
MAT 540 : Problem Set 7

Due Thursday, November 7

1 Diagram chasing lemmas via spectral sequences

This problem will ask to reprove some of the diagram chasing lemmas using the two spectral
sequences of a double complex. This is circular, because of course the diagram chasing lemmas
are used to establish the existence of the spectral sequences. The goal is just to get you used
to manipulating spectral sequences on simple examples.

(a). The ∞ × ∞ lemma: (2 points) Suppose that we have a double complex
X = (Xn,m, dn,m1 , dn,m2 ) such that Xn,m = 0 if n < 0 or m < 0. Suppose also that
the complexes (X•,n, d•,n1,X) and (Xn,•, dn,•2,X) are exact if n 6= 0. Using the two spectral
sequences of the double complex, prove that we have canonical isomorphisms

Hn(X•,0, d•,01,X) ' Hn(X0,•, d0,•2,X).

(Hint: Both spectral sequences degenerate at the first page.)

(b). The four lemma: Consider a commutative diagram with exact rows in A :

(*) A′ // B′
g // C ′ // D′

A //

u

OO

B
f
//

v

OO

C //

w

OO

D

t

OO

Suppose that u is surjective and t is injective. We want to show that f(Ker v) = Kerw
and that Im v = g−1(Imw).

(i) (1 point) Show that Im v = g−1(Imw) if and only if the morphism Coker v → Cokerw
induced by g is injective.

We consider the double complex X represented on diagram (*), with the convention that
all the objects that don’t appear are 0, the object A is in bidegree (0, 0), the differen-
tial d1,X is horizontal and the differential d2,X is vertical. (So, for example, X3,0 = C,
X1,0 = A′ and X2,2 = 0.) Let IE and IIE the two spectral sequences of this double
complex.

(ii) (2 points) Show that IIE degenerates at the second page.

(iii) (1 point) Show that H2(Tot(X)) = 0.

(iv) (1 point) Write the first page of IE.

(v) (1 point) Show that IE degenerates at the second page.

(vi) (2 points) Show that f(Ker v) = Kerw and that Im v = g−1(Imw).
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(c). The long exact sequence of cohomology: We consider a short exact sequence of
complexes 0 → A• → B• → C• → 0; to simplify the notation, we will assume that
An = Bn = Cn = 0 for n < 0. Consider the following double complex X:

0 // 0 // 0 // . . .

C0 //

OO

C1 //

OO

C2 //

OO

. . .

B0 //

OO

B1 //

OO

B2 //

OO

. . .

A0 //

OO

A1 //

OO

A2 //

OO

. . .

where X0,0 = A, the differential d1,X (resp. d2,X) is represented horizontally (resp. ver-
tically), and Xn,m = 0 if n < 0, m < 0 or m ≥ 3. Let IE and IIE be the two spectral
sequences of X.

(i) (1 point) Show that IE degenerates at the first page and that Hn(Tot(X)) = 0 for
every n ∈ Z.

(ii) (1 point) Calculate IIE1.

(iii) (1 point) Show that IIE degenerates at the third page.

(iv) (2 points) Show that IIE00
2 = IIE00

∞ and that IIE1q
2 = IIE1q

∞ for every q ≥ 0.

(v) (1 point) Show that d0q2 : IIE0q
2 → IIE2,q−1

2 is an isomorphism for every q ≥ 1.

(vi) (1 point) Show that we have a long exact sequence

. . .→ Hn(A•)→ Hn(B•)→ Hn(C•)
δn→ Hn+1(A•)→ Hn+1(B•)→ . . .

where δn comes from a differential of the spectral sequence IIE.

2 Group cohomology

(a). Cohomology of cyclic groups: If G is a group, a ∈ Z[G] and M is a left Z[G]-
module, we denote by a : M → M the Z[Cn]-linear map x 7−→ a · x. For every n ≥ 1,
we denote by Cn the cyclic group of order n and by σ a generator of Cn, and we write
N = 1+σ+σ2+. . .+σn−1. We also write C∞ = Z and σ = 1 ∈ C∞. If n ∈ {1, 2, . . .}∪{∞},
we have a Z[Cn]-linear map ε : Z[C∞]→ Z sending each element of Cn to 1 ∈ Z.

(i) (2 points) If n ≥ 1, show that:

. . .→ Z[Cn]
N→ Z[Cn]

σ−1→ Z[Cn]
N→ Z[Cn]

σ−1→ Z[Cn]
ε→ Z→ 0

is an exact sequence.

(ii) (2 points) If M is a Z[Cn]-module, show that:

Hq(Cn,M) =


MCn if q = 0
MCn/N ·M if q ≥ 2 is even
{x ∈M | N · x = 0}/(σ − 1) ·M if q is odd.
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(iii) (1 point) Show that

0→ Z[C∞]
σ−1→ Z[C∞]

ε→ Z→ 0

is an exact sequence.

(iv) (2 points) If M is a Z[C∞]-module, show that:

Hq(C∞,M) =


{x ∈M | σ · x = x} if q = 0
M/(σ − 1) ·M if q = 1
0 if q ≥ 2.

(b). Let n be a integer, and let G = Cn o C2 be the dihedral group of order 2n, where the
nontrivial element of C2 acts on Cn by multiplication by −1. Then K = Cn is a normal
subgroup of G, and G/K ' C2.

(i) (3 points) Show that

Hq(Cn,Z) =


Z if q = 0
Z/nZ if q ≥ 2 is even
0 if q is odd,

and show that the nontrivial element of C2 acts by (−1)q/2 on Hq(Cn,Z) if q is even.

(ii) (2 points) Calculate Hp(C2,H
q(Cn,Z)) for all p, q ≥ 0.

(iii) (2 points) If n is odd, show that

Hm(G,Z) =


Z if m = 0
Z/2Z if m = 2 mod 4
Z/2nZ if m > 0 and m = 0 mod 4
0 if m is odd.

(c). Let G be a group, and suppose that G has a normal subgroup K such that G/K ' Z.
Let M be a Z[G]-module.

(i) (1 point) Show that the Hochschild-Serre spectral sequence degenerates at E2.

(ii) (2 points) We fix a generator σ of G/K and, for every q ∈ N,
we write Hq(K,M)σ = {x ∈ Hq(K,M) | σ(x) = x} and
Hq(K,M)σ = Hq(K,M)/(σ − 1) ·Hq(K,M).

Show that H0(G,M) = H0(K,M)σ, and the we have short exact sequences

0→ Hm−1(K,M)σ → Hm(G,M)→ Hm(K,M)σ → 0

for every m ≥ 1.

(d). Let G be a group.

(i) (2 points) If K is a central subgroup of G, show that G/K acts trivially on H∗(K,Z)
and on H∗(K,Z).

Let σ be an element of infinite order in the center of G, and K = 〈σ〉. Let M be a
Z[G]-module. We write Mσ = {x ∈M | σ · x = x} and Mσ = M/(σ − 1) ·M .

(ii) (1 point) Show that the Hochschild-Serre spectral sequence calculating H∗(G,M)
degenerates at E3.
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(iii) (2 points) Show that H0(G,M) = H0(G/K,Mσ), and that we have a long exact
sequence:

0→ H1(G/K,Mσ)→H1(G,M)→ H0(G/K,Mσ)→ H2(G/K,Mσ)

→ H2(G,M)→ H1(G/K,Mσ)→ H3(G/K,Mσ)→ . . .

3 Flabby and soft sheaves

Let X be a topological space. If F is a sheaf on X and Y is a subset of X, we set

F (Y ) = lim−→
Y⊂U∈Open(X)op

F (U).

If Y ⊂ Y ′, we have a map F (Y ′)→ F (Y ) induced by the restriction maps of F .

We say that F is flabby (or flasque) if, for every open subset U of X, the restriction map
F (X) → F (U) is surjective. We say that F is soft if, for every closed subset F , the map
F (X)→ F (F ) is surjective.

Let R be a ring. If M is a left R-module and x ∈ X, we write Sx,M for the presheaf on X
given by Sx,M (U) = M if x ∈ U and Sx,M (U) = 0 if x 6∈ U , with the obvious restriction maps
(equal to 0 or idM ). It is easy to see that this is a sheaf, and we call it the skryscraper sheaf at
x with value M .

(a). (1 point) Show that any flabby sheaf is soft.

(b). (2 points) Let d ≥ 1, and let F be the sheaf U 7−→ C∞(U,C) on Rd. Show that the sheaf
F is soft.

(c). (1 point) For every x ∈ X, show that the functor RMod → Sh(F , R), M 7−→ Sx,M is
right adjoint to the functor F 7−→ Fx.

(d). (2 points) If (Mx)x∈X is a family of R-modules, show that
∏
x∈X Sx,Mx is a flabby sheaf,

and that it is an injective sheaf if every Mx is an injective R-module.

(e). (1 point) For every sheaf of R-modules F on X, we set G(F ) =
∏
x∈X Sx,Fx . Show that

the canonical morphism F → G(F ) (sending any s ∈ F (U) to the family (sx)x∈U ) is
injective.

(f). (2 points) Show that sheaves on R-modules on X have a functorial resolution by flabby
injective sheaves.

(g). (2 points) Let 0→ F → G →H → 0 be an exact sequence in Sh(X,R), with F flabby.
Show that the sequence 0→ F (X)→ G (X)→H (X)→ 0 is exact.

An open cover (Ui)i∈I of X is called locally finite if every point of X has a neighborhood that
meets only finitely many of the Ui. We say that X is paracompact if every open cover of X has
a locally finite refinement. We admit the following facts:

(1) A metric space is paracompact.

(2) If X is paracompact and (Ui)i∈I is an open cover of X, then there exists an open cover
(Vi)∈I of X such that Vi ⊂ Ui for every i ∈ I.

(h). Suppose that X is a separable metric space. 1 Let 0 → F
f→ G

g→ H → 0 be a short
sequence of sheaves of R-modules on X, with F soft. The goal of this question is to prove
that the sequence 0→ F (X)→ G (X)→H (X)→ 0 is exact.

1It would be enough to assume that X is paracompact.
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(i) (1 point) Let s ∈H (X). Show that there exists a locally finite open cover (Un)n∈N
and sections tn ∈ G (Un) such that g(tn) = s|Un

for every n ∈ N.

(ii) (2 points) Take an open cover (Vn)n∈N of X such that Fn := Vn ⊂ Un for every
n ∈ N. Prove by induction on n that, for every n ≥ 0, there exists a section
tn ∈ F (F0 ∪ . . . ∪ Fn) such that g(tn) = s|F0∪...∪Fn

.

(iii) (1 point) Show that s has a preimage in G (X).

(i). (3 points) If F is a flabby sheaf of R-modules on a topological space X, or a soft sheaf
of R-modules on a separable metric space X, show that Hn(X,F ) = 0 for every n ≥ 1.
(Hint: Try to adapt the strategy of Problem 5(b) of problem set 6.)
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