
MAT 540 : Problem Set 6

Due Sunday, November 3

We make the following useful convention: if (x0, . . . , xn) is some list and if i ∈ {0, . . . , n},
then (x0, . . . , x̂i, . . . , xn) means (x0, . . . , xi−1, xi+1, . . . , xn).

Also, if S is a set and Z(S) is the free Z-module on S, we denote the canonical basis of this
free module by (es)s∈S .

1 Salamander lemma (5 points)

Prove the salamander lemma (Theorem IV.2.1.3 of the notes).

Solution. If we turn the complex of (ii) 90 degree to the left and see it as a complex in the
opposite category of A , then we are exactly in the situation of (i). So it suffices to prove (i).

We give names to some morphisms of the complex

•
β
��

• α //

δ ��

C

ι
��

γ

  

•
π
��

•
ζ
// A

ε //

η

��

θ

  

B

µ

��

λ //

ν

��

•

• D

σ

��

ρ // •

•

We check the exactness of the sequence at each object. By the Freyd-Mitchell embedding
theorem (Theorem III.3.1 of the notes), we may assume that A is a category of left R-modules.
(Hence take elements in the objects of A .)

In =A = Ker ε/ Im γ, the subobject Im(1) is the image of ι(Ker γ) ⊂ A, and
Ker(2) = (Ker ε∩(Im ι+Im ζ))/ Im ζ. So Im(1) ⊂ Ker(2). Conversely, take an element of Ker(2),
lift it to x ∈ Ker ε, and choose y ∈ C such that x ∈ ι(y) + Im ζ. Then γ(y) ∈ ε(x) + ε(Im ζ) = 0,
so y defines an element of C� = Ker γ/(Imα+ Imβ), so y ∈ Im(1).

In A� = Ker θ/(Im ι + Im ζ), the subobject Im(2) is the image of Ker ε ⊂ A, and Ker(3)
is the set of elements that have a lift x ∈ Ker θ such that ε(x) ∈ Im(γ). So we clearly have
Im(2) ⊂ Ker(3). Consider an element of Ker(3), choose a lift x ∈ Ker θ of that element such
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that ε(x) = γ(y), for some y ∈ C. Then x − ι(y) and x have the same image in A�, and
ε(x− ι(y)) = 0, so the image of x in A� is in Im(2).

In �B = (Kerλ∩Kerµ)/ Im γ, the subobject Im(3) is the image of ε(Ker θ) ⊂ B, and Ker(4)
is the set of elements of �B that have a lift x ∈ (Kerλ ∩ Kerµ) ∩ Im ε. So we clearly have
Im(3) ⊂ Ker(4). Conversely, consider an element of Ker(4), and choose a lift x ∈ Kerλ ∩Kerµ
of this element such that we can write x = ε(y), with y ∈ A. Then θ(y) = µ(x) = 0, so
x ∈ ε(θ(y)), and its image in �B is in Im(3).

In =B = Kerλ/ Im ε, the subobject Im(4) is the image of Kerλ ∩ Kerµ ⊂ B, and Ker(5) is
the set of elements of =B that have a lift x ∈ Kerλ such that µ(x) ∈ Im(θ). So we clearly have
Im(4) ⊂ Ker(5). Conversely, consider an element of Ker(5), and choose a lift x ∈ Kerλ of this
element such that we can write µ(x) = θ(y), with y ∈ A. Then λ(x− ε(y)) = 0, the elements x
and x−ε(y) of Kerλ have the same image in =B, and µ(x−ε(y)) = 0, so x−ε(y) ∈ Kerλ∩Kerµ,
and its image in =B is in Im(4).

�

2 Some bar resolutions

(a). (3 points) Let S be a nonempty set. We define a complex of Z-modules X• by:

• Xn = 0 and dnX = 0 if n ≥ 2;

• X1 = Z and d1X = 0;

• X0 = Z(S) and d0X : X0 → X1 = Z sends every es to 1;

• if n ≥ 1, then X−n = Z(Sn+1) and d−n : Z(Sn+1) → Z(Sn) sends e(s0,...,sn) to∑n
i=0(−1)ie(s0,...,ŝi,...,sn), for all s0, . . . , sn ∈ S.

Show that X• is indeed a complex (i.e. that dn+1
X ◦ dnX = 0 for every n ∈ Z), and that

it is acyclic. (Hint: Fix s ∈ S. If n ≥ −1, consider the morphism t−n : X−n → X−n−1

sending e(s0,...,sn) to e(s,s0,...,sn).)

(b). Let G be a group. For every n ≥ 0, let Xn(G) = Z(Gn+1). By (a), we have an acyclic
complex of Z-modules X•, where X1 = Z, X−n = Xn(G) if n ≥ 0, Xn = 0 if n ≥ 2, and
the differentials are as in (a).

(i) (2 points) We make G act as Xn(G) by g · e(g0,...,gn) = e(gg0,...,ggn), and we make G
act trivially on Z. Show that X• is an acyclic complex of Z[G]-modules.

(ii) (2 points) Show that Xn(G) is a free Z[G]-module for every n ≥ 0. 1

Let In be the Z-submodule of Xn(G) generated by the e(g0,...,gn) such that gi = gi+1 for
some i ∈ {0, . . . , n− 1}.

(iii) (2 points) Show that In is a free Z[G]-submodule of Xn(G) and that d−n(In) ⊂ In−1
for n ≥ 0, with I−1 = {0}.

(iv) (2 points) By the previous question, we get a complex of Z[G]-modules Y • such that
Y n = 0 for ≥ 2, Y 1 = Z, Y −n = Xn(G)/In if n ≥ 0 and dnY is the morphism induced
by dnX for every n ∈ Z. Show that Y • is acyclic. (Hint: Try to imitate the method
of (a).)

1The complex X• is called the unnormalized bar resolution of Z as a Z[G]-module.
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Solution.

(a). If we set S0 = {()} (the set whose only element is the empty sequence of elements of S),
then we can see X1 as the free Z-module on S0, with basis element 1 = e(). In this way,
the formula for d−n also works if n = 0.

We prove that X• is a complex. If n ≥ 0, then dn+1 ◦ dn = 0 because dn+1 = 0. We
assume that n ≥ 1 and we calculate d−n+1 ◦ ◦d−n : Z(Sn+1) → Z(Sn−1). Let s0, . . . , sn ∈ S.
Then

d−n+1 ◦ d−n(e(s0,...,sn)) =
n∑
i=0

(−1)id−n+1(es0,...,ŝi,...,sn)

=
n∑
i=0

i−1∑
j=0

(−1)i+je(s0,...,ŝj ,...,ŝi,...,sn) +
n∑
i=0

n∑
j=i+1

(−1)i+j−1e(s0,...,ŝi,...,ŝj ,...,sn)

=
n∑
j=0

n∑
i=j+1

(−1)i+je(s0,...,ŝj ,...,ŝi,...,sn) +
n∑
i=0

n∑
j=i+1

(−1)i+j−1e(s0,...,ŝi,...,ŝj ,...,sn)

= 0.

We fix s ∈ S. We define tm : Xm → Xm−1 by tm = 0 for m ≥ 2, and
t−n : Z(Sn+1) → Z(Sn+2), e(s0,...,sn) 7−→ e(s,s0,...,sn) if n ≥ −1. We want to
prove that (tm)m∈Z is a homotopy between idX• and 0. We have to check that
idXm = tm+1 ◦ dm + dm−1 ◦ tm for every m ∈ Z. If m ≥ 2, then both sides are equal
to 0. If m = 1, then we want to check that idZ = d0 ◦ t1; the right hand side sends e() to
d0(es) = e(), so we get the desired identity. Suppose that m ≥ 0, and write n = −m. Let
(s0, . . . , sn) ∈ Sn+1. Then (t−n+1 ◦ d−n + d−n−1 ◦ t−n)(e(s0,...,sn)) is equal to

(t−n+1 ◦ d−n + d−n−1 ◦ t−n)(e(s0,...,sn))

=
n∑
i=0

(−1)ie(s,s0,...,ŝi,...,sn) + d−n(e(s,s0,...,sn))

=
n∑
i=0

(−1)ie(s,s0,...,ŝi,...,sn) + e(s0,...,sn) +
n∑
i=0

(−1)i+1e(s,s0,...,ŝi,...,sn)

= e(s0,...,sn).

So t−n+1 ◦ d−n + d−n−1 ◦ t−n = idX−n .

(b). (i) As the formation of kernels and cokernsl commutes with the forgetful functor from

Z[G]Mod to Ab, and as we know that X• is an acyclic complex of Z-modules by (a),
it suffices to show that X• is a complex of Z[G]-modules, i.e. that its differentials
are Z[G]-linear. But this is clear from the definitions of the differentials and of the
action of Z[G].

(ii) It suffices to find a Z[G]-basis of Xn(G). If (g1, . . . , gn) ∈ Gn, then the
morphism Z[G] → Xn(G), a 7−→ a · e(1,g1,g1g2...,g1g2...gn) is injective with im-

age Vg1,...,gn := Span({e(h0,h1,...,hn), h−1i−1hi = gi for 1 ≤ i ≤ n}. As
Xn(G) =

⊕
(g1,...,gn)∈Gn V(g1,...,gn) (because these subspaces are generated by mu-

tually disjoint subsets of the canonical basis of Xn(G)), we deduce that the family
(e(1,g1,g1g2,...,g1g2...gn))(g1,...,gn)∈Gn is a Z[G]-basis of Xn(G).

2The complex Y • is called the normalized bar resolution of Z as a Z[G]-module.
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(iii) We have found a Z[G]-basis (e(1,g1,g1g2,...,g1g2...gn))(g1,...,gn)∈Gn of Xn(G) in (ii), and
the calculation of Vg1,...,gn = Z[G] · e(1,g1,g1g2,...,g1g2...gn) in the proof of that ques-
tion show that Vg1,...,gn is included in In if one of the gi is equal to 1, and that
Vg1,...,gn ∩ In = {0} otherwise. So In is the Z[G]-submodule of Xn(G) generated by
the e(1,g1,g1g2,...,g1g2...gn) such that at least one of the gi is equal to 1, and in particular
it is a free Z[G]-submodule of Xn(G).

We check that d−n(In) ⊂ In−1. Let (g0, . . . , gn) ∈ Gn+1, and suppose that di = di+1

for some i ∈ {0, . . . , n− 1}. Then

d−n(e(g0,...,gn)) =
∑

j∈{0,...,n}−{i,i+1}

(−1)je(g0,...,ĝj ,...,gn) + (−1)ie(g0,...,gi−1,gi,gi+2,...,gn)

+ (−1)i+1e(g0,...,gi−1,gi+1,gi+2,...,gn)

=
∑

j∈{0,...,n−{i,i+1}

(−1)je(g0,...,ĝj ,...,gn).

The last sum is clearly in In−1.

(iv) It suffices to show that Y • is acyclic as a complex of Z-modules. Let tm : Xm → Xm−1

be the morphisms of (a), for example for s = 1 (the unit element of G). Then,
if n ≥ 0, t−n : Xn(G) → Xn+1(G) sends In to In+1, so it induces a morphism

tn : Y −n → Y −n+1. We also denote by t
1

the morphism t1 : Y 1 = Z→ Y 0 = X0(G)
(note that I0 = {0}) and set t

m
= 0 for m ≥ 2. Then, by (a), the family (tm)m∈Z

defines a homotopy between idY • and 0.

�

3 Čech cohomology, part 1

This problem uses problem 1 of problem set 5.

Let C be a category that admits fiber products, and let X = (f : Xi → X)i∈I be a family
of morphisms of C . If i0, . . . , ip ∈ I, we write Xi0,...,ip = Xi0 ×X Xi1 ×X . . .×X Xip . For every
p ∈ Z, we define an abelian presheaf Cp(X ) ∈ Ob(PSh(C ,Z)) in the following way:

• if p < 0, then Cp = 0;

• if p ≥ 0, then

Cp(X ) =
⊕

i0,...,ip∈I
Z(Xi0,...,ip

).

We also define a morphism of presheaves dp : Cp(X )→ Cp−1(X ) in the following way:

• if p ≤ 0, then dp = 0;

• if p ≥ 1, then dp is given on the component Z(Xi0,...,ip
) by the morphism

Z(Xi0,...,ip
) →

⊕p
q=0 Z

(Xi0,...,iq−1,iq+1,...,ip
) ⊂ Cp−1(X ) equal to

∑p
q=0(−1)qδqi0,...,ip , where

δqi0,...,ip : Z(Xi0,...,ip
) → Z(Xi0,...,iq−1,iq+1,...,ip

) is the image of the canonical projection

Xi0,...,ip → Xi0,...,iq−1,iq+1,...,ip by the functor C
hC→ PSh(C )

Z(·)
→ PSh(C ,Z).

(a). (4 points) Show that Ker(dp) ⊃ Im(dp+1) for every p ∈ Z and that this is an equality for
p 6= 0.
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Hint: For every object Y of C , we have

HomC (Y,Xi0,...,ip) =
∐

h∈HomC (Y,X)

HomC (Y,Xi0)h × . . .×HomC (Y,Xip)h,

where, for every i ∈ I, HomC (Y,Xi)h = {g ∈ HomC (Y,Xi) | fi ◦ g = h}. Set
Sh =

∐
i∈I HomC (Y,Xi)h and think of question 2(a).

(b). (1 point) Let ε : C0(X ) → Z(X) be the morphism that is equal on the component Z(Xi)

to the image of fi : Xi → X by the functor C
hC→ PSh(C )

Z(·)
→ PSh(C ,Z). Show that

Ker(ε) = Im(d1).

For every p ∈ Z, we define a functor Č p(X , ·) : PSh(C ,Z) → Ab
by Č p(X ,F ) = HomPSh(C ,Z)(C

p(X ),F ), and a morphism of functors

dp : Č p(X , ·) → Č p+1(X , ·) by dp = HomPSh(C ,Z)(dp+1, ·). The family (Č p(X ,F ), dp)p∈Z
is called the Čech complex of F (relative to the family X ). For every p ≥ 0, we set
Ȟp(X ,F ) = Ker(dp(F ))/ Im(dp−1(F )). This is called the pth Čech cohomology group of
F (relative to the family X ). Note that the definition of Ȟp(X ,F ) is functorial in F , so
Ȟp(X , ·) is a functor from PSh(C ,Z) to Ab.

(c). (2 points) Show that, for every abelian presheaf F and every p ≥ 0, we have

Č p(X ,F ) =
∏

i0,...,ip

F (Xi0,...,ip),

and that the definition of Ȟ0(X ,F ) given here generalizes that of Definition III.2.2.4 of
the notes.

(d). (1 point) If F is an injective object of PSh(C ,Z), show that Ȟp(X ,F ) = 0 for every
p ≥ 1.

(e). (2 points) Suppose that we have a Grothendieck topology T on C , that X is a covering
family, and that F is an injective object of Sh(CT ,Z). Show that Ȟp(X ,F ) = 0 for
p ≥ 1 and that Ȟ0(X ,F ) = F (X).

(f). (2 points) Let F ∈ Ob(PSh(C ,Z)), let F → I • be an injective resolution of F in
PSh(C ,Z). Show that we have canonical isomorphisms

Hn(Ȟ0(X ,I •)) ' Ȟn(X ,F ).

3

Solution.

(a). If p = 0, then dp = 0, so Ker(dp) ⊃ Im(dp+1). If p ≤ −1, then Cp(X )(Y ) = 0, so
Ker(dp(Y )) = Im(dp+1(Y )) = 0. To treat the other cases, it suffices to prove that, for
every Y ∈ Ob(C ), we have Ker(dp(Y )) = Im(dp+1(Y )) for p ≥ 1.

We fix Y ∈ Ob(C ), and we use the notation of the hint. For every h ∈ HomC (Y,X), let
Sh =

∐
i∈I HomC (Y,Xi)h. Fix p ≥ 0. The fact that

HomC (Y,Xi0,...,ip) =
∐

h∈HomC (Y,X)

HomC (Y,Xi0)h × . . .×HomC (Y,Xip)h

3In other words, Ȟn(X , ·) is the nth right derived functor of Ȟ0(X , ·).
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for all i0, . . . , ip is obvious, so we get∐
(i0,...,ip)∈Ip+1

HomC (Y,Xi0,...,ip) =
∐

h∈HomC (Y,X)

Sp+1
h ,

and

Cp(X )(Y ) =
⊕

(i0,...,ip)∈Ip+1

Z(HomC (Y,Xi0,...,ip
))

=
⊕

h∈HomC (Y,X)

Z(Sp+1
h ).

So Cp(X )(Y ) is the direct sum indexed by h ∈ HomC (Y,X) of the terms of degree −p of
the complex of Problem 2(a) for S = Sh, and dp : Cp(X )(Y )→ Cp−1(X )(Y ) is the direct
sum of the differentials of this complex if p ≥ 1 (this follows immediately from the defini-
tion of dp). As the complex of 2(a) is acyclic, this implies that Ker(dp(Y )) = Im(dp+1(Y ))
if p ≥ 1.

(b). Let Y ∈ Ob(C ). We use the same notation as in the solution of (a). Then

C0(X )(Y ) =
⊕

h∈HomC (Y,X)

Z(Sh),

Z(X)(Y ) = Z(HomC (Y,X)) =
⊕

h∈HomC (X,Y )

Z,

and ε(Y ) is the sum of the morphisms d0 : Z(Sh) → Z from Problem 2(a). So the result
follows again from Problem 2(a).

(c). The Č p(X ,F ) =
∏
i0,...,ip

F (Xi0,...,ip) follows immediately from the definition of Cp(X ),

the universal property of the direct sum and question (b) of Problem 1 of problem set 5.

In particular, we have Č 0(X ,F ) =
∏
i∈I F (Xi) and Č 1(X ,F ) =

∏
i,j∈I F (Xi ×X Xj),

and (by definition of d1 : C1(X )→ C0(X )) d0 : Č 0(X ,F )→ Č 1(X ,F ) sends a family
(si)i∈I to (p∗i,ijsi−p∗j,ijsj)i,j∈I , where pi,ij : Xi×XXj → Xi and pj,ij : Xi×XXj → Xj are

the two projections. So Ȟ0(X ,F ) = Ker(d0) is equal to the set Ȟ0(X ,F ) of Definition
III.2.2.4 of the notes.

(d). If F is an injective object of PSh(C ,Z), then the functor HomPSh(C ,Z)(·,F ) is exact, so
the statement follows from (a).

(e). The fact that Ȟ0(X ,F ) = F (X) follows from the end of (c) and from the definition of
a sheaf (see Remark III.2.2.5 of the notes).

The inclusion functor Φ : Sh(CT ,Z) ⊂ PSh(C ,Z) is right adjoint to the sheafification
functor and the sheafification functor is exact, so Φ sends injective objects of Sh(CT ,Z)
to injective objects of PSh(C ,Z) by Lemma II.2.4.4 of the notes. So the fact that
Ȟp(X ,F ) = 0 for p ≥ 1 follows from (e).

(f). Applying the functors Č p(X , ·) to the complex F → I •, we get a double complex in
PSh(C ,Z), whose pth row is Č p(X ,F ) → Č p(X ,I •), whose (−1)th column is the
complex Č •(X ,F ) and whose nth column is the complex Č •(X ,I n) for n ≥ 0 (the
other columns are 0).

We consider the double complex, where we write Č p(·) and Ȟ0(·) for Č p(X , ·) and
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Ȟ0(X , ·):

0

��

0

��

0

��

0

��
0 // 0 //

��

Ȟ0(I 0) //

��

Ȟ0(I 1) //

��

Ȟ0(I 2) //

��

. . .

0 // Č 0(F ) //

��

Č 0(I 0) //

��

Č 0(I 1) //

��

Č 0(I 2) //

��

. . .

0 // Č 1(F ) //

��

Č 1(I 0) //

��

Č 1(I 1) //

��

Č 1(I 2) //

��

. . .

0 // Č 2(F ) //

��

Č 2(I 0) //

��

Č 2(I 1) //

��

Č 2(I 2) //

��

. . .

...
...

...
...

Every column of this double complex except for the first one is exact by (d). Also, every
row except for the first one is exact, because the functor PSh(C ,Z)→ Ab, G → G (Y ) is
exact for every object Y of C , and direct products of exact sequences in Ab are exact.
So the ∞ × ∞ lemma (Corollary IV.2.2.4 of the notes) gives a canonical isomorphism
between the cohomology of the first row and the cohomology of the first column, which is
exactly what the question is asking for.

�

4 The fpqc topology is subcanonical

Let A be a commutative ring and B be a commutative A-algebra. For every n ≥ 1, we write
B⊗n for the n-fold tensor product B ⊗A B ⊗A . . . ⊗A B. We consider the following sequence
AB/A of morphisms of A-modules:

0→ A
d0→ B

d1→ B⊗2
d2→ B⊗3 → . . .

where the morphism A 0
B/A = A → A 1

B/A = B is the structural morphism and

dn : A n
B/A = B⊗n → A n+1

B/A = B⊗(n+1) is defined by

dn(b1 ⊗ . . .⊗ bn) =

n+1∑
i=1

(−1)i+1b1 ⊗ . . .⊗ bi−1 ⊗ 1⊗ bi ⊗ . . .⊗ bn.

For example, d1(b) = 1⊗ b− b⊗ 1 and d2(b1 ⊗ b2) = 1⊗ b1 ⊗ b2 − b1 ⊗ 1⊗ b2 + b1 ⊗ b2 ⊗ 1.

(a). (1 point) Show that AB/A is a complex. 4

(b). (2 points) Suppose that the morphism of A-algebras A → B has a section, that is, that
there exists a morphism of A-algebras s : B → A such that s ◦ d0 = idA. Show that AB/A

is homotopic to 0 as a complex of A-modules.

4It is called the Amitsur complex, hence the notation.
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(c). (1 point) Under the hypothesis of (b), show that AB/A⊗AM is acyclic for every A-module
M .

(d). (1 point) We don’t assume that A → B has a section anymore. Let M be a A-module.
Show that we have a canonical isomorphism

B ⊗A (AB/A ⊗AM)
∼→ AB⊗AB/B ⊗B (M ⊗A B),

where we see B ⊗A B as a B-algebra via the morphism b 7−→ b⊗ 1.

(e). (2 points) Suppose that the morphism A → B is faithfully flat. Show that the complex
AB/A ⊗AM is acyclic fo every A-module M .

Remark If (fi)i∈I is a family of elements generating the unit ideal of A, then
B :=

∏
i∈I Afi is a faithfully flat A-algebra, and, for any A-module M , the complex

AB/A ⊗AM is the Čech complex of the quasi-coherent sheaf on SpecA corresponding to

M for the open cover (Dfi)i∈I . Applying the result of (e), we see that the Čech cohomol-
ogy of any quasi-coherent sheaf on SpecA for the open cover (Dfi)i∈I is zero in degree
≥ 1.

Let A − CAlg be the the category of commutative A-algebras, and C = (A − CAlg)op;
to distinguish between objects of A − CAlg and C , we write SpecB for the object of C
corresponding to a commutative A-algebra B. We consider the fpqc topology on C ; this means
that covering families in C are morphisms SpecC → SpecB such that B → C is a faithfully
flat A-algebra morphism; also, if B = 0, then the empty family covers SpecB.

(f). (1 point) Show that this is a Grothendieck pretopology on C .

(g). (1 point) Let M be a A-module. We define a presheaf FM on C by
FM (SpecB) = B⊗AM ; if SpecC → SpecB is a morphism of C , corresponding to a mor-
phism of A-algebras u : B → C, then FM (SpecB) = B⊗AM → FM (SpecC) = C⊗AM
sends b⊗m to u(b)⊗m. Show that FM is a sheaf.

(h). (2 points) Show that every representable presheaf on C is a sheaf.

Solution.

(a). This is very similar to the beginning of 2(a). If a ∈ A, then 1⊗ a = a⊗ 1 in B ⊗A B, so
d1 ◦ d0(a) = 0. Suppose that n ≥ 1, and let b1, . . . , bn ∈ B. Then

dn+1 ◦ dn(b1 ⊗ bn) = dn+1(
n+1∑
i=1

(−1)i+1b1 ⊗ . . .⊗ bi−1 ⊗ 1⊗ bi ⊗ . . . bn)

=

n+1∑
i=1

i∑
j=1

(−1)i+jb1 ⊗ . . .⊗ bj−1 ⊗ 1⊗ bj ⊗ . . . bi−1 ⊗ 1⊗ bi ⊗ . . . bn

+

n+1∑
i=1

n+1∑
j=i

(−1)i+j+1b1 ⊗ . . .⊗ bi−1 ⊗ 1⊗ bi ⊗ . . . bj−1 ⊗ 1⊗ bj ⊗ . . . bn

=
n+1∑
j=1

n+1∑
i=j

(−1)i+jb1 ⊗ . . .⊗ bj−1 ⊗ 1⊗ bj ⊗ . . . bi−1 ⊗ 1⊗ bi ⊗ . . . bn

+
n+1∑
i=1

n+1∑
j=i

(−1)i+j+1b1 ⊗ . . .⊗ bi−1 ⊗ 1⊗ bi ⊗ . . . bj−1 ⊗ 1⊗ bj ⊗ . . . bn

= 0.
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(b). We write Cn = B⊗n for n ≥ 1, C0 = A, Cn = 0 for n ≤ −1, and we denote
dn : Cn → Cn+1 the morphism defined in the beginning. We define sn : Cn → Cn−1

in the following way:

• if n ≤ 0, then sn = 0;

• s1 = s : B → A;

• if n ≥ 2, then sn : B⊗n → B⊗(n−1) sends b1⊗ . . .⊗bn to (−1)n−1s(bn)(b1⊗ . . .⊗sn−1)
(this is A-linear in each bi, hence does define a morphism on the tensor product).

We claim that (sn)n∈Z is a homotopy between idC• and 0. To prove this claim, we have
to calculate the morphism gn := dn−1 ◦ sn + sn+1 ◦ dn for every n ∈ Z. If n ≤ −1, then
gn = 0 = idCn . If n = 0, then gn = s ◦ d0 = idA. Suppose that n ≥ 1. Then, for all
b1, . . . , bn ∈ B, we have that gn(b1 ⊗ . . .⊗ bn) is equal to

(−1)n−1s(bn)dn−1(b1 ⊗ . . .⊗ bn−1) + sn+1(

n+1∑
i=1

(−1)i+1b1 ⊗ . . .⊗ bi−1 ⊗ 1⊗ bi ⊗ . . .⊗ bn)

= s(bn)

n∑
i=1

(−1)i+nb1 ⊗ . . .⊗ bi−1 ⊗ 1⊗ bi ⊗ . . .⊗ bn−1

+

n∑
i=1

(−1)n+i+1s(bn)(b1 ⊗ . . .⊗ bi−1 ⊗ 1⊗ bi ⊗ . . .⊗ bn−1) + s(1)(b1 ⊗ . . .⊗ bn)

= b1 ⊗ . . .⊗ bn.

So gn = idCn .

Note that the homotopy that we just constructed is A-linear, so AB/A is homotopic to 0
as a complex of A-modules.

(c). As the functor (·) ⊗A M : AMod → AMod is additive and the complex of A-modules
AB/A is homotopic to 0, the complex AB/A⊗AM is also homotopic to 0, and in particular
acyclic.

(d). In degree 0, this isomorphism is the isomorphism B ⊗A (A ⊗A M) ' B ⊗B (M ⊗A B)
sending B ⊗ (1 ⊗ m) to b ⊗ (m ⊗ 1) = 1 ⊗ (m ⊗ b). If n ≥ 1, we have morphism
u : B⊗A (A n

B/A⊗AM)→ A n
B⊗AB/B

⊗BM and v : A n
B⊗AB/B

⊗BM → B⊗A (A n
B/A⊗AM)

defined by

u(b0 ⊗ (b1 ⊗ . . .⊗ bn ⊗m)) = ((1⊗ b1)⊗ . . .⊗ (1⊗ bn))⊗ (m⊗ b0)

and

v((b′1 ⊗ b1)⊗ . . .⊗ (b′n ⊗ bn)⊗ (m⊗ b0)) = (b0b
′
1 . . . b

′
n)⊗ (b1 ⊗ . . .⊗ bn ⊗m)

if b0, b1, b
′
1, . . . , bn, b

′
n ∈ B and M . It is easy to check that these morphisms are well-defined

and inverses of each other.

(e). Note that the structural morphism B → B ⊗A B, b 7−→ b⊗ 1 has a section B ⊗A B → B,
b1 ⊗ b2 7−→ b1b2 which is a morphism of B-algebras. So, by (c) and (d), the complex of
B-modules B ⊗A (AB/A⊗AM) is acyclic. As B is a faithfully flat A-algebra, this implies
that the complex of A-modules AB/A ⊗AM is acyclic.

(f). We check the axioms of Definition III.2.1.1 of the notes. Axiom (CF3) is clear, because
an isomorphism of rings is faithfully flat. Axiom (CF2) says that the composition os two
faithfully flat morphisms of A-algebras is also faithfully flat, which is also true. Axiom
(CF1) says that, if B → C and B → D are faithfully flat morphisms of A-algebras, then
B → C ⊗B D is also faithfully flat, which is also true.

9



(g). The sheaf condition says that:

(1) If B = 0, then the sequence 0→ B ⊗AM → 0 is exact, which is certainly true.

(2) For every faithfully flat A-algebra morphism B → C, the sequence

0→M ′
f→ C ⊗B M ′

g→ (C ⊗B C)⊗B M ′

is exact, where M ′ = B ⊗A M , f sends m ∈ M ′ to 1 ⊗m ∈ C ⊗B M , and g sends
c⊗m ∈ C ⊗BM to (1⊗ c)⊗m− (c⊗ 1)⊗m. This exactness follows from question
(e).

(h). Let D be a commutative A-algebra. We want to show that the presheaf HomC (·,SpecD)
is a sheaf. If we consider the empty cover of Spec(0), the sheaf condition says that
HomC (Spec(0), Spec(D)) = HomA−CAlg(D, 0) should be a singleton, which is true. Let
u : B → C be a faithfully flat morphism of commutative A-algebras. The sheaf condition
for the covering family SpecC → SpecB says that:

(1) The map HomA−CAlg(D,B) → HomA−CAlg(D,C), v 7−→ u ◦ v is injective; this is
true because u, being faithfully flat, is injective.

(2) If f : D → C is a morphism of A-algebras such that f(c)⊗ 1 = 1⊗ f(c) in C ⊗B C
for every c ∈ C, then there exists a morphism of A-algebras v : D → B such that
f = u ◦ v.

We prove (2). By (e), the kernel of the morphism g : C → C ⊗B C, c 7−→ 1 ⊗ c − c ⊗ 1
is u(B). The condition on f says that g ◦ f = 0; as u is injective, it implies that we can
write f = u ◦ v, for a uniquely determined A-linear morphism v : D → B. As u is an
injective morphism of A-algebras and f is a morphism of A-algebras, the map v is also a
morphism of A-algebras.

�

5 Čech cohomology, part 2

Let X be a topological space.

(a). (2 points) Let 0→ F → G →H → 0 be a short exact sequence of abelian sheaves on X,
and let U be an open subset of X. Suppose that every open cover of U has a refinement
U such that Ȟ1(U ,F ) = 0. Show that the sequence

0→ F (U)→ G (U)→H (U)→ 0

is exact.

(b). Let B be a basis of the topology of X, and Cov be a set of open covers of open subsets
of X, such that:

(1) If (Ui)i∈I is in Cov, then
⋃
i∈I Ui and all the Ui0 ∩ . . . ∩ Uip are in B, for p ∈ N and

i0, . . . , ip ∈ I.

(2) If U ∈ B, then any open cover of U has a refinement in Cov.

Let I be the full category of injective objects in Sh(X,Z), and C be the full category
whose objects are abelian sheaves F such that Ȟn(U ,F ) = 0 for every U ∈ Cov and
every n ≥ 1. 5

5For example, if X is a scheme, we could take B to be the set of open affine subschemes of X and U to be the
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(i) (2 points) Show that C contains I and is stable by taking cokernels of injective
morphisms.

(ii) (2 points) If F is an object of C , show that, for every U ∈ B, we have H1(U,F ) = 0.

(iii) (2 points) Show by induction on n that, for every n ≥ 1, every U ∈ B and every
object F of C , we have Hn(U,F ) = 0.

(iv) (2 points) Let F be an object of C and X = (Ui)i∈I be an open cover of X such
that, for every p ∈ N and all i0, . . . , ip, we have Ui0 ∩ . . . ∩ Uip ∈ B. Show that the
canonical morphism Ȟn(X ,F ) → Hn(X,F ) of Example IV.4.1.12(2) of the notes
is an isomorphism for every n ≥ 0. 6

Solution.

(a). We give names to the morphisms of the exact sequence: 0 → F
f→ G

g→ H → 0. Let
U be an open subset of X. We know that the sequence 0 → F (U) → G (U) → H(U) is
exact, so it suffices to show that G (U)→ H(U) is surjective.

Let s ∈ F (U). Choose an open cover U = (Ui)i∈I such that, for every i ∈ I, there exists
si ∈ G (Ui) such that g(si) = s|Ui

. By the hypothesis, after replacing U by a refinement,

we may assume that Ȟ1(U ,F ) = 0. For i, j ∈ I, let sij = si|Ui∩Uj
− sj|Ui∩Uj

. As g(si)
and g(sj) are equal on Ui ∩ Ui, there exists tij ∈ F (Ui ∩ Uj) such that f(tij) = sij . If
i, j, k ∈ I, then we have

sij|Ui∩Uj∩Uk
− sik|Ui∩Uj∩Uk

+ sjk|Ui∩Uj∩Uk
= si|Ui∩Uj∩Uk

− sj|Ui∩Uj∩Uk

− (si|Ui∩Uj∩Uk
− sk|Ui∩Uj∩Uk

) + sj|Ui∩Uj∩Uk
− sk|Ui∩Uj∩Uk

= 0,

so the family (tij)(i,j)∈I2 ∈ Č 1(U ,F ) is in the kernel of d1. As Ȟ1(U ,F ) = 0,

there exists (ti)i∈I ∈ Č 0(U ,F ) =
∏
i∈I F (Ui) such that d0((ti)I∈I) = (tij)), that is,

tij = ti|Ui∩Uj
− tj|Ui∩Uj

. For every i ∈ I, let s′i = si − f(ti). Then, for i, j ∈ I, we have

s′i|Ui∩Uj
− s′j|Ui∩Uj

= sij − f(tij) = 0.

So there exists s′ ∈ G (U) such that s′|Ui
= s′i for every i ∈ I. Moreover, we have

g(s′)|Ui
= g(s′i) = g(si) = s|Ui

for every i ∈ I, so g(s′) = s.

(b). (i) Let F be an object of I . We know that Ȟp(U ,F ) = 0 for every covering family
family U of an open subset of X and for every p ≥ 1 by question (e) of problem 3,
so F is in C .

Now let 0 → F → G → H → 0 be an exact sequence of abelian sheaves
on X, and suppose that F and G are in C . By question (a), the sequence
0 → F → G → H → 0 is also exact as a sequence of abelian presheaves. Let
U ∈ Cov By problem 2, the functors Ȟn(U , ·) are the right derived functors of
Ȟ0(U , ·) on the category PSh(X,Z), so we have a long exact sequence

. . .→ Ȟn(U ,G )→ Ȟn(U ,H )→ Ȟn+1(U ,F )→ Ȟn+1(U ,G )→ . . .

If n ≥ 1, then Ȟn(U ,G ) = 0 and Ȟn+1(U ,F ) = 0 by the hypothesis on F and G ,
so Ȟn(U ,H ) = 0. This shows that H is an object of C .

set of open covers of open affine subschemes of X by principal open affines, and then C would contain all the
quasi-coherent sheaves on X.

6If X is a scheme, this shows that, for every quasi-coherent sheaf F on X, the cohomology of F is isomorphism
to its Čech cohmology relative to any open affine cover of X.
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(ii) Let F be an object of C , let f : F → G be an injective morphism of abelian sheaves
with G an injective object of Sh(X,Z), and H = Coker(f). Let U ∈ B. Then we
have an exact sequence

0→ F (U)→ G (U)→H (U)→ H1(U,F )→ H1(U,G )→ . . .

But H1(U,G ) = 0 because G is injective, and the morphism G (U) → H (U) is
surjective by (i), so H1(U,F ) = 0.

(iii) We already know that the result holds for n = 1 by question (iii). Suppose that it
holds for some n ≥ 1. Let let F be an object of C . Choose an injective morphism
f : F → G with G an object of I , and let H = Coker f . Let U ∈ B. We have a
long exact sequence of cohomology

. . .Hn(U,H )→ Hn+1(U,F )→ Hn+1(U,G )→ . . .

By question (ii), the sheaf H is an object of C , so Hn(U,H ) = 0 by the induction hy-
pothesis. Moreover, as G is an injective object of Sh(X,Z), we have Hn+1(U,G ) = 0.
So Hn+1(U,F ) = 0.

(iv) We use the notation of Example IV.4.1.12(2) of the notes. By question (iii), for
every p ∈ N, all i0, . . . , ip ∈ I, and every q ≥ 1, we have

RqΦ(F )(Ui0 ∩ . . . ∩ Uip) = Hq(Ui0 ∩ . . . ∩ Uip ,F ) = 0.

By definition of Čech cohomology, this implies that, for every p ∈ N and every q ≥ 1,
we have Ȟp(X , RqΦ(F )) = 0. Let

Epq2 = Ȟp(X , RqΦ(F ))⇒ Hp+q(X,F )

be the Čech cohomology to cohomology spectral sequence for the open cover X .
By the calculation we just did, we have Epq2 = 0 if q ≥ 1, so the spectral sequence
degenerates at E2 and Epq∞ = Epq2 is zero unless q = 0. So for every p ∈ N, the

subobject Ep,0∞ = Ep,02 = Ȟp(X ,F ) of Hp(X,F ) is actually equal to Hp(X,F ),
which shows that the morphism Ȟp(X ,F )→ Hp(X ,F ) is an isomorphism.

�
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