
MAT 540 : Problem Set 5

Due Thursday, October 17

1 Free presheaves

Let C be a category and R be a ring.

(a). (2 points) Show that the forgetful functor PSh(C , R) → PSh(C ) has a left adjoint
F 7−→ R(F ).

(b). (1 point) If X is an object of C and hX = HomC (·, X) is the corresponding representabe
presheaf, we write R(X) for R(hX). Show that there is an isomorphism of additive functors
from PSh(C , R) to RMod (where F is the variable):

HomPSh(C ,R)(R
(X),F ) ' F (X).

(c). (2 points) Suppose that C is equipped with a Grothendiech pretopology. If F is a sheaf
for this pretopology, is R(F ) always a sheaf ?

Solution.

(a). If F is a presheaf on C , we define a presheaf R(F ) by setting, for every X ∈ Ob(C ),
R(F )(X) = R(F (X)); if f : X → Y is a morphism of C , then we take for R(F )(f) the
only R-linear extension of F (f). The presheaf R(F ) is an object of PSh(C , R), and its
construction is clearly functorial in F .

Now we show that the functor F 7−→ R(F ) is left adjoint to the forgetful functor. Let
F be a presheaf and G be a presheaf of R-modules. If u : F → G is a morphism of
presheaves, then we define a morphism of presheaves α(u) : R(F ) → G by taking, for
every X ∈ Ob(C ), the morphism α(u)(X) : R(F (X)) → G (X) to be the unique R-linear
extension of u(X) : F (X)→ G (X). By the universal property of the free R-module on a
set, the map α : HomPSh(C )(F ,G )→ HomPSh(C ,R)(R

(F ),G ) is bijective, and it is easy to
check that it defines a morphism of functors on PSh(C )op × PSh(C , R).

(b). We have an isomorphism of functors HomPSh(C ,R)(R
(X),F )

∼→ HomPSh(C )(hX ,F ) given

by question (a), and an isomorphism of functors HomPSh(C )(hX ,F )
∼→ F (X) given by

the Yoneda lemma.

(c). No. Let X be a topological space, let S be a singleton, and let F be the presheaf on X
sending every open subset U of X to S. Then R(F )(U) = R for every open subset U of X,
but a sheaf of R-modules on a topological space must take the value {0} on ∅, so R(F ) is
not a sheaf (unless R is the zero ring).

�
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2 Constant presheaves and sheaves

Let (C ,T ) be a site. The constant presheaf on C with value S is the functor Spsh : C op → Set
sending any object to S and any morphism to idS . The constant sheaf on CT with value S is
the sheafification of the constant presheaf on C with value S; we will denote it by S.

(a). (2 points) if X = (Xi → X)i∈I is a covering family, calculate Ȟ0(X , Spsh).

(b). (2 points) Suppose that (C ,T ) is the category of open subsets of the topological space
[0, 1], with the usual topology. Show that (Spsh)+ is a sheaf if and only if card(S) ≤ 1.

(c). (2 points) Suppose that (C ,T ) is the category of open subsets of a locally connected
topological space X. Show that, for every open subset U of X, we have S(U) = Sπ0(U).

Solution.

(a). Suppose that I = ∅. Then
∏
i∈I F (Xi) and

∏
i,j∈I F (Xi ×X Xj) are both isomorphic to

the terminal object of Set, i.e. to a singleton, so Ȟ0(X , Spsh) is a singleton.

Suppose that I 6= ∅. Then
∏
i∈I F (Xi) = SI . Also, for all i, j ∈ I, the maps

S = F (Xi) → F (Xi ×X Xj) = S and S = F (Xj) → F (Xi ×X Xj) = S induced
by the two projections are idS . Let s = (si)i∈I ∈ SI . Then s ∈ Ȟ0(X ,F ) if and only if,
for all i, j ∈ I, the images of s by the projections from SI to its ith and jth factor are
equal, that is, if and only if si = sj for all i, j ∈ I. So the diagonal embedding S ⊂ SI

induces a bijection S
∼→ Ȟ0(X ,F ).

(b). Let F = (Spsh)+, and let’s pretend that we have not read the next question yet.

Suppose that card(S) ≤ 1. If S is a singleton, then, for every open cover W = (Ui)i∈I
of an open subset U of [0, 1], the canonical map F (U)→

∏
i∈I F (Ui) and the two maps∏

i∈I F (Ui)→
∏
i,j F (Ui ∩ Uj) are isomorphisms, so F (U)

∼→ Ȟ0(W ,F ). If S is empty,
this stays true as long as U and all the Ui are nonempty; as every open cover of a nonempty
open set can be refined by an open cover that has only nonempty elements, we deduce
again that F is a sheaf.

Suppose that F is a sheaf. Let U1 =]1/4, 1/2[, U2 =]1/2, 3/4[ and U = U1 ∪ U2; we
denote by W the open cover (U1, U2) of U . As U1 ∩ U2∅, question (a) implies that
Ȟ0(W ,F ) = S × S, and that the canonical map S = F (U)→ Ȟ0(W ,F )→ S × S is the
diagonal embedding. This is not bijection if card(S) ≥ 2, so we must have card(S) ≤ 1.

(c). Write F = (Spsh)+; by (a), the set F (∅) is a singleton and we have F (V ) = S for every
nonempty open subset V of X.

LetU be an open subset of X. If U is empty, we already know that S(U) is a singleton,
hence isomorphic to S∅. Suppose that U is not empty. As U is locally connected, all
its connected components are open (as well as closed), so we have U =

∐
C∈π0(U)C as

a topological space. Using the open cover {C ∈ π0(U)} of U , we see that the map
S(U) →

∏
C∈π0(U) S(C) must be bijective. So it suffices to show that, if U is connected

and nonempty, then the canonical map S = F+(U)→ S(U) is bijective.

Let U be a nonempty connected subset of X, and let W = (Ui)i∈I be an open cover of
U . After replacing W by a refinement, we may assume that all the Ui are nonempty.
For every i ∈ I, we denote by I(i) the set of j ∈ I such that there exists a sequence
i0 = i, i1, . . . , in = j of elements of I such that Uir−1 ∩ Uir 6= ∅ for every r ∈ {1, . . . , n},
and we set Vi =

⋃
j∈I(i) Uj . Then the sets I(i) form a partition of I. If we choose a subset

K of I such that K intersects each I(i) in a singleton, then Vi∩Vj = ∅ if i, j ∈ K and i 6= j,

2



and U =
⋃
i∈K Vi, so U =

∐
i∈K Vi; but U is connected, so K has only on element. Now let

s = (si)i∈I ∈
∏
i∈I F (Ui) = SI . If i, j ∈ I, the two images of s in F (Ui ∩ Uj) are si|Ui∩Uj

and sj|Ui∩Uj
, so teh equality of these two images is an empty condition if Ui ∩ Uj = ∅,

and it equivalent to the condition that si = sj if Ui ∩ Uj 6= ∅. But we have just shown
that, for all i, j ∈ I, there exists a sequence i0 = i, i1, . . . , in = j of elements of I such that
Uir−1 ∩ Uir 6= ∅ for every r ∈ {1, . . . , n}, and we set Vi =

⋃
j∈I(i) Uj . So s ∈ Ȟ0(W ,F )

if and only if si = sj for all i, j ∈ I; in other words, the map S = F (U) → Ȟ0(W ,F ) is
bijective. So we conclude that S = F (U)

∼→ Ȟ0(U,F ) = S(U).

�

3 Points

Let (C ,T ) be a site. We are interested in the category Points(CT ) whose objects are func-
tors Sh(CT ) → Set that commutes with all small colimits and with finite limits, and whose
morphisms are isomorphisms between such functors. 1

A reference for many of the results of this problem is MacLane and Moerdijk, Sheaves in
geometry and logic , especially Sections VII.5 and VII.6.

(a). Let C be an arbitrary category. Let A : C → Set be a functor. We denote by HomC (A, ·)
the functor Set→ PSh(C ) sending a set S to the presheaf X 7−→ HomSet(A(X), S).

(i) (1 point) Show that the functor HomC (A, ·) commutes with all limits.

(ii) (3 points) Show that the functor HomC (A, ·) admits a left adjoint, which we will
denote by (·) ⊗C A, and that ((·) ⊗C A) ◦ hC is isomorphic to A. (Hint: First try
to construct the adjoint on representable presheaves, and remember problem 2(a) of
problem set 2.)

We say that the functor A : C → Set is flat if the functor (·) ⊗C A : PSh(C ) → Set
commutes with finite limits.

(iii) (1 points) If A is flat, show that it commutes with all finite limits that exist in C .

(iv) (2 points) Suppose that C has all finite limits and that A commutes with finite limits.
Let F be a presheaf on C . If X,Y are objects of C /F , x ∈ A(X) and y ∈ A(Y ),
show that x and y represent the same element of F ⊗C A if and only if there exists
an object Z of C , morphisms Z → X and Z → Y , and an element z ∈ A(Z) whose
images in A(X) and A(Y ) are x and y respectively.

(v) (3 points) If C has all finite limits, show that A is flat if and only if it commutes with
finite limits. (Hint : To show that a functor commutes with finite limits, it suffices
to show that it sends the final object to the final object and commutes with fibered
products. You can admit this easy fact.)

(vi) (2 points) Suppose that C has all finite limits. If T is the trivial pretopology on C
(so that Sh(CT ) = PSh(C )), show that Points(CT ) is equivalent to the category of
flat functors C → Set (with morphisms being isomorphisms between these functors).

(b). Let (C ,T ) be a site. A flat functor A : C → Set is called continuous if, for every covering
family (Xi → X)i∈I in C , the map

∐
i∈I A(Xi)→ A(X) is surjective.

1The idea of this definition is that we are abstracting the formal properties of stalk functors on the category of
sheaves on a topological space.
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For every X ∈ Ob(C ), we denote by Xsh the sheafification of the representable presheaf
HomC (·, X). This defines a functor C → Sh(CT ), that commutes with finite limits.

(i) (2 points) Let (fi : Xi → X)i∈I be a covering family. We consider the morphisms∐
i,j∈I

(Xi ×X Xj)
sh

f //
g
//
∐
i∈I

Xsh
i

h // Xsh

where h =
∐
i∈I f

sh
i and f (resp. g) is equal on (Xi ×X Xj)

sh to the image by
(.)sh : C → Sh(CT ) of the first (resp. second) projection Xi ×X Xj → Xi (resp.
Xi ×X Xj → Xj).

Show that h is the cokernel of (f, g) in the category Sh(CT ).

(ii) (1 point) Let A : C → Set be a flat functor, and suppose that

(·) ⊗C A : PSh(C ) → Set factors as PSh(C )
(·)sh→ Sh(CT )

xA→ Set. Show that xA
is an object of Points(CT ).

(iii) (2 points) If A : C → Set satisfies the hypothesis of the previous question, show that
A is continuous. 2

(c). Let (C,≤) be a preordered set. We see C as a category by taking HomC(a, b) to be a
singleton if a ≤ b, and empty otherwise.

(i) (1 point) Let (ai)i∈I be a family of objects of C. Give a description of
∐
i∈I ai and∏

i∈I ai in (pre)ordered set terms.

(ii) (2 points) Give a similar translation of the property “C has all finite limits”.

From now on, se suppose that C has all finite limits, and we fix a flat functor A : C → Set.

(iii) (2 points) Show that card(A(a)) ≤ 1 for every a ∈ C.

(iv) (2 points) Show that the set IA = {a ∈ C | A(a) 6= ∅} is a nonempty upper order
ideal. (That is, if a ∈ IA and a ≤ b, then b ∈ IC .)

(v) (1 point) If T is any Grothendieck pretopology on C, show that the points of CT

don’t have any nontrivial automorphisms.

(vi) (1 point) Suppose that any family (ai)i∈I of elements of C has a least upper bound
sup(ai, i ∈ I). We say that a family of morphisms (ai → a)i∈I in C is covering if
a = sup(ai, i ∈ I). Suppose that this defines a pretopology on C. If A is continuous,
show that IA is a completely prime upper order ideal, that is, if sup(ai, i ∈ I) ∈ IA,
then at least one of the ai is in IA.

(d). Let X be a topological space, let C = Open(X), and let T be the usual topology on
X. Remember that a nonempty closed subset Z of X is called irreducible if, whenever
Z ⊂ Y1 ∪ Y2 with Y1, Y2 closed subsets of X, we have Z ⊂ Y1 or Z ⊂ Y2.

(i) (1 point) Show that a nonempty closed subset Z of X is irreducible if, for every open
subset U of Z, the set Z ∩ U is either empty or dense in Z.

(ii) (1 point) Let Z be an irreducible closed subset of X, and let UZ be the set of open
subsets U of X such that Z ∩ U 6= ∅. For every sheaf F on X, we set

FZ = lim−→
U∈Ob(U op

Z )

F (U).

2In fact, the converse is true : points of CT correspond to flat continuous functors C → Set.
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Show that this defines a point of CT .

(iii) (3 points) Let x : Sh(CT )→ Set be a point, and let A : C → Set be the correspond-
ing flat continuous functor. Let

Z = X −
⋃

U∈Ob(C ), A(U)=∅

U.

Show that Z is an irreducible closed subset of X, and that x is isomorphic to the
functor F 7−→ FZ . 3

(iv) (1 point) If x1 and x2 are points of CT and Z1 and Z2 are the corresponding closed
irreducible subsets of X, show that there exists a morphism from x1 to x2 if and only
if Z1 ⊂ Z2.

(e). Let X = [0, 1] with the Lebesgue measure. We take C to be the category whose objects
are Lebesgue-measurable subsets E of [0, 1], and such that HomC (E,E′) is a singleton if
E′−E has measure 0, and the empty set otherwise. We put the Grothendieck pretopology
on C whose covering families are countable families (En → E)n∈N such that E−

⋃
n∈NEn

has measure 0. (You can admit that this is a pretopology; it is not very hard.)

(i) (1 point) Show that the category Sh(CT ) is not empty.

(ii) (2 points) Show that the category Points(CT ) has no objects (that is, CT has no
points).

Solution.

(a). (i) Let α : I → Set be a functor, with I a small category. We want to show that the
canonical morphism

HomC (A, ·)(lim←−α)→ lim←−(HomC (A, ·) ◦ α)

is an isomorphism in PSh(C ). For every X ∈ Ob(C ), if we evaluate this morphism
at X, we get the canonical morphism

HomSet(A(X), lim←−α)→ lim←−
i∈Ob(I )

HomSet(A(X), α(i))

(where we use Proposition I.5.3.1 of the notes to calculate the right-hand side),
which is an isomorphism by definition of the limit.

(ii) By Proposition I.4.7 of the notes, it suffices to show that, for every presheaf F on
C , the functor Set→ Set, S 7−→ HomPSh(C )(F ,HomC (A,S)) is representable.

Suppose first that F = hX = HomC (·, X) is a representable
presheaf. By the Yoneda lemma, for every set S, the map
HomPSh(C )(hX ,HomC (A,S)) → HomC (A,S)(X) = HomSet(A(X), S) send-
ing u : hX → HomC (A,S) to u(X)(idX) is bijective. An easy verification
shows that this map defines an isomorphisms of functors. So the functor
S 7−→ HomPSh(C )(hX ,HomC (A,S)) is represented by the set A(X). Also, if
f : X → Y is a morphism of C and hf : hX → hY is its image by the Yoneda

3So we have shown that points of CT correspond to closed irreducible subsets of X. If X is sober, that is, if
every closed irreducible subset has a unique generic point, then points of CT correspond to points of X, but
this is not true in general.
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embedding, then we have a commutative diagram, for every set S:

HomPSh(C )(hY ,HomC (A,S))
∼ //

(·)◦hf
��

HomSet(A(Y ), S)

(·)◦A(f)
��

HomPSh(C )(hX ,HomC (A,S))
∼ // HomSet(A(X), S)

Indeed, let u ∈ HomPSh(C )(hY ,HomC (A,S)). Then its image in HomSet(A(X), S)
by the upper right path of the diagram is u(Y )(idY )◦A(f), and its image by the left
bottom path of the diagram is (u ◦ hf )(X)(idX) = u(X)(f) = u(X)(idY ◦ f). But
these two are equal because, as u is a morphism of presheaves, we have a commutative
diagram:

hY (X) HomC (Y,X)
u(X) // HomS(A(X), S)

hY (Y ) HomC (X,X)
u(Y )

//

(·)◦f

OO

HomSet(A(Y ), S)

(·)◦A(f)

OO

It remains to show that the functor S 7−→ HomPSh(C )(F ,HomC (A,S)) is repre-
sentable for an arbitrary presheaf F on C . As in problem 2 of problem set 2, consider
the category C /F and the functor GF : C /F → C . We have shown in question
(a) of that problem that there is a canonical isomorphism lim−→(hC ◦ GF )

∼→ F . Let
F ⊗C A = lim−→(A ◦GF ) = lim−→X∈Ob(C /F )

A(X). Then we have, for every set S,

HomPSh(C )(F ,HomC (A,S)) ' HomPSh(C )(lim−→(hC ◦GF ),HomC (A,S))
∼→ lim←−

X∈Ob(C /F )

HomPSh(C )(hX ,HomC (A,S))

∼→ lim←−
X∈Ob(C /F )

HomSet(A(X), S))

' HomSet(F ⊗C A,S).

These isomorphisms are all easily seen to be functorial in S, so the set F ⊗C A
represents the functor S 7−→ HomPSh(C )(F ,HomC (A,S)).

(iii) We know that ((·)⊗C A)◦hC ' A by (ii), and that hC commutes with all limits that
exist in C by definition of limits, so, if (·)⊗C A commutes with finite limits, so does
A.

(iv) By Theorem I.5.2.1 of the notes, we have F ⊗C A =
∐
X∈Ob(C /F )A(X)/ ∼,

where ∼ is the equivalence relation generated by the relation R defined by: if
X,Y ∈ Ob(C /F ) and x ∈ A(X), y ∈ A(Y ), then xRy if there exists a morphism
f : X → Y in C /F such that A(f)(x) = y.

Let R′ be the relation on
∐
X∈Ob(C /F )A(X) defined in the question. We clearly have

xRy ⇒ xR′y ⇒ x ∼ y (with the same notation as in the previous paragraph), so it
suffices to show that R′ is an equivalence relation. It is clearly reflexive and symmet-
ric. We show that it is transitive. Let X1, X2, X3 be objects of C /F and x1 ∈ A(X1),
x2 ∈ A(X2), x3 ∈ A(X3) such that x1R

′x2 and x2R
′x3. This means that we have

Y1, Y2 ∈ Ob(C ), morphisms f1 : Y1 → X1, f2 : Y1 → X2, g1 : Y2 → X2, g2 : Y2 → X3

in C /F and elements y1 ∈ A(Y1) and y2 ∈ A(Y2) such that A(f1)(y1) = x1,
A(f2)(y1) = x2, A(g1)(y2) = x2 and A(g2)(y2) = x3. Let Z = Y1 ×X2 Y2, let
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p : Z → Y1 and q : Z → Y2, and let z = (y1, y2) ∈ A(Z) = A(Y1)×A(X2) A(Y2).

Z
p

}}

q

!!
Y1

f1

~~

f2

  

Y2
g1

~~

g2

  
X1 X2 X3

Then A(f1 ◦ p)(z) = x1 and A(g2 ◦ q) = x3, so x1R
′x3.

(v) Suppose that A commutes with finite limits. We want to show that it is flat.

Let ∗ be the final object of C (i.e. the limit of the unique functor ∅→ C ). Then the
final object of PSh(C ) is the presheaf h∗, which is also isomorphic to the constant
presheaf with value a fixed singleton. The functor Gh∗ : C /h∗ → C is an isomorphism
of categories, so, to show that h∗⊗C A is a final object of Set, we need to show that
S := lim−→X∈Ob(C )

A(X) is a singleton. We have a morphism A(∗)→ S and A(∗) is a

final object in Set, i.e. a singleton, so S is not empty. Let X,Y ∈ Ob(C ), x ∈ A(X)
and y ∈ A(Y ). Then (x, y) is an element of A(X × Y ) ' A(X) × A(Y ), and, if
p1 : X × Y → X and p2 : X × Y → Y are the two projections, then A(p1)(x, y) = x
and A(p2)(x, y) = y. So x ∈ A(X), (x, y) ∈ A(X ×Y ) and y ∈ A(Y ) define the same
element of S. This shows that card(S) ≤ 1, hence that S is a singleton because S is
not empty.

We now show that the functor (·)⊗C A commutes with fiber products. Let F →H
and G →H be morphisms in PSh(C ), let E = F⊗C A, E′ = G ⊗C A, E′′ = H ⊗C A
and F = (F×H G )⊗C A. Applying the functor (·)⊗C A to the commutative diagram

F ×H G //

��

G

��
F //H

we get a commutative diagram
F //

��

E′

q
��

E p
// E′′

and we want to show that this induces an isomorphism from F to the fiber product
E ×E′′ E′. So let S be another set, and let u : S → E, v : S → E′ be maps such
that p ◦ u = q ◦ v. We want to show that these maps factor uniquely through a map
w : S → F . Let s ∈ S. To make the notation less cumbersome, we will use the
Yoneda embedding to identify C to a full subcategory of PSh(C ), so we write X
instead of hX if X ∈ Ob(C ). Choose an object X → F of C /F , an object Y → G
of C /G and elements x ∈ A(X) and y ∈ A(Y ) such that x represents u(s) and y
represents v(s). The fact that p(u(s)) = q(v(s) means that there exists an object Z
of C , a commutative diagram

Z //

  

Y // G

!!
X // F //H
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in PSh(C ) and z ∈ A(Z) such that the images of z in A(X) and A(Y ) are x and y.
The diagram we just wrote gives a morphism Z → F ×H G in PSh(C ), so we get an
object of C /(F ×H G ), and, if w : S → F existed, we would necessarily have that
w(s) is the element of F represented by z. This proves the uniqueness of w. To prove
its existence, we need to show that other choices of representatives of u(s) and v(s)
would give the same element of F . So suppose that we have another commutative
diagram

Z ′ //

  

Y ′ // G

!!
X ′ // F //H

and an element z′ ∈ A(Z ′) such that the image x′ of z′ in A(X ′) is a representa-
tive of u(s) and the image y′ of z′ in A(Y ′) is a representative of v(s). We must
show that z and z′ represent the same element of F . As x and x′ represent the
same element u(s) of E, there exists an object X ′′ of C , morphisms X ′′ → X and
X ′′ → X ′ and an element x′′ ∈ A(X ′′) whose images in A(X) and A(X ′) are x
and x′ respectively. Similarly, we get Y ′′ → Y , Y ′′ → Y ′ and y′′ ∈ A(Y ′′). Now
replacing X by X ′′, Z by X ′′ ×X Z, the morphism Z → X by the first projection
X ′′ ×X Z → X ′′, the morphism Z → Y by the composition of the second projec-
tion X ′′ ×X Z → Z and of Z → Y , x ∈ A(X) by x′′ ∈ A(X ′′) and z ∈ A(Z) by
(x′′, z) ∈ A(X ′′ ×X Z) = A(X ′′) ×A(X) A(Z), we may assume that there is a mor-
phism X → X ′ such that the image of x in A(X ′) is x′. Playing the same game with
Y ′′ → Y (that is, replacing Z with Y ′′ ×Y Z etc), we may also assume that Y ′′ = Y
and y′′ = y. We now have w commutative diagram

Z ′

))

""

))
Y // Y ′ // G

  
F ×H G

::

$$

H

Z

55

//

GG

X // X ′ // F

>>

and element z ∈ A(Z), z′ ∈ A(z′) such that the images of z in A(X) and A(Y )
are x and y respectively, that the images of z′ in A(X ′) and A(Y ′) are x′ and y′

respectively, the image of x in A(X ′) is x′ and the image of y in A(Y ′) is y′.

z′ �

''

/ ''
y � // y′

z � //
A

@@

x � // x′

Let Z ′′ = Z×X′×Y ′Z ′, and let z′′ = (z, z′) ∈ A(Z×X′×Y ′Z ′) = A(Z)×A(X′)×A(Y ′)A(Z ′).
To show that z, z′ and z′′ induce the same element of F (which will finish the proof),
it suffices to show that the morphisms Z ′′ → Z → F×H G and Z ′′ → Z ′ → F×H G
are equal. But these morphisms become equal after we compose them with the two
projections from F ×H G to F and G , so they are equal by the universal property
of the fiber product.

(vi) If A : C → Set is a flat functor, then the functor xA = (·) ⊗C A : PSh(C ) → Set
commutes with all colimits (as a left adjoint) and with finite limits (by flatness of A),
so it is an object of Points(CT ). Also, the construction of (·)⊗C A in the solution of
(ii) is clearly functorial in A.
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Conversely, let x : PSh(C ) → Set be an object of Points(CT ), and let
Ax = x ◦ hC : C → Set. Then Ax is a flat functor because both hC and x commutes
with finite limits, so we get a functor from Points(CT ) to the category of flat functors
C → Set (with isomorphisms of such functors as morphisms). Moreover, if x is a
point, then it commutes with all colimits, so we have a canonical isomorphism for all
F :

x(F ) = x( lim−→
X∈Ob(C /F )

hX)
∼→ lim−→

X∈Ob(C /F )

x(hX) = lim−→
X∈Ob(C /F )

A(X) = F⊗CA = xAx(F ),

and this gives an isomorphism of functors x
∼→ xAx .

Finally, if A : C → Set is a flat functor, we have already seen in (ii) that xA◦hC ' A;
in other words, we have AxA ' A.

�

4 G-sets

Let G be a finite group, let C = G − Set be the category whose objects are sets with a left
action of G and whose morphisms are G-equivariant maps. We consider the pretopology T on
C for which a family (fi : Xi → X)i∈I is covering if and only if X =

⋃
i∈I fi(Xi).

4

Let A be G with its actionby left translations. More generally, for every subgroup H of G,
we denote by AH the set G/H with the action of G by left translations.

Useful fact: If X → Y is a surjective map in Set or G − Set, then it is the cokernel of the
two projections X ×Y X → X. (You still need to justify thisn if you want to use it.)

(a). (1 point) Show that every object of G−Set is a coproduct of objects isomorphic to some
AH .

(b). (1 point) Calculate A×AH
A in the category G− Set.

(c). (1 point) Show that every representable presheaf on G− Set is a sheaf.

(d). (1 point) Show the automorphisms of A in G − Set are exactly the maps cg : A → A,
a 7−→ ag, for g ∈ G.

(e). (1 point) If F is a presheaf on G− Set, show the family (F (cg))g∈G defines a left action
of G on F (A).

(f). (1 point) Consider the functor Φ : Sh(CT ) → G − Set defined by Φ(F ) = F (A) and
the functor Ψ : F − Set → Sh(CT ) fiven by Ψ(X) = HomG−Set(·, X). Show that
Φ ◦Ψ ' idG−Set.

(g). (4 points) Show that Ψ ◦ Φ ' idSh(CT ). (Hint: For any G-set X, if |X| is the set X
with the trivial G-action, then we have a surjective G-equivariant map A × |X| → X,
(g, x) 7−→ g · x, which induces an injection F (X)→

∏
x∈X F (A) = HomSet(X,F (A)).)

(h). (3 points) Let x : Sh(CT ) → Set be the functor F 7−→ F (A), where we forget the
action of G on F (A) to see F (A) as a set. Show that every point of CT is isomorphic
to x. (See the beginning of Problem 3 for the definition of points.) (Suggestion: if y
is a point, calculate y(Ψ({1})), then y(Ψ(A)), then construct a morphism of functors
HomG−Set(A, ·)→ y ◦Ψ, then show that it is an isomorphism.)

4It is very easy to check that this is a pretopology, you don’t need to do it.
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(i). (1 point) Show that the group of automorphisms of the point x is isomorphic to G.

Solution.

(a). Let X be a set with an action of G. Then X is the disjoint union of its G-orbits, and a
G-orbit G · x is isomorphic to AH , where H is the stabilizer of x.

(b). Let B be the set G with the trivial action of G. We have a G-equivariant bijection
A×A→ A×B, (x, y) 7−→ (x, x−1y). (Where A×A is the direct product in G− Set, so
G acts via g · (x, y) = (gx, gy).) If H is a subgroup of G, this bijection sends the G-subset
A ×AH

A = {(x, y) ∈ A × A | x−1y ∈ H} to A × H, where the factor H has the trivial
action of G.

(c). This is exactly the content of the “useful fact” from the statement. Let’s prove it. Let E
be a G-set, and let (fi : Xi → X)i∈I be a covering family in G−Set. Let (ui : Xi → E)i∈I
be a family of G-equivariant maps such that, for all i, j ∈ I, the pullbacks of ui and uj to
Xi×X Xj (by the two projectins) agree. This means that, for every x ∈ X, if xi ∈ f−1i (x)
and xj ∈ f−1j (x), then ui(x) = uj(x). As X =

⋃
i∈I fi(Xi), there exists a unique map

u : X → E such that u ◦ fi = ui for every i ∈ I, and it suffices to check that u is G-
equivariant. Let x ∈ X and g ∈ G; choose i ∈ I and xi ∈ Xi such that x = fi(xi); then
g · x = fi(g · xi), so u(g · x) = ui(g · xi) = g · u(xi) = g · u(x).

(d). It is clear that the cg are all automorphisms of A in G− Set.

Conversely, let ϕ : A → A be an automorphism in G − Set, and let g = ϕ(1). Then, for
everty h ∈ A, we have ϕ(h) = ϕ(h · 1) = h · ϕ(1) = hg. So ϕ = cg.

(e). For every g ∈ G, the map F (cg) is an automorphism of F (A) (in the category Set),
and we have F (c1) = idF (A) because c1 = idA. If g, h ∈ G, we have cgh = ch ◦ cg, so
F (cgh) = F (cg) ◦F (ch). So we do get a left action of G on F (A).

(f). The functor Φ is well-defined, because, if α : F → G is a morphism of sheaves and g ∈ G,
then α(A) ◦F (cg) = G (cg) ◦ α(A), so α(A) is a G-equivariant map.

Let X be a G-set. Then we have a map u(X) : Φ(Ψ(X)) = HomG(A,X) → X sending
f : A→ X to f(1), and this clearly defines a morphism of functors u : Φ ◦Ψ→ idG−Set.
We show that it is an isomorphism. If f, f ′ : A→ X are two G-equivariant maps such that
f(1) = f ′(1), then, for every g ∈ G, we have f(g) = f(g · 1) = g · f(1) = g · f ′(1) = f ′(g).
So u(X) is injective. Let x ∈ X, and define a map f : A → X by f(g) = g · x; then f is
G-equivariant, and u(X)(f) = x; so u(X) is surjective.

(g). If F is a sheaf, then Ψ(Φ(F )) = HomG−Set(·,F (A)), so we must find an isomorphism of
sheaves HomG−Set(·,F (A)) ' F that is functorial in F .

Let F be a sheaf. For every G-set X, let pX : A × |X| → X, (g, x) 7−→ g · x be the G-
equivariant surjection of the hint. It is a covering family in G-set, hence induces an injec-
tion ι(X,F ) : F (X)→ F (A× |X|) = F (

∐
x∈X A) =

∏
x∈X F (A) = HomSet(X,F (A)),

that is a morphism of functors in X in F . We first check that the image of ι(X,F ) is
contained in the set G-equivariant maps. Write A × |X| =

∐
x∈X Ax, with Ax = A for

every x ∈ X; we have pX|Ax
(g) = g · x, for g ∈ A and x ∈ X. Let x ∈ X and g ∈ G; we

set y = g · x. Then we have a commutative diagram in G− Set:

A
cg //

c1
��

Ax

pX|Ax

��
Ay pX|Ay

// X
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So, if e ∈ F (X) and u = ι(X,F )(e) : X → F (A), then F (cg)(u(x)) = F (c1)(u(g · x)).
This shows that u is G-equivariant.

To finish the proof, we must show that ι(X,F ) is surjective for every G-set X and every
sheaf F . Fix F .

If X = A, then pA : A × |A| → A is the map (g, h) 7−→ gh; if we write as before
A × |A| =

∐
h∈GAh with Ah = A for every h, then pA|Ah

= ch for every h ∈ G. So

F (pA) : F (A) → (F (A))A = HomSet(A,F (A)) is the map sending e ∈ F (A) to
A→ F (A), g 7−→ F (cg)(e). It is easy to see that every G-equivariant map u : A→ F (A)
is of this form (take e = u(1)). So ι(A,F ) is surjective, hence bijective.

Note that the functors F and HomG−Set(·,F (A)) both send coproducts to products. For
the second functor, this is by definition of a coproduct. For the first functor, suppose
that X =

∐
i∈I Xi. Then the then the family of injections (Xi → X)i∈I is covering and

Xi ×X Xj = ∅ for i 6= j, so the morphism F (X)→
∏
i∈I F (Xi) is bijective. So if X is a

disjoint union of copies of A, then ι(X,F ) is a bijection.

Let X be an arbirtrary G-set. We have a surjective G-equivariant map
pX : A × |X| =

∐
x∈X Ax → X, where Ax = A for every x ∈ X and pA|Ax

sends g ∈ A to g · x. Let x, y ∈ X. Then we have a G-equivariant isomorphism
Ax ×X Ay = {(g, h) ∈ A × A | g · x = h · y} ∼→ A × Gy,x, (g, h) | (g, g−1h), where
Gx,y is the set {g ∈ G | g · y = x} with the trivial action of G; in particular, Ax ×X Ay is
a disjoint union of copies of A. So P := (A× |X|)×X (A× |X|) also is a disjoint union of
copies of A. Let p1, p2 : P → A× |X| be the two projections. Then we have commutative
diagrams

F (X)

ι(X,F )

��

F (pX) // F (A× |X|)

ι(A×|X|,F )

��

F (pi) // F (P )

ι(P,F )

��
HomG−Set(X,F (A))

p∗X

// HomG−Set(A× |X|,F (A))
p∗i

// F (P )

for i = 1, 2, the maps F (pX) : F (X) → F (A × |X|) and
p∗X : HomG−Set(X,F (A))→ HomG−Set(A×|X|,F (A)) are the kernels of (F (p1),F (p2))
and (p∗1, p

∗
2) respectively (because F and HomG−Set(·,F (A)) are sheaves), and the maps

ι(A×|X|,F ) and ι(P,F ) are bijective by the previous paragraph, so ι(X,F ) is bijective.

(h). Note that x ◦Ψ : G− Set→ Set is the functor X 7−→ HomG−Set(A,X). For every G-set
X, we have a bijection HomG−Set(A,X)

∼→ X sending u : A→ X to u(1), and this gives
an isomorphism from x◦Ψ to the forgetful functor G−Set→ Set. As Ψ is an equivalence
of categories by (f) and (g), this shows that x commutes with all small limits and colimits,
and in particular that it is a point.

Let y : Sh(CT )→ Set be a point, that is, a functor that commutes with all small colimits
and all finite limits. The functor F := y ◦Ψ : G−Set→ Set has the same property, so it
sends the terminal object AG of G−Set to a terminal object of Set, i.e. a singleton. For
every nonempty G-set X, the unique map X → AG identifies AG to the cokernel of the
two projections X × X → X, so F (AG) → F (X) is a kernel morphism, hence injective,
and so F (X) is not empty.

We calculate F (A). We have an isomorphism of G-sets A×A ∼→
∐
x∈GAx, where Ax = A

for every x ∈ G, sending (g, h) ∈ A × A to g ∈ Ag−1h. Let q1, q2 :
∐
x∈GAx → A

be the map corresponding to the two projections p1, p2 : A × A → A by this iso-
morphism. Then, for every x ∈ G, we have q1|Ax

= idA and q2|Ax
= cx. Apply-

ing F and using the fact that F commutes with coproducts and finite products, we
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get two maps F (q1), F (q2) :
∐
x∈G F (Ax) → F (A), such that F (q1)|F (Ax) = idF (A)

and F (q2)|F (Ax) = F (cx) for every x ∈ G, and such that the induced map
(F (q1), F (q2)) :

∐
x∈G F (Ax) → F (A) × F (A) is bijective. Let e ∈ F (A) (we

know that F (A) 6= ∅ by the previous paragraph). Then (q1, q2) induces a bijection∐
x∈G{e}

∼→ {e} × F (A), so we get a bijection ι : F (A)
∼→ G = A, and it is easy to see

that ι ◦ F (cx) = cx ◦ ι for every x ∈ G.

Now that we have an isomorphism ι : F (A)
∼→ A, we can construct a morphism of functors

α from x ◦Ψ = HomG−Set(A, ·) to F by sending f : A→ X to F (f)(ι−1(1)) ∈ F (X). We
know that α(A) is bijective, so α(X) is bijective if the G-set X is a coproduct of copies
of A, because both functors commute with coproducts. As every G-set is the cokernel of
two G-equivariant maps between coproducts of copies of A (see the solution of (g)), and
as both functors commute with cokernel, α(X) is an isomorphism for every X.

(i). As Ψ is an equivalence of categories, it suffices to calculate the group of automorphisms
of x ◦ Ψ. We can apply the other Yoneda lemma (see for example Corollary I.3.2.8):
as x ◦ Ψ is a representable functor, every automorphism of this functor comes from an
automorphism of the representing object, that is, of A. So, by question (d), every au-
tomorphism of x ◦ Ψ is of the form HomG−Set(cg, ·). If g, h ∈ G, then cgh = ch ◦ cg,
so HomG−Set(cgh, ·) = HomG−Set(cg, ·) ◦ HomG−Set(ch, ·). So we get an isomorphism

G
∼→ Aut(x ◦Ψ).

�
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