MAT 540: Problem Set 5

Due Thursday, October 17

1 Free presheaves

Let \mathscr{C} be a category and R be a ring.

- (a). (2 points) Show that the forgetful functor $PSh(\mathcal{C}, R) \to PSh(\mathcal{C})$ has a left adjoint $\mathscr{F} \longmapsto R^{(\mathscr{F})}$.
- (b). (1 point) If X is an object of \mathscr{C} and $h_X = \operatorname{Hom}_{\mathscr{C}}(\cdot, X)$ is the corresponding representable presheaf, we write $R^{(X)}$ for $R^{(h_X)}$. Show that there is an isomorphism of additive functors from $\operatorname{PSh}(\mathscr{C}, R)$ to R**Mod** (where \mathscr{F} is the variable):

$$\operatorname{Hom}_{\mathrm{PSh}(\mathscr{C},R)}(R^{(X)},\mathscr{F}) \simeq \mathscr{F}(X).$$

(c). (2 points) Suppose that \mathscr{C} is equipped with a Grothendiech pretopology. If \mathscr{F} is a sheaf for this pretopology, is $R^{(\mathscr{F})}$ always a sheaf?

2 Constant presheaves and sheaves

Let $(\mathscr{C}, \mathscr{T})$ be a site. The *constant presheaf* on \mathscr{C} with value S is the functor $\underline{S}_{psh} : \mathscr{C}^{op} \to \mathbf{Set}$ sending any object to S and any morphism to id_S . The *constant sheaf* on $\mathscr{C}_{\mathscr{T}}$ with value S is the sheafification of the constant presheaf on \mathscr{C} with value S; we will denote it by S.

- (a). (2 points) if $\mathscr{X} = (X_i \to X)_{i \in I}$ is a covering family, calculate $\check{\mathrm{H}}^0(\mathscr{X}, \underline{S}_{psh})$.
- (b). (2 points) Suppose that $(\mathscr{C}, \mathscr{T})$ is the category of open subsets of the topological space [0,1], with the usual topology. Show that $(\underline{S}_{psh})^+$ is a sheaf if and only if $\operatorname{card}(S) \leq 1$.
- (c). (2 points) Suppose that $(\mathscr{C}, \mathscr{T})$ is the category of open subsets of a locally connected topological space X. Show that, for every open subset U of X, we have $\underline{S}(U) = S^{\pi_0(U)}$.

3 Points

Let $(\mathscr{C}, \mathscr{T})$ be a site. We are interested in the category Points $(\mathscr{C}_{\mathscr{T}})$ whose objects are functors $Sh(\mathscr{C}_{\mathscr{T}}) \to \mathbf{Set}$ that commutes with all small colimits and with finite limits, and whose morphisms are isomorphisms between such functors. ¹

(a). Let \mathscr{C} be an arbitrary category. Let $A:\mathscr{C}\to \mathbf{Set}$ be a functor. We denote by $\underline{\mathrm{Hom}}_{\mathscr{C}}(A,\cdot)$ the functor $\mathbf{Set}\to\mathrm{PSh}(\mathscr{C})$ sending a set S to the presheaf $X\longmapsto\mathrm{Hom}_{\mathbf{Set}}(A(X),S)$.

¹The idea of this definition is that we are abstracting the formal properties of stalk functors on the category of sheaves on a topological space.

- (i) (1 point) Show that the functor $\underline{\mathrm{Hom}}_{\mathscr{C}}(A,\cdot)$ commutes with all limits.
- (ii) (3 points) Show that the functor $\underline{\text{Hom}}_{\mathscr{C}}(A,\cdot)$ admits a left adjoint, which we will denote by $(\cdot) \otimes_{\mathscr{C}} A$, and that $((\cdot) \otimes_{\mathscr{C}} A) \circ h_{\mathscr{C}}$ is isomorphic to A. (Hint: First try to construct the adjoint on representable presheaves, and remember problem 2(a) of problem set 2.)

We say that the functor $A: \mathscr{C} \to \mathbf{Set}$ is flat if the functor $(\cdot) \otimes_{\mathscr{C}} A: \mathrm{PSh}(\mathscr{C}) \to \mathbf{Set}$ commutes with finite limits.

- (iii) (1 points) If A is flat, show that it commutes with all finite limits that exist in \mathscr{C} .
- (iv) (2 points) Suppose that $\mathscr C$ has all finite limits and that A commutes with finite limit. Let $\mathscr F$ be a presheaf on $\mathscr C$. If X,Y are objects of $\mathscr C/\mathscr F$, $x\in A(X)$ and $y\in A(Y)$, show that x and y represent the same element of $\mathscr F\otimes_{\mathscr C}A$ if and only if there exists an object Z of $\mathscr C$, morphisms $Z\to X$ and $Z\to Y$, and an element $z\in A(Z)$ whose images in A(X) and A(Y) are x and y respectively.
- (v) (3 points) If \mathscr{C} has all finite limits, show that A is flat if and only if it commutes with finite limits. (Hint: To show that a functor commutes with finite limits, it suffices to show that it sends the final object to the final object and commutes with fibered products. You can admit this easy fact.)
- (vi) (2 points) Suppose that \mathscr{C} has all finite limits. If \mathscr{T} is the trivial pretopology on \mathscr{C} (so that $Sh(\mathscr{C}_{\mathscr{T}}) = PSh(\mathscr{C})$), show that $Points(\mathscr{C}_{\mathscr{T}})$ is equivalent to the category of flat functors $\mathscr{C} \to \mathbf{Set}$ (with morphisms being isomorphisms between these functors).
- (b). Let $(\mathscr{C}, \mathscr{T})$ be a site. A flat functor $A : \mathscr{C} \to \mathbf{Set}$ is called *continuous* if, for every covering family $(X_i \to X)_{i \in I}$ in \mathscr{C} , the map $\coprod_{i \in I} A(X_i) \to A(X)$ is surjective.

For every $X \in \text{Ob}(\mathscr{C})$, we denote by X^{sh} the sheafification of the representable presheaf $\text{Hom}_{\mathscr{C}}(\cdot, X)$. This defines a functor $\mathscr{C} \to \text{Sh}(\mathscr{C}_{\mathscr{T}})$, that commutes with finite limits.

(i) (2 points) Let $(f_i: X_i \to X)_{i \in I}$ be a covering family. We consider the morphisms

$$\coprod_{i,j\in I} (X_i \times_X X_j)^{\operatorname{sh}} \xrightarrow{f} \coprod_{i\in I} X_i^{\operatorname{sh}} \xrightarrow{h} X^{\operatorname{sh}}$$

where $h = \coprod_{i \in I} f_i^{\text{sh}}$ and f (resp. g) is equal on $(X_i \times_X X_j)^{\text{sh}}$ to the image by $(.)^{\text{sh}} : \mathscr{C} \to \text{Sh}(\mathscr{C}_{\mathscr{T}})$ of the first (resp. second) projection $X_i \times_X X_j \to X_i$ (resp. $X_i \times_X X_j \to X_j$).

Show that h is the cokernel of (f,g) in the category $Sh(\mathscr{C}_{\mathscr{T}})$.

- (ii) (1 point) Let $A: \mathscr{C} \to \mathbf{Set}$ be a flat functor, and suppose that $(\cdot) \otimes_{\mathscr{C}} A: \mathrm{PSh}(\mathscr{C}) \to \mathbf{Set}$ factors as $\mathrm{PSh}(\mathscr{C}) \xrightarrow{(\cdot)^{\mathrm{sh}}} \mathrm{Sh}(\mathscr{C}_{\mathscr{T}}) \xrightarrow{x_A} \mathbf{Set}$. Show that x_A is an object of $\mathrm{Points}(\mathscr{C}_{\mathscr{T}})$.
- (iii) (2 points) If $A: \mathscr{C} \to \mathbf{Set}$ satisfies the hypothesis of the previous question, show that A is continuous. ²
- (c). Let (C, \leq) be a preordered set. We see C as a category by taking $\operatorname{Hom}_C(a, b)$ to be a singleton if $a \leq b$, and empty otherwise.
 - (i) (1 point) Let $(a_i)_{i\in I}$ be a family of objects of C. Give a description of $\coprod_{i\in I} a_i$ and $\prod_{i\in I} a_i$ in (pre)ordered set terms.

 $^{^2}$ In fact, the converse is true: points of $\mathscr{C}_{\mathscr{T}}$ correspond to flat continuous functors $\mathscr{C} \to \mathbf{Set}$.

(ii) (2 points) Give a similar translation of the property "C has all finite limits".

From now on, se suppose that C has all finite limits, and we fix a flat functor $A: C \to \mathbf{Set}$.

- (iii) (2 points) Show that $card(A(a)) \le 1$ for every $a \in C$.
- (iv) (2 points) Show that the set $I_A = \{a \in C \mid A(a) \neq \emptyset\}$ is a nonempty upper order ideal. (That is, if $a \in I_A$ and $a \leq b$, then $b \in I_C$.)
- (v) (1 point) If \mathscr{T} is any Grothendieck pretopology on C, show that the points of $C_{\mathscr{T}}$ don't have any nontrivial automorphisms.
- (vi) (1 point) Suppose that any family $(a_i)_{i\in I}$ of elements of C has a least upper bound $\sup(a_i, i \in I)$. We say that a family of morphisms $(a_i \to a)_{i\in I}$ in $\mathscr C$ is covering if $a = \sup(a_i, i \in I)$. Suppose that this defines a pretopology on C. If A is continuous, show that I_A is a completely prime upper order ideal, that is, if $\sup(a_i, i \in I) \in I_A$, then at least one of the a_i is in I_A .
- (d). Let X be a topological space, let $\mathscr{C} = \operatorname{Open}(X)$, and let \mathscr{T} be the usual topology on X. Remember that a nonempty closed subset Z of X is called *irreducible* if, whenever $Z \subset Y_1 \cup Y_2$ with Y_1, Y_2 closed subsets of X, we have $Z \subset Y_1$ or $Z \subset Y_2$.
 - (i) (1 point) Show that a nonempty closed subset Z of X is irreducible if, for every open subset U of Z, the set $Z \cap U$ is either empty or dense in Z.
 - (ii) (1 point) Let Z be an irreducible closed subset of X, and let \mathscr{U}_Z be the set of open subsets U of X such that $Z \cap U \neq \emptyset$. For every sheaf \mathscr{F} on X, we set

$$\mathscr{F}_Z = \varinjlim_{U \in \mathrm{Ob}(\mathscr{U}_Z^{\mathrm{op}})} \mathscr{F}(U).$$

Show that this defines a point of $\mathscr{C}_{\mathscr{T}}$.

(iii) (3 points) Let $x : \operatorname{Sh}(\mathscr{C}_{\mathscr{T}}) \to \mathbf{Set}$ be a point, and let $A : \mathscr{C} \to \mathbf{Set}$ be the corresponding flat continuous functor. Let

$$Z = X - \bigcup_{U \in \mathrm{Ob}(\mathscr{C}), \ A(U) = \varnothing} U.$$

Show that Z is an irreducible closed subset of X, and that x is isomorphic to the functor $\mathscr{F} \longmapsto \mathscr{F}_Z$.

- (iv) (1 point) If x_1 and x_2 are points of $\mathscr{C}_{\mathscr{T}}$ and Z_1 and Z_2 are the corresponding closed irreducible subsets of X, show that there exists a morphism from x_1 to x_2 if and only if $Z_1 \subset Z_2$.
- (e). Let X = [0,1] with the Lebesgue measure. We take $\mathscr C$ to be the category whose objects are Lebesgue-measurable subsets E of [0,1], and such that $\operatorname{Hom}_{\mathscr C}(E,E')$ is a singleton if E'-E has measure 0, and the empty set otherwise. We put the Grothendieck pretopology on $\mathscr C$ whose covering families are countable families $(E_n \to E)_{n \in \mathbb N}$ such that $E \bigcup_{n \in \mathbb N} E_n$ has measure 0. (You can admit that this is a pretopology; it is not very hard.)
 - (i) (1 point) Show that the category $Sh(\mathscr{C}_{\mathscr{T}})$ is not empty.
 - (ii) (2 points) Show that the category Points($\mathscr{C}_{\mathscr{T}}$) has no objects (that is, $\mathscr{C}_{\mathscr{T}}$ has no points).

4 *G*-sets

Let G be a finite group, let $\mathscr{C} = G - \mathbf{Set}$ be the category whose objects are sets with a left action of G and whose morphisms are G-equivariant maps. We consider the pretopology \mathscr{T} on \mathscr{C} for which a family $(f_i: X_i \to X)_{i \in I}$ is covering if and only if $X = \bigcup_{i \in I} f_i(X_i)$.

Let A be G with its action by left translations. More generally, for every subgroup H of G, we denote by A_H the set G/H with the action of G by left translations.

Useful fact: If $X \to Y$ is a surjective map in **Set** or $G - \mathbf{Set}$, then it is the cokernel of the two projections $X \times_Y X \to X$. (You still need to justify thisn if you want to use it.)

- (a). (1 point) Show that every object of $G-\mathbf{Set}$ is a coproduct of objects isomorphic to some A_H .
- (b). (1 point) Calculate $A \times_{A_H} A$ in the category $G \mathbf{Set}$.
- (c). (1 point) Show that every representable presheaf on $G \mathbf{Set}$ is a sheaf.
- (d). (1 point) Show the automorphisms of A in G **Set** are exactly the maps $c_g: A \to A$, $a \longmapsto ag$, for $g \in G$.
- (e). (1 point) If \mathscr{F} is a presheaf on $G \mathbf{Set}$, show the family $(\mathscr{F}(c_g))_{g \in G}$ defines a left action of G on $\mathscr{F}(A)$.
- (f). (1 point) Consider the functor $\Phi: \operatorname{Sh}(\mathscr{C}_{\mathscr{T}}) \to G \operatorname{\mathbf{Set}}$ defined by $\Phi(\mathscr{F}) = \mathscr{F}(A)$ and the functor $\Psi: F \operatorname{\mathbf{Set}} \to \operatorname{Sh}(\mathscr{C}_{\mathscr{T}})$ fiven by $\Psi(X) = \operatorname{Hom}_{G-\operatorname{\mathbf{Set}}}(\cdot, X)$. Show that $\Phi \circ \Psi \simeq \operatorname{id}_{G-\operatorname{\mathbf{Set}}}$.
- (g). (4 points) Show that $\Psi \circ \Phi \simeq \mathrm{id}_{\mathrm{Sh}(\mathscr{C}_{\mathscr{T}})}$. (Hint: For any G-set X, if |X| is the set X with the trivial G-action, then we have a surjective G-equivariant map $A \times |X| \to X$, $(g,x) \longmapsto g \cdot x$, which induces an injection $\mathscr{F}(X) \to \prod_{x \in X} \mathscr{F}(A) = \mathrm{Hom}_{\mathbf{Set}}(X,\mathscr{F}(A))$.)
- (h). (3 points) Let $x: \operatorname{Sh}(\mathscr{C}_{\mathscr{T}}) \to \operatorname{\mathbf{Set}}$ be the functor $\mathscr{F} \longmapsto \mathscr{F}(A)$, where we forget the action of G on $\mathscr{F}(A)$ to see $\mathscr{F}(A)$ as a set. Show that every point of $\mathscr{C}_{\mathscr{T}}$ is isomorphic to x. (See the beginning of Problem 3 for the definition of points.) (Suggestion: if y is a point, calculate $y(\Psi(\{1\}))$, then $y(\Psi(A))$, then construct a morphism of functors $\operatorname{Hom}_{G-\operatorname{\mathbf{Set}}}(A,\cdot) \to y \circ \Psi$, then show that it is an isomorphism.)
- (i). (1 point) Show that the group of automorphisms of the point x is isomorphic to G.

 $^{^3}$ It is very easy to check that this is a pretopology, you don't need to do it.