
MAT 540 : Problem Set 9

Due Thursday, November 21

1 Abelian subcatgeories of triangulated categories

Let D be a triangulated category. We denote the shift functors by X 7−→ X[1], and we write

triangles as X → Y → Z → X[1] or X → Y → Z
+1→. For every X,Y ∈ Ob(D) and every

n ∈ Z, we write Homn
D(X,Y ) = Hom(X,Y [n]).

(a). Let X
u→ Y

v→ Z
w→ X[1] and X ′

u′→ Y ′
v′→ Z ′

w′→ X ′[1] be two distinguished triangles of
D , and let g : Y → Y ′ be a morphism.

(i) (2 points) Show that the following conditions are equivalent:

(1) v′ ◦ g ◦ u = 0;

(2) there exists f : X → X ′ such that u′ ◦ f = g ◦ u;

(3) there exists h : Z → Z ′ such that h ◦ v = v′ ◦ g;

(4) there exist f : X → X ′ and h : Z → Z ′ such that (f, g, h) is a morphism of
triangles.

(ii) (1 point) Suppose that the conditions (i) hold and that Hom−1D (X,Z ′) = 0. Show
that the morphisms f and h of (i)(2) and (i)(3) are unique.

(b). Let C be a full subcategory of D , and suppose that Homn(X,Y ) = 0 if X,Y ∈ Ob(C )
and n < 0.

(i) (2 points) Let f : X → Y be a morphism of C . Take a distinguished trian-

gle X
f→ Y → S

+1→ in D , and suppose that we have a distinguished trian-

gle N [1] → S → C
+1→ with N,C ∈ Ob(C ). In particular, we get morphisms

α : N [1]→ S → X[1] and β : Y → S → X.

Show that α[−1] : N → X is a kernel of f and that β : Y → C is a cokernel of f .

We say that a morphism f of C is admissible if there exist distinguished triangles satisfying

the conditions of (i). We say that a sequence 0→ X
f→ Y

g→ Z → 0 of morphisms of C is

an admissible short exact sequence if there exists a distinguished triangle X
f→ Y

g→ Z
+1→

in D .

(ii) (2 points) Suppose that C as a zero object. If X
f→ Y

g→ Z
+1→ is a distinguished

triangle in D with X,Y, Z ∈ Ob(C ), show that f and g are admissible, that f is a
kernel of g and that g is a cokernel of f .

(iii) (2 points) If f : X → Y is an admissible monomorphism (resp. epimorphism) in C
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and X
f→ Y

g→ Z
+1→ is a distinguished triangle in D , show that f has a cokernel

(resp. a kernel) in C and that Z ' Coker(f) (resp. Z[−1] ' Ker(f)).

(iv) (4 points) Suppose that every morphism of C is admissible and C is an additive
subcategory of D . Show that C is an abelian category and that every short exact
sequence in C is admissible.

(v) (3 points) Suppose that C is an abelian category and that every short exact sequence
in C is admissible. Show that every morphism of C is admissible.

Solution.

(a). (i) Obviously, point (4) implies (2) and (3). Also, as v′ ◦ u′ = 0 and v ◦ u = 0 by
Proposition V.1.1.11(i) of the notes, points (2) and (3) each imply (1). Also, by
axiom (TR4), we have that (2) implies (4). So it remains to show that (1) implies
(2). Applying the cohomological functor HomD(X, ·) to the distinguished triangle

X ′ → Y ′ → Z ′
+1→, we get an exact sequence

HomD(X,X ′)
u′◦(·)→ HomD(X,Y ′)

v′◦(·)→ HomD(X,Z ′).

So, if v′ ◦ (g ◦ u) = 0 (that is, if (1) holds), then there exists f ∈ HomD(X,X ′) such
that u′ ◦ f = g ◦ u (that is, (2) holds).

(ii) In the exact sequence of (i), the kernel of u′ ◦ (·) : HomD(X,X ′)→ HomD(X,Y ′) is
the image of the morphism w′[−1] ◦ (·) : HomD(X,Z ′[−1]) → HomD(X,X ′). This
gives the uniqueness of f in (2) (if it exists). To show the uniqueness of h, suppose
that we have two morphisms h, h′ : Z → Z ′ such that h ◦ v = v′ ◦ g = h′ ◦ v, so that
(h−h′)◦v = 0. Applying the cohomological functor HomD(·, Z ′) to the distinguished

triangle X → Y → Z
+1→, we get an exact sequence

HomD(X[1], Z ′) = HomD(X,Z ′[−1]) = 0→ HomD(Z,Z ′)→ HomD(Z, Y ′).

So the morphism (·)◦v : HomD(Z,Z ′)→ HomD(Y, Z ′) is injective, which shows that
h = h′.

(b). (i) We show that β is a cokernel of f . Let g : Y → Z be a morphism of C such that
g ◦ f = 0. We want to show that there exists a unique morphism g′ : C → Z
such that g′ ◦ β = g. By (TR1) and (TR3), we have a distinguished triangle

0→ Z
idZ→ Z → 0[1] = 0. Applying question (a) to the diagram

X
f // Y

g

��

// S //

h
��

X[1]

0 // Z
idZ
// Z // 0

and using the fact that Hom−1D (X,Z) = 0 (because X,Z ∈ Ob(C )), we see that there
exists a unique morphism h : S → Z making the diagram commute. This already
implies the uniqueness of g′ (if it exists). To show the existence of g′, we apply
question (a) again to the diagram

N [1] // S //

h
��

C //

g′

��

N [2]

0 // Z
idZ
// Z // 0
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The hypothesis of (a) is satisfied, because the composition of h and of N [1] → S is
an element of HomD(N [1], Z) = Hom−1D (N,Z) = 0.

We show that α[−1] is a kernel of f . The proof is similar. Let g : Z → X be a
morphism of C such that f ◦ g = 0. We want to show that there exists a unique
morphism g′ : Z → N such that α[−1] ◦ g′ = g. First, we apply question (a) to the
diagram

Z

h
��

idZ // Z //

g

��

0 // 0

S[−1] // X
f
// Y // S

Using the fact that Hom−1D (Z, Y ) = 0 (because Y,Z ∈ Ob(C )), we see that there is
a unique morphism h : Z → S[−1] making the diagram commute. This impluies the
uniqueness of g′. To show the existence of g′, we apply question (a) to the diagram

Z

g′

��

idZ // Z //

h
��

0 // 0

N // S[−1] // C[−1] // N [2]

The hypothesis of (a) is satisfied, because the composition of h and of S[−1]→ C[−1]
is an element of HomD(Z,C[−1]) = 0.

(ii) The morphism f is admissible, because we take S = Z in question (i), and then
we have a distinguished triangle 0 → S → Z → 0. Similarly, the morphism g is
admissible, because we can take S = X[1] in (i), and then we have a distinguished
triangle X[1] → S → 0 → X[2]. Also, question (i) immediately implies that g is a
cokernel of f and that f is a kernel of g.

(iii) Let f : X → Y be an admissible morphism in C , and let X
f→ Y → S = Z

+1→ and

N [1]→ S → C
+1→ be distinguished triangles as in question (i); by that question, we

have Ker f = N and Coker f = C. If f is a monomorphism, this implies that N = 0,
so the morphism S → C is an isomorphism, which shows that S is isomorphic to
the cokernel of f . If f is an epimorphism, then we have C = 0, so the morphism
N [1]→ S is an isomorphism, which shows that S[−1] is isomorphic to the kernel of
f .

(iv) By question (i), every morphism of C has a kernel and a cokernel. Let f : X → Y be
a morphism of C ; we need to check that the canonical morphism Coim(f)→ Im(f)
is an isomorphism, or in other words that the canonical morphism X → Im(f) is a

cokernel of ker(f)→ X. Let X
f→ Y → S

+1→ and N [1]→ S → C
+1→ be distinguished

triangles as in question (i), and let α[−1] : N → X and β : Y → C be the morphisms
defined in that question. Applying the octahedral axiom to the morphisms Y → S
and S → C and to their composition β, we get a commutative diagram where the
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rows and the third column are distinguished triangles:

Y // S

��

// X[1] //

��

Y [1]

��
Y

β //

��

C // I[1] //

��

Y [1]

��
S //

��

C //

��

N [2] //

��

S[1]

��
Y [1] // S[1] // X[2] // Y [2]

As β is the cokernel of f , it is an epimorphism, so, by question (iii), the morphism
I → Y is isomorphic to Ker(β) → Y , that is, to Im(f) → Y . As we have a distin-
guished triangle N → X → I → N [1], question (iii) shows that X → I is isomorphic
to X → Coker(α[−1]), that is, to X → Coim(f), so we are done.

Finally, we show that every short exact sequence of C is admissible. Let

0→ X
f→ Y

g→ Z → 0 be a short exact sequence in C , and let X
f→ Y → S

+1→ be a
distinguished triangle in D . As f is an admissible monomorphism and g : Y → Z is
a cokernel of f , question (iii) implies that there exists a commutative triangle

Y
g //

��

Z

o
��
S

where Z → S is an isomorphism. This implies that X
f→ Y

g→ Z extends to a
distinguished triangle.

(v) Let f : X → Y be a morphism of C . Let N = Ker(f), C = Coker(f) and I = Im(f).
We have exact sequences 0 → N → X → I → 0 and 0 → I → Y → C → 0, that
extend to distinguished triangles in D by the hypothesis. Applying the octohedral

axiom to the morphism X → I and I → Y and to their composition X
f→ Y , we

get a commutative diagram where the rows and the third column are distinguished
triangles:

X // I //

��

N [1]

��

// X[1]

X //

��

Y // S //

��

X[1]

��
I // Y // C

��

// I[1]

N [2]

This gives the two triangles of (i) and shows that f is admissible.

�
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2 t-structures

We use the convention of problem 1. A t-structure on D is the date of two full subcategories
D≤0 and D≥0 such that (with the convention that D≤n = D≤0[−n] and D≥n = D≥0[−n]);

(0) If X ∈ Ob(D) is isomorphic to an object of D≤0 (resp. D≥0), then X is in D≤0 (resp.
D≥0).

(1) For every X ∈ Ob(D≤0) and every Y ∈ Ob(D≥1), we have Hom(X,Y ) = 0.

(2) We have D≤0 ⊂ D≤1 and D≥0 ⊃ D≥1.

(3) For every X ∈ Ob(D), there exists a distinguished triangle A → X → B
+1→ with

A ∈ Ob(D≤0) and B ∈ Ob(D≥1).

We fix a t-structure (D≤0,D≥0) on D .

(a). (1 point) Show that the distinguished triangle of condition (3) is unique up to unique
isomorphism.

(b). (3 points) For every n ∈ Z, show that the inclusion functor D≤n ⊂ D has a right adjoint
τ≤n and the inclusion functor D≥n ⊂ D has a left adjoint τ≥n. (Hint: It suffice to treat
the case n = 0.)

(c). (2 points) For every n ∈ Z, show that there is a unique morphism δ : τ≥n+1X → (τ≤nX)[1]

such that the triangle τ≤nX → X → τ≥n+1X
δ→ (τ≤nX)[1] is distinguished, where the

other two morphisms are given by the counit and unit of the adjunctions of (b).

(d). (3 points) Let a, b ∈ Z such that a ≤ b, and let X ∈ Ob(D). Show that there exists a
unique morphism α : τ≥aτ≤bX → τ≤bτ≥aX such that the following diagram commutes:

τ≤bX //

��

X // τ≥aX

τ≥aτ≤bX α
// τ≤bτ≥aX

OO

(where all the other morphisms are counit or unit morphisms of the adjunctions
of (b)), and that α is an isomorphism. (Hint: Apply the octahedral axiom to

τ≤a−1X
f→ τ≤bX

g→ X.)

(e). (1 points) If a, b ∈ Z are such that a ≤ b, show that, for every X ∈ Ob(D), we have
τ≥aτ≤bX ∈ Ob(D≥a) ∩Ob(D≤b).

Let C = D≤0 ∩ D≥0; that is, C is the full subcategory of D such that
Ob(C ) = Ob(D≤0) ∩ Ob(D≥0). We denote the functor τ≤0τ≥0 : D → C by H0. The cat-
egory C is called the heart or core of the t-structure.

(f). (1 point) Show that C is an abelian category.

(g). (2 points) Show that, if X → Y → Z
+1→ is a distinguished triangle in D such that

X,Z ∈ Ob(C ), then Y is also in C .

(h). The goal of this question is to show that the functor H0 : D → C is a cohomological

functor. Let X → Y → Z
+1→ be a distinguished triangle in D .

(i) (2 points) If X,Y, Z ∈ Ob(D≤0), show that the sequence
H0(X) → H0(Y ) → H0(Z) → 0 is exact in C . (Hint: A sequence
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of morphisms A → B → C → 0 in an abelian category A is exact
if and only if, for every object D of A , the sequence of abelian groups
0→ HomA (C,D)→ HomA (B,D)→ HomA (A,D) is exact.)

(ii) (2 points) If X ∈ Ob(D≤0), show that the sequence H0(X)→ H0(Y )→ H0(Z)→ 0

is exact in C . (Hint: Construct a distinguished triangle X → τ≤0Y → τ≤0Z
+1→.)

(iii) (1 point) If Z ∈ Ob(D≥0), show that the sequence 0→ H0(X)→ H0(Y )→ H0(Z) is
exact in C .

(iv) (2 points) In general, show that the sequence H0(X) → H0(Y ) → H0(Z) is exact in
C .

Solution.

(a). Suppose that we have two distinguished triangles A → X → B
+1→ and A′ → X → B′

+1→
with A,A′ ∈ Ob(D≤0) and B,B′ ∈ Ob(D≥1). We have B′[−1] ∈ Ob(D≥2) ⊂ Ob(D≥1),
so, by condition (1), HomD(A,B′) = 0 and Hom−1D (A,B′) = HomD(A,B′[−1]) = 0. So
question (i) of problem 1 implies that idX extends to a unique morphism of distinguished
triangles

A //

u

��

X //

idX
��

B //

v

��

A[1]

u[1]
��

A′ // X // B′ // A′[1]

Exchanging the roles of (A,B) and (A′, B′), we get that idX also extends to a unique
morphism of distinguished triangles

A′ //

u′

��

X //

idX
��

B′ //

v′

��

A′[1]

u′[1]
��

A // X // B // A[1]

So we have two endomorphisms of the distinguished triangle A → X → B
+1→ extending

idX , the endomorphisms given by (u′ ◦ u, idX , v′ ◦ v) and (idA, idX , idB). For the same
reason as before, these morphisms must be equal, so u′ ◦u = idA and v′ ◦ v = idB. We see
similarly that u ◦ u′ = idA′ and v ◦ v′ = idB′ .

(b). As the shift is an auto-equivalence of D , we may assume that n = 0.

To show that the inclusion functor D≤0 → D has a right adjoint, it suffices by Proposition
I.4.7 of the notes to show that the functor FY : HomD(·, Y ) : (D≤0)op → Set is repre-

sentable for every Y ∈ Ob(D). Let Y ∈ Ob(D), and let A→ Y → B
+1→ be a distinguished

triangle with A ∈ Ob(D≤0) and B ∈ Ob(D≥1). Let X ∈ Ob(D). Then we have an exact
sequence

HomD(X,B[−1])→ HomD(X,A)→ HomD(X,Y )→ HomD(X,B).

If X ∈ Ob(D≤0), then HomD(X,B[−1]) = HomD(X,B) = 0 by condition (1) (because
B[−1] ∈ Ob(D≥2) ⊂ Ob(D≥1)), so the morphism HomD(X,A) → HomD(X,Y ) is an
isomorphism. This shows that FY is representable by the couple (A,A → Y ) (note that
the morphism A→ Y is an element of FY (A)).

Similary, To show that the inclusion functor D≥0 → D has a left adjoint, it suffices by
Proposition I.4.7 of the notes to show that the functor GX : HomD(X, ·) : D≥0 → Set
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is representable for every X ∈ Ob(D). As in the previous paragraph, we see that, if

A → X → B
+1→ is a distinguished triangle with A ∈ Ob(D≤−1) and B ∈ Ob(D≥0) (to

get such a triangle, use condition (3) for X[−1] and then apply the functor [1]), then GX
is representable by the pair (B,X → B).

(c). As in question (b), it suffices to treat the case n = 0. Let X ∈ Ob(D), and let
A → X → B → A[1] be a distinguished triangle such that A ∈ Ob(D≥0) and
B ∈ Ob(D≥1). We have seen in the solution of question (b) that the morphism τ≤0X → X
is isomorphic to A → X, and the morphism X → τ≥1X is isomorphic to X → B, so the
morphism B → A[1] induces a morphism δ : τ≥1X → (τ≤0X)[1] that makes the triangle

τ≤0X → X → τ≥1X
δ→ (τ≤0X)[1] distinguished.

(d). Let X ∈ Ob(D). As D≤a ⊂ D≤b, the canonical morphism τ≤bX → X induces an
isomorphism HomD(τ≤aX, τ≤bX)

∼→ HomD(τ≤aX, τ≤bX), so the canonical morphism
τ≤aX → X factors through a morphism τ≤aX → τ≤bX; applying the functor τ≤a, we get
a sequence of morphisms

τ≤aX → τ≤aτ≤bX → τ≤bX → X.

Hence, if Y is an object of D≤a, then the bijection HomD(Y, τ≤aX)
∼→ HomD(Y,X) is

equal to the composition

HomD(Y, τ≤aX)→ HomD(Y, τ≤aτ≤bX)→ HomD(Y, τ≤bX)→ HomD(Y,X),

where the second and third maps are bijection. This shows that
HomD(Y, τ≤aX) → HomD(Y, τ≤aτ≤bX) is bijective for every Y ∈ Ob(D≤a), i.e.
that the morphism τ≤aX → τ≤aτ≤bX is an isomorphism. Similarly, we have a canonical
isomorphism τ≥bτ≥aX

∼→ τ≥bX for every X ∈ Ob(D).

Note also that, by question (c), if c ∈ Z, then an object X of D is in D≤c (resp. D≥c)
if and only if τ≥c+1X = 0 (resp. τ≤c−1X = 0). In particular, if X ∈ Ob(D), then we
have τ≥b+1τ≥aτ≤bX = τ≥b+1τ≤bX = 0 and τ≤a−1τ≤bτ≥aX = τ≤a−1τ≥aX = 0 (where
the first isomorphisms are proved in the previous paragraph), so τ≥aτ≤bX ∈ D≤b and
τ≤bτ≥aX ∈ Ob(D≥a).

Now let X ∈ Ob(D). By definition of τ≥a, the morphism τ≤bX → X → τ≥aX factors
uniquely as

τ≤bX → τ≥aτ≤bX
(1)→ τ≥aX.

As τ≥aτ≤bX ∈ Ob(D≤b), the morphism (1) factors uniquely as

τ≥aτ≤bX
(2)→ τ≤bτ≥aX → τ≥aX.

It remains to show that (2) is an isomorphism. Applying the octahedral axiom to the
canonical morphism τ≤a−1X → τ≤bX → X (and their composition), we get a commuta-
tive diagram whose rows and third column are distinguished triangles:

τ≤a−1X // τ≤bX //

��

τ≥aτ≤bX
+1 //

��
τ≤a−1X //

��

X // τ≥aX
+1 //

��
τ≤bX // X // τ≥b+1X

+1 //

+1

��
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So, by question (c), we have a morphism of distinguished triangles

τ≥aτ≤bX //

(2)
��

τ≥aX // τ≥b+1X
+1 //

τ≤bτ≥aX // τ≥aX // τ≥b+1X
+1 //

This shows that (2) is an isomorphism.

(e). We already showed this in the solution of question (d).

(f). We already know that C is a full addditive subcategory of D , because it is the intersection
of two full additive subcategories. We also have Homn(X,Y ) = 0 if X,Y ∈ Ob(C ) and
n < 0 by properties (1) and (2) of a t-structure. So, by question (b)(iv) of problem 1, it
suffices to show that every morphism of C is admissible. Let f : X → Y be a morphism

of C , and complete it to a distinguished triangle X → Y → S
+1→. Let N = τ≤−1S[−1]

and C = τ≥0S. By question (c), we have a distinguished triangle N [1] → S → C
+1→,

so it suffices to show that N and C are in C . By question (e), it suffices to show that
S ∈ Ob(D≤0 ∩D≥−1).

Note that we have a distinguished triangle Y → S → X[1]
+1→. Let S′ = τ≥1S. As

Y ∈ Ob(D≤0) and X[1] ∈ Ob(D≤−1) ⊂ Ob(D≤0), condition (1) in the definition of a
t-structure implies that HomD(Y, S′) = HomD(X[1], S′) = 0, and, applying the cohomo-

logical functor HomD(·, S′) to the distinguished triangle Y → S → X[1]
+1→, we deduce

that HomD(S, S′) = 0. As HomD(S, S′) = HomD≥1(S′, S′), this implies that S′ = 0, hence
that S ∈ Ob(D≤0). The proof that S ∈ Ob(D≥−1) is similar.

(g). We showed in the solution of (f) that, if X and Z are in D≤0 (resp. in D≥0), then so is
Y . This immediately implies the result.

(h). (i) We first prove the hint. If A → B → C → 0 is exact, the exactness of
0 → HomA (C,D) → HomA (B,D) → HomA (A,D) for every D simply follows
from the left exactness of the functor HomA (·, D). Suppose that we have mor-

phisms A
f→ B

g→ C such that 0 → HomA (C,D) → HomA (B,D) → HomA (A,D)
is exact for every D. Taking D = Coker g, we see that the canonical morphism
u : C → Coker g is sent to 0 = u ◦ g ∈ HomA (B,Coker g), so u = 0, so Coker g = 0
and g is surjective. Also, taking D = C, we see that idC goes to g ∈ HomD(B,C),
then to g ◦ f ∈ HomA (A,C), so we have g ◦ f = 0. It remains to show that the
inclusion Im f ⊂ Ker g is an isomorphism. Take D = B/ Im f and let v : B → D be
the canonical projection. Then v ◦ f = 0, so, by hypothesis, there exists a morphism
w : C → D such that v = w ◦ g. In particular, we have Ker g ⊂ Ker v = Im f .

Now we prove the statement of (i). As X ∈ D≤0, then we have H0(X) = τ≥0X, hence
HomC (H0(X), D) ' HomD(X,D) for every D ∈ Ob(C ), and similarly for Y and Z.
Also, if D ∈ Ob(C ), then axiom (1) of t-structures implies that HomD(X[1], D) = 0.
So, if D ∈ Ob(C ), applying the cohomological functor HomD(·, D) to the distin-

guished triangle X → Y → Z
+1→ gives an exact sequence

HomD(X[1], D) = 0→ HomC (H0(Z), D)→ HomC (H0(Y ), D)→ HomD(H0(X), D).

This shows that the sequence H0(X)→ H0(Y )→ H0(Z)→ 0 is exact in C .

(ii) For every T ∈ Ob(D≥1), applying the cohomological functor HomD(·, T ) to

X → Y → Z
+1→ and using the fact that HomD(X,T ) = HomD(X[1], T ) = 0 (because

X,X[1] ∈ Ob(D≤0)) gives an isomorphism HomD(Z, T )
∼→ HomD(Y, T ), hence an
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isomorphism HomD(τ≥1Z, T )
∼→ HomD(τ≥1Y, T ). This implies that the functor τ≥1

sends the morphism Y → Z to an isomorphism. Applying the octahedral axiom to
the morphisms Y → Z → τ≥1Z, we get a commutative diagram whose rows and
third column are distinguished triangles:

Y // Z //

��

X[1]
+1 //

��
Y //

��

τ≥1Z // τ≥0Y [1]
+1 //

��
Z // τ≥1Z // τ≤0Z

+1 //

+1

��

So we have a distinguished triangle X → τ≤0Y → τ≤0Z
+1→. Applying question (i)

gives an exact sequence

H0(X)→ H0(τ≤0Y )→ H0(τ≤0Z)→ 0

in C . As the morphism H0(τ≤0Y )→ H0(Y ) induced by τ≤0Y → Y is an isomorphism
(by definition of H0) and similarly for Z, we are done.

(iii) This is just the result of question (ii) in the opposite category. (Note that (D≥0,D≤0)
is a t-structure on Dop.)

(iv) Applying the octahedral axiom to the morphisms τ≤0X → X → Y , we get a com-
mutative diagram whose rows and third column are distinguished triangles:

τ≤0X // X //

��

τ≥1X
+1 //

��
τ≤0X //

��

Y // T
+1 //

��
X // Y // Z

+1 //

+1

��

Question (ii) for the second row gives an exact sequence

H0(τ≤0X) = H0(X)→ H0(Y )→ H0(T )→ 0,

and question (iii) for the distinguished triangle T → Z → τ≥1X[1]
+1→ gives an exact

sequence
0→ H0(T )→ H0(Z).

Putting these two sequences together, we see that the sequence

H0(X)→ H0(Y )→ H0(Z)

is exact.

�

9



3 The canonical t-structure

Let A be an abelian category.

(a). (2 points) Let n ∈ Z. If X ∈ Ob(D≤n(A )) and Y ∈ Ob(D≥n+1(A )), show that
HomD(A )(X,Y ) = 0.

(b). (3 points) Show that (D≤0(A ),D≥0(A )) is a t-structure on D(A ), that its heart is equiv-
alent to A , and that the associated functor H0 : D(A ) → A is the 0th cohomology
functor.

Solution.

(a). After replacing X and Y by isomorphic objects in D(A ), we may assume that Xm = 0
for m > n and Xm = 0 for m ≤ n. Let u : X → Y be a morphism in D(A ).
Then we have morphisms f : X → Z and s : Y → Z in K(A ) such that s is a
quasi-isomorphism and u = s−1 ◦ f in D(A ). As Y m = 0 for m ≤ n, the morphism
s′ = τ≥n+1s : Y = τ≥n+1Y → Z ′ = τ≥n+1Z is also a quasi-isomorphism, and we have a
commutative diagram:

Z

X

f @@

τ≥n+1f ��

Y

s
^^

s′��
Z ′

By Theorem V.2.2.4 of the notes, this implies that s−1 ◦ f = s′−1 ◦ τ≥n+1f as morphisms
in D(A ). But Xm = 0 for m ≥ n+ 1, so τ≥n+1f = 0, and finally u = 0.

(b). Let D≤0 = D≤0(A ) and D≥0 = D≥0(A ). Note that, for every n ∈ Z, we have
D≤n = D≤n(A ) and D≥n = D≥n(A ). We check conditions (0)-(3) in the definition
of a t-structure. Condition (0) is clear, condition (1) follows from question (a), condition
(2) follows from the description of D≤1 and D≥1 that we just gave, and condition (3)
follows from Proposition V.4.2.7(i) of the notes.

The fact that the heart of the t-structure (D≤0,D≥0) is canonically equivalent to A is
proved in Remark V.4.2.5 of the notes. Finally, the isomorphisms of functors H0 ' τ≤0τ≥0
is Proposition V.4.2.7(ii) of the notes.

�

4 Torsion

Let D = D(Ab), and let

∗D≤0 = {X ∈ D | Hi(X) = 0 for i > 1, and H1(X) is torsion}

and
∗D≥0 = {X ∈ D | Hi(X) = 0 for i < 0, and H0(X) is torsionfree}.

Let C = ∗D≤0 ∩ ∗D≥0.

(a). Show that (∗D≤0, ∗D≥0) is a t-structure on D .(2 points for condition (1), 1 for condition
(2) and 2 for condition (3))

10



(b). Let f : A → B be a morphism of torsionfree abelian groups. We can see A and B as
objects of C (concentrated in degree 0), and then f is also a morphism of C .

(i) (2 points) Show that f is a monomorphism in C if and only if f is injective (and
Ab) and B/f(A) is torsionfree.

(ii) (1 point) Show that f is an epimorphism in C if and only if f ⊗Z Q is surjective.

(iii) (3 points) Calculate the kernel, the cokernel and the image of f in C .

(c). (1 points) For every n ≥ 1, show that Ext1Ab(Z/nZ,Z) ' Z/nZ.

(d). (1 point) If A and B are finitely generated abelian groups, show that ExtnAb(A,B) = 0
for every n ≥ 2. 1

(e). (2 points) Let X ∈ Ob(C ). Suppose that Hi(X) is a finitely generated abelian group for
every i ∈ Z. If HomD(X,Z) = 0, show that X = 0.

(f). (1 point) Give an example of a nonzero X ∈ Ob(C ) such that HomD(X,Z) = 0.

(g). (2 points) Let X ∈ Ob(D). If X ∈ Ob(∗D≤0) (resp X ∈ Ob(∗D≥0 ∩ Db(Ab)) and Hi(X)
is finitely generated for every i ∈ Z), show that RHomAb(X,Z) is in D≥0(Ab) (resp.
D≤0(Ab)).

(h). (3 points) Let X ∈ Ob(D) be a bounded complex of finitely generated abelian groups.
If RHomAb(X,Z) is in D≥0(Ab) (resp. D≤0(Ab)), show that X ∈ Ob(∗D≤0) (resp
X ∈ Ob(∗D≥0)).

Solution.

(a). Note that ∗D≤0 ⊂ D≤1(A ) and ∗D≥0 ⊂ D≥0(A ).

Condition (0) is obvious. Let X ∈ Ob(∗D≤0) and Y ∈ Ob(∗D≥1). Then X ∈ D≤1(A ) and
Y ∈ D≥1(A ), so we have isomorphisms

HomD(X,Y )
∼→ HomD(τ≥1X,Y )

∼→ HomD(τ≥1X, τ≤1Y ) = HomAb(H1(X),H1(Y )).

As H1(X) is torsion and H1(Y ) is torsionfree, this last group is equal to 0. This proves
condition (1). Condition (2) is clear.

If X ∈ Ob(C (Ab)), we set

B1(X)′ = {z ∈ Z1(X) | ∃n ∈ Z− {0}, nz ∈ B1(X)},

and we define ∗τ≤0X and ∗τ≥1X by

∗τ≤0(X) = (. . .→ X−2 → X−1 → X0 → B1(X)′ → 0→ . . .)

and
∗τ≥1(X) = (. . .→ 0→ 0→ X1/B1(X)′ → X2 → X3 → . . .).

These constructions are clearly functorial in X, and we have obvious morphisms
∗τ≤0X → X and X → ∗τ≥1X. If we apply the functor Hn to the first morphism, then we
get the identity of Hn(X) if n ≤ 0, the inclusion 0 → Hn(X) if n ≥ 2, and the inclusion
H1(X)tors → H1(X) if n = 1. If we apply the functor Hn to the second morphism, then we
get the identity of Hn(X) if n ≥ 2, the unique map Hn(X)→ 0 if n ≤ 0, and the projection
H1(X) → H1(X)/H1(X)tors if n = 1. In particular, if X → Y is a quasi-isomorphism,
then so are the morphisms ∗τ≤0X → ∗τ≤0Y and ∗τ≥1X → ∗τ≥1Y , so the functors ∗τ≤0

1This actually holds for any abelian groups.
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and ∗τ≥1 induce endofunctors of D(|Ab), that we will still write ∗τ≤0 and ∗τ≥1. Finally,
for every X ∈ Ob(C (Ab)), the sequence 0 → ∗τ≤0X → X → ∗τ≥1X → 0 is exact in

C (Ab), so it induces a distinguished triangle ∗τ≤0X → X → ∗τ≥1X
+1→ in D(Ab). As

∗τ≤0X ∈ Ob(∗D≤0) and ∗τ≥1X ∈ Ob(∗D≥1) by construction, this proves condition (3).

(b). Let f : A → B be a morphism of torsionfree abelian groups. We denote by KerC f ,
CokerC f etc the kernel, cokernel etc of f in the category C , and by Ker f , Coker f etc
the kernel, cokernel etc of f in the category Ab.

We solve question (iii) first, by using the formulas for KerC f and CokerC f from ques-
tion (b)(i) of problem 1. First we complete f : A → B to the distinguished triangle

A
f→ B → Mc(f)

+1→. By definition of the mapping cone, the complex Mc(f) is equal to

. . .→ 0→ A
f→ B → 0→ . . . ,

with B in degree 0. Then we have KerC f [1] = ∗τ≤−1 Mc(f) and CokerC f = ∗τ≥0 Mc(f).
By the formulas that we proved in the solution of question (a), this shows that KerC f is
the complex

. . .→ 0→ A→ I → 0→ . . .

with A in degree 0, and CokerC f is the complex

. . .→ 0→ B/I → 0→ . . .

with B/I in degree 0, where

I = {x ∈ B | ∃n ∈ Z− {0}, nx ∈ Im f}.

Note that the abelian group B/I is torsionfree, so we can apply what we just did to
calculate the kernel (in C ) of the canonical projection B → B/I, which is ImC f . We get
that

ImC f = (. . .→ 0→ B → B/I → 0→ . . .),

where B is in degree 0; this is quasi-isomorphic to the object I of Ab, seen as complex
concentrated in degree 0 (the quasi-isomorphism is given by the inclusion I ⊂ B); note
that this is an object of C because I is torsionfree.

Now we can solve (i) and (ii) easily. For example, the morphism f is an epismorphism in
C if and only if I = Im f = B, that is, if and only if B/ Im f is torsion, which is equivalent
to the fact that f ⊗Z Z is surjective (in the category of Q-vector spaces). On the other
hand, the morphism f is a monomorphism in C if and only if KerC f = 0, which means
that the complex . . . → 0 → A → I → 0 → . . . is quasi-isomorphic to 0, i.e. has zero
cohomology. This happens if and only if the morphism A→ I is injective (i.e., as I ⊂ B,
the morphism f itself is injective in Ab) and I = Im f (i.e. B/ Im f is torsionfree).

(c). The exact sequence

0→ Z ·n→ Z→ Z/nZ→ 0

is a projective resolution of Z/nZ in Ab, so we can calculate the ExtiZ(Z/nZ,Z) by

applying the functor HomZ(·,Z) to the complex . . . → 0 → Z ·n→ Z → 0 → . . . (with the

second Z in degree 0). We get Ext0Z(Z/nZ,Z) = HomZ(Z/nZ,Z) = Ker(Z ·n→ Z) = 0,

Ext1Z(Z/nZ,Z) = Coker(Z ·n→ Z) = Z/nZ, and ExtiZ(Z/nZ,Z) = 0 if i 6∈ {0, 1}.

(d). Using the resolution of Z/nZ from the solution of question (c), we get that, if B is any
abelian group, then Ext0Z(Z/nZ, B) = {x ∈ B | nx = 0}, Ext1Z(Z/nZ, B) = B/nB,
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and ExtiZ(Z/nZ, B) = 0 if i 6∈ {0, 1}. Also, as Z is a projective Z-module, we have
Ext0Z(Z, B) = HomZ(Z, B) = B and ExtiZ(Z, B) = 0 for i 6= 0.

Let A be a finitely generated abelian group and B be an abelian group. Then A = A0⊕A1

where A0 is finitely generated free abelian group and A1 is a finitely generated torsion
abelian group, i.e. a direct sum of groups Z/nZ for n ≥ 1. So, if i ≥ 1, we have
ExtiZ(A,B) = ExtiZ(A1, B), and ExtiZ(A1, B) = 0 if i ≥ 2.

(e). As Hi(X) = 0 for i 6∈ {0, 1}, we have τ≤−1X ' 0 and τ≥2X ' 0, so, by Proposition
V.4.2.7 of the notes, the canonical morphisms τ≤0X → H0(X) and H1(X)[−1] → τ≥1X
are isomorphisms. In particular, using the remark after Definition V.4.5.1 of the notes,
we get, for every i ∈ Z,

HomD(τ≥1X[−i],Z) = HomD(H1(X),Z[1 + i]) = Ext1+iZ (H1(X),Z) = 0,

which is 0 by question (d) if i ≥ 1. On the other hand, we have

HomD(τ≤0X[i],Z) = Ext−iZ (H0(X),Z),

which is equal to 0 if i ≥ 1. So applying HomD(·,Z) to the distinguished triangle

τ≤0X → X → τ≥1X
+1→ gives an exact sequence

0→ Ext1Z(H1(X),Z)→ HomD(X,Z)→ HomZ(H0(X),Z)→ 0.

Hence, of HomD(X,Z) = 0, then HomZ(H0(X),Z) = Ext1Z(H1(X),Z) = 0.

As X is an object of C , we know that H0(X) is torsionfree and H1(X) is torsion. Moreover,
by assumption, both H0(X) and H1(X) are finitely generated. So we have H0(X) ' Zn
for some n ∈ N, and HomZ(H0(X),Z) ' Zn ' H0(X) (non canonically). On the other
hand, we have H1(X) '

⊕r
s=1 Z/nsZ for some integers n1, . . . , nr ≥ 2. By question (c),

we get that Ext1Z(H1(X),Z) ' H1(X) (also non canonically). So, if HomD(X,Z) = 0,
then H0(X) = 0 and H1(X) = 0, which shows that X ' 0 in D , hence in C .

(f). Let X = Q (concentrated in degree 0). Then X 6' 0, but HomD(X,Z) = HomZ(Q,Z) = 0.

(g). Suppose that X ∈ Ob(∗D≤0). Then X ∈ Ob(D≤1(Ab)), so we have an exact triangle

τ≤0X → X → τ≥1X ' H1(X)[−1]
+1→ .

Applying the triangulated functor RHomAb(·,Z), we get an exact triangle in D(Ab):

RHomD(H1(X)[−1],Z) = RHomD(H1(X),Z)[1]→ RHomD(X,Z)→ RHomD(τ≤0X,Z)
+1→ .

If i ≤ −1, then Z[−i] ∈ D≥1(Ab), so Hi(RHomD(τ≤0X,Z)) = HomD(τ≤0X,Z[−i]) = 0.
This shows that RHomD(τ≤0X,Z) ∈ Ob(D≥0(Ab)). For every i ∈ Z, we have

Hi(RHomD(τ≥1X,Z)) = Exti+1
Z (H1(X),Z).

This is equal to 0 if i ≤ −2; if i = −1, then Exti+1
Z (H1(X),Z) = HomZ(H1(X),Z) is also

equal to 0, since H1(X) is torsion. So RHomD(τ≥1X,Z) is also in Ob(D≥0(Ab)). As we
have an exact sequence

Hi(RHomD(τ≥1X,Z))→ Hi(RHomD(X,Z))→ Hi(RHomD(τ≤0X,Z))

for every i ∈ Z, we conclude that Hi(RHomD(X,Z)) = 0 for i ≤ −1, i.e. that
RHomD(X,Z) is in D≥0(Ab).
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Suppose that X ∈ Ob(∗D≥0 ∩ Db(Ab)) and that the Hi(X) are finitely generated. We
have Hi(X) = 0 if i ≤ −1 or if i is big enough, and H0(X) is torsionfree. In particular, the
canonical morphism X → τ≥0X is an isomorphism and τ≥iX ' 0 for i big enough. So it
suffices to prove that, if i ≥ 0 is an integer such that RHomD(τ≥i+1X,Z) is in D≤0(Ab),
then RHomD(τ≥iX,Z) is also in D≤0(Ab). We have an exact triangle

Hi(X)[−i]→ τ≥iX → τ≥i+1X
+1→,

so we get an exact triangle

RHomD(τ≥i+1X,Z)→ RHomD(τ≥iX,Z)→ RHomD(Hi(X)[−i],Z)
+1→,

and it suffices to prove that RHomD(Hi(X)[−i],Z) is in D≤0(Ab). Let j ≥ 1. Then

Hj(RHomD(Hi(X)[−i],Z)) = Hj(RHomD(Hi(X),Z[i])) = Exti+jZ (Hi(X),Z).

If i ≥ 1, then i + j ≥ 2, so this group is zero by question (d). If i = 0, then Hi(X)
is a free Z-module, so ExtjZ(Hi(X),Z) = 0 for every j ≥ 1. In both cases, we get that
Hj(RHomD(Hi(X)[−i],Z)) = 0.

(h). If n ∈ Z, let ∗τ≤n and ∗τ≥n be the truncation functors for the t-structure (∗D≤n, ∗D≥n),
and define ∗Hn : D → C by ∗Hn(X) = (∗τ≤n∗τ≥nX)[n] = ∗H0(X[n]).

Let X ∈ Ob(D) satisfying the conditions of the question. Then Hn(X) = 0 for all but
finitely many n ∈ Z, so there exists N ∈ N such that Hn(X) = 0 for |n| ≥ N . Then
X ∈ Ob(∗D≤N ) and X ∈ Ob(∗D≥−N ), so ∗τ≤nX

∼→ X for n ≥ N + 1 and X
∼→ ∗τ≥nX

for n ≥ −N − 1.

First we show the following claim: If RHomD(X,Z) = 0, then X = 0. Indeed, suppose
that X 6= 0, and let n be the biggest integer such that ∗τ≤nX → X is not an isomorphism
(such a n exists because ∗τ≤nX = 0 for n small enough). We have an exact triangle

∗τ≤nX → X → ∗Hn+1(X)[−n− 1]
+1→

with ∗Hn+1(X) 6= 0, hence an exact triangle

RHomD(∗Hn+1(X)[−n− 1],Z)→ RHomD(X,Z)→ RHomD(∗τ≤nX,Z)
+1→ .

By question (g), we have RHomD(∗τ≤nX,Z) ∈ Ob(D≥−n(Ab)), so the morphism

H−n−1(RHomD(∗Hn+1(X)[−n− 1],Z))→ H−n−1(RHomD(X,Z))

is an isomorphism. As H−n−1(RHomD(∗Hn+1(X)[−n−1],Z)) = HomD(∗Hn+1(X),Z) 6= 0
by question (e), we conclude that H−n−1(RHomD(X,Z)) 6= 0, hence RHomD(X,Z) 6= 0.

Suppose that RHomD(X,Z) is in D≥0(Ab). We want to show that X ∈ Ob(∗D≤0). We
have a distinguished triangle

∗τ≤0X → X → ∗τ≥1X
+1→,

hence a distinguished triangle

RHomD(∗τ≥1X,Z)→ RHomD(X,Z)→ RHomD(∗τ≤0X,Z)
+1→ .

Also, by question (g), we have RHomD(∗τ≥1X,Z) ∈ D≤−1(Ab) and
RHomD(∗τ≤0X,Z) ∈ D≥0(Ab). In particular, if i ≤ −1, then
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Hi(RHomD(∗τ≥1X,Z))
∼→ Hi(RHomD(X,Z)) = 0. This implies that

RHomD(∗τ≥1X,Z) = 0, hence that ∗τ≥1X = 0 by the claim we proved in the
previous paragraph. So ∗τ≤0X → X is an isomorphism.

Now suppose that RHomD(X,Z) is in D≤0(Ab). We want to show that X ∈ Ob(∗D≥0).
We have a distinguished triangle

∗τ≤−1X → X → ∗τ≥0X
+1→,

hence a distinguished triangle

RHomD(∗τ≥0X,Z)→ RHomD(X,Z)→ RHomD(∗τ≤−1X,Z)
+1→ .

Also, by question (g), we have RHomD(∗τ≤−1X,Z) ∈ D≥1(Ab) and
RHomD(∗τ≥0X,Z) ∈ D≤0(Ab). In particular, if i ≥ 1, then
0 = Hi(RHomD(X,Z))

∼→ Hi(RHomD(∗τ≤−1X,Z)). This implies that
RHomD(∗τ≤−1X,Z) = 0, hence that ∗τ≥1X = 0. So ∗τ≤0X → X is an isomor-
phism.

�

5 Weights

Let A be an abelian category. Suppose that we have a family (An)n∈Z of full abelian subcate-
gories of A such that:

(1) If n 6= m, then HomA (A,B) = 0 for any A ∈ Ob(An) and B ∈ Ob(Am).

(2) Any object A of A has a weight filtration, that is, an increasing filtration Fil•A such that
FilnA = 0 for n << 0, FilnA = A for n >> 0 and FilnA/Filn+1A ∈ Ob(An) for every
n ∈ Z.

For every n ∈ Z, we denote by A≤n (resp. A≥n+1) the full subcategory of A whose objects
are the A ∈ Ob(A ) having a weight filtration Fil•A such that FilnA = A (resp. FilnA = 0).

(a). (1 point) If A ∈ Ob(A≤n) and B ∈ Ob(A≥n+1), show that HomA (A,B) = 0.

(b). (2 points) Show that the inclusion functor A≤n ⊂ A has a right adjoint wτ≤n, and that
the inclusion functor A≥n ⊂ A has a left adjoint wτ≥n.

(c). (2 points) If A ∈ Ob(A≤n) and B ∈ Ob(A≥n+1), show that ExtiA (A,B) = 0 for every
i ∈ Z.

(d). (4 points) Define two full subcategories w D≤n and w D≥n of Db(A ) by:

Ob(w D≤n) = {X ∈ Ob(Db(A )) | ∀i ∈ Z, Hi(X) ∈ A≤n}

and
Ob(w D≥n+1) = {X ∈ Ob(Db(A )) | ∀i ∈ Z, Hi(X) ∈ A≥n+1}.

Show that (w D≤n,w D≥n+1) is a t-structure on Db(A ), and that the heart of this t-
structure is {0}.

Solution.
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(a). If Fil•A is a filtration on an object A of A such that FilnA = A for n >> 0 and FilnA = 0
for n << 0, the length of Fil• is by definition the integer n1−n2, where n1 is the smallest
integer such that Filn1A = A and n2 is the biggest integer such that Filn2A = 0. For
example, if the length of Fil•A is 0, then there exists n ∈ Z such that FilnA = A and
FilnA = 0, so A = 0.

If A has a weight filtration Fil•A of length 1, then there exists n ∈ Z such that FilnA = A
and Filn−1A = 0, so A = FilnA/Filn−1A ∈ Ob(An). Conversely, if A ∈ Ob(An) for some
n ∈ Z, then it has a weight filtration Fil•A of length 1, given by FilkA = A for k ≥ n and
FilkA = 0 for k ≤ n− 1.

For every subset I of N, we denote by AI the full subcategory of A whose objects are the
A ∈ Ob(A ) having a weight filtration Fil•A such that FilnA/Filn−1A = 0 if n 6∈ I.

We prove a more general statement than that of the question: if I and J are disjoint subsets
of N, if A ∈ Ob(AI) and B ∈ Ob(AJ), then HomA (A,B) = 0. Choose weight filtrations
Fil•A and Fil•B on A and B such that FilnA = Filn−1A if n 6∈ I and FilnB = Filn−1B if
n 6∈ J . We prove that HomA (A, b) = 0 by induction on the sum of the lengths `A and `B
of Fil•A and Fil•B. If `A + `B ≤ 1, then one of the filtrations has length 0, so one of A of
B is 0, so the result if clear. If `A+`B ≥ 3, then one of the filtrations has length ≥ 2. If for
example `A ≥ 2, then Fil•A induces a weight filtration of length `A − 1 on A′ = Filn−1A,
and A′′ = FilnA/Filn−1A ∈ Ob(An) has a weight filtration of length 1. As A′ and A′′

are both in AI , the induction hypothesis implies that HomA (A′, B) = HomA (A′′, B) = 0.
Moreover, the exact sequence

0→ A′ → A→ A′′ → 0

induces an exact sequence

HomA (A′′, B)→ HomA (A,B)→ HomA (A′, B),

so HomA (A,B) = 0. The case where `B ≥ 2 is similar. It remains to treat the case where
`A + `B = 2. If `A = 0 (resp. `B = 0), then A = 0 (resp. B = 0), so the result is obvious.
Finally, suppose that `A = 1 and `B = 1. Then there exist nA ∈ I and nB ∈ J such that
A ∈ Ob(AnA) and B ∈ Ob(AnB ); as I ∩ J = ∅, we have nA 6= nB, so HomA (A,B) = 0
by assumption (1).

(b). We show the existence of wτ≤n. It suffices to show that, for every B ∈ Ob(A ), the functor
A≤n → Set, A 7→ HomA (A,B) is representable. Fix B ∈ Ob(A ), and let Fil•B be a
weight filtration on B. Then Fil•B induces a weight filtration on B/FilnB, which shows
that B/FilnB ∈ Ob(A≥n+1). Let A ∈ Ob(A≤n). Applying HomA (A, ·) to the exact
sequence

0→ FilnB → B → B/FilnB → 0

and using question (a), we see that the canonical morphism
HomA (A,FilnB) → HomA (A,B) is an isomorphism. This shows that the couple
(FilnB,FilnB ⊂ B) represents the functor A≤n → Set, A 7→ HomA (A,B). In particular,
we get wτ≤nB = FilnB. By uniqueness of the right adjoint, this implies that the weight
filtration on B is unique.

If A ∈ Ob(A ) and Fil•A is its weight filtration, a similar proof shows that the pair
(A/Filn−1A,A → A/Filn−1A) represents the functor A≥n → Set, B 7→ HomA (A,B).
This shows the existence of wτ≥n and the fact that wτ≥nA = A/Filn−1A.

Note also that the formulas for wτ≤n and wτ≥n+1 imply that, for every A ∈ Ob(A ), the
following sequence is exact:

0→ wτ≤nA→ A→ wτ≥n+1A→ 0.
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(c). For later use, we prove that the functors wτ≤n are exact. Let f : A → B be
a morphism of A ; we want to prove that, for every n ∈ Z, the canonical mor-
phisms wτ≤n(Ker f) → Ker(wτ≤nf) and Coker(wτ≤nf) → wτ≤n(Coker f) are isomor-
phisms; this implies in particular that Ker(wτ≤n),Coker(wτ≤n) ∈ Ob(A≤n) and that
Ker(wτ≥n+1),Coker(wτ≥n+1) ∈ Ob(A≥n+1), so that A≤n and A≥n+1 are abelian subcat-
egories of A . We prove the claim by induction on `A + `B, where `A (resp. `B) is the
length of the weight filtration of A (resp. B). If n ∈ Z, applying the snake lemma to the
commutative diagram with exact rows

0 // wτ≤nA //

��

A //

f
��

wτ≥n+1A

��

// 0

0 // wτ≤nB // B // wτ≥n+1B // 0

we get an exact sequence

0→ Ker(wτ≤nf)→ Ker(f)→ Ker(wτ≥n+1f)
δ→ Coker(wτ≤n)→ Coker(f)→ Coker(wτ≥n+1)→ 0.

The claim that we want to prove is equivalent to the fact that δ = 0. Indeed, if
δ = 0 then we immediately get the result, and if Coker(wτ≤nf) ∈ Ob(A≤n) and
Ker(wτ≥n+1f) ∈ Ob(A≥n+1) then the solution of (a) implies that δ = 0. We first show
that the result holds if at least two of wτ≤nA, wτ≥n+1A, wτ≤nB or wτ≥n+1B are 0. If
wτ≥n+1A or wτ≤nB is 0, then δ = 0. Suppose that wτ≤nA = 0 and wτ≥n+1B = 0; then
A ∈ Ob(A≥n+1) and B ∈ Ob(A≤n), so f = 0 by the solution of (a), and the result is clear.
If `A, `B ≤ 1, then there exist nA, nB ∈ Z such that A ∈ Ob(AnA) and B ∈ Ob(AnB ),
and then, for every n ∈ Z, at least two of wτ≤nA, wτ≥n+1A, wτ≤nB or wτ≥n+1B are
0, so we are done. Suppose that `A ≥ 2, and let n ∈ Z. If both wτ≤nA and wτ≥n+1A
are nonzero, then they both have weight filtrations of lengths < `A; by the induction
hypothesis, applied to wτ≤nf and wτ≥n+1f , we have Ker(wτ≥n+1f) ∈ Ob(A≥n+1) and
Coker(wτ≤nf) ∈ Ob(A≤n), so δ = 0 and we are done. If wτ≥n+1A = 0, then δ = 0, and
again we are done. Suppose that wτ≤nA = 0. If wτ≤nB and wτ≥n+1B are both nonzero,
then again we can use the induction hypothesis to finish the proof; if at least one of them
is ), then at least two of wτ≤nA, wτ≥n+1A, wτ≤nB or wτ≥n+1B are 0, so we are done.
The case where `B ≥ 2 is similar.

Now fix n ∈ Z and let A ∈ Ob(A≤n) and B ∈ Ob(A≥n+1). If i ≤ −1, then
ExtiA (A,B) = HomD(A )(A,B[i]) = 0 by Corollary V.4.2.8 of the notes. If i = 0, then

ExtiA (A,B) = HomA (A,B) = 0 by question (a). Suppose that i ≥ 1. We use the descrip-
tion of ExtiA (A,B) given by Proposition V.4.5.3 of the notes. So let x ∈ ExtiA (A,B),

and let c = (0 → B
f→ Ei−1

fi−1→ . . .
f1→ E0

f0→ A → 0) be a Yoneda extension of A
by B representing x. Applying wτ≤n to this exact sequence, we get an exact sequence
0 → 0 → Fi−1 → . . . → F0 → A → 0, where Fj = wτ≤nEj for every j ∈ {0, . . . , i − 1}.
We denote the obvious inclusion Fj → Ej by uj . So we have a commutative diagram with
exact rows

0 // B
f // Ei−1 // Ei−2 // . . . // E0

// A // 0

0 // B
idB+0

// B ⊕ Fi−1 //

f+ui−1

OO

Fi−2 //

ui−2

OO

. . . // F0
//

u0

OO

A // 0

where the morphism B ⊕ Fi−1 → Fi−2 is equal to 0 on B and to wτ≤nfi−1 on Fi−1. So
the second row also represents x ∈ ExtiA (A,B). To show that x = 0, it suffices to show
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that the morphism

g : (. . .→ 0→ B → B ⊕ Fi−1 → Fi−2 . . . F0 → 0→ . . .)→ B[i]

(with F0 in degree 0 on the left hand side) is equal to 0. But the complex
(. . . → 0 → B → B ⊕ Fi−1 → Fi−2 . . . F0 → 0 → . . .) is the direct sum of
(. . . → 0 → B → B → 0 . . . 0 → 0 → . . .) (with the first B in degree −i) and of
(. . .→ 0→ 0→ Fi−1 → Fi−2 . . . F0 → 0→ . . .) (with F0 in degree 0), the morphism g is
0 on the second of these summands, and the first of these summands is quasi-isomorphic
to 0, so g = 0 in D(A ).

(d). Fix n ∈ Z. Note that we have proved in the solution of (c) that A≤n and A≥n+1 are
abelian subcategories of A .

By condition (1), if m ∈ Z and A ∈ Ob(A ) is isomorphic to an object of Am, then
A ∈ Ob(Am). By the existence of weight filtrations (condition (2)), if A ∈ Ob(A ) is
isomorphic to an object of A≤n (resp. A≥n+1), then A is in A≤n (resp. A≥n+1). This
implies that (w D≤n,w D≥n+1) satisfies condition (0) of the definition of a t-structure.

We clearly have w D≤n[k] = w D≤n and w D≥n+1[k] = w D≥n+1[k] for every k ∈ Z, so
condition (2) of the definition of a t-structure is clear.

For every A ∈ Ob(Db(A )), we define the cohomological amplitude of A to be n1 − n2,
where n1 (resp. n2) is the biggest (resp. smallest) integer n ∈ Z such that Hn(A) 6= 0. If
the cohomological amplitude of A is 0 then A = 0, and if it is 1, then there exists n ∈ Z
such that Hi(A) = 0 for i 6= 0, so that A ' Hn(A)[−n].

Let A ∈ Ob(w D≤n) and B ∈ Ob(w D≥n+1). We claim that ExtiA (A,B) = 0 for every
i ∈ Z. (In particular, we get condition (1) of the definition of a t-structure.) We prove
this by induction on cA + cB, where cA (resp. cB) is the cohomological amplitude of A
(resp. B). If cA, cB ≤ 1, then the claim follows from question (c). Suppose that cA ≥ 2.
Then there exists n ∈ Z such that τ≤nA → A and A → τ≥n+1A are not isomorphisms,
hence τ≤nA, τ≥n+1A have cohomological amplitude < cA. Let i ∈ Z. Applying the
cohomological functor ExtiA (·, B) = HomD(A )(·, B[i]) to the exact triangle

τ≤A → A→ τ≥n+1A
+1→,

we get an exact sequence

ExtiA (τ≥n+1A,B)→ ExtiA (A,B)→ ExtiA (τ≤nA,B).

As ExtiA (τ≤1A,B) = ExtiA (τ≥n+1A,B) = 0 by the induction hypothesis, this implies
that ExtiA (A,B) = 0. The case wgere cB ≥ 2 is similar.

We check condition (3) of the definition of a t-structure. Let X ∈ Ob(Db(A )). We start

with a remark: Suppose that there exists an exact triangle (∗) A → X → B
+1→ with

A ∈ Ob(w D≤n) and B ∈ Ob(w D≥n+1). Let i ∈ Z. Then we have an exact sequence

Hi−1(B)→ Hi(A)→ Hi(X)→ Hi(B)→ Hi+1(A),

in which Hi(A), Hi+1(A) are in A≤n and Hi−1(B), Hi(B) are in A≥n+1. By the solution
of question (a), the morphisms Hi−1(B) → Hi(A) and Hi(B) → Hi+1(A) are zero, so we
get an exact sequence

0→ Hi(A)→ Hi(X)→ Hi(b)→ 0,

which proves that Hi(A) = wτ≤n(Hi(X)) and Hi(B) = wτ≥n+1(Hi(X)).
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Now we prove by induction on the cohomological amplitude c of X that there exists an
exact triangle (∗). If c = 0, then X = 0 and we can take A = B = 0. Suppose that c = 1.
Then there exists m ∈ Z such that X ' Hm(X)[−m]. As w D≤n and w D≥n+1 are stable
by all functor [k], it suffices to prove the existence of the exact triangle (∗) for Hm(X), so
we may assume that X ∈ Ob(A ). Then we can take for (∗) the exact triangle associated
to the exact sequence 0 → wτ≤nX → X → wτ≥n+1X → 0. Suppose that c ≥ 2. Then
there exists m ∈ Z such that τ≤mX → X and X → τ≥m+1X are not isomorphisms,
hence X ′ = τ≤mX, X ′′ = τ≥m+1X have cohomological amplitude < c. By the induction

hypothesis, we have exact triangles A′ → X ′ → B′
+1→ and A′′ → X ′′ → B′′

+1→, with
A′, A′′ ∈ Ob(w D≤n) and B′, B′′ ∈ Ob(w D≥n+1). By question (a) of problem 1, there
exists a unique morphism of exact triangles

A′′ //

��

X ′′

��

// B′′

��

+1 //

A′[1] // X ′[1] // B′[1]
+1 //

extending the morphism X ′′ → X ′[1]. We complete the morphism A′′ → A′[1] to an exact
triangle A′ → A → A′′ → A′[1]. By axiom (TR4) of triangulated categories, we can find
a morphism A→ X such that the diagram

A′ //

��

A

��

// A′′

��

+1 //

X ′ // X // X ′′
+1 //

is a morphism of exact triangles. Finally, we complete the morphism A→ X to an exact

triangle A → X → B
+1→. We claim that this is the desired exact triangle (∗). To prove

this claim, it suffices to show that Hi(A) = wτ≤n(Hi(X)) for every i ∈ Z; indeed, by
the long exact sequence of cohomology, this implies that, for every i ∈ Z, the morphism
Hi(X)→ Hi(B) is surjective and identifies Hi(B) to wτ≥n+1(Hi(X)), and so we will have
A ∈ Ob(w D≤n) and B ∈ Ob(w D≥n+1). To prove the claim, let i ∈ Z. We have a
commutative diagram with exact rows

Hi−1(A′′) //

��

Hi(A′) //

��

Hi(A) //

��

Hi(A′′) //

��

Hi+1(A′)

��
Hi−1(X ′′) // Hi(X ′) // Hi(X) // Hi(X ′′) // Hi+1(X ′)

If i ≤ m, then Hi(X ′′) = Hi−1(X ′′) = 0, so Hj(A′′) = wτ≤nHj(X ′′) = 0 for j ∈ {i, i− 1},
so the diagram becomes a commutative square whose horizontal arrows are isomorphisms:

wτ≤nHi(X ′)
∼ //

��

Hi(A)

��
Hi(X ′)

∼ // Hi(X)

which shows that Hi(A) = wτ≤nHi(X). If i ≥ m + 1, then Hi(X ′) = Hi+1(X ′) = 0, so
Hj(A′) = wτ≤nHj(X ′) = 0 for j ∈ {i, i + 1}, so the diagram becomes a commutative
square whose horizontal arrows are isomorphisms:

Hi(A)
∼ //

��

wτ≤nHi(X ′′)

��
Hi(X)

∼ // Hi(X ′′)
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which shows again that Hi(A) = wτ≤nHi(X).

Finally, we calculate the heart of the t-structure (w D≤n,w D≥n+1). Let
X ∈ Ob(w D≤n) ∩ Ob(w D≥n+1). For every i ∈ Z, the object Hi(X) of A is in
Ob(A≤n) ∩ Ob(A≥n+1), so idHi(X) = 0 by question (a), so Hi(X) = 0. This shows
that X = 0.

�
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