)∗).
Write λ = Ad(uM )(λG) ∈ tM (C)∗ and ρB = 1

2

∑
α∈Φ(TM ,B)

α. Then λ− ρB is

the highest weight of E relative to (TM ,B).
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Let S′ ⊂ S be such that s ∈ S′. We use Kostant’s theorem (see eg
[GHM] §11) to calculate the trace of γ on RΓ(Lie(NS′), E)>t′r,r∈S′ . Let Ω =
W (TM (C),G(C)), ` be the length function on Ω, ΩS′ = W (TM (C),MS′(C))
and Φ+ = Φ(TM ,B). For every ω ∈ Ω, let Φ+(ω) = {α ∈ Φ+|ω−1α ∈
−Φ+}. Then Ω′S′ := {ω ∈ Ω|Φ+(ω) ⊂ Φ(TM ,NS′)} is a system of represen-
tatives of ΩS′ \ Ω. Kostant’s theorem says that, for every k ∈ N,

Hk(Lie(NS′), E) '
⊕

ω∈Ω′
S′ ,`(ω)=k

Vω(λ)−ρB
,

where, for every ω ∈ Ω, Vω(λ)−ρB
is the algebraic representation of MS′,C

with highest weight ω(λ)− ρB (relative to (TM ,B ∩MS′,C)).
For every r ∈ {1, . . . , s}, let

$r : Gm −→ TM , λ −→

 λIr 0
In−2r

0 λ−1Ir

 ;

we use the same notation for the morphism Lie(Gm) −→ tM obtained by
differentiating $r. Let k ∈ N. By definition of the truncation,

Hk(Lie(NS′), E)>t′r,r∈S′ '
⊕

ω

Vω(λ)−ρB
,

where the sum is taken over the set of ω ∈ Ω′S′ of length k and such that,
for every r ∈ S′, 〈ω(λ) − ρB , $r〉 > tr. As tr = 〈−ρB , $r〉 for every r ∈
{1, . . . , s}, the last condition on ω is equivalent to : 〈ω(λ), $r〉 > 0, for every
r ∈ S′.

On the other hand, by the Weyl character formula, for every ω ∈ Ω′S′ ,

Tr(γ, Vω(λ)−ρB
) = ∆MS′ (X)−1

∑
ωM∈ΩS′

det(ωM )e(ωM (ω(λ)−ρB+ρS′ ))(X),

where ρS′ = 1
2

∑
α∈Φ(TM ,B∩MS′,C)

α. As ρS′ − ρB is invariant by ΩS′ and

e(ρS′−ρB)(X) = δ
−1/2
PS′ (R)(γ),

this formula becomes

Tr(γ, Vω(λ)−ρB
) = ∆MS′ (X)−1δ

−1/2
PS′ (R)(γ)

∑
ωM∈ΩS′

det(ωM )e(ωM ω(λ))(X).

Hence

Tr(γ,RΓ(Lie(NS′), E)>t′r,r∈S′)

= ∆MS′ (X)−1δ
−1/2
PS′ (R)(γ)

∑
ωM∈ΩS′

∑
ω

det(ωMω)e(ωM ω(λ))(X),

where the second sum is taken over the set of ω ∈ Ω′S′ such that 〈ω(λ), $r〉 >
0 for every r ∈ S′. As the $r, r ∈ S′, are invariant by ΩS′ , for every
ωM ∈ ΩS′ , ω ∈ Ω′S′ and r ∈ S′, 〈ω(λ), $r〉 = 〈ωMω(λ), $r〉. Hence :

Tr(γ,RΓ(Lie(NS′), E)>t′r,r∈S′) = ∆MS′ (X)−1δ
−1/2
PS′ (R)(γ)

∑
ω

det(ω)e(ω(λ))(X),
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where the sum is taken over the set of ω ∈ Ω such that 〈ω(λ), $r〉 > 0 for
every r ∈ S′.

Moreover,

|DMS′
M (γ)|1/2 = |∆MS′ (X)||∆M (X)|−1.

But all the roots of TM in Lie(MS′)/Lie(M) are complex, so :

∆MS′ (X)∆M (X)−1 =
∏

α∈Φ(TM ,Lie(M
S′ )/Lie(M))

α>0

(eα(X)/2 − e−α(X)/2) ∈ R+,

and

|DMS′
M (γ)|1/2 = ∆MS′ (X)∆M (X)−1.

Finally,

|DMS′
M (γ)|1/2δ

1/2
PS′ (R)(γ)Tr(γ,RΓ(Lie(NS′), E)>t′r,r∈S′) = ∆M (X)−1

∑
ω

det(ω)e(ω(λ))(X),

where the sum is taken as before on the set of ω ∈ Ω such that 〈ω(λ), $r〉 > 0
for every r ∈ S′.

The action of the group Ss on TM (C) gives an injective morphism Ss −→
Ω. Use this morphism to see Ss as a subgroup of Ω. For every σ ∈ Ss,
det(σ) = 1, and the function ∆M is invariant by Ss. Hence :∑
σ∈Ss

|DMS′
M (σγ)|1/2δPS′ (R)(σγ)1/2Tr(σγ,RΓ(Lie(NS′), E)>t′r,r∈S′)

= ∆M (X)−1
∑
ω∈Ω

det(ω)e(ω(λ))(X)|{σ ∈ Ss|〈σω(λ), $r〉 > 0 for every r ∈ S′}|.

We now use the formula of [A6] 272-274 (recalled in the proof of proposi-
tion 3.3.4) to calculate ΦM (γ,Θ). Let R be the set of real roots in Φ(TM ,G).
For every r ∈ {1, . . . , s}, let

αr : TM ' (RE/QGm)s×G(U(1)n−2s) −→ Gm, ((λ1, . . . , λs), g) 7−→ c(g)λrλr.

Then R = {±α1, . . . ,±αs}, R+ := R ∩ Φ+ = {α1, . . . , αs}, and, for every
r ∈ {1, . . . , s}, the coroot α∨r is the morphism

Gm −→ TM , λ 7−→ ((1, . . . , 1︸ ︷︷ ︸
r−1

, λ, 1, . . . , 1︸ ︷︷ ︸
s−r

), 1).

Note that $r = α∨1 + · · ·+ α∨r . As c(γ)|λr|2 ∈]0, 1[ for every r ∈ {1, . . . , s},
R+

X = {−α1, . . . ,−αs} = −R+ and εR(X) = (−1)s. Let Q+ be a positive
root system in R∨. If Q+ 6= {α∨1 , . . . , α∨s }, then c(Q+, R+

X) = 0 by property
(ii) of the function c of [A6] p 273. Suppose that Q+ = {α∨1 , . . . , α∨s }. Note
that R is the product of the root systems {±αr}, 1 ≤ r ≤ s. Hence

c(Q+, R+
X) =

s∏
r=1

c({α∨r }, {−αr}).
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But it is easy to see that c({α∨r }, {−αr}) = 2 for every r ∈ {1, . . . , s} (by
property (iii) of [A6] p 273). Hence c(Q+, R+

X) = 2s. Finally, we find

ΦM (γ,Θ) = (−1)s2s∆M (X)−1
∑
ω

det(ω)e(ω(λ))(X),

where the sum is taken over the set of ω ∈ Ω such that 〈ω(λ), α∨r 〉 > 0 for
every r ∈ {1, . . . , s}.

To finish the proof, it is enough to show that, if ω ∈ Ω is fixed, then∑
S′⊂S
s∈S′

(−1)|S|−|S
′||W (LS(Q),LS′(Q))|−1|{σ ∈ Ss|〈σω(λ), $r〉 > 0 for every r ∈ S′}|

is equal to 1 if 〈ω(λ), α∨r 〉 > 0 for every r ∈ {1, . . . , s} and to 0 otherwise.
This is proved in lemma 3.4.2 below.

�

Let n ∈ N∗. Let S ⊂ {1, . . . , n}. If λ = (λ1, . . . , λn) ∈ Rn, we say that
λ >S 0 if, for every r ∈ S, λ1 + · · ·+ λr > 0, and we write

SS(λ) = {σ ∈ Sn|σ(λ) >S 0}.

If S = {r1, . . . , rk} with r1 < · · · < rk, write

wS = r1!
k−1∏
i=1

(ri+1 − ri)!.

Lemma 3.4.2 Let λ = (λ1, . . . , λn) ∈ Rn. Then∑
S⊂{1,...,n}

S3n

(−1)|S|w−1
S |SS(λ)| =

{
(−1)n if λr > 0 for every r ∈ {1, . . . , n}
0 otherwise

.

Proof. First we reformulate the problem. Let λ = (λ1, . . . , λn) ∈ Rn.
Write λ > 0 if λ1 > 0, λ1 + λ2 > 0, . . . , λ1 + · · · + λn > 0. For every
I ⊂ {1, . . . , n}, let sI(λ) =

∑
i∈I

λi. Let Pord(n) be the set of ordered partitions

of {1, . . . , n}. For every p = (I1, . . . , Ik) ∈ Pord(n), set |p| = k and λp =
(sI1(λ), . . . , sIk

(λ)) ∈ Rk. Let

Pord(λ) = {p ∈ Pord(n)|λp > 0}.

Then it is obvious that :∑
S⊂{1,...,n}

S3n

(−1)|S|w−1
S |SS(λ)| =

∑
p∈Pord(λ)

(−1)|p|.

We show the lemma by induction on the pair (n, |Pord(λ)|) (we use the
lexicographical ordering). If n = 1 or if Pord(λ) = ∅ (ie λ1 + · · ·+ λn ≤ 0),
the result is obvious. Assume that n ≥ 2, that Pord(λ) 6= ∅ and that the
result is known for :
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- all the elements of Rm if 1 ≤ m < n;

- all the λ′ ∈ Rn such that |Pord(λ′)| < |Pord(λ)|.

Let E be the set of I ⊂ {1, . . . , n} such that there exists p = (I1, . . . , Ik) ∈
Pord(λ) with I1 = I; E is non-empty because Pord(λ) is non-empty. Let
ε be the minimum of the sI(λ)/|I|, for I ∈ E . Let I ∈ E be an element
with minimal cardinality among the elements J of E such that sJ(λ) = ε|J |.
Define λ′ = (λ′1, . . . , λ

′
n) ∈ Rn by :

λ′i =
{
λi if i 6∈ I
λi − ε if i ∈ I .

Let P ′ be the set of p = (I1, . . . , Ik) ∈ Pord(λ) such that there exists r ∈
{1, . . . , k} with I = I1 ∪ · · · ∪ Ir. Then P ′ 6= ∅.

It is obvious that Pord(λ′) ⊂ Pord(λ) − P ′ (because sI(λ′) = 0). Let us
show that Pord(λ′) = Pord(λ) − P ′. Let p = (I1, . . . , Ik) ∈ Pord(λ) − P ′,
and let us show that p ∈ Pord(λ′). It is enough to show that sI1(λ

′) > 0,
because (I1 ∪ · · · ∪ Ir, Ir+1, . . . , Ik) ∈ Pord(λ) − P ′ for every r ∈ {1, . . . , k}.
By definition of λ′, sI1(λ

′) = sI1(λ) − ε|I ∩ I1|. If sI1(λ) > ε|I1|, then
sI1(λ

′) > ε(|I1| − |I ∩ I1|) ≥ 0. If sI1(λ) = ε|I1|, then |I1| ≥ |I| by definition
of I and I1 6= I because p 6∈ P ′, so I1 6⊂ I, and sI1(λ

′) = ε(|I1|−|I∩I1|) > 0.
As sI(λ′) = 0, there exists i ∈ I such that λ′i ≤ 0. By the induction

hypothesis,
∑

p∈Pord(λ′)

(−1)|p| = 0. Hence
∑

p∈Pord(λ)

(−1)|p| =
∑

p∈P′
(−1)|p|. As

the equality of the lemma does not change if the λi are permuted, we may
assume that there exists m ∈ {1, . . . , n} such that I = {1, . . . ,m}. As-
sume first that m < n. Let µ = (λ1, . . . , λm) and ν = (λm+1, . . . , λn).
Identify {m + 1, . . . , n} to {1, . . . , n − m} by the map k 7−→ k − m, and
define a map ϕ : P ′ −→ Pord(m) × Pord(n − m) as follows : if p =
(I1, . . . , Ik) ∈ P ′ and if r ∈ {1, . . . , k} is such that I1∪· · ·∪Ir = I, set ϕ(p) =
((I1, . . . , Ir), (Ir+1, . . . , Ik)). The map ϕ is clearly injective. Let us show that
the image of ϕ is Pord(µ)×Pord(ν). The inclusion Pord(µ)×Pord(ν) ⊂ ϕ(P ′)
is obvious. Let p = (I1, . . . , Ik) ∈ P ′, and let r ∈ {1, . . . , k} be such that
I = I1 ∪ · · · ∪ Ir. We want to show that ϕ(p) ∈ Pord(µ) × Pord(ν), ie
that, for every s ∈ {r + 1, . . . , k}, sIr+1∪···∪Is(λ) > 0. After replacing p by
(I1 ∪ · · · ∪ Ir, Ir+1 ∪ · · · ∪ Is, Is+1, . . . , Ik), we may assume that r = 1 (hence
I = I1) and s = 2. Then

sI2(λ) = sI∪I2(λ)− sI(λ) = sI∪I2(λ)− ε|I| ≥ ε|I ∪ I2| − ε|I| > 0.

Finally : ∑
p∈P′

(−1)|p| =

 ∑
p∈Pord(µ)

(−1)|p|

 ∑
p∈Pord(ν)

(−1)|p|

 .

Hence the conclusion of the lemma is a consequence of the induction hy-
pothesis, applied to µ and ν.

We still have to treat the case I = {1, . . . , n}. Let us show that there is
no partition {I1, I2} of {1, . . . , n} such that sI1(λ) > 0 and sI2(λ) > 0 (in
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particular, there exists at least one i such that λi ≤ 0). If such a partition
existed, then, by definition of I, we would have inequalities sI1(λ) > ε|I1| and
sI2(λ) > ε|I2|, hence sI(λ) > ε|I|; but that is impossible. Let P(n) be the set
of (unordered) partitions of {1, . . . , n}. For every q = {Iα, α ∈ A} ∈ P(n),
write |q| = |A|. Let q = {Iα, α ∈ A} ∈ P(n). By lemma 3.4.3, applied
to (sIα1

(λ), . . . , sIαk
(λ)) for a numbering (α1, . . . , αk) of A (the choice of

numbering is unimportant), there are exactly (|q| − 1)! way to order q in
order to get an element of Pord(λ). Hence∑

p∈Pord(λ)

(−1)|p| =
∑

q∈P(n)

(−1)|q|(|q| − 1)!.

If q′ is a partition of {1, . . . , n − 1}, we can associate to it a partition q of
{1, . . . , n} in one of the following ways :

(i) Adding n to one of the sets of q′. There are |q′| ways of doing this,
and we get |q| = |q′|.

(ii) Adding to q′ the set {n}. There is only one way of doing this, and we
get |q| = |q′|+ 1.

We get every partition of {1, . . . , n} in this way, and we get it only once.
Hence (remember that n ≥ 2) :∑
q∈P(n)

(−1)|q|(|q|−1)! =
∑

q′∈P(n−1)

(−1)|q
′||q′|(|q′|−1)!+

∑
q′∈P(n−1)

(−1)|q
′|+1(|q′|)! = 0.

�

In the lemma below, Sn acts on Rn in the usual way (permuting the
coordinates).

Lemma 3.4.3 Let λ = (λ1, . . . , λn) ∈ Rn. Assume that λ1 + · · · + λn > 0
and that there is no partition {I1, I2} of {1, . . . , n} such that sI1(λ) > 0 and
sI2(λ) > 0. Then

|{σ ∈ Sn|σ(λ) > 0}| = (n− 1)!.

Proof. Let S(λ) = {σ ∈ Sn|σ(λ) > 0}. Let τ ∈ Sn be the permutation
that sends an element i of {1, . . . , n− 1} to i+ 1, and sends n to 1. Let us
show that there exists a unique k ∈ {1, . . . , n} such that τk ∈ S(λ). Let s =
min{λ1 + . . . λl, 1 ≤ l ≤ n}. Let k be the biggest element of {1, . . . , n} such
that λ1 + · · ·+λk = s. If l ∈ {k+1, . . . , n}, then λ1 + · · ·+λl > λ1 + · · ·+λk,
hence λk+1 + · · ·+ λl > 0. If l ∈ {1, . . . , k}, then

λk+1 + · · ·+ λn + λ1 + · · ·+ λl = (λ1 + · · ·+ λn)− (λ1 + · · ·+ λk) + (λ1 + · · ·+ λl)
> −(λ1 + · · ·+ λk) + (λ1 + · · ·+ λl)
≥ 0.

This proves that τk(λ) = (λk+1, . . . , λn, λ1, . . . , λk) > 0. Suppose that there
exists k, l ∈ {1, . . . , n} such that k < l, τk(λ) > 0 and τ l(λ) > 0. Let
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I1 = {k+1, . . . , l} and I2 = {1, . . . , n}−I1. Then sI1(λ) = λk+1+· · ·+λl > 0
because τk(λ) > 0, and sI2(λ) = λl+1 + · · ·+λn +λ1 + · · ·+λk > 0 because
τ l(λ) > 0. This contradicts the assumption on λ.

Applying the above reasoning to σ(λ), for σ ∈ Sn, we see that Sn is the
disjoint union of the subsets τkS(λ), 1 ≤ k ≤ n. This implies the conclusion
of the lemma.

�
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Chapter Four

Orbital integrals at p

4.1 A SATAKE TRANSFORM CALCULATION (AFTER KOT-

TWITZ)

Lemma 4.1.1 (cf [K3] 2.1.2, [K9] p 193) Let F be a local or global field and
G be a connected reductive algebraic group over F . For every cocharacter
µ : Gm,F −→ G, there exists a representation rµ of LG(= Ĝ oWF ), unique
up to isomorphism, satisfying the following conditions :

(a) The restriction of rµ to Ĝ is irreducible algebraic of highest weight µ.

(b) For every Gal(F/F )-fixed splitting of Ĝ, the group WF , embedded
in LG by the section associated to the splitting, acts trivially on the
highest weight subspace of rµ (determined by the same splitting).

Let p be a prime number, Qp be an algebraic closure of Qp, Qur
p be the

maximal unramified extension of Qp in Qp, F ⊂ Qp be a finite unramified
extension of Qp, WF be the Weyl group of F , $F be a uniformizer of F ,
n = [F : Qp]. The cardinality of the residual field of F is pn.

Let G be a connected reductive algebraic group over F , and assume that
G is unramified. Fix a hyperspecial maximal compact subgroup K of G(F ),
and let H = H(G(F ),K) := C∞c (K \ G(F )/K) be the associated Hecke
algebra. For every cocharacter µ : Gm,F −→ G of G, let

fµ =
1lKµ($−1

F )K

vol(K)
∈ H.

In this section, the L-group of G will be LG = ĜoWF . Let ϕ 7−→ πϕ be
the bijection between the set of equivalence classes of admissible unramified
morphisms ϕ : WF −→ LG and the set of isomorphism classes of spherical
representations of G(F ).

Theorem 4.1.2 ([K3] 2.1.3) Let µ : Gm,F −→ G be such that the weights
of the representation Ad ◦µ : Gm,F −→ Lie(GQp

) are in {−1, 0, 1}. Fix a

maximal torus T of G such that µ factors through T, and an ordering on
the roots of T in G such that µ is dominant. Let ρ be half the sum of the
positive roots.

Then, for every admissible unramified morphism ϕ : WF −→ LG,

Tr(πϕ(fµ)) = pn<ρ,µ> Tr(r−µ(ϕ(ΦF ))),
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where r−µ is the representation defined in lemma 4.1.1 above and ΦF ∈
W (Qur

p /F ) is the geometric Frobenius.

Remark 4.1.3 In 2.1.3 of [K3], the arithmetic Frobenius is used instead of
the geometric Frobenius. The difference comes from the fact that we use
here the other normalization of the class field isomorhism (cf [K9] p 193).

4.2 EXPLICIT CALCULATIONS FOR UNITARY GROUPS

This section contains explicit descriptions of the Satake isomorphism, the
base change map, the transfer map and the twisted transfer (or unstable
base change) map for the spherical Hecke algebras of the unitary groups of
2.1. These calculations will be useful when proving proposition 4.3.1 and in
the applications of chapter 7 and section 8.4.

Let p be a prime number, and let Qp and Qur
p be as in 4.1. Remember that,

if G and H are unramified groups over Qp and if η : LH := Ĥ o WQp −→
LG := ĜoWQp is an unramified L-morphism (ie a L-morphism that comes
by inflation from a morphism Ĥ oW (Qur

p /Qp) −→ Ĝ oW (Qur
p /Qp)), then

it induces a morphism of algebras bη : HH −→ HG, where HH (resp. HG)
is the spherical Hecke algebra of H (resp. G). This construction is recalled
in more detail in 9.2 (just before lemma 9.2.5).

Let E = Q[
√
−b] be an imaginary quadratic extension where p is un-

ramified, and fix a place ℘ of E above p (ie an embedding E ⊂ Qur
p ).

Let n1, . . . , nr ∈ N∗ and let J1 ∈ GLn1(Z), . . . , Jr ∈ GLnr
(Z) be sym-

metric matrices that are antidiagonal (ie in the subset

 0 ∗
. .
.

∗ 0

).

Let qi be the floor (integral part) of ni/2, n = n1 + · · · + nr and G =
G(U(J1) × · · · ×U(Jr)). Then the group G is unramified over Qp. Hence
G extends to a reductive group scheme over Zp (ie to a group scheme over
Zp with connected geometric fibers whose special fiber is a reductive group
over Fp); we gave an example of such a group scheme in remark 2.1.1. We
will still denote this group scheme by G. In this section, the L-group of G
will be the L-group over Qp, ie LG = G oWQp

.

Satake isomorphism

Let L ⊂ Qur
p be an unramified extension of Qp. Let KL = G(OL); it is a

hyperspecial maximal compact subgroup of G(L). We calculate the Satake
isomorphism for H(G(L),KL).

Suppose first that G splits over L, ie L ⊃ E (if L = Qp, this means
that p splits in E). Then GL ' Gm,L ×GLn1,L × · · · ×GLnr,L. For every
i ∈ {1, . . . , r}, let Ti be the diagonal torus of GU(Ji). Identify Ti,L with
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the torus Gm,L ×Gni

m,L by the isomorphism

g = diag(λ1, . . . , λni) 7−→ (c(g), (u(λ1), . . . , u(λni))),

where u is the morphism L⊗Qp E −→ L, x⊗ 1 + y⊗
√
−b 7−→ x+ y

√
−b. A

split maximal torus of GL is the diagonal torus TG,L, where

TG = {(g1, . . . , gr) ∈ T1 × · · · ×Tr|c(g1) = · · · = c(gr)}.

The above isomorphisms give an isomorphism TG,L ' Gm,L × Gn
m,L. Let

ΩG(L) = W (TG(L),G(L)) be the relative Weyl group of TG,L (as G splits
over L, this group is actually equal to the absolute Weyl group). Then
ΩG(L) ' Sn1 × · · · ×Snr

. The Satake isomorphism is an isomorphism

H(G(L),KL) ∼−→ C[X∗(TG)]ΩG(L).

There is an isomorphism

C[X∗(TG)] ' C[X±1, X±1
i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ ni]

induced by the isomorphism TG,L ' Gm,L×Gn
m,L defined above. Explicitely

• X corresponds to the cocharacter

λ 7−→
(
λ+ 1

2
⊗ 1 +

1− λ

2
√
−b

⊗
√
−b
)

(In1 , . . . , Inr ).

• Let i ∈ {1, . . . , r} and s ∈ {1, . . . , qi} ∪ {ni + 1− qi, . . . , ni}. Then Xi,s

corresponds to the cocharacter

λ 7−→ (I1, . . . , Ii−1, diag(a1(λ), . . . , ani(λ)), Ii+1, . . . , Ir),

with :

aj(λ) =


λ+1

2 ⊗ 1 + λ−1
2
√
−b
⊗
√
−b if j = s

λ−1+1
2 ⊗ 1 + 1−λ−1

2
√
−b

⊗
√
−b if s = n+ 1− j

1 otherwise
.

• If i ∈ {1, . . . , r} is such that ni is odd, then Xi,(ni+1)/2 corresponds to
the cocharacter

λ 7−→ (I1, . . . , Ii−1,

 Iqi 0
λ+λ−1

2 ⊗ 1 + λ−λ−1

2
√
−b

⊗
√
−b

0 Iqi

 , Ii+1, . . . , Ir).

We get an isomorphism

C[X∗(TG)]ΩG(L) ' C[X±1]⊗ C[X±1
i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ ni]Sn1×···×Snr ,

where Sni acts by permutations on Xi,1, . . . , Xi,ni and trivially on the Xi′,j

if i′ 6= i.
Suppose now that G does not split over L (this implies that p is inert

in E). For every i ∈ {1, . . . , r}, a maximal split torus of GU(Ji)L is Si,L,
where

Si = {diag(λλ1, . . . , λλqi , λ
−1
qi
, . . . , λ−1

1 ), λ, λ1, . . . , λqi ∈ Gm,Qp} ' Gqi+1
m,Qp
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if ni is even, and

Si = {diag(λλ1, . . . , λλqi , λ, λλ
−1
qi
, . . . , λλ−1

1 ), λ, λ1, . . . , λqi ∈ Gm,Qp} ' Gqi+1
m,Qp

if ni is odd. A maximal split torus of GL is SG,L, where

SG = {(g1, . . . , gr) ∈ S1 × · · · × Sr|c(g1) = · · · = c(gr)}0 ' Gq1+···+qr+1
m,Qp

.

Let ΩG(L) = W (SG(L),G(L)) be the relative Weyl group of SG(L). Then
ΩG(L) ' Ω1 × · · · × Ωr, where Ωi is the subgroup of Sni generated by the
transposition (1, ni) and by the image of the morphism

Sqi
−→ Sni

, σ 7−→

τ : j 7−→

 σ(j) if 1 ≤ j ≤ qi
j if qi + 1 ≤ j ≤ ni − qi
ni + 1− σ(ni + 1− j) if ni + 1− qi ≤ j ≤ ni

 .

Hence Ωi is isomorphic to the semi-direct product {±1}qi o Sqi , where Sqi

acts on {±1}qi by (σ, (ε1, . . . , εqi)) 7−→ (εσ−1(1), . . . , εσ−1(qi)). The Satake
isomorphism is an isomorphism

H(G(L),KL) ∼−→ C[X∗(SG)]ΩG(L).

Assume that ni is even. Then there is an isomorphism

C[X∗(Si)] ' C[X ′
i
±1
, X±1

i,1 , . . . , X
±1
i,qi

]

that sends X ′
i to the cocharacter

λ 7−→
(
λIqi 0
0 Iqi

)
and Xi,s, 1 ≤ s ≤ qi, to the cocharacter

λ 7−→ diag(a1(λ), . . . , ani(λ)),

with

aj(λ) =

 λ if j = s
λ−1 if j = ni + 1− s
1 otherwise

.

Hence we get an isomorphism

C[X∗(Si)]Ωi ' C[X ′
i
±1
, X±1

i,1 , . . . , X
±1
i,qi

]{±1}qi oSqi ,

where Sqi acts by permutations on Xi,1, . . . , Xi,qi and trivially on X ′
i, and

{±1}qi acts by ((ε1, . . . , εqi), Xi,j) 7−→ X
εj

i,j and ((ε1, . . . , εqi), X
′
i) 7−→ X ′

i

∏
j tq εj=−1

X−1
i,j .

Note that the (Ωi-invariant) cocharacter λ 7−→ λIni
corresponds to Xi :=

X ′
i
2
X−1

i,1 . . . X
−1
i,qi

.
Assume that ni is odd. Then there is an isomorphism

C[X∗(Si)] ' C[X±1
i , X±1

i,1 , . . . , X
±1
i,qi

]

that sends Xi to the cocharacter λ 7−→ λIni and Xi,s, 1 ≤ s ≤ qi, to the
cocharacter defined by the same formula as when ni is even. Hence we get
an isomorphism

C[X∗(Si)]Ωi ' C[X±1
i , X±1

i,1 , . . . , X
±1
i,qi

]{±1}qi oSqi ,
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where {±1}qi o Sqi acts as before on Xi,1, . . . , Xi,qi (and trivially on Xi).
Finally, we get, if all the ni are even,

C[X∗(SG)]ΩG(L) ' C[(X ′
1 . . . X

′
r)
±1, X±1

i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ qi]Ω1×···×Ωr ,

and, if at least one of the ni is odd,

C[X∗(SG)]ΩG(L) ' C[(X1 . . . Xr)±1, X±1
i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ qi]Ω1×···×Ωr .

Let X ′ = X ′
1 . . . X

′
r and X = X1 . . . Xr.

In order to unify notations later, write, for every i ∈ {1, . . . , r} and j ∈
{ni +1−qi, . . . , ni}, Xi,j = X−1

i,ni+1−j and, for every i ∈ {1, . . . , r} such that
ni is odd, X

i,
ni+1

2
= 1.

Note that X does not stand for the same cocharacter if G splits over L or
does not (neither do theXi,j , but this is more obvious). Let ν : Gm,L −→ GL

be the cocharacter corresponding to X. If G does not split over L, then ν is
defined over Q and c(ν(λ)) = λ2 for every λ ∈ Gm. If G splits over L, then
ν is defined over E (and is not defined over Q) and c(ν(λ)) = λ for every
λ ∈ Gm,E .

We end this subsection with an explicit version of the result of 4.1. Assume
that G splits over L (ie that L contains E℘), and fix a uniformizer $L of
L. Set d = [L : Qp]. Let s1, . . . , sr ∈ N be such that si ≤ ni. For every
i ∈ {1, . . . , r}, there is a cocharacter µsi : Gm,E −→ GU∗(ni)E , defined in
2.1.2. Let µ = (µs1 , . . . , µsr ) : Gm,E −→ GE and

φ =
1lKLµ($−1

L )KL

vol(KL)
∈ H(G(L),KL)

(with the notations of 4.1, φ = fµ). Let r−µ be the representation of LGE℘

associated to −µ as in lemma 4.1.1, and Φ ∈ W (Qur
p /Qp) be the geometric

Frobenius (so Φd is a generator of W (Qur
p /L)).

Proposition 4.2.1 For every admissible unramified morphism ϕ : WL −→
LG,

Tr(πϕ(φ)) = pd(s1(n1−s1)/2+···+sr(nr−sr)/2) Tr(r−µ(ϕ(Φd))).

In other words, the Satake transform of φ is

pd(s1(n1−s1)/2+···+sr(nr−sr)/2)X−1
∑

I1⊂{1,...,n1}
|I1|=s1

· · ·
∑

Ir⊂{1,...,nr}
|Ir|=sr

r∏
i=1

∏
j∈Ii

X−1
i,j .

Proof. To deduce the first formula from theorem 4.1.2 (ie theorem 2.1.3
of [K3]), it is enough to show that

< ρ, µ >= s1(n1 − s1)/2 + · · ·+ sr(nr − sr)/2,

where ρ is half the sum of the roots of TG in the standard Borel subgroup of
G (ie the group of upper triangular matrices). This is an easy consequence
of the definition of µ.
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In the reformulation below formula (2.3.4) of [K3], theorem 2.1.3 of [K3]
says that the Satake transform of φ is

pd(s1(n1−s1)/2+···+sr(nr−sr)/2)
∑

ν∈ΩG(L)(−µ)

ν.

To prove the second formula, it is therefore enough to notice that −µ ∈
X∗(TG) corresponds by the isomorphism C[X∗(TG)] ' C[X±1]⊗C[X±1

i,j ] to

X−1
r∏

i=1

(Xi,1 . . . Xi,si
)−1.

�

The base change map

In this subsection, L is still an unramified extension of Qp. Write K0 =
G(Zp) and d = [L : Qp]. If L contains E℘, write a = [L : E℘]. Let
R = RL/Qp

GL. Then there is a “diagonal” L-morphism η : LG −→ LR (cf
example 8.1.1). It induces a morphism bη : H(G(L),KL) −→ H(G(Qp),K0),
called base change map (or stable base change map). We want to calculate
this morphism. To avoid confusion, when writing the Satake isomorphism
for H(G(L),KL), we will use the letter Z (instead of X) for the indeter-
minates (and we will still use X when writing the Satake isomorphism for
H(G(Qp),K0)).

Assume first that G does not split over L (so that p is inert in E). Then
the base change morphism corresponds by the Satake isomorphisms to the
morphism induced by
C[Z±1]⊗ C[Z±1

i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ qi] −→ C[X±1, X±1
i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ qi]

Z 7−→ Xd

Zi,j 7−→ Xd
i,j

Assume that G splits over L but not over Qp. Then L ⊃ E℘, p is inert
in E and d = 2a. The base change morphism corresponds by the Satake
isomorphisms to the morphism induced by
C[Z±1]⊗ C[Z±1

i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ ni] −→ C[X±1, X±1
i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ qi]

Z 7−→ Xa

Zi,j 7−→


Xa

i,j if 1 ≤ j ≤ qi
1 if qi + 1 ≤ j ≤ ni − qi
X−a

i,ni+1−j if ni + 1− qi ≤ j ≤ ni

Assume that G splits over L and Qp. Then p splits in E and L ⊃ E℘ = Qp,
so d = a. The base change morphism corresponds by the Satake isomor-
phisms to the morphism induced by
C[Z±1]⊗ C[Z±1

i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ ni] −→ C[X±1]⊗ C[X±1
i,j , 1 ≤ i ≤ r, 1 ≤ j ≤ ni]

Z 7−→ Xa

Zi,j 7−→ Xa
i,j

Notice that, with the conventions of the previous subsection in the case
when G does not split over Qp, the base change morphism is given by the
same formulas in the last two cases (this was the point of the conventions).
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Remark 4.2.2 Assume that p is inert in E and that L = E℘ = Ep. Then
the image of the base change morphism is C[(X1 . . . Xr)±1, X±1

i,j , 1 ≤ i ≤
r, 1 ≤ j ≤ qi]Ω1×···×Ωr . In particular, the base change morphism is surjective
if and only if one of the ni is odd.

The transfer map

In this subsection and the next, we consider, to simplify notations, the group
G = GU(J) with J ∈ GLn(Z) symmetric and antidiagonal, but all results
extend in an obvious way to the groups considered before.

Let n1, n2 ∈ N be such that n2 is even and n = n1 + n2. Let (H, s, η0)
be the elliptic endoscopic triple of G associated to (n1, n2) as in proposition
2.3.1 (note that this endoscopic triple is not always elliptic over Qp). Let
q (resp. q1, q2) be the integral part of n/2 (resp. n1/2, n2/2). The group
H is unramified over Qp. We will write H for the group scheme over Zp

extending H that is defined in remark 2.1.1 and KH,0 for H(Zp).
Any unramified L-morphism η : LH −→ LG extending η0 induces a mor-

phism bη : H(G(Qp),K0) −→ H(H(Qp),KH,0), called the transfer map. We
want to give explicit formulas for this morphism. We will start with a par-
ticular case. Let, as before, Φ ∈ W (Qur

p /Qp) be the geometric Frobenius.
Let ηsimple : LH −→ LG be the unramified morphism extending η0 and
such that η(Φ) is equal to (1,Φ) is p splits in E, and to ((1, A),Φ) if p
is inert in E, where A is defined in proposition 2.3.2. Let b0 = bηsimple

:
H(G(Qp),K0) −→ H(H(Qp),KH,0).

Then, if p is inert in E, b0 corresponds by the Satake isomorphisms to the
morphism

C[X∗(SG)]ΩG(Qp) −→ C[X∗(SH)]ΩH(Qp)

defined by

X ′ 7−→ X ′
1X

′
2 if n is even

X 7−→ X1X2 if n is odd

Xi 7−→
{
X1,i if 1 ≤ i ≤ q1
X2,i−q1 if q1 + 1 ≤ i ≤ q2

If p splits in E, b0 corresponds by the Satake isomorphisms to the morphism

C[X∗(TG)]ΩG(Qp) −→ C[X∗(TH)]ΩH(Qp)

defined by

X 7−→ X

Xi 7−→
{
X1,i if 1 ≤ i ≤ n1

X2,i−n1 if n1 + 1 ≤ i ≤ n2

Now let η : LH −→ LG be any unramified L-morphism extending η0.
Then η = cηsimple, where c : WQp −→ Z(Ĥ) is a 1-cocycle. Write χη for
the (unramified) quasi-character of H(Qp) corresponding to the class of c in
H1(WQp

, Z(Ĥ)). Then bη : H(G(Qp),K0) −→ H(H(Qp),KH,0) is given by
the following formula : for every f ∈ H(G(Qp),K0), bη(f) = χηb0(f).
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Following Kottwitz ([K9] p 181), we use this to define bη even if η is not
unramified. So let η : LH −→ LG be a (not necessarily unramified) L-
morphism extending η0. Define a quasi-character χη of H(Qp) as before
(χη can be ramified), and define bη : H(G(Qp),K0) −→ C∞c (H(Qp)) by the
following formula : for every f ∈ H(G(Qp),K0), bη(f) = χηb0(f).

The twisted transfer map

Keep the notations of the previous subsection. Fix an unramified extension
L of Qp and write as before KL = G(OL), d = [L : Qp] and, if L ⊃ E℘,
a = [L : E℘]; we will use the same conventions as before when writing the
Satake isomorphism for H(G(L),G(OL)) (ie the indeterminates will be Z
and the Zi). Let η : LH −→ LG be an unramified L-morphism extending
η0.

Remember the definition of the twisted endoscopic datum associated to
(H, s, η) and to the field extension L/Qp (cf [K9] p 179-180). Let Φ ∈
W (Qur

p /Qp) be the geometric Frobenius, R = RL/Qp
GL and θ be the auto-

morphism of R corresponding to Φ. Then
R̂ = (Ĝ)d,

where the i-th factor corresponds to the image of Φd−i in Gal(L/Qp). The
group WQp

acts on R̂ via its quotient W (Qur
p /Qp), and Φ acts on R̂ by

Φ(g1, . . . , gd) = θ̂(Φ(g1), . . . ,Φ(gd)) = (Φ(g2), . . . ,Φ(gd),Φ(g1)).

In particular, the diagonal embedding Ĝ −→ R̂ is WQp-equivariant, so it ex-
tends in an obvious way to a L-morphism LG −→ LR; let η′ : LH −→
LR denote the composition of η : LH −→ LG and of this morphism.
Let t1, . . . , td ∈ Z(Ĥ)Gal(Qp/Qp) be such that t1 . . . td = s, and write t =
(t1, . . . , td) ∈ R̂. Define a morphism η̃ : ĤoW (Qur

p /Qp) −→ R̂oW (Qur
p /Qp)

by :

• η̃|bH is the composition of η0 : Ĥ −→ Ĝ and of the diagonal embedding

Ĝ −→ R̂ = (Ĝ)d,
• η̃((1,Φ)) = (t, 1)η′(1,Φ).

Then the R̂-conjugacy class of η̃ does not depend on the choice of t1, . . . , td,
and (H, t, η̃) is a twisted endoscopic datum for (R, θ). The map

beη : H(G(L),KL) −→ H(H(Qp),KH,0)
induced by η̃ is called the twisted transfer map (or the unstable base change
map).

Assume first that η = ηsimple, and write b̃0 for beη. If G does not split over
L, then the twisted transfer map b̃0 corresponds by the Satake isomorphisms
to the morphism induced by
C[Z±1]⊗ C[Z±1

i ] −→ C[X±1]⊗ C[X±1
1,1 , . . . , X

±1
1,n1

]⊗ C[X±1
2,1 , . . . , X

±1
2,n2

]
Z 7−→ Xd

Zi 7−→
{
Xd

1,i if 1 ≤ i ≤ n1

−Xd
2,i−n1

if n1 + 1 ≤ i ≤ n
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If G splits over L (so L ⊃ E℘), then the twisted transfer map b̃0 corresponds
by the Satake isomorphisms to the morphism induced by

C[Z±1]⊗ C[Z±1
i ] −→ C[X±1]⊗ C[X±1

1,1 , . . . , X
±1
1,n1

]⊗ C[X±1
2,1 , . . . , X

±1
2,n2

]
Z 7−→ Xa

Zi 7−→
{
Xa

1,i if 1 ≤ i ≤ n1

−Xa
2,i−n1

if n1 + 1 ≤ i ≤ n

Assume now that η is any unramified extension of η0, and define an un-
ramified quasi-character χη of H(Qp) as in the previous subsection. Then,
for every f ∈ H(G(L),KL), beη(f) = χη b̃0(f).

As in the previous subsection, we can use this to define beη for a possibly
ramified η (this is just [K9] p 181). Let η : LH −→ LG be any L-morphism
extending η0, and attach to it a (possibly ramified) quasi-character χη of
H(Qp). Define beη : H(G(L),KL) −→ C∞c (H(Qp)) by the following formula
: for every f ∈ H(G(L),KL), beη(f) = χη b̃0(f).

4.3 TWISTED TRANSFER MAP AND CONSTANT TERMS

In this section, we consider, to simplify notation, the situation of the last
subsection of 4.2, but all results extend in an obvious way to the groups
G(U(J1)× · · · ×U(Jr)) of the beginning of 4.2. Assume that G splits over
L (ie that L contains E℘), and fix a L-morphism η : LH −→ LG extending
η0; we do not assume that η is unramified.

Let M be a cuspidal standard Levi subgroup of G, and let r ∈ {1, . . . , q}
be such that M = M{1,...,r} ' (RE/QGm)r ×GU∗(m), with m = n − 2r.
Let (M′, sM , ηM,0) be an element of EG(M) (cf 2.4) whose image in E(G) is
(H, s, η0). Assume that sM = sA,m1,m2 , with A ⊂ {1, . . . , r} and m1 +m2 =
m, and where notations are as in lemma 2.4.3; define r1 and r2 as in this
lemma. There is a conjugacy class of Levi subgroups of H associated to
(M′, sM , ηM,0); let MH be the standard Levi subgroup in that class. Then
MH = H ∩ (MH,1 ×MH,2), with

MH,i = GU∗(ni)∩



RE/QGm 0 0
. . .

0 RE/QGm

GU∗(mi)
RE/QGm 0

. . .
0 0 RE/QGm


,

where the diagonal blocks are of size ri,mi, ri. On the other hand, MH =
MH,l ×MH,h, where MH,l = (RE/QGm)r1 × (RE/QGm)r2 is the linear part
of MH and MH,h = G(U∗(m1)×U∗(m2)) is the Hermitian part. Similarly,
M = Ml ×Mh, where Ml = MH,l = (RE/QGm)r is the linear part of M
and Mh = GU∗(m) is the Hermitian part. The morphism η : LH −→ LG
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determines a L-morphism ηM : LMH = LM′ −→ LM extending ηM,0,
unique up to M̂-conjugacy; ηM is unramified if η is unramified.

As in lemma 2.4.3, identify M̂ with the Levi subgroup

C× ×



∗ 0
. . .

0 ∗
0

GLm(C)

0

∗ 0
. . .

0 ∗


(blocks of size r,m, r) of Ĝ. Identify M̂H to a Levi subgroup of Ĥ in a
similar way. Let s′M be the element of Z(M̂H) ⊂ M̂ ' C× × (C×)r ×
GLm(C) × (C×)r equal to (1, (1, . . . , 1), sMh

, (1, . . . , 1)), where sMh
is the

image of sM by the projection M̂ −→ GLm(C) (in the notation of lemma
2.4.3, s′M = s∅,m1,m2). Then (MH , s

′
M , ηM,0) is an elliptic endoscopic triple

for M, isomorphic to (M′, sM , ηM,0) as an endoscopic M-triple (but not as
an endoscopic G-triple).

Write bsM
, bs′M : H(M(L),M(OL)) −→ C∞c (MH(Qp)) for the twisted

transfer maps associated to (M′, sM , ηM ) and (MH , s
′
M , ηM ), and f 7−→ fM

(resp f 7−→ fMH
) for the constant term mapH(G(L),KL) −→ H(M(L),M(OL))

orH(G(Qp),K0) −→ H(M(Qp),M(Zp)) (resp. H(H(Qp),KH,0) −→ H(MH(Qp),MH(Zp))).
Then it is easy to see from the definitions that, if η is unramified, then, for
every f ∈ H(G(L),KL), bsM

(fM) = (beη(f))MH
. There is a similar for-

mula for a general η : Let χη be the quasi-character of H(Qp) associated
to η as in the last two subsections of 4.2, and write bsM ,0 for the twisted
transfer map defined by sM in the case η = ηsimple (and b̃0 = beηsimple

, as be-
fore). Then, for every f ∈ H(G(L),KL), bsM

(fM) = χη|MH(Qp)bsM ,0(fM) =
χη|MH(Qp)(̃b0(f))MH

.
Later, we will use the twisted transfer map bs′M and not bsM

, so we need to
compare it to bsM

(ot to beη), at least on certain elements ofH(M(L),M(OL)).
First we give explicit formulas for it in the case η = ηsimple. Write ΩM (L) =
W (TG(L),M(L)) and ΩMH

(Qp) = W (SH(Qp),MH(Qp)). Then we get Sa-
take isomorphismsH(M(L),M(OL)) ' C[X∗(TG)]ΩM (L) andH(MH(Qp),MH(Zp)) '
C[X∗(SH)]ΩMH

(Qp), and, if η = ηsimple, then the twisted transfer map bs′M
is induced by the morphism :
C[Z±1]⊗ C[Z±1 , . . . , Z

±1
n ] −→ C[X±1]⊗ C[X±1

1,1 , . . . , X
±1
1,n1

]⊗ C[X±1
2,1 , . . . , X

±1
2,n2

]
Z 7−→ Xa

Zik
7−→ Xa

1,k

Zn+1−ik
7−→ Xa

1,n1+1−k

Zjl
7−→ Xa

2,l

Zn+1−jl
7−→ Xa

2,n2+1−l

Zi 7−→
{
Xa

1,i−r2
if r + 1 ≤ i ≤ r +m1

−Xa
2,i−(r1+m1)

if r +m1 + 1 ≤ i ≤ r +m
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where we wrote {1, . . . , r} − A = {i1, . . . , ir1} and A = {j1, . . . , jr2} with
i1 < · · · < ir1 and j1 < · · · < jr2 .

Let α ∈ N such that n − q ≤ α ≤ n. Write µ = µα, where µα :
Gm,L −→ GU∗(ni)L is the cocharacter defined in 2.1.2. This cocharac-
ter factors through ML, and we denote by µM the cocharacter of ML that
it induces. Set

φ =
1lKLµ($−1

L )KL

vol(KL)
∈ H(G(L),KL)

and

φM =
1lM(OL)µM ($−1

L )M(OL)

vol(M(OL))
∈ H(M(L),M(OL)).

Note that, if α ≤ n−r, then φM is the product of a function inH(Mh(L),Mh(OL))
and of the unit element of H(Ml(L),Ml(OL)) (because the image of µM is
included in Mh,L in that case).

The Satake transform of φ has been calculated in proposition 4.2.1; it is
equal to

pdα(n−α)/2Z−1
∑

I⊂{1,...,n}
|I|=α

∏
i∈I

Z−1
i .

Identify H(G(L),KL) to a subalgebra of H(M(L),M(OL)) using the con-
stant term morphism (via the Satake isomorphisms, this corresponds to the
obvious inclusion C[X∗(TG)]ΩG(L) ⊂ C[X∗(TG)]ΩM (L)). If α ≥ n − r + 1,
then the Satake transform of φM is simply (ZZ1 . . . Zα)−1. If α ≤ n − r,
then, by proposition 4.2.1 (applied to Mh), the Satake transform of φM is

pd(α−r)(n−α−r)/2(ZZ1 . . . Zr)−1
∑

I⊂{r+1,...,n−r}
|I|=α−r

∏
i∈I

Z−1
i .

Let fH = beη(φ) ∈ C∞c (H(Qp)), fMH = bs′M (φM) ∈ C∞c (MH(Qp)) and
ψMH = bs′M (φM) ∈ C∞c (MH(Qp)). By the definition of beη, there exists
a quasi-character χη of H(Qp) such that χ−1

η fH ∈ H(H(Qp),KH,0); write
fH
MH

∈ C∞c (H(Qp)) for χη|MH(Qp)(χ−1
η fH)MH

. (Of course, because we used
bs′M and not bsM

to define ψMH , the functions ψMH and fH
MH

are different
in general.)

Let ΩMH be the subgroup of ΩH(Qp) ⊂ Sn1 × Sn2 generated by the
transpositions ((j, n1+1−j), 1), 1 ≤ j ≤ r1, and (1, (j, n2+1−j)), 1 ≤ j ≤ r2.
Then ΩMH ' {±1}r1 × {±1}r2 (actually, ΩMH is even a subgroup of the
relative Weyl group over Q, W (SH(Q),H(Q))).

Proposition 4.3.1 Let γH ∈ MH(Q) be such that OγH
(fH

MH
) 6= 0. Write

γH = γlγh, with γh ∈ MH,h(Q) and γl = ((λ1,1, . . . , λ1,r1), (λ2,1, . . . , λ2,r2)) ∈
MH,l(Q) = (E×)r1 × (E×)r2 , and let

NsM
(γH) =

1
2a

r2∑
i=1

valp(|λ2,iλ2,i|p)
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(where valp is the p-adic valuation). Then |c(γH)|p = pd, 1
2avalp(|λi,jλi,j |p)

is an integer for every i, j (in particular, NsM
(γH) ∈ Z), and one and only

one of the following two assertions is true :

(A) There exists ω ∈ ΩMH , uniquely determined by γH , such that ω(γH) ∈
MH,l(Zp)MH,h(Qp).

(B) There exists i ∈ {1, 2} and j ∈ {1, . . . , ri} such that 1
2avalp(|λi,jλi,j |p)

is odd.

Besides, case (A) can occur only if α ≤ n− r.
Choose an element γ ∈ M(Qp) coming from γH (such a γ always exists

because M is quasi-split over Qp, cf [K1]). Then

OγH
(fH

MH
) =< µ, s >< µ, s′M > εsM

(γ)OγH
(ψMH ),

where εsM
(γ) = (−1)NsM

(γ). If moreover γl ∈ MH,l(Zp) (this can happen
only if α ≤ n− r), then

OγH
(fH

MH
) =< µ, s >< µ, s′M > δ

1/2
P (Qp)(γ)OγH

(fMH ),

where P is the standard parabolic subgroup of G with Levi subgroup M.

Let γ0 be the component of γ in Mh(Qp). For every δ ∈ M(L) σ-semi-
simple, let δh be the component of δ in Mh(L) and define αp(γ, δ) and
αp(γ0, δh) as in as [K9] p 180 (cf also subsections A.2.3 and A.3.5 of the
appendix).

From the definition of s′M , it is clear that

< αp(γ, δ), s′M >=< αp(γ0, δh), s′M >=< αp(γ0, δh), sM > .

After applying corollary 9.5.3, we get :1

Corollary 4.3.2 There is an equality

SOγH
(fH

MH
) =< µ, s >< µ, s′M > εsM

(γ)
∑

δ

< αp(γ0, δh), sM > ∆M
MH ,sM ,p(γH , γ)e(δ)TOδ(φM).

If moreover γ ∈ Ml(Zp)Mh(Qp), then

SOγH
(fH

MH
) =< µ, s >< µ, s′M > δ

1/2
P(Qp)(γ)

∑
δ

< αp(γ0, δh), sM > ∆M
MH ,sM ,p(γH , γ)e(δ)TOδ(φM).

The two sums above are taken over the set of σ-conjugacy classes δ in
M(L) such that γ and Nδ (defined in 1.6, after theorem 1.6.1) are M(Qp)-
conjugate; for every such δ, we write e(δ) = e(Rδθ), where Rδθ is the θ-
centralizer of δ in R (denoted by I(p) in 1.6) and e is the sign of [K2].

1Corollary 9.5.3 applies only to a particular choice of η, ie to η = ηsimple. But it is
explained on page 181 of [K9] (after formula (7.3)) why this is enough to prove the next
corollary for any choice of η.
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Proof of the proposition. It is obvious from the definition of the twisted
transfer maps that it suffices to prove the proposition for η = ηsimple. So we
assume this in all the proof.

It is easy to see that the element ω ∈ ΩMH in (A) is necessarily unique
(if we already know that |c(γH)|p = pd). This comes from the fact that,
for every γH ∈ MH,l(Zp)MH,h(Qp) such that |c(γH)|p 6= 1 and for every
ω ∈ ΩMH , ω(γH) 6= γH .

We know that the Satake transform of φ is

pdα(n−α)/2Z−1
∑

I⊂{1,...,n}
|I|=α

∏
i∈I

Z−1
i .

For every I ⊂ {1, . . . , n}, write

n(I) = |I ∩ {n1 + 1, . . . , n}|,

and

aI = X−a
∏

i∈I∩{1,...,n1}

X−a
1,i

∏
i∈I∩{n1+1,...,n}

X−a
2,i−n1

.

Then the Satake transform of fH
MH

(that is equal to the Satake transform of
fH) is

S := pdα(n−α)/2
∑

I⊂{1,...,n}
|I|=α

(−1)n(I)aI .

As S is the product of X−a and of a polynomial in the X−1
i,j , if OγH

(fH
MH

) 6=
0, then |c(γH)|p must be equal to pd.

Let Al,1 = {1, . . . , r1} ∪ {n1 + 1 − r1, . . . , n1}, Al,2 = {n1 + 1, . . . , n1 +
r2} ∪ {n + 1 − r2, . . . , n}, Al = Al,1 ∪ Al,2, Ah,1 = {r1 + 1, . . . , n1 − r1},
Ah,2 = {n1 + r2 + 1, . . . , n − r2} and Ah = Ah,1 ∪ Ah,2. For every Il ⊂ Al,
write nl(Il) = |Il ∩Al,2| and

bIl
=

∏
j∈Il∩Al,1

X−a
1,j

∏
j∈Il∩Al,2

X−a
2,j−n1

.

For every Ih ⊂ Ah, write nh(Ih) = |Ih ∩Ah,2|, and

cIh
= X−a

∏
j∈Ih∩Ah,1

X−a
1,j

∏
j∈Ih∩Ah,2

X−a
2,j−n1

.

As aI = bI∩Al
cI∩Ah

and n(I) = nl(I ∩ Al) + nh(I ∩ Ah) for every I ⊂
{1, . . . , n},

S = pdα(n−α)/2
α∑

k=0

 ∑
Il⊂Al,|Il|=k

(−1)nl(Il)bIl

 ∑
Ih⊂Ah,|Ih|=α−k

(−1)nh(Ih)cIh

 .

For every k ∈ {0, . . . , α}, the polynomial
∑

Ih⊂Ah,|Ih|=α−k

(−1)nh(Ih)cIh
is the

Satake transform of a function in H(MH,h(Qp),MH,h(Zp)), that will be
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denoted by ψh,k. For every Il ⊂ Al, the monomial (−1)nl(Il)bIl
is the Satake

transform of a function in H(MH,l(Qp),MH,l(Zp)), that will be denoted by
ψIl

. Then

fH
MH

= pdα(n−α)/2
α∑

k=0

ψh,k

 ∑
Il⊂Al,|Il|=k

ψIl

 .

As OγH
(fH

MH
) 6= 0, there exist k ∈ {0, . . . , α} and Il ⊂ Al such that |Il| =

k and OγH
(ψIl

ψh,k) 6= 0. Write γH = γlγh, with γh ∈ MH,h(Qp) and
γl = ((λ1,1, . . . , λ1,r1), (λ2,1, . . . , λ2,r2)) ∈ MH,l(Qp). Then OγH

(ψIl
ψh,k) =

Oγl
(ψIl

)Oγh
(ψh,k). We have Oγl

(ψIl
) 6= 0 if and only if γl is in the product

of MH,l(Zp) and of the image of p by the cocharacter corresponding to the
monomial (X1,1 . . . X1,r1X2,1 . . . X2,r2)

abIl
, and this implies that

• for every j ∈ {1, . . . , r1},

|λ1,jλ1,j |p =

 1 if j ∈ Il and n1 + 1− j 6∈ Il
p−2a if j, n1 + 1− j ∈ Il or j, n1 + 1− j 6∈ Il
p−4a if j 6∈ Il and n1 + 1− j ∈ Il

• for every j ∈ {1, . . . , r2},

|λ2,jλ2,j |p =

 1 if n1 + j ∈ Il and n+ 1− j 6∈ Il
p−2a if n1 + j, n+ 1− j ∈ Il or n1 + j, n+ 1− j 6∈ Il
p−4a if n1 + j 6∈ Il and n+ 1− j ∈ Il

This implies in particular that 1
2avalp(|λi,jλi,j |p) ∈ Z for every i, j. On the

other hand, c(γH) = c(γh), so |c(γh)|p = pd.
There are three cases to consider :

(1) Assume that, for every j ∈ {1, . . . , r1}, either j ∈ Il or n1 + 1− j ∈ Il,
and that, for every j ∈ {1, . . . , r2}, either n1 + j ∈ Il or n+ 1− j ∈ Il.
Let ω = ((ω1,1, . . . , ω1,r1), (ω2,1, . . . , ω2,r2)) ∈ ΩMh be such that, for
every j ∈ {1, . . . , r1}, ω1,j = 1 if j 6∈ Il and ω1,j = −1 if j ∈ Il and,
for every j ∈ {1, . . . , r2}, ω2,j = 1 if n1 + j 6∈ Il and ω2,j = −1 if
n1 + j ∈ Il. It is easy to see that ω(γ) ∈ MH,l(Zp)MH,h(Qp), and it
is clear that 1

2avalp(|λi,jλi,j |p) is even for every i, j.
On the other hand, k = |Il| = r1 + r2 = r, so, for ψh,k = ψh,r to be
non-zero, we must have α− r ≤ n− 2r, i.e., α ≤ n− r.

(2) Assume that there exists j ∈ {1, . . . , r1} such that j, n1 + 1− j ∈ Il or
j, n1 + 1− j 6∈ Il. Then |λ1,jλ1,j |p = p−2a, hence 1

2avalp(|λ1,jλ1,j |p) =
−1.

(3) Assume that there exists j ∈ {1, . . . , r2} such that n1+j, n+1−j2 ∈ Il
or n1+j, n+1−j 6∈ Il. As in case (2), we see that 1

2avalp(|λ2,jλ2,j |p) =
−1.

We now show the last two statements of the proposition. First note that
< µ, s >< µ, sM >= (−1)r2 . For every I ⊂ {1, . . . , n}, write

m(I) = |I ∩ {n1 + r2 + 1, . . . , n1 + r2 +m2}|.
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The Satake transform of φM is equal to the Satake transform of φ, so the
Satake transform of ψMH is

pdα(n−α)/2
∑

I⊂{1,...,n}
|I|=α

(−1)m(I)aI .

Hence

ψMH = pdα(n−α)/2
α∑

k=0

ψh,k

 ∑
Il⊂Al,|Il|=k

(−1)nl(Il)ψIl

 .

To show the first equality of the proposition, it is therefore enough to see
that, for every Il ⊂ Al such that Oγl

(ψIl
) 6= 0, nl(Il) = r2 + εsM

(γ) modulo
2; but this is an easy consequence of the non-vanishing condition for Oγl

(ψIl
)

that we wrote above.
Assume that γl ∈ MH,l(Zp). Then the only Il ⊂ Al such that Oγl

(ψIl
) 6= 0

is Il = {1, . . . , r1} ∪ {n1 + 1, . . . , n1 + r2}, and |Il| = r and nl(Il) = r2. We
have already seen that ψh,r = 0 unless α ≤ n − r, so we may assume
this. Then OγH

(fH
MH

) = OγH
(ψ′), where ψ′ ∈ H(MH(Qp),MH(Zp)) is the

function with Satake transform

pdα(n−α)/2(−1)r2ψh,r

r1∏
j=1

X−a
1,j

r2∏
j=1

X−a
2,j .

Applying the calculation of the twisted transfer morphism to Mh and MH,h

instead of G and H, we find that the Satake transform of fMH is

pd(α−r)(n−α−r)/2ψh,r

r1∏
j=1

X−a
1,j

r2∏
j=1

X−a
2,j .

So, to finish the proof of the proposition, it is enough to show that

δ
−1/2
P (Qp)(γ) = pd(α−r)(n−α−r)/2−dα(n−α)/2.

As γ comes from γH , c(γ) = c(γH). On the other hand, γl ∈ Ml(Zp)Mh(Qp),
so

δP (Qp)(γl) = 1.

As the image of γh ∈ GU∗(m)(Qp) in G(Qp) is

γh =

 c(γh)Ir 0 0
0 γh 0
0 0 Ir

 ,

we get

δP (Qp)(γ) = δP (Qp)(γh) = |c(γh)|r(r+m)
p = |c(γ)|r(r+m)

p = pdr(n−r).

To conclude, it suffices to notice that

α(n− α)− (α− r)(n− α− r) = r(n− r).

�
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Remark 4.3.3 From the proof above, it is easy to see that the set of
(i, j) such that 1

2avalp(|λi,jλi,j |p) is odd has an even number of elements.
In particular, the sign εsM

(γ) does not change if NsM
(γH) is replaced by

1
2a

r1∑
i=1

valp(|λ1,iλ1,i|p).
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Chapter Five

The geometric side of the stable trace formula

5.1 NORMALIZATION OF THE HAAR MEASURES

We use the following rules to normalize the Haar measures :

(1) In the situation of theorem 1.6.1, use the normalizations of this theo-
rem.

(2) Let G be a connected reductive group over Q. We always take Haar
measures on G(Af ) such that the volumes of open compact subgroups
are rational numbers. Let p be a prime number such that G is unram-
ified over Qp, et let L be a finite unramified extension of Qp; then we
use the Haar measure on G(L) such that the volume of hyperspecial
maximal compact subgroups is 1. If a Haar measure dgf on G(Af ) is
fixed, then we use the Haar measure dg∞ on G(R) such that dgfdg∞
is the Tamagawa measure on G(A) (cf [O]).

(3) (cf [K7] 5.2) Let F be a local field of characteristic 0, G be a connected
reductive group on F and γ ∈ G(F ) be semi-simple. Write I = Gγ :=
CentG(γ)0, and choose Haar measures on G(F ) and I(F ). If γ′ ∈
G(F ) is stably conjugate to γ, then I ′ := Gγ′ is an inner form of I,
so the measure on I(F ) gives a measure on I ′(F ). When we take the
stable orbital integral at γ of a function in C∞c (G(F )), we use these
measures on the centralizers of elements in the stable conjugacy class
of γ.

(4) Let F be a local field of characteristic 0, G be a connected reductive
group over F and (H, s, η0) be an endoscopic triple for G. Let γH ∈
H(F ) be semi-simple and (G,H)-regular. Assume that there exists an
image γ ∈ G(F ) of γH . Then I := Gγ is an inner form of IH := HγH

([K7] 3.1). We always choose Haar measures on I(F ) and IH(F ) that
correspond to each other.

(5) Let G be a connected reductive group over Q as in 1.6, and let (γ0; γ, δ)
be a triple satisfying conditions (C) of 1.6 and such that the invariant
α(γ0; γ, δ) is trivial. We associate to (γ0; γ, δ) a group I (connected
and reductive over Q) as in 1.6. In particular, IR is an inner form
of I(∞) := GR,γ0 . If we already chose a Haar measure on I(R) (for
example using rule (2), if we have a Haar measure on I(Af )), then we
take the corresponding Haar measure on I(∞)(R).
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5.2 NORMALIZATION OF THE TRANSFER FACTORS

The properties of transfer factors that we will use here are stated in [K7].
Note that transfer factors have been defined in all generality (for ordinary
endoscopy) by Langlands and Shelstad, cf [LS1] et [LS2]. The formula of [K7]
5.6 is proved in [LS1] 4.2, and conjecture 5.3 of [K7] is proved in proposition
1 (section 3) of [K8].

Let G be one of the unitary groups of 2.1, and let (H, s, η0) be an elliptic
endoscopic triple for G. Choose a L-morphism η : LH −→ LG extending
η0. The local transfer factors associated to η are defined only up to a scalar.

At the infinite place, normalize the transfer factor as in [K9] §7 p 184-185
(this is recalled in 3.3), using the morphism j of 3.3 and the Borel subgroup
of 3.3.3.

Let p be a prime number unramified in E (so G and H are unramified
over Qp). Normalize the transfer factor at p as in [K9] §7 p 180-181. If η is
unramified at p, then this normalization is the one given by the Zp-structures
on G and H (it has been defined by Hales in [H1] II 7, cf also [Wa3] 4.6).

Choose the transfer factors at other places such that condition 6.10 (b) of
[K7] is satisfied. We write ∆G

H,v for the transfer factors normalized in this
way.

Let M be a cuspidal standard Levi subgroup of G, let (M′, sM , ηM,0) ∈
EG(M), and let (H, s, η0) be its image in E(G). As in 3.3 and 4.3, associate
to (M′, sM , ηM,0) a cuspidal standard Levi subgroup MH ' M′ of H and a
L-morphism ηM : LMH = LM′ −→ LM extending ηM,0 (in 3.3 and 4.3, we
took G = GU(p, q), but the general case is similar). We want to define a
normalization of the transfer factors for ηM associated to this data.

At the infinite place, normalize the transfer factor as in 3.3, for the Borel
subgroup of M related to the Borel subgroup of G fixed above as in 3.3.

If v is a finite place of Q, choose the transfer factor at v that satisfies the
following condition :

∆v(γH , γ)MMH
= |DH

MH
(γH)|1/2

v |DG
M(γ)|−1/2

v ∆v(γH , γ)GH,

for every γH ∈ MH(Qv) semi-simple G-regular and every image γ ∈ M(Qv)
of γH (cf [K13] lemma 7.5).

We write ∆M
MH ,sM ,v for the transfer factors normalized in this way. Note

that, if p is unramified in E, then ∆M
MH ,sM ,p depends only on the image

of (M′, sM , ηM,0) in E(M) (because it is simply the transfer factor with
the normalization of [K9] p 180-181, ie, if ηM is unramified at p, with the
normalization given by the Zp-structures on M and MH). However, the
transfer factors ∆M

MH ,sM ,v at other places may depend on (M′, sM , ηM,0) ∈
EG(M), and not only on its image in E(M).
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5.3 FUNDAMENTAL LEMMA AND TRANSFER

We state here the forms of the fundamental lemma and of the transfer con-
jecture that we will need in chapter 6. The local and adelic stable orbital
integrals are defined in [K7] 5.2 et 9.2.

Let G be one of the groups of 2.1, (H, s, η0) be an elliptic endoscopic
triple of G and η : LH −→ LG be a L-morphism extending η0. The transfer
conjecture is stated in [K7] 5.4 and 5.5. It says that, for every place v of Q, for
every function f ∈ C∞c (G(Qv)), there exists a function fH ∈ C∞c (H(Qv))
such that, if γH ∈ H(Qv) is semi-simple (G,H)-regular, then

SOγH
(fH) =

∑
γ

∆v(γH , γ)e(Gγ)Oγ(f),

where the sum is taken over the set of conjugacy classes γ in G(Qv) that are
images of γH (so, if γH has no image in G(Qv), we want SOγH

(fH) = 0),
Gγ = CentG(γ)0 and e is the sign of [K2]. We say that the function fH is
a transfer of f .

The fundamental lemma says that, if v is a finite place where G and
H are unramified, if η is unramified at v and if b : H(G(Qv),G(Zv)) −→
H(H(Qv),H(Zv)) is the morphism induced by η (this morphism is made
explicit in 4.2), then, for every f ∈ H(G(Qv),G(Zv)), b(f) is a transfer of
f .

If v = ∞, the transfer conjecture was proved by Shelstad (cf [Sh1]).
For unitary groups, the fundamental lemma and the transfer conjecture

were proved by Laumon-Ngo, Waldspurger and Hales (cf [LN], [Wa1], [Wa2]
and [H2]).

We will also need another fundamental lemma. Let p be a finite place
where G and H are unramified, ℘ be the place of E above p determined by
the fixed embedding E −→ Qp, j ∈ N∗ and L be the unramified extension
of degree j of E℘ in Qp. Assume that η is unramified at p; then it defines a
morphism b : H(G(L),G(OL)) −→ H(H(Qp),H(Zp)) (cf 4.2 for the defini-
tion of b and its description). The fundamental lemma corresponding to this
situation says that, for every φ ∈ H(G(L),G(OL)) and every γH ∈ H(Qp)
semi-simple and (G,H)-regular,

SOγH
(b(φ)) =

∑
δ

< αp(γ0; δ), s > ∆p(γH , γ0)e(Gδσ)TOδ(φ) (∗)

where the sum is taken over the set of σ-conjugacy classes δ in G(L) such
that Nδ is G(Qp)-conjugate to an image γ0 ∈ G(Qp) of γH , Gδσ is the
σ-centralizer of δ in RL/Qp

GL and αp(γ0; δ) is defined in [K9] §7 p 180 (see
[K9] §7 p 180-181 for more details). This conjecture (modulo a calculation of
transfer factors) is proved in [Wa3] when φ is the unit element of the Hecke
algebra H(G(L),G(OL)). The reduction of the general case to this case is
done in chapter 9, and the necessary transfer factor calculation is done in
the appendix by Kottwitz.
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5.4 A RESULT OF KOTTWITZ

We recall here a theorem of Kottwitz about the geometric side of the stable
trace formula for a function that is stable cuspidal at infinity. The reference
for this result is [K13].

Let G be a connected reductive algebraic group over Q. Assume that G
is cuspidal (cf definition 3.1.1) and that the derived group of G is simply
connected. Let K∞ be a maximal compact subgroup of G(R). Let G∗ be
a quasi-split inner form of G over Q, G be an inner form of G over R such
that G/AG,R is R-anisotropic and Te be a maximal elliptic torus of GR.
Write

v(G) = e(G) vol(G(R)/AG(R)0)

(e(G) is the sign associated to G in [K2]), and

k(G) = |Im(H1(R,Te ∩Gder) −→ H1(R,Te))|.
For every Levi subgroup M of G, set

nG
M = |(NorG(M)/M)(Q)|.

Let ν be a quasi-character of AG(R)0. Let Πtemp(G(R), ν) (resp. Πdisc(G(R), ν))
be the subset of π in Πtemp(G(R)) (resp. Πdisc(G(R))) such that the re-
striction to AG(R)0 of the central character of π is equal to ν. Let
C∞c (G(R), ν−1) be the the set of functions f∞ : G(R) −→ C smooth,
with compact support modulo AG(R)0 and such that, for every (z, g) ∈
AG(R)0 ×G(R), f∞(zg) = ν−1(z)f∞(g).

We say that f∞ ∈ C∞c (G(R), ν−1) is stable cuspidal if f∞ is left and right
K∞-finite and if the function

Πtemp(G(R), ν) −→ C, π 7−→ Tr(π(f∞))

vanishes outside Πdisc(G(R)) and is constant on the L-packets of Πdisc(G(R), ν).

Let f∞ ∈ C∞c (G(R), ν−1). For every L-packet Π of Πdisc(G(R), ν), write
Tr(Π(f∞)) =

∑
π∈Π

Tr(π(f∞)) and ΘΠ =
∑

π∈Π

Θπ. For every cuspidal Levi

subgroup M of G, define a function SΦM(., f∞) = SΦG
M (., f∞) on M(R) by

the formula :

SΦM(γ, f∞) = (−1)dim(AM /AG)k(M)k(G)−1v(Mγ)−1
∑
Π

ΦM(γ−1,ΘΠ)Tr(Π(f∞)),

where the sum is taken over the set of L-packets Π in Πdisc(G(R), ν) and
Mγ = CentM(γ). Of course, SΦM(γ, f∞) = 0 unless γ is semi-simple and
elliptic in M(R). If M is a Levi subgroup of G that is not cuspidal, set
SΦG

M = 0.
Let f : G(A) −→ C. Assume that f = f∞f∞, with f∞ ∈ C∞c (G(Af ))

and f∞ ∈ C∞c (G(R), ν−1). For every Levi subgroup M of G, set

STG
M (f) = τ(M)

∑
γ

SOγ(f∞M)SΦM(γ, f∞),
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where the sum is taken over the set of stable conjugacy classes γ in M(Q)
that are semi-simple and elliptic in M(R), and f∞M is the constant term of
f∞ at M (the constant term depends on the choice of a parabolic subgroup
of G with Levi subgroup M, but its integral orbitals do not). Set

STG(f) =
∑
M

(nG
M )−1STG

M (f),

where the sum is taken over the set of G(Q)-conjugacy classes M of Levi
subgroups of G.

Let TG be the distribution of Arthur’s invariant trace formula. For every
(H, s, η0) ∈ E(G) (cf 2.4), fix a L-morphism η : LH −→ LG extending η0,
and let

ι(G,H) = τ(G)τ(H)−1|Λ(H, s, η0)|−1.

Kottwitz proved the following theorem in [K13] (theorem 5.1) :

Theorem 5.4.1 Let f = f∞f∞ be as above. Assume that f∞ is stable
cuspidal and that, for every (H, s, η0) ∈ E(G), there exists a transfer fH of
f . Then :

TG(f) =
∑

(H,s,η0)∈E(G)

ι(G,H)STH(fH).

We calculate k(G) for G a unitary group.

Lemma 5.4.2 Let p1, . . . , pr, q1, . . . , qr ∈ N such that pi+qi ≥ 1 for 1 ≤ i ≤
r; write ni = pi+qi, n = n1+· · ·+nr and G = G(U(p1, q1)×· · ·×U(pr, qr)).
Then

k(G) = 2n−r−1

if all the ni are even, and

k(G) = 2n−r

otherwise.

In particular, k(RE/QGm) = k(GU(1)) = 1.

Proof. Write Γ(∞) = Gal(C/R). In 3.1, we defined an elliptic maximal
torus Te of G and an isomorphism Te

∼−→ G(U(1)n). Tate-Nakayama du-
ality induces an isomorphism between the dual of Im(H1(R, Te ∩Gder) −→
H1(R,Te)) and Im(π0(T̂

Γ(∞)
e ) −→ π0((T̂e/Z(Ĝ)Γ(∞)))) (cf [K4] 7.9). More-

over, there is an exact sequence
(X∗(T̂e/Z(Ĝ)))Γ(∞) −→ π0(Z(Ĝ)Γ(∞)) −→ π0(T̂Γ(∞)

e ) −→ π0((T̂e/Z(Ĝ))Γ(∞))

(cf [K4] 2.3), and (X∗(T̂e/Z(Ĝ)))Γ(∞) = 0 because Te is elliptic, hence

k(G) = |π0(T̂Γ(∞)
e )||π0(Z(Ĝ)Γ(∞))|−1.

Of course, T̂Γ(∞)
e = T̂Gal(E/Q)

e et Z(Ĝ)Γ(∞) = Z(Ĝ)Gal(E/Q). We already
calculated these groups in (i) of lemma 2.3.3. This implies the result.

�
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Remark 5.4.3 Note that k(G)τ(G) = 2n−1.
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Chapter Six

Stabilization of the fixed point formula

To simplify the notations, we suppose in this chapter that the group G is
GU(p, q), but all the results generalize in an obvious way to the groups
G(U(p1, q1)× · · · ×U(pr, qr)).

6.1 PRELIMINARY SIMPLIFICATIONS

We first rewrite the fixed point formula using proposition 3.4.1.
Notations are as in chapters 1 (especially section 1.7), 2 and 3. Fix p, q ∈ N

such that n := p + q ≥ 1, and let G = GU(p, q). We may assume, and we
do, that p ≥ q. Let V be an irreducible algebraic representations of GC and
ϕ : WR −→ LG be an elliptic Langlands parameter corresponding to V ∗ as
in proposition 3.4.1. Let K ⊂ C be a number field such that V is defined
over K. Set

Θ = (−1)q(G)SΘϕ.

Fix g ∈ G(Af ), K,K′ ⊂ G(Af ), j ∈ N∗, prime numbers p and ` and a place
λ of K above ` as in 1.4 and 1.5. We get a cohomological correspondence

uj : (ΦjT g)∗ICKV −→ T
!

1IC
KV.

Proposition 6.1.1 Write G0 = M∅ = P∅ = G and L∅ = {1}. For every
s ∈ {0, . . . , q}, set

Trs = (−1)sms(nG
MS

)−1χ(LS)
∑

γL∈LS(Q)

∑
(γ0;γ,δ)∈C′Gs,j

c(γ0; γ, δ)OγL
(1lLS(Zp))OγLγ(f∞,p

MS
)

δ
1/2
PS(Qp)(γ0)TOδ(φGs

j )ΦG
MS

((γLγ0)−1,Θ),

where S = {1, 2, . . . , s} and where ms = 1 if s < n/2, and mn/2 = |Xn/2| = 2
if n is even. Then, if j is big enough :

Tr(uj , RΓ(MK(G,X )F, (ICKV )F)) =
q∑

s=0

Trs .

If g = 1 and K = K′, then the above formula is true for every j ∈ N∗.
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Proof. Let m ∈ Z be the weight of V as a representation of G (cf 1.3).
For every r ∈ {1, . . . , q}, set tr = r(r − n). By proposition 1.4.3, there is a
canonical isomorphism

ICKV 'W≥t1+1,...,≥tq+1V.

Write

Tr = Tr(uj , RΓ(MK(G,X )F, (ICKV )F)).

If j is big enough, then, by theorem 1.7.1,

Tr = TrG +
∑
P

TrP ,

where the sum is taken over the set of standard parabolic subgroups of G.
Set Tr′0 = TrG and, for every s ∈ {1, . . . , q},

Tr′s =
∑

S′⊂{1,...,s}
S′3s

TrPS′ .

We want to show that Tr′s = Trs. For s = 0, this comes from the fact that,
for every semi-simple γ0 ∈ G(Q) that is elliptic in G(R),

Tr(γ0, V ) = Θ(γ−1
0 ) = ΦG

G(γ−1
0 ,Θ).

Let s ∈ {1, . . . , q}; write S = {1, . . . , s}. Let S′ ⊂ S be such that s ∈ S′.
Then, up to LS′(Q)-conjugacy, the only cuspidal Levi subgroup of LS′ is
LS = (RE/QGm)s. Hence

TrPS′ = (−1)dim(ALS
/AL

S′
)mPS′ (n

LS′
LS

)−1χ(LS)
∑

γL∈LS(Q)

|DLS′
LS

(γL)|1/2
∑

(γ0;γ,δ)∈C′Gs,j

c(γ0; γ, δ)

OγLγ((f∞,p)MS
)OγL

(1lLS(Zp))δ
1/2
PS′ (Qp)(γ0)TOδ(φGs

j )δ1/2
PS′ (R)(γLγ0)LS′(γLγ0),

where

LS′(γLγ0) = Tr(γLγ0, RΓ(Lie(NS′), V )>tr+m,r∈S′).

As γ0 is in Gs(Q),

δPS′ (Qp)(γ0) = δPS(Qp)(γ0).

Hence :

Tr′s = msχ(LS)
∑

γL∈LS(Q)

∑
(γ0;γ,δ)∈C′Gs,j

c(γ0; γ, δ)OγLγ((f∞,p)MS
)OγL

(1lLS(Zp))

δ
1/2
PS(Qp)(γ0)TOδ(φGs

j )
∑
S′⊂S
S′3s

(−1)dim(ALS
/AL

S′
)(nLS′

LS
)−1|DLS′

LS
(γL)|1/2δ

1/2
PS′ (R)(γLγ0)LS′(γLγ0).
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Consider the action of the group Ss on MS defined in 3.4 (so Ss acts
on LS = (RE/QGm)s by permuting the factors, and it acts trivially on Gs).
Then

c(γ0; γ, δ)OγLγ((f∞,p)MS
)OγL

(1lLS(Zp))δ
1/2
PS(Qp)(γ0)TOδ(φGs

j )

is invariant by the action of Ss. Let γM ∈ MS(Q) be semi-simple and elliptic
in MS(R). Write γM = γLγ0, with γL ∈ LS(Q) and γ0 ∈ Gs(Q). Note that,
for every S′ ⊂ S such that s ∈ S′, dim(ALS′/ALS

) = dim(AMS′/AMS
)

and D
MS′
MS

(γM ) = D
LS′
LS

(γL). If γM satisfies the condition of part (ii) of
proposition 3.4.1, then, by this proposition,∑
γ′∈Ss.γM

∑
S′⊂S
S′3s

(−1)dim(ALS
/AL

S′
)(nLS′

LS
)−1|DMS′

MS
(γ′)|1/2δ

1/2
PS′ (R)(γ

′)LS′(γ′)

= (−1)s(nG
MS

)−1
∑

γ′∈Ss.γM

ΦG
MS

(γ′−1
,Θ),

because the function ΦG
MS

(.,Θ) is invariant by the action of Ss, and nG
MS

=
2ss! = 2s|Ss|. Moreover, also by proposition 3.4.1, for every γL ∈ LS(R)
and (γ0; γ, δ) ∈ CGs,j − C ′Gs,j , ΦG

MS
((γLγ0)−1,Θ) = 0 (because c(γLγ0) =

c(γ0) < 0).
To finish the proof of the proposition, it is enough to show that, if j is

big enough, then, for every γL ∈ LS(Q) and (γ0; γ, δ) ∈ C ′Gs,j such that
OγL

(1lLS(Zp))TOδ(φGs
j )OγLγ((f∞,p)MS

) 6= 0, the element γLγ0 of MS(Q)
satisfies the condition of part (ii) of proposition 3.4.1.

Let Σ be the set of (γL, γ0) ∈ MS(Q) = (E×)s×Gs(Q) such that there ex-
ists (γ, δ) ∈ Gs(Ap

f )×Gs(L) with (γ0; γ, δ) ∈ C ′Gs,j andOγL
(1lLS(Zp))TOδ(φGs

j )OγLγ((f∞,p)MS
) 6=

0. By remark 1.7.5, the function γM 7−→ OγM
((f∞,p)MS

) on MS(Ap
f ) has

compact support modulo conjugacy. So there exist C1, C2 ∈ R+∗ such that,
for every (γL = (λ1, . . . , λs), γ0) ∈ Σ,

|c(γ0)|Ap
f
≥ C1

sup
1≤r≤s

|λr|2Ap
f
≥ C2.

On the other hand, if (γL = (λ1, . . . , λs), γ0) ∈ Σ, then |λr|Qp = 1 for
1 ≤ r ≤ s (because γL ∈ LS(Zp)), and there exists δ ∈ Gs(L) such that
TOδ(φGs

j ) 6= 0 and that Nδ is Gs(Qp)-conjugate to γ0; this implies that

|c(γ0)|Qp = |c(δ)|L = pd ≥ pj ,

because d = j or 2j . (If TOδ(φGs
j ) 6= 0, then δ is σ-conjugate to an

element δ′ of G(OL)µGs
($−1

L )G(OL), so |c(δ)|L = |c(δ′)|L = pd.) Finally,
if (γL = (λ1, . . . , λs), γ0) ∈ Σ, then

|c(γ0)|∞ sup
1≤r≤s

|λr|2∞ = |c(γ0)|−1
Qp
|c(γ0)|−1

Ap
f

sup
1≤r≤s

|λr|−2
Ap

f
≤ p−jC−1

1 C−1
2 .
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Moreover, if (γ0; γ, δ) ∈ C ′Gs,j , then c(γ0) > 0. Hence, if j is such that
pjC1C2 ≥ 1, then all the elements of Σ satisfy the condition of part (ii) of
proposition 3.4.1.

Assume that g = 1 and K = K′. Then theorem 1.7.1 is true for every
j ∈ N∗. Moreover, by remark 1.7.5, the support of the function γM 7−→
OγM

((f∞,p)MS
) is contained in the union of the conjugates of a finite union

of open compact subgroups of MS(Ap
f ), so we may take C1 = C2 = 1, and

every j ∈ N∗ satisfies pjC1C2 ≥ 1.
�

6.2 STABILIZATION OF THE ELLIPTIC PART, AFTER KOT-

TWITZ

In [K9], Kottwitz stabilized the elliptic part of the fixed point formula (ie,
with the notations used here, the term Tr0). We will recall his result in
this section, and, in the next section, apply his method to the terms Trs,
s ∈ {1, . . . , q}.

For every (H, s, η0) ∈ E(G), fix a L-morphism η : LH −→ LG extending
η0 (in this section, we make the L-groups with WQ).

Theorem 6.2.1 ([K9] 7.2) There is an equality

Tr0 =
∑

(H,s,η0)∈E(G)

ι(G,H)τ(H)
∑
γH

SOγH
(f (j)

H ),

where the second sum is taken over the set of semi-simple stable conjugacy
classes in H(Q) that are elliptic in H(R).

We have to explain the notation. Let (H, s, η0) ∈ E(G). As in 5.4, write

ι(G,H) = τ(G)τ(H)−1|Λ(H, s, η0)|−1.

The function f (j)
H is a function in C∞(H(A)) such that f (j)

H = f∞,p
H f

(j)
H,pfH,∞,

with f∞,p
H ∈ C∞c (H(Ap

f )), f (j)
H,p ∈ C∞c (H(Qp)) and fH,∞ ∈ C∞(H(R)).

The first function f∞,p
H is simply a transfer of f∞,p ∈ C∞c (G(Ap

f )).
Use the notations of the last subsection of 4.2, and set ηp = η|bHoWQp

.

Then f (j)
H,p ∈ C∞c (H(Qp)) is equal to the twisted transfer beηp

(φG
j ).

For every elliptic Langlands parameter ϕH : WR −→ Ĥ oWR, set

fϕH
= d(H)−1

∑
π∈Π(ϕH)

fπ

(with the notations of 3.1).
Let B be the standard Borel subgroup of GC (ie the subgroup of upper tri-

angular matrices). It determines as in 3.3 a subset Ω∗ ⊂ ΩG and a bijection
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ΦH(ϕ) ∼−→ Ω∗, ϕH 7−→ ω∗(ϕH). Take

fH,∞ =< µG, s > (−1)q(G)
∑

ϕH∈ΦH(ϕ)

det(ω∗(ϕH))fϕH
,

where µG is the cocharacter of GC associated to the Shimura datum as in
2.1. Note that, as suggested by the notation, f (j)

H,p is the only part of f (j)
H

that depends on j.

Remark 6.2.2 In theorem 7.2 of [K9], the second sum is taken over the
set of semi-simple elliptic stable conjugacy classes that are (G,H)-regular.
But proposition 3.3.4 implies that SOγH

(fH,∞) = 0 if γH ∈ H(R) is not
(G,H)-regular (cf remark 3.3.5).

6.3 STABILIZATION OF THE OTHER TERMS

The stabilization process that we follow here is mainly due to Kottwitz, and
explained (in a more general situation) in [K13]. The differences between
the stabilization of the trace formula (in [K13]) and the stabilization of the
fixed point formula considered here are concentrated at the places p and ∞.
In particular, the vanishing of part of the contribution of the linear part of
Levi subgroups is particular to the stabilization of the fixed point formula.

We will use freely the definitions and notations of 2.4.

Theorem 6.3.1 (i) Let r ∈ {1, . . . , q}. Write M = M{1,...,r}. Then :

Trr = (nG
M )−1

∑
(M′,sM ,ηM,0)∈EG(M)

τ(G)τ(H)−1|ΛG(M′, sM , ηM,0)|−1STH
M ′(f (j)

H ),

where, for every (M′, sM , ηM,0) ∈ EG(M), (H, s, η0) is the correspond-
ing element of E(G).

(ii) Write G∗ = GU∗(n). Let r ∈ N such that r ≤ n/2. Denote by M∗

the standard Levi subgroup of G∗ that corresponds to {1, . . . , r} (as
in section 2.2). If r ≥ q + 1, then∑

(M′,sM ,ηM,0)∈EG∗ (M∗)

τ(H)−1|ΛG∗(M′, sM , ηM,0)|−1STH
M ′(f (j)

H ) = 0.

Corollary 6.3.2 If j is big enough, then

Tr(uj , RΓ(MK(G,X )∗F, IC
KVF)) =

∑
(H,s,η0)∈E(G)

ι(G,H)STH(f (j)
H ).

If g = 1 and K = K′, then this formula is true for every j ∈ N∗.

Remark 6.3.3 LetHK = H(G(Af ),K). Define an objectWλ of the Grothendieck
group of representations ofHK×Gal(Q/F ) in a finite dimensional Kλ-vector
space by

Wλ =
∑
i≥0

(−1)i[Hi(MK(G,X )∗Q, IC
KVQ)].
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Then, for every j ∈ N∗,
Tr(uj , RΓ(MK(G,X )∗F, IC

KVF)) = Tr(Φj
℘h,Wλ),

where Φ℘ ∈ Gal(Q/F ) is a lifting of the geometric Frobenius at ℘ (the fixed
place of F above p) and h = vol(K)−11lKgK.

So the corollary implies that : For every f∞ ∈ HK such that f∞ =
f∞,p1lG(Zp) and for every j big enough (in a way that may depend on f∞),

Tr(Φj
℘f

∞,Wλ) =
∑

(H,s,η0)∈E(G)

ι(G,H)STH(f (j)
H ),

where, for every (H, s, η0) ∈ E(G), f (j)
H,p and fH,∞ are defined as before, and

f∞,p
H is a transfer of f∞,p.

Proof. The corollary is an immediate consequence of theorem 6.2.1, of the
above theorem, of proposition 6.1.1 and of lemma 2.4.2.

�

Proof of the theorem. As j is fixed, we omit the subscripts “(j)” in this
proof.

We prove (i). As M is a proper Levi subgroup of G, |ΛG(M′, sM , ηM,0)| =
1 for every (M′, sM , ηM,0) ∈ EG(M) (lemma 2.4.3). Write, with the nota-
tions of the theorem,

Tr′M =
∑

(M′,sM ,ηM,0)∈EG(M)

τ(H)−1STH
M ′(fH).

By the definition of STH
M ′ in 5.4,

Tr′M =
∑

(M′,sM ,ηM,0)∈EG(M)

τ(H)−1τ(M′)
∑
γ′

SOγ′((f∞H )M′)SΦH
M ′(γ′, fH,∞),

where the second sum is taken over the set of semi-simple stable conjugacy
classes of M′(Q) that are elliptic in M′(R). By proposition 3.3.4 (and remark
3.3.5), the terms indexed by a stable conjugacy class γ′ that is not (M,M′)-
regular all vanish. By lemma 2.4.5,

Tr′M =
∑
γM

∑
κ∈KG(I/Q)e

τ(M′)τ(H)−1ψ(γM , κ),

where :

• The first sum is taken over the set of semi-simple stable conjugacy classes
γM in M(Q) that are elliptic in M(R).

• I = MγM
, and KG(I/Q) is defined above lemma 2.4.5.

• Let γM be as above and κ ∈ KG(I/Q). Let (M′, sM , ηM,0, γ
′) be an

endoscopic G-quadruple associated to κ by lemma 2.4.5. The subset
KG(I/Q)e of KG(I/Q) is the set of κ such that (M′, sM , ηM,0) ∈ EG(M).
If κ ∈ KG(I/Q)e, set

ψ(γM , κ) = SOγ′((f∞H )M′)SΦH
M ′(γ′, fH,∞),

where (H, s, η0) is as before the image of (M′, sM , ηM,0) in E(G).
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Fix γM , κ ∈ KG(I/Q)e and (M′, sM , ηM,0, γ
′) as above. Let (H, s, η0) be

the element of E(G) associated to (M′, sM , ηM,0), and define s′M as in 4.3.
Let γ0 be the component of γM in the Hermitian part Gr(Q) of M(Q). We
want to calculate ψ(γM , κ). This number is the product of three terms :

(a) Outside of p and ∞ : by (ii) of lemma 6.3.4,

SOγ′((f
p,∞
H )M′) =

∑
γ

∆M,∞,p
M′,sM

(γ′, γ)e(γ)Oγ(f∞,p
M ),

where the sum is taken over the set of semi-simple conjugacy classes
γ = (γv)v 6=p,∞ in M(Ap

f ) such that γv is stably conjugate to γM for
every v, and e(γ) =

∏
v 6=p,∞

e(MQv,γv
). By [K7] 5.6, this sum is equal to

∆M,∞,p
M′,sM

(γ′, γM )
∑

γ

< α(γM , γ), κ > e(γ)Oγ(f∞,p
M ),

where the sum is over the same set as before and α(γM , γ) is the
invariant denoted by inv(γM , γ) in [K7] (the article [K7] is only stating
a conjecture, but this conjecture has been proved since, see 5.3 for
explanations). Moreover, as the linear part of M is isomorphic to
(RE/QGm)r, we may replace α(γM , γ) with α(γ0, γh), where γh is the
component of γ in Gr(Ap

f ).

(b) At p : By corollary 4.3.2 (and with the notations of 4.3), SOγ′((fH,p)M′)
is equal to

< µ, s >< µ, s′M > εsM
(γM )

∑
δ

< αp(γ0, δh), sM > ∆M
M′,sM ,p(γ

′, γM )e(δ)TOδ((φG
j )M),

and, if γM ∈ Lr(Zp)Gr(Qp), to

< µ, s >< µ, s′M > δ
1/2
Pr(Qp)(γM )

∑
δ

< αp(γ0, δh), sM > ∆M
M′,sM ,p(γ

′, γM )e(δ)TOδ(1lLr(OL)×φGr
j ).

Both sums are taken over the set of σ-conjugacy classes δ in M(L)
such that γM ∈ N δ, and δh is the component of δ in Gr(L).

(c) At ∞ : By the definitions and proposition 3.3.4, SΦH
M′(γ′, fH,∞) is

equal to

< µ, s > (−1)dim(AM /AG)k(M′)k(H)−1v(I)−1∆M
M′,sM ,∞(γ′, γM )ΦG

M(γ−1
M ,Θ)

(note that AM ′ ' AM and AH ' AG because the endoscopic data
(H, s, η0) and (M′, sM , ηM,0) are elliptic, and that v(I) = v(M′

γ′) be-
cause I is an inner form of M′

γ′ by [K7] 3.1).

Finally, we find that ψ(γM , κ) is equal to

(−1)dim(AM /AG)εsM
(γM )k(M′)k(H)−1∑

(γ,δ)

< α(γ0; γh, δh), κ > e(γ)e(δ)v(I)−1Oγ(f∞,p
M )TOδ((φG

j )M)ΦG
M(γ−1

M ,Θ),
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where the sum is taken over the set of equivalence classes of (γ, δ) ∈ M(Ap
f )×

M(L) such that (γM ; γ, δ) satisfies conditions (C) of 1.6 and, if (γh, δh) is the
component of (γ, δ) in Gr(Ap

f )×Gr(L), then α(γ0; γh, δh) ∈ K(I/Q)D is the
invariant associated to (γ0; γh, δh) by Kottwitz in [K9] §2 (it is easy to check
that (γ0; γh, δh) also satisfies conditions (C) of 1.6). We say that (γ1, δ1)
and (γ2, δ2) are equivalent if γ1 and γ2 are M(Ap

f )-conjugate and δ1 and δ2
are σ-conjugate in M(L). In particular, ψ(γM , κ) is the product of a term
depending only on the image of κ in KM(I/Q) and of k(M′)k(H)−1εsM

(γM ).
Moreover, if γM ∈ Lr(Zp)Gr(Qp), then ψ(γM , κ) is equal to

(−1)dim(AM /AG)k(M′)k(H)−1δ
1/2
Pr(Qp)(γM )

∑
(γ,δ)

< α(γ0; γh, δh), κ > e(γ)e(δ)v(I)−1Oγ(f∞,p
M )TOδ(1lLr(OL) × φGr

j )ΦG
M(γ−1

M ,Θ),

where the sum is taken over the same set. Note that, as α(γ0; γh, δh) ∈
KM(I/Q)D, the number < α(γ0; γh, δh), κ > depends only on the image of
κ in KM(I/Q).

Let ΣL be the set of (λ1, . . . , λr) ∈ Lr(Q) = (E×)r such that :

• for every i ∈ {1, . . . , r}, |λiλi|p ∈ p2aZ;
• there exists i ∈ {1, . . . , r} such that 1

2avalp(|λiλi|p) is odd.

Remember that we defined in 4.3 a subgroup ΩM of the group of automor-
phisms of M (it was called ΩMH in 4.3); if we write M = (RE/QGm)r ×Gr,
then ΩM is the group generated by the involutions

((λ1, . . . , λr), g) 7−→ ((λ1, . . . , λi−1, λ
−1
i c(g)−1, λi+1, . . . , λr), g),

with 1 ≤ i ≤ r. The order of the group ΩM is 2r. On the other hand, there
is an action of Sr on M, given by the formula

(σ, ((λ1, . . . , λr), g)) 7−→ ((λσ−1(1), . . . , λσ−1(r)), g).

The subset ΣLGr(Q) of Mr(Q) is of course stable by Sr. By proposition
4.3.1, if γM ∈ M(Q) is such that ψ(γM , κ) 6= 0, then either there exists
ω ∈ ΩM (uniquely determined) such that ω(γM ) ∈ Lr(Zp)Gr(Q), or γM ∈
ΣLGr(Q). By (i) of lemma 6.3.6, if γM ∈ ΣLGr(Q), then, for every κM ∈
KM(I/Q),∑

κ7→κM

∑
γ′M∈SrγM

εsM
(γ′M )τ(M′)k(M′)τ(H)−1k(H)−1 = 0.

Hence ∑
γM

∑
κ

τ(M′)τ(H)−1ψ(γM , κ) = 0,

where the first sum is taken over the set of semi-simple stable conjugacy
classes γM in M(Q) that are elliptic in M(R) and such that there is no ω ∈
ΩM such that ω(γM ) ∈ Lr(Zp)Gr(Q). As ΩM is a subgroup of NorG(M)(Q),
the first expression above for ψ(γM , κ) shows that ψ(ω(γM ), κ) = ψ(γM , κ)
for every ω ∈ ΩM . So we get :
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Tr′M = (−1)dim(AM /AG)2r
∑
γM

δ
1/2
Pr(Qp)(γM )

∑
(γ,δ)

e(γ)e(δ)v(I)−1Oγ(f∞,p
M )TOδ(1lLr(OL) × φGr

j )

ΦG
M(γ−1

M ,Θ)
∑

κM∈KM(I/Q)

< α(γ0; γh, δh), κM >
∑

κ∈KG(I/Q)e
κ7−→κM

τ(M′)k(M′)τ(H)−1k(H)−1,

where the first sum is taken over the set of semi-simple stable conjugacy
classes γM in M(Q) that are elliptic in M(R) and the second sum is taken
over the set of equivalence classes (γ, δ) in M(Ap

f )×M(L) such that (γM ; γ, δ)
satisfies conditions (C) of 1.6. By (ii) of lemma 6.3.6, for every κM ∈
KM(I/Q),

τ(G)τ(M)−1
∑

κ7→κM

τ(M′)k(M′)τ(H)−1k(H)−1 =
{

2−r if r < n/2
2−r+1 if r = n/2 .

In particular, this sum is independant of κM . So, by the reasoning of [K9]
§4 and by the definition of v(I) in 5.4 and lemma 6.3.7 (and the fact that
Lr is a torus), we get

τ(G) Tr′M = (−1)rmrχ(Lr)
∑

γl∈Lr(Q)

∑
(γ0;γh,δh)∈C′Gr,j

c(γ0; γh, δh)δ1/2
Pr(Qp)(γ0)Oγlγh

(f∞,p
M )

Oγl
(1lLr(Zp))TOδh

(φGr
j )ΦG

M((γlγ0)−1,Θ),

where the integer mr is as in proposition 6.1.1 (ie equal to 2 if r = n/2 and
to 1 if r < n/2). This (combined with proposition 6.1.1) finishes the proof
of the equality of (i).

We now prove (ii). The proof is very similar to that of (i). Assume that
r ≥ q + 1, and write

Tr′r =
∑

(M′,sM ,ηM,0)∈EG∗ (M∗)

τ(H)−1|ΛG∗(M′, sM , ηM,0)|−1STH
M ′(f (j)

H ).

Then, as in the prooof of (i), we see that

Tr′r =
∑
γM

∑
κ∈KG∗ (I/Q)e

τ(M′)τ(H)−1ψ(γM , κ),

where :

• The first sum is taken over the set of semi-simple stable conjugacy classes
γM in M∗(Q) that are elliptic in M∗(R).

• I = M∗
γM

, and KG∗(I/Q) is defined above lemma 2.4.5.
• The subset KG∗(I/Q)e of KG∗(I/Q) is defined as above. If κ ∈ KG∗(I/Q)e

and (M′, sM , ηM,0, γ
′) is an endoscopic G∗-quadruple associated to κ by

lemma 2.4.5, then

ψ(γM , κ) = SOγ′((f∞H )M′)SΦH
M ′(γ′, fH,∞),

where (H, s, η0) is the image of (M′, sM , ηM,0) in E(G∗).
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If there exists a place v 6= p,∞ of Q such that M∗
Qv

does not transfer to
GQv

(see lemma 6.3.5), then Tr′r = 0 by (ii) of lemma 6.3.5. So we may
assume that M∗

Qv
transfers to GQv for every v 6= p,∞. Then, reasoning

exactly as in the proof of (i) (and using (i) of lemma 6.3.5), we see that, for
every γM and every κ as above, ψ(γM , κ) is the product of a term depending
only on the image of κ in KM∗(I/Q) and of k(M′)k(H)−1εsM

(γM ). Now, to
show that Tr′r = 0, we can use (i) of lemma 6.3.6 as in the proof of (i).

�

The next two lemmas are results of [K13].

Lemma 6.3.4 (cf [K13] 7.10 and lemma 7.6) Fix a place v of Q. Let M
be a Levi subgroup of GQv , (M′, sM , ηM,0) ∈ EGQv

(M) and (H, s, η0) be the
image of (M′, sM , ηM,0) in E(GQv ). As in lemma 2.4.2, we identify M′ with
a Levi subgroup of H. Choose compatible extensions η : LH −→ LGQv and
ηM : LM′ −→ LM of η0 and ηM,0, and normalize transfer factors as in 5.2.

(i) Let f ∈ C∞c (G(Qv)). Then, for every γ ∈ M(Qv) semi-simple and
G-regular,

SOγ(fM) = |DG
M (γ)|1/2

v SOγ(f).

(Remember that DG
M (γ) = det(1−Ad(γ), Lie(G)/Lie(M).)

(ii) Let f ∈ C∞c (G(Qv)), and let fH ∈ C∞c (H(Qv)) be a transfer of f .
Then, for every γH ∈ M′(Qv) semi-simple and (M,M′)-regular,

SOγH
((fH)M′) =

∑
γ

∆M
M′,sM

(γH , γ)e(Mγ)Oγ(fM),

where the sum is taken over the set of semi-simple conjugacy classes γ
in M(Qv) that are images of γH .

Proof. (cf [K13]) We show (i). Let γ ∈ M(Qv) be semi-simple and G-
regular. By the descent formula ([A2] corollary 8.3),

Oγ(fM) = |DG
M (γ)|1/2

v Oγ(f).

On the other hand, as Mγ = Gγ and as the morphism H1(Qv,M) −→
H1(Qv,G) is injective, 1 the obvious map Ker(H1(Qv,Mγ) −→ H1(Qv,M)) −→
Ker(H1(Qv,Gγ) −→ H1(Qv,G)) is a bijection. In other words, there is a
natural bijection from the set of conjugacy classes in the stable conjugacy
class of γ in M(Qv) to the set of conjugacy classes in the stable conjugacy
class of γ in G(Qv). This proves the equality of (i).

1This is explained in [K13] A.1, and is true for any reductive group over a field of
characteristic 0 : Choose a parabolic subgroup P of G with Levi subgroup M. Then the
map H1(Qv ,M) −→ H1(Qv ,P) is bijective, and the map H1(Qv ,P) −→ H1(Qv ,G) is
injective (the second map has a trivial kernel by theorem 4.13(c) of [BT], and it is not
hard to deduce from this that it is injective).
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We show (ii). By lemma 2.4.A of [LS2], it is enough to show the equality
for γH regular in H. We may even assume that all the images of γH in
M(Qv) are regular in G; in that case, all the signs e(Mγ) in the equality
that we are trying to prove are trivial. Applying (i) to fH, we get

SOγH
((fH)M′) = |DH

M ′(γH)|1/2
v SOγH

(fH).

By definition of the transfer, this implies that

SOγH
((fH)M′) = |DH

M ′(γH)|1/2
v

∑
γ

∆G
H(γH , γ)Oγ(f),

where the sum is taken over the set of conjugacy classes γ in G(Qv) that
are images of γH . Such a conjugacy class has a non-empty intersection with
M(Qv), so the equality of (ii) is a consequence of the descent formula and
of the normalization of the transfer factors.

�

Lemma 6.3.5 (cf [K13] lemma 7.4 and A.2) Write as before G∗ = GU∗(n).
Fix a place v of Q. Let M∗ be a Levi subgroup of G∗

Qv
. As in [K13] A.2, we

say that M∗ transfers to GQv
if there exists an inner twisting ψ : G∗ −→ G

such that the restriction of ψ to AM∗ is defined over Qv.

(i) Assume that M∗ transfers to GQv
, and let ψ : G∗ −→ G be an inner

twisting such that ψ|AM∗ is defined over Qv. Then M := ψ(M∗) is a
Levi subgroup of GQv , and ψ|M∗ : M∗ −→ M is an inner twisting.

(ii) Assume that M∗ does not transfer to GQv
. Let (M′, sM , ηM,0) ∈

EG∗
Qv

(M∗), and let (H, s, η0) be the image of (M′, sM , ηM,0) in E(G∗
Qv

) =
E(GQv ). As in lemma 2.4.2, we identify M′ with a Levi subgroup of
H. Let f ∈ C∞c (G(Qv)), and let fH ∈ C∞c (H(Qv)) be a transfer of f .
Then, for every γH ∈ M′(Qv) semi-simple and (M,M′)-regular,

SOγH
((fH)M′) = 0.

Proof. Point (i) follows from the fact that M = CentGQv
(ψ(AM∗)). We

prove (ii). By lemma 2.4.A of [LS2], we may assume that γH is regular in
H; by continuity, we may even assume that γH is G∗-regular. Let TH be
the centralizer of γH in H. It is a maximal torus of MH and H, and it
transfers to M∗ and G∗ because γH is G∗-regular. By (i) of lemma 6.3.4
and the definition of the transfer, to show that SOγH

((fH)M′) = 0, it is
enough to show that TH , seen as a maximal torus in G∗, does not transfer
to G. Assume that TH transfers to G. Then there exists an inner twisting
ψ : G∗ −→ G such that ψ|TH

is defined over Qv; but AM∗ ⊂ TH , so ψ|AM∗

is defined over Qv, and this contradicts the fact that M∗ does not transfer
to GQv .

�
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Lemma 6.3.6 We use the notations of the proof of theorem 6.3.1. Let
κM ∈ KM (I/Q).

(i) If γM ∈ ΣLGr(Q), then∑
κ∈KG(I/Q)e

κ7−→κM

∑
γ′M∈SrγM

εsM
(γ′M )τ(M′)k(M′)τ(H)−1k(H)−1 = 0.

(ii)

τ(G)τ(M)−1
∑

κ∈KG(I/Q)e
κ7−→κM

τ(M′)k(M′)τ(H)−1k(H)−1 =
{

2−r if r < n/2
2−r+1 if r = n/2 .

Proof. Remember that M = M{1,...,r} ' (RE/QGm)r ×GU(p− r, q − r).
By remark 5.4.3, τ(H)k(H) = 2n−1 for every (H, s, η0) ∈ E(G) and, for
every (M′, sM , ηM,0) ∈ EG(M),

k(M′)τ(M′) = k(M)τ(M) =
{

2n−2r−1 if r < n/2
1 if r = n/2 .

In particular, the term τ(M′)k(M′)τ(H)−1k(H)−1 in the two sums of the
lemma does not depend on κ; it is equal to 2−2r if r < n/2, and to 21−n =
2−2r+1 if r = n/2. Besides, by lemma 2.3.3, τ(G)τ(M)−1 is equal to 1 if
r < n/2, and to 2 if r = n/2.

We calculate KκM
:= {κ ∈ KG(I/Q)e|κ 7−→ κM}. Write Γ = Gal(Q/Q),

and choose an embedding M̂ ⊂ Ĝ as in lemma 2.4.3. Then we get isomor-
phisms Z(Ĝ) ' C××C× and Z(M̂) ' C×× (C×)r ×C×× (C×)r such that
the embedding Z(Ĝ) ⊂ Z(M̂) is (λ, µ) 7−→ (λ, (µ, . . . , µ), µ, (µ, . . . , µ)) and
that the action of Gal(E/Q) on Z(Ĝ) and Z(M̂) is given by the following
formulas

τ(λ, µ) = (λµn, µ−1)

τ(λ, (λ1, . . . , λr), µ, (λ′r, . . . , λ
′
1)) = (λµn−2rλ1 . . . λrλ

′
1 . . . λ

′
r, (λ

′
1
−1
, . . . , λ′r

−1), µ−1, (λ−1
1 , . . . , λ−1

r ))

(remember that τ is the non-trivial element of Gal(E/Q)). This implies
that (Z(M̂)/Z(Ĝ))Γ ' (C×)r is connected (this is a general fact, cf [K13]
A.5). By the exact sequence of [K4] 2.3, the morphism H1(Q, Z(Ĝ)) −→
H1(Q, Z(M̂)) is injective. By lemma 2.3.3 and [K4] (4.2.2), Ker1(Q, Z(Ĝ)) =
Ker1(Q, Z(M̂)) = 1; so the following commutative diagram has exact rows :

1 // KG(I/Q) //

��

(Z(Î)/Z(Ĝ))Γ //

��

H1(Q, Z(Ĝ))

��
1 // KM(I/Q) // (Z(Î)/Z(M̂))Γ // H1(Q, Z(M̂))

Let x ∈ KM(I/Q). Then x, seen as an element of (Z(Î)/Z(M̂))Γ, has a trivial
image in H1(Q, Z(M̂)), so it is in the image of Z(Î)Γ −→ (Z(Î)/Z(M̂))Γ.
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In particular, there exists y ∈ (Z(Î)/Z(Ĝ))Γ that is sent to x. As the
map H1(Q, Z(Ĝ)) −→ H1(Q, Z(M̂)) is injective, y has a trivial image in
H1(Q, Z(Ĝ)), so y is in KG(I/Q). This proves that the map α : KG(I/Q) −→
KM(I/Q) in the diagram above is surjective. We want to determine its ker-
nel. There is an obvious injection Ker(α) −→ (Z(M̂)/Z(Ĝ))Γ. By the in-
jectivity of H1(Q, Z(Ĝ)) −→ H1(Q, Z(M̂)), the image of (Z(M̂)/Z(Ĝ))Γ in
(Z(Î)/Z(Ĝ))Γ is included in KG(I/Q); this implies that Ker(α) = (Z(M̂)/Z(Ĝ))Γ.
Finally, we get an exact sequence

1 −→ (Z(M̂)/Z(Ĝ))Γ −→ KG(I/Q) −→ KM(I/Q) −→ 1

(it is the exact sequence of [K13] (7.2.1)).
If κ ∈ K(κM ) and γ′M ∈ SrγM , write εκ(γ′M ) instead of εsM

(γ′M ) (this
sign depends only on κ, cf remark 4.3.3). As I is the centralizer of an
elliptic element of M(Q), it is easy to see from lemma 2.4.3 that K(κM )
is non-empty and that we can choose κ0 ∈ K(κM ) such that εκ0(γ

′
M ) = 1

for every γ′M ∈ M(Q). Fix such a κ0. For every A ⊂ {1, . . . , r}, let sA

be the image in Z(M̂)/Z(Ĝ) of the element (1, (s1, . . . , sr), 1, (sr, . . . , s1)) of
Z(M̂), where si = 1 if i 6∈ A and si = −1 if i ∈ A. Lemma 2.4.3 implies
that K(κM ) = {κ0 + sA, A ⊂ {1, . . . , r}}. If r < n/2, then the sA are
pairwise distinct, so |K(κM )| = 2r. If r = n/2, then sA = sA′ if and only if
{1, . . . , r} = A tA′, so |K(κM )| = 2r−1. This finishes the proof of (ii).

We now prove (i). Let γM ∈ ΣLGr(Q). We want to show that∑
κ∈K(κM )

∑
γ′M∈SrγM

εsM
(γ′M ) = 0.

Write γM = ((λ1, . . . , λr), g) ∈ (E×)r × Gr(Q), and let B the set of i ∈
{1, . . . , r} such that 1

2avalp(|λiλi|p) is odd.
It is easy to see from the definition of εsM

that, for every σ ∈ Sr and
A ⊂ {1, . . . , r}, εκ0+sA

(σ(γM )) = (−1)|A∩σ(B)|. (If r = n/2, this sign is the
same for A and {1, . . . , r}−A because |B| is even by remark 4.3.3.) So it is
enough to show that, for every σ ∈ Sr,

∑
A⊂{1,...,r}

(−1)|A∩σ(B)| = 0. But∑
A⊂{1,...,r}

(−1)|A∩σ(B)| = 2n−|B|
∑

A⊂σ(B)

(−1)|A|,

and this is equal to 0 because B is non-empty by the hypothesis on γM .
�

Lemma 6.3.7 Let s ∈ {1, . . . , q}. Write S = {1, . . . , s}. Then

χ(LS) = vol(ALS
(R)0 \ LS(R))−1

(where ALS
is the maximal split subtorus of LS , ie Gs

m).

Proof. By [GKM] 7.10 and the fact that LS/ALS
is R-anisotropic, we get

χ(LS) = (−1)q(LS)τ(LS) vol(ALS
(R)0 \ LS(R))−1d(LS).
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As LS is a torus, q(LS) = 0 and d(LS) = 1. Moreover, by lemma 2.3.3,
τ(LS) = 1.

�
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Chapter Seven

Applications

This chapter contains a few applications of corollary 6.3.2. First we show
how corollary 6.3.2 implies a variant of theorem 5.4.1 for the unitary groups
of 2.1. The only reason we do this is to make the other applications in this
chapter logically independant of the unpublished [K13] (this independance
is of course only formal, as the whole stabilization of the fixed point formula
in this book was inspired by [K13]). Then we gave applications to the calcu-
lation of the (Hecke) isotypical components of the intersection cohomology
and to the Ramanujan-Petersson conjecture.

7.1 STABLE TRACE FORMULA

The simplest way to apply corollary 6.3.2 is to use theorem 5.4.1 (ie the
main result of [K13]) to calculate the terms STH(fH). In this section, we
show how to avoid this reference to the unpublished [K13].

Notations are as in chapter 6, but with G any of the unitary groups
defined in 2.1. As in 6.2, fix, for every (H, s, η0) ∈ E(G), a L-morphism
η : LH −→ LG extending η0.

Definition 7.1.1 Let f∞ ∈ C∞(G(R)). Suppose that f∞ =
∑
ϕ
cϕfϕ, where

the sum is taken over the set of equivalence classes of elliptic Langlands
parameters ϕ : WR −→ Ĝ o WR and the cϕ are complex numbers that
are almost all 0 (fϕ is defined in the beginning of 6.2). Then, for every
(H, s, η0) ∈ E(G), set

(f∞)H =< µG, s >
∑
ϕ

cϕ
∑

ϕH∈ΦH(ϕ)

det(ω∗(ϕH))fϕH
,

where the bijection ΦH(ϕ) ∼−→ Ω∗, ϕH 7−→ ω∗(ϕH) is as in 6.2 determined
by the standard Borel subgroup of GC.

Remark 7.1.2 By the trace Paley-Wiener theorem of Clozel and Delorme
([CD], cf the beginning of section 3 of [A6]), if f∞ ∈ C∞(G(R)) is sta-
ble cuspidal, then f∞ satifies the condition of definition 7.1.1, so (f∞)H is
defined.

Definition 7.1.3 Let a1, b1, . . . , ar, br ∈ N be such that ai ≥ bi for all i and
G = G(U(a1, b1)× · · · ×U(ar, br)). Write ni = ai + bi; then the quasi-split
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inner form of G is G(U∗(n1) × · · · ×U∗(nr)). Fix n+
1 , n

−
1 , . . . , n

+
r , n

−
r ∈ N

such that ni = n+
i + n−i for every i ∈ {1, . . . , r} and that n−1 + · · · + n−r is

even. Let (H, s, η0) be the elliptic endoscopic triple for G associated to these
integers as in proposition 2.3.1. For every i ∈ {1, . . . , r}, if Ii ⊂ {1, . . . , ni},
set ni(Ii) = |I ∩ {n+

i + 1, . . . , ni}|. We define a rational number ιG,H by

ιG,H = ι(G,H)|π0(X )|−1
∑

I1⊂{1,...,n1}
|I1|=a1

· · ·
∑

Ir⊂{1,...,nr}
|Ir|=ar

(−1)n1(I1)+···+nr(Ir),

where X is the symmetric space appearing in the Shimura data of section
2.1 for G.

Proposition 7.1.4 Let f = f∞f∞ be as in theorem 5.4.1. Assume that
f∞ is stable cuspidal and that, for every (H, s, η0) ∈ E(G), there exists a
transfer (f∞)H of f∞. Then :

TG(f) =
∑

(H,s,η0)∈E

ιG,HST
H((f∞)H(f∞)H).

Remark 7.1.5 It is not very hard to see that proposition 7.1.4 is a conse-
quence of theorem 5.4.1. The goal here is to prove it directly.

To prove this proposition, we first need an extension of corollary 6.3.2
(proposition 7.1.7 below).

Fix a prime number p where G is unramified. Remember that we defined,
for every m ∈ N∗, a function φG

m on G(L), where L is an unramified exten-
sion of Qp; if (H, s, η0) ∈ E(G), write f (m)

H,p for the function in C∞c (H(Qp))
obtained by twisted transfer from φG

m as in 4.3. In the proof of propo-
sition 4.3.1, we have calculated the Satake transform S of f (m)

H,p , or more

precisely of χ−1
ηp
f

(m)
H,p , where χηp is the quasi-character of H(Qp) associated

to η|bHoWQp
: Ĥ o WQp −→ Ĝ o WQp as in the last two subsections of 4.2.

Notice that the expression for the Satake transform S makes sense for any
m ∈ Z.

Definition 7.1.6 If m ∈ Z, we define f (m)
H,p ∈ C∞c (H(Qp)) in the following

way : χ−1
ηp
f

(m)
H,p ∈ H(H(Qp),H(Zp)), and its Satake transform is given by the

polynomial S in the proof of proposition 4.3.1 (where of course the integer
a in the definition of S is replaced by m).

Fix f∞,p ∈ C∞c (G(Ap
f )) and an irreducible algebraic representation V of

GC. For every (H, s, η0) ∈ E(G) and m ∈ Z, let f (m)
H = fp,∞

H f
(m)
H,pfH,∞ ∈

C∞(H(A)), where fp,∞
H and fH,∞ are as in 6.2.
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Proposition 7.1.7 Assume that p is inert in E. 1 Then, with the notations
of 6.3, for every m ∈ Z,

Tr(Φm
℘ f

∞,Wλ) =
∑

(H,s,η0)∈E(G)

ι(G,H)STH(f (m)
H ),

where f∞ = f∞,p1lG(Zp).

Notice that, for m >> 0, this is simply corollary 6.3.2 (cf the remark
following this corollary).

Proof. Fix an (arbitrary) embedding ι : Kλ ⊂ C and write W = ι∗(Wλ).
Then W is a virtual complex representation of HK × Gal(Q/F ). As the
actions of Φ℘ and f∞ on W commute, there exist a finite set I0 and families
of complex numbers (ci)i∈I0 and (αi)i∈I0 such that, for every m ∈ Z,

Tr(Φm
℘ f

∞,W ) =
∑
i∈I0

ciα
m
i .

We now want to find a similar expression for the right hand side of the
equality of the proposition. Remember from the definitions in 5.4 that

STH(f (m)
H ) =

∑
MH

(nH
MH

)−1τ(MH)
∑
γH

SOγH
((f∞,p

H )MH
)SOγH

((f (m)
H,p )MH

)SΦH
MH

(γH , fH,∞),

where the first sum is taken over the set of conjugacy classes of cuspidal
Levi subgroups MH of H and the second sum over the set of semi-simple
stable conjugacy classes γH ∈ MH(Q) that are elliptic in MH(R). Note that
the first sum is finite. In the second sum, all but finitely many terms are
zero, but the set of γH such that the term associated to γH is non-zero may
depend on m.

Fix (H, s, η0) ∈ E(G) and a cuspidal Levi subgroup MH of H. By
the Howe conjecture, proved by Clozel in [Cl1], the space of linear forms
H(MH(Qp),MH(Zp)) −→ C generated by the elements h 7−→ SOγH

(h),
for γH ∈ MH(Qp) semi-simple elliptic, is finite-dimensional. As p is in-
ert in E, any semi-simple γH ∈ MH(Q) that is elliptic in MH(R) is also
elliptic in MH(Qp). 2 So we find that the space D of linear forms on
H(MH(Qp),MH(Zp)) generated by the h 7−→ SOγH

(h), for γH ∈ MH(Q)
semi-simple and elliptic in MH(R), is finite-dimensional.

On the other hand, by Kazhdan’s density theorem ([Ka] theorem 0), ev-
ery distribution h 7−→ SOγH

(h) on H(MH(Qp),MH(Zp)) is a finite linear
combination of distributions of the type h 7−→ Tr(π(h)), for π a smooth irre-
ducible representation of MH(Zp) (that we may assume to be unramified).
So the space D is generated by a finite number of distributions of that type.

Using the form of the Satake transform of χ−1
ηp
f

(m)
H,p , it is easy to see

that this implies that there exist a finite set IMH ,H and a family of com-

1This is not really necessary but makes the proof slightly simpler.
2Such a γH is elliptic in MH(R) (resp. MH(Qp)) if and only if it is contained in

no Levi subgroup of MH(R) (resp. MH(Qp)). But the Levi subgroups of MH(R) and
MH(Qp) are all defined over Q.
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plex numbers (βMH ,H,i)i∈IMH ,H
such that, for every γH ∈ MH(Q) semi-

simple and elliptic in MH(R), there exists a family of complex numbers
(dMH ,H,i(γH))i∈IMH ,H

with

SOγH
((f∞,p

H )MH
)SOγH

((f (m)
H,p )MH

)SΦH
MH

(γH , fH,∞) =
∑

i∈IMH ,H

dMH ,H,i(γH)βm
MH ,H,i

for every m ∈ Z.
Let m0 ∈ Z. We want to prove the equality of the proposition for m = m0.

Let N ∈ N such that the equality of the proposition is true for m ≥ N (such
a N exists by corollary 6.3.2). We may assume that m0 ≤ N . Let

M = |I0|+
∑

(H,s,η0)∈E(G)

∑
MH

|IMH ,H |,

where the second sum is taken over a set of conjugacy classes of cuspidal
Levi subgroups of H. For every H and MH as before, let ΓMH ,H be the
set of semi-simple stable conjugacy classes γH ∈ MH(Q) that are elliptic in
MH(R) and such that there exists m ∈ Z with m0 ≤ m ≤ N +M and

SOγH
((f∞,p

H )MH
)SOγH

((f (m)
H,p )MH

)SΦH
MH

(γH , fH,∞) 6= 0.

This set is finite. So, by the above calculations, there exist families of com-
plex numbers (dMH ,H,i)i∈IMH ,H

, for all MH and H as before, such that, for
every m ∈ Z with m0 ≤ m ≤ N +M − 1,∑
(H,s,η0)∈E(G)

ι(G,H)STH(f (m)
H ) =

∑
(H,s,η0)∈E(G)

∑
MH

∑
i∈IMH ,H

dMH ,H,iβ
m
MH ,H,i.

All the sums above are finite. So we can reformulate this as : there exist
a finite set J (with |J | =

∑
H

∑
MH

|IMH ,H |) and families of complex numbers

(dj)j∈J and (βj)j∈J such that, if m0 ≤ m ≤ N +M − 1, then∑
(H,s,η0)∈E(G)

ι(G,H)STH(f (m)
H ) =

∑
j∈J

djβ
m
j .

So the result that we want to prove is that the equality∑
i∈I0

ciα
m
i =

∑
j∈J

djβ
m
j

holds for m = m0. But we know that this equality holds if N ≤ m ≤
N +M − 1, and M = |I0|+ |J |, so this equality holds for all m ∈ Z.

�

Proof of proposition 7.1.4. We may assume that f∞ is a product
⊗
p
fp,

with fp = 1lG(Zp) for almost all p. Let K =
∏
p

Kp be a neat open compact

subgroup of G(Af ) such that f ∈ H(G(Af ),K). Fix a prime number p that is
inert in E and such that G is unramified at p, fp = 1lG(Zp) and Kp = G(Zp).
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Define a virtual representation W of H(G(Af ),K) × Gal(Q/F ) as in the
proof of proposition 7.1.7. Then, by formula (3.5) and theorem 6.1 of [A6],
and by theorem 7.14.B and paragraph (7.19) of [GKM] : 3

Tr(f∞,W ) = |π0(X )|TG(f).

On the other hand, using proposition 7.1.7 at the place p and for m = 0, we
find

Tr(f∞,W ) =
∑

(H,s,η0)∈E(G)

ι(G,H)STH(f (0)
H ).

But it is obvious from the definitions of f (m)
H,p and ιG,H that

f
(0)
H,p =

ιG,H

ι(G,H)
|π0(X )|χηp1lH(Zp),

and we know that χηp1lH(Zp) is a transfer of fp = 1lG(Zp) by the fundamental
lemma (cf 5.3). This finishes the proof.

�

7.2 ISOTYPICAL COMPONENTS OF THE INTERSECTION

COHOMOLOGY

Notations are still as in 7.1, and we assume that G = GU(p, q), with n =
p+q (for the other unitary groups of 2.1, everything would work the same way
, but with more complicated notations). In particular, V is an irreducible
algebraic representations of G defined over a number field K, λ is a place
of K over ` and ϕ : WR −→ Ĝ o WR is an elliptic Langlands parameter
corresponding to the contragredient V ∗ of V (as in proposition 3.4.1).

LetHK = H(G(Af ),K). Define, as in 6.3, an objectWλ of the Grothendieck
group of representations ofHK×Gal(Q/F ) in a finite dimensional Kλ-vector
space by

Wλ =
∑
i≥0

(−1)i[Hi(MK(G,X )∗Q, IC
KVQ)].

Let ι : Kλ −→ C be an embedding. Then there is an isotypical decomposi-
tion of ι∗(Wλ) as a HK-module :

ι∗(Wλ) =
∑
πf

ι∗(Wλ)(πf )⊗ πK
f ,

where the sum is taken over the set of isomorphism classes of irreducible
admissible representations πf of G(Af ) such that πK

f 6= 0 and where the

3In the articles [A6] and [GKM], the authors consider only connected symmetric spaces,
i.e., they use π0(G(R)) \ X instead of X (in the cases considered here, G(R) acts transi-
tively on X , so π0(G(R)) \ X is connected). When we pass from π0(G(R)) \ X to X , the
trace of Hecke operators is multiplied by |π0(X )|.
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ι∗(Wλ)(πf ) are virtual representations of Gal(Q/F ) in finite dimensional C-
vector spaces. As there is only a finite number of πf such that ι∗(Wλ)(πf ) 6=
0, we may assume, after replacing Kλ by a finite extension, that there exist
virtual representations Wλ(πf ) of Gal(Q/F ) in finite dimensional Kλ-vector
spaces such that ι∗(Wλ(πf )) = ι∗(Wλ)(πf ). So we get

Wλ =
∑
πf

Wλ(πf )⊗ πK
f .

Notation 7.2.1 Let H be a connected reductive group over Q and ξ be a
quasi-character of AH(R)0. We write Π(H(A), ξ) for the set of isomorphism
classes of irreducible admissible representations of H(A) on which AH(R)0

acts by ξ. For every π ∈ Π(H(A), ξ), let mdisc(π) be the multiplicity of π in
the discrete part of L2(H(Q) \H(A), ξ) (cf [A6], §2).

Let ξG be the quasi-character by which the group AG(R)0 acts on the
contragredient of V .

For every (H, s, η0) ∈ E(G), fix a L-morphism η : LH −→ LG extending
η0 as in proposition 2.3.2. Let E0(G) be the set of (H, s, η0) ∈ E(G) such
that H is not an inner form of G. If n1, . . . , nr ∈ N∗ and H = G(U∗(n1)×
· · · ×U∗(nr)), we define in the same way a subset E0(H) of E(H) and fix,
for every (H′, s, η0) ∈ E(H), a L-morphism η : LH′ −→ LH extending η0 as
in proposition 2.3.2.

Let FG be the set of sequence (e1, . . . , er) of variable length r ∈ N∗, with
e1 = (H1, s1, η1) ∈ E0

G and, for every i ∈ {2, . . . , r}, ei = (Hi, si, ηi) ∈ E0
Hi−1

.

Let e = (e1, . . . , er) ∈ FG. Write ei = (Hi, si, ηi) and H0 = G. Set
`(e) = r, He = Hr, ηe = η1 ◦ · · · ◦ ηr : LHe −→ LG,

ι(e) = ιG,H1ιH1,H2 . . . ιHr−1,Hr

and

ι′(e) = ι(G,H1)ιH1,H2 . . . ιHr−1,Hr
.

For every finite set S of prime numbers, write AS =
∏

p∈S

Qp and AS
f =∏

p6∈S

′ Qp; if π′f =
⊗ ′π′p is an irreducible admissible representations of G(Af ),

write π′S =
⊗
p∈S

π′p and π′S =
⊗
p6∈S

′ π′p; if G is unramified at every p 6∈ S, write

KS =
∏

p6∈S

G(Zp). If fS ∈ C∞c (G(AS
f )) and fS ∈ C∞c (G(AS)), define

functions (fS)e ∈ C∞c (He(AS
f )) and (fS)e ∈ C∞c (He(AS)) by

(fS)e = (. . . ((fS)H1)H2 . . . )Hr

(fS)e = (. . . ((fS)H1)H2 . . . )Hr .

Define a function fe
∞ on He(R) by

fe
∞ = (. . . ((f∞)H1)H2 . . . )Hr ,
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where f∞ = (−1)q(G)fϕ (this function is defined in 6.2). The function f
e
∞

is stable cuspidal by definition.
Let k ∈ {1, . . . , r}. Consider the morphism

ϕk : WR
j−→ LHk,R

η∞−→ LHk−1,R
p−→ L(AHk−1)R,

where j is the obvious inclusion, η∞ is induced by ηk and p is the dual
of the inclusion AHk−1 −→ Hk−1. The morphism ϕk is the Langlands
parameter of a quasi-character on AHk−1(R), and we write χk for the re-
striction of this quasi-character to AHk−1(R)0. As AHr = · · · = AH1 = AG

(because (Hk, sk, ηk,0) is an elliptic endoscopic datum for Hk−1 for every
k ∈ {1, . . . , r}), we may define a quasi-character ξe on AHe(R)0 by the for-
mula

ξe = ξGχ
−1
1 . . . χ−1

r .

This quasi-character satisfies the following property : if ϕHe
: WR −→ LHe,R

is a Langlands parameter corresponding to a L-packet of representations of
He(R) with central character ξe on AHe(R)0, then ηe ◦ ϕHe : WR −→ LGR
corresponds to a L-packet of representations of G(R) with central charac-
ter ξG on AG(R)0. (This is the construction of [K13] 5.5). Write Πe =
Π(He(A), ξe). Let Re(V ) be the set of π∞ ∈ Π(He(R)) such that there
exists an elliptic Langlands parameter ϕe : WR −→ LHe,R satisfying the
following properties : ηe ◦ ϕe is Ĝ-conjugate to ϕ, and Tr(π∞(fϕe

)) 6= 0
(remember that fϕe is defined in 6.2). Then Re(V ) is finite.

If p is a prime number unramified in E, let ηe,p = ηes|bHeoWQp
and write

ηe,p,simple : LHe −→ LG for the L-morphism extending η1,0 ◦ . . . ηr,0 and
equal to the composition of the analogs of the morphism ηsimple of the last
two subsections of 4.2. Write ηe,p = cηe,p,simple, where c : WQp −→ Z(Ĥe) is
a 1-cocycle. Let χe,p = χηe,p be the quasi-character of He(Qp) corresponding
to the class of c in H1(WQp , Z(Ĥe)).

Suppose that (H1, s1, η1,0) is the elliptic endoscopic triple for G defined
by a pair (n+, n−) ∈ N2 as in proposition 2.3.1 (so n = n+ + n− and n− is
even). Write

He = G(U∗(n+
1 )× · · · ×U∗(n+

r )×U∗(n−1 )× · · · ×U∗(n−s )),

where the identification is chosen such that η2 ◦ · · · ◦ηr sends Û∗(n+
1 )×· · ·×

Û∗(n+
r ) (resp. Û∗(n−1 )× · · · × Û∗(n−s )) in Û∗(n+) (resp. Û∗(n−)).

If p+
1 , . . . , p

+
r , p

−
1 , . . . , p

−
s ∈ N are such that 1 ≤ p+

i ≤ n+
i and 1 ≤ p−j ≤ n−j

for every i ∈ {1, . . . , r} and j ∈ {1, . . . , s}, write
µ = µp+

1 ,...,p+
r ,p−1 ,...,p−s

= (µp+
1
, . . . , µp+

r
, µp−1

, . . . , µp−s
) : Gm,E −→ He,E

(cf 2.1.2 for the definition of µp), and

s(µ) = (−1)p−1 +···+p−s .

Let Me be the set of cocharacters µp+
1 ,...,p+

r ,p−1 ,...,p−s
with p = p+

1 + · · ·+ p+
r +

p−1 + · · ·+ p−s . For every µ ∈Me and every finite place ℘ of F where He is
unramified, we get a representation r−µ of LHe,F℘ , defined in 4.1.1.
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For every irreducible admissible representations πe,f of He(Af ), let

ce(πe) =
∑

πe,∞∈Π(He(R)),

πe,f⊗πe,∞∈Πe

mdisc(πe,f ⊗ πe,∞) Tr(πe,∞(fe
∞))

(as Tr(πe,∞(fe
∞)) = 0 unless πe,∞ ∈ Re(V ), this sum has only a finite

number of non-zero terms).
Write ΠG = Π(G(A), ξG). For every irreducible admissible representation

πf of G(Af ), let

cG(πf ) =
∑

π∞∈Π(G(R)),
π∞⊗πf∈ΠG

mdisc(πf ⊗ π∞) Tr(π∞(f∞))

(this sum has only a finite number of non-zero terms because there are only
finitely many π∞ in Π(G(R)) such that Tr(π∞(f∞)) 6= 0). Remember that
there is a cocharacter µG : Gm,E −→ GE associated to the Shimura datum
(cf 2.1); this cocharacter gives a representation r−µG

of LGF℘ , for every
finite place ℘ of F where G is unramified.

Let πf =
⊗
p

′πp be an irreducible admissible representation of G(Af ) such

that πK
f 6= 0, and let e ∈ FG. Write Re(πf ) for the set of equivalence

classes of irreducible admissible representations πe,f =
⊗
p

′πe,p of He(Af )

such that, for almost every prime number p where πf and πe,f are unramified,
the morphism ηe : LHe −→ LG sends a Langlands parameter of πe,p to a
Langlands parameter of πp.

Let p be a prime number. Remember that we fixed embeddings F ⊂ Q ⊂
Qp, that determine a place ℘ of F above p and a morphism Gal(Qp/F℘) −→
Gal(Q/F ). Let Φ℘ ∈ Gal(Qp/F℘) be a lift of the geometric Frobenius,
and use the same notation for its image in Gal(Q/F ). If H is a reductive
unramified group over Qp and πp is an unramified representation of H(Qp),
denote by ϕπp : WQp −→ LHQp a Langlands parameter of πp.

Theorem 7.2.2 Let πf be an irreducible admissible representation of G(Af )
such that πK

f 6= 0. Then there exists a function f∞ ∈ C∞c (G(Af )) such that,
for almost every prime number p and for every m ∈ Z,

Tr(Φm
℘ ,Wλ(πf )) = (N℘)md/2cG(πf ) dim(πK

f ) Tr(r−µG
◦ ϕπp(Φm

℘ ))

+(N℘)md/2
∑

e∈FG

(−1)`(e)ι(e)
∑

πe,f∈Re(πf )

ce(πe,f ) Tr(πe((f∞)e))

∑
µ∈Me

(1− (−1)s(µ) ι
′(e)
ι(e)

) Tr(r−µ ◦ ϕπe,p⊗χe,p(Φm
℘ )),

where the second sum in the right hand side is taken only over those πe,f such
that πe,p ⊗ χe,p is unramified, d = dim(MK(G,X )) and N℘ = #(OF℘

/℘).
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Remark 7.2.3 The lack of control over the set of “good” prime numbers
in the theorem above comes from the fact that we do not have a strong
multiplicity one theorem for G (and not from a lack of information about
the integral models of Shimura varieties). If πf extends to an automorphic
representation of G(A) whose base change to G(AE) is cuspidal (cf section
8.5), then it is possible to do better by using corollary 8.5.3.

Proof. It is enough to prove the equality of the theorem for m big enough
(where the meaning of “big enough” can depend on p).

Let R′ be the set of isomorphism classes of irreducible admissible repre-
sentations π′f of G(Af ) satisfying the following properties :

• π′f 6' πf ;
• (π′f )K 6= 0;
• Wλ(π′f ) 6= 0 or cG(π′f ) 6= 0.

ThenR′ is finite, so there exists h ∈ HK = H(G(Af ),K) such that Tr(πf (h)) =
Tr(πf (1lK)) and Tr(π′f (h)) = 0 for every π′f ∈ R′.

Let T be a finite set of prime numbers such that all the representations in
R′ are unramified outside of T , that G is unramified at every p 6∈ T , that K =
KT KT with KT ⊂ G(AT ) and that h = hT 1lKT with hT ∈ H(G(AT ),KT ).
Then, for every function gT inH(G(AT

f ),KT ), Tr(πf (hT g
T )) = Tr(πT (1lKT

))Tr(πT (gT ))
and Tr(π′f (hT g

T )) = 0 if π′f ∈ R′.
For every e ∈ FG, let R′e be the set of isomorphism classes of irre-

ducible admissible representations ρf of He(Af ) such that ρf 6∈ Re(πf ),
Tr(ρf (he)) 6= 0 and ce(ρf ) 6= 0. As FG is finite anf R′e is finite for every
e ∈ FG, there exists gT ∈ H(G(AT

f ),KT ) such that :

• Tr(πT (gT )) = 1;
• for every e ∈ FG and ρf ∈ R′e, if kT is the function on He(AT

f ) ob-
tained from gT by the base change morphism associated to ηe, then
Tr(ρT (kT )) = 0.

Let S ⊃ T be a finite set of prime numbers such that gT = gS−T 1lKS , with
gS−T a function on G(AS−T ). Set

f∞ = hT g
T .

Let p 6∈ S be a prime number big enough for corollary 6.3.2 to be true. Then
f∞ = f∞,p1lG(Zp), and there are functions (f∞,p)e and (f∞)e defined as
above, for every e ∈ FG.

Let m ∈ Z. Consider the following functions :

f (m) = f∞,pf (m)
p f∞ ∈ C∞c (G(Ap

f ))C∞c (G(Qp))C∞(G(R))

and

f
(m)
H = (f∞,p)Hf (m)

H,pfH,∞ ∈ C∞c (H(Ap
f ))C∞c (H(Qp))C∞(H(R))

for every (H, s, η0) ∈ E(G), where :
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• f
(m)
p ∈ H(G(Qp),G(Zp)) is the function obtained by base change from

the function φG
m of theorem 1.6.1;

• f
(m)
H,p ∈ C∞c (H(Qp)) is the function obtained by twisted transfer from
φG

m.

Then, by corollary 6.3.2 and the choice of f , for m big enough,

Tr(Φm
℘ f,Wλ(πf )) = Tr(Φm

℘ f,Wλ) =
∑

(H,s,η0)∈E(G)

ι(G,H)STH(f (m)
H ).

By proposition 7.1.4 and the fact that f (m)
H is simply a transfer of f (m) if

H = G∗ (the quasi-split inner form of G), we get :

Tr(Φm
℘ f,Wλ(πf )) = TG(f (m))+

∑
e∈FG

(−1)`(e)ι(e)THe(f (m),e)+
∑

e∈FG

(−1)`(e)−1ι′(e)THe(f (m)
e ),

where, for every e = ((H1, s1, η1), . . . , (Hr, sr, ηr)) ∈ FG, we wrote He =
Hr,

f (m),e = (f∞,p)e(f (m)
p )efe

∞

and

f (m)
e = (f∞,p)ef (m)

e,p fe
∞,

with

f (m)
e,p = (. . . (f (m)

H1,p)
H2 . . . )Hr .

By the calculation of [A6] p 267-268 :

TG(f (m)) =
∑

ρ∈ΠG

mdisc(ρ) Tr(ρ(f (m)))

THe(f (m),e) =
∑

ρ∈Πe

mdisc(ρ) Tr(ρ(f (m),e))

THe(f (m)
e ) =

∑
ρ∈Πe

mdisc(ρ) Tr(ρ(f (m)
e )).

Let e = ((H1, s1, η1), . . . , (Hr, sr, ηr)) ∈ FG and ρ = ρ∞,p ⊗ ρp ⊗ ρ∞ =
ρf ⊗ ρ∞ ∈ Πe. Then

Tr(ρ(f (m),e)) = Tr(ρ∞,p((f∞,p)e) Tr(ρp(f (m)
p )e) Tr(ρ∞(fe

∞)).

As χ−1
e,p(f

(m)
p )e ∈ H(Hr(Qp),Hr(Zp)), the trace above is 0 unless ρp ⊗ χe,p

is unramified. So

Tr(ρ(f (m),e)) = Tr(ρf ((f∞)e) Tr(ρp(f (m)
p )e) Tr(ρ∞(fe

∞)),

because both sides are zero if unless ρp⊗χe,p is unramified and, if ρp⊗χe,p is
unramified, then Tr(ρp(χe,p1lHr(Zp))) = dim((ρp ⊗ χe,p)Hr(Zp)) = 1 (and, by
the fundamental lemma, we may assume that (f (m)

p )e is equal to χe,p1lHe(Zp)).
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Assume that ρp ⊗ χe,p is unramified, and let ϕρp⊗χe,p
: WQp

−→ LHr,Qp
be

a Langlands parameter of ρp ⊗ χe,p. Then, by proposition 4.2.1 and the
calculation of the transfer of a function in the spherical Hecke algebra in 4.2,
we get

Tr(ρp((f (m)
p )e)) = (N℘)md/2

∑
µ∈Me

Tr(r−µ ◦ ϕρp⊗χe,p
(Φm

℘ )).

Similarly, using the calculation of the twisted transfer in 4.2, we see that
Tr(ρ(f (m)

e )) is equal to 0 if ρp ⊗ χe,p is ramified, and to

Tr(ρf ((f∞)e))Tr(ρ∞(fe
∞))(N℘)md/2

∑
µ∈Me

(−1)s(µ) Tr(r−µ ◦ ϕρp⊗χe,p(Φm
℘ ))

if ρp ⊗ χe,p is unramified.
Moreover, by the choice of f∞, if ρf 6∈ Re(πf ), then :

ce(ρf ) Tr(ρf ((f∞)e)) = 0.
A similar (but simpler) calculation gives, for every ρ = ρf ⊗ ρ∞ ∈ ΠG

: cG(ρf ) Tr(ρf (f∞,pf
(m)
p )) = 0 if ρ is ramified at p or if ρf 6' πf , and, if

ρf ' πf (so ρ is unramified at p), then

Tr(ρ(f (m))) = dim(πK
f ) Tr(ρ∞(f∞))(N℘)md/2 Tr(r−µG

◦ ϕπp(Φm
℘ )).

This calculations imply the equality of the theorem.
�

Remark 7.2.4 Take any f∞ in C∞c (G(Af )). Then the calculations in the
proof of the theorem show that for every prime number p unramified in E
and such that f∞ = f∞,p1lG(Zp), and for every m ∈ Z :

∑
(H,s,η0)∈E(G)

ι(G,H)STH(f (m)
H ) = (N℘)md/2

∑
πf

cG(πf ) Tr(πf (f∞))Tr(r−µG
◦ ϕπp(Φm

℘ ))

+(N℘)md/2
∑

e∈FG

(−1)`(e)ι(e)
∑
πe,f

ce(πe,f ) Tr(πe,f ((f∞)e))

∑
µ∈Me

(1− (−1)s(µ) ι
′(e)
ι(e)

) Tr(r−µ ◦ ϕπe,p⊗χe,p(Φm
℘ )),

where the first (resp. third) sum on the right hand side is taken over the set
of isomomorphism classes of irreducible admissible respresentations πf (resp.
πe,f ) of G(Af ) (resp. He(Af )) such that πp is unramified (resp. πe,p ⊗ χe,p

is unramified), and the function f (m)
H,p for m ≤ 0 is defined in definition 7.1.6.

This implies that corollary 6.3.2 is true for every j ∈ Z, and not just
for j big enough (because that corollary can be rewritten as an equality∑
i∈I

ciα
j
i =

∑
k∈K

dkβ
j
k, where (ci)i∈I , (αi)i∈I , (dk)k∈K and (βk)k∈K are finite

families of complex numbers). This is the statement of proposition 7.1.7
(if p is inert), but note that proposition 7.1.7 was used in the proof of this
remark.
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For every i ∈ Z, consider the representation Hi(MK(G,X )∗Q, IC
KVQ) of

HK ×Gal(Q/F ). After making Kλ bigger, we may assume that all the HK-
isotypical components of this representations are defined over Kλ. Write W i

λ

for the semi-simplifications of this representations, and let

W i
λ =

⊕
πf

W i
λ(πf )⊗ πK

f

be their isotypical decompositions as HK-modules (so, as before, the sum is
taken over the set of isomorphism classes of irreducible admissible represen-
tations πf of G(Af ) such that πK

f 6= 0). Of course, Wλ =
∑
i∈Z

(−1)i[W i
λ] and

Wλ(πf ) =
∑
i∈Z

(−1)i[W i
λ(πf )] for every πf .

Then, just as in Kottwitz’s article [K10] (see also 5.2 of Clozel’s article
[Cl5]), we get the following characterization of the representations πf that
appear in Wλ :

Remark 7.2.5 Let πf be an irreducible admissible representation of G(Af )
such that πK

f 6= 0. Then the following conditions are equivalent :

(1) Wλ(πf ) 6= 0.

(2) There exists i ∈ Z such that W i
λ(πf ) 6= 0.

(3) There exists π∞ ∈ Π(G(R)) and i ∈ Z such that mdisc(πf ⊗ π∞) 6= 0
and Hi(g,K′

∞;π∞ ⊗ V ) 6= 0.

The notations used in condition (3) are those of the proof of lemma 7.3.5.
Moreover, all this conditions are implied by :

(4) cG(πf ) 6= 0.

Assume that, for every e ∈ FG and for every πe,f ∈ Re(πf ), ce(πe,f ) = 0.
Then (1) implies (4).

Proof. It is obvious that (1) implies (2).
By lemma 3.2 of [K10], there exists a positive integer N such that, for

every π∞ ∈ Π(G(R)),

Tr(π∞(f∞)) = N−1
∑
i∈Z

(−1)i dim(Hi(g,K′
∞, π∞ ⊗ V )).

This shows in particular that (4) implies (3).
By Matsushima’s formula (generalized by Borel and Casselman) and Zucker’s

conjecture (proved by Looijenga, Saper-Stern, Looijenga-Rapoport), for ev-
ery i ∈ Z, there is an isomorphism of C-vector spaces :

ι(W i
λ(πf )) =

⊕
π∞∈Π(G(R))

mdisc(πf ⊗ π∞) Hi(g,K′
∞, π∞ ⊗ V )
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(remember that ι : Kλ −→ C is an embedding that was fixed at the be-
gining of this section). This is explained in the proof of lemma 7.3.5. The
equivalence of (2) and (3) follows from this formula.

We show that (2) implies (1). This is done just as in section 6 of [K10].
Let m be the weight of V in the sense of 1.3. Then the local system FKV
defined by V is pure of weight −m (cf 1.3), so the intersection complexe
ICKV is also pure of weight −m. Hence, for every i ∈ Z, W i

λ(πf ) is pure
of weight −m + i as a representation of Gal(Q/F ) (ie it is unramified and
pure of weight −m+ i at almost all places of F ). In particular, W i

λ(πf ) and
W j

λ(πf ) cannot have isomorphic irreducible subquotients if i 6= j, so there
are no cancellations in the sum Wλ(πf ) =

∑
i∈Z

(−1)i[W i
λ(πf )]. This show that

(2) implies (1).
We now prove the last statement. By the assumption on πf and theorem

7.2.2, for almost every prime number p and every m ∈ Z,

Tr(Φm
℘ ,Wλ(πf )) = (N℘)md/2cG(πf ) dim(πK

f ) Tr(r−µG
◦ ϕπp(Φm

℘ )).

Fix p big enough for this equality to be true. If Wλ(πf ) 6= 0, then there
exists m ∈ Z such that Tr(Φm

℘ ,Wλ(πf )) 6= 0, so cG(πf ) 6= 0.
�

7.3 APPLICATION TO THE RAMANUJAN-PETERSSON CON-

JECTURE

We keep the notations of 7.2, but we take here G = G(U(p1, q1) × · · · ×
U(pr, qr)), with p1, q1, . . . , pr, qr ∈ N such that, for every i ∈ {1, . . . , r},
ni := pi+qi ≥ 1. Assume that, for every i ∈ {1, . . . , r}, if ni ≥ 2, then qi ≥ 1.
Write n = n1+ · · ·+nr and d = dimMK(G,X ) (so d = p1q1+ · · ·+prqr).Let
T be the diagonal torus of G.

Theorem 7.3.1 Let πf be an irreducible admissible representation of G(Af )
such that there exists an irreducible representation π∞ of G(R) with Tr(π∞(f∞)) 6=
0 and mdisc(πf⊗π∞) 6= 0. For every prime number p where πf is unramified,
let

(z(p), ((z(p)
1,1 , . . . , z

(p)
1,n1

), . . . , (z(p)
r,1 , . . . , z

(p)
r,nr

))) ∈ T̂Gal(Qp/Qp)

be the Langlands parameter of πp. Assume that V is pure of weight 0 in the
sense of 1.3 (ie that Gm, seen as a subgroup of the center of G, acts trivially
on V ). Then, for every p where G is unramified,

|z(p)| = |z(p)
1,1 . . . z

(p)
1,n1

| = · · · = |z(p)
r,1 . . . z

(p)
r,nr

| = 1.

Moreover :

(i) Assume that the highest weight of V is regular. Then, for p big enough,

for every i ∈ {1, . . . , r} and j ∈ {1, . . . , ni}, |z(p)
i,j | = 1.
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(ii) Assume that r = 1, that Wλ(πf ) 6= 0 and that, for every e ∈ FG and
for every πe,f ∈ Re(πf ), ce(πe,f ) = 0. Then, for p big enough :

• if p splits in E, then, for every j ∈ {1, . . . , n1}, logp |z
(p)
1,j | ∈

1
gcd(p1,q1)

Z;

•if p is inert in E, then, for every j ∈ {1, . . . , n1}, logp |z
(p)
1,j | ∈

1
gcd(2,p1,q1)

Z.

Proof. Let K be a neat open compact subgroup of G(Af ) such that πK
f 6=

{0}.
The center Z of G is isomorphic in an obvious way to G(U(1)r). As πf is

irreducible, Z(Af ) acts on the space of πf by a character χ : Z(Af ) −→ C×,
that is unramified wherever πf is and trivial on K ∩ Z(Af ). The character
χ is also trivial on Z(Q), because there exists a representation π∞ of G(R)
such that π∞ ⊗ πf is a direct factor of L2(G(Q) \G(A), 1) (where 1 is the
trivial character of AG(R)0, ie the character by which AG(R)0 acts on V ).
Hence χ is trivial on Z(Q)(K ∩ Z(Af )); as Z(Q)(K ∩ Z(Af )) is a subgroup
of finite index of Z(Af ), χ is of finite order. (As Z(R)/AG(R)0 is compact,
this implies in particular that the central character of π∞ ⊗ πf is unitary.)

Use 2.3 to identify Ẑ and C××(C×)r. For every p where πf is unramified,
let (y(p), (y(p)

1 , . . . , y
(p)
r )) ∈ ẐGal(Qp/Qp) be the Langlands parameter of χp.

As χ is of finite order, |y(p)| = |y(p)
1 | = · · · = |y(p)

r | = 1.
The morphism Ĝ = C××GLn1(C)×· · ·×GLnr

(C) −→ Ẑ = C××(C×)r,
(z, (g1, . . . , gr)) 7−→ (z,det(g1), . . . ,det(gr)) is dual to the inclusion Z ⊂ G.
So, for every p where πf is unramified, z(p) = y(p) and z

(p)
i,1 . . . z

(p)
i,ni

= y
(p)
i

for every i ∈ {1, . . . , r}. This proves the first statement of the theorem.
We show (i). Assume that the highest weight of V is regular. Let R∞ be

the set of π∞ ∈ Π(G(R)) such that π∞⊗πf ∈ ΠG and Tr(π∞(f∞)) 6= 0. By
the proof of lemma 6.2 of [A6], all the representations π∞ ∈ Π(G(R)) such
that Tr(π∞(f∞)) 6= 0 are in the discrete series. So R∞ is contained in the
discrete series L-packet associated to the contragredient of V . In particular,
the function π∞ 7−→ Tr(π∞(f∞)) is constant on R∞, so

cG(πf ) =
∑

π∞∈R∞

mdisc(π∞ ⊗ πf ) Tr(π∞(f∞)) 6= 0.

We prove the result by induction on the set of (n1, . . . , nr) ∈ (N∗)r such that
n1 + · · ·+nr = n, with the ordering : (n′1, . . . , n

′
r′) < (n1, . . . , nr) if and only

if r′ > r.
Assume first that, for every e ∈ FG and for every πe,f ∈ Πe(πf ), ce(πe,f ) =

0. Let p be a prime number big enough for theorem 7.2.2 to be true. Then,
for every m ∈ Z :

Tr(Φm
℘ ,Wλ(πf )) = (N℘)md/2cG(πf ) dim(πK

f ) Tr(r−µG
◦ ϕπp(Φm

℘ )).
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Let x1, . . . , xs ∈ C be the eigenvalues of Φ℘ acting onWλ(πf ), and a1, . . . , as ∈
Z be their multiplicities. For every m ∈ Z,

Tr(Φm
℘ ,Wλ(πf )) =

s∑
i=1

aix
m
i .

By lemma 7.3.5, the cohomology of ICKV is concentrated in degree d. As
ICKV is pure of weight 0 (because V is pure of weight 0), logp |x1| =
. . . logp |xr| = n(℘)d/2, where n(℘) = logp(N℘).

On the other hand, by lemma 7.3.2, for every m ∈ Z :

Tr(r−µG
⊗ϕπp(Φ2m

℘ )) = (z(p))−2m
∑

J1⊂{1,...,n1}
|J1|=p1

· · ·
∑

Jr⊂{1,...,nr}
|Jr|=pr

r∏
i=1

∏
j∈Ji

(z(p)
i,j )−2m[F℘:Qp].

As |z(p)| = 1, this implies that, for all J1 ⊂ {1, . . . , n1}, . . . , Jr ⊂ {1, . . . , nr}
such that |J1| = p1, . . . , |Jr| = pr,

r∑
i=1

∑
j∈Ji

logp |z
(p)
i,j | = 0.

By the first statement of the theorem and lemma 7.3.3, we get logp |z
(p)
i,j | = 0,

ie |z(p)
i,j | = 1, for every i ∈ {1, . . . , r} and j ∈ {1, . . . , ni}.

Assume now that there exists e ∈ FG and πe,f ∈ Πe(πf ) such that
ce(πe,f ) 6= 0. Write (with the notations of 7.2)

He = G(U∗(n′1)× · · · ×U∗(n′r′)).

Of course, (n′1, . . . , n
′
r′) < (n1, . . . , nr).

Let TH be the diagonal torus of He. If p is a prime number where πe,f is
unramified, let

(t(p), ((t(p)
1,1, . . . , t

(p)
1,n′1

), . . . , (t(p)
r′,1, . . . , t

(p)
r′,n′

r′
))) ∈ T̂

Gal(Qp/Qp)

H

be the Langlands parameter of πe,p. By the definition of Re(πf ) (and the
fact that, in proposition 2.3.2, we chose a unitary character µ), up to a
permutation of the t(p)

i,j , there is an equality

(z(p), u
(p)
1,1z

(p)
1,1 , . . . , u

(p)
1,n1

z
(p)
1,n1

, . . . , u
(p)
r,1z

(p)
r,1 , . . . , u

(p)
r,nr

z(p)
r,nr

) = (t(p), t
(p)
1,1, . . . , t

(p)
1,n′1

, . . . , t
(p)
r′,1, . . . , t

(p)
r′,n′

r′
)

for almost every p, where the u(p)
i,j are complex numbers with absolute value

1. So it is enough to show that |t(p)
i,j | = 1 for all i, j, if p is big enough.

As ce(πe,f ) 6= 0, there exists πe,∞ ∈ Π(He(R)) and an elliptic Langlands
parameter ϕH : WR −→ LHe,R such that mdisc(πe,∞ ⊗ πe,f ) 6= 0, ηe ◦ ϕH is
Ĝ-conjugate to ϕ and

Tr(πe,∞(fϕH
)) 6= 0,

where fϕH
is the stable cuspidal function associated to ϕH defined at the

end of 6.2. By lemma 7.3.4, ϕH is the Langlands parameter of a L-packet
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of the discrete series of He(R) associated to an irreducible algebraic repre-
sentation of He,C with regular highest weight and pure of weight 0. So the
representation πe,f of He(Af ) satisfies all the conditions of point (i) of the
theorem, and we can apply the induction hypothesis to finish the proof.

We show (ii). Without the assumption on the highest weight of V , the
complex ICKV is still pure of weight 0, but its cohomology is not necessarily
concentrated in degree d. By the hypothesis on πf , for p big enough and for
every m ∈ Z, there is an equality

(N℘)md/2cG(πf ) dim(πK
f ) Tr(r−µG

◦ϕπp(Φm
℘ )) = Tr(Φm

℘ ,Wλ(πf )) =
s∑

i=1

aix
m
i ,

where, as in (i), x1, . . . , xs ∈ C are the eigenvalues of Φ℘ acting on Wλ(πf )
and a1, . . . , as ∈ Z are their multiplicities. In particular, all the ai have
the same sign (the sign of cG(πf )), so Wλ(πf ) is concentrated either in odd
degree or in even degree, and the weights of Wλ(πf ) are either all even or all
odd. By applying the same reasoning as above, we find, for p big enough, a
linear system :∑

j∈J

logp |z
(p)
1,j | =

1
2
wJ , J ⊂ {1, . . . , n1}, |J | = p1,

where the wJ are in Z and all have the same parity. As p1 < n1 if n1 ≥ 2, this
implies that logp |z

(p)
1,j | − logp |z

(p)
1,j′ | ∈ Z for every j, j′ ∈ {1, . . . , n1}. On the

other hand, we know that
n1∑

j=1

logp |z
(p)
1,j | = 0. So, for every J ⊂ {1, . . . , n1}

such that |J | = q1,
∑
j∈J

logp |z
(p)
1,j | ∈ Z.

Let α ∈ R be such that logp |z
(p)
1,1 |−α ∈ Z. Then logp |z

(p)
1,j |−α ∈ Z for every

j ∈ {1, . . . , n1}, so p1α, q1α ∈ Z, and gcd(p1, q1)α ∈ Z. Assume that p is
inert in E. Then the fact that (z(p), (z(p)

1,1 , . . . , z
(p)
1,n1

)) is Gal(Qp/Qp)-invariant

implies that, for every j ∈ {1, . . . , n1}, logp |z
(p)
1,j | + logp |z

(p)
1,n1+1−j | = 0. So

2α ∈ Z.
�

Lemma 7.3.2 Use the notations of theorem 7.3.1 above. Fix a prime num-
ber p where πf is unramified and m ∈ Z. Then

Tr(r−µG
◦ ϕπp(Φm

℘ )) = (z(p))−m
∑
J1

· · ·
∑
Jr

r∏
i=1

∏
j∈Ji

(±z(p)
i,j )−m[F℘:Qp],

where :

(i) if F = Q, p is inert in E and m is odd, then, for every i ∈ {1, . . . , r},
the i-th sum is taken over the set of subsets Ji of {1, . . . , ni} such that

{1, . . . , ni} − Ji = {ni + 1− j, j ∈ Ji};



main April 10, 2009

APPLICATIONS 119

(ii) in all other cases, the i-th sum is taken over the set of subsets Ji of
{1, . . . , ni} such that |Ji| = pi, and all the signs are equal to 1.

Proof. To make notations simpler, we assume that r = 1. (The proof is
exactly the same in the general case.) We first determine the representation
r−µG

of LGF . As r−µG
is the contragredient of rµG

, it is enough to calculate
rµG

. Remember that T is the diagonal torus of G, and that T̂ = C× ×
(C×)n1 ⊂ Ĝ = C××GLn1(C). The cocharacter µG of T corresponds to the
following character of T̂ :

(λ, (λi)1≤i≤n1) 7−→ λ

p1∏
i=1

λi.

So the space of rµG
is Vµ =

p1∧
Cn1 , where GLn1(C) acts by

p1∧
of the standard

representation, and C× acts by the character z 7−→ z. Let (e1, . . . , en1) be
the canonical basis of Cn1 . Then the family (ei1 ∧ · · · ∧ eip1

)1≤i1<···<ip1≤n1

is a basis of Vµ. From the definition of rµG
(cf lemma 4.1.1), it is easy to

see that WE acts trivially on Vµ and that, if F = Q (so n1 is even and
p1 = n1/2), then an element of WQ − WE sends ei1 ∧ · · · ∧ eip1

, where
1 ≤ i1 < · · · < ip1 ≤ n1, to ±ej1 ∧ · · · ∧ ejp1

, with 1 ≤ j1 < · · · <
jp1 ≤ n1 and {n1 + 1 − j1, . . . , n1 + 1 − jp1} = {1, . . . , n1} − {i1, . . . , ip1}.
By definition of the Langlands parameter, we may assume that ϕπp(Φ℘) =
(((z(p))[F℘:Qp], ((z(p)

1 )[F℘:Qp], . . . , (z(p)
n1 )[F℘:Qp])),Φ℘) (remember that Φ℘ is a

lift in Gal(Qp/F℘) of the geometric Frobenius). If F = E, p is split in E
or m is even, then the image of Φm

℘ in WQ is an element of WE , so Φm
℘

acts trivially on Vµ (if p is split in E, this comes from the fact that the
image of WQp in WQ is included in WE). If F = Q and p is inert in E,
then Gal(Ep/Qp)

∼−→ Gal(E/Q), and the image of Φ℘ in Gal(Ep/Qp) gen-
erates Gal(Ep/Qp), so Φm

℘ 6∈WE for m odd. The formula of the lemma is a
consequence of these remarks and of the explicit description of rµG

.
�

Lemma 7.3.3 (i) Let n, p ∈ N be such that 1 ≤ p ≤ max(1, n−1). Then
there exist J1, . . . , Jn ⊂ {1, . . . , n} such that |J1| = · · · = |Jn| = p and
that the only solution of the system of linear equations∑

j∈Ji

Xj = 0, 1 ≤ i ≤ n,

is the zero solution.

(ii) Let r ∈ N∗, n1, . . . , nr ≥ 2 and p1, . . . , pr ∈ N be such that 1 ≤
pi ≤ ni − 1 for 1 ≤ i ≤ r. For every i ∈ {1, . . . , r}, choose subsets
Ji,1, . . . , Ji,ni of {1, . . . , ni} of cardinality pi and satisfying the property
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of (i). Then the only solution of the system of linear equations

ni∑
j=1

Xi,j = 0, 1 ≤ i ≤ r,

r∑
i=1

∑
j∈Ji,ki

Xi,j = 0, (k1, . . . , kr) ∈ {1, . . . , n1} × · · · × {1, . . . , nr},

is the zero solution.

Proof. We show (i) by induction on n. If n = 1, the result is obvious.
Suppose that n ≥ 2, and let p ∈ {1, . . . , n− 1}. Assume first that p ≤ n− 2.
Then, by the induction hypothesis, there exist J2, . . . , Jn ⊂ {2, . . . , n} of
cardinality p such that the only solution of the system of linear equations
(with unknowns X2, . . . , Xn)∑

j∈Ji

Xj = 0, 2 ≤ i ≤ n

is the zero solution. Take J1 = {1, 2, . . . , p}. It is clear that J1, . . . , Jn satisfy
the condition of (i). Assume now that p = n − 1. For every i ∈ {1, . . . , n},
let Ji = {1, . . . , n}−{i}. To show that J1, . . . , Jn satisfy the condition of (i),
it is enough to show that det(A− In) 6= 0, where A ∈ Mn(Z) is the matrix
all of whose entries are equal to 1. But it is clear that the kernel of A is of
dimension n − 1 and that n is an eigenvalue of A, so A has no eigenvalue
λ 6∈ {0, n}. In particular, det(A− In) 6= 0.

We show (ii) by induction on r. The case r = 1 is obvious, so we assume
that r ≥ 2. Let (S) be the system of linear equations of (ii). For 2 ≤ i ≤ r,
fix ki ∈ {1, . . . , ni}. Then, by the case r = 1, the system (S’) :

r∑
i=1

∑
j∈Ji,ki

Xi,j = 0, k1 ∈ {1, . . . , n1},

has a unique solution in (X1,1, . . . , X1,n1), that is equal to the obvious solu-
tion

X1,1 = · · · = X1,n1 = − 1
p1

r∑
i=2

∑
j∈Ji,ki

Xi,j .

So the system (S’) and the equation
n1∑

j=1

X1,j = 0 imply :

X1,1 = · · · = X1,n1 =
r∑

i=2

∑
j∈Ji,ki

Xi,j = 0.

To finish the proof, apply the induction hypothesis to the system analogous
to (S) but with 2 ≤ i ≤ r.

�
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We now take G = G(U∗(n1)×· · ·×U∗(nr)). Then Ĝ = C××GLn1(C)×
· · ·×GLnr (C), with the action of WQ described in 2.3. Let T be the elliptic
maximal torus of G defined in 3.1, and uG ∈ G(C) be the element defined
in 3.1, so that u−1

G TuG is the diagonal torus of G. Let B ⊃ T be the Borel
subgroup of GC image by Int(uG) of the group of upper triangular matrices
(we identify GC to Gm,C ×GLn1,C × · · · ×GLnr (C) as in 2.3). Identify TC

to Gm,C × Gn1
m,C × · · · × Gnr

m,C and T̂ to C× × (C×)n1 × · · · × (C×)nr as in
3.1.

Let V be an irreducible algebraic representation of GC. Let a = (a, (ai,j)1≤i≤r,1≤j≤ni) ∈
X∗(T) be the highest weight of V relatively to (T,B); the notation means
that a is the character

(z, (zi,j)1≤i≤r,1≤j≤ni) 7−→ za
r∏

i=1

ni∏
j=1

z
ai,j

i,j .

By definition of the highest weight, a, ai,j ∈ Z and ai,1 ≥ ai,2 ≥ · · · ≥ ai,ni

for every i ∈ {1, . . . , r}. Notice also that the weight of V , in the sense of 1.3,

is 2a+
r∑

i=1

ni∑
j=1

ai,j .

Let (H, s, η0) be the elliptic endoscopic triple for G associated to ((n+
1 , n

−
1 ), . . . , (n+

r , n
−
r ))

as in proposition 2.3.1. Then H = G(U∗(n+
1 ) ×U∗(n−1 ) × · · · ×U∗(n+

r ) ×
U∗(n−r )), and we define an elliptic maximal torus TH of H and a Borel
subgroup BH ⊃ TH of HC in the same way as T and B. Let

Ω∗ = {ω = (ω1, . . . , ωr) ∈ Sn1×· · ·×Snr
|∀i, ω−1

i|{1,...,n+
i }

and ω−1

i|{n+
i +1,...,ni}

are increasing}.

Ω∗ is the set of representatives of Ω(TH(C),H(C)) \ Ω(T(C),G(C)) deter-
mined by B and BH as in 3.3.

Lemma 7.3.4 Let ϕ : WR −→ LGR be a Langlands parameter of the L-
packet of the discrete series of G(R) associated to V and η : LHR −→ LGR
be a L-morphism extending η0 as in proposition 2.3.2. Remember that
we wrote ΦH(ϕ) for the set of equivalence classes of Langlands parameters
ϕH : WR −→ LHR such that η ◦ ϕH and ϕ are equivalent.

Then every ϕH ∈ ΦH(ϕ) is the parameter of a L-packet of the discrete
series of H(R) corresponding to an algebraic representation of HC; this al-
gebraic representation has a regular highest weight if a is regular, and its
weight in the sense of 1.3 is equal to the weight of V .

Proof. We may assume that

ϕ(τ) = ((1, (Φ−1
n1
, . . . ,Φ−1

nr
)), τ)

and that, for every z ∈ C×,

ϕ(z) = ((zaza+S , (B1(z), . . . , Br(z))), z),

where

S =
r∑

i=1

ni∑
j=1

ai,j
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and

Bi(z) = diag(z
ni−1

2 +ai,1z
1−ni

2 −ai,1 , z
ni−3

2 +ai,2z
3−ni

2 −ai,2 , . . . , z
1−ni

2 +ai,ni z
ni−1

2 −ai,ni ).

(Remember that WR = WC tWCτ , with WC = C×, τ2 = −1 and, for every
z ∈ C×, τzτ−1 = z.)

Let C be the odd integer associated to η as below proposition 2.3.2. Let
ω = (ω1, . . . , ωr) ∈ Ω∗, and let ϕH be the element of ΦH(ϕ) associated to ω
as in 3.3. Write, for every i ∈ {1, . . . , r}, ji,s = ω−1

i (s) if 1 ≤ s ≤ n+
i and

ki,t = ω−1
i (t+ n+

i ) if 1 ≤ t ≤ n−i . Then we may assume that

ϕH(τ) = ((1, (Φ−1

n+
1
,Φ−1

n−1
, . . . ,Φ−1

n+
r
,Φ−1

n−r
)), τ)

and that, for every z ∈ C×,

ϕH(z) = ((zaza+S , (B+
1 (z), B−1 (z), . . . , B+

r (z), B−r (z))), z),

with

B+
i (z) = diag(z

n
+
i
−1
2 +a+

i,1z
1−n

+
i

2 −a+
i,1 , z

n
+
i
−3
2 +a+

i,2z
3−n

+
i

2 −a+
i,2 , . . . , z

1−n
+
i

2 +a+

i,n
+
i z

n
+
i
−1
2 −a+

i,n
+
i ),

where a+
i,s = ai,ji,s + s− ji,s + n−i (1− C)/2 ∈ Z, and with

B−i (z) = diag(z
n
−
i
−1

2 +a−i,1z
1−n

−
i

2 −a−i,1 , z
n
−
i
−3

2 +a−i,2z
3−n

−
i

2 −a−i,2 , . . . , z

1−n
−
i

2 +a−
i,n

−
i z

n
−
i
−1

2 −a−
i,n

−
i ),

where a−i,t = ai,ki,t + t− ki,t + n+
i (1 + C)/2 ∈ Z. Let i ∈ {1, . . . , r}. For all

s ∈ {1, . . . , n+
i − 1} and t ∈ {1, . . . , n−1 − 1},

a+
i,s − a+

i,s+1 = (ai,ji,s − ai,ji,s+1) + (ji,s+1 − ji,s − 1)

a−i,t − a−i,t+1 = (ai,ki,t − ai,ki,t+1) + (ki,t+1 − ki,t − 1),

so a+
i,s ≥ a+

i,s+1 and a−i,t ≥ a−i,t+1, and the inequalities are strict if a is regular.
Notice also that

SH :=
r∑

i=1

n+
i∑

s=1

a+
i,s +

r∑
i=1

n−i∑
t=1

a−i,t = S.

So ϕH is the paramater of the discrete series of H(R) associated to the alge-
braic representation of HC of highest weight (a, ((a+

i,s)1≤s≤n+
i
, (a−i,t)1≤t≤n−i

)1≤i≤r).
This representation has a regular highest weight if a is regular by the above
calculations, and its weight in the sense of 1.3 is the same as the weight of
V because 2a+ SH = 2a+ S.

�

We use again the notations of the beginning of this section.

Lemma 7.3.5 If the highest weight of V is regular, then, for every neat
open compact subgroup K of G(Af ), the cohomology of the complex ICKV
is concentrated in degree d.
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Proof. By Zucker’s conjecture (proved by Looijenga [Lo], Looijenga-Rapoport
[LoR] and Saper-Stern [SS]), the intersection cohomology of MK(G,X )∗(C)
with coefficients in FKV is isomorphic to the L2-cohomology ofMK(G,X )(C)
with coefficients in FKV . By a result of Borel and Casselman (theorem 4.5
of [BC]), the Hq of this L2-cohomology is isomorphic (as a representation of
C∞c (K \G(Af )/K)) to⊕

π

mdisc(π)(Hq(g,K′
∞;π∞ ⊗ V )⊗ πK

f ),

where the sum is taken over the set of isomorphism classes of irreducible ad-
missible representations of G(A), g = Lie(G(R))⊗C and K′

∞ = K∞AG(R)0,
with K∞ a maximal compact subgroup of G(R). By the proof of lemma 6.2
of [A6], if π∞ is an irreducible admissible representation of G(R) such that
H∗(g,K′

∞;π∞ ⊗ V ) 6= 0, then π∞ is in the discrete series of G(R) (this is
the only part where we use the fact that the highest weight of V is regu-
lar). By theorem II.5.3 of [BW], if π∞ is in the discrete series of G(R), then
Hq(g,K′

∞;π∞ ⊗ V ) = 0 for every q 6= d.
�
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Chapter Eight

The twisted trace formula

8.1 NON-CONNECTED GROUPS

We first recall some definitions from section 1 of [A4].
Let G̃ be a reductive group (not necessarily connnected) over a field K.

Fix a connected component G of G̃, and assume that G generates G̃ and
that G(K) 6= ∅. Let G0 be the connected component of G̃ that contains 1.

Consider the polynomial

det((t+ 1)−Ad(g), Lie(G0)) =
∑
k≥0

Dk(g)tk

on G(K). The smallest integer k for which Dk does not vanish identically
is called the rank of G; we will denote by r. An element g of G(K) is called
regular if Dr(g) 6= 0.

A parabolic subgroup of G̃ is the normalizer in G̃ of a parabolic subgroup
of G0. A parabolic subset of G is a non-empty subset of G that is equal to
the intersection of G with a parabolic subgroup of G̃. If P is a parabolic
subset of G, write P̃ for the subgroup of G̃ generated by P and P0 for the
intersection P̃ ∩G0 (then P̃ = NoreG(P0) and P = P̃ ∩G).

Let P be a parabolic subset of G. The unipotent radical NP of P is by
definition the unipotent radical of P0. A Levi component M of P is a subset
of P that is equal to M̃ ∩ G, where M̃ is the normalizer in G̃ of a Levi
component M0 of P0. If M is a Levi component of P, then P = MNP .

A Levi subset of G is a Levi component of a parabolic subset of G. Let
M be a Levi subset of G. Let M̃ be the subgroup of G̃ generated by M,
M0 = G0 ∩ M̃, AM be the maximal split subtorus of the centralizer of M
in M0 (so AM ⊂ AM0), X∗(M) be the group of characters of M̃ that are
defined over K, aM = Hom(X∗(M),R) and

nG
M = |NorG0(Q)(M)/M0(Q)|.

Fix a minimal parabolic subgroup P0 of G0 and a Levi subgroup M0 of
P0. Write A0 = AM0 and a0 = aM0 . If P is a parabolic subset of G such
that P0 ⊃ P0, then P has a unique Levi component M such that M0 ⊃ M0;
write MP = M. Let Φ(AMP

,P) be the set of roots of AMP
in Lie(NP ).

Let WG
0 be the set of linear automorphisms of a0 induced by elements of

G(K) that normalize A0, and W0 = WG0

0 . The group W0 acts on WG
0 on

the left and on the right, and both these actions are simply transitive.
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Here, we will be interested in the case where G̃ = G0o〈θ〉 and G = G0oθ,
where G0 is a connected reductive group over K and θ is an automorphism
of finite order of G0.

In this situation, we say that an element g ∈ G0(K) is θ-semi-simple
(resp. θ-regular, resp. strongly θ-regular) if gθ ∈ G(K) is semi-simple
(resp. regular, resp. strongly regular) in G̃ (an element of γ of G̃(K) is
called strongly regular if its centralizer is a torus.) Let G0

θ−reg be the
open subset of θ-regular elements in G0. We say that g1, g2 ∈ G0(K) are
θ-conjugate if g1θ, g2θ ∈ G(K) are conjugate under G̃(K). If g ∈ G0(K), let
CentG0(gθ) be the centralizer of gθ ∈ G(K) in G0; we call this group the θ-
centralizer of g. Write G0

gθ for the connected component of 1 in CentG0(gθ).
Finally, we say that an element g ∈ G0(K) is θ-elliptic if AG0

gθ
= AG.

Assume that there exists a θ-stable minimal parabolic subgroup P0 of G0

and a θ-stable Levi subgroup M0 of P0. We say that a parabolic subset
P of G is standard if P̃ ⊃ P0 o 〈θ〉, and that a Levi subset M of G is
standard if there exists a standard parabolic subset P such that M = MP

(so M̃ ⊃ M0 o 〈θ〉). Then the map P 7−→ P0 is a bijection from the
set of standard parabolic subsets of G onto the set of θ-stable standard
parabolic subgroups of G0. If P is a standard parabolic subset of G, then
P̃ = P0 o 〈θ〉, P = P0θ, M̃P = M0

P o 〈θ〉 and MP = M0
P θ. It is easy to see

that the centralizer of MP in M0
P is Z(M0

P )θ; so AMP
is the maximal split

subtorus of Z(M0
P )θ.

Example 8.1.1 Let H be a connected reductive quasi-split group over K
and E/K be a cyclic extension. Let G0 = RE/KHE , θ be the isomorphism of
G0 induced by a fixed generator of Gal(E/K), G̃ = G0o〈θ〉 and G = G0oθ.
Fix a Borel subgroup BH of H and a Levi subrgoup TH of BH . Then
B0 := RE/KBH,E is a θ-stable Borel subgroup of G0, and T0 := RE/KTH,E

is a θ-stable maximal torus of G0. The standard parabolic subsets of G
are in bijection with the θ-stable standard parabolic subgroups of G0, ie
with the standard parabolic subgroups of H. If P corresponds to PH , then
PH = P0 ∩H, P0 = RE/KPH,K and AMP

= AMPH
.

Assume that K is local or global. Then we can associate to H an en-
doscopic datum (H∗,H, s, ξ) for (G0, θ, 1) in the sense of [KS] 2.1. If r =
[E : K], then Ĝ0 ' Ĥr, with θ̂(x1, . . . , xr) = (x2, . . . , xr, x1). The diagonal
embedding Ĥ −→ Ĝ0 is WK-equivariant, hence extends in an obvious way
to a L-morphism ξ : H := LH −→ LG0. Finally, take s = 1.

Assume that we are in the situation of the example above. In [La3] 2.4,
Labesse defines the norm Nγ of a θ-semi-simple element γ of G0(K) (and
shows that it exists); Nγ is a stable conjugacy class in H(K) that depends
only on the stable θ-conjugacy class of γ, and every element of Nγ is stably
conjugate to Nγ := γθ(γ) . . . θ[E:K]−1(γ) ∈ G0(K) = H(E).
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If M is a Levi subset of G, write, for every θ-semi-simple γ ∈ M0(K),

DG
M (γ) = det(1−Ad(γ) ◦ θ, Lie(G0)/Lie(M0)).

If M is a standard Levi subset of G (or, more generally, any Levi subset
of G such that θ ∈ M), set MH = (M0)θ = M0 ∩H; then MH is a Levi
subgroup of H.

Lemma 8.1.2 Let M be a standard Levi subset of G. Then, for every
θ-semi-simple γ ∈ M0(K) :

DG
M (γ) = DH

MH
(Nγ).

Assume now that K = R and E = C. We will recall results of Clozel and
Delorme about θ-stable tempered representations of G0(R).

Remember that an admissible representation π of G0(R) is called θ-stable
if π ' π ◦ θ. In that case, there exists an intertwining operator Aπ : π ∼−→
π ◦ θ. We say that Aπ is normalized if A2

π = 1. The data of a normalized
intertwining operator on π is equivalent to that of a representation of G̃(R)
extending π. If π is irreducible and θ-stable, then, by a Schur’s theorem, it
always has a normalized intertwining operator.

For ξ a quasi-character of AG(R)0, let C∞c (G0(R), ξ) be the set of func-
tions f ∈ C∞(G0(R)) that have compact support modulo AG(R)0 and such
that f(zg) = ξ(z)f(g) for every (z, g) ∈ AG(R)0 ×G0(R).

The following theorem is due to Clozel (cf [Cl2] 4.1, 5.12, 8.4).

Theorem 8.1.3 Let π be an irreducible admissible θ-stable representation
of G0(R) and Aπ be a normalized intertwining operator on π. Let ξ be the
quasi-character through which AG(R)0 acts on the space of π. Then the
map

C∞c (G0(R), ξ−1) −→ C, f 7−→ Tr(π(f)Aπ)

extends to a distribution on G0(R) that is invariant under θ-conjugacy; this
distribution is tempered if π is tempered. Call this distribution the twisted
character of π and denote it by Θπ.

Let ϕ : WR −→ LH be a tempered Langlands parameter; it defines a L-
packet ΠH of tempered representations of H(R). Write ΘΠH

=
∑

πH∈ΠH

ΘπH
,

where, for every πH ∈ ΠH , ΘπH
is the character of πH . Then the represen-

tation π of G0(R) = H(C) associated to ϕ|WC is tempered and θ-stable, and,
if Aπ is a normalized intertwining operator on π, there exists ε ∈ {±1} such
that, for every θ-regular g ∈ G0(R) :

Θπ(g) = εΘΠH
(N g).

In particular, Θπ is invariant under stable θ-conjugacy.
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Remark 8.1.4 Let π be an irreducible tempered θ-stable representation
of G0(R). If the infinitesimal character of π is equal to that of a finite-
dimensional θ-stable representation of G0(R), then there exists a tempered
Langlands parameter ϕ : WR −→ LH such that π is associated to the pa-
rameter ϕ|WC (cf [J] (5.16)).

Assume from now on that H(R) has a discrete series. Let K′
∞ be the set

of fixed points of a Cartan involution of G0(R) that commutes with θ. Write
g = Lie(G)(C). For every admissible θ-stable representation ρ of G0(R), let

ep(θ, ρ) :=
∑
i≥0

(−1)i Tr(θ,Hi(g,K′
∞; ρ))

be the twisted Euler-Poincare characteristic of ρ. It depends on the choice
of a normalized intertwining operator on ρ. An admissible representation
of G0(R) is called θ-discrete if it is irreducible tempered θ-stable and is
not a subquotient of a representation induced from an admissible θ-stable
representation of a proper θ-stable Levi subgroup (cf [AC] I.2.3).

The following theorem is due to Labesse (cf [La2] proposition 12).

Theorem 8.1.5 Let π be a θ-discrete representation of G0(R), and let ξ be
the quasi-character through which AG(R)0 acts on the space of π. Assume
that π is associated to a Langlands parameter ϕπ : WC −→ LH satisfying
ϕπ = ϕ|WC , where ϕ : WR −→ LH is a Langlands parameter of the L-
packet of the discrete series of H(R) associated to the contragredient of
an irreducible algebraic representation V of H. As in section 3 of [Cl2], we
associate to V a θ-stable algebraic representation W of G0 and a normalized
intertwining operator AW on W .

Then there exists a function φ ∈ C∞c (G0(R), ξ−1), K′
∞-finite on the right

and on the left modulo AG(R)0, such that, for every admissible θ-stable
representation ρ of G0(R) that is of finite length and such that ρ|AG(R)0 = ξ
and every normalized intertwining operator Aρ on ρ,

Tr(ρ(φ)Aρ) = ep(θ, ρ⊗W ).

Such a function φ is called twisted pseudo-coefficient of π. This name is
justified by the next remark.

Remark 8.1.6 Let π and φ be as in the above theorem, and let Aπ be a
normalized intertwining operator on π. By the proof of proposition 3.6 of
[Cl5] and by theorem 2 (p 217) of [De],

Tr(π(φ)Aπ) 6= 0

and, for every irreducible θ-stable tempered representation ρ of G0(R) and
every normalized intertwining operator Aρ on ρ,

Tr(ρ(φ)Aρ) = 0

if ρ 6' π. In particular, the function φ is cuspidal (the definition of “cuspidal”
is recalled, for example, at the beginning of section 7 of [A3]).



main April 10, 2009

THE TWISTED TRACE FORMULA 129

Definition 8.1.7 Let Te be a torus of G0
R such that Te(R) is a maximal

torus of K′
∞. Set

d(G) = |Ker(H1(R,Te) −→ H1(R,G0))|

k(G) = |Im(H1(R, (Te)sc) −→ H1(R,Te))|,
with (Te)sc the inverse image of Te by the morphism G0

sc −→ G0 (where
G0

sc −→ G0
der is the simply connected covering of G0

der).
1

Remark 8.1.8 As G0 comes from a complex group by restriction of scalars,
H1(R,G0) = {1}, so d(G) = |H1(R,Te)|. For example, if H = G(U∗(n1)×
· · ·×U∗(nr)) (cf 2.1 for the definition of this group) with n := n1+· · ·+nr ≥
1, then Te = G(U(1)n), so d(G) = 2n−1.

On the other hand, if the derived group of G0 is simply connected, then
k(G) = |Im(H1(R,Te ∩Gder) −→ H1(R,Te))|.

Remember that a θ-semi-simple element g of G0(R) is called θ-elliptic if
AG0

gθ
= AG(= AH).

Lemma 8.1.9 Let g ∈ G0(R) be θ-semi-simple. Then g is θ-elliptic if and
only if N g is elliptic. Moreover, if g is not θ-elliptic, then there exists a
proper Levi subset M of G such that gθ ∈ M(R) and G0

gθ ⊂ M0.

Proof. Let g ∈ G0(R) be θ-semi-simple. As h := gθ(g) is G0(R)-conjugate
to an element of H(R) (cf [Cl2] p 55), we may assume, after replacing g by a
θ-conjugate, that h ∈ H(R). Let L = G0

h. Then L is stable by the morphism
(of algebraic groups over R) θ′ : x 7−→ θ(g)θ(x)θ(g)−1, and it is easy to see
that θ′|L is an involution and that G0

gθ = Lθ′ and Hh = Lθ. This implies

that Z(Hh) = Z(L)θ and that Z(G0
gθ) = Z(L)θ′ . But θ(g) ∈ L(R) (we

assumed that gθ(g) ∈ H(R), so g and θ(g) commute), so θ|Z(L) = θ′|Z(L).
Hence AG0

gθ
= AHh

, and this proves that g is θ-elliptic if and only if h is
elliptic.

Suppose that g is not θ-elliptic. Then h is not elliptic, so there exists a
proper Levi subgroup MH of H such that Hh ⊂ MH . Let M0 = RC/RMH,C;
it is a θ-stable proper Levi subgroup of G0. Let M be the Levi subset of
G associated to M0. As G0

h ⊂ M0, G0
gθ ⊂ M0; moreover, g ∈ G0

h(R), so
gθ ∈ M(R).

�

Note that, by the above proof, for every θ-semi-simple g ∈ G0(R), if
h ∈ N (g), then G0

gθ is an inner form of Hh. Later, when we calculate
orbital integrals at gθ and h, we always choose Haar measures on G0

gθ and
Hh that correspond to each other.

1Cf [CL] A.1 for the definition of d(G); Clozel and Labesse use a maximal R-anisotropic
torus instead of a maximal R-elliptic torus, but this does not give the correct result if
AG 6= {1} (cf [K13] 1.1 for the case of connected groups).
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Finally, we calculate the twisted orbital integrals of some of the twisted
pseudo-coefficients defined above at θ-semi-simple elements. To avoid techni-
cal complications, assume that Gder is simply connected. If φ ∈ C∞c (G0(R), ξ−1)
(ξ is a quasi-character on AG(R)0) and g ∈ G0(R), the twisted orbital inte-
gral of φ at g (also called orbital integral of φ at gθ) is by definition

Ogθ(φ) =
∫
G0

gθ(R)\G0(R)

φ(x−1gθ(x))dx

(of course, it depends of the choice of Haar measures on G0(R) and G0
gθ(R)).

Let G′ be a reductive connected algebraic group over R. If G′ has an
inner form G

′
that is anisotropic modulo its center, set

v(G′) = (−1)q(G′) vol(G
′
(R)/AG′R

(R)0)d(G′)−1,

where d(G′) is defined in 3.1.

Lemma 8.1.10 Let V be an irreducible algebraic representation of H, ϕ :
WR −→ LH be a Langlands parameter of the L-packet of the discrete series
of H(R) associated to V ∗, πV ∗ be the representation of H(C) = G0(R)
corresponding to ϕ|WC (so πV ∗ is θ-discrete) and φV ∗ be a twisted pseudo-
coefficient of πV ∗ . Let g ∈ G0(R) be θ-semi-simple. Then

Ogθ(φV ∗) = v(G0
gθ)

−1Θπ∨
V ∗

(g)

if g is θ-elliptic, and

Ogθ(φV ∗) = 0

if g is not θ-elliptic.

The proof of this lemma is inspired by the proof of theorem 2.12 of [CCl].

Proof. To simplify the notation, we will write π = πV ∗ and φ = φV ∗ .
If V is the trivial representation, then the twisted orbital integrals of φ

are calculated in theorem A.1.1 of [CL]; write φ0 = φ. (Note that Clozel and
Labesse choose the Haar measure on G0

gθ(R) for which vol(G
′
(R)/AG′(R)0) =

1, where G
′
is an inner form of G0

gθ that is anisotropic modulo its center).
Assume that V is any irreducible algebraic representation of H. Let W

be the θ-stable algebraic representation of G0 associated to V as in theo-
rem 8.1.5, with the normalized intertwining operator Aρ fixed in that the-
orem. Write φ′ = ΘWφ0. As ΘW is invariant by θ-conjugacy, proposition
3.4 of [Cl2] implies that, for every θ-semi-simple g ∈ G0(R), Ogθ(φ′) =
Ogθ(φ0)Θπ∨(g). So it is enough to show that φ and φ′ have the same or-
bital integrals. By theorem 1 of [KRo], in order to prove this, it suffices to
show that, for every θ-stable tempered representation ρ of G0(R) and every
normalized intertwining operator Aρ on ρ,

Tr(ρ(φ)Aρ) = Tr(ρ(φ′)Aρ).
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Fix such a representation ρ. Then it is easy to see that

Tr(ρ(φ′)Aρ) = Tr((ρ⊗W )(φ0)(Aρ ⊗AW )).

Hence

Tr(ρ(φ′)Aρ) = ep(θ, ρ⊗W ) = Tr(ρ(φ)Aρ).

�

Corollary 8.1.11 Use the notations of lemma 8.1.10 above.

(i) The function φV ∗ is stabilizing (“stabilisante”) in the sense of [La3]
3.8.2.

(ii) Let fV ∗ = 1
|Π(ϕ)|

∑
πH∈Π(ϕ)

fπH
, where Π(ϕ) is the discrete series L-

packet of H(R) associated to ϕ : WR −→ LH and, for every represen-
tation πH in the discrete series of H(R), fπH

is a pseudo-coefficient of
πH . Then the functions φV ∗ and d(G)fV ∗ are associated in the sense
of [La1] 3.2.

Proof. The result follows from lemma 8.1.10 and the proof of theorem
A.1.1 of [CL] (and lemma A.1.2 of [CL]).

�

8.2 THE INVARIANT TRACE FORMULA

Note first that, thanks to the work of Delorme-Mezo ([DeM]) and Kottwitz-
Rogawski ([KRo]), Arthur’s invariant trace formula (see, e.g., [A3]) is now
available for non-connected groups as well as for connected groups.

In [A6], Arthur gave a simple form of the invariant trace formula (on a
connected group) for a function that it stable cuspidal at infinity (this notion
is defined at the beginning of section 4 of [A6] and recalled in 5.4). The goal
of this section is to give a similar formula for a (very) particular class of
non-connected groups.

Let H be a connected reductive quasi-split group over Q; fix a Borel
subgroup of H and a Levi subgroup of this Borel. Fix an imaginary quadratic
extension E of Q, and take G0 = RE/QHE . Assume that the derived group
of H is simply connected and that H is cuspidal (in the sense of definition
3.1.1). A Levi subset M of G is called cuspidal if it is conjugate to a standard
Levi subset M′ such that M′

H is cuspidal.
We first define the analogs of the functions ΦG

M (.,Θ) of 3.2.

Lemma 8.2.1 Let π be a θ-stable irreducible tempered representation of
G0(R). Fix a normalized intertwining operator Aπ on π. Assume that there
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exists a Langlands parameter ϕ : WR −→ LH such that π is associated to
ϕ|WC . Let M be a standard cuspidal Levi subset of G, and let TH be a
maximal torus of MH,R that is anisotropic modulo AMH

. Write D for the
set of γ ∈ G0(R) such that γθ(γ) ∈ TH(R). Then the function

D ∩G0(R)θ−reg −→ C, γ 7−→ |DG
M (γ)|1/2Θπ(γ)

extends to a continuous functionD −→ C, that will be denoted by ΦG
M (.,Θπ).

Extend ΦG
M (.,Θπ) to a function on M0(R) in the following way : if γ ∈

M0(R) is θ-elliptic (in M0(R)), then it is θ-conjugate to γ′ ∈ D, and we set
ΦG

M (γ,Θπ) = ΦG
M (γ′,Θπ); otherwise, we set ΦG

M (γ,Θπ) = 0. The function
ΦG

M (.,Θπ) is clearly invariant by stable θ-conjugacy. As every Levi subset of
G is G0(R)-conjugate to a standard Levi subset, we can define in the same
way a function ΦG

M (.,Θπ) for any cuspidal Levi subset M.
The lemma above follows from the similar lemma for connected groups

(lemma 3.2.1, due to Arthur and Shelstad), from theorem 8.1.3 (due to
Clozel) and from lemma 8.1.2.

Let Πθ−disc(G0(R)) be the set of isomorphism classes of θ-discrete rep-
resentations of G0(R). For every π ∈ Πθ−disc(G0(R)), fix a normalizing
operator Aπ on π.

Definition 8.2.2 Let M be a cuspidal Levi subset of G. Let ξ be a θ-stable
quasi-character of AG0(R)0. For every function φ ∈ C∞c (G0(R), ξ−1) that
is left and right K∞-finite modulo AG0(R)0 and every γ ∈ M0(R), write :

ΦG
M (γ, φ) = (−1)dim(AM /AG)v(M0

γθ)
−1

∑
π∈Πθ−disc(G0(R))

ΦG
M (γ,Θπ∨) Tr(π(φ)Aπ),

and :

SΦG
M (γ, φ) = (−1)dim(AM /AG)k(M)k(G)−1v(M0

γθ)
−1

∑
π∈Πθ−disc(G0(R))

ΦG
M (γ,Θπ∨) Tr(π(φ)Aπ).

The notations k and v are defined in 5.4, and the notation v is that of 8.1.
Let M0 be the minimal θ-stable Levi subgroup of G0 corresponding to the

fixed minimal Levi subgroup of H (M0 is a torus because H is quasi-split)
and ξ be a θ-stable quasi-character of AG0(R)0. Define an action of the
group G̃(A) on L2(G0(Q) \G0(A), ξ) in the following way : the subgroup
G0(A) acts in the usual way, and θ acts by φ 7−→ φ◦θ. For every irreducible
θ-stable representation π of G0(A) such that mdisc(π) 6= 0 (ie such that π is
a direct factor of L2(G0(Q) \G0(A), ξ), seen as a representation of G0(A)),
fix a normalized intertwining operator Aπ on π. If π and π′ are such that
π∞ ' π′∞, choose intertwining operators that are compatible at infinity.
For the θ-stable irreducible admissible representations of G0(R) that don’t
appear in this way, use any normalised intertwining operator. If π is as
above, let π̃+ (resp. π̃−) be the representation of G̃(A) defined by π and
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Aπ (resp. −Aπ), and let m+
disc(π) (resp. m−

disc(π)) be the multiplicity of π̃+

(resp. π̃−) in L2(G0(Q) \G0(A), ξ).
We write C∞c (G0(A), ξ−1) for the vector space of functions φ : G0(A) −→

C that are finite linear combinations of functions of the form φ∞⊗φ∞, with
φ∞ ∈ C∞c (G0(Af )) and φ∞ ∈ C∞c (G0(R), ξ−1).

Let M be a Levi subset of G. If M is cuspidal, then, for every function
φ = φ∞ ⊗ φ∞ ∈ C∞(G(A), ξ−1), write

TG
M,geom(φ) =

∑
γ

vol(M0
γθ(Q)AM (R)0 \M0

γθ(A))Oγθ(φ∞M )ΦG
M (γ, φ∞),

where the sum is taken over the set of θ-conjugacy classes of θ-semi-simple
elements of M0(Q) and φ∞M is the constant term of φ∞ at M (defined in
exactly the same way as in the case of connected groups).

If M is not cuspidal, set TG
M,geom = 0.

For every t ≥ 0, define Πdisc(G, t) and the function adisc = aG
disc :

Πdisc(G, t) −→ C as in section 4 of [A3] (p 515-517).
Let TG be the distribution of the θ-twisted invariant trace formula on

G0(A). The following proposition is the analog of theorem 6.1 of [A6] (and
of the formula below (3.5) of this article).

Proposition 8.2.3 2 Let φ = φ∞φ∞ ∈ C∞c (G0(A), ξ−1). Assume that
there exists an irreducible algebraic representation V of H such that, if
ϕ : WR −→ LH is the Langlands parameter of the discrete series L-packet
ΠV of H(R) associated to V and π∞ is the θ-discrete representation of G0(R)
with Langlands parameter ϕ|WC , then φ∞ is a twisted pseudo-coefficient of
π∞. Then

TG(φ) =
∑
M

(nG
M )−1TG

M,geom(φ) =
∑
t≥0

∑
π∈Πdisc(G,t)

adisc(π) Tr(π(φ)Aπ),

where the first sum is taken over the set of G0(Q)-conjugacy classes of Levi
subsets M of G.

Remarks 8.2.4 (1) If π is a cuspidal θ-stable representation of G0(A),
then adisc(π) = m+

disc(π) +m−
disc(π). (This is an easy consequence of

the definition of adisc, cf [A3] (4.3) and (4.4).)

(2) The spectral side of the formula of [A6] (formula above (3.5)) is sim-
pler, because only the discrete automorphic representations of G0(A)
can contribute. However, in the twisted case, it is not possible to
eliminate the contributions from the discrete spectrum of proper Levi
subsets (because there might be representations of M(A) that are fixed
by a regular element of WG

0 and still have a regular archimedean in-
finitesimal character).

2I thank Sug Woo Shin for pointing out that I had forgotten terms on the spectral side
of this proposition.
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(3) In theorem 3.3 of [A3], the sum is taken over all Levi subsets M of
G such that M0 contains M0, and the coefficients are |WM

0 ||WG
0 |−1

instead of (nG
M )−1; it is easy to see that these are just two ways to

write the same thing.

Proof. The second formula (ie the spectral side) is just (a) of theorem 7.1
of [A3], because φ is cuspidal at infinity.

We show the first formula. We have to compute the value at φ of the
invariant distributions IG

M of [A2]. As φ∞ is cuspidal, we see by using the
splitting formula (proposition 9.1 of [A2]) as in [A6] §3 that it is enough to
compute the IG

M at infinity, ie to prove the analog of theorem 5.1 of [A6].
Moreover, by corollary 9.2 of [A2] applied to the set of places S = {∞}, and
thanks to the cuspidality of φ∞, we see that the term corresponding to M
is non-zero only if AM = AMR . 3

So we may assume that AM = AMR . We want to show that IG
M (., φ∞) = 0

if M is not cuspidal and that, for every cuspidal Levi subset M of G and
for every γ ∈ M0(R) :

IG
M (γ, φ∞) = |DM (γ)|1/2ΦG

M (γ, φ∞), (∗)
where, if γθ = (σθ)u is the Jordan decomposition of γθ, then

DM (γ) = det((1−Ad(σ) ◦ θ), Lie(M0)/Lie(M0
σθ)).

(Note that, if M is cuspidal, then AM = AMR .) This implies in particular
that IG

M (γ, φ∞) = 0 if γ is not θ-semi-simple. The rest of the proof of theorem
6.1 of [A6] applies without any changes to the case of non-connected groups.

The case where M is not cuspidal is treated in lemma 8.2.6. In the rest
of this proof, we assume that M is cuspidal.

For connected groups, the analog of formula (∗) for a semi-simple regular
γ is theorem 6.4 of [A5] (cf formula (4.1) of [A6]). Arthur shows in section
5 of [A6] that the analog of (∗) for any γ is a conseqeunce of this case.

We first show that formula (∗) for a θ-semi-simple θ-regular γ implies
formula (∗) for any γ, by adapting the reasoning in section 5 of [A6]. The
reasoning in the second half of page 277 of [A6] applies to the case considered
here and shows that it is enough to prove (∗) for a γ ∈ M0(R) such that
M0

γθ = G0
γθ. Lemma 8.2.5 below is the analog of lemma 5.3 of [A6]. Once

this lemma is known, the rest of the reasoning of [A6] applies. This is because
Arthur reduces to the semi-simple regular case by using the results on orbital
integrals at unipotent elements of [A6] p 275-277, and we can apply the same
results here, because these orbitals integrals are taken on the connected
group M0

σθ (where, as before, γθ = (σθ)u is the Jordan decomposition of
γθ).

It remains to show formula (∗) for a θ-semi-simple θ-regular γ. The article
[A5] is written in the setting of connected groups, but it is easy to check that,

3I thank Robert Kottwitz for patiently explaining to me this subtlety of the trace
formula.
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now the invariant formula for non-connected groups is known, all the article
until, and including, corollary 6.3, applies to the general (not necessarily
connected) case. We can write statements analogous to theorem 6.4 and
lemma 6.6 of [A5], by making the following changes : take a θ-discrete
representation π∞ of G0(R) (instead of a discrete series representation of
G(R)), and replace the character of π∞ by the twisted character.

The proof of lemma 6.6 of [A5] applies to the non-connected case, if we
replace Πtemp by the set of isomorphism classes of θ-stable tempered repre-
sentations, Πdisc by Πθ−disc and “regular” by “θ-regular”.

The proof of theorem 6.4 of [A5] proceeds by induction on M, starting
from the case M = G, and uses lemma 6.6 of [A5] and three properties of
the characters of discrete series representations : the differential equations
that they satisfy, the conditions at the boundary of the set of regular ele-
ments and the growth properties. For the twisted characters of θ-discrete
representations, there are of course similar differential equations; the bound
that we need (in the third property) is proved by Clozel in theorem 5.1 of
[Cl2]; as for the boundary conditions, they follow from theorem 7.2 of [Cl2]
(called theorem 8.1.3 in this book) and from the case of connected groups.
Once these results are known, the reduction to the case M = G is the same
as in [A5]. But the case M = G is exactly lemma 8.1.10.

�

Lemma 8.2.5 Write Φ′M = |DM (.)|−1/2IG
M .

Let M be a cuspidal Levi subset of G and γ ∈ M0(R) be such that
G0

γθ = M0
γθ. Let γθ = (σθ)u be the Jordan decomposition of γθ. Then there

exist stable cuspidal functions f1, . . . , fn on M0
σθ(R) and a neighbourhood U

of 1 in M0
σθ(R), invariant by M0

σθ(R)-conjugacy, such that, for every µ ∈ U
:

Φ′M (µσ, φ∞) =
n∑

i=1

ΦM0
σθ

(µ, fi). (∗∗)

Proof. If σ is not θ-elliptic in M(R), then, by lemma 8.1.9, there exists a
proper Levi subset M1 of MR such that σθ ∈ M1(R) and M0

R,σθ ⊂ M0
1. If

µ ∈ M0
σθ(R) is small enough, then M0

(σθ)µ is also included in M0
1. Applying

the descent property (corollary 8.3 of [A2]) and using the cuspidality of φ∞,
we see that Φ′M (µσ, φ∞) = 0, so that we can take fi = 0.

We may therefore assume that σ is θ-elliptic in M0(R). We may also
assume that M is standard. Let TH be a maximal torus in MH,R that is
anisotropic modulo AMH

. Then σ is θ-conjugate to an element σ′ such that
σ′θ(σ′) ∈ TH(R). As IG

M is invariant by θ-conjugacy, we may assume that
h := σθ(σ) ∈ TH(R). As G0

σθ is an inner form of Hh over R, the maximal
torus TH of Hh transfers to a maximal torus T of G0

σθ; of course, h ∈ T(R).
Let U be an invariant neighbourhood of 1 in M0

σθ(R) small enough so that
µσ is θ-regular if µ ∈ U∩T(R) is regular in M0

σθ. Then, by formula (∗) in the
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proof of proposition 8.2.3 above for a θ-regular element (the proof of formula
(∗) in this case does not depend on the lemma), for every µ ∈ U ∩T(R) that
is regular in M0

σθ :

Φ′M (µσ, φ∞) = ΦG
M (µσ, φ∞) = (−1)dim(AM /AG)ΦG

M (µσ,Θπ∨∞),

and we know that this is equal to

±|DH
MH

(N (µσ))|1/2ΘΠ∨H
(N (µσ))

(where the sign depends on the choice of normalized intertwining operator
on π∞). By the proof of lemma 5.3 of [A6] and lemma 4.1 of [A6], there
exists f1, . . . , fn stable cuspidal on M0

σθ(R) such that (∗∗) is satisfied for
every µ ∈ U ∩T(R) that is regular in M0

σθ.
It remains to show that, for this choice of f1, . . . , fn and maybe after

making U smaller, formula (∗∗) is true for every µ ∈ U . But the end of the
proof of lemma 5.3 of [A6] applies without any changes to the non-connected
case.

�

Lemma 8.2.6 Let M be a Levi subset of G. Assume that AM = AMR and
that M is not cuspidal. Then IG

M (., φ∞) = 0.

Proof. We may assume that M is standard. We first show that IG
M (γ, φ∞) =

0 if γ is θ-regular in M0. Let γ ∈ M0(R) be θ-regular in M0. We may
assume that γθ(γ) ∈ MH(R). The centralizer TH of γθ(γ) in MH is a
maximal torus of MH,R. By the assumption on M, the torus TH/AMR is
not anisotropic, so there exists a Levi subgroup M1,H 6= MH,R of MH,R
such that TH ⊂ M1,H (for example the centralizer of the R-split part of
TH). Let M1 be the corresponding Levi subset of GR. Then γ ∈ M0

1(R)
and M0

1,γθ = M0
γθ. By the descent formula (theorem 8.3 of [A2]) and the

cuspidality of φ∞, IG
M (γ, φ∞) = 0.

We now show the statement of the lemma. By formula (2.2) of [A2], it
is enough to prove that, for every Levi subset M′ of G containing M and
every γ ∈ M0(R) such that M0

γθ = G0
γθ, I

G
M ′(γ, φ∞) = 0. If M′ 6= M, this

follows from the descent formula (theorem 8.3 of [A2]) and the cuspidality
of φ∞. It remains to show that IG

M (γ, φ∞) = 0, if γ ∈ M0(R) is such that
M0

γθ = G0
γθ. Let γθ = (σθ)u be the Jordan decomposition of γθ. By (2.3)

of [A2], there exists f ∈ C∞c (M0(R)) and an open neighbourhood U of 1 in
M0

σθ(R) such that, for every µ ∈ U , IG
M (µσ, φ∞) = Oµσθ(f). Hence, by the

beginning of the proof, Oµσθ(f) = IG
M (µσ, φ∞) = 0 if µ ∈ U is such that µσ

is θ-regular. This implies that Oµσθ(f) = 0 for every µ ∈ U . On the other
hand, after replacing γ by a θ-conjugate, we may assume that u ∈ U . So
IG
M (γ, φ∞) = 0.

�
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8.3 STABILIZATION OF THE INVARIANT TRACE FORMULA

In this section, we stabilize the invariant trace formula of proposition 8.2.3 if
H is one of the quasi-split unitary groups of 2.1. Actually, there is nothing
to stabilize; the invariant trace formula is already stable in this case, and we
simply show this.

We use the notations and assumptions of 8.2 and 5.4.

Proposition 8.3.1 Assume that H is one of the quasi-split unitary groups
of 2.1 and that E is the imaginary quadratic extension of Q that was
used to define H. Let f =

⊗
v
fv ∈ C∞c (H(A), ξ−1

H ) and φ =
⊗
v
φv ∈

C∞c (G0(A), ξ−1) (where ξH is the restriction of ξ to AH(R)0). Assume
that, for every finite place v of Q, the functions fv and φv are associated
in the sense of [La3] 3.2, that the function φ∞ is of the type considered in
proposition 8.2.3 and that f∞ = 1

|ΠV |
∑

πH∈ΠV

fπH
(cf corollary 8.1.11). Then

there exists a constant C ∈ R× (depending only on H and the choice of
normalized intertwining operators on θ-stable automorphic representations
of G0(A)), such that, for every Levi subset M of G,

TG
M,geom(φ) = C

d(G)
τ(H)

STH
MH

(f).

In particular,

TG(φ) = C
d(G)
τ(H)

STH(f).

Remark 8.3.2 After maybe choosing different normalized intertwining op-
erators on the θ-stable automorphic representations of G0(A), we may as-
sume that C is positive.

Proof. To see that the equalities for the TG
M,geom imply the equality for

TG, it is enough to notice that the obvious map from the set of G0(Q)-
conjugacy classes of Levi subsets of M to the set H(Q)-conjugacy classes of
Levi subgroups of H is a bijection, and that nH

MH
= nG

M if MH corresponds
to M.

Let M be a standard cuspidal Levi subset of G. As the morphism
H1(K,M0) −→ H1(K,G0) is injective (see the proof of lemma 6.3.4) and
H1(K,G0) = {1} for every field K, the assumption on G0 implies that
d(MH ,M0) = 1, where d(MH ,M0) is defined in [La3] 1.9.3. By lemma
8.1.2 and the fact that the descent formula (corollary 8.3 of [A2]) works just
as well for twisted orbital integrals, the proof of lemma 6.3.4 applies in the
case considered here and shows that the functions φM and fMH

are associ-
ated at every finite place. Using this fact and lemma 8.3.3, we may apply
the stabilization process of chapter 4 of [La3], on the group Mo < θ >, to
TG

M,geom(φ). As the set of places {∞} is (M,MH)-essential (by lemma A.2.1
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of [CL], whose proof adapts immediately to the case of unitary similitude
groups), we get :

TG
M,geom(φ) = Cτ(M0)τ(MH)−1d(M)k(MH)−1k(H)STH

MH
(f),

with C ∈ R× (the factor 2− dim(aG) of [La3] 4.3.2 does not appear here be-
cause we are taking functions in C∞c (G0(A), ξ−1) and not in C∞c (G0(A));
and the factor JZ(θ) does not appear because, following Arthur, we con-
sider the action of these functions on L2(G0(Q) \ G0(A), ξ) and not on
L2(G0(Q)AG0(R)0 \G0(A))).

To finish the proof, it is enough to check that :
τ(M0)
τ(MH)

d(M)
k(MH)

k(H) = d(G)
τ(G0)
τ(H)

.

By (ii) of lemma 2.3.3, τ(G0) = τ(M0) = 1. So the equality above follows
from remarks 5.4.3 and 8.1.8.

�

In the following lemma, we consider the situation of the beginning of 8.2,
so that H is a cuspidal connected reductive group over Q, E is an imaginary
quadratic extension of Q and G0 = RE/QHE . Fix a θ-stable Borel subgroup
of G0 (or, equivalently, a Borel subgroup of H).

Lemma 8.3.3 Use the notations of [La3] 2.7. Let φ∞ be as in proposition
8.2.3, M be a standard cuspidal Levi subset of G, and γ ∈ M0(R) be θ-semi-
simple. Set f∞ = 1

|ΠV |
∑

πH∈ΠV

fπH
(cf corollary 8.1.11). Then there exists a

constant C ∈ R× (that is independent of M and positive for a good choice
of normalized intertwining operators) such that :∑
[x]∈D(Iγ ,M0;R)

e(δx)ΦG
M (δx, φ∞) = k(M)−1k(G)d(M)SΦG

M (γ, φ∞)

= Cd(M)k(MH)−1k(H)SΦH
MH

(Nγ, f∞),

and, if κ ∈ K(Iγ ,M0; R)− {1},∑
[x]∈D(Iγ ,M0;R)

e(δx) < κ, ẋ > ΦG
M (δx, φ∞) = 0.

Proof. Once we notice that ΦG
M (γ,Θπ∨) is invariant under stable θ-

conjugacy, the proof is exactly the same as in theorem A.1.1 of [CL]. To
show the second line of the first equality, use the definitions, theorem 8.1.3,
remark 8.1.6, lemma 8.1.2 and the fact that, if γ ∈ G0(R) and h ∈ Nγ, then
Hh is an inner form of G0

γθ.
�

We finish this section by recalling a few results on the transfer and the
fundamental lemma for base change. Assume that we are in the situation
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of example 8.1.1, with K a local field of characteristic 0. If two functions
f ∈ C∞c (G0(K)) and h ∈ C∞c (H(K)) are associated in the sense of [La3]
3.2, we also say that h is a transfer of f to H. Labesse proved the following
result.

Theorem 8.3.4 ([La3] theorem 3.3.1 and proposition 3.5.2) Let f ∈ C∞c (G0(K)).
Then there exists a transfer of f to H.

Labesse has also proved a result about inverse transfer. We say that an
element γH ∈ H(K) is a norm if there exists γ ∈ G0(K) such that γH ∈ Nγ.
Assume that K is non-archimedean.

Proposition 8.3.5 ([La1] proposition 3.3.2, proposition 3.5.3) Let h ∈ C∞c (H(K))
be such that SOγH

(h) = 0 for every semi-simple γH ∈ H(K) that is not a
norm. Then there exists f ∈ C∞c (G0(K)) such that h is a transfer of f .

So, in order to determine which functions on H(K) are transfers of func-
tions on G0(K), we need to describe the set of norms on H(K). To do
this, we use the results of 2.5 of [La1]. In the next lemma, assume that
H = G(U∗(n1) × · · · ×U∗(nr)) with n1, . . . , nr ∈ N∗ (notations are as in
2.2) and that G0 = RE/QHE , where E is the quadratic extension of Q used
to define H. Take K = Qp, where p is a prime number.

Lemma 8.3.6 Let DH = H/Hder. Then a semi-simple element of H(Qp)
is a norm if and only if its image in DH(Qp) is a norm. If p splits and is
unramified in E, or if H = GU∗(n) with n odd, or if p is unramified in E
and (at least) one of the ni is odd, then every semi-simple element of H(Qp)
is a norm. 4

Proof. Notice that, if p splits and is unramified in E, then G0(Qp) '
H(Qp)×H(Qp), and the naive norm map G0(Qp) −→ G0(Qp), g 7−→ gθ(g),
is actually a surjection from G0(Qp) to H(Qp); there is a similar statement
for DH . So the lemma is trivial in that case.

Hence, for the rest of the proof, we assume that there is only one place
℘ of E above p, ie that p is inert or ramified in E (this is just to avoid
a discussion of cases; the results of Labesse apply of course just as well in
the general case). As Hder is simply connected, DH(Qp) = H0

ab(Qp,H), in
the notation of [La3] 1.6. Similarly, for every Levi subgroup MH of HQp ,
if we set DMH

= MH/Mder
H , then DMH

(Qp) = H0
ab(Qp,MH). Let γ be a

semi-simple element of H(Qp), and let MH be a Levi subgroup of HQp such
that γ ∈ MH(Qp) and γ is elliptic in MH . By proposition 2.5.3 of [La3], γ is
a norm if and only if its image in DMH

(Qp) is a norm. So, to prove the first
statement of the lemma, it is enough to show that an element of DMH

(Qp) is
a norm if and only if its image by the canonical map DMH

(Qp) −→ DH(Qp)

4Note that the first assertion of this lemma is also a consequence of lemma 4.2.1 of
[Ha] (and of proposition 2.5.3 of [La3]).
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is a norm. As H does not split over Qp, MH is H(Qp)-conjugate to a Levi
subgroup of H (defined over Q), so we may assume that MH is a standard
Levi subgroup of H and is defined over Q. By 2.2, there exist s,m1, . . . ,mr ∈
N such that n1 + · · ·+ nr = m1 + · · ·+mr + 2s, ni −mi is even for every i,
and MH ' (RE/QGm)s ×G(U∗(m1) × · · · ×U∗(mr)). The derived group
of H is SU∗(n1)× · · · × SU∗(nr), so the map G(U∗(n1)× . . .U∗(nr)) −→
Gm × (RE/QGm)r, (g1, . . . , gr) 7−→ (c(g1),det(g1), . . . ,det(gr)) induces an
isomorphism

DH
∼−→ {(λ, z1, . . . , zr) ∈ Gm × (RE/QGm)r|∀i, zizi = λni}.

Similarly, there is an isomorphism

DMH

∼−→ DMH ,l ×DMH ,h,

where DMH ,l = (RE/QGm)s and

DMH ,h = {(λ, z1, . . . , zr) ∈ Gm×(RE/QGm)r|∀i, zizi = λmi if mi > 0 and zi = 1 if mi = 0}.

The canonical map DMH
−→ DH sends the factor DMH ,l to 1 and is induced

on the factorDMH ,h by the map (λ, z1, . . . , zr) 7−→ (λ, λ(n1−m1)/2z1, . . . , λ
(nr−mr)/2zr).

As every element in DMH ,l(Qp) is obviously a norm, it is now clear that an
element of DMH

(Qp) is a norm if and only if its image in DH(Qp) is a norm.
Assume that H = GU∗(n) with n odd, and write n = 2m + 1, m ∈ N.

Then it is easy to check that the map H −→ RE/QGm, g 7−→ det(g)c(g)−m,
induces an isomorphism DH

∼−→ RE/QGm. So every element of DH(Qp) is
a norm, and consequently every semi-simple element of H(Qp) is a norm.

Assume that H = G(U∗(n1) × · · · × U∗(nr)) with n1, . . . , nr ∈ N∗,
that n1 is odd and that p is inert and unramified in E. Write n1 =
2m1 + 1, m1 ∈ N. Then the map Gm × (RE/QGm)r, (λ, z1, . . . , zr) 7−→
(z1λ−m1 , z2(z−1

1 λm1)n2 , z3(z−1
1 λm1)n3 , . . . , zr(z−1

1 λm1)nr ) (together with the
description of DH given above) induces an isomorphism

DH ' RE/QGm ×U(1)r−1.

It is obvious that every element of (RE/QGm)(Qp) = E×p is a norm, so,
to finish the proof of the lemma, it is enough to show that every element
of U(1)(Qp) is a norm. Let z ∈ U(1)(Qp). Then z is an element of E×p
such that zz = 1, and we want to show that there exists y ∈ E×p such that
z = yy−1. Write z = apk, with a ∈ O×Ep

and k ∈ Z. Then zz = aap2k = 1,
so k = 0 and aa = 1, and we want to show that there exists b ∈ O×Ep

such

that a = bb
−1

. By Hensel’s lemma, it is enough to check the analog of
this for the reduction modulo p of a. As p is inert and unramified in E,
OEp

/(p) = Fp2 . Let u : F×p2 −→ F×p2 be the group morphism that sends b

to bb
−1

. Then ϕ(b) = b1−p for every b, so the image of ϕ is of cardinality
p2 − 1/(p − 1) = p + 1. But this image is contained in U(1)(Fp), and
U(1)(Fp) = {a ∈ F×p2 |ap+1 = 1} is of cardinality p+1, so ϕ(F×p2) = U(1)(Fp).
This finishes the proof.

�



main April 10, 2009

THE TWISTED TRACE FORMULA 141

The above lemma (together with the result of Labesse about inverse trans-
fer, ie proposition 8.3.5, and the fact that the group of norms in a torus con-
tains an open neighbourhood of 1) has the following immediate consequence
:

Lemma 8.3.7 If p splits and is unramified in E, or if H = GU∗(n) with n
odd, or if p is unramified in E and one of the ni is odd, then every function
in C∞c (H(Qp)) is a transfer of a function in C∞c (G0(Qp)). In general, the set
of functions in C∞c (H(Qp)) that are a transfer of a function in C∞c (G0(Qp))
is a subalgebra of C∞c (H(Qp)), and it contains all the functions with small
enough support.

Transfer is explicit if we are in an unramified situation. Assume that K
is non-archimedean, that the group H is unramified over K and that the
extension E/K is unramified. Let KG and KH be hyperspecial maximal
compact subgroups of G0(K) and H(K) such that KH = H(K) ∩ KG and
θ(KG) = KG. The L-morphism ξ : LH −→ LG0 defined in example 8.1.1 in-
duces an morphism of algebras b : H(G0(K),KG) −→ H(H(K),KH), called
base change morphism. The following theorem, known under the name of
“fundamental lemma for base change”, is due to Kottwitz (for the unit ele-
ment of H(G0(K),KG)), Clozel and Labesse (for the other elements).

Theorem 8.3.8 ([K6], [Cl3], [La1], [La3] 3.7) Let f ∈ H(G0(K),KG).
Then b(f) is a transfer of f to H.

Let us write down explicit formulas for the base change morphism in the
case of unitary groups. Let H = G(U∗(n1) × · · · × U∗(nr)), E be the
imaginary quadratic extension of Q used to define H and p be a prime
number that is unramified in E. The groups G0 and H have obvious Zp-
models (cf remark 2.1.1), and we take KG = G0(Zp) and KH = H(Zp). Use
the notations of chapter 4.

If p is inert in E, the base change morphism is calculated in section 4.2
(with L = Ep and G = H).

Assume that p splits in E. Then G0
Qp

' HQp × HQp , and, for every
g = (g1, g2) ∈ G0(Qp) = H(Qp)×H(Qp), g1g2 ∈ N g. To simplify notations,
we assume that r = 1. Then there is an isomorphism (defined in 4.2)

H(H(Qp),KH) ' C[X±1]⊗ C[X±1
1 , . . . , X±1

n ]Sn .

So there is an obvious isomorphism

H(G0(Qp),KG) ' C[Z±1
1 ]⊗C[Z±1

1,1 , . . . , Z
±1
n,1]

Sn⊗C[Z±1
2 ]⊗C[Z±1

1,2 , . . . , Z
±1
n,2]

Sn ,

and the base change morphism is induced by

Zj 7−→ X, Zi,j 7−→ Xi.

In particular, the base change morphism is surjective if p splits in E. If p
is inert in E, then the image of the base change morphism is given in remark
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4.2.2; in particular, the base change morphism is surjective if and only if one
of the ni is odd.

The following lemma will be useful in the applications of the next sec-
tion. We assume again that H is any connected unramified group on a
non-archimedean local field K and that the extension E/K is unramified,
and we choose hyperspecial maximal compact subgroups KH and KG of
H(K) and G0(K) as before.

Lemma 8.3.9 Let π be a θ-stable admissible irreducible representation of
G0(K) and Aπ be a normalized intertwining operator on π. Let ε be an
element of {±1} such that Aπ acts on πKG by multiplication by ε (such
a ε exists because Aπ stabilizes πKG and dimπKG ≤ 1). Then, for every
f ∈ H(G0(K),KG),

Tr(π(f)Aπ) = εTr(π(f)).

8.4 APPLICATIONS

Notations here are slightly different from the ones used in 8.3. Let H =
G(U(p1, q1)× · · · ×U(pr, qr)) (this group is defined in 2.1), H∗ be a quasi-
split inner form of H (so H∗ = G(U∗(n1)×· · ·×U∗(nr)), where ni = pi+qi),
E be the imaginary quadratic extension of Q that was used in the definition
of H. Set G0 = RE/QH∗

E . Of course, G0 ' RE/QHE .
If V is an irreducible algebraic representation of H, let φV be a twisted

pseudo-coefficient of the θ-discrete representation πV of G0(R) associated to
ϕ|WC , where ϕ : WR −→ LH is a Langlands parameter of the L-packet of
the discrete series of H(R) associated to V .

Let M′
G be the set of conjugacy classes of Levi subsets M of G such that,

for every i ∈ {1, . . . , r}, M0 ∩RE/QGLni,E is equal to RE/QGLni,E or to a
maximal Levi subgroup of RE/QGLni,E . Let M ∈ M′

G. Then there exist
non-negative integers n+

1 , n
−
1 , . . . , n

+
r , n

−
r such that, for every i ∈ {1, . . . , r},

ni = n+
i +n−i and M0 ∩RE/QGLni,E = RE/QGLn+

i ,E ×RE/QGLn−i ,E . Let
MG be the set of M ∈ M′

G such that we can choose the n+
i , n

−
i so that

n−1 + · · ·+n−r is even. If M is in MG and the n+
i , n

−
i are as above, then we

may assume that n−1 + · · ·+n−r is even; let (HM , sHM
, ηHM ,0) be the elliptic

endoscopic datum for H defined by the n+
i , n

−
i as in proposition 2.3.1, and

ηHM
be a L-morphism extending ηHM ,0 as in proposition 2.3.2. This defines

a bijection between MG and the set EH of 7.2.
Let M ∈MG. Let ξ : LH = LH∗ −→ LG0 be the L-morphism defined in

example 8.1.1; as M0 = RE/QHM,E , we get in the same way a L-morphism
ξM : LHM −→ LM0. Let ηM be the morphism

LM0 ' (ĤM × ĤM ) oWQ −→ LG0 ' (Ĥ× Ĥ) oWQ
((h1, h2), w) 7−→ ((ηHM ,1(h1, w), ηHM ,1(h2, w)), w),

where ηHM ,1 : LHM −→ Ĥ is the first component of ηHM
. It is clear that
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ηM is a L-morphism that makes the following diagram commute :

LHM

ηHM //

ξM

��

LH

ξ

��
LM0

ηM

// LG0

Note that the embedding M̂0 −→ Ĝ0 induced by ηM is WQ-equivariant. Let
ηM,simple : LM0 −→ LG0 be the obvious L-morphism extending this embed-
ding (ie the one that is equal to identity on WQ). Write ηM = cMηM,simple,
where cM : WQ −→ Z(M̂0) is a 1-cocycle, and let χM be the quasi-character
of M0(A) associated to the class of cM in H1(WQ, Z(M̂0). (In general, χM

can be non-trivial.)
Let S be a set of places of Q. Write AS =

∏
v∈S

′ Qv and AS =
∏

v 6∈S

′ Qv. We

say that a function fS ∈ C∞c (H(AS)) satisfies condition (H) if, for every
M ∈ MG, there exists a transfer fHM

S of fS to HM and a function φS,M ∈
C∞c (M0(AS)) such that the functions φS,M and fHM

S are associated at every
place in S.

The next lemma gives examples of functions that satisfy condition (H).
For every place v of Q, we say that a semi-simple element γ ∈ H(Qv) is a
norm if there exists g ∈ G0(Qv) such that γ ∈ N g (this condition makes
sense because N g is a stable conjugacy class in H∗(Qv) and H is an inner
form of H∗).

Lemma 8.4.1 Let v be a finite place of Q.

(i) Every function in C∞c (H(Qv)) with support in a small enough neigh-
bourhood of 1 satisfies condition (H).

(ii) Assume that H is quasi-split over Qv (but not necessarily unramified).
Then, for every φ ∈ C∞c (G0(Qv)) with support in a small enough
neighbourhood of 1, there exists f ∈ C∞c (H(Qv)) associated to φ and
satisfying condition (H).

(iii) Assume that v is unramified in E (so HQv = H∗
Qv

is unramified). Let
M ∈MG. Then the commutative diagram

LHM

ηHM //

ξM

��

LH

ξ

��
LM0

ηM

// LG0

gives a commutative diagram

H(G0(Qv),G0(Zv)) //

��

H(H(Qv),H(Zv))

��
χM,vH(M0(Qv),M0(Zv)) // χηHM

,vH(HM (Qv),HM (Zv))
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(where χηHM
,v is defined as in the last two subsections of 4.2), satis-

fying the following properties :

- the upper horizontal arrow is the base change map;

- the lower horizontal arrow sends a function χM,vφv, with φv ∈
H(M0(Qv),M0(Zv)), to the function χηHM

,vfv, where fv ∈ H(HM (Qv),HM (Zv))
is the image of φv by the base change map;

- the left vertical arrow sends a function in H(G0(Qv),G0(Zv)) to
the product of its constant term at M0 and of χM,v;

- the right vertical arrow is the transfer map defined by ηHM
as in

4.2.

In particular, every function in the image of the base change mor-
phism H(G0(Qv),G0(Zv)) −→ H(H(Qv),H(Zv)) satisfies condi-
tion (H).

(iv) If v is unramified in E and one of the ni is odd, then every function
in C∞c (H(Qv)) satisfies condition (H).

Proof. Point (iii) is immediate (because the fundamental lemma is known,
cf 5.3). Point (iv) is a direct consequence of lemma 8.3.7.

We show (i). For every M ∈ MG, there is a H∗(Q)-conjugacy class of
embeddings HM −→ H∗; fix an embedding in this class. Identify HE and
H∗

E with Gm,E ×GLn1,E × · · ·×GLnr,E using the morphism defined in the
beginning of 2.3. Let M ∈MG. There exists an open neighbourhood UM of
1 in HM (Qv) such that every semi-simple element in UM is a norm. Choose
an open neighbourhood VM of 1 in H∗(E ⊗Q Qv) = H(E ⊗Q Qv) such that
every semi-simple element of HM (Qv) that is H∗(E⊗Q Qv)-conjugate to an
element of VM is HM (Qv)-conjugate to an element of UM (cf lemma 8.4.2
below).

Let V =
⋂

M∈MG

VM and U = V ∩H(Qv). Then U is an open neighbour-

hood of 1 in H(Qv). Let f ∈ C∞c (H(Qv)) with support contained in U . We
show that f satisfies condition (H). For every M ∈ MG, choose a transfer
fHM of f to HM . To show that there exists a function in C∞c (M0(Qv))
associated to fHM , it is enough, by proposition 3.3.2 of [La3], to show that,
for every semi-simple γ ∈ HM (Qv), SOγ(fHM ) = 0 if γ is not a norm. Let
γ ∈ HM (Qv) be semi-simple and such that SOγ(fHM ) 6= 0. Then, by the
definition of the transfer, there exists an image δ of γ in H(Qv) such that
Oδ(f) 6= 0. In other words, γ is H∗(E⊗Q Qv)-conjugate to an element of U .
As U ⊂ VM , this implies that γ is HM (Qv)-conjugate to an element of UM ,
hence that γ is conjugate to a norm, ie that γ is itself a norm.

We show (ii). By (i), it is enough to check that, if U is a neighbourhood
of 1 in H(Qv), then there exists a neighbourhood V of 1 in G0(Qv) such
that every function φ ∈ C∞c (G0(Qv)) with support contained in V admits
a transfer f ∈ C∞c (H(Qv)) with support contained in U . This follows from
the proof of theorem 3.3.1 of [La3].
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�

Lemma 8.4.2 Let F be a local field of characteristic 0, E be a finite exten-
sion of F and H be a connected reductive group on F . Set G = RE/F HE .
Let M be a Levi subgroup of G. Assume that there exists a connected
reductive group HM on F such that M = RE/F HM,E (HM is not neces-
sarily a subgroup of H). Let U be a neighbourhood of 1 in HM (F ). Then
there exists a neighbourhood V of 1 in G(F ) such that : for every semi-
simple γ ∈ HM (F ), if γ is G(F )-conjugate to an element of V , then γ is
HM (F )-conjugate to an element of U .

Proof. Let (S1, . . . ,Sr) be a system of representatives of the set of HM (F )-
conjugacy classes of maximal tori of HM (this set is finite because the
characteristic of F is 0). For every i ∈ {1, . . . , r}, set Ti = RE/F Si and
Ui = U ∩Si(F ), and choose a neighbourhood Wi of 1 in Ti(F ) = Si(E) such
that Wi ∩ Si(F ) ⊂ Ui. Let i ∈ {1, . . . , r}. Then Ti is a maximal torus of
M, hence of G, so, by lemme 3.1.2 of [La3], there exists a neighbourhood Vi

of 1 in G(F ) such that, if an element t ∈ Ti(F ) has a conjugate in Vi, then

t ∈Wi. Set V =
r⋂

i=1

Vi.

Let γ ∈ HM (F ) be semi-simple and G(F )-conjugate to an element of V .
As γ is semi-simple, there exists a maximal torus of HM containing γ, so
we may assume that there exists i ∈ {1, . . . , r} such that γ ∈ Si(F ). In
particular, γ ∈ Ti(F ). As γ is G(F )-conjugate to an element of Vi, γ ∈Wi.
But Wi ∩ Si(F ) ⊂ Ui, so that γ ∈ Ui ⊂ U .

�

We come back to the situation of the beginning of this section. Fix a
prime number p that is unramified in E, a neat open compact subgroup
K = KpH(Zp) (with Kp ⊂ H(Ap

f )) of H(Af ), an irreducible algebraic repre-
sentation V of H and a function fp,∞ ∈ H(H(Ap

f ),Kp). Assume that fp,∞

satisfies condition (H).
Let M ∈MG, and define, for every j ∈ Z, a function φ(j)

M = φp,∞
M φ

(j)
M,pφM,∞ ∈

C∞(M0(A)), compactly supported modulo AM0(R)0, in the following way.
Choose φp,∞

M ∈ C∞c (M0(Ap
f )) that is associated at every place to a trans-

fer (fp,∞)HM of fp,∞ to HM . The calculations of 4.2 and (iii) of lemma
8.4.1 show that the function f

(j)
HM ,p defined in definition 7.1.6 is the prod-

uct of χηHM
,p and of a spherical function in the image of the base change map

H(M0(Qp),M0(Zp)) −→ H(HM (Qp),HM (Zp)). Take φ(j)
M,p ∈ H(M0(Qp),M0(Zp))

to be χM,pφ
′, where φ′ is any spherical function in the inverse image of

χ−1
ηHM

,pf
(j)
HM ,p by the base change map. To define φM,∞, use the notations

introduced before and in lemma 7.3.4. Lemma 7.3.4 gives an irreducible
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algebraic representation Vω of HM for every ω ∈ Ω∗ ' ΦH(ϕ). Take

φM,∞ =
∑

ω∈Ω∗

det(ω)φV ∗
ω
,

where det(ω) is defined in remark 3.3.2 and φV ∗
ω

is defined at the beginning
of this section.

Let

cM = (−1)q(H)ι(H,HM )CM
τ(HM )
τ(M0)

k(M)−1 < µH , sHM
>∈ Q×,

where µH is the cocharacter of HE determined by the Shimura datum as in
2.1 and CM ∈ R× is the constant of proposition 8.3.1 for M.

Theorem 8.4.3 For every j ∈ Z,

Tr(fp,∞Φj
℘, RΓ(MK(H,X )∗Q, IC

KVQ)) =
∑

M∈MG

cMTM (φ(j)
M ),

where (H,X ) is the Shimura datum of 2.1 and Φ℘ is defined in 7.3.

Proof. The theorem is an easy consequence of corollary 6.3.2 (and remark
7.2.4), lemma 7.3.4 and proposition 8.3.1 (see also remark 1.3.2 for the choice
of p).

�

It is possible to deduce from theorem 8.4.3 and proposition 8.2.3 an ex-
pression for the logarithm of the L-function (at a good prime number) of the
intersection complex ICKV , if K is a small enough open compact subgroup
of G(Af ).

Remember that we defined in 2.1 a morphism µH : Gm,E −→ HE . The
formula for µH is :

µH :

 Gm,E −→ HE = Gm,E ×GLn1,E × · · · ×GLnr,E

z 7−→ (z,
(
zIp1 0
0 Iq1

)
, . . . ,

(
zIpr 0
0 Iqr

)
)

For every M ∈ MG, let MHM
be the set of HM (E)-conjugacy classes of

cocharacters µHM
: Gm,E −→ HM,E such that the cocharacter Gm,E

µHM−→
HM,E −→ HE is H(E)-conjugate to µH . Let M ∈ MG. Write as before
HM,E = Gm,E ×GLn+

1 ,E ×GLn−1 ,E × · · ·×GLn+
r ,E ×GLn−r ,E . Then every

element µHM
of MHM

has a unique representative of the form

z 7−→ (z,

(
zIp+

1
0

0 Iq+
1

)
,

(
zIp−1

0
0 Iq−1

)
, . . . ,

(
zIp+

r
0

0 Iq+
r

)
,

(
zIp−r 0

0 Iq−r

)
),

with p+
i + p−i = pi. Write s(µHM

) = p−1 + · · · + p−r and d(µHM
) = p+

1 q
+
1 +

p−1 q
−
1 + · · · + p+

r q
+
r + p−r q

−
r . Let d = d(µH) = p1q1 + · · · + prqr (d is the

dimension of MK(H,X ), for every open compact subgroup K of H(Af )).
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Remember that every cocharacter µHM
: Gm,E −→ HM,E defines a rep-

resentation r−µHM
of LHM,E (cf lemma 4.1.1).

We recall the definition of the L-function at a good p of the intersection
complex.

Definition 8.4.4 Let p a prime number as in 1.3, and let ℘ be a place of
E above p. Set

logL℘(s, ICKV ) =
∑
m≥1

1
m

(N℘)−ms Tr(Φm∗
℘ , RΓ(MK(G,X )∗Q, IC

KVQ)),

where Φ℘ ∈WE℘
is a lift of the geometric Frobenius, N℘ = #(OE℘

/℘), and
s ∈ C (the series converges for Re(s) >> 0).

Corollary 8.4.5 Let K be a small enough open compact subgroup of H(Af ).
Then there exist functions φM ∈ C∞(M0(A)) with compact support modulo
AM0(R)0, for every M ∈MG, such that, for every prime number p as in 1.3
(ie such that p is unramified in E and K = KpG(Zp)) and for every place ℘
of E above p,

logL℘(s, ICKV ) =
∑

M∈MG

cM
∑
t≥0

∑
πM∈Πdisc(M,t)

aM
disc(πM )

Tr(πM (φM )AπM
)

∑
µHM

∈MHM

(−1)s(µHM
) logL℘(s− d

2
, (πM ⊗ χM )℘, r−µHM

),

where, for every M ∈ MG and πM ∈ Πdisc(M, t), (πM ⊗ χM )℘ is the local
component at ℘ of πM ⊗ χM , seen as a representation of HM (AE).

Proof. By lemma 8.4.1, if K is a small enough open compact subgroup
of H(Af ), then the function 1lK satisfies condition (H). Fix such a K, and
assume also that K is neat. Let S be a finite set of prime numbers containing
the set of prime numbers that are ramified in E and such that K = KSKS ,
with KS ⊂ H(AS) and KS =

∏
p6∈S

H(Zp). For every M ∈ MG, choose a

transfer fHM

S of 1lKS
to HM and a function φM,S ∈ C∞c (M0(AS)) associated

to fHM

S , and write φS
M = χM |M0(AS

f )1lKS
M

, where KS
M =

∏
p6∈S

M0(Zp), and

φM = φM,Sφ
S
M .

Let p 6∈ S and j ∈ N∗. We want to define, for every µHM
∈ MHM

, a
function φ(j)

µHM
,p ∈ H(M0(Qp),M0(Zp)). Remember that we fixed a place ℘

of E above p. Let L be the unramified extension of E℘ of degree j in Qp.
For every µHM

∈ MHM
, let φ(j)

µHM
,p be the product of (N℘)j(d−d(µHM

))/2

and of the image of the function fµHM
,L in H(M0(L),M0(OL)) (defined by

µM,L as in 4.1) by the morphism

H(HM (L),HM (OL)) −→ H(HM (E℘),HM (OE℘)) −→ H(M0(Qp),M0(Zp)),

where the first arrow is the base change morphism and the second arrow is
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- identity if p is inert in E (so M0(Qp) = HM (E℘));

- the morphism h 7−→ (h, 1lHM (OE
℘′

)) if p splits in E and ℘′ is the second

place of E above p (so M0(Qp) = HM (E℘)×HM (E℘′)).

Let πp be an unramified θ-stable representation of M0(Qp) and ϕπp
:

WQp −→ LM0
Qp

be a Langlands parameter of πp. As πp is θ-stable, we may
assume that ϕπp

factors through the image of LHM,Qp
−→ LM0

Qp
. Let ϕ℘

be the morphism WE℘
−→ LHM,E℘

deduced from ϕπp
. If p is inert in E,

then HM (E℘) = M0(Qp), and ϕ℘ is a Langlands parameter of πp, seen as
a representation of HM (E℘). If p splits in E and ℘′ is the second place of
E above p, then M0(Qp) = HM (E℘) × HM (E℘′), so πp = π ⊗ π′, where
π (resp. π′) is an unramified representation of HM (E℘) (resp. HM (E℘′)).
The morphism ϕ℘ is a Langlands parameter of π. By theorem 4.1.2 and
lemma 8.3.9, if Aπp is a normalized intertwining operator on πp, then

Tr(πp(φ(j)
µHM

,p)Aπp) = (N℘)jd/2 Tr(r−µHM
◦ ϕ℘(Φj

℘))Tr(πp(1lM0(Zp))Aπp).

Set

φ
(j)′

M,p =
∑

µHM
∈MHM

(−1)s(µHM
)φ(j)

µHM
,p.

The calculations of 4.2 and (iii) of lemma 8.4.1 imply that the function
χ−1

ηHM
,pf

(j)
HM ,p ∈ H(HM (Qp),HM (Zp)) is the image by the base change map

of the function φ(j)′

M,p (as before, f (j)
HM ,p is the function of definition 7.1.6). So

we can take φ(j)
M,p = χM,pφ

(j)′

M,p in theorem 8.4.3, and the corollary follows
from this theorem and from proposition 8.2.3.

�

Another application of theorem 8.4.3 is the next corollary. In this corollary,
E is still an imaginary quadratic extension of Q. Fix n ∈ N∗, and let
θ be the involution (λ, g) 7−→ (λ, λtg−1) of RE/Q(Gm,E × GLn,E) (where
(λ, g) 7−→ (λ, g) is the action of the non-trivial element of Gal(E/Q)). Then
θ defines an involution of C××GLn(C) = (RE/Q(Gm,E ×GLn,E))(R). The
morphism θ is the involution induced by the non-trivial element of Gal(E/Q),
if Gm,E ×GLn,E is identified to GU(n)E . If ℘ is a finite unramified place
of E and π℘ is an unramified representation of GU(n)(E℘), let logL(s, π℘)

(resp. logL(s, π℘,
2∧
)) be the logarithm of the L-function of π℘ and of the

representation idC× ⊗ st (resp. idC× ⊗
2∧
st) of ĜU(n) = C× × GLn(C),

where st is the standard representation of GLn(C).

Corollary 8.4.6 Let π be a θ-stable cuspidal automorphic representation
of A×E ×GLn(AE) such that π∞ is tempered (where ∞ is the unique infinite
place of E). Assume that there exists an irreducible algebraic representation
V of GU(n) such that ep(θ, π∞ ⊗W ) 6= 0, where W is the θ-stable repre-
sentation of C××GLn(C) associated to V (cf theorem 8.1.5). Let m be the
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weight of V in the sense of 1.3 (ie, the relative integer such that the central
subgroup Gm of GU(n) acts on V by x 7−→ xm). Let S be the union of
the set of prime numbers that ramify in E and of the set of prime numbers
under finite places of E where π is ramified. Then there exists a number
field K, a positive integer N and, for every finite place λ of K, a continuous
finite-dimensional representation σλ of Gal(Q/E) with coefficients in Kλ,
such that :

(i) The representation σλ is unramified outside of S ∪ {`}, where ` is
the prime number under λ, pure of weight −m + 1 − n if n is not
dividible by 4 and mixed with weights between −m+ 2(2−n)− 1 and
−m+ 2(2− n) + 1 if n is dividible by 4. If n is dividible by 4 and the
highest weight of V is regular, then σλ is pure of weight −m+2(2−n).

(ii) For every place ℘ of E above a prime number p 6∈ S, for every finite
place λ 6 |p of K,

logL℘(s, σλ) = N logL(s+
n− 1

2
, π℘)

if n is not dividible by 4, and

logL℘(s, σλ) = N logL(s+ (n− 2), π℘,

2∧
)

if n is dividible by 4 (where π℘ is the local component at ℘ of π, seen
as a representation of GU(n)(AE)).

Proof. We can, without changing the properties of π, replace θ by its
product with an inner automorphism of RE/Q(Gm,E ×GLn,E). So we may
(and will) assume that θ(λ, g) = (λ, λJp1,q1

tg−1J−1
p1,q1

), where p1, q1 ∈ N∗ are
such that p1 + q1 = n and Jp1,q1 ∈ GLn(Z) is the matrix (defined in 2.1) of
the Hermitian form that gives the group GU(p1, q1).

Write as before H = GU(p1, q1) and G0 = RE/QHE . Then G0 =
RE/QGm,E×RE/QGLn,E , and the involution θ of G0 defined above is equal
to the involution induced by the non-trivial element of Gal(E/Q). Assume
that the group H is quasi-split (but not necessarily unramified) at every
finite place of Q. As ep(θ, π∞ ⊗W ) 6= 0 and π∞ is tempered, remark 8.1.6
and theorem 8.1.5 imply that π∞ = πV ∗ , where πV ∗ is the θ-discrete repre-
sentation of G0(R) associated to V ∗ as in lemma 8.1.10.

Let KS ⊂ G0(AS) be an open compact subgroup such that Tr(πS(1lKS
)AπS

) 6=
0 (where AπS

is any intertwining operator on πS). By lemma 8.4.1, by tak-
ing KS small enough, we may assume that there exists a function fS ∈
C∞c (H(AS)) associated to φS := 1lKS

and satisfying condition (H). For ev-
ery M ∈ MG, fix a transfer fHM

S of fS to HM and a function φM,S ∈
C∞c (M0(AS)) associated to fHM

S . If p 6∈ S, M ∈MG and φp ∈ H(G0(Qp),G0(Zp)),
let b(φp) ∈ H(H0(Qp),H0(Zp)), b(φp)HM ∈ H(HM (Qp),HM (Zp)) and φM,p ∈
H(M0(Qp),M0(Zp)) be the functions obtained from φp by following the ar-
rows of the commutative diagram of point (iii) of lemma 8.4.1. Finally,
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for every M ∈ MG, define a function φM,∞ ∈ C∞(M0(R)) from V as in
theorem 8.4.3.

Let KH,S ⊂ H(AS) be an open compact subgroup small enough for fS to
be bi-invariant under KH,S . Set KH = KH,S

∏
p6∈S

H(Zp); then KH is an open

compact subgroup of H(Af ), and we may assume (by making KH,S smaller)
that KH is neat. Then the results of 1.7 apply to H, KH and every p 6∈ S.
In the beginning of 7.2, we explained how to get a number field K and, for
every finite place λ of K, a virtual finite-dimensional λ-adic representation
Wλ of Gal(Q/E)×H(H(Af ),KH) (the cohomology of the complex ICKHV )
such that there is a decomposition

Wλ =
⊕
πH,f

Wλ(πH,f )⊗ πKH

H,f ,

where the direct sum is taken over the set of isomorphism classes of irre-
ducible admissible representations πH,f of H(Af ) such that πKH

H,f 6= 0, and
the Wλ(πH,f ) are virtual λ-adic representations of Gal(Q/E).

Let ΠH(πf ) be the set of isomorphism classes of irreducible admissible
representations πH,f of H(Af ) such that πKH

H,f 6= 0 (so πH,f is unramified
outside of S), that Wλ(πH,f ) 6= 0 and that, for every p 6∈ S, if ϕπH,p

:
WQp −→ LHQp is a Langlands parameter of πH,p, then the composition of
ϕπH,p

and of the inclusion LHQp −→ LG0
Qp

(defined in example 8.1.1) is a
Langlands parameter of πp.

By the multiplicity 1 theorem of Piatetski-Shapiro, mdisc(π) = 1. So
there is a normalized intertwining operator on π such that m+

disc(π) = 1
and m−

disc(π) = 0; denote this intertwining operator by Aπ. Let as before
µH : Gm,E −→ HE be the cocharacter defined by the Shimura datum, r−µH

be the representation of LHE determined by −µH (cf 4.1) and d = p1q1. Set
φ∞ = φS

∏
p6∈S

1lG0(Zp) and f∞ = fS

∏
p6∈S

1lH(Zp). Let ℘ be a finite place of E

above a prime number p 6∈ S. Let π℘ be the local component at ℘ of π (seen
as a representation of H(AE)) and ϕ℘ : WE℘ −→ LHE℘ be a Langlands
parameter of π℘. We are going to show that, for every finite place λ 6 |p of
K and for every j ∈ Z,

cG(N℘)dj/2 Tr(r−µH
◦ϕ℘(Φj

℘))Tr(πf (φ∞)Aπ) =
∑

πH,f∈ΠH(πf )

Tr(πH,f (f∞))Tr(Φj
℘,Wλ(πH,f )),

(∗)
where Φ℘ ∈WE℘

is a lift of the geometric Frobenius. It suffices to show this
equality for j > 0.

Let λ be a finite place of K such that λ 6 |p. Let j ∈ N∗. Define a function
φ

(j)
p ∈ H(G0(Qp),G0(Zp)) using µH and j, as in the proof of corollary 8.4.5.

We recall the definition. Let L be an unramified extension of E℘ of degree j.
Then φ(j)

p is the image of the function fµH ,L ∈ H(H(L),H(OL)) determined
by µH as in 4.1 by the morphism

H(H(L),H(OL)) −→ H(H(E℘),H(OE℘)) −→ H(G0(Qp),G0(Zp)),
where the first arrow is the base change morphism and the second arrow is
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- identity if p is inert in E (so G0(Qp) = H(E℘));

- the morphism h 7−→ (h, 1lH(OE
℘′

)) if p splits in E and ℘′ is the second

place of E above p (so G0(Qp) = H(E℘)×H(E℘′)).

Then b(φ(j)
p ) is the function fH,p defined after theorem 6.2.1. Moreover, by

theorem 4.1.2 and lemma 8.3.9, if πp is the local component at p of π (seen
as a representation of G0(A)) and Aπp is a normalized intertwining operator
on πp, then :

Tr(πp(φ(j)
p )Aπp) = (N℘)jd/2 Tr(r−µH

◦ ϕ℘(Φj
℘))Tr(πp(1lG0(Zp))Aπp).

Let M ∈ MG. Let RM be the set of πM ∈ Πdisc(M, t), with t ≥ 0, such
that :

(i) πM ⊗ χM is unramified at every finite place v 6∈ S;

(ii) aM
disc(πM ) 6= 0;

(iii) Tr(πM,S(φM,S)AπM
) 6= 0 and Tr(πM,∞(φM,∞)AπM

) 6= 0 (where AπM

is a normalized intertwining operator on πM );

(iv) if M = G, then πM 6' π.

Then RM is finite.
Let RH be the set of isomorphism classes of irreducible admissible repre-

sentations πH,f of H(Af ) such that :

(i) πKH

H,f 6= 0;

(ii) πH,f 6∈ ΠH(π);

(iii) Wλ(πH,f ) 6= 0.

Then RH is also finite.
By the strong multiplicity 1 theorem of Jacquet-Shalika for G0 (cf theorem

4.4 of [JS]) and corollary 8.5.3 (cf also remark 8.5.4), there exists a function
gS∪{p} ∈ H(G0(AS∪{p}

f ),KS∪{p}
G ) (where KS∪{p}

G =
∏

v 6∈S∪{p}
G0(Zv)) such

that :

• Tr(πS∪{p}(gS∪{p})Aπ) = Tr(πS∪{p}(φS∪{p})Aπ) = 1;
• for every πH,f ∈ RH , Tr(πS∪{p}

H,f (b(gS∪{p}))) = 0 (where b(gS∪{p}) ∈
H(H(AS∪{p}

f ),KS∪{p}
H ) is the base change of gS∪{p});

• for every πH,f ∈ ΠH(π), Tr(πS∪{p}
H,f (b(gS∪{p}))) = Tr(πH,f

S∪{p}(fS∪{p}))
(this actually follows from the first condition and from the fundamental
lemma for base change);

• for every M ∈MG, every πM ∈ RM and every normalized intertwining
operator AπM

on πM , Tr(πS∪{p}
M (gS∪{p}

M )AπM
) = 0 (where gS∪{p}

M is the
function obtained from gS∪{p} by following the left vertical arrow in the
diagram of (iii) of lemma 8.4.1).
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Then

Tr(πf (φSφ
S∪{p}φ(j)

p )Aπ) = Tr(πf (φ∞)Aπ)(N℘)dj/2 Tr(r−µH
◦ ϕ℘(Φj

℘)),

and, by theorem 8.4.3 (and the fact that Tr(π∞(φG,∞)) = 1),

cG Tr(πf (φSφ
S∪{p}φ(j)

p )Aπ) =
∑

πH,f∈ΠH(πf )

Tr(Φj
℘×fSf

S∪{p}1lH(Zp),Wλ(πH,f )⊗πKH

H,f ).

This proves equality (∗).
Remember that we wanted the group GU(p1, q1) to be quasi-split at every

finite place of Q. We use here the calculations of the Galois cohomology of
unitary groups of section 2 of [Cl5]. If n is odd, these calculations imply that
the group GU(p1, q1) is quasi-split at every finite place of Q for any p1 and
q1. Take p1 = 1 and q1 = n− 1. Now assume that n is even. If n/2 is odd,
take p1 = 1 and q1 = n− 1. If n/2 is even, take p1 = 2 and q1 = n− 2. We
check that, with these choices, GU(p1, q1) is indeed quasi-split at every finite
place of Q. Let D be the discriminant of E. Let q be a prime number. If q
does not divide D, then GU(p1, q1) is unramified at q (so, in particular, it is
quasi-split). Assume that q divides D. Then the cohomological invariant of
GU(p1, q1) at q is 0 if −1 is a norm in Qq, and q1 + n/2 mod 2 otherwise.
But, by the choice of q1, q1 +n/2 is always even, so GU(p1, q1) is quasi-split
at q.

In the rest of proof, take p1 and q1 as in the discussion above. Note that
d = n− 1 if n is not dividible by 4, and d = 2(n− 2) if n is dividible by 4.

We now apply lemma 7.3.2. As H splits over E, the representation r−µH

of LHE = Ĥ×WE determined by the cocharacter µH of HE is trivial onWE .
Let st∨ be the contragredient of the standard representation of GLn(C) and
χ be the character z 7−→ z−1 of C×. By lemma 7.3.2, the restriction of r−µH

to Ĥ = C× ×GLn(C) is χ⊗ st∨ if n is not dividible by 4, and χ⊗
2∧
st∨ if

n is dividible by 4.
Let ℘ be a finite place of E above a prime number p 6∈ S, and λ 6 |p be a

finite place of K. Fix a Langlands parameter (z, (z1, . . . , zn)) of π℘ in the
maximal torus C× × (C×)n of Ĥ = C× ×GLn(C). By reasoning as in the
beginning of the proof of theorem 7.3.1 (or by applying corollary 8.5.3 and
theorem 7.3.1), we see that logN℘ |z| ∈ 1

2Z. For every πH,f ∈ ΠH(πf ), let ai,
i ∈ IπH,f

, be the eigenvalues of Φ℘ acting on Wλ(πH,f ), ni ∈ Z, i ∈ IπH,f
,

be their multiplicities, and

bπH,f
= c−1

G Tr(πf (φ∞)Aπ)−1 Tr(πH,f (f∞))

(bπH,f
does not depend on ℘). By equality (∗), for every j ∈ Z :

(N℘)dj/2z−j
∑

J⊂{1,...,n}
|J|=k

∏
l∈J

z−j
l =

∑
πH,f∈ΠH(πf )

bπH,f

∑
i∈IπH,f

nia
j
i , (∗∗)

where k = 1 if n is not dividible by 4, and k = 2 if n is dividible by 4. So
there exists a positive integer N (independent from ℘) such that NπH,f

:=
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NbπH,f
∈ Z, for every πH,f ∈ ΠH(πf ). Moreover, for every πH,f ∈ ΠH(πf )

and i ∈ IπH,f
, the product NπH,f

ni is positive. In particular,

σλ :=
⊕

πH,f∈ΠH(πf )

NπH,f
Wλ(πH,f )∨

is a real representation of Gal(Q/E) (and not just a virtual representation).
Then equality (∗∗) becomes : for every finite place ℘ of E above a prime
number p 6∈ S, if λ 6 |p, then, for every j ∈ Z,

N(N℘)−jd/2 Tr((idC× ⊗
k∧
st)(ϕ℘(Φj

℘)) = Tr(Φj
℘, σλ),

where k is as before equal to 1 if n is not dividible by 4, and to 2 if n
is dividible by 4. This is point (ii) of the lemma (as GU(n) is an inner
form of GU(p1, q1), we can see ϕ℘ as the Langlands parameter of the local
component at ℘ of π, seen as a representation of GU(n)(AE)).

It remains to determine the weight of σλ. As the algebraic representation
V of GU(n) is pure of weight m in the sense of 1.3, the complex ICKV is
pure of weight −m. Let

Wλ =
2d∑

i=0

(−1)iW i
λ

be the decomposition of Wλ according to cohomology degree. For every
irreducible admissible representation πH,f of H(Af ) such that πKH,f

H,f 6= 0,
there is a decomposition

Wλ(πH,f ) =
2d∑

i=0

(−1)iW i
λ(πH,f ),

and the representation W i
λ(πH,f ) of Gal(Q/E) is pure of weight −m+ i−2d.

Remember that (z, (z1, . . . , zn)) is the Langlands parameter of π℘. Assume
first that n is not dividible by 4. Then equality (∗∗) implies that logN℘ |zi| ∈
1
2Z for every i ∈ {1, . . . , n} (because the ai and z satisfy the same property).
But we know that − 1+m

2 < logN℘ |zi| < 1−m
2 for every i ∈ {1, . . . , n} (cf

[Cl4] lemma 4.10; note that the conditions on π∞ imply that π is algebraic
regular in the sense of [Cl4], and that Clozel uses a different normalization of
the Langlands parameter at ℘), so logN℘ |zi| = −m

2 for every i. This implies
that, if πH,f ∈ ΠH(πf ), then W i(πH,f ) = 0 for every i 6= d. Hence σλ is
pure of weight −m− d = −m+ 1− n.

Assume now that n is dividible by 4. Equality (∗∗) implies only that
logN℘ |zi| ∈ 1

4Z. As before, we know that the logN℘ |zi| are in ]− 1+m
2 , 1−m

2 [,
so logp |zi| ∈ {−1+m

4 ,−m
4 ,

1−m
4 } for every i ∈ {1, . . . , n}. Applying (∗∗)

again, we see that the only W i(πH,f ) that can appear in σλ are those with
d − 1 ≤ i ≤ d + 1. This proves the bounds on the weights of σλ. Assume
that the highest weight of V is regular. Then, by lemma 7.3.5, W i = 0 if
i 6= d, so σλ is of weight −m− d = −m+ 2(2− n).
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�

To formulate the last two corollaries, we will use the following definition
of Clozel :

Definition 8.4.7 (cf [Cl4] 1.2.3 or [Cl5] 3.1) Let π be a cuspidal automor-
phic representation of GLn(A) (resp. GLn(AE), where E is an imaginary
quadratic extension of Q). Then π is called algebraic if there exist a Lang-
lands parameter ϕ : WR −→ GLn(C) (resp. ϕ : WC −→ GLn(C)) of π∞
and p1, . . . , pn, q1, . . . , qn ∈ Z such that, for every z ∈WC = C×,

ϕ(z) =

 zp1+
n−1

2 zq1+
n−1

2 0
. . .

0 zpn+ n−1
2 zqn+ n−1

2

 .

We may assume that p1 ≥ · · · ≥ pn. The representation π is called regular
algebraic if p1 > · · · > pn.

If π is regular algebraic, then there is an algebraic representation W of
GLn (resp. RE/QGLn,E) associated to π as in [Cl4] 3.5 and [Cl5] 3.2 : the
highest weight of W is (p1, p2+1, . . . , pn+(n−1)) (resp. ((p1, p2+1, . . . , pn+
(n − 1)), (qn, qn−1 + 1, . . . , q1 + (n − 1)))). We say that π is very regular if
the highest weight of W is regular.

We summarize a few results of Clozel about regular algebraic representa-
tions in the next lemma.

Lemma 8.4.8 Let E be an imaginary quadratic extension of Q. Let G0 =
GLn or RE/QGLn,E .

(i) Let π be a cuspidal automorphic representation of G0(A). Then the
following conditions are equivalent :

(a) π is regular algebraic.

(b) The infinitesimal character of π∞ is that of an algebraic repre-
sentation of G0.

(c) There exists an algebraic representation W of G0 and a charac-
ter ε of G0(R) of order 2 such that such that H∗(g,K′

∞; ε(π∞ ⊗
W ∗)) 6= 0, where g = Lie(G0(C)) and K′

∞ is the set of fixed
points of a Cartan involution of G0(R).

Moreover, if π is regular algebraic, then π∞ is essentially tempered.

(ii) Assume that G0 = RE/QGLn,E . Let θ be the involution of G0 defined
by g 7−→ tg−1. Let π be a θ-stable cuspidal automorphic representation
of G0(A). Then the following conditions are equivalent :

(a) π is regular algebraic.
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(b) There exists a θ-stable algebraic representation W of G0 such
that ep(θ, π∞⊗W ∗) 6= 0 (where ep(θ, .) is defined before theorem
8.1.5).

Moreover, if π is regular algebraic, then π∞ is tempered.

Proof.

(i) The equivalence of (a) and (b) is obvious from the definition, and
(c) implies (b) by Wigner’s lemma. The fact that (a) implies (c) is
lemma 3.14 of [Cl4] (cf also proposition 3.5 of [Cl5] for the case G0 =
RE/QGLn,E). The last sentence of (i) is lemma 4.19 of [Cl4].

(ii) It is obvious (by Wigner’s lemma and (i)) that (b) implies (a). The
fact that (a) implies (b) is proved in proposition 3.5 of [Cl5]. The
last sentence is a remark made at the beginning of 3.2 of [Cl5] : if
π is regular algebraic, then π∞ is essentially tempered; as it is also
θ-stable, it must be tempered.

�

As in the lemma above, denote by θ the automorphism g 7−→ tg−1 of
RE/QGLn,E .

Corollary 8.4.9 Let π be a θ-stable cuspidal automorphic representation
of GLn(AE) that is regular algebraic. Let S be the union of the set of prime
numbers that ramify in E and of the set of prime numbers under finite places
of E where π is ramified. Then there exists a number field K, a positive
integer N and, for every finite place λ of K, a continuous finite-dimensional
representation σλ of Gal(Q/E) with coefficients in Kλ, such that :

(i) The representation σλ is unramified outside of S ∪ {`}, where ` is the
prime number under λ, pure of weight 1− n if n is not dividible by 4
and mixed with weights between 2(2− n)− 1 and 2(2− n) + 1 if n is
dividible by 4. If n is dividible by 4 and π is very regular, then σλ is
pure of weight 2(2− n).

(ii) For every place ℘ of E above a prime number p 6∈ S, for every finite
place λ 6 |p of K,

logL℘(s, σλ) = N logL(s+
n− 1

2
, π℘)

if n is not dividible by 4, and

logL℘(s, σλ) = N logL(s+ (n− 2), π℘,

2∧
)

if n is dividible by 4 (where π℘ is the local component at ℘ of π, seen
as a representation of U(n)(AE)).
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(The first L-function is the one associated to the standard representation

of GLn(C) = Û(n), and the second L-function is the one associated to the
exterior square of the standard representation.)

Proof. It is enough to show that there exists a character χ : AE/E
× −→

C× such that χ ⊗ π satisfies the conditions of corollary 8.4.6, with V of
weight 0. This follows from lemma VI.2.10 of [HT].

�

Using the base change of Arthur and Clozel ([AC]), it is possible to deduce
from the last corollary results about self-dual automorphic representations
of GLn(A). Here, we will treat only the case n odd (which is simpler); in the
general case, the next corollary would not hold for all quadratic imaginary
extensions E.

Corollary 8.4.10 Assume that n is odd. Let τ be a self-dual cuspidal auto-
morphic representation of GLn(A), and assume that τ is regular algebraic.
Let E be a quadratic imaginary extension of Q. Write S for the union of the
set of prime numbers that ramify in E and the set of prime numbers where τ
is ramified. Then there exist a number field K, a positive integer N and, for
every finite place λ of K, a (continuous finite-dimensional) representation
σλ of Gal(Q/E) with coefficients in Kλ, such that :

(i) the representations σλ are unramified outside of S and pure of weight
1− n;

(ii) for every finite place ℘ of E above a prime number p 6∈ S, for every
finite place λ 6 |p of K, for every j ∈ Z,

Tr(σλ(Φj
℘)) = N(N℘)j(n−1)/2 Tr(ϕτp

(Φj
℘)),

where ϕτp : WQp −→ GLn(C) is a Langlands parameter of τp and
Φ℘ ∈WE℘ is a lift of the geometric Frobenius.

In particular, τ satisfies the Ramanujan-Petersson conjecture at every un-
ramified place.

Proof. Let θ be as before the involution g 7−→ tg−1 of RE/QGLn,E . If
V is an irreducible algebraic representation of GLn, it defines a θ-discrete
representation πV of GLn(E ⊗Q R) as in lemma 8.1.10.

Let π be the automorphic representation of GLn(AE) obtained from τ by
base change (cf [AC] theorem III.4.2). Because n is odd, π is necessarily
cuspidal (this follows from (b) of loc. cit.). 5 By the definition of base
change, π is regular algebraic. Let (p1, . . . , pn) ∈ Zn, with p1 ≥ · · · ≥ pn,
be the n-uple of integers associated to τ as in definition 8.4.7. As τ is self-
dual, pi + pn+1−i = 1− n for every i ∈ {1, . . . , n}. For every i ∈ {1, . . . , n},

5I think Sug Woo Shin for pointing out this useful fact to me.
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set ai = pi + i − 1. Then
n∑

i=1

ai = 0. Let V be the irreducible algebraic

representation of GLn with highest weight (a1, . . . , an), and let W ∗ be the
θ-stable algebraic representation of RE/QGLn,E defined by V ∗ as in remark
8.1.6. (As the notation suggests, W ∗ is the contragredient of the irreducible
algebraic representation W of RE/QGLn,E associated to π as in definition
8.4.7.) By proposition 3.5 of [Cl5], ep(θ, π∞⊗W ∗) 6= 0. As π∞ is tempered,
theorem 8.1.5 and remark 8.1.6 imply that π∞ ' πV , so that π∞ is θ-discrete.

We may therefore apply corollary 8.4.9 to π. We get a family of repre-
sentations σλ of Gal(Q/E). Point (i) follows from (i) of corollary 8.4.9. It
remains to check the equality in point (ii).

Let H = U(n), H′ = GLn, G0 = RE/QHE = RE/QH′
E , and let θ′ be

the involution g 7−→ g of G0. As in 2.3, let Φn ∈ GLn(Z) be the matrix
with coefficients : (Φn)i,j = (−1)i−1δi,n+1−j . There is an isomorphism
Ĝ0 ' GLn(C)×GLn(C) such that :

- the embedding Ĥ′ = GLn(C) −→ Ĝ0 is g 7−→ (g, g);

- the embedding Ĥ = GLn(C) −→ Ĝ0 is g 7−→ (g,Φn
tg−1Φ−1

n );

- for every (g, h) ∈ Ĝ0, θ̂(g, h) = (Φn
th−1Φ−1

n ,Φn
tg−1Φ−1

n ) and θ̂′(g, h) =
(h, g).

Let T be the diagonal torus of G0. Let p 6∈ S be a prime number. Denote
by x = ((y1, . . . , yn), (z1, . . . , zn)) ∈ T̂Gal(Qp/Qp) the Langlands parameter of
πp. As πp is θ-stable and θ′-stable, we may assume that θ̂(x) = θ̂′(x) = x,
ie that yi = zi = y−1

n+1−i for every i ∈ {1, . . . , n}. Assume that p is inert in
E. Then H(Ep) ' H′(Ep), and the Langlands parameter of πp, seen as a
representation of H(Ep) or H′(Ep), is (y2

1 , . . . , y
2
n); on the other hand, the

Langlands parameter of τp is (y1, . . . , yn), hence the image of ΦEp
by ϕτp

is (y2
1 , . . . , y

2
n). Assume that p splits in E, and let ℘ and ℘′ be the places

of E above p. Then G0(Qp) = H(E℘) × H(E℘′) = H′(E℘) × H′(E℘′).
Write πp = π℘ ⊗ π℘′ = π′℘ ⊗ π′℘′ , where π℘ (resp. π℘′ , resp. π′℘, resp.
π′℘′) is an unramified representation of H(E℘) (resp. H(E℘′), resp. H′(E℘),
resp. H′(E℘′)). Then the Langlands parameter of τp, π℘, π℘′ , π′℘ or π′℘′
is (y1, . . . , yn). These calculations show that point (ii) follows from (ii) of
corollary 8.4.9.

�

8.5 A SIMPLE CASE OF BASE CHANGE

As an application of the techniques in this chapter (and of the knowledge
about automorphic representations of general linear groups), it is possible to
obtain some weak base change results between general unitary groups and
general linear groups. These results are spelled out in this section.
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Use the notations of the beginning of 8.4; in particular, H = G(U(p1, q1)×
· · · ×U(pr, qr)), G0 = RE/QHE and ξ : LH −→ LG0 is the “diagonal” L-
morphism.

As before, if L is a connected reductive group over Q, p is a prime number
where L is unramified and πL,p is an unramified representation of L(Qp), we
will denote by ϕπL,p

: WQp −→ L̂ oWQp a Langlands parameter of πL,p.

Definition 8.5.1 Let L be a Levi subgroup of G0 (it does not have to
be the identity component of a Levi subset of G). Then there is a WQ-
embedding L̂ −→ Ĝ0, unique up to Ĝ0-conjugacy; fix such an embedding,
and let ηL : LL −→ LG0 be the obvious L-morphism extending it (ie the
L-morphism whose restriction to WQ is the identity).

As G0 is isomorphic to RE/Q(Gm,E × GLn1,E × · · · × GLnr,E), L is a
direct product of RE/QGm,E and of groups of the type RE/QGLm,E , m ∈
N∗. Choose an isomorphism L ' RE/Q(Gm,E ×GLm1,E × · · · ×GLml,E),
and denote by θL the automorphism (x, g1, . . . , gl) 7−→ (x, xtg−1

1 , . . . , xtg−1
l )

of L; the class of θL in the group of outer automorphisms of L does not
depend on the choices. (Note also that θ and θG0 are equal up to an inner
automorphism, so we can take θ = θG0 .)

Let πH be an irreducible admissible representation of H(A) and πL be an
irreducible admissible representation of L(A). Let v be a finite place where
πH and πL are unramified. We say that πH and πL correspond to each other
at v if ξ ◦ ϕπH,v

and ηL ◦ ϕπL,v
are Ĝ0-conjugate.

Remark 8.5.2 Let v be a finite place of Q that is unramified in E, L be
a Levi subgroup of G0, πL,v be an unramified representation of L0(Qv) and
πH,v be an unramified representation of H(Qv). Then ξ◦ϕπH,v

and ηL◦ϕπL,v

are Ĝ0-conjugate if and only if, for every φv ∈ H(G0(Qv),G0(Zv)),

Tr(πv(bξ(φv))) = Tr(πL,v((φv)L)),

where (φv)L is the constant term of φv at L (and bξ is, as in 4.2, the base
change map H(G0(Qv),G0(Zv)) −→ H(H(Qv),H(Zv))).

Corollary 8.5.3 (i) Let πH be an irreducible admissible representation
of H(A). Assume that :

- there exists a neat open compact subgroup KH of H(Af ) such

that πKH

H,f 6= {0};
- there exist an irreducible algebraic representation V of H and
i ∈ Z such that mdisc(πH) 6= 0 and Hi(h,K′

∞;πH,∞ ⊗ V ) 6= 0,
where h = Lie(H(R))⊗ C and the notations are those of remark
7.2.5 (or lemma 7.3.5).

(In other words, πH is a discrete automorphic representation of H(A)
and appears in the intersection cohomology of some Shimura variety
associated to H.)
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Then there exists a Levi subgroup L of G0, a cuspidal automorphic
representation πL of L(A) and an automorphic character χL of L(A)
such that πL ⊗ χ−1

L is θL-stable and that πH and πL correspond to
each other at almost every finite place. If L = G0, then we can take
χL = 1, and πL is regular algebraic.

(ii) Assume that H is quasi-split at every finite place of Q. Let π be a
θ-stable cuspidal automorphic representation of G0(A). Assume that
there exists an irreducible algebraic representation V of H such that
Tr(π∞(φV )) 6= 0, where φV ∈ C∞(G0(R)) is associated to V as in
lemma 8.1.10. (In other words, π is regular algebraic, cf lemma 8.4.8.)
Let S be the union of the set of finite places that are ramified in
E and of the set of places where π is ramified. Then there exists an
automorphic representation πH of H(A), unramified outside of S, such
that π and πH correspond to each other at every finite place v 6∈ S.
Moreover :

- πH satifies the conditions of (i) for V and some KH ;

- if π′H satisfies the conditions of (i) and is isomorphic to πH at
almost every finite place, then π′H is cuspidal (in particular, πH

is cuspidal);

- in the notation of 7.2, for every e ∈ FH, Re(πH,f ) = ∅ (ie πH

“does not come from an endoscopic group of H”).

Remark 8.5.4 Note that, using (ii) of the corollary, we can strengthen (i)
a little. We obtain the following statement : if, in (i), H is quasi-split at
every finite place of Q and L = G0, then πH is unramified at v as soon as
π := πL is, and πH and π correspond to each other at every finite place of
Q where π is unramified.

In the rest of this section, we use the following notations : if S is a set of
places of Q, then ZS =

∏
v∈S

Zv and ZS =
∏

v 6∈S∪{∞}
Zv.

Proof. We show (i). Let πH , KH and V be as in (i). Let Wλ be the virtual
λ-adic representation of H(H(Af ),KH)×Gal(Q/E) defined by KH and V as
in 7.2. After replacing KH by a smaller open compact subgroup of H(Af ),
we may assume that 1lKH

satisfies condition (H) of 8.4 (cf (i) of lemma 8.4.1)
and that KH =

∏
v 6=∞ KH,v. For every set S of finite places of Q, we will

write KH,S =
∏

v∈S

KH,v and KS
H =

∏
v 6∈S∪{∞}

KH,v. Let S be a finite set of

finite places of Q such that, for every v 6∈ S ∪{∞}, H is unramified at v and
KH,v = H(Zv). Set fS = 1lKH,S

.
Let Π′(πH) be the set of isomorphism classes of irreducible admissible

representations π′H of H(A) such that :

- π′H satisfies the conditions of (i) for the same KH and V as πH ;
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- for almost every finite place v of Q such that H is unramified at v,
ξ ◦ ϕπH,v

and ξ ◦ ϕπ′H,v
are Ĝ0-conjugate.

(We use the notation Π′(πH) to avoid confusion with the set ΠH of the proof
of (ii).) Then Π′(πH) is finite (in fact, the set of π′H that satisfy the first
condition defining Π′(πH) is already finite). So there exists a finite set T ⊃ S
of finite places of Q and a function fT−S ∈ H(H(AT−S),KH,T−S) such that
:

- fT−S is in the image of the base change map bξ : H(G0(AT−S),G0(ZT−S)) −→
H(H(AT−S),KH,T−S) (hence, by (iii) of lemma 8.4.1, it satisfies con-
dition (H)).

- Let π′H be an irreducible admissible representation of H(A) that satis-
fies the conditions of (i) for KH and V . Then Tr(π′H,T−S(fT−S)) = 1
if π′H ∈ Π′(πH), and 0 otherwise.

- For every v 6∈ T finite, for every π′H ∈ Π′(πH), ξ ◦ ϕπH,v
and ξ ◦ ϕπ′H,v

are Ĝ0-conjugate.

Write fT = fSfT−S . As in 8.4, fT determines functions φM,T ∈ C∞c (M0(AT )),
for M ∈MG.

Fix a prime number p 6∈ T . Then, with the notations of 7.2, for ev-
ery m ∈ Z and every fT∪{p} in the image of the base change map bξ :
H(G0(AT∪{p}

f ),G0(ZT∪{p})) −→ H(H(AT∪{p}
f ),KT∪{p}

H ),

Tr(Φm
℘ fT f

T∪{p},Wλ) = Tr(πT∪{p}
H,f (fT∪{p}))

∑
π′H∈Π′(πH)

dim((π′H)KH ) Tr(Φm
℘ ,Wλ(π′H)).

Note that the virtual representation
∑

π′H∈Π′(πH)

dim((π′H)KH )Wλ(π′H) of Gal(Q/E)

is not trivial. This is proved as the fact that (2) implies (1) in remark 7.2.5
(see this proof for more details) : Let w be the weight of V in the sense
of 1.3. Then, for every π′H ∈ Π′(πH), Wλ(π′H) =

∑
i∈Z

(−1)iW i
λ(π′H), with

W i
λ(π′H) a true (not virtual) representation of Gal(Q/E) that is unramified

and of weight −w+ i at almost every place of E. Hence there can be no can-
cellation in the sum

∑
π′H∈Π′(πH)

dim((π′H)KH )Wλ(π′H). (And the assumptions

on πH imply that Wλ(πH) is not trivial, by remark 7.2.5.) So there exists
an integer m ∈ Z such that

C :=
∑

π′H∈Π′(πH)

dim((π′H)KH ) Tr(Φm
℘ ,Wλ(π′H)) 6= 0.

For every M ∈MG, write φM,p = φ
(m)
M,p, where φ(m)

M,p is as in 8.4, and define
φM,∞ as in loc. cit. Then, by theorem 8.4.3 and the calculations above (and
(iii) of lemma 8.4.1), for every φT∪{p} ∈ H(G0(AT∪{p}

f ),G0(ZT∪{p})),

C Tr(πT∪{p}
H,f (fT∪{p})) =

∑
M∈MG

cMTM (φM ),
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where fT∪{p} = bξ(φT∪{p}) and φM = φM,TφM,pφ
T∪{p}
M φM,∞, with φ

T∪{p}
M

equal to the product of χ
M |G0(AT∪{p}

f )
and of the constant term of φT∪{p} at

M0.
By lemma 8.5.5 below, the right hand side of this equality, seen as a linear

form T over H(G0(AT∪{p}
f ),G0(ZT∪{p})), is a finite linear combination of

linear maps of the form φT∪{p} 7−→ Tr(πL((φT∪{p})L)), with L, πL and
(φT∪{p})L as in this lemma. By the strong multiplicity 1 theorem of Jacquet
and Shalika (cf theorem 4.4 of [JS]), there exist a Levi subgroup L of G0, a
cuspidal automorphic representation πL of L(A), an automorphic character
χL of L(A), a scalar a ∈ C×, a finite set Σ ⊃ T ∪ {p} of finite places of
Q and a function φΣ−T∪{p} ∈ H(G0(AΣ−T∪{p}),G0(ZΣ−T∪{p})) such that :
πL ⊗ χ−1

L is θL-stable and, for every φΣ ∈ H(G0(AΣ
f ),G0(ZΣ)),

T (φΣ−T∪{p}φ
Σ) = aTr(πΣ

L((φΣ)L))

(a is non-zero because T is non-zero, and that in turn follows from the fact
that C 6= 0; the existence of χL such that πL ⊗ χ−1

L is θL-stable comes from
lemma 8.5.5).

Let D = C Tr(πH,Σ−T∪{p}(bξ(φΣ−T{p})). Then we finally find that, for
every φΣ ∈ H(G0(AΣ

f ),G0(ZΣ)),

DTr(πΣ
H,f (bξ(φΣ))) = aTr(πΣ

L((φΣ)L)).

In particular, D 6= 0 (because a 6= 0). This equality implies that πH and πL

correspond to each other at every finite place v 6∈ Σ. Assume that L = G0.
Then it is obvious from the definition of T and from the definition of φG,∞
in 8.4 that the infinitesimal character of πL is equal to that of an algebraic
representation of G0. By (i) of lemma 8.4.8, πL is regular algebraic. This
finishes the proof of (i).

We show (ii). Assume that H is quasi-split at every finite place of v, and let
π, V and S be as (ii). Fix an open compact subgroup K =

∏
v Kv of G0(Af )

such that Tr(πf (1lK)Aπf
) 6= 0, that Kv = G0(Zv) for v 6∈ S and that 1lK has

a transfer to H satisfying condition (H) (such a K exists by lemma 8.4.1).
Set KS =

∏
v∈S Kv, φS = 1lKS

, and let fS ∈ C∞c (H(AS)) be a transfer of φS

satisfying condition (H). Choose an open compact subgroup KH,S of H(AS)
such that fS is bi-KH,S-invariant, and set KH = KH,S

∏
v 6∈S∪{∞}

H(Zv). After

making KH,S smaller, we may assume that KH is neat. Let Wλ be the λ-adic
virtual representation of H(H(Af ),KH)×Gal(Q/E) defined by KH and V
as in 7.2.

Let φS ∈ H(G0(AS
f ),G0(ZS)). By theorem 8.4.3 for a prime number

p 6∈ S where φS is 1lG0(Zp) and for j = 0, there exist scalars c′M ∈ R, for
M ∈MG, such that

Tr(fSbξ(φS),Wλ) =
∑

M∈MG

c′MTM (φS,MφS
MφM,∞),

where φS,M ∈ C∞c (M0(AS)) and φS
M ∈ C∞c (M0(AS

f )) are the functions
associated to φS and φS as in the beginning of 8.4 (so φS

M is the product of



main April 10, 2009

162 CHAPTER 8

χM |M0(AS
f ) and of the constant term of φS at M0) and φM,∞ ∈ C∞(M0(R))

is obtained from V as in loc. cit. (so φG,∞ is the function φV that appears
in the statement of (ii)). But, as in he proof of proposition 7.1.4, we see
that, for any M ∈ MG, the function f

(0)
HM ,p of definition 7.1.6 is equal to

the product of ιH,HM

ι(H,HM ) and of a transfer of 1lH(Zp) to HM . So, for every
M ∈MG, c′M = ιH,HM

ι(H,HM )cM ; in particular, c′M does not depend on φS , and
c′G 6= 0 (because all the signs in the definition of ιH,H are obviously equal to
1).

Consider the function T that sends φS to
∑

M∈MG

c′MTM (φS,MφS
MφM,∞).

It is a linear form on H(G0(AS
f ),G0(ZS)). By lemma 8.5.5, T is a finite

linear combination of characters on H(G0(AS
f ),G0(ZS)) of the form φS 7−→

Tr(πS
L((φS)L)), where L is a Levi subgroup of G0 and πL is a cuspidal

automorphic representation of L(A). By the strong multiplicity 1 theorem
of Jacquet and Shalika, these characters are pairwaise distinct. Hence, by the
choice of φS , the assumption on π∞ and the fact that c′G 6= 0, the coefficient
of the character φS 7−→ Tr(πS(φS)) in T is non-zero.

Let RH be the set of equivalence classes of irreducible admissible repre-
sentations of H(A) that satisfy the conditions of (i) for KH and V . Then RH

is finite. Define an equivalence relation ∼ on RH in the following way : if
πH , π

′
H ∈ RH , then πH ∼ π′H if and only if, for every finite place v 6∈ S of Q,

ξ ◦ϕπH,v
and ξ ◦ϕπ′H,v

are Ĝ0-conjugate (πH and π′H are necessarily unram-
ified at v because we have chosen KH to be hyperspecial outside of S). Let
ΠH ∈ RH/ ∼. Then, if φS ∈ H(G0(AS),G0(ZS)), the value Tr(πS

H(bξ(φS)))
is the same for every πH ∈ ΠH ; denote it by Tr(ΠS

H(bξ(φS))). Let

c(ΠH) =
∑

πH∈ΠH

dim(Wλ(πH))Tr(πH,S(fS))

(where the Wλ(πH) are as in 7.2).
By the definition of the Wλ(πH), Wλ =

∑
πH∈RH

Wλ(πH) ⊗ πKH

H,f . Hence,

for every φS ∈ H(G0(AS),G0(ZS)),

T (φS) = Tr(fSbξ(φS),Wλ) =
∑

ΠH∈RH/∼

c(ΠH) Tr(ΠS
H(bξ(φS))).

As the characters of H(G0(AS),G0(ZS)) are linearly independant, there ex-
ists ΠH ∈ RH/ ∼ such that, for every φS ∈ H(G0(AS),G0(ZS)), Tr(ΠS

H(bξ(φS))) =
Tr(πS(φS)). Let πH be any element of ΠH . It is unramified outside of S
and corresponds to π at every finite v 6∈ S.

It remains to prove the last three properties on πH . The first one is true
because πH ∈ RH by construction. The second and third ones are easy
consequences of (i) and of the strong multiplicity 1 theorem for G0.

�
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Lemma 8.5.5 Let S be a set of finite places of Q that contains all the finite
places that ramify in E and let V be an irreducible algebraic representation
of H. Fix functions φM,S ∈ C∞c (M0(AS)), M ∈ MG, and let φM,∞, M ∈
MG, be the functions associated to V as in 8.4. Consider the linear form
T : H(G0(AS

f ),G0(ZS)) −→ C that sends φS to∑
M∈MG

cMTM (φM ),

where the φS
M are obtained from φS as in 8.4.

Then T is a finite linear combination of linear maps of the form φS 7−→
Tr(πS

L((φS)L)), where :

(a) L is a Levi subgroup of G0.

(b) πL is a cuspidal automorphic representation of L(A) such that there
exists an automorphic character χL of L(A) such that πL ⊗ χ−1

L is
θL-stable; if L = G0, then we can take χL = 1.

(c) (φS)L is the constant term of φS at L.

Proof. If we did not care about condition (b) on πL, the lemma would
be an easy consequence of proposition 8.2.3, (iii) of lemma 8.4.1 and lemma
8.3.9. As we do, we must know more precisely what kind of automorphic
representations appear on the spectral side of TM (φM ). This is the object
of lemma 8.5.6 below. Once we know this lemma (for all M ∈ MG), the
proof is straightforward.

�

Lemma 8.5.6 6 Let V be an irreducible algebraic representation of H, and
φV ∈ C∞(G0(R)) be the function associated to V as in 8.4. Let t ≥ 0 and
let π ∈ Πdisc(G, t) such that adisc(π) Tr(π∞(φV )Aπ∞) 6= 0 (the notations
are those of 8.2). Choose a Levi subgroup L of G0, a parabolic subgroup Q
of G0 with Levi subgroup L and a cuspidal automorphic representation πL

of L(A) such that π is a subquotient of the parabolic induction IndG
0

Q πL.
Then there exists an automorphic character χL such that πL ⊗ χL is θL-

stable.

Proof. Remember that, in this section, we take θ on G0 = RE/Q(Gm,E ×
GLn1,E × · · · ×GLnr,E) to be (x, g1, . . . , gr) 7−→ (x, tg−1

1 , . . . , xtg−1
r ) (θ is

determined only up to inner automorphisms, and this is a possible choice
of θ). Let TH be the diagonal torus of H. Then TH(C) is the diagonal
torus of H(C) ' C× × GLn1(C) × · · · × GLnr (C). Let T = RE/QTH,E ,
let θ′ be the automorphism of H(C) defined by the same formula as θ, and

6Most of this lemma (and of its proof) was worked out during conversations with Sug
Woo Shin.
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choose an isomorphism G0(C) ' H(C) ×H(C) such that θ corresponds to
the automorphism (h1, h2) 7−→ (θ′(h2), θ′(h1)) of H(C) × H(C) and that
T(C) is sent to TH(C)×TH(C). Let tH = Lie(TH)(C) and t = Lie(T)(C).
Then t = tH ⊕ tH , and θ acts on t by (t1, t2) 7−→ (ι(t2), ι(t1)), where ι is
the involution (t, (ti,j)1≤i≤r,1≤j≤ni) 7−→ (t, (t − ti,j)1≤i≤r,1≤j≤ni) of tH =
C ⊕ Cn1 ⊕ · · · ⊕ Cnr . Let λ ∈ t∗H be a representative of the infinitesimal
character of V , seen as a representation of H(R). Then λ is regular, and
(λ, ι(λ)) ∈ t∗ = t∗H ⊕ t∗H represents the infinitesimal character of the θ-stable
representation W of G0(R) associated to V (as in theorem 8.1.5). By the
definition of φV in theorem 8.1.5, the assumption that Tr(π∞(φV )Aπ∞) 6=
0 implies that ep(θ, π∞ ⊗ W ) 6= 0, and, by Wigner’s lemma, this implies
that the infinitesimal character of π∞ is (−λ,−ι(λ)). In particular, the
infinitesimal character of π∞ is regular.

Let L be a Levi subgroup of G0. We may assume that L is standard (in
particular, it is stable by θ, and θ|L = θL), and we write

L = RE/Q(Gm,E ×
r∏

j=1

lj∏
k=1

GLmjk,E),

where the mjk are non-negative integers such that nj = mj,1 + · · ·+mj,lj for
every j ∈ {1, . . . , r}. We use the notations of [A3], in particular of section 4 of

this article. Then aL = R⊕
r⊕

j=1

lj⊕
k=1

R, and θ acts by (t, (tik)) 7−→ (t, (t−tik)).

In particular, aG0 = R ⊕
r⊕

j=1

R, and θ acts by (t, (tj)) 7−→ (t, (t − tj)),

so aG = aθ=1
G0 = R. The group WG0

(aL) is equal to the group of linear
automorphisms of aL that are induced by an element of NorG0(Q)(L), so it
is embedded in an obvious way in Sl1 × · · · ×Slr (but this embedding is far
from being an equality in general; for example, WG0

(aL) contains the factor
Slj if and only if mj,1 = · · · = mj,lj = nj/lj). The set WG(aL) is equal to
WG0

(aL)θL.
It will be useful to determine the subset WG(aL)reg of regular elements

of WG(aL). Remember ([A3] p 517) that an element s of WG(aL) is in
WG(aL)reg if and only if det(s − 1)aL/aG

6= 0. By the above calculations,

aL/aG =
r⊕

j=1

lj⊕
k=1

R, and θL acts by multiplication by −1. Let s ∈ WG(aL),

and write s = σθL, with σ = (σ1, . . . , σr) ∈ WG0
(aL) ⊂ Sl1 × · · · × Slr .

Then σθL acts on aL/aG by (λj,k)1≤j≤r,1≤k≤lj 7−→ (−λj,σ−1
j (k))1≤j≤r,1≤k≤lj ,

so it is regular if and only if σ, acting in the obvious way on Rl1 × · · · ×Rlr ,
does not have −1 as an eigenvalue. This is equivalent to the fact that, for
every j ∈ {1, . . . , r}, there are only cycles of odd length in the decomposition
of σj as a product of cycles with disjoint supports.

We will need another fact. Let s = (σ1, . . . , σr)θL ∈ WG(aL) as before
(we do not assume that s is regular). Let πL,∞ be an irreducible admissible
representation of L(R). As L is standard, T is a maximal torus of L. Assume
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that the infinitesimal character of πL,∞ has a representative of the form
(µ, ι(µ)) ∈ t∗, with µ ∈ t∗H , and that πL,∞ is s-stable. Then, for every
j ∈ {1, . . . , r}, there are only cycles of length ≤ 2 in the decomposition of
σj as a product of cycles with disjoint supports (in other words, σ2

j = 1
for every j ∈ {1, . . . , r}). To prove this, we assume (to simplify notations)
that r = 1; the general case is similar, because it is possible to reason
independently on each factor GLnj ,E . Write n = n1, σ = σn1 ∈ Sn and
L = RE/Q(Gm,E×GLm1,E×· · ·×GLml,1), with n = m1+· · ·+ml. For every
j ∈ {1, . . . , l}, set Ij = {m1+ · · ·+mj−1+1, . . . ,m1+ · · ·+ml} ⊂ {1, . . . , n}.
Let (µ, ι(µ)), with µ ∈ t∗H , be a representative of the infinitesimal character
of πL,∞. Write µ = (µ0, . . . , µn) ∈ t∗H = C⊕ Cn. As πL,∞ is σθL-stable, its
infinitesimal character is σθL-stable. This means that there exists τ ∈ Sn

such that :

(a) for every j ∈ {1, . . . , l}, τ(Ij) = Iσ(j) (ie τ , seen as an element of the
Weyl group of T(Q) in G0(Q), normalizes L and induces σ on aL);

(b) (−µ1, . . . ,−µn) = (µτ(1), . . . , µτ(n)) (ie (µ, ι(µ)) is stable by τθ, where
τ is again seen as an element of the Weyl group of T(Q) in G0(Q)).

Assume that, in the decomposition of σ as a product of cycles with disjoint
supports, there is a cycle of length ≥ 3. Then, by (a), there is also a cycle
of length ≥ 3 in the decomposition of τ as a product of cycles with disjoint
supports. But, by (b), this contradicts the fact that µ is regular.

We now come back to the proof of the lemma. By the definition of the
coefficients adisc = aG

disc in section 4 of [A3], the fact that adisc(π) 6= 0
implies that there exists a Levi subgroup L of G0 (that we may assume
to be standard), a discrete automorphic representation πL of L(A) and an
element s of WG(aL)reg such that πL is s-stable and π is a subquotient of the
parabolic induction of πL (where, for example, we use the standard parabolic
subgroup of G0 having L as Levi subgroup). In particular, the infinitesimal
character of πL,∞ is represented by (−λ,−ι(λ)) (and it is regular). By the
two facts proved above, s is equal to θL. That is, πL is a θL-stable discrete
automorphic representation of L0(A). Hence, if we know that the lemma is
true for discrete automorphic representations (and for any Levi subgroup of
G0), then we now that it is true in general. So we may assume that π is
discrete.

From now on, we assume that the automorphic representation π of G0(A)
is discrete (and of course θ-stable). Let L be a standard Levi subgroup of
G0 and πL be a cuspidal automorphic representation of L(A) such that π is
a subquotient of the parabolic induction of L (as before, use the standard
parabolic subgroup of G0 with Levi subgroup L). We want to show that
πL is θL-stable. As π is θ-stable, there exists s ∈ WG(aL) such that πL is
s-stable (note that s does not have to be regular now). We also know that
π is discrete; so, by a result of Moeglin and Waldspurger (the main theorem
of [MW]), there exist m1, . . . ,mr, l1, . . . ,mr ∈ N, an automorphic character
χ of A×E and cuspidal automorphic representations τj of GLmj (AE), for



main April 10, 2009

166 CHAPTER 8

1 ≤ j ≤ r, such that :

- nj = ljmj for every j ∈ {1, . . . , r};

- L = RE/Q(Gm,E × (GLm1,E)l1 × · · · × (GLmr,E)lr );

- πL = χ ⊗ π1 ⊗ · · · ⊗ πr, where πj is the cuspidal automorphic rep-
resentation τj |det |(lj−1)/2 ⊗ τj |det |(lj−3)/2 ⊗ · · · ⊗ τj |det |(1−lj)/2 of
GLmj (AE)lj .

Write s = σθL, with σ = (σ1, . . . , σr) ∈ Sl1 × · · · ×Slr = WG0
(aL). As π

is a subquotient of the parabolic induction of πL, the infinitesimal character
of πL,∞ is representated by (−λ,−ι(λ)), and so, by the fact proved above,
σ2 = 1. For every j ∈ {1, . . . , r}, denote by θmj the automorphism g 7−→
tg−1 of GLmj ,E . Then the fact that πL is σθL-stable means that, for every
j ∈ {1, . . . , r} and for every k ∈ {1, . . . , lj},

τj |det |(lj−2k+1)/2 ' (τj |det |(lj−2σj(k)+1)/2)◦θmj = (τj◦θmj )|det |(2σj(k)−1−lj)/2,

ie that

τj ◦ θmj ' τj |det |lj+1−k−σj(k).

In particular, we see by taking the absolute values of the central characters in
the equality above that, for every j ∈ {1, . . . , r}, the function k 7−→ k+σj(k)

is constant on {1, . . . , lj}. But, if j ∈ {1, . . . , r}, then
lj∑

k=1

(k + σj(k)) =

lj(lj + 1), so k + σj(k) = lj + 1 for every k ∈ {1, . . . , lj}. This show that
τj ' τj◦θmj for every j ∈ {1, . . . , r}, and it easily implies that πL is θL-stable
after we twist it by an automorphic character.

�
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Chapter Nine

The twisted fundamental lemma

The goal of this chapter is to show that, for the special kind of twisted en-
doscopic transfer that appears in the stabilization of the fixed point formula
and for the groups considered in this book (and some others), the twisted
fundamental lemma for the whole Hecke algebra follows from the twisted fun-
damental lemma for the unit element. No attempt has been made to prove
a general result, and the method is absolutely not original : it is simply an
adaptation of the method used by Hales in the untwisted case ([H2]), and
this was inspired by the method used by Clozel in the case of base change
([Cl3]) and by the simplification suggested by the referee of the article [Cl3].

The definitions and facts about twisted groups recalled in 8.1 will be used
freely in this chapter.

9.1 NOTATIONS

We will consider the following situation : Let F be a local non-archimedean
field of characteristic 0. Fix an algebraic closure F of F , let ΓF = Gal(F/F )
and denote by Fur the maximal unramified extension of F in F . Fix a
uniformizer $F of F . Let G be a connected reductive unramified group
over F . Assume that G is defined over OF and that G(OF ) is a hyper-
special maximal compact subgroup of G(F ). For such a group G, write
HG = H(G(F ),G(OF )) := C∞c (G(OF ) \G(F )/G(OF )). Let (H, s, η0) be
an endoscopic triple for G (in the sense of [K4] 7.4). Assume that :

- H is unramified over F , H is defined over OF and H(OF ) is a hyper-
special maximal compact subgroup of H(F );

- there exists a L-morphism η : LH −→ LG extending η0 and unram-
ified, ie coming by inflation from a L-morphism Ĥ o Gal(K/F ) −→
Ĝ o Gal(K/F ), where K is a finite unramified extension of F .

Choose a generator σ of WF ur/F . Let E/F be a finite unramified extension
of F in F , and let d ∈ N∗ be the degree of E/F . Write R = RE/F GE . Let
θ be the automorphism of R induced by the image of σ in Gal(E/F ).

Kottwitz explained in [K9] p 179-180 how to get from this twisted endo-
scopic data for (R, θ, 1) (in the sense of [KS] 2.1). We recall his construction.
There is an obvious isomorphism R̂ = Ĝd, and the actions of θ̂ and σ are
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given by the formulas

θ̂(g1, . . . , gd) = (g2, . . . , gd, g1)

σ(g1, . . . , gd) = (σ(g2), . . . σ(gd), σ(g1)).

In particular, the diagonal embedding Ĝ −→ R̂ is WF -equivariant, hence
extends in an obvious way to a L-morphism LG −→ LR. Let ξ′ : LH −→ LR
be the composition of the morphism η : LH −→ LG and of this L-morphism.
As F is local, we may assume that s ∈ Z(Ĥ)ΓF . Let t1, . . . , td ∈ Z(Ĥ)ΓF be
such that s = t1 . . . td. Set t = (t1, . . . , td) ∈ R̂. Let ξ : LH −→ LR be the
morphism such that :

- ξ|bH is the composition of η0 : Ĥ −→ Ĝ and of the diagonal embedding

Ĝ −→ R̂;

- for every w ∈ WF that is a pre-image of σ ∈ WF ur/F , ξ(1, w) =
(t, 1)ξ′(1, w).

Then (H, LH, t, ξ) are twisted endoscopic data for (R, θ, 1). Kottwitz shows
([K9], p 180) that the equivalence class of these twisted endoscopic data does
not depend on the choice of t1, . . . , td.

The morphism ξ induces a morphism

HR −→ HH ,

that will be denoted by bξ (in 4.2, this morphism is explicitely calculated for
the unitary groups of 2.1).

Let ∆ξ be the transfer factors defined by ξ, normalized as in [Wa3] 4.6.
The twisted fundamental lemma for a function f ∈ HR is the following
statement : for every γH ∈ H(F ) semi-simple and strongly G-regular,

Λ(γH , f) := SOγH
(bξ(f))−

∑
δ

∆ξ(γH , δ)Oδθ(f) = 0

where the sum is taken over the set of θ-conjugacy classes of θ-semi-simple
δ ∈ R(F ). (Remember that a semi-simple γH ∈ H(F ) is called strongly
G-regular if it has an image in G(F ) whose centralizer is a torus.)

Remark 9.1.1 There is an obvious variant of this statement where E is
replaced by a finite product of finite unramified extensions of F such that
AutF (E) is a cyclic group.

9.2 LOCAL DATA

Notations are as in 9.1. Fix a Borel subgroup B (resp. BH) of G (resp.
H) defined over OF and a maximal torus TG ⊂ BG (resp. TH ⊂ BH)
defined over OF . Let TR = RE/F TG,E and BR = RE/F BG,E . Denote by
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IR (resp. IH) the Iwahori subgroup of R(F ) (resp. H(F )) defined by the
Borel subgroup BR (resp. BH).

Let Π(R) (resp. Π(H)) be the set of equivalence classes of irreducible
θ-stable representations π of R(F ) (resp. of irreducible representations πH

of H(F )) such that πIR 6= {0} (resp. πIH

H 6= {0}). For every π ∈ Π(R), fix
a normalized intertwining operator Aπ on π (remember that an intertwining
operator on π is a R(F )-equivariant isomorphism π

∼−→ π ◦ θ, and that an
intertwining operator Aπ is called normalized if Ad

π = 1). If π is unramified,
choose the intertwining operator that fixes the elements of the subspace
πR(OF ).

The definition of local data used here is the obvious adaptation of the
definition of Hales ([H2] 4.1).

Definition 9.2.1 Local data for R and (H, LH, s, ξ) are the data of a set I
and of two families of complex numbers, (aR

i (π))i∈I,π∈Π(R) and (aH
i (πH))i∈I,πH∈Π(H),

such that, for every i ∈ I, the numbers aR
i (π) (resp. aH

i (πH)) are zero for
almost every π ∈ Π(R) (resp. πH ∈ Π(H)) and that, for every f ∈ HR, the
following conditions are equivalent :

(a) for every i ∈ I,
∑

π∈Π(R)

aR
i (π) Tr(π(f)Aπ) =

∑
πH∈Π(H)

aH
i (πH) Tr(πH(bξ(f)));

(b) for every γH ∈ H(F ) that is semi-simple, elliptic and strongly G-
regular, Λ(γH , f) = 0.

Proposition 9.2.2 Assume that G is adjoint, that the endoscopic triple
(H, s, η0) for G is elliptic, that the center of H is connected and that there
exist local data for R and (H, LH, s, ξ).

Then, for every f ∈ HR and for every γH ∈ H(F ) semi-simple elliptic and
strongly G-regular, Λ(γH , f) = 0.

Remark 9.2.3 If G is adjoint and (H, s, η0) is elliptic, then the morphism
ξ : LH −→ LR comes by inflation from a morphism Ĥ o Gal(K/F ) −→
R̂o Gal(K/F ), where K is a finite unramified extension of F . Let us prove
this. By the definition of t, ξ(1 o σd) = ξ′(s o σd) (remember that ξ′

is the composition of η : LH −→ LG and of the “diagonal embedding”
LG −→ LR). We know that s ∈ Z(Ĥ)ΓFZ(Ĝ). As G is adjoint, Z(Ĝ)
is finite; because the endoscopic triple (H, s, η0) is elliptic, Z(Ĥ)ΓF is also
finite. The finite subgroup Z(Ĝ)Z(Ĥ)ΓF of Z(Ĥ) is invariant by σd, so there
exists k ∈ N∗ such that the restriction of σdk to this subgroup is trivial. Let
s′ = sσd(s) . . . σd(k−1)(s). Then s′ is fixed by σd, and (soσd)k = s′oσdk. As
s′ is in the finite group Z(Ĝ)Z(Ĥ)ΓF , there exists l ∈ N∗ such that s′l = 1.
Then

ξ(1 o σdkl) = ξ′((so σd)kl) = ξ′((s′ o σdk)l) = ξ′(1 o σdkl).

By the assumption on η, there exists r ∈ N∗ such that η(1 o σr) = 1 o σr.
So we get finally : ξ(1 o σdklr) = 1 o σdklr.
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Before proving the proposition, we show a few lemmas.
Remember that an element of H(F ) or G(F ) is called strongly compact if

it belongs to a compact subgroup, and compact if its image in the adjoint
group of H resp. G is strongly compact (cf [H1] §2). Every semi-simple
ellipic element of G(F ) or H(F ) is compact, and an element that is stably
conjugate to a compact element is also compact (this follows easily from
the characterization of compact elements in [H1] §2). If the center of G is
anisotropic (eg if G is adjoint), then an element of G(F ) is compact if and
only if it is strongly compact.

Lemma 9.2.4 Assume that the centers of G and H are anisotropic. Let
A : HR −→ C be a linear form. Assume that : for every f ∈ HR, if
ΛγH

(f) = 0 for every γH ∈ H(F ) semi-simple elliptic and strongly G-regular,
then A(f) = 0.

Then A is a linear combination of linear forms γH 7−→ Λ(γH , f), with
γH ∈ H(F ) semi-simple elliptic and strongly G-regular.

Proof. Let UH ⊂ H(F ) be the set of compact elements of H(F ) and
UR be the set of θ-semi-simple elements of R(F ) whose norm contains a
compact element of G(F ). Then UF is compact modulo H(F )-conjugacy
and UR is compact modulo θ-conjugacy (these notions are defined before
theorem 2.8 of [Cl3]). By the twisted version of the Howe conjecture (ie
theorem 2.8 of [Cl3]), the vector space of distributions on HR generated by
the f 7−→ Oδθ(f), δ ∈ UR and the f 7−→ OγH

(bξ(f)), γH ∈ UF , is finite-
dimensional. If γH ∈ H(F ) is elliptic semi-simple, then γH ∈ UH , and every
image of γH in R(F ) is in UR. In particular, the vector space generated by
the distributions γH 7−→ Λ(γH , f), for γH ∈ H(F ) elliptic semi-simple and
strongly G-regular, is finite-dimensional. The lemma follows from this.

�

Let SH be the maximal split subtorus of TH , SR be the maximal split
subtorus of TR and ΩH = Ω(SH(F ),H(F )), ΩR = Ω(SR(F ), R(F )) be
the relative Weyl groups. Identify HH (resp. HR) to C[ŜH/ΩH ] (resp.
C[ŜR/ΩR]) by the Satake isomorphism. If z ∈ ŜH (resp. ŜR) and f ∈ HH

(resp. HR), write f(z) for f(zΩH) (resp. f(zΩR)).
We recall the definition of the morphism bξ : HR −→ HH induced by

ξ (cf [Bo] sections 6 and 7). The group ΩH (resp. ΩR) is naturally iso-
morphic to the subgroup of ΓF -fixed points of the Weyl group Ω(T̂H , Ĥ)
(resp. Ω(T̂R, R̂)). Let NH (resp NR) be the inverse image of ΩH (resp. ΩR)
in NorbH(T̂H) (resp. Nor bR(T̂R)), let YH = ŜH (resp. YR = ŜR) and let
(Ĥ o σ)ss (resp. (R̂ o σ)ss) be the set of semi-simple elements of Ĥ o σ ⊂
Ĥ oWF ur/F (resp. R̂o σ ⊂ R̂oWF ur/F ) (remember that σ is a fixed gen-
erator of WF ur/F ). As X∗(SH) = X∗(TH)ΓF (resp. X∗(SR) = X∗(TR)ΓF ),
the group ΩH (resp. ΩR) acts naturally on YH (resp. YR). Moreover :

• the restriction to (T̂ΓH

H )0 (resp. (T̂ΓH

R )0) of the morphism ν : T̂H −→
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YH (resp. ν : T̂R −→ YR) dual of the inclusion SH ⊂ TH (resp.
SR ⊂ TR) is an isogeny ([Bo] 6.3);

• the map T̂H oσ −→ YH (resp. T̂R oσ −→ YR) that sends toσ to ν(t)
induces a bijection

(T̂H o σ)/ IntNH
∼−→ YH/ΩH

(resp. (T̂R o σ)/ IntNR
∼−→ YR/ΩR)

([Bo], lemma 6.4);
• the inclusion induces a bijection

(T̂H o σ)/ IntNH
∼−→ (Ĥ o σ)ss/ Int Ĥ

(resp. (T̂R o σ)/ IntNR
∼−→ (R̂o σ)ss/ Int R̂)

([Bo], lemma 6.5).

In particular, we get bijections ϕH : (Ĥ o σ)ss/ Int Ĥ ∼−→ YH/ΩH and
ϕR : (R̂ o σ)ss/ Int R̂ ∼−→ YR/ΩR. The morphism ξ : LH −→ LR is unram-
ified, hence it induces a morphism (Ĥ o σ)ss/ Int Ĥ −→ (R̂ o σ)ss/ Int R̂,
and this gives a morphism b∗ξ : YH/ΩH −→ YR/ΩR. The morphism bξ :
C[YR/ΩR] −→ C[YH/ΩH ] is the dual of b∗ξ .

Let Y u
H (resp. Y u

R ) be the maximal compact subgroup of YH (resp. YR).

Lemma 9.2.5 The morphism b∗ξ : YH/ΩH −→ YR/ΩR sends Y u
H/ΩH to

Y u
R/ΩR and (YH − Y u

H)/ΩH to (YR − Y u
R )/ΩR.

Proof. Let K be an unramified extension of F such that H and G split
over K; write r = [K : F ]. For every g o σ ∈ Ĥ o σ or R̂ o σ, write
N(g o σ) = gσ(g) . . . σr−1(g).

Let G′ be the set of complex points of an algebraic group over C. Copying
the definition of [H1] §2, say that an element g ∈ G′ is strongly compact
if there exists a compact subgroup of G′ containing g. It is easy to see
that this is equivalent to the fact that there exists a faithful representation
ρ : G′ −→ GLm(C) such that the eigenvalues of ρ(g) all have module 1. So
a morphism of algebraic groups over C sends strongly compact elements to
strongly compact elements.

Let g ∈ Ĥ be such that g o σ is semi-simple. We show that ϕH(g o σ) ∈
Y u

H/ΩH if and only if N(g o σ) is strongly compact. After replacing g o σ

by a Ĥ-conjugate, we may assume that g ∈ T̂H . Assume that N(g o σ) is
strongly compact. Then ν(N(goσ)) = ν(g)r ∈ YH is strongly compact, and
this implies that ν(g) is strongly compact, ie that ν(g) ∈ Y u

H . Assume now
that ϕH(goσ) = ν(g)ΩH ∈ Y u

H/ΩH , ie that ν(g) ∈ Y u
H . Then ν(N(goσ)) =

ν(g)r ∈ Y u
H . Moreover, T̂H is abelian, so N(goσ) ∈ T̂ΓH

H . As the restriction
of ν to T̂ΓH

H is finite, it is easy to see that the fact that ν(N(g o σ)) ∈ Y u
H

implies that N(g o σ) is strongly compact.
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Of course, there is a similar statement for R. Hence, to finish the proof,
it is enough to show that, for every g o σ ∈ Ĥ o σ, N(g o σ) is strongly
compact if and only if N(ξ(goσ)) is strongly compact. Let ξ0 : Ĥ −→ R̂ be
the morphism induced by ξ. Write t′oσ = ξ(1oσ). Then, for every g ∈ Ĥ,
N(ξ(goσ)) = ξ0(N(goσ))N(t′oσ). By remark 9.2.3, we may assume (after
replacing K by a bigger unramified extension of F ) that ξ(1 o σr) = 1 o σr,
ie that N(t′ o σ) = 1. Then the statement of the lemma follows from the
injectivity of ξ0.

�

Lemma 9.2.6 For every δ ∈ R(F ) that is θ-regular θ-semi-simple and θ-
elliptic, for every γH ∈ H(F ) that is regular semi-simple and elliptic, the
distributions f 7−→ Oδθ(f) and f 7−→ OγH

(bξ(f)) on HR are tempered.

Proof. Remember that a distribution onHR is called tempered if it extends
continuously to the Schwartz space of rapidly decreasing bi-R(OR)-invariant
functions on R(F ) (defined, for example, in section 5 of [Cl3]). For the first
distribution of the lemma, this is proved in lemma 5.2 of [Cl3]. Moreover,
the distribution fH 7−→ OγH

(fH) on HH is tempered (this is a particular
case of lemma 5.2 of [Cl3]). So, to prove that the second distribution of the
lemma is tempered, it is enough to show that the morphism bξ : HR −→ HH

extends to the Schwartz spaces. To show this last statement, it is enough to
show, by the proof of lemma 5.1 of [Cl3], that b∗ξ sends Y u

H/ΩH to Y u
R/ΩR.

This follows from lemma 9.2.5 above.
�

Call a θ-semi-simple element ofR(F ) θ-compact if its norm is compact. Let
1lc be the characteristic function of the set of semi-simple compact elements
of H(F ), and 1lθ−c be the characteristic function of the set of θ-semi-simple θ-
compact elements of R(F ). If πH is an irreducible admissible representation
of H(F ), π is a θ-stable irreducible admissible representation of R(F ) and
Aπ is a normalized intertwining operator on π, define the compact trace of
πH and the twisted θ-compact trace of π by the formulas :

Trc(πH(fH)) := Tr(πH(1lcfH)), fH ∈ C∞c (H(F ))

Trθ−c(π(f)Aπ) := Tr(π(1lθ−cf)Aπ), f ∈ C∞c (R(F )).

Lemma 9.2.7 Let π be a θ-stable irreducible admissible representation of
R(F ), and let Aπ be a normalized intertwining operator on π. Assume that
the distribution f 7−→ Trθ−c(π(f)Aπ) on HR is not identically zero. Then
π ∈ Π(R).

Proof. By the corollary to proposition 2.4 of [Cl3], there exists a θ-stable
parabolic subgroup P ⊃ BR of R such that πNP

is unramified, where NP is
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the unipotent radical of P and πNP
is the unnormalized Jacquet module (ie

the module of NP (F )-coinvariants of π). So, if N is the unipotent radical
of BR, then πN is unramified. By proposition 2.4 of [Cas], this implies that
πIR 6= {0}.

�

Lemma 9.2.8 Assume that the centers of G and H are anisotropic and
that the center of H is connected. Let δ ∈ R(F ) be θ-regular θ-semi-
simple and θ-elliptic, and γH ∈ H(F ) be regular semi-simple and ellip-
tic. Then the distribution f 7−→ Oδθ(f) on HR is a linear combination
of distributions f 7−→ Trθ−c(π(f)Aπ), with π ∈ Π(R), and the distri-
bution fH 7−→ SOγH

(fH) on HH is a linear combination of distributions
fH 7−→ Trc(πH(fH)), with πH ∈ Π(H) coming from an element of Π(Had).

Proof. We show the first assertion of the lemma. Let f ∈ HR be such that
Trθ−c(π(f)Aπ) = 0 for every π ∈ Π(R); let us show that Oδθ(f) = 0. As δ is
θ-elliptic, hence θ-compact, Oδθ(f) = Oδθ(1lθ−cf). But Tr(π(1lθ−cf)Aπ) =
Trθ−c(π(f)Aπ) = 0 for every π ∈ Π(R), so, by the main theorem of [KRo]
and lemma 9.2.7, Oδθ(1lθ−cf) = 0.

On the other hand, by the twisted version of the Howe conjecture (theo-
rem 2.8 of [Cl3]), the space generated by the distributions (on HR) f 7−→
Trθ−c(π(f)Aπ), π ∈ Π(R), is finite-dimensional. This implies the first asser-
tion.

We show the second assertion of the lemma. As Z(H) is anisotropic and
connected, lemma 9.4.4 implies that, for every fH ∈ HH , SOγH

(fH) =
SOγ′H

(f ′H), where γ′H is the image of γH in Hadj(F ) and f ′H is the image of
fH in HHadj

(defined in lemma 9.4.4). So the second assertion of the lemma
follows from the first, applied to the group Hadj (with θ = 1).

�

Identify the group of unramified characters of TR(F ) to YR in the usual
way (cf [Bo] 9.5). For every z ∈ YR, let ψz be the unramified character of
TR(F ) corresponding to z and denote by I(z) the representation of R(F )
obtained by (normalized) parabolic induction from ψz :

I(z) = IndR
BR

(δ1/2
BR

⊗ ψz),

where, if N is the unipotent radical of BR, δBR
(t) = |det(Ad(t), Lie(N))|F

for every t ∈ TG(F ) (δ1/2
BR

⊗ ψz is seen as a character on BR(F ) via the
projection BR(F ) −→ TR(F )). If θ̂(z) = z, then ψz = ψz ◦ θ, so I(z) is
θ-stable. In that case, let AI(z) be the linear endomorphism of the space
of I(z) that sends a function f to the function x 7−→ f(θ(x)) (remember
that the space of I(z) is a space of functions R(F ) −→ C); then AI(z) is a
normalized intertwining operator on I(z). We will use similar notations for
H (without the intertwining operators, of course).
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Lemma 9.2.9 Assume that G is adjoint and that the center of H is anisotropic
(the second assumption is true, for example, if G is adjoint and the en-
doscopic triple (H, s, η0) is elliptic). Let π ∈ Π(R). Then there exist
a θ-stable z′ ∈ YR − Y u

R , a θ-stable subquotient π′ of I(z′) and a nor-
malized intertwining operator Aπ′ on π′ such that, for every f ∈ HR,
Trθ−c(π(f)Aπ) = Trθ−c(π′(f)Aπ′).

Similarly, if πH ∈ Π(H) comes from a representation in Π(Had), then
there exist z′H ∈ YH − Y u

H and a subquotient π′H of I(z′H) such that, for
every fH ∈ HH , Trc(πH(fH)) = Trc(π′H(fH)).

Proof. By proposition 2.6 of [Cas], there exists z0 ∈ YR such that π is
a subrepresentation of I(z0). By examining the proof of this proposition,
we see that θ(z0) ∈ ΩRz0. By lemma 4.7 of [Cl3], there exists a θ-stable
z in ΩRz0. Then π is a subquotient of I(z) (because I(z0) and I(z) have
the same composition factors). If z 6∈ Y u

R , this finishes the proof of the
first statement (take z′ = z and π′ = π). Assume that z ∈ Y u

R . As G is
adjoint, by a result of Keys (cf [Ke], in particular the end of section 3), the
representation I(z) is irreducible, hence π = I(z). Let z′ ∈ YR − Y u

R be
θ-stable. The unramified characters χz and χz′ corresponding to z and z′

are equal on the set of θ-compact elements of TR(F ). Hence, by theorem
3 of [vD], Trθ−c(π(f)Aπ) = Trθ−c(I(z′)(f)AI(z′)) for every f ∈ C∞c (R(F )).
This finishes the proof of the first statement (take π′ = I(z′)).

The same reasoning (without the twist by θ) applies to πH , or rather
to the representation of Had(F ) inducing πH ; note that, as the center of
H is anisotropic, YH = YHad

. We need the fact that πH comes from a
representation in Π(Had) to apply Keys’s result.

�

In the following lemma, N is the unipotent radical of BR and, for every
representation π of R(F ), πN is the TR(F )-module of N(F )-coinvariants of
π.

Lemma 9.2.10 Let π be a θ-stable admissible representation of R(F ) of
finite length, and let Aπ be an intertwining operator on π. The semi-

simplification of δ
−1/2
B ⊗ πN is a sum of characters of TR(F ); let z1, . . . , zn

be the points of YR corresponding to the θ-stable unramified characters that
appear in that way. Then the distribution f 7−→ Tr(π(f)Aπ) on HR is a
linear combination of distributions f 7−→ f(zi), 1 ≤ i ≤ n. Moreover, if π is
a subquotient of I(z), with z ∈ YR θ-stable, then the zi are all in ΩRz.

Of course, there is a similar result for H.

Proof. As π and its semi-simplification have the same character, we may
assume that π is irreducible. We may also assume that π is unramified
(otherwise the result is trivial). By proposition 2.6 of [Cas], there exists
z ∈ YR such that π is a subquotient of I(z). Reasoning as in the proof
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of lemma 9.2.9 above, we may assume that z is θ-stable. By corollary 2.2
of [Cas], I(z)R(OF ) is 1-dimensional; hence I(z)R(OF ) = πR(OF ). By the
explicit description of a basis of I(z)R(OF ) in [Car] 3.7 and the definition
of the Satake transform (see for example [Car] 4.2), for every f ∈ HR,
Tr(f, I(z)R(OF )) = Tr(f, πR(OF )) = f(z). As πR(OF ) is 1-dimensional and
stable by Aπ, the restriction of Aπ to this subspace is the multiplication by
a scalar. So the distribution f 7−→ Tr(π(f)Aπ) is equal to a scalar multiple
of the distribution z 7−→ f(z). By theorem 3.5 of [Car], the zi are all in
ΩRz. This finishes the proof of the lemma.

�

For every λ ∈ X∗(YR), set

fλ =
∑

ω∈ΩR

λω ∈ C[YR]ΩR ' C[YR/ΩR] ' HR.

Lemma 9.2.11 There exists a non-empty open cone C in X∗(YR)⊗ZR such
that

(a) for every θ-stable z ∈ YR, for every θ-stable subquotient π of I(z)
and for every intertwining operator Aπ on π, the restriction to C ∩
X∗(YR) of the function λ 7−→ Trθ−c(π(fλ)Aπ) on X∗(YR) is a linear
combination of the functions λ 7−→ λ(ωz), ω ∈ ΩR.

Assume moreover that there exists an admissible embedding TH −→ G
with image TG

1 and that the center of G is connected (both assumptions
are automatic if G is adjoint, cf lemma 9.4.6).

Then there exists a non-empty open cone C in X∗(YR)⊗Z R that satisfies
condition (a) above and also the following condition :

(b) for every zH ∈ YH , for every subquotient πH of I(zH), the restriction
to C ∩X∗(YR) of the function λ 7−→ Trc(πH(bξ(fλ))) on X∗(YR) is a
linear combination of the functions λ 7−→ λ(ωb∗ξ(zH)), with ω ∈ ΩR.

Proof. We will need some new notations. If P ⊃ BR be is a parabolic
subgroup of R, let NP be the unipotent radical of P, MP be the Levi
subgroup of P that contains TR, ΩMP

= Ω(SR(F ),MP (F )) be the relative
Weyl group of MP , δP be the function γ 7−→ |det(Ad(γ), Lie(NP ))|F on
P(F ), aMP

= Hom(X∗(AMP
),R) and aP = dim(aMP

). Assume that P is
θ-stable. Let P0 and M0 be the parabolic subgroup and the Levi subgroup
of G corresponding to P and MP (cf example 8.1.1). Denote by HM0 :
M0(F ) −→ aM0 := Hom(X∗(AM0),R) the Harish-Chandra morphism (cf
[A1] p 917), τ̂G

P0
: aT := Hom(X∗(TG),R) −→ {0, 1} the characteristic

function of the obtuse Weyl chamber defined by P0 (cf [A1] p 936) and
χ̂N0 = τ̂G

P0
◦HM0 (there is a canonical injective morphism aM0 ⊂ aT ). Define

1It would be enough to assume this over an unramified extension K/F such that the
base change morphism H(R(K), R(OK)) −→ H(R(F ), R(OF )) is surjective.
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a function χ̂NP ,θ on MP (F ) by : χ̂NP ,θ(m) = χ̂N0(Nm) if m ∈ MP (F )
is θ-semi-simple, and χ̂NP ,θ = 0 otherwise. If π is a θ-stable admissible
representation of R(F ) of finite length and Aπ is an intertwining operator on
π, denote by πNP

the Jacquet module of π (ie the module of NP -coinvariants
of π) and by Aπ the intertwining operator on πNP

induced by Aπ. If f ∈ HR,
denote by f (P ) ∈ HMP

the constant term of f at P.
Let π be a θ-stable admissible representation of R(F ) of finite length and

Aπ be an intertwining operator on π. The corollary to proposition 2.4 of
[Cl3] says that, for every f ∈ HR,

Trθ−c(π(f)Aπ) =
∑
P

(−1)aP−aG Tr((δ−1/2
P ⊗ πNP

)(χ̂NP ,θf
(P ))Aπ), (∗)

where the sum is taken over the set of θ-stable parabolic subgroups P of R
that contain BR.

Let N : aTR
−→ aTG

, λ 7−→ λ + θ(λ) + · · · + θd−1(λ), and identify
X∗(YR) ⊗Z R to aTR

. Let λ ∈ X∗(YR) and let P ⊃ BR be a θ-stable
parabolic subgroup of R. Then f (P )

λ =
∑

ω∈ΩR

λω ∈ C[YR]ΩMP ' HMP
, and it

follows easily from the definitions that, for every ω ∈ ΩR,

χ̂NP ,θ

∑
ω′∈ΩMP

λω′ω = τ̂G
P0

(N(λω))
∑

ω′∈ΩMP

λω′ω.

From the definition of the functions τ̂G
P0

, it is clear that there exists a finite
union D ⊂ aTG

of hyperplanes (containing the origin) such that, for every
parabolic subgroup P0 of G, τ̂G

P0
is constant on the connected components

of aT −D (take for D the union of the kernels of the fundamental weights of
TG in BG). Then D′ := N−1(D) ⊂ aTR

is a finite union of hyperplanes and,
for every θ-stable parabolic subgroup P ⊃ BR of R, the function τ̂G

P0
◦ N

is constant on the connected components of aTR
− D′. After replacing D′

by
⋃

ω∈ΩR

ω(D′), we may assume that, for every connected component C of

aTR
−D′, for all λ, λ′ ∈ C, for every θ-stable parabolic subgroup P ⊃ BR of

R and for every ω ∈ ΩR,

τ̂G
P0
◦N(λω) = τ̂G

P0
◦N((λ′)ω).

Let C be a connected component of aTR
−D′. The calculations above show

that there exist subsets Ω′MP
of ΩR, indexed by the set of θ-stable parabolic

subgroups P of R containing BR, such that : for every λ ∈ C, for every P,

χ̂NP ,θf
(P )
λ =

∑
ω∈Ω′MP

λω.

Let z ∈ YR be θ-stable, let π be a θ-stable subquotient of I(z) and let
Aπ be an intertwining operator on π. For every θ-stable parabolic subgroup
P ⊃ BR of R,

δ
−1/2
BR

⊗ πNBR
= δ

−1/2
BR∩MP

⊗ (δ−1/2
P ⊗ πNP

)NBR∩MP
.
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By formula (∗), the calculation of the functions χ̂NP ,θf
(P )
λ above and lemma

9.2.10 (applied to the representations δ−1/2
P ⊗ πNP

), the restriction to C ∩
X∗(YR) of the function λ 7−→ Trθ−c(π(fλ)Aπ) is a linear combination of
functions λ 7−→ λ(ωz), with ω ∈ ΩR. Hence C is a cone satisfying condition
(a) of the lemma.

We now show the second statement of the lemma. After replacing the
embeddings of T̂H and T̂G in Ĥ and Ĝ by conjugates, we may assume that
ξ0 induces a ΓF -equivariant isomorphism T̂H

∼−→ T̂G. Use this isomorphism
to identify TH and TG. By the definition of ξ, the restriction to T̂H of
ξ0 : Ĥ −→ Ĝ induces a ΓF -equivariant morphism T̂H −→ T̂R. Let t′ o σ =
ξ(1 o σ). Then t′ centralizes the image (by the diagonal embedding) of
T̂G in R̂ = Ĝd; as Ĝder is simply connected, t′ ∈ T̂R. The isomorphism
TH ' TG fixed above induces an isomorphism aTG

' aTH
, and we can see

the morphism N : aTR
−→ aTG

, λ 7−→ λ+θ(λ)+ · · ·+θd−1(λ) defined above
as a morphism aTR

−→ aTH
. We may identify aTR

and aTH
to X∗(YR)⊗Z R

and X∗(YH) ⊗Z R, and then N sends X∗(YR) to X∗(YH). It is easy to see
that bξ : C[YR/ΩR] −→ C[YH/ΩH ] sends fλ to |ΩH |−1

∑
ω∈ΩR

λ(t′)fN(λω), for

every λ ∈ X∗(YR), where λ(t′) denotes the value of λ at the image of t′ by
the obvious morphism T̂R −→ YR = ŜR. Let DH ⊂ aTH

be the union of the
kernels of the fundamental weights of TH in BH , and let D′

H be the union
of the ω(N−1(DH)), for ω ∈ ΩR. Then, for every connected component C
of aTR

−D′
H , for all λ, λ′ ∈ C, for every parabolic subgroup PH ⊃ BH of H

and for every ω ∈ ΩR,

τ̂H
PH

◦N(λω) = τ̂H
PH

◦N((λ′)ω).

By the untwisted version of the reasoning above (applied to the calculation
of compact traces of representations of Π(H)), such a connected component
C satisfies condition (b). Hence a connected component of aTR

− (D′ ∪D′
H)

satisfies conditions (a) and (b).
�

The next lemma will be used in section 9.3. It is a vanishing result similar
to proposition 3.7.2 of [La3].

Lemma 9.2.12 Assume that there exists an admissible embedding TH −→
G with image TG and that the center of G is connected. Let γH ∈ H(F ) be
semi-simple elliptic and strongly G-regular. Assume that, for every θ-semi-
simple δ ∈ R(F ), no element of N δ is an image of γH in G(F ). Then, for
every f ∈ HR, OγH

(bξ(f)) = 0.

As the condition on γH is stable by stable conjugacy, the lemma implies
that, under the same hypothesis on γH , SOγH

(bξ(f)) = 0 for every f ∈ HR.

Proof. The proof is an adaptation of the proof of proposition 3.7.2 of [La3].
We first reformulate the condition on γH . By proposition 2.5.3 of [La3], a
semi-simple elliptic element of G(F ) is a norm if and only if its image in
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H0
ab(F,G) is a norm. Using the proof of proposition 1.7.3 of [La3], we

get canonical isomorphisms H0
ab(F,G) = H1(ΓF , Z(Ĝ))D and H0

ab(F,H) =
H1(ΓF , Z(Ĥ))D (where D means Pontryagin dual). As there is a canonical
ΓF -equivariant embedding Z(Ĝ) ⊂ Z(Ĥ), we get a canonical morphism
H0

ab(F,H) −→ H0
ab(F,G). The condition of the lemma on γH is equivalent

to the following condition : the image of γH in H0
ab(F,G) is not a norm.

Assume that γH satisfies this condition. Then there exists a character
χ of H0

ab(F,G) that is trivial on the norms and such that χH(γH) 6= 1,
where χH is the character of H(F ) obtained by composing χ and the mor-
phism H(F ) −→ H0

ab(F,H) −→ H0
ab(F,G). By the proof of lemma 3.7.1

of [La3], χ induces a character χTH
of TH(F ). Let us show that, for ev-

ery f ∈ HR, bξ(f) = χHbξ(f) (this finishes the proof of the lemma, be-
cause χH(γ′H) 6= 1 for every γ′H ∈ H(F ) that is conjugate to γH). To
do this, we imitate the proof of lemma 3.7.1 of [La3] and we show that
Tr(π(bξ(f))) = Tr(π(χHbξ(f))) for every f ∈ HR and every unramified rep-
resentation π of H(F ). Identify TH to TG by an admissible embedding,
and let N : X∗(SR) −→ X∗(SH) be the norm morphism as in the proof
of lemma 9.2.11 above. By the proof of the second part of lemma 9.2.11,
every function in HH = C[ŜH/ΩH ] = C[SH ]ΩH that is in the image of bξ
is a linear combination of elements N(µ), with µ ∈ X∗(SR). If z ∈ ŜH

and χz is the unramified character of TH(F ) corresponding to z, let πz be
the unramified representation of H(F ) obtained from χz (πz is the unique
unramified subquotient of I(z), see eg [Car] p 152). Finally, let z0 ∈ ŜH be
the element corresponding to the unramified character χTH

of TH(F ). As
χTH

is trivial on the norms, N(µ)(z0) = 1 for every µ ∈ X∗(SR).
Let f ∈ HR. By lemma 9.2.10, for every z ∈ ŜH , Tr(πz(bξ(f))) is a linear

combination of the bξ(f)(ωz), with ω ∈ ΩH . Hence, by the discussion above,
for every z ∈ ŜH , Tr(πz(bξ(f))) = Tr(πzz0(bξ(f))); but Tr(πzz0(bξ(f))) =
Tr(πz(χHbξ(f))), so Tr(πz(bξ(f))) = Tr(πz(χHbξ(f))). This implies that
bξ(f) = χHbξ(f).

�

Proof of proposition 9.2.2. Note that, by lemma 9.4.6, there exists an
admissible embedding TH −→ G with image TG.

Let (aR
i (π))i∈I,π∈Π(R) and (aH

i (πH))i∈I,πH∈Π(H) be the local data. By the
definition of local data, it is enough to show that, for every i ∈ I and every
f ∈ HR, ∑

π∈Π(R)

aR
i (π) Tr(π(f)Aπ) =

∑
πH∈Π(H)

aH
i (πH) Tr(πH(bξ(f))).

Fix i ∈ I, and let A be the distribution on HR defined by

A(f) =
∑

π∈Π(R)

aR
i (π) Tr(π(f)Aπ)−

∑
πH∈Π(H)

aH
i (πH) Tr(πH(bξ(f))).

We want to show that A = 0. The distribution A is a sum of characters
of HR. In other words, there exist z1, . . . , zn ∈ YR such that A is a linear



main April 10, 2009

THE TWISTED FUNDAMENTAL LEMMA 179

combination of the distributions zi 7−→ f(zi); we may assume that zi and zj

are not ΩR-conjugate if i 6= j. Write

A(f) =
n∑

i=1

cif(zi),

with c1, . . . , cn ∈ C. By the definition of local data and lemma 9.2.4, A is a
linear combination of distributions f 7−→ Λ(γH , f), with γH ∈ H(F ) elliptic
semi-simple and strongly G-regular. By lemma 9.2.6, the distribution A is
tempered. By lemma 5.5 of [Cl3], we may assume that z1, . . . , zn ∈ Y u

R . On
the other hand, by lemma 9.2.8, the distribution A is a linear combination
of distributions f 7−→ Trθ−c(π(f)Aπ) and f 7−→ Trc(πH(bξ(f))), with π ∈
Π(R) and πH ∈ Π(H). By lemma 9.2.11, there exists a non-empty open
cone C of X∗(YR) ⊗Z R and y1, . . . , ym ∈ YR such that the restriction to
C ∩X∗(YR) of the function λ 7−→ A(fλ) on X∗(YR) is a linear combination
of the functions λ 7−→ λ(yi), 1 ≤ i ≤ m. By the explicit description of the
yi given in lemma 9.2.11 and lemmas 9.2.9 and 9.2.5, we may assume that
y1, . . . , ym ∈ YR − Y u

R . Let d1, . . . , dm ∈ C be such that

A(fλ) =
m∑

i=1

diλ(yi)

for every λ ∈ C ∩ X∗(YR). Consider the characters ϕ and ϕ′ of X∗(YR)

defined by ϕ(λ) =
n∑

i=1

∑
ω∈ΩR

ciλ(ωzi) and ϕ′(λ) =
m∑

i=1

diλ(yi). Then ϕ(λ) =

ϕ′(λ) = A(fλ) if λ ∈ C ∩ X∗(YR). As C ∩ X∗(YR) generates the group
X∗(YR), the characters ϕ and ϕ′ are equal. But the family (λ 7−→ λ(z))z∈YR

of characters of X∗(YR) is free and {ωzi, 1 ≤ i ≤ n, ω ∈ ΩR}∩{y1, . . . , ym} =
∅ (because the first set is included in Y u

R and the second set is included in
YR − Y u

R ), so ϕ = ϕ′ = 0. By the linear independance of the characters
λ 7−→ λ(ωzi), this implies that c1 = · · · = cn = 0, hence, finally, that A = 0.

�

9.3 CONSTRUCTION OF LOCAL DATA

The goal of this section is to construct local data. The method is global and
uses the trace formula. The first thing to do is to show that there exists a
global situation that gives back the situation of 9.1 at one place.

Lemma 9.3.1 Let F , E, G, (H, s, η0) and η be as in 9.1. Assume that
there exists a finite unramified extension K of E such that the groups G
and H split over K and that the morphisms η and ξ come from morphisms
ĤoGal(K/F ) −→ ĜoGal(K/F ) and ĤoGal(K/F ) −→ R̂oGal(K/F ) (if
G is adjoint, then such a K exists by remark 9.2.3). Then, for everey r ∈ N∗,
there exist a number field kF , finite Galois extensions kK/kE/kF , a finite set
S0 of finite places of kF , an element v0 of S0, connected reductive groups G
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and H over kF and L-morphisms η : LH −→ LG and ξ : LH −→ R, where
R = RkE/kF

GkE
, such that :

(i) The groups H and G are quasi-split over kF and split over kK .

(ii) The set S0 has r elements. Let v ∈ S0. Then the place v is inert
in kK , and there are isomorphisms kF,v ' F , kE,v ' E, kK,v ' K,
Gv ' G, Hv ' H. The group G has elliptic maximal tori T that stay
elliptic over kF,v. Moreover, the obvious morphism Gal(kK,v/kF,v) −→
Gal(kK/kF ) is an isomorphism (in particular, the extension kE/kF is
cyclic).

(iii) kF is totally imaginary.

(iv) (H, LH, s, η) are endoscopic data for (G, 1, 1), and (H, LH, t, ξ) are
endoscopic data for (R, θ, 1), where θ is the automorphism of R defined
by the generator of Gal(kE/kF ) given by the isomorphism Gal(E/F ) '
Gal(kE,v0/kF,v0)

∼−→ Gal(kE/kF ) of (ii).

(v) For every v ∈ S0, ηv
corresponds to η : LH −→ LG and ξ

v
corresponds

to ξ : LH −→ LR (by the isomorphisms of (ii)). For every infinite place

v of kF , the morphism η
v

: Ĥ×WC = Ĥ×WC −→ Ĝ×WC = Ĝ×WC
is equal to η0 × idWC .

Moreover :

(vi) There exist infinitely many places of kF that split totally in kK .

(vii) For every finite set S of places of kF such that S0 6⊂ S, the group
H(kF ) is dense in

∏
v∈S

H(kF,v). The same statement is true if H is

replaced by G, R or by a torus of H, G or R.

Proof. If r = 1, the existence of kF , kE , kK , G, H and S0 = {v0} satisfying
(i), (ii) and (iii) is a consequence of the proof of proposition 11.1 of [Wa1]. As
in [Cl3] p 293, we pass from the case r = 1 to the general case by replacing
kF by an extension of degree r where v0 splits totally (this extension is
necessarily linearly disjoint from kK , because v0 is inert in kK). By the last
sentence of (ii), η gives a L-morphism ĤoGal(kK/kF ) −→ ĜoGal(kK/kF )
and ξ gives a L-morphism ĤoGal(kK/kF ) −→ R̂oGal(kK/kF ). Take as η
and ξ the L-morphisms LH −→ LG and LH −→ LR that make the obvious
diagrams commute. Then (iv) and (v) are clear. Point (vi) follows from
the Čebotarev density theorem (cf [Ne], chapter VII, theorem 13.4 and in
particular corollary 13.6). As all the places of S0 are inert in kK , (vii) follows
from (b) of lemma 1 of [KRo].

�

The main result of this section is the next proposition.
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Proposition 9.3.2 Assume that G is adjoint and that the endoscopic triple
(H, s, η0) is elliptic. Let kF , kE , etc, be as in lemma 9.3.1 above, with r = 3.
Assume that, for almost every place v of kF , the fundamental lemma for the
unit element of the Hecke algebra is known for (Rv, θv, 1) and (Hv,

LHv, t, ξv
)

(at almost every place v of F , the local situation is as in remark 9.1.1).
Then there exist local data for R and (H, LH, t, ξ).

The proposition is proved at the end of this section, after a few lemmas.
We will need a simple form of the trace formula, due originally to Deligne

and Kazhdan (see the article [He] of Henniart, sections 4.8 et 4.9, for the
untwisted case, and lemma I.2.5 of the book [AC] of Arthur and Clozel
for the twisted case). The next lemma is the obvious generalization (to
groups that are not necessarily GLn) of lemma I.2.5 of [AC], and the proof
of this lemma applies without any change (in condition (3’) on page 14 of
[AC], the assumption that the functions φwi

are all coefficients of the same
supercuspidal representation is not necessary).

Lemma 9.3.3 Let F be a number field, E/F be a cyclic extension of degree
d and G be a connected adjoint group over F . Set R = RE/F GE , fix a
generator of Gal(E/F ) and let θ be the automorphism of R induced by
this generator. Let φ ∈ C∞c (R(F )). Denote by r(φ) the endomorphism of
L2 := L2(R(F ) \ R(AF )) obtained by making φ act by right convolution,
and let Iθ be the endomorphism f 7−→ f ◦ θ−1 of L2. Assume that :

(0) φ =
⊗
v
φv, where the tensor product is taken over the set of places v of

F and φv ∈ C∞c (R(Fv)) for every v; moreover, at almost every finite
place v where R is unramified, φv is the characteristic function of a
hyperspecial maximal compact subgroup of R(Fv).

(1) There exists a finite place v of F that splits totally in E and such that,
on R(Fv) ' G(Fv)d, φv = φ1 ⊗ · · · ⊗ φd, where the φi ∈ C∞c (G(Fv))
are supercuspidal functions (in the sense of [He] 4.8).

(2) There exists a finite place v of F such that the support of φv is con-
tained in the set of θ-elliptic θ-semi-simple and strongly θ-regular ele-
ments of R(Fv).

Then r(φ)Iθ sends L2 to the subspace of cuspidal functions (in particular,
the endomorphism r(φ)Iθ has a trace), and

Tr(r(φ)Iθ) =
∑

δ

vol(Gδθ(F ) \Gδθ(AE))Oδθ(φ),

where the sum is taken over the set of θ-conjugacy classes of θ-elliptic θ-
semi-simple and strongly θ-regular δ ∈ R(F ).

Lemma 9.3.4 ([H2] lemma 5.1) Let F , G and H be as in 9.1 (in particular,
F is a non-archimedean local field, G is an unramified group over F and H is
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an unramified endoscopic group of G). Assume that the centers of G and H
are anisotropic. Let T be an unramified elliptic maximal torus of H; assume
that T is defined over OF and that T(F ) ⊂ H(OF ). Let j : T −→ G be
an admissible embedding defined over OF . Set N = NorG(F )(j(T(F ))), and
make N act on T(F ) via j.

Then there exist functions f ∈ C∞c (G(F )) and fH ∈ C∞c (H(F )) such that
:

• f and fH are supercuspidal (in the sense of [He] 4.8; in particular, a
linear combination of coefficients of supercuspidal representations is a
supercuspidal function);

• the function γ 7−→ Oγ(f) (resp. γH 7−→ SOγH
(fH)) on G(F ) (resp.

H(F )) is not identically zero, and its support is contained in the set of
semi-simple strongly regular (resp. strongly G-regular) elements that
are conjugate to an element of j(T(F )) (resp. T(F ));

• the function γH 7−→ OγH
(fH) on T(F ) is invariant under the action of

N .

The next two lemmas will be useful to construct transfers (and inverse
transfers) of certain functions. The first lemma is a particular case of a
theorem of Vignéras (theorem A of [Vi]).

Lemma 9.3.5 Let F be a non-archimedean local field and G be a con-
nected reductive group over F . Denote by G(F )ss−reg the set of semi-
simple strongly regular elements of G(F ). Let Γ : G(F )ss−reg −→ C be
a function that is invariant by G(F )-conjugacy and such that, for every
γ ∈ G(F )ss−reg, the restriction of Γ to Gγ(F ) ∩G(F )ss−reg is locally con-
stant with compact support. Then there exists f ∈ C∞c (G(F )ss−reg) such
that, for every γ ∈ G(F )ss−reg, Γ(γ) = Oγ(f).

We will need a twisted variant of this lemma and some consequences of it.
In the next lemma, F is still a non-archimedean local field and G a connected
reductive group over F . We also assume that F is of characteristic 0. Let E
be a finite étale F -algebra such that AutF (E) is cyclic. Set R = RE/F GE ,
fix a generator of AutF (E) and denote by θ the automorphism of R induced
by this generator (so the situation is that of example 8.1.1, except that E
does not have to be a field). Use the definitions of 8.1. Let δ ∈ R(F ) be
θ-semi-simple and strongly θ-regular, and write T = Rδθ. As in [La3] 1.8,
set

D(T, R;F ) = Ker(H1(F,T) −→ H1(F,R)).

As F is local and non-archimedean, the pointed set D(T,G;F ) is canoni-
cally isomorphic to an abelian group (cf [La3] lemma 1.8.3); so we will see
D(T, R;F ) as an abelian group. If δ′ ∈ R(F ) is stably θ-conjugate to δ, then
it defines an element inv(δ, δ′) of D(T, R;F ). The map δ′ 7−→ inv(δ, δ′) in-
duces a bijection from the set of θ-conjugacy classes in the stable θ-conjugacy
class of δ to the set D(T, R;F ) (cf [La3] 2.3). Remember also (cf [A4] §1)
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that T is a torus of R and that, if (T(F )δ)reg is the set of strongly θ-regular
elements of T(F )δ, then the map u : (T(F )δ)reg ×T(F ) \ R(F ) −→ R(F ),
(g, x) 7−→ x−1gθ(x), is finite on its image and open.

Now forget about δ and fix a maximal torus T of G (that can also be seen
as a torus of R via the obvious embedding G ⊂ R). Let Ω be the set of
θ-semi-simple strongly θ-regular δ ∈ R(F ) such that there exists x ∈ R(F )
with Rδθ = xTx−1. If κ is a character of D(T, R;F ), f ∈ C∞c (Ω) and δ ∈ Ω
is such that Rδθ = T, set

Oκ
δθ(f) =

∑
δ′

〈inv(δ, δ′), κ〉Oδ′θ(f),

where the sum is taken over the set of θ-conjugacy classes in the stable θ-
conjugacy class of δ. Then Oκ

δθ(f) is a (twisted) κ-orbital integral of f . (This
definition is a particular case of [La3] 2.7).

Lemma 9.3.6 Let T and Ω be as above. Let Γ : Ω −→ C be a function that
is invariant by θ-conjugacy and such that, for every δ ∈ Ω, the restriction
of Γ to Rδθ(F )δ ∩ Ω is locally constant with compact support. Then there
exists f ∈ C∞c (Ω) such that, for every δ ∈ Ω, Γ(δ) = Oδθ(f).

Let κ be a character of D(T, R;F ). Assume that, for every δ ∈ Ω such
that Rδθ = T, for every δ′ ∈ Ω that is stably θ-conjugate to δ, Γ(δ) =
〈inv(δ, δ′), κ〉Γ(δ′). Then there exists g ∈ C∞c (Ω) such that

(a) for every δ ∈ Ω such that Rδθ = T, Γ(δ) = Oκ
δθ(g);

(b) for every character κ′ of D(T, R;F ) such that κ′ 6= κ and for every
δ ∈ Ω such that Rδθ = T, Oκ′

δθ(g) = 0.

Moreover, for every character κ of D(T, R;F ), for every δ ∈ Ω and every
open neighbourhood Ω′ of δ, there exists a function Γ satisfying the condi-
tions above and such that Γ(δ) 6= 0 and that Γ(δ′) = 0 if δ′ is not stably
θ-conjugate to an element of Ω′.

Proof. Let T = T1, . . . ,Tn be a system of representatives of the set of
R(F )-conjugacy classes of tori of R (defined over F ) that are equal to a
xTx−1, with x ∈ R(F ). For every i ∈ {1, . . . , n}, denote by Ωi the set of
δ ∈ Ω such that Rδθ is R(F )-conjugate to Ti. The Ωi are pairwise disjoint

open subsets of Ω, and Ω =
n⋃

i=1

Ωi. Let i ∈ {1, . . . , n}. If δ ∈ Ωi is such

that Rδθ = Ti, let uδ be the function (Ti(F )δ)reg × Ti(F ) \ R(F ) −→
R(F ), (x, y) 7−→ y−1xy. Then Ωi is the union of the images of the uδ, this
images are open, and two of these images are either equal or disjoint. So
there exists a finite family (δij)j∈Ji

of elements of Ωi such that Rδijθ = Ti

for every j and that Ωi =
∐

j∈Ji

Im(uδij
). Write uij = uδij

, Ωij = Im(uij)

and Γij = 1lΩij Γ. Then the functions Γij are invariant by θ-conjugacy, and
Γ =

∑
i,j

Γij .
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For every i, i′ ∈ {1, . . . , n}, let A(i, i′) be the (finite) set of isomorphisms
Ti

∼−→ Ti′ (over F ) of the form Int(x), with x ∈ R(F ). If i = i′, write
A(i) = A(i, i′). Let i ∈ {1, . . . , n}. For every j ∈ Ji, i′ ∈ {1, . . . , n}, j′ ∈ Ji′

and a ∈ A(i, i′), the map {x ∈ Ti(F )|xδij ∈ Ti(F )reg} −→ D(Ti, R;F ),
x 7−→ inv(xδij , a(x)δi′j′) is locally constant. For every j ∈ Ji, the support
of Γij ◦ uij is contained in a set of the form ω × Ti(F ) \ R(F ), with ω a
compact subset of (Ti(F )δij)reg. So it is easy to see that there exist open
compact subsets ωik, k ∈ Ki, of Ti(F ), and functions Γijk ∈ C∞c (Ωij),
invariant by θ-conjugacy, such that :

(1) for every j ∈ Ji and k ∈ Ki, ωikδij ⊂ (Ti(F )δij)reg, and the support
of the function Γijk is contained in uij(ωikδij ×Ti(F ) \R(F ));

(2) for every k ∈ Ki, the images of the ωik by the elements of A(i) are
pairwise disjoint;

(3) for every j ∈ Ji, Γij =
∑

k∈Ki

Γijk.

Let i ∈ {1, . . . , n}, j ∈ Ji and k ∈ Ki. By point (2) above, the restriction of
uij to ωikδij ×Ti(F ) \R(F ) is injective. Let Ui be an open compact subset
of volume 1 of Ti(F ) \ G(F ). Denote by fijk the product of Γijk and of
the characteristic function of uij(ωikδij × Ui). Then fijk ∈ C∞c (Ω) and, for
every δ ∈ Ω, Oδθ(fijk) = Γijk(δ). So the function f :=

∑
ijk

fijk satisfies the

condition of the first statement of the lemma.
Let κ be a character of D(T, R;F ). Assume that Γ satisfies the condition

of the second statement of the lemma. If κ′ is a character of D(T, R;F ) and
δ ∈ Ω is such that Rδθ = T, then

Oκ′

δθ(f) =
∑
δ′

〈inv(δ, δ′), κ′〉Oδ′θ(f) =
∑
δ′

〈inv(δ, δ′), κ′〉Γ(δ′)

= Γ(δ)
∑
δ′

〈inv(δ, δ′), κ′〉
〈inv(δ, δ′), κ〉

,

where the sum is taken over the set of θ-conjugacy classes in the stable
θ-conjugacy class of δ. So we can take g = |D(T, R;F )|−1f .

We show the last statement of the lemma. Let κ be a character of
D(T, R;F ). Choose (arbitrarily) an element j0 of J1, and write δ1 = δ1,j0 .
For every i ∈ {1, . . . , n}, let J ′i be the set of j ∈ Ji such that δij is stably
θ-conjugate to an element of T1(F )δ1; after translating (on the left) δij by
an element of Ti(F ), we may assume that δij is stably θ-conjugate to δ1 for
every j ∈ J ′i . For every i ∈ {1, . . . , n} and j ∈ J ′i , choose xij ∈ R(F ) such
that δij = xijδ1θ(xij)−1, and let aij be the element of A(1, i) induced by
Int(xij). Let ω ⊂ T1(F ) be an open compact subset such that :

• 1 ∈ ω;
• for every i ∈ {1, . . . , n}, the images of ω by the elements of A(1, i) are

pairwise disjoint;
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• for every i ∈ {1, . . . , n}, j ∈ J ′i and a ∈ A(1, i), a(ω)δij ⊂ (Ti(F )δij)reg,
and the function x 7−→ 〈inv(xδ1, a(x)δij), κ〉 is constant on ω.

For every i ∈ {1, . . . , n} and j ∈ J ′i , let Γij be the product of the character-
istic function of uij(aij(ω)δij×Ti(F )\R(F )) and of 〈inv(yδ1, aij(y)δij), κ〉−1,
where y is any element of ω. Set Γ =

∑
i,j

Γij . Let δ ∈ Ω be such that

Rδθ = T. Then Γ(δ) = |A(1)| if δ is θ-conjugate to an element of ωδ1,
and Γ(δ) = 0 otherwise (in particular, Γ is not identically zero). Let
δ ∈ R(F ) be stably θ-conjugate to δ1. There exists a unique pair (i, j),
with i ∈ {1, . . . , n} and j ∈ J ′i , such that δ is θ-conjugate to an element
of Ti(F )δij . If δ is not stably θ-conjugate to an element of ωδ1, then δ
is not θ-conjugate to an element of aij(ω)δij , and Γ(δ) = 0. Otherwise,
Γ(δ) = 〈inv(δ1, δ), κ〉−1|A(1)| = 〈inv(δ1, δ), κ〉−1Γ(δ1).

Let δ ∈ Ω. After changing the order of the Ti and choosing other repre-
sentatives for the δ1j , we may assume that the fixed δ1 is δ. As it is always
possible to replace ω by a smaller open compact (containing 1), this proves
the last statement of the lemma.

�

The two lemmas above have the following consequence :

Lemma 9.3.7 Assume that F , E, G, R and θ are as in lemma 9.3.6. Let
(H, s, η0) be an endoscopic triple for G. Assume that this local situation
comes from a global situation as in lemma 9.3.1. In particular, H is the first
element of endoscopic data (H, LH, t, ξ) for (R, θ, 1). Let ∆ξ be the transfer
factors defined by ξ (with any normalization). Then :

(i) Every function f ∈ C∞c (R(F )) with support in the set of θ-semi-simple
strongly θ-regular elements admits a transfer to H.

(ii) Let TH be a maximal torus of H. Choose an admissible embedding
j : TH −→ G, and make N := NorG(F )(j(TH(F ))) act on TH(F )
via j. Let fH ∈ C∞c (H(F )) be a function with support in the set of
strongly regular elements that are stably conjugate to an element of
TH(F ). Assume that the function TH(F ) −→ C, γH 7−→ OγH

(fH),
is invariant under the action of N . Then there exists f ∈ C∞c (R(F ))
such that fH is a transfer of f to H.

The notion of transfer (or of “matching functions”) in that case of defined
in [KS] 5.5.

Proof. To prove (i), define a function ΓH on the set of semi-simple strongly
G-regular elements of H(F ) by ΓH(γH) =

∑
δ

∆ξ(γH , δ)Oδθ(f), where the

sum is taken over the set of θ-conjugacy classes of R(F ), and apply lemma
9.3.5 to ΓH . To show (ii), construct a function Γ on the set of θ-semi-simple
strongly θ-regular elements of R(F ) in the following way : If there does not
exist any γH ∈ H(F ) such that ∆ξ(γH , δ) 6= 0, set Γ(δ) = 0; if there exists
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γH ∈ H(F ) such that ∆ξ(γH , δ) 6= 0, set Γ(δ) = ∆ξ(γH , δ)−1SOγH
(fH).

The function Γ is well-defined by the assumption on fH (and lemma 5.1.B
of [KS]). So (ii) follows from theorem 5.1.D of [KS] and from lemma 9.3.6.

�

Remark 9.3.8 We need to be able to compare the groups of endoscopic
characters of [KS] and [La3]. In the situation of the lemma above, but
with F global or local (and allowed to be archimedean), if TR is a θ-stable
maximal torus of R coming from a torus T of G, Labesse defined groups
K(T, R;F )1 ⊂ K(T, R;F ) ([La3] 1.8) and Kottwitz and Shelstad defined
groups K(TR, θ, R)1 ⊂ K(TR, θ, R) ([KS] 6.4; Kottwitz and Shelstad assume
that F is a number field, but it is possible to write the same definitions
if F is local, erasing of course the quotient by Ker1 in the definition of
K1). As we are interested in endoscopic data for the triple (R, θ, 1)
(whose third element, that could in general be an element of H1(WF , Z(Ĝ)),
is trivial here), we must use the group K(TR, θ,T)1 (cf [KS] 7.1 and 7.2)
to parametrize this data. Labesse showed that the groups K(T, R, F ) and
K(TR, θ, R) are canonically isomorphic (cf the end of [La3] 2.6). Using the
techniques of [La3] 1.7, it is easy to see that this isomorphism identifies
K(T, R;F )1 and K(TR, θ, R)1.

The next lemma explains what happens if E = F d.

Lemma 9.3.9 Let F be a local or global field, G be a connected reductive
group over F and d ∈ N∗. Set R = Gd, and let θ be the automorphism of R
that sends (g1, . . . , gd) to (g2, . . . , gd, g1). Then :

(i) The set of equivalence classes of endoscopic data for (R, θ, 1) is canon-
ically isomorphic to the set of equivalence classes of endoscopic data
for (G, 1, 1).

(ii) Let φ ∈ C∞c (R(F )). Assume that φ = φ1 ⊗ · · · ⊗ φd, with φ1, . . . , φd ∈
C∞c (G(F )). Then, for every γ = (γ1, . . . , γd) ∈ R(F ),

Oγθ(φ) = Oγ1...γd
(φ1 ∗ · · · ∗ φd)

(provided, of course, that the measures are normalized in compatible
ways).

Proof. Point (ii) is a particular case of [AC] I.5. Point (i) is almost obvious.
We explain how the isomorphism is constructed. The dual group of R is
R̂ = Ĝd, with the diagonal action of Gal(F/F ), so the diagonal embedding
Ĝ −→ R̂ extends in an obvious way to a L-morphism η : LG −→ LR.
If (H,H, s, ξ) are endoscopic data for (G, 1, 1), it defines endoscopic data
(H,H, η(s), η ◦ ξ) for (R, θ, 1). Conversely, let (H,H, s, ξ) be endoscopic
data for (R, θ, 1). Write ξ(h o w) = (ξ1(h o w), . . . , ξd(h o w)) o w, with



main April 10, 2009

THE TWISTED FUNDAMENTAL LEMMA 187

ho w ∈ H ' Ĥ oWF , and s = (s1, . . . , sd). Let ξG : H −→ LG, ho w 7−→
ξ1(ho w) o w. Then (H,H, s1 . . . sd, ξG) are endoscopic data for (G, 1, 1).

�

The next lemma is the analog of a statement proved in [H2], p 20-22. It
is proved exactly in the same way, using the twisted version of the Paley-
Wiener theorem (cf the article [DeM] of Delorme and Mezo) instead of the
untwisted version. (The statment on the support of functions in E is shown
by using the control over the support of the functions given by theorem 3 of
[DeM].)

Lemma 9.3.10 Let G be a connected reductive group over C, (H, s, η0)
be an endoscopic triple for G and d ∈ N∗. Set R = Gd, and denote by
θ the automorphism of R defined by θ(g1, . . . , gd) = (g2, . . . , gd, g1). Let
η = η0 × idWC : LH −→ LG be the obvious extension of η0, and ξ be the
composition of η and of the obvious (“diagonal”) embedding LG −→ LR.
Fix maximal compact subgroups KG and KH of G(C) and H(C), write KR =
Kd

G and denote by C∞c (G(C),KG) (resp. C∞c (H(C),KH), C∞c (R(C),KR))
the space of C∞ functions with compact support and KG-finite (resp. KH -
finite, KR-finite) on G(C) (resp. H(C), R(C)). Let Π(H) (resp. Πθ(R)) be
the set of isomorphism classes of irreducible unitary representations of H(C)
(resp. of θ-stable irreducible unitary representations of R(C)), and Πtemp(H)
(resp. Πθ−temp(R)) be the subset of tempered representations. For every
π ∈ Πθ(R), choose a normalized intertwining operator Aπ on π. For every
π ∈ Πθ−temp(R), let ΠH(π) be the set of πH ∈ Πtemp(π) whose functorial
transfer to R is π (so πH is in ΠH(π) if and only if there exists a Langlands
parameter ϕH : WC −→ LH of πH such that ξ◦ϕH is a Langlands parameter
of π). Let N : C∞c (R(C),KR) = C∞c (G(C),KG)⊗d −→ C∞c (G(C),KG) be
the morphism of C-algebras such that, for every f1, . . . , fd ∈ C∞c (G(C),KG),
N(f1 ⊗ · · · ⊗ fd) = f1 ∗ · · · ∗ fd.

Then there exists a vector space E ⊂ C∞c (R(C),KR) and a compact subset
C of H(C) such that :

(i) There exists f ∈ E and a transfer fH ∈ C∞c (H(C),KH) of N(f) to H
such that the stable orbital integrals of fH are not identically zero on
the set of regular semi-simple elliptic elements of H(C).

(ii) For every f ∈ E and every transfer fH of N(f), SOγH
(fH) = 0 if γH

is not conjugate to an element of C.

(iii) Let (a(π))π∈Πθ(R) and (b(πH))πH∈Π(H) be families of complex numbers
such that, for every f ∈ E and every transfer fH ∈ C∞c (H(C),KH) of
N(f) to H, the sums A(f) :=

∑
π∈Π(R)

a(π) Tr(π(f)Aπ) and AH(fH) :=∑
πH∈Π(H)

b(πH) Tr(πH(fH)) are absolutely convergent. Then the fol-

lowing conditions are equivalent :
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(A) for every f ∈ E and every transfer fH ∈ C∞c (H(C),KH) of N(f)
to H, A(f) = AH(fH);

(B) for every f ∈ E, for every transfer fH ∈ C∞c (H(C),KH) of
N(f) to H and for every π ∈ Πθ−temp(R), a(π) Tr(π(f)Aπ) =∑
πH∈ΠH(π)

b(πH) Tr(πH(fH)).

The next lemma is proved in [Cl3], p 292.

Lemma 9.3.11 Notations are as in 9.1. Let f ∈ HR. If there exists a
dense subset D of the set of elliptic semi-simple strongly G-regular elements
of H(F ) such that Λ(γH , f) = 0 for every γH ∈ D, then Λ(γH , f) = 0 for
every elliptic semi-simple strongly G-regular γH ∈ H(F ).

Lemma 9.3.12 Let F be a number field, E be a cyclic extension of F and
G be a connected reductive group over F . Set R = RE/F GE , choose a
generator of Gal(E/F ) and denote by θ the automorphism of R induced by
this generator. Let K be a finite extension of E such that G splits over K.
Assume that the center of G is connected and that there exists a finite place
v of F , inert in K, such that the morphism Gal(Kv/Fv) −→ Gal(K/F ) is
an isomorphism. Then localization induces an injective map from the set of
equivalence classes of endoscopic data for (R, θ, 1) to the set of equivalence
classes of endoscopic data for (Rv, θv, 1).

Proof. Let (H,H, s, ξ), (H′,H′, s′, ξ′) be endoscopic data for (R, θ, 1) whose
localizations are equivalent (as endoscopic data for (Rv, θv, 1)). By lemma
9.3.9, the endoscopic data for (RK , θK , 1) defined by (H,H, s, ξ) and (H′,H′, s′, ξ′)
are equivalent to endoscopic data coming from endoscopic data for (GK , 1, 1).
As the derived group of Ĝ is simply connected (because the center of G
is connected) and GK is split, if (G′,G′, sG, ξG) are endoscopic data for
(GK , 1, 1), then G′ is split, so G′ ' Ĝ′ × WK , and we may assume that
ξG is the product of an embedding Ĝ′ −→ R̂ and of the identity on WK .
Hence, after replacing (H,H, s, ξ) and (H′,H′, s′, ξ′) by equivalent data, we
may assume that ξ and ξ′ come from L-morphisms Ĥ o Gal(K/F ) −→
R̂ o Gal(K/F ) and Ĥ′ o Gal(K/F ) −→ R̂ o Gal(K/F ). As the data
(H,H, s, ξ) and (H′,H′, s′, ξ′) are equivalent at v, we may identify Ĥ and Ĥ′

and assume that s = s′. As Gal(Kv/Fv) ∼−→ Gal(K/F ) (and Gal(F/K) acts
trivially on Ĥ and Ĥ′), the isomorphism Ĥ = Ĥ′ extends to an isomorphism
H ' H′ that identifies ξ and ξ′. So the data (H,H, s, ξ) and (H′,H′, s′, ξ′)
are equivalent, and the first statement of the lemma is proved.

�

Proof of proposition 9.3.2. Write S0 = {v0, v1, v2}. Identify kF,v0 , kE,v0 ,
etc, to F , E, etc. We will prove the proposition by applying the twisted
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trace formula on R to functions whose local component at v0 is a function
in HR.

Let TG be an elliptic maximal torus of G such that TG,kF,v1
is also elliptic.

Fix an admissible embedding TH −→ G with image TG, where TH is an
elliptic maximal torus of H, and let TR = RkE/kF

TG,kE
. Let κ be the

element of K(TR, θ, kF )1 = K(TG, R; kF )1 (cf remark 9.3.8) associated to
the endoscopic data (H, LH, t, ξ) by the map of [KS] 7.2. Write κv1 for the
image of κ by the localization map K(TH , R; kF ) −→ K(TH,v1 , Rv1

; kF,v1)
(cf [La3] p 43). Choose a function φv1 ∈ C∞c (R(kF,v1)) that satisfies the
conditions of lemma 9.3.6 (ie such that the support of φv1 is contained in the
union of the stable θ-conjugates of TR(kF,v1), that the κv1-orbital integrals
of φv1 are not all zero and that the κ′v1

-orbital integrals of φv1 are all zero if
κ′v1

6= κv1). Let fH
v1

be a transfer of φv1 to Hv1
. Let fH

v2
∈ C∞c (H(kF,v2)) be a

function with support in the set of semi-simple strongly G-regular elements,
whose orbital integrals are constant on stable conjugacy classes and whose
stable orbital integrals are not all zero (such a function exists by lemma
9.3.6, applied with θ = 1 and κ = 1). Fix a function φv2 ∈ C∞c (R(kF,v2))
such that fH

v2
is a transfer of φv2 (such a function exists by lemma 9.3.7).

Let v3 and v4 be finite places of kF where all the data are unramified (ie
where the situation is as in remark 9.1.1); assume moreover that v3 splits to-
tally in kE (this is possible by (vi) of lemma 9.3.1). Let fv3 ∈ C∞c (G(kF,v3))
be as in lemma 9.3.4. Write φv3 = fv3 ⊗ · · · ⊗ fv3 ∈ C∞c (R(kF,v3)) (where
we identified R(kF,v3) to G(kF,v3)

d), and choose a transfer fH
v3

of φv3 (such
a transfer exists by lemma 9.3.7). Let fH

v4
∈ C∞c (H(kF,v4)) be as in lemma

9.3.4. Choose a function φv4 ∈ C∞c (R(kF,v4) such that fH
v4

is a transfer of
φv4 (such a function exists by lemma 9.3.7).

Let S∞ be the set of infinite places of kF (by (iii) of lemma 9.3.1, they are
all complex). Write H∞ =

∏
v∈S∞

H(kF,v) and R∞ =
∏

v∈S∞

R(kF,v). Let E be

a subspace of C∞c (R∞) and C∞ be a compact subset of H∞ that satisfy the
conditions of lemma 9.3.10. Let φ0,∞ ∈ E and fH

0,∞ be a transfer of φ0,∞
such that the stable orbital integrals of fH

0,∞ on elliptic elements of H∞ are
not all zero.

Let D1 be the set of semi-simple strongly G-regular elliptic elements of
H(F ) coming from a γH ∈ H(kF ) such that

- there exists δ ∈ R(kF ) and an image γ of γH in G(kF ) such that
γ ∈ N δ;

- for every v ∈ {v1, v2, v3, v4}, SOγH
(fH

v ) 6= 0;

- SOγH
(fH

0,∞) 6= 0.

Let D2 be the set of semi-simple strongly G-regular elliptic elements of
H(F ) that have no image in G(F ) that is a norm. By (vii) of lemma 9.3.1,
D := D1 ∪D2 is dense in the set of semi-simple strongly G-regular elliptic
elements of H(F ). By lemma 9.3.11, we may replace the set of semi-simple
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strongly G-regular elliptic elements of H(F ) by D in the definition of local
data. By lemma 9.2.12, we may even replace D by D1 in this definition.

Let γH ∈ D1 (we use the same notation for the element of H(F ) and for the
element of H(kF ) that induces it). Let S be a finite set of finite places of kF

such that {v0, v1, v2, v3, v4} ⊂ S and that, for every finite place v 6∈ S of kF ,
all the data are unramified at v, γH ∈ H(OkF,v

) and the fundamental lemma
for the unit of the Hecke algebra is known for (Rv, θv, 1) and (Hv,

LHv, t, ξv
).

For every v ∈ S − {v0, v1, v2, v3, v4}, choose associated functions fH
v and φv

such that SOγH
(fH

v ) 6= 0 (this is possible by the end of lemma 9.3.6). Let
C0 3 γH be a compact subset of H(F ) that meets all the conjugacy classes of
semi-simple elliptic elements of H(F ) (such a C0 exists because the center of
H is anisotropic). By proposition 8.2 of [K7], there is only a finite number of
conjugacy classes of semi-simple elements γ′H of H(kF ) such that γ′H ∈ C0,
γ′H ∈ C∞, SOγ′H

(fH
v ) 6= 0 for every v ∈ S − {v0} and γ′H ∈ H(OkF,v

) for
every finite place v 6∈ S. By the end of lemma 9.3.6, after adding a place
in S and fixing well-chosen functions at that place, we may assume that γH

is, up to conjugacy, the only semi-simple element of H(kF ) that satisfies
the list of properties given above. For every finite place v 6∈ S of kF , take
φv = 1lR(OkF,v

) and fH
v = 1lH(OkF,v

).
Let φv0 ∈ HR and fH

v0
= bξ(φv0). Fix φ∞ ∈ E and a transfer fH

∞ of φ∞,
and set φ = φ∞⊗

⊗
v 6=∞

φv and fH = fH
∞⊗

⊗
v 6=∞

fH
v . Then lemma 9.3.3 applies

to f and φ, thanks to the choice of the functions at v3 and v4. As in 5.4 and
8.2, let TRoθ and TH be the distributions of the θ-twisted invariant trace
formula on R and of the invariant trace formula on H.

By lemma 9.3.3, TH(f) is equal to the strongly regular elliptic part of
the trace formula for H, so we may use the stabilization of [L3]. By the
choice of fH

v2
, the only endoscopic group of H that appears is H itself; so we

need neither the transfer hypothesis nor the fundamental lemma to stabilize
TH(f). We get

TH(fH) = STH
∗∗(f

H),

where STH
∗∗ is the distribution denoted by ST ∗∗e in [KS] 7.4 (the strongly

G-regular elliptic part of the stable trace formula for H). Moreover, by the
choice of fH ,

STH
∗∗(f

H) = aφ∞SOγH
(bξ(φv0)),

where aφ∞ is the product of SOγH
(f∞) and of a non-zero scalar that does

not depend on φ∞ and φv0 .
Similarly, by lemma 9.3.3, TRoθ(φ) is equal to the strongly θ-regular θ-

elliptic part of the trace formula for Roθ, se we may apply the stabilization
of chapters 6 and 7 of [KS]. By the choice of φv1 , the only endoscopic data
of (R, θ, 1) that appear are (H,H, t, ξ). (Equality (7.4.1) of [KS] expresses
TRoθ(φ) as a sum over elliptic endoscopic data of (R, θ, 1). The proof of
lemma 7.3.C and theorem 5.1.D of [KS] show that the global κ-orbital inte-
grals that appear in this sum are products of local κ-orbital integrals. By the
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choice of φv1 , these products of local κ-orbital integrals are zero for the endo-
scopic data that are not equivalent to (H,H, t, ξ) at the place v1. By lemma
9.3.12, (H,H, t, ξ) are the only endoscopic data satisfying this condition.)
By equality (7.4.1) and the proof of lemma 7.3.C of [KS], we get

TRoθ(φ) = bφ∞
∑

δ

∆ξ(γH , δ)Oδθ(φv0),

where the sum is taken over the set of θ-conjugacy classes of R(F ) and bφ∞
is the product of SOγH

(fH
∞) and of a non-zero scalar that does not depend

on φv0 and φ∞.
Hence Λ(γH , φv0) = 0 if and only if, for every φ∞ ∈ E, aφ∞T

Roθ(φ) −
bφ∞T

H(fH) = 0 (the “only if” part comes from the fact that aφ∞bφ∞ 6= 0 for
at least one choice of φ∞). By lemmas 9.3.3 and 9.3.10, this last condition
is equivalent to a family of identities of the form

Tr(π∞(φ∞)Aπ∞)
∑

π0∈Π(R)

a(π0) Tr(π0(φv0Aπ0))

=
∑

πH,∞∈ΠH∞ (π∞)

Tr(πH,∞)(fH
∞)

∑
πH,0∈Π(H)

b(πH,∞, πH,0) Tr(πH,0(bξ(φv0))),

for π∞ ∈ Πθ−temp(R∞) and φ∞ ∈ E, where the notations are as in lemma
9.3.10. By Harish-Chandra’s finiteness theorem (cf [BJ] 4.3(i)), the sums
that appear in these equalities have only a finite number of non-zero terms.

Finally, we showed that the identity Λ(γH , φv0) = 0 is equivalent to a
family of identities like those that appear in the definition of local data.
To obtain local data for R and (H, LH, t, ξ), we simply have to repeat this
process for all the elements of D1.

�

9.4 TECHNICAL LEMMAS

We use the notations of 9.1.
Let γH ∈ H(F ) be semi-simple and γ ∈ G(F ) be an image of γH . Let

MH be a Levi subgroup of H such that γH ∈ MH(F ) and MH,γH
= HγH

.
Langlands and Shelstad ([LS2] §1, see also section 7 of [K13]) associated to
such a MH a Levi subgroup M of G such that γ ∈ M(F ) and Mγ = Gγ , an
endoscopic triple (MH , sM , ηM,0) for M and a L-morphism ηM : LMH −→
LM extending ηM,0 and such that there is a commutative diagram

LMH

ηM //

��

LM

��
LH

η // LG
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where the left (resp. right) vertical map is in the canonical Ĥ-conjugacy
(resp. Ĝ-conjugacy) class of L-morphisms LMH −→ LH (resp. LM −→
LG). (If G and H are as in 2.3, this construction is made more explicit in
4.3.) Write MR = RE/F M (a θ-stable Levi subgroup of R), and let θM be
the restriction of θ to MR. As in 9.1, associate to (MH , sM , ηM ) endoscopic
data (MH ,

LMH , tM , ξM ) for (MR, θM , 1).
The next lemma is a generalization of the beginning of [H1] 12, and can

be proved exactly in the same way (because there is a descent formula for
twisted orbital integrals, cf for example corollary 8.3 of [A2]). Note that we
also need to use lemma 4.2.1 of [H2] (and the remarks below it).

Lemma 9.4.1 Assume that, for every proper Levi subgroup MH of H, the
twisted fundamental lemma is known for MR and (MH ,

LMH , tM , ξM ) and
for all the functions of HMR

. Then, for every f ∈ HR and every γH ∈ H(F )
that is semi-simple and is not elliptic,

Λ(γH , f) = 0.

Lemma 9.4.2 Let χ be a character of R(F ) such that χ = χ ◦ θ. Then χ
is contant on the θ-semi-simple stable θ-conjugacy classes of R(F ).

Proof. If θ = 1 (ie if E = F ), this is lemma 3.2 of [H2]. In the general
case, the result follows from the case θ = 1 and from lemma 2.4.3 of [La3].

�

Notations are still as in 9.1. Let BG be a Borel subgroup of G and TG be
a Levi subgroup of BG. Assume that the center of G is connected and that
there exists a maximal torus TH of H and an admissible embedding TH −→
G with image TG (if G is adjoint, this is always the case by lemma 9.4.6).
Use the same notations as in lemma 9.2.11 (in particular, TR = RE/F TG,E).

Let Z(R)θ be the group of θ-coinvariants of the center Z(R) of R. There
is a canonical injective morphism N : Z(R)θ −→ Z(H) (cf [KS] 5.1, p 53).
Let Z be a subtorus of Z(R)θ; denote by ZR the inverse image of Z in Z(R)
and by ZH the image of Z in Z(H). Let χH be an unramified character of
ZH(F ). Write χR = (λ−1

C (χH ◦ N))|ZR(F ), where λC : Z(R)(F ) −→ C× is
the character defined in [KS] 5.1 p 53; then χR is also unramified, by (i) of
lemma 9.4.3 below.

LetHR,χR
(resp. HH,χH

) be the algebra of functions f : R(F ) −→ C (resp.
f : H(F ) −→ C) that are right and left invariant by R(OF ) (resp. H(OF )),
have compact support modulo ZR(F ) (resp. ZH(F )), and such that, for
every (z, x) ∈ ZR(F ) × R(F ) (resp. ZH(F ) ×H(F )), f(zx) = χ−1

R (z)f(x)
(resp. f(zx) = χ−1

H (z)f(x)). The product is the convolution product, that
sends (f, g) to

f ∗ g : x 7−→
∫

ZR(F )\R(F )

f(xy−1)g(y)dy
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(resp. f ∗ g : x 7−→
∫

ZH(F )\H(F )

f(xy−1)g(y)dy).

There is a surjective morphism νR : HR −→ HR,χR
(resp. νH : HH −→

HH,χH
) that sends f to x 7−→

∫
ZR(F )

χ−1
R (z)f(zx)dz (resp. x 7−→

∫
ZR(F )

χ−1
H (z)f(zx)dz).

If γH ∈ H(F ) and f ∈ HH,χH
, then we can define OγH

(f) by the usual for-
mula (the integral converges). If δ ∈ R(F ) and f ∈ HR,χR

, set

Oδθ(f) =
∫

ZR(F )Rδθ(F )\R(F )

f(x−1δθ(x))dx

(f(x−1δθ(x)) depends only on the class of x in ZR(F )Rδθ(F )\R(F ), because
χR is trivial on elements of the form z−1θ(z), z ∈ ZR(F )). We define κ-
orbital integrals and stable orbital integrals as before for functions of HR,χR

and HH,χH
.

Lemma 9.4.3 (i) As in the proof of lemma 9.2.11, write ξ(1 o σ) =
t′ o σ; we may assume that t′ ∈ T̂R. As Z(R) is an unramified torus,
there is a canonical surjective morphism Z(R)(F ) −→ X∗(Z(R)d) with
kernel the maximal compact subgroup of Z(R)(F ), where Z(R)d is
the maximal split subtorus of Z(R) (cf [Bo] 9.5). Define a character
λ′C on Z(R)(F ) in the following way : if z ∈ Z(R)(F ), and if µ ∈
X∗(Z(R)d) = X∗(Ẑ(R)d) is the image of z by the above morphism,

λ′C(z) is the value of µ at the image of t′−1 ∈ T̂R by the canonical

morphism T̂R −→ Ẑ(R) −→ Ẑ(R)d.
Then λC = λ′C (in particular, λC is unramified).

(ii) There exists a morphism bξ,χH
: HR,χR

−→ HH,χH
that makes the

following diagram commute

HR
νR //

bξ

��

HR,χR

bξ,χH

��
HH νH

// HH,χH

Let γH ∈ H(F ) be semi-simple and strongly G-regular. Use the mor-
phism bξ,χH

: HR,χR
−→ HH,χH

to define a linear form ΛχH
(γH , .) on

HR,χR
that is the analog of the linear form Λ(γH , .) on HR of 9.1 (use

the same formula). Then the following conditions are equivalent :

(a) for every z ∈ ZH(F ), for every f ∈ HR, Λ(zγH , f) = 0;

(b) for every z ∈ ZH(F ), for every f ∈ HR,χR
, ΛχH

(zγH , f) = 0.

Proof. Point (i) follows from the definitions of λC ([KS] 5.1) and of the
transfer factor ∆III ([KS] 4.4).

We show (ii). Let z ∈ Z(R)(F ). For every function f : R(F ) −→ C,
let Rzf be the function x 7−→ f(zx). Denote by λz the image of z by the
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canonical map Z(R)(F ) ⊂ TR(F ) −→ X∗(YR). Then, for every λ ∈ X∗(YR),
Rzfλ = fλ+λz . Moreover, it is easy to see that, for every λ ∈ X∗(YR),
ν−1

R (νR(fλ)) is generated by the functions χR(z)−1Rzfλ, z ∈ ZR(F ). There
are obviously similar statements for H instead of R.

To show the existence of the morphism bξ,χH
: HR,χR

−→ HH,χH
, it is

enough to show that, for every λ ∈ X∗(YR), all the elements of ν−1
R (νR(fλ))

have the same image by νH ◦ bξ. Let λ ∈ X∗(YR). Let z ∈ ZR(F ); denote by
zH the image of z in ZH(F ). It is enough to show that bξ(χ−1

R (z)Rzfλ) =
χH(zH)−1RzH

bξ(fλ). By the explicit calculation of bξfλ in the proof of
lemma 9.2.11, bξ(Rzfλ) = λz(t′)RzH

bξ(fλ); hence the equality that we are
trying to prove follows from (i) and from the definition of χR.

Let f ∈ HR and δ ∈ R(F ). It is easy to see that

Oδθ(νR(f)) =
∫

Z(F )

χ−1
R (z)Ozδθ(f)dz =

∫
Z(F )

χ−1
R (z)Oδθ(Rzf)dz

(Ozδθ(f) depends only on the image of z in Z(F ), because the function
δ 7−→ Oδθ(f) is invariant by θ-conjugacy). Similarly, for every f ∈ HH and
γH ∈ H(F ),

OγH
(νH(f)) =

∫
ZH(F )

χ−1
H (zH)OzHγH

(f)dzH =
∫

ZH(F )

χ−1
H (zH)OγH

(RzH
f)dzH .

Remember ([KS] 5.1) that λC is such that, for every semi-simple strongly
regular γH ∈ H(F ), every θ-semi-simple strongly θ-regular δ ∈ R(F ) and
every z ∈ Z(R)(F ),

∆ξ(zHγH , zδ) = λ−1
C (z)∆ξ(γH , δ),

where zH is the image of z in Z(H)(F ). By this fact and the above formulas
for the integral orbitals, it is clear that (a) implies (b).

Let γH ∈ H(F ) be semi-simple strongly G-regular. Assume that (b) is
satisfied for γH ; we want to show (a). Let λ ∈ X∗(YR). Denote by 0Z
(resp. 0ZR, 0ZH) the maximal compact subgroup of Z(F ) (resp. ZR(F ),
ZH(F )). The function fλ is obviously invariant by translation by 0ZR, and,
moreover, all the unramified θ-stable characters of R(F ) are constant on its
support (because fλ is a linear combination of characteristic functions of sets
R(OF )µ($F )R(OF ), where $F is a uniformizer of F and µ ∈ X∗(YR) =
X∗(TR)ΓF is such that λµ−1 is a cocharacter of Rder). Hence, for z ∈ ZR(F ),
Rzfλ depends only on the image of z in 0ZR \ ZR(F ) and, for every θ-
semi-simple stable θ-conjugacy class C of R(F ), there exists a unique z ∈
0ZR \ ZR(F ) such that, for every z′ ∈ 0ZR \ ZR(F )− {z} and every δ ∈ C,
Oδθ(Rz′fλ) = 0 (use lemma 9.4.2). There are similar results for H and
bξ(fλ).

Let C be the set of δ ∈ R(F ) such that ∆ξ(γH , δ) 6= 0. Then C is ei-
ther the empty set or a θ-semi-simple θ-regular stable θ-conjugacy class.
So, by the reasoning above and the formulas for the orbital integrals of
νR(fλ) and νH(bξ(fλ)), there exists z ∈ 0Z \Z(F ) such that Oδθ(νR(fλ)) =
χR(z)−1Oδθ(Rzfλ), for every δ ∈ C, and that SOγH

(νH(bξ(fλ))) = χH(zH)−1SOγH
(RzH

bξ(fλ)),
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where zH ∈ 0ZH \ ZH(F ) is the image of z. If z 6= 1, then Λ(γH , fλ) = 0,
because all the orbital integrals that appear in this expression are zero. If
z = 1, then Λ(γH , fλ) = 0 by condition (b) and the properties of λC .

�

We still denote by F a non-archimedean local field (of characteristic 0)
and by E a finite unramified extension of F . Let G be a connected unram-
ified group over F , defined over OF and such that G(OF ) is a hyperspecial
maximal compact subgroup of G(F ). Set R = RE/F GE , and let θ be
the automorphism of R induced by a chosen generator of Gal(E/F ). Let
ZG be a subtorus of Z(G) defined over OF , and let ZR = RE/FZG,E .
Let G′ = G/ZG, R′ = R/ZR = RE/F G′

E , u : R −→ R′ be the ob-
vious morphism, H′ = HR′ and H be the convolution algebra of func-
tions R(F ) −→ C that are bi-invariant by R(OF ), invariant by ZR(F ) and
with compact support modulo ZR(F ) (with the notations of lemma 9.4.3,
H = HR,1). As ZR is connected, we see as in [Cl3] 6.1 (p 284) that Lang’s
theorem (cf for example theorem 4.4.17 of [Sp]) and Hensel’s lemma imply
that u : R(OF ) −→ R′(OF ) is surjective. So u induces a morphism of al-
gebras ϕ : H −→ H′ (for every f ∈ H and every x ∈ R′(F ), ϕ(f)(x) is
equal to 0 if x 6∈ u(R(F )) and to f(u−1(x)) if x ∈ u(R(F ))). For every δ in
R(F ) or R′(F ), denote by C(δ) (resp. Cst(δ)) the θ-conjugacy (resp. stable
θ-conjugacy) class of δ.

Lemma 9.4.4 Assume that θ acts trivially on H1(F,ZR).
Let δ ∈ R(F ) be θ-semi-simple; write δ′ = u(δ). Then u(Cst(δ)) = Cst(δ′).

So there exists a (necessarily finite) family (δi)i∈I of elements of R(F ) that
are stably θ-conjugate to δ, such that C(δ′) =

∐
i∈I

u(C(δi)). Moreover, for

every f ∈ H,

Oδ′θ(ϕ(f)) =
∑
i∈I

Oδiθ(f).

(As always, we use the Haar measures on R(F ) and R′(F ) such that the
volumes of R(OF ) and R′(OF ) are equal to 1.)

Proof. It is clear that u(Cst(δ)) ⊂ Cst(δ′). We show the other inclusion.
Let γ′ ∈ R′(F ) be stably θ-conjugate to δ′. As u(R(F )) = Ker(R′(F ) −→
H1(F,ZR)) is the intersection of kernels of θ-stable characters of R′(F ),
lemma 9.4.2 implies that there exists γ ∈ R(F ) such that γ′ = u(γ). It is
easy to see that γ and δ are stably θ-conjugate.

Fix a family (δi)i∈I as in the statement of the lemma, and write K =
R(OF ), K′ = R′(OF ). We show the equality of orbital integrals. Let f ∈ H.
We may assume that f = 1lA, where A is a compact subset of R(F ) such
that A = ZR(F )KAK. Then ϕ(f) = 1lu(A), so

Oδ′θ(ϕ(f)) =
∑
γ′

vol(u(A) ∩R′γ′θ(F ))−1,
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where the sum is taken over a set of representatives γ′ of the K′-θ-conjugacy
classes of elements of u(A) that are θ-conjugate to δ′ (in R′(F )). There are
similar formulas for the twisted orbital integrals of f at the δi ; for every
i ∈ I,

Oδiθ(f) =
∑

γ

vol((A ∩Rγθ(F ))ZR(F )/ZR(F ))−1,

where the sum is taken over a set of representatives γ of the K-θ-conjugacy
classes of elements of A that are θ-conjugate to δi (in R(F )). To show
the formula of the lemma, it is therefore enough to notice that, for every
γ ∈ R(F ), u induces an isomorphism (A∩Rγθ(F ))ZR(F )/ZR(F ) ∼−→ u(A)∩
Ru(γ)θ.

�

We use again the notations of 9.1. Assume that η(1 o σ) ∈ Ĝder o σ and
that s ∈ Ĝder. Then (H, LH, s, η) defines in an obvious way endoscopic data
(H′, LH′, s, η′) for G′ := G/Z(G)0 (because Ĝ′ = Ĝder). As in 9.1, we get
from this endoscopic data (H′, LH′, t′, ξ′) for (R′, θ), where R′ = RE/F G′

E .

Lemma 9.4.5 Assume that θ acts trivially on H1(F,Z(R)0) and that G
and H satisfy the conditions of lemma 9.4.3.

Then the fundamental lemma is true for (R, θ) and (H, LH, t, ξ) if and
only if it is true for (R′, θ) and (H′, LH′, t′, ξ′).

Proof. Let ZR = Z(R)0, and let ZH be the image of Z(G)0 in Z(H).
Then H′ = H/ZH . It is easy to check that, if γH ∈ H(F ) is semi-simple and
strongly G-regular, if δ ∈ R(F ) is θ-semi-simple and strongly θ-regular, and
if (γH , δ) is sent to (γ′H , δ

′) ∈ H′(F )×R′(F ) by the obvious projection, then
∆ξ(γH , δ) = ∆ξ′(γ′H , δ

′). Apply lemma 9.4.3 with χH = 1 and χR = 1 (this
is possible because the character λC that appears in this lemma is trivial,
thank to the assumption that η(1 o σ) ∈ Ĝder o σ). This lemma shows
that we may replace the Hecke algebras of R and H by the Hecke algebras
of ZR(F )-invariant or ZH(F )-invariant functions. To finish the proof, apply
lemma 9.4.4.

�

The next lemma and its proof were communicated to me by Robert Kot-
twitz. (Any mistakes that I may have inserted are my sole responsibility.)

Lemma 9.4.6 Let F be a non-archimedean local field of characteristic 0,
G be an adjoint quasi-split group over F and (H, s, η0) be an endoscopic
triple for G. Fix a Borel subgroup B (resp. BH) of G (resp. H) and a Levi
subgroup TG (resp. TH) of B (resp. BH). Then there exists an admissible
embedding TH −→ G with image TG.

Proof. Write Γ = Gal(F/F ). Choose embeddings T̂G ⊂ B̂ ⊂ Ĝ and
T̂H ⊂ B̂H ⊂ Ĥ that are preserved by the action of Γ on Ĝ and Ĥ.
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As F is local, we may assume that s ∈ Z(Ĥ)Γ. By the definition of an
endoscopic triple, for every τ ∈ Γ, there exists gτ ∈ Ĝ such that : for every
h ∈ Ĥ,

gττ(η0(h))g−1
τ = η0(τ(h)). (∗)

In particular, the Ĝ-conjugacy class of η0(s) is fixed by the action of Γ on Ĝ.
By lemma 4.8 of [Cl3], η0(s) is Ĝ-conjugate to an element of T̂Γ

G. Replacing
η0 by a Ĝ-conjugate, we may assume that η0(s) ∈ T̂Γ

G. Then

T̂G ⊂ Cent bG(η0(s)) = Cent bG(η0(s))0 = Ĥ

(Cent bG(η0(s)) is connected because Ĝ is semi-simple and simply connected),
so by further conjugating η0 by an element in η0(Ĥ) (which does not change
η0(s), since s ∈ Z(Ĥ)), we may also assume that η0(T̂H) = T̂G and
η0(B̂H) = B̂ ∩ η0(Ĥ).

Since η0(s) is fixed by Γ, for every τ ∈ Γ, gτη0(s)g−1
τ = η0(s), so that

gτ ∈ Cent bG(η0(s)) = η0(Ĥ). Moreover (∗), together with the fact that
Γ preserves (B̂, T̂G) and (B̂H , T̂H), implies that hτ := η−1

0 (gτ ) conjugates
(B̂H , T̂H) into itself. Therefore hτ ∈ T̂H , and (∗) now shows that η0 induces
a Γ-equivariant isomorphism T̂H

∼−→ T̂G. Dual to this is an admissible
isomorphism TH

∼−→ TG.
�

Let F be a non-archimedean local field of characteristic 0. Let n, n1, . . . , nr ∈
N∗. Set PGLn = GLn/Z(GLn). For every quadratic extension E of F ,
set PGU(n,E) = GU(n,E)/Z(GU(n,E)), where GU(n,E) is the unitary
group defined by the extension E/F and by the Hermitian form with matrix

Jn :=

 0 1

. .
.

1 0

 ∈ GLn(Z).

More generally, set P(U(n1, E) × · · · × U(nr, E)) = (GU(n1, E) × · · · ×
GU(nr, E))/Z, where Z = RE/QGm, embedded diagonally. Set PGSOn =
GSO(Jn)/Z(GSO(Jn)), where GSO(Jn) = GO(Jn)0, and PGSp2n =
GSp(J ′n)/Z(GSp(J ′n)), where

J ′n =
(

0 J
−J 0

)
∈ GL2n(Z).

If Y 1, . . . , Y r ∈ {GSO,GSp}, we denote by P(Y 1
n1
×· · ·×Y r

nr
) the quotient

of Y 1
n1
× · · · × Y r

nr
by Gm embedded diagonally.

Lemma 9.4.7 Let G be a simple adjoint unramified group over F .

(i) If G is of type A, then there exists a finite unramified extension K
of F , a quadratic unramified extension E of K and a non-negative
integer n such that G = RK/F PGLn or G = RK/F PGU(n,E). If
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G = RK/F PGLn, then G has no non-trivial elliptic endoscopic groups.
If G = RK/F PGU(n,E), then the elliptic endoscopic groups of G
are the RK/F P(GU(n1, E) ×GU(n2, E)), with n1, n2 ∈ N such that
n = n1 + n2 and that n2 is even.

(ii) If G is of type B, then there exists a finite unramified extension K of F
and a non-negative integer n such that G = RK/F PGSO2n+1. The el-
liptic endoscopic groups of G are the RK/F P(GSO2n1+1×GSO2n2+1),
with n1, n2 ∈ N such that n = n1 + n2.

(iii) If G is of type C, then there exists a finite unramified extension K of
F and a non-negative integer n such that G = RK/F PGSp2n. The
elliptic endoscopic groups of G are the P(GSO2n1 ×GSp2n2

), with
n1, n2 ∈ N such that n = n1 + n2 and n1 6= 1.

In particular, if G is adjoint of type A, B or C, then the hypothesis of
proposition 9.2.2 on the center of H (ie that this center be connected) is
satisfied.

Proof. Let K be the smallest extension of F on which G splits, and fix
a generator σ of Gal(K/F ). Then GK ' (G′)r, where r ∈ N∗ and G′ is
an adjoint absolutely simple group over K. Let θ be the automorphism
(over K) of (G′)r induced by σ. If G is of type B or C, then G′ is also of
type B or C, so G′ is equal to PGSOn or PGSp2n, and G′ has no non-
trivial outer automorphisms (cf [Di] IV.6 and IV.7), so we may assume that
θ acts by permuting the factors of (G′)r. As K is the smallest extension on
which G splits, θ has to be a n-cycle. So G ' RK/F G′. To compute the
elliptic endosocopic triples for G, we may assume that K = F . Then G is
split and has a connected center, so its endoscopic groups are also split (cf
definition 1.8.1 of [Ng]). From this observation, it is easy to see that the
elliptic endoscopic groups of G are the ones given in the statement of the
lemma.

Assume that G is of type A. Then there exists n ∈ N∗ such that G′ =
PGLn,K , and Out(G′) is isomorphic to Z/2Z (cf [Di] IV.6). We may assume
that θ ∈ (Z/2Z)r o Sr, where (Z/2Z)r acts on (G′)r via the isomorphism
Z/2Z ' Out(G′) (and a splitting of Aut(G′) −→ Out(G′)) and Sr acts
on (G′)r by permuting the factors. Write θ = ε o τ , with ε ∈ (Z/2Z)r and
τ ∈ Sn. As in the first case, τ has to be a n-cycle. After conjugating τ by an
element of (Z/2Z)r oSr, we may assume that ε ∈ {(1, . . . , 1), (−1, 1, . . . , 1)}
(because ε1 o τ and ε2 o τ are conjugate if and only if there exists η ∈
(Z/2Z)r such that ε1ε2 = ητ(η), and the image of the morphism (Z/2Z)r −→
(Z/2Z)r, η 7−→ ητ(η) is {(e1, . . . , er) ∈ (Z/2Z)r|e1 . . . er = 1}). If θ =
(1, . . . , 1) o τ , then G ' RK/F PGLn, and it is not hard to see that G has
no non-trivial elliptic endoscopic triples. Assume that θ = (−1, 1, . . . , 1)oτ .
Then θ is of order 2r, so [K : F ] = 2r and G = RK′/F PGU(n,K), where
K ′ is the subfield of K fixed by θr(= (−1, . . . ,−1) o 1). The calculation of
the elliptic endoscopic triples of G is done just as in proposition 2.3.1 (with
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the obvious changes).
�

9.5 RESULTS

Proposition 9.5.1 Let X ∈ {A,B,C}. Let F be a non-archimedean local
field and G be an adjoint unramified group over F , of type X. Assume that
there exists N ∈ N∗ such that, for all F ′, E′, G′, R′ and (H′, LH′, t′, ξ′) as in
9.1, the twisted fundamental lemma is true for the unit of the Hecke algebra
if G′ is adjoint of type X, dim(G′) ≤ dim(G) and the residual characteristic
of F ′ does not divide N .

Then, for every finite unramified extension E of F and for all twisted
endoscopic data (H, LH, t, ξ) for R := RE/F GE as in 9.1, the twisted fun-
damental lemma is true for R and (H, LH, t, ξ) and for all the functions in
the Hecke algebra.

Proof. By lemma 9.4.1, lemma 9.4.6, lemma 9.4.7 lemma 9.3.1, proposition
9.3.2 and proposition 9.2.2, the twisted fundamental lemma for G follows
from the twisted fundamental lemma for all proper Levi subgroups of G (if
G has no elliptic maximal torus, then lemma 9.4.1 is enough to see this).
But, by the classification of adjoint unramified groups of type X given in
lemma 9.4.7, every proper Levi subgroup of G is isomorphic to a group
G0 ×G1 × · · · ×Gr, with G1, . . . ,Gr of the form RK/F GLm, where K is
a finite unramified extension of F and m ∈ N∗, and G0 adjoint unramified
of type X and such that dim(G0) < dim(G). If 1 ≤ i ≤ r, Gi has no
non-trivial elliptic endoscopic groups, so the twisted fundamental lemma for
Gi follows from descent (lemma 9.4.1) and from the fundamental lemma for
stable base change, that has been proved in the case of general linear groups
by Arthur and Clozel ([AC], chapter I, proposition 3.1). Hence, to prove the
proposition, it suffices to reason by induction on the dimension of G.

�

Corollary 9.5.2 We use the notations of 9.1. If F = Qp, G is one of the
unitary groups G(U∗(n1)× · · · ×U∗(nr)) of 2.1 and the morphism η is the
morphism ηsimple of 4.2, then the twisted fundamental lemma is true.

Proof. As the center of G is connected, the corollary follows from propo-
sition 9.5.1 above and from lemma 9.4.5, so it is enought to check that
the hypotheses of this lemma are satisfied. The endoscopic triple (H, s, η0)
satisfies the hypotheses of lemma 9.4.3, by the explicit description of the en-
doscopic triples of G given in proposition 2.3.1. It is obvious that s ∈ Ĝder

and η(1 o σ) ∈ Ĝder o σ. Finally, the center of G is an induced torus, so its
first Galois cohomology group on any extension of F is trivial.
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�

The result that we really need in this text is formula (∗) of 5.3. We recall
this formula. Notations are still as in 9.1, with E a field. Let ∆η be the
transfer factors for the morphism η : LH −→ LG, with the normalization
given by the OF -structures on H and G (cf [H1] II 7 or [Wa3] 4.6). If
δ ∈ R(F ) is θ-semi-simple and γ ∈ N δ, Kottwitz defined in [K9] §7 p 180
an element αp(γ, δ) of X∗(Z(Gγ)ΓF ) (remember that Gγ = Centγ(G)0).
The result that we want to prove is the following : For every γH ∈ H(F )
semi-simple, for every f ∈ HR, let γ be an image of γH in G(F ) (such a γ
exists because G is quasi-split). Then

SOγH
(bξ(f)) =

∑
δ

< αp(γ, δ), s > ∆η(γH , γ)e(Rδθ)Oδθ(f), (∗)

where the sum is taken over the set of θ-semi-simple θ-conjugacy classes δ
of R(F ) such that γ ∈ N δ, Rδθ is the connected compoenent of 1 of the
centralizer of δθ in R and e(Rδθ) is the sign defined by Kottwitz in [K2].

Corollary 9.5.3 Assume that F = Qp and that G is one of the unitary
groups G(U∗(n1)× · · · ×U∗(nr)) of 2.1. Then formula (∗) above is true.

Proof. If γH is strongly regular, then formula (∗) follows from corollary
9.5.2 and from corollary A.2.10 of the appendix.

The reduction from the general case to the case where γH is strongly
regular is done in section A.3 of the appendix (see in particular proposition
A.3.14).

�

Remark 9.5.4 The last two corollaries are also true (with the same proof)
for any group G with connected center and such that all its endoscopic
triples satisfy the conditions of lemma 9.4.5. Examples of such groups are
the symplectics groups of [M3] (cf proposition 2.1.1 of [M3]).
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Comparison of two versions of twisted transfer

factors

R. Kottwitz

In order to stabilize the Lefschetz formula for Shimura varieties over finite
fields, one needs to use twisted transfer factors for cyclic base change. Now
these twisted transfer factors can be expressed in terms of standard transfer
factors, the ratio between the two being given by a Galois cohomological
factor involving an invariant denoted by inv(γ, δ) in [KS]. However, in the
stabilization of the Lefschetz formula it is more natural to use a different
invariant α(γ, δ). The purpose of this appendix is to relate the invariants
inv(γ, δ) and α(γ, δ) (see Theorem A.2.5), and then to justify the use made
in [K9] of transfer factors

∆0(γH , δ) = ∆0(γH , γ)〈α(γ, δ), s〉−1,

first in the case when γH is strongly G-regular semisimple (see Corollary
A.2.10) and then in the more general case in which γH is assumed only to be
(G,H)-regular (see Proposition A.3.14, where, however, the derived group
of G is assumed to be simply connected).

I would like to thank Sophie Morel for her very helpful comments on a
first version of this appendix.

A.1 COMPARISON OF ∆0(γH , δ) AND ∆0(γH , γ)

In the case of cyclic base change the twisted transfer factors ∆0(γH , δ) of
[KS] are closely related to the standard transfer factors ∆0(γH , γ) of [LS1].
This fact, first observed by Shelstad [Sh2] in the case of base change for C/R,
was one of several guiding principles used to arrive at the general twisted
transfer factors defined in [KS]. Thus there is nothing really new in this
section. After reviewing some basic notions, we prove Proposition A.1.10,
which gives the precise relationship between ∆0(γH , δ) and ∆0(γH , γ).

A.1.1 Set-up

We consider a finite cyclic extension E/F of local fields of characteristic zero.
We put d := [E : F ] and choose a generator σ of Gal(E/F ). In addition
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we choose an algebraic closure F of F that contains E. We write Γ for the
absolute Galois group Gal(F/F ) and WF for the absolute Weil group of F .
There is then a canonical homomorphism WF → Γ that will go unnamed.

We also consider a quasisplit connected reductive group G over F . Put
RG := ResE/F (GE), where GE is the E-group obtained from G by extension
of scalars, and ResE/F denotes Weil’s restriction of scalars. As usual there
is a natural automorphism θ of RG inducing σ on G(E) via the canonical
identification RG(F ) = G(E).

A.1.2 Description of R̂G

For any Γ-group A (that is, a group A equipped with an action of Γ) we ob-
tain by restriction a ΓE-groupAE (with ΓE denoting the subgroup Gal(F/E)
of Γ), and we write I(A) for the Γ-group obtained from AE by induction
from ΓE to Γ.

Then I(A) has the following description in terms of A. Let J denote the
set of embeddings of E in F over F , with j0 denoting the inclusion E ⊂ F .
The group Γ acts on the left of J by τj := τ ◦ j (for τ ∈ Γ, j ∈ J), and the
group Gal(E/F ) acts on the right of J by jσi := j ◦σi. An element x ∈ I(A)
is then a map j 7→ xj from J to A. An element τ ∈ Γ acts on x ∈ I(A) by

(τx)j := τ(xτ−1j).

There is a right action of Gal(E/F ) on the Γ-group I(A) given by

(xσi)j := xjσ−i .

We have R̂G = I(Ĝ) as Γ-group. Bearing in mind that for any automor-
phisms θ1, θ2 of a connected reductive group one has the rule θ̂1θ2 = θ̂2θ̂1,
we see that the natural left action of Gal(E/F ) on RG is converted into a
right action of Gal(E/F ) on R̂G, and hence that the automorphism θ̂ of R̂G

is given by

(θ̂x)j = xjσ−1 .

There is an obvious embedding

A ↪→ I(A)

of Γ-groups, sending a ∈ A to the constant map J → A with value a, and
this map identifies A with the group of fixed points of Gal(E/F ) on I(A).
In particular we get

i : Ĝ ' (R̂G)θ̂ ↪→ R̂G,

which we extend to an embedding

i : LG→ LRG

by mapping gτ to i(g)τ (for g ∈ Ĝ, τ ∈ WF ). Note that i(LG) is the group
of fixed points of the automorphism Lθ of LRG defined by

Lθ(xτ) := θ̂(x)τ

for x ∈ R̂G, τ ∈WF .
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A.1.3 Endoscopic groups and twisted endoscopic groups

Let (H, s, η) be an endoscopic datum for G. Thus s ∈ Z(Ĥ)Γ and η : LH →
LG is an L-homomorphism that restricts to an isomorphism Ĥ → (Ĝη(s))◦.
When the derived group of G is not simply connected, we should actually
allow for a z-extension of H, as in [LS1] and [KS], but since this wrinkle
does not perturb the arguments below in any non-trivial way, we prefer to
ignore it.

Following Shelstad [Sh2], we now explain how to regard H as a twisted
endoscopic group for (RG, θ). Let Z denote the centralizer of iη(Ĥ) in R̂G.
Since the centralizer of η(Ĥ) in Ĝ is η(Z(Ĥ)), we see that Z is the subgroup
of R̂G consisting of all maps J → η(Z(Ĥ)). Thus, as a group, Z can be
identified with I(Z(Ĥ)). Since Z(Ĥ) is a Γ-group, so too is I(Z(Ĥ)) = Z,
but the embedding Z ↪→ R̂G is not Γ-equivariant. The subgroup Z is
however stable under θ̂.

Using s ∈ Z(Ĥ)Γ, we now define an element s̃ ∈ Z by the rule

s̃j :=

{
s if j = j0,
1 if j 6= j0.

(A.1.3.1)

Thus s̃ maps to s under the norm map Z → Z(Ĥ) (given by x 7→
∏

j∈J xj).
It is easy to see that the composition

Ĥ
η−→ Ĝ

i−→ R̂G

identifies Ĥ with the identity component of the θ̂-centralizer of s̃ in R̂G.

A.1.4 Allowed embeddings

We now have part of what is needed to view H as a twisted endoscopic
group for (RG, θ), but in addition to s̃ we need suitable η̃ : H → LRG. In
the situation of interest in the next section of this appendix, we may even
take H = LH, so this is the only case we will discuss further.

When H = LH, in order to get a twisted endoscopic datum (H, s̃, η̃)
for (RG, θ), we need for η̃ : LH → LRG to be one of Shelstad’s allowed
embeddings [Sh2], which is to say that η̃, iη must have the same restriction
to Ĥ, and that η̃(LH) must be contained in the group of fixed points of the
automorphism Int(s̃) ◦ Lθ of LRG.

In subsection A.2.6 we will see that, when E/F is an unramified extension
of p-adic fields and σ is the Frobenius automorphism, there exists a canonical
allowed embedding η̃ determined by s̃. In this section, however, we work with
an arbitrary allowed embedding.

We are going to use η̃ to produce a 1-cocycle of WF in Z 1−θ̂−−→ Z. For this
we need to compare (as in [KS]) η̃ to the L-homomorphism

iη : LH → LG→ LRG.

Since η̃ and iη agree on Ĥ, there is a unique 1-cocycle a of WF in Z such
that

η̃(τ) = aτ iη(τ)
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for all τ ∈WF . The pair (a−1, s̃) is a 1-cocycle of WF in Z 1−θ̂−−→ Z. Here one
must not forget that the Γ-action on Z comes from viewing it as I(Z(Ĥ)).
In fact the map η̃ 7→ a sets up a bijection between allowed embeddings η̃

and 1-cocycles a of WF in Z such that (a−1, s̃) is a 1-cocycle in Z 1−θ̂−−→ Z.

A.1.5 Canonical twisted and standard transfer factors

We now choose an F -splitting [LS1, p. 224] for our quasisplit group G. This
choice determines canonical transfer factors ∆0(γH , γ) (see [LS1, p. 248]).

Our F -splitting of G can also be viewed as a σ-invariant E-splitting, and
therefore gives rise to an (F, θ)-splitting [KS, p. 61] of RG, which then de-
termines canonical twisted transfer factors ∆0(γH , δ) (see [KS, p. 62]). Our
goal is to express ∆0(γH , δ) as the product of ∆0(γH , γ) and a simple Galois
cohomological factor involving an invariant inv(γ, δ) that we are now going
to discuss.

It may be useful to recall (though it will play no role in this appendix) that
when G is unramified, and we fix an O-structure on G for which G(O) is a
hyperspecial maximal compact subgroup of G(F ), there is an obvious notion
of O-splitting, namely an F -splitting that is defined over O and reduces
modulo the maximal ideal in O to a splitting for the special fiber of G. When
such an O-splitting is used, and H is also unramified, the transfer factors
∆0(γH , γ) so obtained are the ones needed for the fundamental lemma for
the spherical Hecke algebra on G obtained from G(O). In the case that E/F
is unramified, the same is true for the twisted fundamental lemma for the
spherical Hecke algebra for G(E) obtained from G(OE).

A.1.6 Definition of the invariant inv(γ, δ)

We consider a maximal F -torus TH of H and an admissible isomorphism
TH ' T between TH and a maximal F -torus T of G. We consider γH in
TH(F ) whose image γ in T (F ) is strongly G-regular. The standard transfer
factor ∆0(γH , γ) is then defined. We also consider δ ∈ RG(F ) = G(E)
whose abstract norm [KS, 3.2] is the stable conjugacy class of γ. The twisted
transfer factor ∆0(γH , δ) is then defined.

The position of δ relative to γ is measured by

inv(γ, δ) ∈ H1(F,RT
1−θ−−→ RT ),

whose definition [KS, p. 63] we now recall. Our assumption that the abstract
norm of δ is γ does not imply that δ is stably θ-conjugate to an element in the
F -points of the θ-stable maximal F -torus RT of RG. It does however imply
that there exists g ∈ RG(F ) such that g(Nδ)g−1 = γ, where N : RG → RG is
the F -morphism x 7→ xθ(x)θ2(x) · · · θd−1(x), and γ is viewed as an element of
RG(F ) = G(E) via the obvious inclusion G(F ) ⊂ G(E). Put δ′ := gδθ(g)−1

and define a 1-cocycle t of Γ by tτ := gτ(g)−1 (for τ ∈ Γ). Note that the
strong regularity of γ implies that its centralizer in RG is RT .
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Lemma A.1.7 The pair (t−1, δ′) is a 1-cocycle of Γ in RT
1−θ−−→ RT .

Proof. We first check that δ′ ∈ RT (F ). Observe that Nδ′ = γ. Therefore
γ = θ(γ) = θ(Nδ′) = (δ′)−1(Nδ′)δ′ = (δ′)−1γδ′,

which shows that δ′ centralizes γ and hence lies in RT . We note for later
use that the θ-centralizer of δ′ in RG is T , viewed as the subtorus of θ-fixed
points in RT .

Next, a short calculation using the definitions of δ′ and tτ shows that
(δ′)−1tττ(δ′) = θ(tτ ). (A.1.7.1)

To see that tτ ∈ RT (F ), we begin by noting that (A.1.7.1) says that tτ
θ-conjugates τ(δ′) into δ′. Now

N(τ(δ′)) = τ(Nδ′) = τ(γ) = γ = N(δ′),
showing that the two elements τ(δ′) and δ′ in RT have the same image
under the norm homomorphism N : RT → RT , and hence that there exists
u ∈ RT (F ) that θ-conjugates δ′ into τ(δ′). Thus tτu lies in the θ-centralizer
(namely T = Rθ

T ) of δ′, which implies that tτ lies in RT (F ).
The 1-cocycle condition for (t−1, δ′) is none other than (A.1.7.1), and the

proof is complete. �

Definition A.1.8 We define inv(γ, δ) to be the class in H1(F,RT
1−θ−−→ RT )

of the 1-cocycle (t−1, δ′).

A.1.9 Main proposition

The last thing to do before stating Proposition A.1.10 is to relate Z to R̂T .
This is very easy. Since TH is a maximal torus in H, there is a canonical Γ-
equivariant embedding Z(Ĥ) ↪→ T̂H . Our admissible isomorphism TH ' T
yields T̂H ' T̂ , so that we end up with a Γ-equivariant embedding Z(Ĥ) ↪→
T̂ , to which we may apply our restriction-induction functor I, obtaining a
Γ-equivariant embedding

k : Z ↪→ R̂T ,

which is compatible with the θ̂-actions as well. We then obtain an induced
homomorphism

H1(WF ,Z
1−θ̂−−→ Z) → H1(WF , R̂T

1−θ̂−−→ R̂T ). (A.1.9.1)
Near the end of subsection A.1.4 we used s̃,η̃ to produce a 1-cocycle

(a−1, s̃) of WF in Z 1−θ̂−−→ Z, to which we may apply the homomorphism

k, obtaining a 1-cocycle in R̂T
1−θ̂−−→ R̂T , which, since k is injective, we may

as well continue to denote simply by (a−1, s̃). Recall from Appendix A of
[KS] that there is a C×-valued pairing 〈·, ·〉 between H1(F,RT

1−θ−−→ RT ) and

H1(WF , R̂T
1−θ̂−−→ R̂T ). Thus it makes sense to form the complex number

〈inv(γ, δ), (a−1, s̃)〉.
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Proposition A.1.10 There is an equality

∆0(γH , δ) = ∆0(γH , γ)〈inv(γ, δ), (a−1, s̃)〉.

Proof. Since the restricted root system [KS, 1.3] of RT can be identified with
the root system of T , we may use the same a-data and χ-data for T and RT .
When this is done, one has

∆I(γH , δ) = ∆I(γH , γ)
∆II(γH , δ) = ∆II(γH , γ)
∆IV (γH , δ) = ∆IV (γH , γ).

It remains only to prove that

∆III(γH , δ) = ∆III(γH , γ)〈inv(γ, δ), (a−1, s̃)〉.
To do so we must recall how ∆III is defined. We use (see [LS1]) the chosen
χ-data to obtain embeddings

ξ1 : LT ↪→ LG,

ξ2 : LT ↪→ LH.

Replacing ξ1 by a conjugate under Ĝ, we may assume that ηξ2 and ξ1 agree
on T̂ , and then there exists a unique 1-cocycle b of WF in T̂ so that

(ηξ2)(τ) = ξ1(bττ)

for all τ ∈WF . We then have (see [LS1, p. 246])

∆III(γH , γ) = 〈γ, b〉,
where 〈·, ·〉 now denotes the Langlands pairing between T (F ) andH1(WF , T̂ ).

Similarly we have two embeddings iξ1, η̃ξ2 : LT ↪→ LRG that agree on T̂ ,
and therefore there exists a unique 1-cocycle c of WF in R̂T (which arises
here because it is the centralizer in R̂G of (iξ1)(T̂ )) such that

(η̃ξ2)(τ) = cτ
(
(iξ1)(τ)

)
for all τ ∈WF . Then (c−1, s̃) is a 1-cocycle of WF in R̂T

1−θ̂−−→ R̂T , and (see
pages 40 and 63 of [KS])

∆III(γH , δ) = 〈inv(γ, δ), (c−1, s̃)〉.
It is clear from the definitions that the 1-cocycles a, b, c satisfy the equality

c = ab, in which we use k : Z ↪→ R̂T and T̂ = (R̂T )θ̂ ↪→ R̂T to view a, b as
1-cocycles in R̂T . Therefore

(c−1, s̃) = (a−1, s̃)(b−1, 1),

which shows that

∆III(γH , δ) = 〈inv(γ, δ), (a−1, s̃)〉 〈inv(γ, δ), (b, 1)〉−1.

It remains only to observe that 〈inv(γ, δ), (b, 1)〉−1 = 〈γ, b〉, a consequence of
the first part of Lemma A.1.12, to be proved next. Here we use the obvious
fact that the image of inv(γ, δ) under H1(F,RT

1−θ−−→ RT ) → T (F ) is γ. �
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A.1.11 Compatibility properties for the pairing 〈·, ·〉

In this subsection we consider a homomorphism f : T → U of F -tori. We
follow all the conventions of Appendix A in [KS] concerning H1(F, T → U)
and H1(WF , Û → T̂ ). We denote by K the kernel of f and by C the cokernel
of f . Of course C is necessarily a torus, and we now assume that K is also
a torus. Dual to the exact sequence

1 → K → T → U → C → 1

is the exact sequence

1 → Ĉ → Û → T̂ → K̂ → 1,

which we use to identify Ĉ with ker f̂ and K̂ with cok f̂ . From [KS, p. 119]
we obtain two long exact sequences, the relevant portions of which are

H1(F,K) i′−→H1(F, T → U)
j′−→ C(F )

H1(WF , Ĉ) î′−→H1(WF , Û → T̂ )
ĵ′−→ K̂Γ.

The following lemma concerns the compatibility of these two exact sequences
with the pairing [KS] between H1(F, T → U) and H1(WF , Û → T̂ ).

Lemma A.1.12 The pairing 〈·, ·〉 satisfies the following two compatibilities.

1. Let x ∈ H1(F, T → U) and c ∈ H1(WF , Ĉ). Then

〈x, î′c〉 = 〈j′x, c〉−1,

where the pairing on the right side is the Langlands pairing between
C(F ) and H1(WF , Ĉ).

2. Let k ∈ H1(F,K) and x̂ ∈ H1(WF , Û → T̂ ). Then

〈i′k, x̂〉 = 〈k, ĵ′x̂〉,

where the pairing on the right is the Tate-Nakayama pairing between
the groups H1(F,K) and K̂Γ.

Proof. Using that the pairing in [KS] is functorial in T → U (apply this
functoriality to (K → 1) → (T → U) and (T → U) → (1 → C)), we reduce
the lemma to the case in which one of T ,U is trivial, which can then be
handled using the compatibilities (A.3.13) and (A.3.14) of [KS]. �

A.2 RELATION BETWEEN inv(γ, δ) AND α(γ, δ)

We retain all the assumptions and notation of the previous section. In par-
ticular we have the invariant inv(γ, δ) ∈ H1(F,RT

1−θ−−→ RT ). Throughout
this section we assume that E/F is an unramified extension of p-adic fields,
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and that σ is the Frobenius automorphism of E/F . In this situation there
is another invariant measuring the position of δ relative to γ. This invariant
arose naturally in [K9] in the course of stabilizing the Lefschetz formula for
Shimura varieties over finite fields. This second invariant, denoted α(γ, δ),
lies in the group B(T ) introduced in [K5] and studied further in [K12].

The goal of this section is to compare inv(γ, δ) and α(γ, δ) and then to
rewrite the ratio of ∆0(γH , δ) and ∆0(γH , γ) in terms of α(γ, δ) rather than
inv(γ, δ). Since the two invariants lie in different groups, the reader may be
wondering what it means to compare them. Note however that H1(F, T )
injects naturally into both H1(F,RT

1−θ−−→ RT ) and B(T ), which suggests
that we need a group A and a commutative diagram of the form

H1(F, T ) −−−−→ H1(F,RT
1−θ−−→ RT )y y

B(T ) −−−−→ A

in which the two new arrows are injective. It should seem plausible that A
ought to be a groupB(RT

1−θ−−→ RT ) bearing the same relation toH1(F,RT
1−θ−−→

RT ) as B(T ) does to H1(F, T ).
Such a group has already been been introduced and studied in sections

9-13 of [K12]. The rest of this section will lean heavily on those sections
of [K12], whose raison d’être is precisely this application to twisted transfer
factors.

This section begins with a review of the relevant material from [K12],
and then recalls the definition of α(γ, δ). Next comes a theorem comparing
inv(γ, δ) and α(γ, δ). The two invariants do not become equal in B(RT

1−θ−−→
RT ); the relation between them is more subtle than that, as we will see in
Theorem A.2.5. Finally, we express the ratio of twisted to standard transfer
factors in terms of α(γ, δ).

A.2.1 Review of B(T → U)

Let L denote the completion of the maximal unramified extension F un of
F in F . We use σ to denote the Frobenius automorphism of L/F . We are
already using σ to denote the Frobenius automorphism of E/F , but since
E ⊂ F un ⊂ L and σ on L restricts to σ on E, this abuse of notation should
lead to no confusion.

In this subsection f : T → U will denote any homomorphism of F -tori.
We then have the group [K12, 12.2]

B(T → U) := H1(〈σ〉, T (L) → U(L)).
Elements of B(T → U) can be represented by simplified 1-cocycles [K12,
12.1] (t, u), where t ∈ T (L), u ∈ U(L) satisfy the cocycle condition f(t) =
u−1σ(u). Simplified 1-coboundaries are pairs (t−1σ(t), f(t)) with t ∈ T (L).

In [K12, 11.2] a canonical isomorphism
Homcont(B(T → U),C×) ' H1(WF , Û → T̂ )
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is constructed; here we implicitly used the canonical isomorphism [K12, 12.2]
between B(T → U) and B(T → U), but as we have no further use for
B(T → U), we will not review its definition. In particular we have a C×-
valued pairing between B(T → U) and H1(WF , Û → T̂ ). Moreover there is
a natural injection [K12, 9.4]

H1(F, T → U) → B(T → U). (A.2.1.1)

Our pairing restricts to one between H1(F, T → U) and H1(WF , Û → T̂ ),
and this restricted pairing agrees [K12, 11.1] with the one in Appendix A of
[KS].

Now we come to the material in [K12, §13], which concerns the case in
which our homomorphism of tori is of the very special form RT

1−θ−−→ RT

for some F -torus T . In this case it is shown that the exact sequence [K12,
(13.3.2)]

1 → B(T ) → B(RT
1−θ−−→ RT ) → T (F ) → 1

has a canonical splitting, so that there is a canonical direct product decom-
position

B(RT
1−θ−−→ RT ) = B(T )× T (F ). (A.2.1.2)

Similarly it is shown that the exact sequence [K12, (13.3.8)]

1 → H1(WF , T̂ ) → H1(WF , R̂T
1−θ̂−−→ R̂T ) → T̂Γ → 1

has a canonical splitting, so that there is a canonical direct product decom-
position

H1(WF , R̂T
1−θ̂−−→ R̂T ) = T̂Γ ×H1(WF , T̂ ). (A.2.1.3)

Let x ∈ B(RT
1−θ−−→ RT ) and x̂ ∈ H1(WF , R̂T

1−θ̂−−→ R̂T ). As we have
seen, we may then pair x with x̂, obtaining 〈x, x̂〉 ∈ C×. Using (A.2.1.2) and
(A.2.1.3), we decompose x as (x1, x2) ∈ B(T ) × T (F ), and x̂ as (x̂1, x̂2) ∈
T̂Γ×H1(WF , T̂ ). We also have the pairing 〈x1, x̂1〉 coming from the canon-
ical isomorphisms B(T ) = X∗(T )Γ = X∗(T̂Γ) of [K5, K12], as well as the
Langlands pairing 〈x2, x̂2〉.

Lemma A.2.2 There is an equality

〈x, x̂〉 = 〈x1, x̂1〉〈x2, x̂2〉−1.

Proof. This follows from [K12, Prop. 13.4] together with the obvious analog
of Lemma A.1.12 with H1(F, T → U) replaced by B(T → U). �
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A.2.3 Review of α(γ, δ)

Our assumptions on γ, δ are the same as in A.1.6. However the group RG

will play no role in the definition of α(γ, δ), so we prefer to view δ as an
element of G(E) such that Nδ = δσ(δ) · · ·σd−1(δ) is conjugate in G(F ) to
our strongly regular element γ ∈ T (F ). Then, since H1(F un, T ) is trivial,
there exists c ∈ G(F un) ⊂ G(L) such that

cγc−1 = Nδ. (A.2.3.1)

Now define b ∈ G(F un) by b := c−1δσ(c). Applying σ to (A.2.3.1), we find
that b centralizes γ, hence lies in T (F un) ⊂ T (L). Making a different choice
of c replaces b by a σ-conjugate under T (F un). Thus it makes sense to define
α(γ, δ) ∈ B(T ) as the σ-conjugacy class of b.

A.2.4 Precise relation between inv(γ, δ) and α(γ, δ)

Now that we have reviewed α(γ, δ), we can prove one of the main results
of this appendix. We denote by invB(γ, δ) the image of inv(γ, δ) under the
canonical injection (A.2.1.1)

H1(F,RT
1−θ−−→ RT ) ↪→ B(RT

1−θ−−→ RT ).

Theorem A.2.5 Under the canonical isomorphism

B(RT
1−θ−−→ RT ) = B(T )× T (F ),

the element invB(γ, δ) goes over to the pair (α(γ, δ)−1, γ).

Proof. As usual when working with cocycles, one has to make various choices.
In this proof, unless the choices are made carefully, invB(γ, δ) will differ from
(α(γ, δ)−1, γ) by a complicated 1-cocycle in RT

1−θ−−→ RT that one would then
have to recognize as a 1-coboundary. We will take care that this does not
happen.

We have already discussed RG, inv(γ, δ), and α(γ, δ). In particular we
have chosen c ∈ G(F un) such that cγc−1 = Nδ and used it to form the
element b = c−1δσ(c) ∈ T (L) representing α(γ, δ) ∈ B(T ). In order to define
inv(γ, δ) we need to choose an element g ∈ RG(F ) such that g(Nδ)g−1 = γ.
The best choice for g is by no means the most obvious one. The one we
choose lies in RG(F un) and is given by a certain function J → G(F un).

Recall that J is the set of F -embeddings of E in F , and that j0 ∈ J
is the inclusion E ⊂ F . We now identify J with Z/dZ, with i ∈ Z/dZ
corresponding to the embedding e 7→ σie of E in F . Thus RG(F un) becomes
identified with the set of functions i 7→ xi from Z/dZ to G(F un), and the
same is true with L in place of F un. The Galois action of σ on x ∈ RG(F un)
is then given by

(σx)i = σ(xi−1),
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while the effect on x of the automorphism θ of RG is given by
(θx)i = xi+1.

For i = 0, 1, . . . , d−1 we put gi := c−1δσ(δ)σ2(δ) · · ·σi−1(δ). In particular
g0 = c−1. Then i 7→ gi is the desired element g ∈ RG(F un) satisfying
g(Nδ)g−1 = γ. We leave this computation to the reader, remarking only
that γ corresponds to the element i 7→ γ in RG(F un), while δ corresponds
to i 7→ σi(δ), so that Nδ corresponds to i 7→ σi(δ)σi+1(δ) · · ·σi+d−1(δ).

Since our chosen g lies in RG(F un), the 1-cocycle tτ = gτ(g)−1 ∈ RT (F un)
is unramified, which is to say that tτ depends only on the restriction of
τ to F un. Thus we get a well-defined element u ∈ RT (F un) by putting
u := t−1

τ for any τ ∈ Γ such that τ restricts to σ on F un. It is then clear
from the definitions that invB(γ, δ) is represented by the simplified 1-cocycle
(u, δ′) ∈ RT (L)×RT (L). Here, as before, δ′ = gδθ(g)−1.

The element (u, δ′) can be written as the product of two simplified 1-
cocycles (u′, t′), (u′′, t′′) in RT (L) × RT (L). Of course elements in RT (L)
are given by functions Z/dZ → T (L). We take u′ to be the constant function
with value b−1. We take t′ to be the identity. We take u′′ to be the function
given by

u′′i =

{
γ if i = 0 in Z/dZ,
1 otherwise.

Finally, we take t′′ to be the function given by

t′′i =

{
γ if i = −1 in Z/dZ,
1 otherwise.

It is straightforward to verify that u = u′u′′ and δ′ = t′t′′. Since t′ = 1 and
u′ is fixed by θ, it is clear that (u′, t′) is a 1-cocycle. So too is (u′′, t′′), since
its product with (u′, t′) is a 1-cocycle.

Since b represents α(γ, δ) ∈ B(T ), and since the image of b−1 under T =
Rθ

T ↪→ RT is u′, it is clear that (u′, t′) = (b−1, 1) represents the image of

α(γ, δ)−1 under the canonical injection B(T ) ↪→ B(RT
1−θ−−→ RT ).

It remains only to verify that (u′′, t′′) represents the image of γ under the
canonical splitting of the natural surjection

B(RT
1−θ−−→ RT ) � T (F ).

Since this surjection sends (u′′, t′′) to t′′0 t
′′
1 · · · t′′d−1 = γ, we just need to

check that the class of (u′′, t′′) lies in the subgroup of B(RT
1−θ−−→ RT )

complementary to B(T ) that is described in [K12, p. 326]. This is clear,
since (u′′, t′′) has the form (σ(x), x) for x = t′′, and every value of i 7→ t′′i
lies in T (L)〈σ〉 = T (F ). �

A.2.6 More about allowed embeddings

As mentioned before, now that we are taking E/F to be an unramified
extension of p-adic fields, and σ to be the Frobenius automorphism of E/F ,
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there is a canonical choice of allowed embedding η̃ : LH → LRG determined
by s̃. As we have seen, giving η̃ is the same as giving a 1-cocycle a of WF in

Z such that (a−1, s̃) is a 1-cocycle of WF in Z 1−θ̂−−→ Z.
Before describing the canonical choice for the 1-cocycle a, we need to recall

the exact sequence

1 → I →WF → 〈σ〉 → 1,

where I denotes the inertia subgroup of Γ. By an unramified 1-cocycle of
WF in Z we mean one which is inflated from a 1-cocycle of 〈σ〉 in ZI . Note
that giving a 1-cocycle of 〈σ〉 in ZI is the same as giving an element in ZI ,
namely the value of the 1-cocycle on the canonical generator σ of 〈σ〉.

Lemma A.2.7 The element s̃ satisfies the following properties.

1. s̃j ∈ Z(Ĥ)Γ for all j ∈ J .

2. s̃ ∈ ZI .

3. θ̂(s̃) = σ(s̃).

Proof. (1) Recall that s̃j0 = s and that s̃j = 1 for j 6= j0. Since s ∈ Z(Ĥ)Γ,
we conclude that (1) is true.

(2) Since E/F is unramified, the inertia group I acts trivially on J . There-
fore for τ ∈ I we have

(τ s̃)j = τ(s̃j) = s̃j ,

showing that τ fixes s̃.
(3) Again using that all values of s̃ are fixed by Γ, we compute that

(σ(s̃))j = σ(s̃σ−1j) = s̃σ−1j = s̃jσ−1 = (θ̂(s̃))j ,

showing that σ(s̃) = θ̂(s̃). �

Corollary A.2.8 Let a be the unramified 1-cocycle of WF in Z sending σ

to s̃. Then (a−1, s̃) is a 1-cocycle of WF in Z 1−θ̂−−→ Z.

Proof. It follows from the second part of the lemma that a is a valid unram-
ified 1-cocycle, and it follows from the third part of the lemma that (a−1, s̃)
satisfies the 1-cocycle condition. �

Combining this Corollary with Theorem A.2.5, we obtain

Theorem A.2.9 There is an equality

〈inv(γ, δ), (a−1, s̃)〉 = 〈α(γ, δ), s〉−1,

the pairing on the right being the usual one between B(T ) and T̂Γ.
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Proof. Using simplified 1-cocycles of WF in Z 1−θ̂−−→ Z, the 1-cocycle (a−1, s̃)
becomes (s̃−1, s̃), which is of the form (d−1, d) for d = s̃. Moreover, s̃j ∈
Z(Ĥ)Γ = (Z(Ĥ)I)〈σ〉 for all j ∈ J . It follows from the discussion on pages
327, 328, 331 of [K12] that (s̃−1, s̃) represents a class lying in the canonical

subgroup of H1(WF , R̂T
1−θ̂−−→ R̂T ) complementary to H1(WF , T̂ ). It then

follows from Theorem A.2.5, Lemma A.2.2 and the previous corollary that

〈inv(γ, δ), (a−1, s̃)〉 = 〈α(γ, δ)−1, s〉〈γ, 1〉−1 = 〈α(γ, δ), s〉−1.

We used that the image of (a−1, s̃) under H1(WF ,Z
1−θ̂−−→ Z) → Z(Ĥ)Γ is

s, which boils down to the fact that the product of the d values of s̃ is equal
to s. �

Corollary A.2.10 When we use the allowed embedding η̃ determined by
the special 1-cocycle (a−1, s̃) described above, the twisted transfer factor
∆0(γH , δ) is related to the standard transfer factor ∆0(γH , γ) by the equality

∆0(γH , δ) = ∆0(γH , γ)〈α(γ, δ), s〉−1.

Proof. Use the previous theorem together with Proposition A.1.10. �

Corollary A.2.10 justifies the use of 〈α(γ0; δ), s〉∆p(γH , γ0) as twisted trans-
fer factors in [K9, (7.2)], at least for strongly G-regular γH . Under the ad-
ditional assumption that the derived group of G is simply connected, the
next section will treat all (G,H)-regular γH . That 〈α(γ0; δ), s〉 (rather than
its inverse) appears in [K9] is not a mistake; it is due to the fact that the
normalization of transfer factors, both standard and twisted, used in [K9]
is opposite (see [K9, p. 178]) to the one used in [LS1, KS]. However there
are some minor mistakes in the last two lines of page 179 of [K9]: each of
the five times that η appears it should be replaced by η̃, and the symbols
= to σ near the end of the next to last line should all be deleted.

A.3 MATCHING FOR (G,H)-REGULAR ELEMENTS

In this section G, F ⊂ E ⊂ L, σ, H are as in section A.2. However we
will now consider transfer factors and matching of orbital integrals for all
(G,H)-regular semisimple γH ∈ H(F ). For simplicity we assume that the
derived group of G is simply connected, as this ensures the connectedness of
the centralizer Gγ of any semisimple γ in G.

A.3.1 Image of the stable norm map

We begin by recalling two facts about the stable norm map, which we will
use to prove a lemma needed later when we prove vanishing of certain stable
orbital integrals for non-norms.
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Let D denote the quotient of G by its derived group (which we have
assumed to be simply connected).

Proposition A.3.2 (Labesse) Let γ be an elliptic semisimple element in
G(F ). Then γ is a stable norm from G(E) if and only if the image of γ in
D(F ) is a norm from D(E).

Proof. This is a special case of Proposition 2.5.3 in [La3]. Of course the
implication =⇒ is obvious and is true even when γ is not elliptic. �

Proposition A.3.3 (Haines) Let M be a Levi subgroup of G and let γ be
a semisimple element in M(F ) such that Gγ ⊂M . Then γ is a stable norm
from G(E) if and only if it is a stable norm from M(E).

Proof. This is part of Lemma 4.2.1 in [Ha]. �

These two results have the following easy consequence.

Lemma A.3.4 Let γ be a semisimple element in G(F ) that is not a stable
norm from G(E). Then there exists a neighborhood V of γ in G(F ) such
that no semisimple element in V is a stable norm from G(E).

Proof. Let A be the split component of the center of Gγ . The centralizer
M of A in G is then a Levi subgroup of G containing Gγ . Note that γ is
elliptic in M(F ). The property of having a simply connected derived group
is inherited by M , and we write DM for the quotient of M by its derived
group.

Since γ is not a stable norm from G(E), it is certainly not a stable
norm from M(E). By Labesse’s result the image γ of γ in DM (F ) is
not a norm from DM (E). Since the image of the norm homomorphism
DM (E) → DM (F ) is an open subgroup of DM (F ), there is an open neigh-
borhood of γ in DM (F ) consisting entirely of non-norms. Certainly any
semisimple element of M(F ) in the preimage V1 of this neighborhood is not
a stable norm from M(E).

Consider the regular function m 7→ det(1 − Ad(m); Lie(G)/Lie(M)) on
M . Let M ′ be the Zariski open subset of M where this regular function
does not vanish. Equivalently M ′ is the set of points m ∈M whose central-
izer in Lie(G) is contained in Lie(M), or, in other words, whose connected
centralizer in G is contained in M . In particular γ belongs to M ′(F ), so
that M ′(F ) is another open neighborhood of γ. Applying Haines’ result, we
see that no semisimple element in the open neighborhood V2 := V1 ∩M ′(F )
of γ in M(F ) is a stable norm from G(E).

Finally, consider the morphism G ×M ′ → G sending (g,m′) to gm′g−1.
It is a submersion, so the image V of G(F ) × V2 provides the desired open
neighborhood V of γ in G(F ). �
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A.3.5 Review of α(γ, δ) in the general case

Let γ be a semisimple element in G(F ) and put I := Gγ , a connected
reductive F -group. Suppose that γ is the stable norm of some θ-semisimple
δ ∈ G(E), and let J denote the θ-centralizer {x ∈ RG : x−1δθ(x) = δ} of δ,
another connected reductive F -group.

There exists c ∈ G(L) such that

cγc−1 = Nδ, (A.3.5.1)

where, as before, Nδ = δσ(δ) · · ·σd−1(δ) ∈ G(E). Now define b ∈ G(L) by
b := c−1δσ(c). Applying σ to (A.3.5.1), we find that b centralizes γ, hence
lies in I(L). Making a different choice of c replaces b by a σ-conjugate under
I(L). Thus it makes sense to define α(γ, δ) ∈ B(I) as the σ-conjugacy class
of b.

Lemma A.3.6 The element α(γ, δ) is basic in B(I).

Proof. We are free to compute α(γ, δ) using any c satisfying (A.3.5.1), and
therefore we may assume that c ∈ G(F un). Thus there exists a positive
integer r such that c is fixed by σdr. Inside the semidirect product I(L)o〈σ〉
we then have (bσ)dr = γrσdr, and since γ is central in I, it follows that b is
basic [K5] in I(L). �

Since b is basic, we may use it [K5, K12] to twist the Frobenius action
on I(L), obtaining an inner twist I ′ of I such that I ′(L) = I(L) and with
the Frobenius actions σI′ , σI on I ′(L), I(L) respectively being related by
σI′(x) = bσI(x)b−1 for all x ∈ I ′(L) = I(L).

Recall that we are writing elements x ∈ RG as functions i 7→ xi from
Z/dZ to G. There is a homomorphism p : RG → G given by p(x) := x0, but
it is only defined over E (not over F ). The centralizer GNδ of Nδ ∈ G(E)
is also defined over E, and p restricts to an E-isomorphism pJ : J → GNδ.
Since cγc−1 = Nδ, the inner automorphism Int(c) induces an L-isomorphism
I → GNδ. Therefore x 7→ c−1pJ(x)c induces an L-isomorphism ψ : J → I.

Lemma A.3.7 The L-isomorphism ψ : J → I is an F -isomorphism J → I ′.
In other words, when we use b to twist the Frobenius action of σ on I, we
obtain J .

Proof. Let x ∈ J(L). We must show that ψ(σ(x)) = bσ(ψ(x))b−1. The
left side works out to c−1σ(x)0c = c−1σ(x−1)c, while the right side works
out to (c−1δσ(c))σ(c−1x0c)(c−1δσ(c))−1 = c−1δσ(x0)δ−1c, so we just need
to observe that δσ(x0)δ−1 = σ(x−1), a consequence of the fact that σ(x)
θ-centralizes δ (apply p to the equality δθ(σ(x))δ−1 = σ(x)). �
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A.3.8 Comparison of α(γ, δ) with α(γt, δt)

Our next task is to compare α(γ, δ) with α(γ′, δ′) for suitable (γ′, δ′) near
(γ, δ) with γ′ regular in G. This will be needed in order to understand the
behavior of twisted transfer factors near (γ, δ). As usual in Harish-Chandra’s
method of semisimple descent, we obtain suitable (γ′, δ′) in the following way.

We retain all the notation of the previous subsection. Choose an elliptic
maximal torus T in I. Since T is elliptic, it automatically transfers to the
inner form J of I. Let us now see more concretely how this comes about.

From Lemma A.3.7 we know that the L-isomorphism ψ : J → I is an F -
isomorphism J → I ′. Let i ∈ I(L). Then the L-isomorphism ψ−1 ◦ Int(i) :
I → J serves to transfer T from I to J if and only if its restriction to T is
defined over F . This happens if and only if bσ(iti−1)b−1 = iσ(t)i−1 for all
t ∈ T (L), or, equivalently, if and only if i−1bσ(i) ∈ T (L). Here we used that
T (L) is Zariski dense in T (L̄).

Since T is elliptic in I, the image of the map B(T ) → B(I) is the set
B(I)b of basic elements in B(I) [K5, Proposition 5.3]. Therefore the fiber
over α(γ, δ) is non-empty, which means we may choose i ∈ I(L) such that
bT := i−1bσ(i) ∈ T (L). As above we then obtain an F -embedding k : T ↪→ J
(given by the restriction to T of ψ−1 ◦ Int(i) : I → J). A standard twisting
argument identifies the fiber over α(γ, δ) with ker[H1(F, T ) → H1(F, J)],
the set that indexes the J(F )-conjugacy classes of embeddings k′ : T ↪→ J
that are stably conjugate to k. Therefore by varying the choice of i, we
obtain all the different ways k′ : T ↪→ J of transferring T to J . We will work
with our particular i, bT , k, but of course everything we do will also apply to
the other choices we could have made.

Now we are in a position to compute α(γ′, δ′) for certain suitably regular
(γ′, δ′) near (γ, δ). Let t ∈ T (F ) and put δt := k(t)δ ∈ RG(F ) = G(E). Us-
ing that k(t) θ-centralizes δ, we see that the stable norm of δt is represented
by γt := tdγ ∈ T (F ). Let U denote the Zariski open subset of T consisting
of those t ∈ T such that γt is G-regular. For t ∈ U(F ) the centralizer of γt

in G is T , and therefore α(γt, δt) lies in B(T ).

Proposition A.3.9 For t ∈ U(F ) the element α(γt, δt) ∈ B(T ) is repre-
sented by tbT ∈ T (L).

Proof. Recall that ψ : J → I is given by Int(c−1) ◦ pJ . Therefore k−1 :
k(T ) → T is given by Int(i−1c−1) ◦ pJ . Now Nδt = p(k(td))Nδ. Apply-
ing Int(i−1c−1) to both sides of this equality (and bearing in mind that
i centralizes γ), we find that Int(i−1c−1)(Nδt) = tdγ. Therefore α(γt, δt)
is represented by i−1c−1δtσ(c)σ(i). The identification RG(F ) = G(E) is
induced by p : RG → G, so that in G(E) we have the equality δt =
pJ(k(t))δ. Therefore our representative for α(γt, δt) can be rewritten as(
Int(i−1c−1)(pJ(k(t)))

)
i−1c−1δσ(c)σ(i), which simplifies to tbT , as desired.

�



main April 10, 2009

COMPARISON OF TWO VERSIONS OF TWISTED TRANSFER FACTORS 217

Let K denote the kernel of the homomorphism T (F ) → B(T ) that sends
t ∈ T (F ) to the σ-conjugacy class of t in T (L). It follows easily from [K12,
§7] that K is an open subgroup of T (F ). The previous proposition then has
the immediate

Corollary A.3.10 For all t ∈ U(F )∩K the element α(γt, δt) ∈ B(T ) maps
to α(γ, δ) under the map B(T ) → B(I) induced by T ⊂ I.

This corollary is exactly what will be needed in the descent argument to
come, through the intermediary of Proposition A.3.12.

A.3.11 Twisted transfer factors for (G,H)-regular γH

Consider a (G,H)-regular semisimple element γH in H(F ). The centralizer
IH of γH in H is connected [K7, Lemma 3.2]. Choose an elliptic maximal
torus TH in IH . In particular TH is a maximal torus in H containing γH .
Choose an admissible embedding TH ↪→ G. We write γ, T for the images
under this embedding of γH , TH respectively. Then [K7] the centralizer I of
γ in G is an inner twist of IH . Of course T is an elliptic maximal torus in
I, and our chosen isomorphism TH

∼= T exhibits T as the transfer of TH to
the inner twist I of IH .

We need a twisted transfer factor ∆0(γH , δ) for any θ-semisimple δ ∈ G(E)
whose stable norm is γ. These were not defined in [KS], but in the current
context, that of cyclic base change for unramified E/F , with σ being the
Frobenius automorphism and the derived group ofG being simply connected,
they were defined in [K9] by the formula

∆0(γH , δ) := ∆0(γH , γ)〈α(γ, δ), s〉−1, (A.3.11.1)

with ∆0(γH , γ) defined as in [LS2, 2.4]. (See the comment following Corol-
lary A.2.10 concerning the opposite normalization of transfer factors used in
[K9].) The pairing occurring in this formula is between B(I)b and Z(Î)Γ,
and comes from the canonical isomorphism [K5, K12] B(I)b ' X∗(Z(Î)Γ).
In forming this pairing, we view s ∈ Z(Ĥ)Γ as an element of Z(Î)Γ via

Z(Ĥ)Γ ⊂ Z(ÎH)Γ = Z(Î)Γ.

By Corollary A.2.10 this definition of ∆0(γH , δ) agrees with the one in [KS]
when γH is G-regular.

We now apply the work we did in the previous subsection to (γ, δ). With
notation as in that subsection we can now formulate

Proposition A.3.12 There is an open neighborhood of 1 in T (F ) such that

∆0(tdγH , k(t)δ) = ∆0(γH , δ)

for all t in this neighborhood for which tdγH is G-regular. In writing tdγH we
are viewing t as an element in TH(F ) via our chosen isomorphism TH ' T .
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Proof. This follows from Corollary A.3.10 and the fact that t 7→ ∆0(tdγH , t
dγ)

is defined and constant near t = 1 (see [LS2, 2.4], where γH , γ are said to
be equisingular). �

A.3.13 Matching of orbital integrals for (G,H)-regular γH

We continue with γH , γ, IH , I as in the previous subsection. For fH ∈
C∞c (H(F )) we consider the stable orbital integral

SOγH
(fH) =

∑
γ′H

e(Iγ′H )Oγ′H
(fH),

where the sum is taken over conjugacy classes of γ′H ∈ H(F ) that are stably
conjugate to γH , and Iγ′H denotes the (connected) centralizer of γ′H in H.
For f ∈ C∞c (G(E)) we consider the endoscopic linear combination of twisted
orbital integrals

TOγH
(f) =

∑
δ

e(Jδ)∆0(γH , δ)TOδ(f)

determined by γH . Thus the sum is taken over twisted conjugacy classes
of δ ∈ G(E) whose stable norm is γ, and Jδ is the twisted centralizer of δ.
When γ is not a stable norm from G(E), we have TOγH

(f) = 0, since the
sum occurring in its definition is then empty.

Proposition A.3.14 Suppose that

SOγH
(fH) = TOγH

(f)

for all G-regular semisimple γH in H(F ). Then the same equality holds for
all (G,H)-regular semisimple γH in H(F ).

Proof. We will just sketch the proof since it is essentially the same as that
of Proposition 2 in [K8, p. 640], as well as those of Lemma 2.4.A in [LS2]
and Proposition 7.2 in [Cl3].

Fix (G,H)-regular semisimple γH ∈ H(F ). Introduce TH , T as in the pre-
vious subsection. Assume for the moment that γ is a stable norm. Looking
at the degree 0 part of the germs about 1 of the functions t 7→ SOtdγH

(fH)
and t 7→ TOtdγH

(f) on T (F ), we conclude from Proposition A.3.12 that

m
∑
γ′H

(−1)q(Iγ′
H

)
Oγ′H

(fH) = m
∑

δ

(−1)q(Jδ)∆0(γH , δ)TOδ(f),

where q assigns to a connected reductive F -group the F -rank of its de-
rived group, and m is the common value of the cardinalities of all the sets
ker[H1(F, TH) → H1(F, Iγ′H )] and ker[H1(F, T ) → H1(F, Jδ)]. Of course we
used sensible Haar measures and Rogawski’s formula for the Shalika germ
corresponding to the identity element, just as in the previously cited proofs.
We also used that, when tdγ is G-regular, the θ-conjugacy classes having
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stable norm tdγ are represented by elements of the form k′(t)δ, with δ again
varying through twisted conjugacy classes of δ ∈ G(E) whose stable norm
is γ, and (for fixed δ with stable norm γ) k′ varying through a set of repre-
sentatives for the stable conjugacy classes of embeddings k′ : T ↪→ Jδ of the
kind appearing in the discussion leading up to Proposition A.3.9. Dividing
both sides of our equality by m(−1)q(I0), where I0 is a common quasisplit
inner form of all the groups Iγ′H and Jδ, we obtain SOγH

(fH) = TOγH
(f),

as desired.
When γ is not a stable norm from G(E), we must show that SOγH

(fH) =
0. Looking at the degree 0 part of the stable Shalika germ expansion for
the maximal torus TH in H (see the sentence just before Proposition 1 in
[K8, p. 639]), we see that it is enough to show that SOtH

(fH) = 0 for all
G-regular tH ∈ TH(F ) near γH . For this it is enough to show that elements
tH near γH , when viewed in T (F ), are not stable norms from G(E), and this
follows from Lemma A.3.4. �

A.3.15 A correction to [K8]

In the course of looking through section 2 of [K8] I noticed an error in
the definition of the Euler-Poincaré function fEP . The sign character sgnσ

occurring in the definition of fEP should be defined as follows: sgnσ(g)
is 1 if g preserves the orientation of the polysimplex σ, and it is −1 if g
reverses that orientation. When σ is a simplex, sgnσ(g) is just the sign of
the permutation induced by g on the vertices of σ. When writing [K8] I
carelessly assumed that the same is true for polysimplices, but this is in fact
not the case even for the product of two copies of a 1-simplex. Then there
is a reflection (obviously orientation reversing) that induces a permutation
with cycle structure (12)(34) (obviously an even permutation) on the four
vertices of the square. This situation actually arises for the Euler-Poincaré
function on the group PGL2 × PGL2.

With this corrected definition of the sign character, the formula sgnτ (γ) =
(−1)dim(τ)−dim(τ(γ)) used in the proof of Theorem 2 of [K8] becomes correct
and so no change is needed in that proof.
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de la SMF 2ème série, tome 11-12 (1983), p 1-186

[JS] H. Jacquet and J. A. Shalika, On Euler products and the classification
of automorphic forms II, American Journal of Math. 103 no 4 (1981),
p 777-815

[J] J. Johnson, Stable base change C/R of certain derived functor mod-
ules, Math. Ann. 287 (1990), n◦3, p 467-493

[Ka] D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math.
47 (1986), p 1-36

[Ke] D. Keys, Reducibility of unramified unitary principal series represen-
tations of p-adic groups and class-1 representations, Math. Ann. 260
(1982), p 397-402

[K1] R. Kottwitz, Rational conjugacy classes in reductive groups, Duke
Math. J. 49 (1982), p 785-806

[K2] R. Kottwitz, Sign changes in harmonic analysis on reductive groups,
Trans. A.M.S. 278 (1983), p 289-297

[K3] R. Kottwitz, Shimura varieties and twisted orbital integrals, Math.
Ann. 269 (1984), p 287-300

[K4] R. Kottwitz, Stable trace formula : cuspidal tempered terms, Duke
Math. J. 51 (1984), p 611-650

[K5] R. Kottwitz, Isocrystals with additional structure, Compositio Math.
56 (1985), p 365-399

[K6] R. Kottwitz, Base change for units of Hecke algebras, Compositio
Math. 60 (1986), p 237-250

[K7] R. Kottwitz, Stable trace formula : elliptic singular terms, Math.
Ann. 275 (1986), p 365-399

[K8] R. Kottwitz, Tamagawa numbers, Ann. of Math. 127 (1988), p 629-
646

[K9] R. Kottwitz, Shimura varieties and λ-adic representations, in Auto-
morphic forms, Shimura varieties and L-functions, Proceedings of the
Ann Arbour conference, editors L. Clozel et J. Milne (1990), volume
I, p 161-209



main April 10, 2009

BIBLIOGRAPHY 225

[K10] R. Kottwitz, On the λ-adic representations associated to some simple
Shimura varieties, Inv. Math. 108 (1992), p 653-665

[K11] R. Kottwitz, Points on some Shimura varieties over finite fields, Jour-
nal of the AMS, Vol. 5, n◦2 (1992), p 373-444

[K12] R. Kottwitz, Isocrystals with additional structure II, Comp. Math.
109 (1997), p 255-339

[K13] R. Kottwitz, unpublished

[KRo] R. Kottwitz and J. Rogawski, The distributions in the invariant trace
formula are supported on characters, Canad. J. Math. 52 (2000), n◦4,
p 804-814

[KS] R. Kottwitz and D. Shelstad, Foundations of twisted endoscopy,
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∆G
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∆M
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∆j,B real transfer factor, 52
∆jM ,BM

real transfer factor, 55
ΓF , 167
Λ(H, s, η0), 38
Λ(γH , f), 168
ΛG(M′, sM , ηM,0), 44
ΩMH , 77
ΩM , 96
Ω∗, 52
ΩG, 51
ΩH , 170
ΩR, 170
Φ absolute Frobenius morphism, 16
ΦH(ϕ), 51
ΦG

M , 51

ΦG
M (twisted case), 132

Φ℘ geometric Frobenius at ℘, 110
Φn, 38
Π(E), 49
Π(R), 169
Π(G(A), ξ), 108
Π(G(R)), 49
Π(H), 169
Π(ϕ), 49
Πθ−disc(G

0(R)), 132
Πdisc(G(R)), 49
Πdisc(G(R), ν), 86
Πdisc(G, t), 133
Πtemp(G(R)), 49
Πtemp(G(R), ν), 86
Θπ Harish-Chandra character of π, 49
α(γ0; γ, δ), 21
χ(G) Euler characteristic of a group,

24
χϕ,B , 52
δP , 31
ηB , 52
ηsimple, 73
ι(G,H), 87
ιG,H, 104
µ0, 1
µG, 93
µp, 35

φV , 130, 142
φG

j , 21
φM,∞, 145

φ
(j)
M,p, 145

πS , 108
πS , 108
πV , 130, 142
σ-centralizer, 20
σ-conjugacy, 20
τ non-trivial element of Gal(E/Q), 37
τ(G) Tamagawa number of G, 42
θ-centralizer, 126
θ-compact, 172
θ-conjugate, 126
θ-discrete representation, 128
θ-elliptic, 126
θ-regular, 126
θ-semi-simple, 126
θ-stable representation, 127
θL, 158
εsM , 78
$F , 167

non-trivial automorphism of E, 33

aG
disc(π), 133

admissible parabolic subgroup, 2
AS

f , 108
AG, 6
AG (twisted case), 125
aG (twisted case), 125
algebraic (for an automorphic represen-

tation), 154
AS , 108

bad primes, 10
Baily-Borel compactification, 1
base change map, 72
bη , 68
BG(T), 51
boundary stratum, 3

c multiplier morphism, 33
C∞c (G(R), ν−1) , 86
c(γ0; γ, δ), 22
CG,j set of Kottwitz triples, 21
cM , 146
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compact, 170
condition (H), 143
constant term, 31
correspond to each other at v, 158
counting point formula of Kottwitz, 20
CP , 3
cuspidal group, 24, 49
cuspidal Levi subset, 131

d(G), 49
d(G) (twisted case), 129
discrete series L-packet, 49
DG

M (twisted case), 127

DG
M partial Weyl denominator, 24, 51

D(T, R; F ), 182
dual group, 37

E imaginary quadratic extension of Q,
33

E0(G), 108
E(G), 43
e(G), 86
EG(M), 44
elliptic endoscopic triple, 37
endoscopic G-quadruple, 46
endoscopic G-triple, 43
endoscopic data, 167
ep(θ, .) twisted Euler-Poincaré charac-

teristic, 128

F reflex field, 1
FG, 108

f
(j)
H , 92

f
(m)
H,p , 104

FH/HL , 5
(f∞)H, 103
fixed point formula of Goresky-Kottwitz-

MacPherson, 24
FKV , 6
fµ, 67
fπ pseudo-coefficient of π, 49
fundamental lemma (endoscopic case),

85
fundamental lemma (twisted case), 85
fundamental lemma for base change, 141
F ur, 167
fV , 131
fϕ, 92

G∗ quasi-split inner form of G, 86
G, 49bG dual group of G, 37
G0

gθ, 126

G0
θ−reg set of θ-regular elements, 126

Gγ connected centralizer, 24
Gr Hermitian part of MS , 37

Greg set of regular elements, 49
GU(J) general unitary group, 33
GU∗(n) quasi-split general unitary group,

34
G(U∗(n1)× · · · ×U∗(nr)), 34
G(U(J1)× · · · ×U(Jr)), 34
G(U(p1, q1)× · · · ×U(pr, qr)), 34
GU(p, q) general unitary group, 34

Hecke correspondence, 16
HG spherical Hecke algebra of G, 167
HK Hecke algebra at level K, 107

I “centralizer” of a Kottwitz triple, 22
I0 centralizer of γ0, 21
I(∞), 22
IG
M , 134

integral model of a Shimura variety, 7
intersection complex, 12
intertwining operator, 127
I(p), 21
iP,g , 3
is a norm, 139, 143
I(z), 173

k(G), 86
k(G) (twisted case), 129
KG(I/F ), 46
KG(I/Q)e, 94
K(I0/Q), 21
K(T, R; F ), 186
K(TR, θ, R), 186
K(T, R; F )1, 186
K(TR, θ, R)1, 186

Levi component of a parabolic subset,
125

Levi subset, 125
L-function of the intersection complex,

146
L(G), 43
local data, 169
LS linear part of MS , 37

mdisc(π), 108
MG, 142
MK(G,X ) Shimura variety, 1
MS Levi quotient of PS , 37

Nδ näıve norm, 20
neat, 1
Nγ norm of γ, 126
nG

M , 24, 44

nG
M (twisted case), 125

normalization of Haar measures, 83
normalization of transfer factors, 84
normalized intertwining operator, 127,

169



main April 10, 2009

INDEX 231

NS unipotent radical of PS , 37
NsM , 78

Oγ orbital integral, 20
Ogθ twisted orbital integral, 130
Oκ

δθ twisted κ-integral orbital, 183

parabolic subset, 125
Pink’s theorem, 6
Pr standard maximal parabolic sub-

group, 36
PS standard parabolic subgroup, 36
pure Shimura datum, 1

q(G), 49

rank (of a connected component in a
non-connected group), 125

reduction modulo p (for Shimura vari-
eties), 11

reflex field, 1
regular algebraic (for an automorphic rep-

resentation), 154
regular element, 125
RepG, 5
RΓ, 5
rµ, 67

Satake isomorphism, 68
S, 1
SH , 170
Shimura datum, 1
Shimura variety, 1
simple trace formula of Deligne and Kazh-

dan, 181
SOγ stable orbital integral, 85
SΦG

M , 86

SΦG
M (twisted case), 132

SR, 170
stable base change map, 72
stable cuspidal function, 86
stable orbital integral, 85
stable trace formula (geometric side), 86
stable virtual character, 51
standard Levi subgroup, 35
standard Levi subset, 126
standard parabolic subgroup, 3
standard parabolic subset, 126
ST G stable trace formule on G, 87
SΘϕ, 49
ST G

M , 87
strongly G-regular, 168
strongly θ-regular, 126
strongly compact, 170
strongly regular, 126
SU(J) special unitary group, 33
SU∗(n) quasi-split special unitary group,

34

supercuspidal function, 181
SU(p, q) special unitary group, 34

bT dual group of T, 38
tempered distribution, 172
T G invariant trace formule on G, 87
T G twisted invariant trace formula, 133
Tg Hecke operator, 1
T G

M,geom, 133
TOδ twisted orbital integral, 21
transfer (endoscopic case), 85
transfer (for the base change), 138
transfer (twisted case), 185
transfer conjecture (endoscopic case), 85
transfer factors, 84
transfer map, 73
transfer to an inner form (for a Levi), 99
Trc compact trace, 172
Trθ−c twisted θ-compact trace, 172
twisted character, 127
twisted endoscopic data, 167
twisted fundamental lemma, 168
twisted orbital integral, 130
twisted pseudo-coefficient, 128
twisted transfer map, 74

U(J) unitary group, 33
uj , 18
U∗(n) quasi-split unitary group, 34
unipotent radical of a parabolic subset,

125
unitary group, 33
unramified L-morphism, 68
unstable base change map, 74
U(p, q) unitary group, 34

valp p-adic valuation, 78
very regular (for an automorphic repre-

sentation), 154
v(G), 86
v(G), 130
virtual character, 51

w weight morphism, 7
W G

0 , 125

W G0

0 , 125
WC Weil group of C, 49
weight of an algebraic representation, 7
weighted cohomology complex, 12
W i

λ, 114

W i
λ(πf ), 114

Wλ, 107
Wλ(πf ) isotypical component of Wλ,

108
WR Weil group of R, 49

YH , 170
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YR, 170

ZS , 159
ZS , 159
Zucker’s conjecture, 123


