
MAT 540 : Problem Set 7

Due Thursday, November 7

1 Diagram chasing lemmas via spectral sequences

This problem will ask to reprove some of the diagram chasing lemmas using the two spectral
sequences of a double complex. This is circular, because of course the diagram chasing lemmas
are used to establish the existence of the spectral sequences. The goal is just to get you used
to manipulating spectral sequences on simple examples.

(a). The ∞ × ∞ lemma: (2 points) Suppose that we have a double complex
X = (Xn,m, dn,m1 , dn,m2 ) such that Xn,m = 0 if n < 0 or m < 0. Suppose also that
the complexes (X•,n, d•,n1,X) and (Xn,•, dn,•2,X) are exact if n 6= 0. Using the two spectral
sequences of the double complex, prove that we have canonical isomorphisms

Hn(X•,0, d•,01,X) ' Hn(X0,•, d0,•
2,X).

(Hint: Both spectral sequences degenerate at the first page.)

(b). The four lemma: Consider a commutative diagram with exact rows in A :

(*) A′ // B′
g // C ′ // D′

A //

u

OO

B
f
//

v

OO

C //

w

OO

D

t

OO

Suppose that u is surjective and t is injective. We want to show that f(Ker v) = Kerw
and that Im v = g−1(Imw).

(i) (1 point) Show that Im v = g−1(Imw) if and only if the morphism Coker v → Cokerw
induced by g is injective.

We consider the double complex X represented on diagram (*), with the convention that
all the objects that don’t appear are 0, the object A is in bidegree (0, 0), the differen-
tial d1,X is horizontal and the differential d2,X is vertical. (So, for example, X3,0 = C,
X1,0 = A′ and X2,2 = 0.) Let IE and IIE the two spectral sequences of this double
complex.

(ii) (2 points) Show that IIE degenerates at the second page.

(iii) (1 point) Show that H2(Tot(X)) = 0.

(iv) (1 point) Write the first page of IE.

(v) (1 point) Show that IE degenerates at the second page.

(vi) (2 points) Show that f(Ker v) = Kerw and that Im v = g−1(Imw).
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(c). The long exact sequence of cohomology: We consider a short exact sequence of
complexes 0 → A• → B• → C• → 0; to simplify the notation, we will assume that
An = Bn = Cn = 0 for n < 0. Consider the following double complex X:

0 // 0 // 0 // . . .

C0 //

OO

C1 //

OO

C2 //

OO

. . .

B0 //

OO

B1 //

OO

B2 //

OO

. . .

A0 //

OO

A1 //

OO

A2 //

OO

. . .

where X0,0 = A, the differential d1,X (resp. d2,X) is represented horizontally (resp. ver-
tically), and Xn,m = 0 if n < 0, m < 0 or m ≥ 3. Let IE and IIE be the two spectral
sequences of X.

(i) (1 point) Show that IE degenerates at the first page and that Hn(Tot(X)) = 0 for
every n ∈ Z.

(ii) (1 point) Calculate IIE1.

(iii) (1 point) Show that IIE degenerates at the third page.

(iv) (2 points) Show that IIE00
2 = IIE00

∞ and that IIE1q
2 = IIE1q

∞ for every q ≥ 0.

(v) (1 point) Show that d0q
2 : IIE0q

2 → IIE2,q−1
2 is an isomorphism for every q ≥ 1.

(vi) (1 point) Show that we have a long exact sequence

. . .→ Hn(A•)→ Hn(B•)→ Hn(C•)
δn→ Hn+1(A•)→ Hn+1(B•)→ . . .

where δn comes from a differential of the spectral sequence IIE.

Solution.

(a). Consider the two spectral sequences IE and IIE of the double complex X. We have
IEp,q1 = Hq(Xp,•, dp,•2,X); as all the columns of the double complex are supposed exact

except for X0,•, this implies that IEpq1 = 0 for p 6= 0. As IEpqr is a subquotient of IEpqq
for r ≥ 1, we deduce that IEpqr = 0 for every r ≥ 1 and every p 6= 0, and in particular
dpqr : IEpqr → IEp+r,q−r+1

r is the zero morphism if r ≥ 1, because its source or target is
0. So the spectral sequence IE degenerates at the first page, and we have IEpq∞ = IEpq1 .
Also, as X is a first quadrant double complex, the spectral sequence IE converges to
H•(Tot(X)), so we get

Hn(Tot(X)) = IE0,n
∞ = Hn(X0,•, d0,•

2,X).

On the other hand, we have IIEpq1 = Hq(X•,p, d•,p1,X). As all the rows of the double complex

are supposed exact except for X•,0, this implies that IIEpq1 = 0 if p 6= 0. Reasoning as in
the first paragraph, we deduce that the spectral sequence IIE degenerates at the first page,
and that we have IIEpq∞ = IIEpq1 . As IIE converges to H•(Tot(X)), this gives canonical
isomorphisms

Hn(Tot(X)) = IIE0,n
∞ = Hn(X•,0, d•,01,X).
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(b). (i) As Imw is the kernel of the canonical morphism C ′ → Cokerw, the subobject

g−1(Imw) of B′ is the kernel of the morphism B′
g→ C ′ → Cokerw, which is also equal

to the morphism B′ → Coker v → Cokerw, where the morphism Coker v → Cokerw
is induced by g. Note also that we always have Im v ⊂ g−1(Imw), because g◦v = w◦f .
So the kernel of the morphism Coker v → Cokerw induced by g is g−1(Imw)/ Im v,
which gives the result.

(ii) Let us give names to all the morphisms in the diagram:

A′
b // B′

g // C ′
d // D′

A a
//

u

OO

B
f
//

v

OO

C c
//

w

OO

D

t

OO

As the rows are exact, we have IIE0,0
1 = Ker a, IIE0,3 = Coker c,

IIE0,1
1 = IIE0,2

1 = 0 = IIE1,1
1 = IIE1,2

1 = 0, IIE1,0
1 = Ker b, IIE1,3

1 = Coker d,
and the other IIEp,q1 are all 0. In other words, the first page of IIE looks like this:

0 0 0

Coker c Coker d 0

0 0 0

0 0 0

Ker a Ker b 0

In particular, for every r ≥ 1, we have IIEpqr = 0 if (p, q) 6∈ {(0, 0), (3, 0), (1, 0), (1, 3)},
so, if r ≥ 2, every dpqr has its source or target zero. Hence IIE degenerates at the
second page, and IIE∞ = IIE2.

(iii) As X is a first quadrant double complex, the spectral sequences IE and IIE both
converge to the cohomology of Tot(X). Also, by the calculation in question (ii), for
all (p, q) ∈ Z such that p+ q = 2, we have IIEpq∞ = IIEpq2 = 0. So H2(Tot(X)) = 0.

(iv) By definition of IE, its first page is (where every term that doesn’t appear is 0):

0 0 0 0 0

0 Coker v Cokerw Coker t 0

Keru Ker v Kerw 0 0

(v) For every r ≥ 1, we have IEpqr = 0 unless p ∈ {0, 1}. In particular, if r ≥ 2, then
either the source of the target of dpqr is 0, so dpqr = 0. This shows that IE degenerates
at the second page, hence that IE∞ = IE2.

(vi) As IE∞ = IE2, there exists a filtration on H2(Tot(X)) whose quotients are the
Ep,2−p2 . But we have seen in questino (iii) that H2(Tot(X)) = 0, so IEp,2−p2 = 0 for

every p ∈ Z. On the other hand, by question (iv), we have IE2,0
2 = Kerw/f(Ker v),

IE1,1
2 = Ker(g : Coker v → Cokerw) and IE0,2

2 = 0. This shows that
Kerw = f(Ker v) and that the morphism Coker v → Cokerw induced by g is in-
jective; by question (i), that last fact is equivalent to the fact that Im v = g−1(Imw),
so we are done.
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(c). (i) As all the columns of the complex are exact, we have IEpq1 = 0 for all p, q ∈ Z, so
the spectral sequence IE degenerates at the first page, and we have IE∞ = IE1 = 0.
Also, as X is a first quadrant double complex, the spectral sequence IE converges to
H•(Tot(X)), so Hn(Tot(X)) = 0 for every n ∈ Z.

(ii) Applying the formula for IIE1, we get that it is equal to:

· · · · · · · · · 0

H2(A•) H2(B•) H2(C•) 0

H1(A•) H1(B•) H1(C•) 0

H0(A•) H0(B•) H0(C•) 0

In other words, we have IIEpq1 = 0 if p 6∈ {0, 1, 2}, IIE0,q
1 = Hq(A•), IIE1,q

1 = Hq(B•)

and IIE2,q
1 = Hq(C•).

(iii) By question (ii), we have IIEpqr = 0 if r ≥ 1 and p 6∈ {0, 1, 2}. So, if r ≥ 3, then
either or target of dpqr : IIEpqr → IIEp+r,q−r+1

e is 0, hence dpqr = 0. This shows that
IIE degenerates at the third page.

(iv) For every r ≥ 2 and every q ∈ Z, we have IIE1+r,q−r+1
r = 0 and IIE1−r,q+r−1

r = 0,
so d1,q

r : IIE1q
r → IIE1+r,q−r+1

r and d1−r,q+r−1
r : IIE1−r,q+r−1

r → IIE1,q
r are both zero,

so IIE1,q
r+1 = IIE1,q

r . This shows that IIE1,q
∞ = IIE1,q

2 for every q ∈ Z.

Also, if r ≥ 2, we have IIEr,−r+1
r = IIE−r,r−1

2 = 0, so d0,0
r : IIE0,0

r → IIEr,−r+1
r and

d−r,r−1
r : IIE−r,r−1

r → IIE0,0
r are both zero, so IIE0,0

r+1 = IIE0,0
r . This shows that’

IIE0,0
∞ = IIE0,0

2 . (Note that we only used the fact that we have a first quadrant
spectral sequence in this paragraph.)

(v) As the spectral sequence IIE degenerates at the third page and its limit H•(Tot(X))
is 0 by question (i), we have IIEpq3 = IIEp,q∞ = 0 for all p, q ∈ Z. As IIE0,q

3 = Ker(d0,q
2 )

and IIE2,q−1
3 = Coker(d0,q

2 ), this shows that d0,q
2 is an isomorphisms for every q ∈ Z.

(vi) We have IIE0,0
2 = IIE0,0

∞ = 0 by questions (iv) and (v), so the morphism

d0,0
1 : H0(A•) → H0(B•) is injective. Also, for every q ≥ 0, we have

IIE1,q
∞ = IIE1,q

2 = 0, so the sequence

Hq(A•)
d0,q1→ Hq(B•)

d1,q1→ Hq(C•)

is exact. Finally, we have seen in question (v) that, for every q ≥ 1, the morphism

d0,q
2 : IIE0,q

2 = Ker(d0,q
1 )→ IIE2,q−1

2 = Coker(d1,q−1
1 )

is an isomorphism; inverting it, we get an exact sequence

IIE1,q−1
1 = Hq−1(B•)

d1,q−1
1→ IIE2,q−1

1 = Hq−1(C•)
δq−1

→ IIE0,q
1 = Hq(A•)

d0,q1→ IIE1,q
1 = Hq(B•).

Putting all these exact sequences together gives the long exact that we wanted.

�
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2 Group cohomology

(a). Cohomology of cyclic groups: If G is a group, a ∈ Z[G] and M is a left Z[G]-
module, we denote by a : M → M the Z[Cn]-linear map x 7−→ a · x. For every n ≥ 1,
we denote by Cn the cyclic group of order n and by σ a generator of Cn, and we write
N = 1+σ+σ2+. . .+σn−1. We also write C∞ = Z and σ = 1 ∈ C∞. If n ∈ {1, 2, . . .}∪{∞},
we have a Z[Cn]-linear map ε : Z[C∞]→ Z sending each element of Cn to 1 ∈ Z.

(i) (2 points) If n ≥ 1, show that:

. . .→ Z[Cn]
N→ Z[Cn]

σ−1→ Z[Cn]
N→ Z[Cn]

σ−1→ Z[Cn]
ε→ Z→ 0

is an exact sequence.

(ii) (2 points) If M is a Z[Cn]-module, show that:

Hq(Cn,M) =


MCn if q = 0
MCn/N ·M if q ≥ 2 is even
{x ∈M | N · x = 0}/(σ − 1) ·M if q is odd.

(iii) (1 point) Show that

0→ Z[C∞]
σ−1→ Z[C∞]

ε→ Z→ 0

is an exact sequence.

(iv) (2 points) If M is a Z[C∞]-module, show that:

Hq(C∞,M) =


{x ∈M | σ · x = x} if q = 0
M/(σ − 1) ·M if q = 1
0 if q ≥ 2.

(b). Let n be a integer, and let G = Cn o C2 be the dihedral group of order 2n, where the
nontrivial element of C2 acts on Cn by multiplication by −1. Then K = Cn is a normal
subgroup of G, and G/K ' C2.

(i) (3 points) Show that

Hq(Cn,Z) =


Z if q = 0
Z/nZ if q ≥ 2 is even
0 if q is odd,

and show that the nontrivial element of C2 acts by (−1)q/2 on Hq(Cn,Z) if q is even.

(ii) (2 points) Calculate Hp(C2,H
q(Cn,Z)) for all p, q ≥ 0.

(iii) (2 points) If n is odd, show that

Hm(G,Z) =


Z if m = 0
Z/2Z if m = 2 mod 4
Z/2nZ if m > 0 and m = 0 mod 4
0 if m is odd.

(c). Let G be a group, and suppose that G has a normal subgroup K such that G/K ' Z.
Let M be a Z[G]-module.

(i) (1 point) Show that the Hochschild-Serre spectral sequence degenerates at E2.
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(ii) (2 points) We fix a generator σ of G/K and, for every q ∈ N,
we write Hq(K,M)σ = {x ∈ Hq(K,M) | σ(x) = x} and
Hq(K,M)σ = Hq(K,M)/(σ − 1) ·Hq(K,M).

Show that H0(G,M) = H0(K,M)σ, and that we have short exact sequences

0→ Hm−1(K,M)σ → Hm(G,M)→ Hm(K,M)σ → 0

for every m ≥ 1.

(d). Let G be a group.

(i) (2 points) If K is a central subgroup of G, show that G/K acts trivially on H∗(K,Z)
and on H∗(K,Z).

Let σ be an element of infinite order in the center of G, and K = 〈σ〉. Let M be a
Z[G]-module. We write Mσ = {x ∈M | σ · x = x} and Mσ = M/(σ − 1) ·M .

(ii) (1 point) Show that the Hochschild-Serre spectral sequence calculating H∗(G,M)
degenerates at E3.

(iii) (2 points) Show that H0(G,M) = H0(G/K,Mσ), and that we have a long exact
sequence:

0→ H1(G/K,Mσ)→H1(G,M)→ H0(G/K,Mσ)→ H2(G/K,Mσ)

→ H2(G,M)→ H1(G/K,Mσ)→ H3(G/K,Mσ)→ . . .

Solution.

(a). (i) Let x =
∑n−1

i=0 aiσ
i ∈ Z[Cn], with a0, . . . , an−1 ∈ Z; we also write an = a0 and

a−1 = an−1. We have ε(x) = a0 + a1 + . . . + an−1, (σ − 1)(x) =
∑n−1

i=0 (ai+1 − ai)σi
and N(x) = (a0 + a1 + . . .+ an−1)

∑n−1
i=0 σ

i. So

Ker(σ − 1) = {x =
n−1∑
i=0

aiσ
i | a0 = a1 = . . . = an−1} = Im(N)

and

Im(σ − 1) = {x =
n−1∑
i=0

aiσ
i | a0 + a1 + . . .+ an−1 = 0} = Ker(N) = Ker(ε).

(ii) Question (i) gives a resolution of the trivial Z[Cn]-module Z by free Z[Cn]-modules,
so we can use it to calculate Hn(Cn,M) = ExtnZ[Cn](Z,M) by Theorem IV.3.4.1 of

the notes . So Hn(Cm,M) is the cohomology of the following complex (concentrated
in degree ≥ 0):

HomZ[Cn](Z[Cn],M)
(·)◦(σ−1)→ HomZ[Cn](Z[Cn],M)

(·)◦N→ HomZ[Cn](Z[Cn],M)
(·)◦(σ−1)→ . . .

We have an isomorphism HomZ[Cn](Z[Cn],M)
∼→M sending u : Z[Cn]→M to u(σ).

By isomorphism, the endomorphism1 (·)◦(σ−1) (resp. (·)◦N) of HomZ[Cn](Z[Cn],M)
corresponds to the action of σ− 1 (resp. N) on M . Moreover, as σ generates Cn, we
have Ker(σ − 1 : M →M) = MCn . This gives the desired formulas for Hq(Cn,M).
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(iii) Let x =
∑

n∈Z anσ
n ∈ Z[C∞], with an = 0 for |n| big enough. Then ε(x) =

∑
n∈Z an

and (σ − 1)(x) =
∑

n∈Z(an+1 − an)σn. So

Im(σ − 1) = {x =
∑
n∈Z

anσ
n ∈ Z[C∞] |

∑
n∈Z

an = 0} = Ker(ε).

On the other hand, we have x =
∑

n∈Z anσ
n ∈ Ker(σ − 1) if and only if an = an+1

for every n ∈ Z, i.e. if and only if all the an are equal; as we must have an = 0 for
|n| big enough, this forces all the an to be 0. So Ker(σ − 1) = {0}.

(iv) This is exactly the same proof as in question (ii), except that we wrote
Ker(σ − 1 : M → M) as {x ∈ M | σ · x = x} instead of MC∞ . (These are just
two ways of writing the same object.)

(b). (i) We apply the formulas of question (a)(ii). As Cn acts trivially on Z, we have
ZCn = Z, and N acts on Z by multiplicatoion by

∑n−1
i=0 1 = n, so N · Z = nZ

and {x ∈ Z | N · x = 0} = {0}. This immediately gives the desired formula for
Hq(Cn,Z).

Let τ be the nontrivial element of C2. Then, if we make Cn act on it via
(g, x) 7−→ (τgτ−1) · x, the resolution of (a)(i) is isomorphic to the following (ex-
act) complex of Z[Cn]-modules:

(∗) . . .→ Z[Cn]
N→ Z[Cn]

−σ+1→ Z[Cn]
N→ Z[Cn]

−σ+1→ Z[Cn]
ε→ Z→ 0

To calculate the action of τ on H•(Cn,Z), we need to extend the action of τ on Z
(which is given by idZ) to a morphism between the resolution of (a)(i) and (*). Here
is a possibility:

. . . // Z[Cn]
σ−1//

(−σ)3

��

Z[Cn]
N //

(−σ)2

��

Z[Cn]
σ−1//

(−σ)2

��

Z[Cn]
N //

−σ
��

Z[Cn]
σ−1//

−σ
��

Z[Cn]
ε //

1
��

Z //

idZ
��

0

. . . // Z[Cn]
−σ+1// Z[Cn]

N // Z[Cn]
−σ+1// Z[Cn]

N // Z[Cn]
−σ+1// Z[Cn]

ε // Z // 0

So, on H2i(Cn,Z), the action of τ is given by (−σ)i; as H2i(Cn,Z) is a quotient
ZCn = Z, where Cn acts trivially, the action of (−σ)i is given by multiplication by
(−1)i.

(ii) We apply the formulas of (a)(ii) for n = 2. If q is odd, then Hq(Cn,Z) = 0, so
Hp(C2,H

q(Cn,Z)) = 0 for every p ≥ 0. If q = 0, then Hq(Cn,Z) = Z with the trivial
action of C2, so, by question (i),

Hp(C2,H
0(Cn,Z)) =


Z if p = 0
Z/2Z if p ≥ 2 is even
0 if p is odd.

Suppose that q ≥ 2 is even and write q = 2i. Then Hq(Cn,Z) = Z/nZ and the
nontrivial element τ of C2 acts by (−1)i on Hq(Cn,Z). We use the formula of (a)(ii),
and we distinguish four cases:

(1) i is even and n is odd: Then H2i(Cn,Z)C2 = H2i(Cn,Z),
H2i(Cn,Z)/(1 + τ) · H2i(Cn,Z) = (Z/nZ)/2(Z/nZ) = 0 and
{x ∈ Z/nZ | 2x = 0} = {0}. So

Hp(C2,H
2i(Cn,Z)) =

{
Z/nZ if p = 0
0 if p ≥ 1
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(2) i is even and n is even: Then H2i(Cn,Z)C2 = H2i(Cn,Z),
H2i(Cn,Z)/(1 + τ) · H2i(Cn,Z) = (Z/nZ)/2(Z/nZ) ' Z/(n/2)Z and
{x ∈ Z/nZ | 2x = 0} = (n/2)Z/nZ ' Z/2Z. So

Hp(C2,H
2i(Cn,Z)) =


Z/nZ if p = 0
Z/(n/2)Z if p ≥ 2 is even
Z/2Z if p is odd.

(3) i is odd and n is odd: Then H2i(Cn,Z)C2 = 0, the element 1 + τ of Z[C2] acts
on Hn(Cn,Z) by 0 and the element τ − 1 acts by multiplication by −2. So
Hp(C2,H

2i(Cn,Z)) = 0 for every p ≥ 0.

(4) i is odd and n is even: As in case (3), we have H2i(Cn,Z)C2 = 0, the element
1+τ of Z[C2] acts on Hn(Cn,Z) by 0 and the element τ−1 acts by multiplication
by −2. So

Hp(C2,H
2i(Cn,Z)) =

{
0 if p is even
Z/(n/2)Z if p is odd.

(iii) We use the Hochschild-Serre spectral sequence:

Epq2 = Hp(C2,H
q(Cn,Z))⇒ Hp+q(G,Z).

By question (ii) (and the fact that n is odd), we have

Epq2 =


Z if p = q = 0
Z/2Z if q = 0 and p ≥ 2 is even
Z/nZ if q ≥ 1 is in 4N and p = 0
0 otherwise.

So the second page of the spectral sequence looks like this:

0 0 0 0 0 0 0 . . .

Z/nZ 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 . . .

Z 0 Z/2Z 0 Z/2Z 0 Z/2Z . . .

In particular, for every r ≥ 2, we have Epq2 = 0 unless p and q are even; this implies

that dr : Epqr → Ep+r,q−r+1
2 is always 0 (if r is odd, then p and p+ r cannot be even

at the same time; if r is even, then q and q− r+ 1 cannot be even at the same time).
So the spectral sequence degenerates at E2, and we have Epq∞ = Epq2 .

If m is odd, then Ep,m−p∞ = 0 for every p ∈ Z, so Hm(G,Z) = 0. If m = 2 mod 4,
then the only Ep,m−p∞ that is nonzero is Em,0∞ = Z/2Z, so Hm(G,Z) = Z/2Z. Finally,
suppose that m > 0 and m = 0 mod 4. Then the only two Ep,m−p∞ that are nonzero
are E0,m

∞ = Z/nZ and Em,0∞ = Z/2Z, so we have an exact sequence

0→ Z/2Z→ Hm(G,Z)→ Z/nZ→ 0.

As Hm(G,Z) is an abelian group and n is odd, this gives an isomorphism

Hm(G,Z) = Z/2Z× Z/nZ ' Z/2nZ.
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(c). (i) We have Epq2 = Hp(G/K,Hq(K,M)), so, by (a)(iv), we get Epq2 = 0 if p 6∈ {0, 1}. So
dpqr = 0 if r ≥ 2, and the spectral sequence degenerates at E2.

(ii) By (a)(iv) again, we have

Epq∞ = Epq2 = Hp(G/K,Hq(K,M)) =


Hq(K,M)σ if p = 0
Hq(K,M)σ if p = 1
0 otherwise.

Let m ∈ Z. Then Hm(G,M) has a decreasing filtration FilpHm(G,M)
such that FilpHm(G,M) = 0 if p ≥ 2, Fil1Hm(G,M) = E1,m−1

∞ ,
Fil0Hm(G,M)/Fil1Hm(G,M) = E0,m

∞ and FilpHm(G,M) = Hm(G,M) if p ≤ 0.
In other words, we have an exact sequence

0→ E1,m−1
∞ → Hm(G,M)→ E0,m

∞ → 0.

Combining this with the formula for Epq∞ gives the result. (If m = 0, then E1,m−1
∞ = 0,

so we get Hm(G,M) = E0,0
∞ = H0(K,M)σ.)

(d). (i) The action of G on K by conjugation is trivial, and its action on Z is also trivial, so
G acts trivially on H∗(G,Z) and H∗(G,Z).

(ii) We have Epq2 = Hp(G/K,Hq(K,M)), so, by (a)(iv), Epq2 = 0 if q 6∈ {0, 1}. In

particular, if r ≥ 3, then the source or target of dpqr : Epqr → Ep+r,q−r+1
r is 0 for every

choice of (p, q) ∈ Z, so all teh dpqr are zero. So the spectral sequence degenerates at
E3.

(iii) By question (i), we have Epq∞ = Epq3 , so Epq∞ = 0 if q 6∈ {0, 1},

Em,0∞ = Em,03 = Coker(Em−2,1
2 → Em,02 ) = Coker(Hm−2(G/K,Mσ)→ Hm(G/K,Mσ))

and

Em−1,1
∞ = Em−1,1

3 = Ker(Em−1,1
2 → Em+1,0

2 ) = Coker(Hm−1(G/K,Mσ)→ Hm+1(G/K,Mσ)).

Let m ∈ Z. Then Hm(G,M) has a decreasing filtration FilpHm(G,M) such that
FilpHm(G,M) = 0 if p ≥ m + 1, FilpHm(G,M) = Hm(G,M) if p ≤ m − 1,
FilmHm(G,M) = Em,0∞ , and Film−1Hm(G,M)/FilmHm(G,M) = Em−1,1

∞ . If m = 0,
then Em−1,1

∞ = 0, so we get

H0(G,M) = E0,0
∞ = H0(G/K,Mσ).

If m = 1, we get an exact sequence

Hm−2(G/K,Mσ)→ Hm(G/K,Mσ)→ Hm(G,M)→ Hm−1(G/K,Mσ)→ Hm+1(G/K,Mσ).

Putting all these exact sequences together gives the desired long exact sequence.

�

3 Flabby and soft sheaves

Let X be a topological space. If F is a sheaf on X and Y is a subset of X, we set

F (Y ) = lim−→
Y⊂U∈Open(X)op

F (U).
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If Y ⊂ Y ′, we have a map F (Y ′)→ F (Y ) induced by the restriction maps of F .

We say that F is flabby (or flasque) if, for every open subset U of X, the restriction map
F (X) → F (U) is surjective. We say that F is soft if, for every closed subset F , the map
F (X)→ F (F ) is surjective.

Let R be a ring. If M is a left R-module and x ∈ X, we write Sx,M for the presheaf on X
given by Sx,M (U) = M if x ∈ U and Sx,M (U) = 0 if x 6∈ U , with the obvious restriction maps
(equal to 0 or idM ). It is easy to see that this is a sheaf, and we call it the skryscraper sheaf at
x with value M .

(a). (1 point) Show that any flabby sheaf is soft.

(b). (2 points) Let d ≥ 1, and let F be the sheaf U 7−→ C∞(U,C) on Rd. Show that the sheaf
F is soft. 1

(c). (1 point) For every x ∈ X, show that the functor RMod → Sh(F , R), M 7−→ Sx,M is
right adjoint to the functor F 7−→ Fx.

(d). (2 points) If (Mx)x∈X is a family of R-modules, show that
∏
x∈X Sx,Mx is a flabby sheaf,

and that it is an injective sheaf if every Mx is an injective R-module.

(e). (1 point) For every sheaf of R-modules F on X, we set G(F ) =
∏
x∈X Sx,Fx . Show that

the canonical morphism F → G(F ) (sending any s ∈ F (U) to the family (sx)x∈U ) is
injective. 2

(f). (2 points) Show that sheaves of R-modules on X have a functorial resolution by flabby
injective sheaves.

(g). (2 points) Let 0→ F → G →H → 0 be an exact sequence in Sh(X,R), with F flabby.
Show that the sequence 0→ F (X)→ G (X)→H (X)→ 0 is exact.

An open cover (Ui)i∈I of X is called locally finite if every point of X has a neighborhood that
meets only finitely many of the Ui. We say that X is paracompact if every open cover of X has
a locally finite refinement. We admit the following facts:

(1) A metric space is paracompact.

(2) If X is paracompact and (Ui)i∈I is an open cover of X, then there exists an open cover
(Vi)∈I of X such that Vi ⊂ Ui for every i ∈ I. 3

(h). Suppose that X is a separable metric space. 4 Let 0 → F
f→ G

g→ H → 0 be a short
exact sequence of sheaves of R-modules on X, with F soft. The goal of this question is
to prove that the sequence 0→ F (X)→ G (X)→H (X)→ 0 is exact.

(i) (1 point) Let s ∈H (X). Show that there exists a locally finite open cover (Un)n∈N
and sections tn ∈ G (Un) such that g(tn) = s|Un

for every n ∈ N.

(ii) (2 points) Take an open cover (Vn)n∈N of X such that Fn := Vn ⊂ Un for every
n ∈ N. Prove by induction on n that, for every n ≥ 0, there exists a section
an ∈ G (F0 ∪ . . . ∪ Fn) such that g(an) = s|F0∪...∪Fn

.

1More generally, if X is a smooth manifold, then the sheaf Ωk
X of degree k differential forms on X is soft. As

the sequence 0 → CX → Ω1
X → Ω2

X → . . . is exact by the Poincaré lemme, this, and the fact that soft
sheaves are H0(X, ·)-acyclic, shows that the cohomology of the constant sheaf CX is isomorphic to the de
Rham cohomology of X.

2The “G” is for “Godement”, who invented this method of constructing flabby resolutions of sheaves.
3 This follows from the fact that there exists a partition of unity subordinate to (Ui)i∈I , which uses the fact

that paracompact spaces are normal and Urysohn’s lemma.
4It would be enough to assume that X is paracompact.
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(iii) (1 point) Show that s has a preimage in G (X).

(i). (3 points) If F is a flabby sheaf of R-modules on a topological space X, or a soft sheaf
of R-modules on a separable metric space X, show that Hn(X,F ) = 0 for every n ≥ 1.
(Hint: Try to adapt the strategy of Problem 5(b) of problem set 6.)

Solution.

(a). Let F be a flabby sheaf. Let F be a closed subset of X and s ∈ F (F ). By definition of
F (F ), there exists an open subset U ⊃ F of X and a representative s′ ∈ F (U) of s. As
F is flabby, there exists t ∈ F (X) such that t|X = s′, and then t|F = s. So F is soft.

(b). Let F be a closed subset of Rd, and let s ∈ F (F ). By definition of F (F ), there exists an
open subset V ⊃ F of Rd and a C∞ function f : U → C representing s.

I claim that there exists a locally finite open cover (Ui)i∈I of Rn and a subset J of I such
that F ⊂

⋃
j∈J Uj ⊂ U and Ui ∩ F = ∅ if i ∈ I − J . Here is a way to prove this claim:

For every x ∈ F , choose an open neighborhood Ux of x such that Bx ⊂ U . For every
x ∈ Rn − F , choose an open neighborhood Ux of x such that Ux ∩ F = ∅. As Rn is
paracompact, there exists I ⊂ Rn such that (Ux)x∈I is a locally finite open cover of Rn.
Let J = I ∩ F . Then F ∩ (

⋃
x∈I−J Ux) = ∅, so F ⊂

⋃
x∈J Ux ⊂ U .

Now choose a C∞ partition of unity (ϕi)i∈I subordinate to the open cover (Ui)i∈I ,
and let ϕ =

∑
j∈J ϕj . Then supp(ϕ) ⊂

⋃
j3J Uj ⊂ U and, if x ∈ F , then

1 =
∑

i∈I ϕi(x) =
∑

j∈J ϕj(x) = 1. Define a function g : Rn → C by g(x) = ϕ(x)f(x) if
x ∈ U and g(x) = 0 if x 6∈ U . Then g is C∞ on U , and g = 0 on Rn − supp(ϕ). So g is
C∞, i.e. g ∈ F (Rn), and g|F = s.

(c). Let F ∈ Ob(Sh(X,R)) and M ∈ Ob(RMod). Then we have

HomR(Fx,M) = HomR(lim−→
x∈U

F (U),M) = lim←−
x∈U

HomR(F (U),M).

On the other hand, a morphism F → Sx,M is a family (fU )U∈Open(X) of morphisms of
R-modules fU : F (U) → Sx,M (U), with fU = 0 if x 6∈ U (because then Sx,M (U) = 0
and fU : F (U) → M if x ∈ U , satisfying the condition that, if x ∈ V ⊂ U , then,
for every s ∈ F (U), we have fV (s|V ) = fU (s). In other words, the family (fU )U3x is
an element of lim←−x∈U HomR(F (U),M) = HomR(Fx,M). This defines an isomorphism

HomSh(X,R)(F , Sx,M ) ' HomR(Fx,M), that is clearly functorial in F and M .

(d). Let F =
∏
x∈X Sx,Mx . Let U be an open subset of X. Then F (U) =

∏
x∈U Mx and

F (X) =
∏
x∈XMx, and the restriction morphism F (X)→ F (U) is given by the canon-

ical projection on the factors indexed by x ∈ U , which is clearly surjective. So F is
flabby.

Suppose that Mx is an injective R-module for every x ∈ X. Then, for every x ∈ X,
the sheaf Sx,M is injective by Lemma II.2.4.4 of the notes and question (c). By Lemma
II.2.4.3 of the notes , the sheaf

∏
x∈X Sx,Mx is also injective.

(e). Denote by c : F → G(F ) the canonical morphism. Let U be an open subset of X and
s ∈ F (U) such that c(s) = 0. As c(s) = (sx)x∈U , we have sx = 0 for every x ∈ U , so
s = 0.

(f). As RMod is a Grothendieck abelian category, there exists a functor Φ : RMod→ RMod
and a morphism of functors ι : id

RMod → Φ such that, for every M ∈ Ob(RMod), the R-
module Φ(M) is injective and ι(M) : M → Φ(M) is an injective morphism. (See Theorem
II.3.2.4 of the notes.)
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For every sheaf of R-modules F on X, let G′(F ) =
∏
x∈X Φ(Fx) and let c′ : F → G′(F )

be the composition of c : F → G(F ) and of
∏
x∈X ι(Fx) : G(F ) → G′(F ). Then G′

is a functor and c′ is a morphism of functors. Also, the sheaf G′(F ) is always injective
and flabby by question (d). The construction of the proof of Lemma IV.3.1.2 of the notes
gives a functorial resolution of F by injective and flabby sheaves. 5

(g). We give names to the morphisms of the sequence:

0→ F
f→ G

g→H → 0.

Let s ∈ H (X). We want to show that there exists t ∈ G (X) such that g(t) = s. We
consider the set I of pairs (U, t), where U ⊂ X is an open subset and t ∈ G (U) is such
that g(t) = s|U . Note that I is not empty, because s admits preimages by g locally on
X. We consider the following (partial) order on I: (U1, t1) ≤ (U2, t2) if U1 ⊂ U2 and
t1 = t2|U1

. Let J be a nonempty totally ordered subset of I; for every i ∈ J , let (Ui, ti)
be the corresponding pair. Let U =

⋃
i∈J Ui. If i, j ∈ J , I claim that ti|Ui∩Uj

= tj|Ui∩Uj
;

indeed, we may assume that i ≤ j, and then Ui ⊂ Uj and ti = tj|Ui
. So there exists

t ∈ G (U) such that t|Ui
= ti for every i ∈ J , and then (U, t) ≥ (ui, ti) for every i ∈ J .

By Zorn’s lemma, the set I has a maximal element (U, t). I claim that U = X, which
finishes the proof. Suppose that U 6= X. Then there exists an open subset V 6⊂ U of X
and t′ ∈ G (V ) such that g(t′) = s|V . In particular, we have g(tU∩V − t′U∩V ) = 0, so there
exists u ∈ F (U ∩V ) such that f(u =)tU∩V −t′U∩V . As F is flabby, there exists v ∈ F (X)
such that u = v|U∩V . Let t′′ = t′ + f(v|V ). Then t′|U∩V = t′|U∩V + f(u) = t|U∩V , so there

exists t1 ∈ G (U ∪ V ) such that t1|U = t and t1|V = t′′. We have g(t1)|U = g(t) = s|U
and g(t1)|V = g(t′′) = g(t′) = s|V , so g(t1) = s|U∪V . As U ( U ∪ V , this contradicts the
maximality of (U, t).

(h). (i) We can find an open cover (Ui)i∈I of X and sections ti ∈ G (Ui) with g(ti) = s|Ui
for

every i ∈ I. As X is paracompact, after replacing the cover (Ui)i∈I by a refinement,
we may assume that it is locally finite. As X is a separable metric space, its topology
has a countable basis. So we may assume that the cover (Ui)i∈I is countable.

(ii) We take a0 = t0|F0
. Suppose that n ≥ 0 and that we have found an. Let

Ω ⊃ F0 ∪ . . . ∪ Fn be an open subset of X and a′n ∈ G (Ω) be a representative
of an. We have g(a′n)|Un+1∩(F0∪...∪Fn) = s|Un+1∩(F0∪...∪Fn) = g(tn+1)|Un+1∩(F0∪...∪Fn),
so, after shrinking Ω, we may assume that g(a′n) = g(tn+1|Ω∩Un+1

). Then there
exists b ∈ F (Ω ∩ Un+1) such that f(b) = a′n − tn+1|Ω∩Un+1

. As F is soft,
there exists b′ ∈ F (X) such that b′|F0∪...∪Fn

= b|F0∪...∪Fn
. After shrinking Ω

again, we may assume that b′|Ω = b. Let t′n+1 = tn+1 + f(b′|Un+1
). Then

g(t′n+1) = g(tn+1) = s|Un+1
and t′n+1|Ω∩Un+1

= tn+1|Ω∩Un+1
+f(bΩ∩Un+1) = a′n|Ω∩Un+1

.

So there exists a′n+1 ∈ G (Un+1 ∪ Ω) such that a′n+1|Ω = a′n and a′n+1|Un+1
= tn+1,

and we have g(a′n+1) = s|Ω∪Un+1
. We take for an+1 ∈ G (F0 ∪ . . .∪Fn+1) the element

represented by a′n+1 ∈ G (Ω ∪ Un+1).

(iii) As X =
⋃
n≥0 Vn, the family (an|V0∪...∪Vn)n≥0 glues to a section a ∈ G (X) such that

g(a|Vn) = s|Vn for every n, hence g(a) = s.

(i). Let C be the full subcategory of Sh(X,R) whose objects are flabby sheaves of R-modules
on X. Suppose that 0 → F → G → H → 0 is an exact sequence in Sh(X,R) with F
and G flabby. We claim that H is also flabby. Indeed, let U be an open subset of X. By

5Actually, with a little more work we could show that every injective sheaf is flabby, so any functorial resolution
of F by injective sheaves (which exists because Sh(X,R) is a Grothendieck abelian category) is a resolution
by injective and flabby sheaves. But it is simpler to use the functor G.
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question (g) (whose proof adapts immediately to show that G (U)→H (U) is surjective),
we have a commutative diagram with exact rows

0 // F (X) //

u

��

G (X) //

v

��

H (X) //

w

��

0

0 // F (U) // G (U) //H (U) // 0

where the morphisms u and v are surjective. So w is also surjective.

We show by induction on n that, for every n ≥ 1 and every F ∈ Ob(C ), we have
Hn(X,F ) = 0. Suppose that n = 1. Let F be an object of C . Choose a monomorphism
F → G with G an injective sheaf. Let H = G /F . The long exact sequence of cohomology
gives an exact sequence

G (X)→H (X)→ H1(X,F )→ H1(X,G ).

But H1(X,G ) = 0 because G is injective and G (X) → H (X) is surjective because F is
flabby (by question (g)), so H1(X,F ) = 0.

Now suppose the result known for n ≥ 1, and let us prove it for n+ 1. Let F be a flabby
sheaf on X. By question (f), there exists a monomorphism F → G with G an injective
flabby sheaf. Let H = G /F . We have shown that H is flabby. The long exact sequence
of cohomology gives an exact sequence

Hn(X,H )→ Hn+1(X,F )→ Hn+1(X,G ).

But Hn+1(X,G ) = 0 because G is injective, and Hn(X,H ) = 0 by the induction hypoth-
esis, so Hn+1(X,F ) = 0.

The proof for soft sheaves on a separable metric space is exactly the same, once we have
proved that a quotient of soft sheaves is soft; this is the same proof as for a quotient of
flabby sheaves, using question (h) instead of question (g).

�
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