MAT 540 : Problem Set 7

Due Thursday, November 7

1 Diagram chasing lemmas via spectral sequences

This problem will ask to reprove some of the diagram chasing lemmas using the two spectral
sequences of a double complex. This is circular, because of course the diagram chasing lemmas
are used to establish the existence of the spectral sequences. The goal is just to get you used
to manipulating spectral sequences on simple examples.

(a).

The oo x oo lemma: (2 points) Suppose that we have a double complex
X = (X™m d"™ dy™) such that X™™ = 0 if n < 0 or m < 0. Suppose also that
the complexes (X "”,dI:gL() and (X ”",d;’;() are exact if n # 0. Using the two spectral
sequences of the double complex, prove that we have canonical isomorphisms
0 .70 0, 07.
H"(X* ,dLX) ~ H"(X .7d2,X)'

(Hint: Both spectral sequences degenerate at the first page.)

. The four lemma: Consider a commutative diagram with exact rows in &7:

(*) Al B 9 ! D
[ |
A B 7 C D

Suppose that u is surjective and ¢ is injective. We want to show that f(Kerv) = Kerw
and that Imv = g~} (Im w).

(i) (1 point) Show that Im v = g~ (Im w) if and only if the morphism Coker v — Coker w
induced by g is injective.

We consider the double complex X represented on diagram (*), with the convention that
all the objects that don’t appear are 0, the object A is in bidegree (0,0), the differen-
tial dy x is horizontal and the differential do x is vertical. (So, for example, X 30 = O,
X0 = A" and X?2 = 0.) Let 'E and 'E the two spectral sequences of this double
complex.

(ii) (2 points) Show that ! E degenerates at the second page.

(iii) (1 point) Show that H?(Tot(X)) = 0.
1 point) Show that /E degenerates at the second page.

(v

(vi

) (
) (
(iv) (1 point) Write the first page of E.
) (
) (

2 points) Show that f(Kerv) = Kerw and that Imv = g~ (Imw).



(c). The long exact sequence of cohomology: We consider a short exact sequence of
complexes 0 — A®* — B®* — (C* — 0; to simplify the notation, we will assume that
A" = B" =(C" =0 for n < 0. Consider the following double complex X:

0 0 0
CY Cct C?
BO Bl B2
A0 Al A2

where XY = A, the differential d; x (resp. ds x) is represented horizontally (resp. ver-
tically), and X™™ =01ifn < 0, m < 0 or m > 3. Let 'E and "'E be the two spectral
sequences of X.

(i) (1 point) Show that 'E degenerates at the first page and that H"(Tot(X)) = 0 for
every n € Z.

1 point) Calculate ' E.

(ii

(iii) (1 point) Show that //E degenerates at the third page.

1 point) Show that dgq : Hqu — HEg’q_l is an isomorphism for every ¢ > 1.

) (
) (
(iv) (2 points) Show that I EQ® = 11 E9 and that HEQIq =R for every ¢ > 0.
(v) (
) (

(vi) (1 point) Show that we have a long exact sequence

.. = H'(A%) = H"(B*) — H"(C*) & H™(4%) —» H™H(B*) - ...

where 8" comes from a differential of the spectral sequence ' E.

Solution.

(a). Consider the two spectral sequences E and /E of the double complex X. We have
TpPa = Hq(Xp",dg:;(); as all the columns of the double complex are supposed exact
except for X%, this implies that {ET? = 0 for p # 0. As LEP? is a subquotient of { E}?
for r > 1, we deduce that TEP? = 0 for every r > 1 and every p # 0, and in particular
dP? . TgPd 5 TEPTTa="+1 ig the zero morphism if r > 1, because its source or target is
0. So the spectral sequence ! E' degenerates at the first page, and we have I E5 = .
Also, as X is a first quadrant double complex, the spectral sequence !E converges to
H*(Tot(X)), so we get

H™(Tot(X)) = T EY™ = HM(X*, d)%).

On the other hand, we have !/ EP = HY(X*P, d}’% ). As all the rows of the double complex

are supposed exact except for X*0, this implies that I/ EP =0 if p # 0. Reasoning as in
the first paragraph, we deduce that the spectral sequence !/ E degenerates at the first page,
and that we have /' E5! = [IEP. As ' E converges to H*(Tot(X)), this gives canonical
isomorphisms

H"(Tot(X)) = TEY" = HM (X0, d7%).



(b).

(i)

(vi)

As Imw is the kernel of the canonical morphism C’ — Cokerw, the subobject
¢ '(Imw) of B' is the kernel of the morphism B’ % €’ — Coker w, which is also equal
to the morphism B’ — Coker v — Coker w, where the morphism Coker v — Coker w
is induced by g. Note also that we always have Imv C ¢~ (Imw), because gov = wo .
So the kernel of the morphism Coker v — Coker w induced by g is g~ (Imw)/Imv,
which gives the result.

Let us give names to all the morphisms in the diagram:

As the rows are exact, we have HE?’O = Kera, "E% = Cokerc,
HE?,l _ IIE[I)Q -0 = HEll,l _ 11E11,2 -0, UE%,O — Kerb, HE11’3 — Cokerd,
and the other EP% are all 0. In other words, the first page of TE 1ooks like this:

0 0 0
Cokerc  Cokerd 0
0 0 0
0 0 0

Kera Kerbd 0

In particular, for every r > 1, we have I/ EX? = 0 if (p, q) & {(0,0), (3,0), (1,0), (1,3)},
so, if r > 2, every d?? has its source or target zero. Hence /E degenerates at the
second page, and E,, =1 E,.

As X is a first quadrant double complex, the spectral sequences 'E and ' E both
converge to the cohomology of Tot(X). Also, by the calculation in question (ii), for
all (p,q) € Z such that p + ¢ = 2, we have /FE = 1 ED? = 0. So H?(Tot(X)) = 0.

By definition of ' E, its first page is (where every term that doesn’t appear is 0):
0 0 0 0 0
0 Cokerv  Cokerw  Cokert 0

Keru Kerwv Kerw 0 0

For every r > 1, we have 'EF? = 0 unless p € {0,1}. In particular, if r > 2, then
either the source of the target of d?? is 0, so d?? = 0. This shows that g degenerates
at the second page, hence that {E,, = 1 E.

As 'E,, = Ey, there exists a filtration on H?(Tot(X)) whose quotients are the
E5?7P. But we have seen in questino (iii) that H2(Tot(X)) = 0, so TEL* ™" = 0 for
every p € Z. On the other hand, by question (iv), we have 'E3? = Kerw/ f(Kerv),
IEQI’1 = Ker(g : Cokerv — Cokerw) and IE3’2 = 0. This shows that
Kerw = f(Kerv) and that the morphism Cokerv — Cokerw induced by ¢ is in-
jective; by question (i), that last fact is equivalent to the fact that Imv = ¢! (Im w),
so we are done.



(c). (i) As all the columns of the complex are exact, we have !E}Y = 0 for all p,q € Z, so
the spectral sequence ' E degenerates at the first page, and we have 'E,, = TE; = 0.
Also, as X is a first quadrant double complex, the spectral sequence ! E converges to
H*(Tot(X)), so H*(Tot(X)) = 0 for every n € Z.

(i) Applying the formula for /' Ey, we get that it is equal to:

H2(A®) H2(B*) H%*C*) O
HY(A4*) HY(B*) HY{(C*) 0
HO(A®) HO(B*) H°(C*) o0

In other words, we have "'EP? = 0 if p & {0, 1,2}, TTE)? = HI(A®), "TE}? = HI(B®)
and 1TED? = HI(C*).

(iii) By question (ii), we have //EF? = 0 if » > 1 and p ¢ {0,1,2}. So, if » > 3, then
either or target of d?? : [T EP? —y T EPHa="+1 44 0 hence ¢2? = 0. This shows that
TE degenerates at the third page.

(iv) For every r > 2 and every ¢ € Z, we have Hpltra=rtl — g and gt~ = 0,
so did gt  Hpltrartl g q gl-natr=1 1l pl=ratr=1 _ 11 pld 506 hoth zero,
SO HETlfl = 1T g2 This shows that T EXI = 1T E,? for every ¢ € Z.

Also, if r > 2, we have Hpn=r+l — HEQ_M_1 =0, so d20 HTEQO _ =+l ang
d;r’rfl : I[E;r’rfl — HE?’O are both zero, so 11 0.0 - HE?’O. This shows that’
%o — 11 Eg’o. (Note that we only used the fact that we have a first quadrant
spectral sequence in this paragraph.)

(v) As the spectral sequence !/ E' degenerates at the third page and its limit H®(Tot(X))
is 0 by question (i), we have 1T EE? = ITTERY — 0 for all p, g € Z. As TTESY = Ker(dyY)
and 1/ Eg’q_l = Coker(dg’q), this shows that dg’q is an isomorphisms for every g € Z.

(vi) We have TTESY = TEY® = 0 by questions (iv) and (v), so the morphism
dtl)’o . H°(A®) — HO(B®) is injective. Also, for every ¢ > 0, we have
Hpha — HE%’Q = 0, so the sequence

di)’q dlaq

H?(A®) - HY(B®) = HY(C*®)
is exact. Finally, we have seen in question (v) that, for every ¢ > 1, the morphism
dg’q : HEg’q = Ker(dcl)’q) — HE22’(F1 = Coker(di’qfl)
is an isomorphism; inverting it, we get an exact sequence

1,q— _ 0,q9
dy §a—1 dy

1
IIEll,qfl _ Hq—l(Bo) BN IIE%qfl _ Hq—l(co) N I]E?,q — Hq(A.) 1, IIEll’q — Hq(B.)

Putting all these exact sequences together gives the long exact that we wanted.

0



2 Group cohomology

(a). Cohomology of cyclic groups: If G is a group, a € Z[G] and M is a left Z[G]-
module, we denote by a : M — M the Z[C)]-linear map = — a - x. For every n > 1,
we denote by C), the cyclic group of order n and by ¢ a generator of C,, and we write
N = 1+0+0%+.. .40 Wealso write Coo = Zand o = 1 € C. If n € {1,2,...}U{o0},
we have a Z[Cy]-linear map € : Z[Cs] — Z sending each element of C), to 1 € Z.

(i) (2 points) If n > 1, show that:
oo zfen] Bozie, S ozie,) B zie,] S zic,] S Z -0
is an exact sequence.
(ii) (2 points) If M is a Z[Cy]-module, show that:

MEn ifg=0
HY(C,, M) =< M /N-M if ¢ > 2 is even
{reM|N-2=0}/(c—1)-M if qis odd.

(iii) (1 point) Show that
0= Z[Coo] = Z[Css] S Z — 0
is an exact sequence.
(iv) (2 points) If M is a Z[Cs]-module, show that:
{reM|o-z=2} ifg=0

HY(Coo,M)=¢ M/(c—1)-M ifg=1
0 if ¢ > 2.

(b). Let n be a integer, and let G = C,, x C be the dihedral group of order 2n, where the
nontrivial element of Cy acts on C,, by multiplication by —1. Then K = C,, is a normal
subgroup of G, and G/K ~ Cs.

(i) (3 points) Show that

Z ifg=0
HY(Cy,Z) =< Z/nZ if ¢ > 2 is even
0 if ¢ is odd,

and show that the nontrivial element of Cy acts by (—1)%/? on H9(C,,, Z) if q is even.
(ii) (2 points) Calculate HP(C2, H?(C),, Z)) for all p,q > 0.
(iii) (2 points) If n is odd, show that

Z itm=20

7)27  iftm=2 mod4

Z/2nZ ifm>0and m=0 mod4
0 if m is odd.

H™(G,Z) =

(c). Let G be a group, and suppose that G has a normal subgroup K such that G/K ~ Z.
Let M be a Z[G]-module.

(i) (1 point) Show that the Hochschild-Serre spectral sequence degenerates at Es.



(ii) (2 points) We fix a generator o of G/K and, for every ¢ € N,
we write HY(K,M)* = {x € HYK,M) | o(z) = =z} and
HY(K,M), =HY(K,M)/(c —1)- HI(K, M).

Show that HY(G, M) = H°(K, M), and that we have short exact sequences
0—H" YK, M), - H"(G,M) — H™(K,M)° — 0
for every m > 1.

(d). Let G be a group.

(i) (2 points) If K is a central subgroup of G, show that G/K acts trivially on H, (K, Z)
and on H*(K,Z).

Let o be an element of infinite order in the center of G, and K = (o). Let M be a
Z|G]-module. We write M ={x € M |oc-z ==z} and My, =M/(c — 1) - M.
(ii) (1 point) Show that the Hochschild-Serre spectral sequence calculating H*(G, M)
degenerates at Ej3.
(iii) (2 points) Show that H°(G, M) = H°(G/K,M?), and that we have a long exact
sequence:
0 — HY(G/K,M°) -H (G, M) - H°(G/K, M,) — H*(G/K, M)
— H*(G,M) - HY(G/K, M,) — H3(G/K, M%) — ...

Solution.

(a). (i) Let = = Z?;(} aio’ € Z|Cy), with ag,...,an—1 € Z; we also write a,, = ag and
a_1 = ap—1. We have e¢(z) = ag + a1 + - -t a1, (0 —1)(2) = Z?:_Ol(ai_i'_l —a;)o’
and N(z) = (ap+ a1+ ...+ an-1)Y 1 0" So

n—1

Ker(oc — 1) ={z = Zaiai lap=a1 =... = ap—1} =Im(N)
=0
and
n—1 .
Im(oc —1) ={x = Zaiaz |ap+ a1+ ... +ap—1 =0} = Ker(N) = Ker(e).
=0

(ii) Question (i) gives a resolution of the trivial Z[C)]-module Z by free Z[C),]-modules,
so we can use it to calculate H"(Cy, M) = Exty . 1(Z, M) by Theorem IV.3.4.1 of
the notes . So H"(C,y,, M) is the cohomology of the following complex (concentrated
in degree > 0):

Jo(o—1) JoN Nolo—1
Homgie,)(ZIC,], M) %Y Homge, (2(Co), M) 3" Homgiey (z(C,), ) 57V .

We have an isomorphism Homgc, |(Z[Cy], M) = M sending u : Z[Cy,] = M to u(o).
By isomorphism, the endomorphism1 (-)o(o—1) (resp. (-)oN) of Homgyc, |(Z[Cr], M)

corresponds to the action of o — 1 (resp. V) on M. Moreover, as o generates Cy,, we
have Ker(oc —1: M — M) = M. This gives the desired formulas for H4(C,,, M).



(iii)

(i)

Let x =) .y an0™ € Z|Cx), with a,, = 0 for |n| big enough. Then e(z) = )", ., an
and (o0 — 1)(z) = >, cz(@ny1 — an)o™. So

Im(o — 1) ={z =Y ano" € Z[Coo] | Y _ an = 0} = Ker(e).

neL neZ

On the other hand, we have x = ), a,0™ € Ker(o — 1) if and only if a, = ans1
for every n € Z, i.e. if and only if all the a, are equal; as we must have a,, = 0 for
|n| big enough, this forces all the a, to be 0. So Ker(c — 1) = {0}.

This is exactly the same proof as in question (ii), except that we wrote
Ker(c —1: M — M) as {x € M | 0 -z = z} instead of M. (These are just
two ways of writing the same object.)

We apply the formulas of question (a)(ii). As C, acts trivially on Z, we have
ZE = 7, and N acts on Z by multiplicatoion by Z?:_ol 1=mn,s0N-Z =nZ
and {x € Z | N -2 = 0} = {0}. This immediately gives the desired formula for
HY(C,,,7Z).

Let 7 be the nontrivial element of C5. Then, if we make C), act on it via
(9,7) — (7977 1) - z, the resolution of (a)(i) is isomorphic to the following (ex-
act) complex of Z|Cy]-modules:

1

() ..o z[C) D zic,) B zic,) B zic,) B zic) S Z -0

To calculate the action of 7 on H*(C,,,Z), we need to extend the action of 7 on Z
(which is given by idz) to a morphism between the resolution of (a)(i) and (*). Here
is a possibility:

— 7[C,) L zZ]Cn] 2z [0, T 2[C] 2 Z[C) TR Z[C] - Z —= 0
(—o)3 (—U)Qi —U)Zi —crl —o 1i idzi
— 7[C 'z, 2 z [0 2 0] 2 zlC 2 2[00 -~ Z — 0

So, on H*(C,,Z), the action of T is given by (—o)%; as H*(C,,Z) is a quotient
ZC = 7, where C), acts trivially, the action of (—¢)? is given by multiplication by
(—1).

We apply the formulas of (a)(ii) for n = 2. If ¢ is odd, then H%(C,,Z) = 0, so
HP(Cy,HY(Cy,,Z)) = 0 for every p > 0. If ¢ = 0, then HY(C),,Z) = Z with the trivial
action of Cy, so, by question (i),

Y/ ifp=0
HP(Cy, HY(C,,,Z)) =< Z/27 if p>2is even
0 if p is odd.

Suppose that ¢ > 2 is even and write ¢ = 2i. Then HY(C,,Z) = Z/nZ and the
nontrivial element 7 of Cy acts by (—1)* on H4(C,,, Z). We use the formula of (a)(ii),
and we distinguish four cases:

(1) 4is even and n is odd: Then H%(C,, 7)¢" = H%(C,,7Z),
H*(C,,z)/(1 + 7) - H¥(C,,Z) = (Z/nZ)/2(Z/nZ) = 0 and
{x € Z/nZ | 2x = 0} = {0}. So

Z/nZ ifp=0

Hp(CQ7H2i(C’mZ)) = { 0 lfp >1



(iii)

(2) iis even and n is even: Then  H%*(C,,Z)" = H%(C,,Z),
H*(C,,Z)/(1 + 1) - H¥(Cn,Z) = (Z/nZ)/2(Z/nZ) =~ Z/(n/2)Z and
{r € Z/nZ |22 =0} = (n/2)Z/nZ ~ Z/27Z. So
Z/nZ ifp=0
HP(Cy, H*(C,,,Z)) = { Z/(n/2)Z if p> 2 is even
7)27 if p is odd.

(3) iis odd and n is odd: Then H*(C,,,Z)“? = 0, the element 1 + 7 of Z[C5] acts
on H"(Cy,,Z) by 0 and the element 7 — 1 acts by multiplication by —2. So
HP(Cy, H?(C,,, Z)) = 0 for every p > 0.

(4) iis odd and n is even: As in case (3), we have H*(C,,Z)“? = 0, the element
147 of Z[Cs] acts on H"(C,,, Z) by 0 and the element 7—1 acts by multiplication
by —2. So

0 if p is even

HP(Cy, HY(Cy, 7)) = { Z/(n/2)Z if pis odd.

We use the Hochschild-Serre spectral sequence:
EY? = HP(Cy, HY(Cp, Z)) = HPT(G, Z).
By question (ii) (and the fact that n is odd), we have
Z ifp=q=0
7)27 if g=0 and p > 2 is even

Z/nZ ifqg>1isin 4N and p=0
0 otherwise.

Pq _
By =

So the second page of the spectral sequence looks like this:

0 0 0 0 0 0 0
Z/nZ 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

Z 0 Z/2Z 0 Z7J2Z 0 727

In particular, for every r > 2, we have E5? = 0 unless p and ¢ are even; this implies
that d, : EF? — E§+r’q_r+1 is always 0 (if 7 is odd, then p and p + r cannot be even
at the same time; if r is even, then ¢ and ¢ —r + 1 cannot be even at the same time).
So the spectral sequence degenerates at Ey, and we have EX! = EP?.

If m is odd, then E&"™ P = 0 for every p € Z, so H"(G,Z) = 0. If m = 2 mod 4,
then the only EZ™? that is nonzero is B = Z,/2Z, so H™(G,Z) = Z/2Z. Finally,
suppose that m > 0 and m = 0 mod 4. Then the only two E" ? that are nonzero
are EX™ = 7Z/nZ and EZ° = 7./27, so we have an exact sequence

0—Z/2Z - H"(G,Z) — Z/nZ — 0.
As H™(G, Z) is an abelian group and n is odd, this gives an isomorphism

H™(G,Z) = 7./27 x 7./nZ ~ 7./2nZ.



(c). (i) We have Ef? = HP(G/K,HI(K, M)), so, by (a)(iv), we get E? =0 if p £ {0,1}. So
d?? = 0 if r > 2, and the spectral sequence degenerates at Es.

(ii) By (a)(iv) again, we have

HI(K, M)’ ifp=0
B = By = HP(G/K, HY(K, M)) = § HI(K, M), ifp=1

0 otherwise.
Let m € Z. Then H™(G,M) has a decreasing filtration FilPH™(G, )
such that FilPH™(G,M) = 0 if p > 2, Fil'H™G,M) = B!
Fil'H™(G, M) /Fil'"H™(G, M) = E%™ and FilPH™(G, M) = H™(G, M) if p < 0.

In other words, we have an exact sequence
0 — EL™1 5 H™(G, M) - E%™ — 0.

Combining this with the formula for E5 gives the result. (If m = 0, then EL = 0,
so we get H™(G, M) = EX® = HO(K, M)°.)

(d). (i) The action of G on K by conjugation is trivial, and its action on Z is also trivial, so
G acts trivially on H.(G,Z) and H*(G, Z).

(i) We have EY?Y = HP(G/K,HY(K,M)), so, by (a)(iv), E¥Y = 0 if ¢ & {0,1}.

particular, if » > 3, then the source or target of d?? : EPY — EPTa= g 0 for every

choice of (p,q) € Z, so all teh d?? are zero. So the spectral sequence degenerates at
Es.

(iii) By question (i), we have EE = EY? so EE! =0 if ¢ £ {0,1},
ET0 = = Coker(Ey* ! = EJ"®) = Coker(H™2(G/K, M,) — H™(G/K, M°))
and
gt = PN = Ker(By M — BYYY) = Coker(H™1(G/K, M,) — H™ (G /K, M°)).
Let m € Z. Then H™(G, M) has a decreasing filtration Fil’H™ (G, M) such that
FilPH™G, M) = 0 if p > m + 1, FiIPH™(G, M) = H™G, M) if p < m — 1,
Fil"H™(G, M) = EZ°, and FiI" "H™(G, M)/Fil"H™(G, M) = EX""'. It m = 0,
then B! =0, so we get
HY(G, M) = E2° = HY(G/K, M?).
If m =1, we get an exact sequence

H™%(G/K,M,) - H"(G/K,M°) — H™(G,M) — H" Y(G/K, M,) - H""\(G /K, M?).

Putting all these exact sequences together gives the desired long exact sequence.

0

3 Flabby and soft sheaves

Let X be a topological space. If .% is a sheaf on X and Y is a subset of X, we set

F¥)=  lm  FO)
Y CU€Open(X)or



If Y CY’', we have a map .Z (Y') — .Z (Y) induced by the restriction maps of .Z.

We say that . is flabby (or flasque) if, for every open subset U of X, the restriction map
F(X) —» F(U) is surjective. We say that % is soft if, for every closed subset F, the map
F(X) — F(F) is surjective.

Let R be a ring. If M is a left R-module and z € X, we write S; »s for the presheaf on X
given by Sy v(U) = M if x € U and Sy m(U) = 0 if 2 ¢ U, with the obvious restriction maps
(equal to 0 or idyy). It is easy to see that this is a sheaf, and we call it the skryscraper sheaf at
x with value M.

(a). (1 point) Show that any flabby sheaf is soft.

(b). (2 points) Let d > 1, and let .% be the sheaf U — C°°(U,C) on RY. Show that the sheaf
Z is soft. [

(c). (1 point) For every z € X, show that the functor pMod — Sh(.%#,R), M —— Sy is
right adjoint to the functor .% —— .%,.

(d). (2 points) If (M,)ex is a family of R-modules, show that [, x Sz, is a flabby sheaf,
and that it is an injective sheaf if every M, is an injective R-module.

(e). (1 point) For every sheaf of R-modules . on X, we set G(.#) = [[,cx Sz,#,. Show that
the canonical morphism .# — G(%) (sending any s € .#(U) to the family (s;)zerr) is
injective.

(f). (2 points) Show that sheaves of R-modules on X have a functorial resolution by flabby
injective sheaves.

(g). (2 points) Let 0 = .% — ¥4 —  — 0 be an exact sequence in Sh(X, R), with .# flabby.
Show that the sequence 0 — % (X) — ¥(X) — #(X) — 0 is exact.

An open cover (U;)ier of X is called locally finite if every point of X has a neighborhood that
meets only finitely many of the U;. We say that X is paracompact if every open cover of X has
a locally finite refinement. We admit the following facts:

(1) A metric space is paracompact.

(2) If X is paracompact and (U;);er is an open cover of X, then there exists an open cover
(Vi)er of X such that V; C U; for every i € I.

(h). Suppose that X is a separable metric space. [*| Let 0 — .7 EN ¢ 2 # — 0 be a short
exact sequence of sheaves of R-modules on X, with .% soft. The goal of this question is
to prove that the sequence 0 — .#(X) - ¢4(X) — (X)) — 0 is exact.

(i) (1 point) Let s € .#°(X). Show that there exists a locally finite open cover (Up)nen
and sections t, € 4(U,) such that g(t,) = sy, for every n € N.

(ii) (2 points) Take an open cover (Vy)nen of X such that F,, := V,, C U, for every
n € N. Prove by induction on n that, for every n > 0, there exists a section
an € 9(FoU...UF,) such that g(an) = s|pu..uF,-

'More generally, if X is a smooth manifold, then the sheaf Q% of degree k differential forms on X is soft. As
the sequence 0 = C, — 0% — 0% — ... is exact by the Poincaré lemme, this, and the fact that soft
sheaves are HO(X ,-)-acyclic, shows that the cohomology of the constant sheaf Cy is isomorphic to the de
Rham cohomology of X.

2The “G” is for “Godement”, who invented this method of constructing flabby resolutions of sheaves.

3 This follows from the fact that there exists a partition of unity subordinate to (U;)ier, which uses the fact
that paracompact spaces are normal and Urysohn’s lemma.

4Tt would be enough to assume that X is paracompact.
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(i)-

(iii) (1 point) Show that s has a preimage in ¢(X).

(3 points) If .7 is a flabby sheaf of R-modules on a topological space X, or a soft sheaf
of R-modules on a separable metric space X, show that H"(X, %) = 0 for every n > 1.
(Hint: Try to adapt the strategy of Problem 5(b) of problem set 6.)

Solution.

(a).

(b).

Let .Z be a flabby sheaf. Let I be a closed subset of X and s € .#(F'). By definition of
F (F), there exists an open subset U D F of X and a representative s’ € .Z(U) of s. As
Z is flabby, there exists ¢ € .7 (X) such that ¢ x = s', and then ¢z = s. So . is soft.

Let F be a closed subset of R?, and let s € .# (F). By definition of .7 (F), there exists an
open subset V O F of R? and a C* function f : U — C representing s.

I claim that there exists a locally finite open cover (U;);cr of R™ and a subset J of I such
that F' C UjeJ UjCcUand U;NF =@ if i € I —J. Here is a way to prove this claim:
For every x € F, choose an open neighborhood U, of z such that B, C U. For every
x € R™ — F, choose an open neighborhood U, of x such that U, N F = &. As R" is
paracompact, there exists I C R™ such that (U,).es is a locally finite open cover of R™.
Let J=INF. Then FN(Uye;_jUz) =@,50 F C U, ;U CU.

Now choose a C° partition of unity (p;);e;r subordinate to the open cover (Uj;)ier,
and let ¢ = 3. ;¢;. Then supp(p) C U;5;U; C U and, if z € F, then
1 =73 crwi(x) =3 ey pi(x) = 1. Define a function g : R" — C by g(z) = ¢(2) f() if
x €U and g(x) =0if x € U. Then g is C* on U, and g = 0 on R™ — supp(y). So g is
C*®,ie g€ F(R"), and gy = s.

. Let .# € Ob(Sh(X, R)) and M € Ob(rMod). Then we have

Homp(%, M) = HomR(hAﬁ. FWU),M) = yLnHomR(ﬁ(U),M).
zelU zelU

On the other hand, a morphism .# — S,y is a family (fv)yeopen(x) of morphisms of
R-modules fy : #F(U) — Sy m(U), with fy = 0 if x ¢ U (because then S, p(U) = 0
and fy : F(U) — M if x € U, satisfying the condition that, if x € V C U, then,
for every s € F(U), we have fy(sjy) = fu(s). In other words, the family (fy)yss is
an element of lim _ Homp(#(U), M) = Homp(.-#,, M). This defines an isomorphism
Homgy,(x g) (F, Sz,m) = Hompg(F,, M), that is clearly functorial in % and M.

. Let .F = [l,ex Sz, Let U be an open subset of X. Then .#(U) = [[,cy M. and

F(X) = [l,ex Mz, and the restriction morphism .%(X) — .% (U) is given by the canon-
ical projection on the factors indexed by x € U, which is clearly surjective. So .% is
flabby.

Suppose that M, is an injective R-module for every x € X. Then, for every z € X,
the sheaf S, ps is injective by Lemma I1.2.4.4 of the notes and question (c). By Lemma
11.2.4.3 of the notes , the sheaf [] .y Sz, is also injective.

. Denote by ¢ : % — G(&) the canonical morphism. Let U be an open subset of X and

s € F(U) such that ¢(s) = 0. As ¢(s) = (Sz)zev, we have s, = 0 for every x € U, so
s=0.

. As pMod is a Grothendieck abelian category, there exists a functor ® : pkMod — pMod

and a morphism of functors ¢ : id ,;mo0a — ® such that, for every M € Ob(rpMod), the R-
module ® (M) is injective and ¢(M) : M — ®(M) is an injective morphism. (See Theorem
11.3.2.4 of the notes.)
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For every sheaf of R-modules .7 on X, let G'(F) = [[,cx ®(F;) and let ¢’ : F — G'(F)
be the composition of ¢ : # — G(F) and of [[ . x «(F2) : G(F) — G'(F). Then G’
is a functor and ¢ is a morphism of functors. Also, the sheaf G'(.%) is always injective
and flabby by question (d). The construction of the proof of Lemma IV.3.1.2 of the notes
gives a functorial resolution of .# by injective and flabby sheaves. E|

. We give names to the morphisms of the sequence:

0—>5‘\i>€¢£>,%”—>0.

Let s € (X). We want to show that there exists ¢t € ¥(X) such that g(t) = s. We
consider the set I of pairs (U,t), where U C X is an open subset and t € ¢ (U) is such
that g(t) = sjy. Note that I is not empty, because s admits preimages by g locally on
X. We consider the following (partial) order on I: (U, t1) < (U, t2) if Uy C Us and
t1 = tgy,. Let J be a nonempty totally ordered subset of I; for every i € J, let (Ui, t;)
be the corresponding pair. Let U = |J,c;U;. If 4,5 € J, I claim that tijv,nu; = tjunuys
indeed, we may assume that ¢ < j, and then U; C U; and ¢; = tjy,. So there exists
t € 4(U) such that ty, = t; for every i € J, and then (U,t) > (u;,t;) for every i € J.
By Zorn’s lemma, the set I has a maximal element (U,t). I claim that U = X, which
finishes the proof. Suppose that U # X. Then there exists an open subset V ¢ U of X
and t' € ¢(V) such that g(t') = sy In particular, we have g(tyny — ty;qy) = 0, so there
exists u € F(UNV) such that f(u =)tyny —tyqy- As 7 is flabby, there exists v € .F(X)
such that u = vyay. Let t” =t + f(v)y). Then t|,UﬂV = tTUm/ + f(u) = tjyav, so there
exists t; € 4(U U V) such that t;; = ¢ and ¢y = t"”. We have g(t1);y = g(t) = sy
and g(t1);y = g(t") = g(t') = sy, so g(t1) = spuy- As U C U UV, this contradicts the
maximality of (U, ).

(i) We can find an open cover (U;);er of X and sections t; € ¢(U;) with g(t;) = sy, for
every i € I. As X is paracompact, after replacing the cover (U;);cr by a refinement,
we may assume that it is locally finite. As X is a separable metric space, its topology
has a countable basis. So we may assume that the cover (U;);cs is countable.

(ii) We take ag = top,. Suppose that n > 0 and that we have found a,. Let
Q D FyU...UF, be an open subset of X and a), € 4(2) be a representative
of an. We have g(ay,) (v, n(FoU...UF) = SUpp1n(FoU..UF) = 9(En+1)|Un 1N (FoL...UF)s
so, after shrinking €2, we may assume that g(a;,) = g(tn41j0nv,,,)- Then there
exists b € F(Q N Upy1) such that f(b) = a, — tpiij0nu,,,- As F is soft,

there exists o € %#(X) such that b\lFou...an = bru..urp,. After shrinking

again, we may assume that b"Q = b Let t,, ; = tpq1 + f(bTUnH)‘ Then
9(tni1) = 9(tnt1) = sjp,,,, and t;w+1|QmUn+1 = tni 100U+ (bonu,.) = a;z|QmUn+1'
So there exists al, . ; € ¥ (Upq1 U Q) such that a;H'Q = a], and a;L+1|Un+1 = tpat,
and we have g(ay,, 1) = sjauu,.,,- We take for a1 € 9(FoU...UF,1) the element
represented by a;,_ | € 9(QU Upy1).

(iil) As X = U, >0 Vi, the family (a,u...uv;, Jn>0 glues to a section a € ¢(X) such that
g(ay,) = s, for every n, hence g(a) = s.

. Let € be the full subcategory of Sh(X, R) whose objects are flabby sheaves of R-modules

on X. Suppose that 0 - .7 — ¢4 — 5 — 0 is an exact sequence in Sh(X, R) with %
and ¢ flabby. We claim that JZ is also flabby. Indeed, let U be an open subset of X. By

5 Actually, with a little more work we could show that every injective sheaf is flabby, so any functorial resolution
of Z by injective sheaves (which exists because Sh(X, R) is a Grothendieck abelian category) is a resolution
by injective and flabby sheaves. But it is simpler to use the functor G.
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question (g) (whose proof adapts immediately to show that ¢ (U) — 2(U) is surjective),
we have a commutative diagram with exact rows

0—F(X)—Y9(X) ——H(X)—=0

f oo

U)—=%U) ——#U) —=0

Y

0——

where the morphisms v and v are surjective. So w is also surjective.

We show by induction on n that, for every n > 1 and every % € Ob(%), we have
H"(X,.#) = 0. Suppose that n = 1. Let .%# be an object of ¥. Choose a monomorphism
F — ¢4 with ¢ an injective sheaf. Let # = ¢ /.%. The long exact sequence of cohomology
gives an exact sequence

4(X) — A (X) - HY(X,Z) - H(X,9).
But H!(X,%) = 0 because ¢ is injective and ¢ (X) — #(X) is surjective because .7 is
flabby (by question (g)), so H'(X,.%) = 0.

Now suppose the result known for n > 1, and let us prove it for n+ 1. Let .% be a flabby
sheaf on X. By question (f), there exists a monomorphism .# — ¢ with ¢ an injective
flabby sheaf. Let 5 = ¥ /.%. We have shown that J# is flabby. The long exact sequence
of cohomology gives an exact sequence

H"(X, ) — H""Y(X,.Z) - H""(X,9).

But H""!(X,¥) = 0 because ¢ is injective, and H"(X, %) = 0 by the induction hypoth-
esis, so H*"1(X,.7) = 0.

The proof for soft sheaves on a separable metric space is exactly the same, once we have
proved that a quotient of soft sheaves is soft; this is the same proof as for a quotient of
flabby sheaves, using question (h) instead of question (g).

0
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