
MAT 540 : Problem Set 1

Due Thursday, September 19

1.

(a). (2 points) In the category Set, show that a morphism is a monomorphism (resp. an
epimorphism) if and only it is injective (resp. surjective).

(b). (2 points) Let C be a category and F : C → Set be a faithful functor, show that any
morphism f of C whose such that F (f) is injective (resp. surjective) is a monomorphism
(resp. an epimorphism).

(c). (2 points) What are the monomorphisms and epimorphisms in RMod ?

(d). (2 points) What are the monomorphisms in Top ? Give an example of a continuous
morphism with dense image that is not an epimorphism in Top. 1

(e). (2 points) Find a category C , a faithful F : C → Set and a monomorphism f in C such
that F (f) is not injective.

(f). (1 point) Find an epimorphism in Ring that is not surjective.

(g). The goal of this question is to show that any epimorphism in Grp is a surjective map.
Let φ : G→ H be a morphism of groups, and suppose that it is an epimorphism in Grp.
Let A = Im(φ). Let S = {∗} t (H/A), where {∗} is a singleton, and let S be the group
of permutations of S. We denote by σ the element of S that switches ∗ and A and leaves
the other elements of H/A fixed. For every h ∈ H, we denote by ψ1(h) the element of S
that leaves ∗ fixed and acts on H/A by left translation by H; this defines a morphism of
groups ψ1 : H → S. We denote by ψ2 : H → S the morphism σψ1σ

−1.

(i) (2 points) Show that ψ1 = ψ2.

(ii) (1 point) Show that A = H.

Solution.

(a). Let X, Y be sets and f : X → Y be a map.

Suppose that f is injective. If g1, g2 : Z → X are maps such that f ◦ g1 = f ◦ g2, then, for
every z ∈ Z, we have f(g1(z)) = f(g2(z)), hence g1(z) = g2(z); so g1 = g2. This shows
that f is a monomorphism.

Conversely, suppose that f is a monomorphism. Let x, x′ ∈ X such that x 6= x′. Let
{∗} be a singleton, and consider the maps g1, g2 : {∗} → X defined by g1(∗) = x and
g2(∗) = x′. As g1 6= g2, we have f ◦ g1 6= f ◦ g2, so f(x) 6= f(x′). This shows that f is
injective.

1In fact, the epimorphisms in Top are the surjective continuous maps.
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Suppose that f is surjective. If h1, h2 : Y → Z are maps such that h1 ◦ f = h2 ◦ f ,
then, for every y ∈ Y , there exists x ∈ X such that f(x) = y, and then
h1(y) = h1(f(x)) = h2(f(x)) = h2(y); so h1 = h2. This shows that f is a monomor-
phism.

Conversely, suppose that f is an epimorphism. Let y0 ∈ Y , let Z = {a, b} be a set with
two distinct elements, and define h1, h2 : Y → Z by h1(y) = a for every y ∈ Y , h2(y) = a
for every y ∈ Y − {y0} and h2(y0) = b. We have h1 6= h2, so h1 ◦ f 6= h2 ◦ f . As h1 and
h2 coincide on Y − {y0}, this implies that y0 ∈ Im(f). So f is surjective.

(b). Let f : X → Y be a morphism of C . Suppose that F (f) is injective. Let g1, g2 : Z → X
be morphisms of C such that f ◦ g1 = f ◦ g2. Then F (f) ◦ F (g1) = F (f) ◦ F (g2), so
F (g1) = F (g2) by a). As F is faithful, this implies that g1 = g2. So f is a monomorphism.

Suppose that F (f) is surjective. Let h1, h2 : Y → Z be morphisms of C such that
h1 ◦ f = h2 ◦ f . Then F (h1) ◦ F (f) = F (h2) ◦ F (f), so F (h1) = F (h2) by a). As F is
faithful, this implies that h1 = h2. So f is an epimorphism.

(c). By b), any R-linear that is injective (resp. surjective) is a monomorphism (resp. epimor-
phism) in RMod.

Conversely, let f : M → N be a monomorphism in RMod. Consider the inclusion map
g1 : Ker(f)→M and the map g2 = 0 : Ker(f)→M . By definition of the kernel, we have
f ◦ g1 = f ◦ g2 = 0, so g1 = g2, so Ker(f) = 0, so f is injective.

Now let f : M → N be an epimorphism in RMod. Consider the obvious surjection
h1 : N → Coker(f) and the zero map h2 : N → Coker(f). By definition of the cokernel,
we have h1 ◦ f = h2 ◦ f = 0, so h1 = h2, so Coker(f) = 0, so f is surjective.

(d). By b), we know that any (continuous) injection is a monomorphism in Top. Conversely,
let f : X → Y be a monomorphism in Top. Let x, x′ ∈ X such that x 6= x′. Let {∗} be
a singleton with the discrete topology, and consider the maps g1, g2 : {∗} → X defined
by g1(∗) = x and g2(∗) = x′; these maps are continuous, hence morphisms in Top. As
g1 6= g2, we have f ◦ g1 6= f ◦ g2, so f(x) 6= f(x′). This shows that f is injective.

Let X = {s, η} be a set with two distinct points. We put the topology on X for which
the open sets are ∅, X and {η}. Note that {η} is dense in X. Let f : X → X be the map
sending every point of X to η. Then f has dense image, but f is not an epimorphism,
because idX ◦ f = f ◦ f , while f 6= idX .

(e). Let C be the subcategory of Set whose objects are {0} and {0, 1}, and whose morphisms
are the identities and the unique map f from {0, 1} to {0}. Then f is a monomorphism
in C , but it is not injective. (And the inclusion is a faithful functor from C to Set.)

(f). Consider the inclusion f : Z → Q. It is an epimorphism in Ring. Indeed, let R be
a ring and let h1, h2 : Q → R are morphisms of rings such that h1 ◦ f = h2 ◦ f .
For every m ∈ Z − {0}, the image of m in Q is invertible, so h1(m), h2(m) ∈ R×.
For every x ∈ Q, we can write x = nm−1 with n ∈ N and m ∈ Z − {0}, and then
h1(x) = h1(n)h1(m)−1 = h2(n)h2(m)−1 = h2(x).

More generally, if A is a commutative ring and S is a multiplicative subset of A, then the
canonical map A→ S−1A is an epimorphism in Ring.

(g). 2

(i) Note that ψ1(h)|S−{∗,A} = ψ2(h)S−{∗,A} for every h ∈ H.

2This proof comes from [?].
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Let h ∈ A = Im(φ). We have ψ1(h)(∗) = ∗. On the other hand, the action of h
on H/A by left translation fixes A, so ψ1(h)(A) = A. So ψ1(h){∗,A} is the identity
morphism of {∗, A}. This implies that ψ2(h){∗,A} is also the identity morphism of
{∗, A}, hence that ψ1(h) = ψ2(h). So ψ1 and ψ2 are equal on the image of φ, which
implies that ψ1 ◦ φψ2 ◦ φ. As φ is an epimorphism, we deduce that ψ1 = ψ2.

(ii) Let h ∈ A. Then ψ1(h)(∗) = ∗, and ψ2(h)(∗) = σ ◦ ψ1(h)(A) = σ(hA). By (i), we
know that ψ1(h) = ψ2(h), so ∗ = σ(hA). This is only possible if hA = A, i.e. if
h ∈ A. So H = A = Im(φ), and φ is surjective.

�

2. Let F : C → C ′ be a functor.

(a). (3 points) If F has a quasi-inverse, show that it is fully faithful and essentially surjective.

(b). (4 points) If F is fully faithful and essentially surjective, construct a functor G : C ′ → C
and isomorphisms of functors F ◦G ' idC and G ◦ F ' idC ′ .

Solution.

(a). Let G : C ′ → C be a quasi-inverse of F , and let u : G ◦ F ∼→ idC and v : F ◦G ∼→ idC ′ be
isomorphisms of functors.

Let X,Y ∈ Ob(C). We denote by β the map HomC (X,Y ) → HomC ′(F (X), F (Y ))
given by F . Consider the map α : HomC ′(F (X), F (Y )) → HomC (X,Y ) that we get
by composing G : HomC ′(F (X), F (Y )) → HomC (G ◦ F (X), G ◦ F (Y )) and the map
HomC (G ◦ F (X), G ◦ F (Y )) → HomC (X,Y ), g 7−→ u(Y ) ◦ g ◦ u(X)−1. We claim that
α ◦ β is the identity on HomC (X,Y ). Indeed, let f ∈ HomC (X,Y ). As u is a morphism
of functors, the following diagram is commutative :

G ◦ F (X)
G◦F (f)//

u(X)
��

G ◦ F (Y )

u(Y )
��

X
f

// Y

This shows that u(Y ) ◦G ◦ F (f) ◦ u(X)−1 = f , i.e. that α ◦ β(f) = f . In particular, the
map β is injective and the map α is surjective. This shows that F is faithful. Applying
this result to G (which is also an equivalence of categories, with quasi-inverse F ), we see
that the map α is also injective, hence it is bijective, hence β is also bijective. This shows
that F is fully faithful.

Let X ′ ∈ Ob(C ′). Then v : F (G(X ′))
∼→ X ′ is an isomorphism, and G(X ′) ∈ Ob(C ).

This shows that F is essentially surjective.

(b). We construct the functor G. Let X ′ ∈ Ob(C ′); we choose an object X of C and an
isomorphism u(X ′) : F (X)

∼→ X ′, and we set G(X) = X ′. Let X ′, Y ′ ∈ Ob(C ′), and let
X = G(X ′) and Y = G(Y ′). We define a map HomC ′(X

′, Y ′) → HomC ′(F (X), F (Y ))
by f ′ 7−→ u(Y ′)−1 ◦ f ′ ◦ u(X ′). Composing this with the inverse of the bijection
F : HomC (X,Y )

∼→ HomC ′(F (X), F (Y )), we get a map HomC ′(X
′, Y ′) → HomC (X,Y ),

which we denote by G.

Next we show that G is a functor. If X ′ ∈ Ob(C ′), then u(X ′)−1◦idX′◦u(X ′) = idF (G(X′)),
so G(idX′) = idG(X′). Let f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′ be two morphisms of C ′,

3



and let f : X → Y and g : Y → Z be their images by G. By definition of G on
morphisms, we have F (f) = u(Y ′)−1 ◦ f ′ ◦ u(X ′) and F (g) = u(Z ′)−1 ◦ g′ ◦ u(Y ′), so
F (g ◦ f) = F (g) ◦F (f) = u(Z ′)−1 ◦ (g′ ◦ f ′) ◦ u(X ′) = F (G(g′ ◦ f ′)). As F is faithful, this
implies that g ◦ f = G(g′ ◦ f ′), i.e. that G(g′) ◦G(f ′) = G(g′ ◦ f ′). So G is a functor.

Finally, we show that G is a quasi-inverse of F . For every X ′ ∈ Ob(C ′), we have by
definition of G(X ′) an isomorphism u(X ′) : F (G(X ′))

∼→ X ′. We need to show that this
defines an isomorphism of functors F ◦G ∼→ idC ′ . So let f ′ : X ′ → Y ′ be a morphism of C ′.
By definition of G(f ′), we have u(Y ′) ◦ F (G(f ′)) = f ′ ◦ u(X ′), which is what we wanted.
We still need to define an isomorphism of functors v : G ◦ F ∼→ idC . Let X ∈ Ob(C ). By
definition of G, we have an isomorphism u(F (X)) : F (G(F (X)))

∼→ F (X). As F is fully
faithful, there is a unique v(X) ∈ HomC (G(F (X)), X) such that F (v(X)) = u(F (X)),
and v(X) is an isomorphism because a fully faithful functor is conservative. It remains to
show that this defines a morphism of functors. So let f : X → Y be a morphism of C .
Then F (G(F (f))) = u(F (Y ))−1 ◦ F (f) ◦ u(F (X)), so

F (f) ◦ F (v(X)) = F (f) ◦ u(F (X)) = u(F (Y )) ◦ F (G(F (f))) = F (v(Y )) ◦ F (G(F (f))).

Using the fact that F is faithful (and is a functor), we get f ◦ v(X) = v(Y ) ◦ G(F (f)),
which is what we wanted.

�

3. Let C be the full subcategory of Ab whose objects are finitely generated abelian groups.

(a). (2 points) Show that every natural endomorphism of idC is multiplication by some n ∈ Z.

(b). (3 points) Consider the functor F : C → C that sends an abelian group A to
Ator ⊕ (A/Ator) (and acts in the obvious way on morphisms), where Ator is the torsion
subgroup of A. Show that there is no natural isomorphism F

∼→ idC .

Solution.

(a). Let u : idC → idC be a morphism of functors. Then u(Z) ∈ EndAb(Z), so u(Z) is of the
form nidZ for some n ∈ Z. Let A be an arbitrary abelian group. We want to show that
u(A) = nidA. Let a ∈ A. We consider the morphism of groups f : Z→ A sending 1 to a.
As u is a morphism of functors, we have a commutative diagram :

Z
u(Z) //

f
��

Z
f
��

A
u(A)

// A

In particular, u(A)(a) = u(A)(f(1)) = f(u(Z)(1)) = f(n) = na. So u(A) = nidA.

(b). Suppose that u : F
∼→ idC is a natural isomorphism. For every abelian groups A, consider

the morphism v(A) : A→ A/Ator⊕Ator that is the composition of the canonical surjection
A→ A/Ator and of the injection A/Ator → A/Ator⊕Ator. It is easy to see that this defines
a morphism of functors v : idC → F . So u ◦ v is an endomorphism of idC , and, by a),
there exists n ∈ Z such that u ◦ v is the multiplication by n. As v(Z) = idZ by definition
of v and u(Z) is an isomorphism, we must have n = ±1. Now take A = Z/2Z. Then
v(A) = 0, so u ◦ v(A) = 0, so n is divisible by 2. This is a contradiction.

�
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4. (2 points, extra credit) Let k be a field, and let F : Modk →Modk be the functor sending
a k-vector space V to V ⊗k V and a k-linear transformation f to f ⊗ f . Show that the only
morphism of functors from idModk to F is the zero one, i.e. the morphism u : idModk → F such
that u(V ) = 0 for every k-vector space V .

Solution. Let u : idModk → F be a morphism of functors. Then u(k) is a k-linear map from k
to k ⊗k k, so there exists a unique λ ∈ k such that u(k)(1) = λ(1⊗ 1).

Let V be a k-vector space, and let v ∈ V . We denote by f ; k → V the unique k-linear map
such that f(1) = v. As u is a morphism of functors, we have u(V ) ◦ f = (f ⊗ f) ◦ u(k), and in
particular u(V )(v) = u(V )(f(1)) = (f ⊗ f)(λ(1⊗ 1)) = λ(v ⊗ v).

Take V = k2, and let (e1, e2) be the canonical basis of V . We know that
(e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2) is a basis of V ⊗k V . Using the previous paragraph, we
see that

u(V )(e1 + e2) = λ(e1 + e2)⊗ (e1 + e2) = λ(e1 ⊗ e1) + λ(e1 ⊗ e2) + λ(e2 ⊗ e1) + λ(e2 ⊗ e2).

On the other hand, as u(V ) is k-linear, we have

u(V )(e1 + e2) = u(V )(e1) + u(V )(e2) = λ(e1 ⊗ e1) + λ(e2 ⊗ e2).

This is only possible if λ = 0. But then, by the calculation of the previous paragraph, we have
u(W ) = 0 for every k-vector space W .

Note that we did not use the fact that k is a field, so the result is also true for the catgeory
of modules over a commutative ring.

�

5. (4 points) Let C be a category. Remember that the category PSh(C ) of presheaves on C is
the category Func(C op,Set).

Let F be a presheaf on C and X be an object of C . Let Φ : HomPSh(C )(hX , F ) → F (X)
be the map defined by Φ(u) = u(X)(idX). Let Ψ : F (X) → HomPSh(C )(hX , F ) be
the map sending x ∈ F (X) to the morphism of functors Ψ(x) : hX → F such that
Ψ(x)(Y ) : hX(Y ) = HomC (Y,X) → F (Y ) sends f : Y → X to F (f)(x) ∈ F (Y ). Show
that Φ and Ψ are bijections that are inverses of each other.

Solution. We show that Ψ ◦Φ is the identity of HomPSh(C )(hX , F ). Let u ∈ HomPSh(C )(hX , F ).
Let Y be an object of C . As u is a morphism of functors, we have a commutative diagram

HomC (X,X)
u(X) //

hX(f)

��

F (X)

F (f)

��
HomC (Y,X)

u(Y )
// F (Y )

In particular, we have

F (f)(Φ(u)) = F (f)(u(X)(idX)) = u(Y )(hX(f)(idX)) = u(Y )(f).

As F (f)(Φ(u)) = Ψ(Φ(u))(Y )(f) by definition of Ψ, this shows that Ψ(Φ(u))(Y ) = u(Y ), hence
that Ψ(Φ(u)) = u.
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Now we show that Φ ◦ Ψ is the identity of F (X). Let x ∈ F (X). Then
Φ(Ψ(x)) = Ψ(x)(X)(idX) = F (idX)(x) = idF (X)(x) = x.

�

6.

(a). (2 points) Show that the categories Set and Setop are not equivalent. (Hint : If
F : Setop → Set is an equivalence of categories, show that F (∅) is a singleton and
that F (X) = ∅ for X a singleton.)

(b). (1 point) Let C be the full subcategory of Set whose objects are finite sets. Show that C
and C op are not equivalent.

(c). (1 point) Show that Rel and Relop are equivalent.

(d). (2 points) Let D be the full subcategory of Ab whose objects are finite abelian groups.
Show that D and Dop are equivalent.

Solution.

(a). Suppose that there exists an equivalence of categories F : Set→ Setop. For every set X,
the set

HomSetop(F (X), F (∅)) = HomSet(F (∅), F (X)) ' HomSet(∅, X)

is a singleton (because there is a unique map from the empty set into X). So F (∅) is a
singleton.

Similarly, if X is a singleton, then, for every set Y , the set

HomSetop(F (X), F (Y )) = HomSet(F (Y ), F (X)) ' HomSet(Y,X)

is a singleton. So F (X) is the empty set.

Now let X be a singleton and Y be a set with two elements. Then HomSet(X,Y ) is a set
with two elements. But on the other hand, we have

HomSet(X,Y ) ' HomSetop(F (X), F (Y )) = HomSet(F (Y ),∅),

and HomSet(F (Y ),∅) has at most one element (it is empty if F (Y ) 6= ∅, and it only
contains id∅ if F (Y ) = ∅). This is a contradiction.

(b). The proof of a) works just as well.

(c). Let F : Rel → Relop be defined by F (X) = X for every set X and, for all sets X,Y
and every subset f of X × Y , F (f) = {(y, x) | (x, y) ∈ f}. We want to show that
F is a functor. (Then it will clearly be an equivalence, and even an isomorphism of
categories.) Let X,Y, Z be sets and f : X → Y , g : Y → Z be morphisms in Rel;
that is, f is a subset of X × Y and g is a subset of Y × Z. Then, in Rel, we have
g ◦ f = {(x, z) | ∃y ∈ Y, (x, y) ∈ f and (y, z) ∈ g}. On the other hand, in Relop, we have
F (f) ◦ F (g) = {(z, x) ∈ Z ×X | ∃y ∈ Y, (y, x) ∈ F (f) and (z, y) ∈ F (g)}. This is clearly
equal to F (g ◦ f).

(d). Consider the functor F = HomAb(·,Q/Z) : Abop → Ab. If A is a finite abelian group,
then so is F (A). So F induces a functor Dop → D , which we still denote by F . We can
also see F as a functor from D to Dop. We claim that F is an equivalence of categories,
and in fact that it is its own quasi-inverse. To show this, it suffices to construct an
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functorial isomorphism idD
∼→ F ◦ F . For every finite abelian group A, we consider the

map u : A → F (F (A)) = HomAb(HomAb(A,Q/Z),Q/Z), a 7−→ (f 7−→ f(a)). The fact
that this defines a morphism of functors is a straightforward verification. The fact that is
an isomorphism if Pontrjagin duality for finite abelian groups. (By the structure theorem
for finite abelian groups, it suffices to check that u(A) is an isomorphism for A of the form
Z/nZ, which is easy.)

�

7. (4 points) Let C and C ′ and F : C → C ′, G : C ′ → C be two functors. We con-
sider the two bifunctions H1, H2 : C op × C → Set defined by H1 = HomC ′(F (·), ·) and
H2 = HomC (·, G(·)). Suppose that we are given, for every X ∈ Ob(C ) and every Y ∈ Ob(C ′),
a bijection α(X,Y ) : H1(X,Y )

∼→ H2(X,Y ). Show that the two following statements are
equivalent :

(i) The family of bijections (α(X,Y ))X∈Ob(C ),Y ∈Ob(C ′) defines an isomorphism of functors

H1
∼→ H2.

(ii) For every morphism f : X1 → X2 in C , every morphism g : Y1 → Y2 in C ′, and for all
u ∈ HomC ′(F (X1), Y1) and v ∈ HomC ′(F (X2), Y2), the square

F (X1)
u //

F (f)

��

Y1

g

��
F (X2) v

// Y2

is commutative if and only if the square

X1
α(X1,Y1)(u) //

f

��

G(Y1)

G(g)
��

X2
α(X2,Y2)(v)

// G(Y2)

is commutative.

Solution. The key is to write explicitly what it means for the (α(X,Y )) to define a morphism of
functors. It means that, for every morphism f : X1 → X2 in C (that is, a morphism X2 → X1

in C op) and for every morphism g : Y1 → Y2 in C ′, the following square commutes :

HomC ′(F (X2), Y1)

α(X2,Y1)
��

H1(f,g) // HomC ′(F (X1), Y2)

α(X1,Y2)
��

HomC (X2, G(Y1))
H2(f,g)

// HomC (X1, G(Y2))

The fact that the square commutes says exactly that, for every morphism w : F (X2) → Y1 in
C ′, we have

α(X1, Y2)(g ◦ w ◦ F (f)) = G(g) ◦ α(X2, Y1)(w) ◦ f.

Suppose that (i) holds. Using the calculation of the previous, we get :

(a) Taking X1 = X2, f = idX1 and g : Y1 → Y2 arbitrary : for every u : F (X1)→ Y1, we have

α(X1, Y2)(g ◦ u) = G(g) ◦ α(X1, Y1)(u).
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(b) Taking f : X1 → X2 arbitrary, Y1 = Y2 and g = idY2 : for every v : F (X2)→ Y2, we have

α(X1, Y2)(v ◦ F (f)) = α(X2, Y2)(v) ◦ f.

Suppose that we are in the situation of (ii), that is, we are given morphisms f : X1 → X2 in
C , g : Y1 → Y2 in C ′, and u ∈ HomC ′(F (X1), Y1) and v ∈ HomC ′(F (X2), Y2). We want to show
that the top square of (ii) commutes if and only if the bottom squqre commutes.

Suppose that the top square commutes, that is, that v ◦ F (f) = g ◦ u. Applying (a) and (b),
we get

G(g) ◦ α(X1, Y1)(u) = α(X1, Y2)(g ◦ u) = α(X1, Y2)(v ◦ F (f)) = α(X2, Y2)(v) ◦ f.

This shows that the bottom square commutes.

Conversely, suppose that the bottom square commutes, that is, that
G(g) ◦ α(X1, Y1)(u) = α(X2, Y2)(v) ◦ f . Again, applying (a) and (b), we get

α(X1, Y2)(g ◦ u) = G(g) ◦ α(X1, Y1)(u) = α(X2, Y2)(v) ◦ f = α(X1, Y2)(v ◦ F (f)).

As α(X1, Y2) is bijective, this implies that g ◦ u = v ◦ F (f), which means that the top square
commutes.

Now we assume that (ii) holds, and we want to show that (i) also holds. Let f : X1 → X2

be a morphism in C , g : Y1 → Y2 be a morphism in C ′, and w : F (X2)→ Y1 be a morphism in
C ′. We want to show that α(X1, Y2)(g ◦ w ◦ F (f)) = G(g) ◦ α(X2, Y1)(w) ◦ f . We apply (i) to
u = w ◦ F (f) : F (X1)→ Y1 and v = g ◦ w : F (X2)→ Y2. We obviously have g ◦ u = v ◦ F (f),
so, by (i), this implies that

(*) α(X2, Y2)(g ◦ w) ◦ f = G(g) ◦ α(X1, Y1)(w ◦ F (f)).

Applying (*) to the particular case where Y1 = Y2 and g = idY1 , we get:

(**) α(X2, Y1)(w) ◦ f = α(X1, Y1)(w ◦ F (f)).

Applying (**) with w replaced by g ◦ w : F (X2)→ Y2, we get

(***) α(X2, Y2)(g ◦ w) ◦ f = α(X1, Y2)(g ◦ w ◦ F (f)).

Putting (*), (**) and (***) together gives

α(X1, Y2)(g ◦ w ◦ F (f)) = α(X2, Y2)(g ◦ w) ◦ f = G(g) ◦ α(X1, Y1)(w ◦ F (f))

= G(g) ◦ α(X1, Y1)(w ◦ F (f)),

which is what we wanted to prove.

�

8. Remember that a functor F : C → Set is called representable if there exists an object X of
C and an element x of F (X) such that the morphism of functors u : HomC (X, ·)→ F defined
by u(Y ) : HomC (X,Y ) → F (Y ), (f : X → Y ) 7−→ F (f)(x) is an isomorphism. The couple
(X,x) is then said to represent F .

The following functors are representable. For each of them, give a couple representing the
functor. (If the functor is only defined on objects, it is assumed to act on morphisms in the
obvious way.) (1 point per functor)
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(a). The identity endofunctor of Set.

(b). The functor F : Grp→ Set, G 7−→ Gn, where n ∈ N.

(c). The forgetful functor ModR → Set, where R is a ring.

(d). The forgetgul functor Ring→ Set.

(e). The functor Ring→ Set, R 7−→ R×.

(f). The functor F : Cat→ Set that takes a category to its set of objects.

(g). The functor F : Cat → Set that takes a category to its set of morphisms (i.e.⋃
X,Y ∈Ob(C ) HomC (X,Y )).

(h). The functor F : Cat→ Set that takes a category to its set of isomorphisms.

(i). The functor F : Top∗ → Set that takes a pointed topological space (X,x) to the set of
continuous loops on X with base point x.

(j). The functor F : Setop → Set such that F (X) = P(X) and, for every map f : X → Y ,
F (f) : P(Y )→ P(X) is the map A 7−→ f−1(A).

(k). The functor F : Topop → Set that sends a topological space to its set of open subsets.
(If f : X → Y is a continuous map, F (f) : F (Y )→ F (X) is the map U 7−→ f−1(U).)

(l). If k is a field, the functor F : Modop
k → Set that sends a k-vector space to the underlying

set of V ∗ (so F is the composition of the duality functor Modop
k → Modk and of the

forgetful functor from Modk to Set.)

Solution.

(a). Take X = {x} to be a singleton and x to be the unique element of F (X) = X. Then, for
every set Y , u(Y ) : HomSet(X,Y ) → F (Y ) = Y sends f : X → Y to f(x) ∈ F (Y ) = Y ;
it is clearly bijective.

(b). Let X = Fn be the free group on n generators (x1, . . . , xn), and
x = (x1, . . . , xn) ∈ F (Fn) = (Fn)n. For every group G, the map
u(G) : HomGrp(Fn, G) → Gn sends f : Fn → G to (f(x1), . . . , f(xn)) ∈ Gn. The
fact that this is bijective is the universal property of the free group Fn.

(c). Take X = R with the obvious right R-action, and x = 1 ∈ F (R) = R. Then, for every
right R-module M , the map u(M) : HomR(R,M) → F (M) = M sends f : R → M to
f(1). This is bijective because R is a free R-module with base {1}.

(d). Take X equal to the polynomial ring Z[x] and x ∈ F (X) = X to be the indeterminate.
For every ring R, the map u(R) : HomRing(Z[x], R) → F (R) = R sends f : Z[x] → R to
f(x) ∈ R. The fact that this is bijective is the universal property of the polynomial ring.

(e). Take X = Z[x, x−1] (the polynomial ring Z[x] localized at the indeterminaye x)
and x to be the indeterminate in F (X) = Z[x, x−1]×. For every ring R, the map
u(R) : HomRing(Z[x], R) → F (R) = R× sends f : Z[x] → R to f(x) ∈ R×. The fact
that this is bijective follows from the universal properties of the polynomial ring of the
localization.

(f). Let X be the category with only one object ∗ and such that EndX(∗) = {id∗}, and let
x ∈ F (X) = {∗} be the unique object. (Note that X is the category corresponding to
the poset [0].) If C is a category, the map u(C ) : Func(X,C ) → F (C ) = Ob(C ) takes
a functor G : X → C to G(∗) ∈ Ob(C ). This map is bijective, with inverse the map
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v(C ) : Ob(C ) → Func(X,C ) sending c ∈ Ob(C ) to the functor G : X → C defined by
G(∗) = c and G(id∗) = idc.

(g). Let X be the category corresponding to the poset [1], that is, X has two objects 0 and
1, and a unique non-identity morphism α : 0 → 1. Let x ∈ F (X) be the morphism α.
If C is a category, the map u(C ) : Func(X,C ) → F (X) sends a functor G : X → C
to G(α) ∈ HomC (F (0), F (1)). Let v(C ) : F (X) → Func(X,C ) be defined as follows :
if f : c0 → c1 is a morphism of C , that is, an element of F (C ), we defined a functor
G : X → C by G(0) = c0, G(1) = c1 and G(α) = f . Then v(C ) is an inverse of u(C ), so
u(C ) is bijective.

Let X be the category such that Ob(X) = {0, 1}, and such that the only two non-identity
morphisms of X are morphisms α : 0 → 1 and β : 1 → 0 such that α ◦ β = id1 and
β ◦ α = id0. If C is a category, the map u(C ) : Func(X,C ) → F (X) sends a functor
G : X → C to G(α) ∈ HomC (F (0), F (1)), which is an isomorphism with inverse G(β).
Let v(C ) : F (X)→ Func(X,C ) be defined as follows : if f : c0 → c1 is an isomorphism of
C , that is, an element of F (C ), we defined a functor G : X → C by G(0) = c0, G(1) = c1,
G(α) = f and G(β) = f−1. Then v(C ) is an inverse of u(C ), so u(C ) is bijective.

(h). Remember that a loop on a topological space Y with base point y is just a continuous
map γ from S1 (the unit circle in C) to Y such that γ(1) = y. In other words, it is a
morphism from (S1, 1) to (Y, y) in the category Top∗. So we can take X = (S1, 1) and
x = idS1 ∈ F (X).

(i). For every set Y , we have a bijection v(Y ) : P(Y )
∼→ HomSet(Y, {0, 1}) sending a subset

A of Y to its characteristic function. So we can take X = {0, 1} and x = {1} ∈ P(X).
Indeed, if Y is a set, then the map u(Y ) : HomSetop(X,Y ) = HomSet(Y,X) → P(Y )
sends f : Y → {0, 1} to f−1({1}), which is the inverse of the bijection v(Y ).

(j). Let X be the Sierpinski space, that is, the topological space {s, η} where the open subsets
are ∅, {η} and {s, η}, and let x = {η} ∈ F (X). Then, if Y is a topological space, the map
u(Y ) : HomSetop(X,Y ) = HomSet(Y,X)→ P(Y ) sends f : Y → {s, η} to the open subset
f−1({η}) of Y . Conversely, if U is an open subset of Y , then the map f : Y → {s, η} such
that f(y) = η for y ∈ Y and f(y) = s for y ∈ Y − U is continuous. So u(Y ) is bijective.

(k). For every k-vector space V , we have F (V ) = Homk(V, k). So we can take X = k (with
the obvious action of k) and x = idk ∈ Homk(k, k). Indeed, for every k-vector space V ,
the map u(V ) : HomModop

k
(k, V ) = Homk(V, k) → F (V ) = Homk(V, k) sends f : V → k

to idk ◦ f = f . This is the identity of F (V ), so it is obviously bijective.

�

9. (extra credit) The simplicial category ∆ is defined in Example I.2.1.8(5) of the notes. It
is the category whose objects are the finite sets [n] = {0, 1, . . . , n} with their usual order and
whose morphisms are the nondecreasing maps between these sets.

The category sSet of simplicial sets if Func(∆op,Set). So a simplicial set is by definition a
functor X : ∆op → Set; in that case, we write Xn for X([n]) and, if f : [n] → [m], we often
write f∗ : Xm → Xn for X(f). For example, for each n ∈ N, the standard simplex of dimension
n is the simplicial set Hom∆(·, [n]).

If X is a simplicial set, a simplicial subset Y of X is the data of a subset Yn of Xn, for every
n ∈ N, such that α∗(Ym) ⊂ Yn for every morphism α : [n]→ [m] in ∆. We can form images of
morphisms of simplicial sets, and unions and intersections of simplicial subsets, in the obvious
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way.

If we see each poset [n] as a category in the usual way, then the morphisms of ∆ become
functors, so this allows us to see ∆ as a subcategory of Cat.

Let C be a category. Its nerve N(C ) is the restriction to ∆op of the functor HomCat(·,C )
on Catop; it is a functor from ∆op to Set, i.e. a simplicial set. As HomCat is a bifunctor, this
construction is functorial in C , and we get a nerve functor N : Cat→ sSet.

(a). (3 points) If C is a category, show that N(C )0 ' Ob(C ) and
N(C )1 '

∐
X,Y ∈Ob(C ) HomC (X,Y ). Can you give a similar description of N(C )n

for n ≥ 2 ?

(b). (1 point) Let n ∈ N. Show that the nerve of [n] is isomorphic to ∆n.

(c). (1 point) Let n ∈ N. Show that there exists en ∈ ∆n([n]) such that, for every simplicial
set X, the map HomsSet(∆n, X)

∼→ Xn sending u to un(en) is bijective.

(d). (1 point) For every category C and every simplicial set X, if u, v : X → N(C ) are two
morphisms of simplicial sets such that ui, vi : Xi → N(C )i are equal for i ∈ {0, 1}, show
that u = v.

(e). (1 point) We denote by ∆≤2 the full subcategory of ∆ whose objects are [0], [1] and
[2]; if X is a simplicial set, we denote by X≤2 its restriction to ∆≤2 (which is a functor
∆op
≤2 → Set).

Let X be a simplicial set and C be a category. Show that every morphism X≤2 → N(C )≤2

extends to a morphism X → N(C ).

(f). (2 points) Show that the functor N : Cat→ sSet is fully faithful.

Let n ∈ N For every k ∈ [n], we denote by δk the unique injective increasing map [n−1]→ [n]
such that k 6∈ Im(δk). This induces a map ∆n−1 → ∆n, that we also denote by δk; the image of
this map is called the kth facet of ∆n.

If k ∈ [n], the horn Λnk is the union of all the facets of ∆n except for the kth one; in other
words, it is the simplicial subset of ∆n defined by

Λnk([m]) = {f ∈ Hom∆([m], [n]) | ∃l ∈ [n]− {k} and g ∈ Hom∆([m], [n− 1]) with f = δl ◦ g}.

(g). (1 point) Let C be a category. If n ≥ 3 and k ∈ [n] − {0, n}, show that every morphism
of simplicial sets Λnk → X extends uniquely to a morphism ∆n → X.

(h). (1 point) Let C be a category. Show that every morphism of simplicial sets Λ2
1 → X

extends uniquely to a morphism ∆2 → X.

(i). (2 points) Show that a simplicial set X is the nerve of a category if and only if, for every
n ∈ N, every 0 < k < n and every morphism of simplicial sets u : Λnk → X, the morphism
u extends uniquely to a morphism ∆n → X.

Solution.

(a). By problem 8(f), the functor Cat → Set, C 7−→ Ob(C ) is represented by [0]. As
N(C )0 = HomCat([0],C ), this gives an isomorphism N(C )0 ' Ob(C ), natural in
C . Similarly, by 8(g), the functor Cat → Set, C 7−→

∐
X,Y ∈Ob(C ) HomC (X,Y )

is represented by [1]. As N(C )1 = HomCat([1],C ), this gives an isomorphism
N(C )1 '

∐
X,Y ∈Ob(C ) HomC (X,Y ), also natural in C . Note that, if δ0, δ1 : [0] → [1]

are the two maps defined by δ0(0) = 1 and δ1(0) = 0, then δ∗1 : N(C )1 → N(C )0 sends a
morphism to its source and δ∗0 : N(C )1 → N(C )0 sends a morphism to its target.
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Let C be category. For n ≥ 1, consider the set Mn of sequences of n composable

morphisms c0
f1→ c1

f2→ . . .
fn→ cn of C , which we will also write as (f1, . . . , fn). We

have a map α : N(C )n → Mn sending a functor F : [n] → C to the sequence
F (0) → F (1) → . . . → F (n), where the morphism F (i) → F (i + 1) is the image by F of
the unique morphism i→ i+1 in [n]. This uniquely determines the functor F , because, for
i ≤ j in [n], the unique morphism i→ j is the composition of i→ i+1→ i+2→ . . .→ j.
For the same reason, every element of Mn comes from a functor F : [n] → C . So we get
a bijection N(C )n

∼→Mn. (We can easily make Mn into a functor Cat→ Set, and then
this bijection is an isomorphism of functors.)

We will identify N(C )n with Mn in the rest of this solution. We also write M0 = Ob(C ).
(we can think of c ∈ Ob(C ) as a length 0 sequence of composable morphisms (c).)

Let α : [m] → [n] be a nondecreasing map. We can give an explicit description of the
map α∗ : N(C )n → N(C )m by chasing through the identifications. If n = 0 and m ≥ 1,
then α∗ sends c ∈ Ob(C ) to the sequence (idc, . . . , idc) ∈ Mm. If n ≥ 1 and m = 0, let

i = α(0); then α∗ sends the sequence c0
f1→ c1

f2→ . . .
fn→ cn to ci. Suppose that n,m ≥ 1,

let c0
f1→ c1

f2→ . . .
fn→ cn be an element of Mn, and let d0

g1→ d1
g2→ . . .

gm→ dm be its image
by α∗. For i ∈ {1, . . . ,m}, we have :

• if α(i− 1) = α(i), then di−1 = di = cα(i) and gi = idcα(i) ;

• if α(i− 1) < α(i), then gi = fα(i) ◦ . . . ◦ fα(i−1)+1.

(b). As we have identified ∆ to a subcategory of Cat, this is just the definition of ∆n.

(c). Let en = id[n] ∈ ∆n([n]) = Hom∆([n], [n]). The fact that the map of the statement is
bijective is exactly the Yoneda lemma (Theorem I.3.2.2 of the notes).

(d). Suppose that u, v : X → N(C ) satisfy the condition of the question. Let n ≥ 2, and let

x ∈ Xn. Write u(x) = (c0
f1→ c1

f2→ . . .
fn→ cn) and v(x) = (d0

g1→ d1
g2→ . . .

gn→ dn). We want
to show that u(x) = v(x), that is, that fi = gi for every i ∈ {1, . . . , n}. Fix i ∈ {1, . . . , n},
and consider the map α : [1] → [n] sending 0 to i − 1 and 1 to i. Then α is a morphism
in ∆, so we have a commutative diagram

Xn
un //

α∗

��

N(C )n

α∗

��
X1 u1

// N(C )1

and a similar commutative diagram for v. By definition of the bijection N(C )n
∼→ Mn,

the map α∗ sends a sequence e0
h1→ e1

h2→ . . .
hn→ en to hi : ei−1 → ei. So we get

fi = α∗(un(x)) = u1(α∗(x)) = v1(α∗(x)) = α∗(vn(x)) = gi.

(e). Let u : X≤2 → N(C )≤2. We want to show that u extends to a morphism of simplicial sets
v : X → N(C ). The solution of question (d) tells us how we must extend u: Let n ≥ 2,
and, for i ∈ {1, . . . , n}, let αni = αi : [1] → [n] be the map m 7−→ m + i − 1. Then, for
every x ∈ Xn, vn(x) must be the sequence (u1(α∗1(x)), . . . , u1(α∗n(x))) of morphisms of C .
These morphisms are composable : indeed, if we denote by δ0, δ1 : [0]→ [1] the two maps
defined by δ0(0) = 1 and δ1(0) = 0, then αi ◦ δ0 = αi+1 ◦ δ1 for 1 ≤ i ≤ n−1, so the target
u0(δ∗0α

∗
i (x)) of u1(α∗i (x)) is equal to the source u0(δ∗1α

∗
i+1(x)) of u1(α∗i+1(x)).

We have to check that v2 = u2 and that v is a morphism of simplicial sets. The proof that
v2 = u2 is exactly as in the solution of (d). To show that v is a morphism of simplicial
sets, we take a nondecreasing map α : [m] → [n] and we show that vm ◦ α∗ = α∗ ◦ vn.
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We can write α = α′ ◦ α′′ with α′, α′′ both nondecreasing, α′ injective and α′′ surjective,
and it suffices to show the statement for α′ and α′′. Moreover, we can write α′ (resp. α′′)
as a composition of injective (resp. surjective) nondecreasing maps [p] → [p + 1] (resp.
[p+ 1]→ [p]). So we may assume that α is injective or surjective and that n = m± 1.

Suppose first that α : [n + 1] → [n] is a surjective nondecreasing map. Then there
is a unique i ∈ [n] such that α(i) = α(i + 1) = i, α(j) for 0 ≤ j < i and
α(j) = j − 1 for i + 1 < j ≤ n + 1. Let x ∈ Xn, and let (f1, . . . , fn) = vn(x).
The map α∗ : N(C )n → N(C )n+1 sends the sequence of composable morphisms
(f1, . . . , fn) to (f1, . . . , fi, idc, fi+1, . . . , fn), where c is the target of fi. By definition,
vn+1(α∗(x)) = (g1, . . . , gn+1), with gj = u1(αn+1

j
∗
α∗(x)). If 1 ≤ j ≤ i, then α◦αn+1

j = αnj ,

so gj = fj . If i + 2 ≤ j ≤ n + 1, then α ◦ αn+1
j = αnj−1, so gj = fj−1. Finally,

αni+1 ◦ α : [1] → [n] is the map sending every element of [1] to i, so it is equal to
α′ ◦ α′′, where α′ : [0] → [n] sends 0 to i and α′′ : [1] → [0] is the unique map; so
gi+1 = u1(α′′∗ ◦ α′∗(x)) = α′′∗u0(α′∗(x)) is idc′ , where c′ = u0(α′∗(x)); as α′ = αni ◦ δ0, we
have c′ = δ∗0(fi), that is, c′ is the target c of fi, as we wanted.

Now we take α : [n− 1]→ [n] injective and increasing; we may also assume n ≥ 3, as we
already the result for n ≤ 2. There exists i ∈ [n] such that Im(α) = [n]−{i}, that is, such

that α is the map δi defined before (g). Let x ∈ Xn, and let c0
f1→ . . .

fn→ cn be vn(x) and
(g1, . . . , gn−1 be vn−1(α∗(x)). As we saw in the solution of (a), the map α∗ : Mn →Mn−1

sends the sequence of composable morphisms c0
f1→ . . .

fn→ cn to the sequence :

• c0
f1→ . . .

fn−1→ cn−1 if i = n;

• c1
f2→ . . .

fn→ cn if i = 0;

• c0
f1→ . . . ci−1

fi+1◦fi→ ci+1 . . .
fn→ cn if 1 ≤ i ≤ n− 1.

If 1 ≤ j ≤ i− 1, we have α ◦ αn−1
j = αnj , which implies that gj = fj . If i+ 1 ≤ j ≤ n− 1,

we have α ◦ αn−1
j = αnj+1, which implies that gj = fj+1. To finish the proof that

α∗(vn(x)) = vn−1(α∗(x)), it remains to consider the case j = i ∈ {1, . . . , n − 1}. Then
α ◦ αn−1

j = α′ ◦ δ1, where α′ : [2] → [n] is the map x 7−→ x + i − 1 and δ1 : [1] → [2]

is the map sending 0 to 0 and 1 to 2. Hence gj = u1(δ∗1α
′∗(x)) = δ∗1u2(α′∗x), so if

u2(α′∗(x)) = (h1, h2) then gj = h2 ◦ h1; but it is easy to see that u2(α′∗(x)) = (fi, fi+1)
(by looking at the composition of α′ with α2

1, α
2
2 : [1]→ [2]), so we are done.

(f). Let C and C ′ be categories. We want to show that the map
N : Func(C ,C ′) → HomsSet(N(C ), N(C ′)) is bijective, so we try to construct an
inverse of this map.

Let u : N(C ) → N(C ′) be a morphism of simplicial sets. We denote by F the map

Ob(C ) ' N(C )0
u0→ N(C ′)0 ' Ob(C ′). Let f : c0 → c1 be a morphism of C . We saw in

(a) that this morphism corresponds to a functor T : [1]→ C , that is, an element of N(C )1.
We denote by F (f) : d0 → d1 the morphism of C ′ corresponding to u1(T ) ∈ N(C ′)1. We
want to show that d0 = F (c0) and d1 = F (c1). Let i ∈ {0, 1}, and consider the map
α : [0] → [1] sending 0 to i. This is a morphism of ∆, and α∗ : N(C )1 → N(C )0 sends a
morphism of C to its source if i = 0 and its target if i = 1. Using the commutativity of
the diagram

N(C )1
u1 //

α∗

��

N(C ′1)

α∗

��
N(C0) u0

// N(C ′0)
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we see that d0 = F (c0) and d1 = F (c1). Now we show that F is a functor. There are two
conditions to check :

(1) Consider the unique map α : [1] → [0]. This is a morphism of ∆, and
α∗ : N(C )0 → N(C )1 sends the element of N(C )0 corresponding to an object c
of C to the element of N(C )1 corresponding to idc. As u1 ◦ α∗ = α∗ ◦ u0, we get
that, for every c ∈ Ob(C ), F (idc) = idF (c).

(2) Consider the map α : [1]→ [2] sending 0 to 0 and 1 to 2, and the map σi : [1]→ [2],
m 7−→ m+ i, for i ∈ {0, 1}. Then α∗ (resp. σ∗0, resp. σ∗1) sends the element of N(C )2

corresponding to a sequence c0
f1→ c1

f2→ c2 to the element of N(C )1 corresponding to
f2 ◦ f1 (resp. f1, resp. f2). (This is clear on the identifications of (a).)

Let c0
f1→ c1

f2→ c2 be a sequence of composable morphisms of C . Using the pre-
vious paragraph and the fact that u is a morphism of functors, we see that the
image by u of the element of N(C )2 corresponding to this sequence is the sequence

F (c0)
F (f1)→ F (c1)

F (f2)→ F (c2), and using this and the fact that α∗ ◦ u2 = u1 ◦ α∗, we
finally get F (f2) ◦ F (f1) = F (f2 ◦ f1).

So we have constructed a map Φ : HomsSet(N(C ), N(C ′))→ Func(C ,C ′), and it is clear
on the construction that, for every functor F : C → C ′, we have Φ(N(F )) = F . Now
let u : N(C ) → N(C ′) be a morphism of simplicial sets, and let F = Φ(u). We want to
show that N(F ) = u. Again, it is clear from the construction of Φ that N(F )0 = u0 and
N(F )1 = u1. But then the fact that N(F ) = u follows from (c).

(g). If n ≥ 4, then, for every k ∈ [n], the morphism Λnk,≤2 → ∆n,≤2 induced by the inclusion
Λnk ⊂ ∆n is the identity morphism. So, by (d) and (e), every morphism Λnk → N(C )
extends uniquely to a morphism ∆n → N(C ).

We still need to treat the case n = 3. Note that the uniqueness of the extension will follow
from the fact that Λ3

k,≤1 = ∆3,≤1.

Let ∂∆3 be the union of all the faces of ∆3. Then the inclusion ∂∆3 ⊂ ∆3 induces an
equality ∂∆3,≤2 = ∆3,≤2, so it suffices to show that the morphism u : Λ3

k → N(C ) extends
to ∂∆3. As ∂∆3 = Λ3

k ∪ δk∗(∆2) and Λ3
k ∩ δk∗(∆2) = δk∗(∂∆2), it suffices to extend u

from δk∗(∂∆2) to δk∗(∆2). For 0 ≤ i < j ≤ 3, let αi,j : [1] → [3] be the map sending 0
to i and 1 to j; note that αi,j ∈ Λ3

k([3]). Let fi = u3(αi−1,i), for 1 ≤ i ≤ 3. We treat the
case k = 1, the case k = 2 is similar. Factoring both α1,2 and α2,3 through the morphism
δ0 : [2]→ [3], we see that f3 and f2 are composable, and that f3 ◦f2 = u3(α1,3). Factoring
both α0,1 = f1 and α1,3 through the morphism δ2 : [2]→ [3], we see that f3 ◦f2 = u3(α1,3)
and f1 are composable, and that f3 ◦ f2 ◦ f1 = u3(α0,3). Similary, using δ3 : [2]→ [3], we
show that f2 ◦ f1 = u3(α0,2).

In particular, we see that u3(α0,3) = f3 ◦ f2 ◦ f1 = u3(α3,2) ◦ u3(α0,2). This is exactly the
condition that we need to extend u from δ1∗(∂∆2) to δ1∗(∆2). (See the solution of the
next question.)

(h). Let u : Λ2
1 → N(C ). We want to extend u to a morphism v : ∆2 → N(C ). Remember

that, by the Yoneda lemma, giving v is the same as giving an element e of N(C )2; the
fact that v extends u then says that, for every α : [m] → [2] such that α ∈ Λ2

1([n]), we
have α∗(e) = um(α).

Note that the maps δ2 and δ0 from [1] to [2] are in Λ2
1([1]) by definition of the horn Λ2

1. We
set f1 = u1(δ2) and f2 = u1(δ0). Comparing the compositions of δ0 and δ2 with the two
maps [0]→ [1], we see that (f1, f2) is a sequence of composable morphisms of C , hence an
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element of e of N(C )2; we denote by v : ∆2 → N(C ) the corresponding morphism, that
is, the unique morphism such that v2(e2) = (f1, f2). Using the method of the solution of
(d), we see that this is the only possibility for a morphism extending u (such a morphism
must send e2 ∈ ∆2([2]) to (f1, f2)).

It remains to show that v does extend u. Let α : [m] → [2] be an element of Λ2
1([2]);

by definition of the horn, this means that we can write α = δi ◦ β, with β : [m] → [1]
nondecreasing and i ∈ {0, 2}. Then v2(α) = α∗(e) = β∗(δ∗i (e)) and u2(α) = β∗u1(δi), so
it suffices to show that δ∗i (e) = u1(δi); but this follows from the definition of f1 and f2

and the description of δ∗i : N(C )2 → N(C )1 in (a).

(i). Let X be a simplicial set, and suppose that every morphism u : Λnk → X with 0 < k < n
extends uniquely to ∆n. We denote by d0, d1 : [0]→ [1] the two maps sending 0 to 0 and
1 respectively, and by s the unique map from [1] to [0]. We construct a category C in the
following way :

(1) We take Ob(C ) = X0.

(2) If c, d ∈ X0, we have HomC (c, d) = {f ∈ X1 | d∗0(f) = c and d∗1(f) = d}.

(3) For every c ∈ X0, we denote by idc the element s∗(c) of X1.

(4) Let c, d, e ∈ X0 and f ∈ HomC (c, d), g ∈ HomC (d, e). We want to construct a
morphism u : Λ2

1 → X. Let α : [m] → [2] be an element of Λ2
1([m]). By definition

of Λ2
1, there exists β : [m] → [1] and j ∈ {0, 2} such that α = δj ◦ β. We set

um(α) = β∗(fj), with fj = f if j = 2 and fj = g if j = 0. We must check that this is
well-defined; if α can be written as β ◦ δ0 and β′ ◦ δ2, with β : [m]→ [1], this means
that Im(α) = {1}, so Im(β) = {0} and Im(β′) = {1}, so there exists γ : [m] → [0]
such that β = d0 ◦ γ and β′ = d1 ◦ γ, hence β∗(g) = γ∗(d) = β′∗(f). We now check
that u is a morphism of simplicial sets. If α : [m] → [2] is an element of Λ2

1([m]),
write α = δj ◦ β, with β : [m]→ [1] and j ∈ {0, 2}; then, for every γ : [m′]→ [m], we
have α◦γ = δj ◦ (β ◦γ), so um′(γ) = (β ◦γ)∗(fj) = γ∗(β∗(fj)) = γ∗(um(β)). So u is a
morphism of simplicial sets, and, by assumption, it extends uniquely to a morphism
v : ∆2 → X. We take g ◦ f = v1(δ1). It is easy to check that g ◦ f ∈ HomC (c, e).

It is easy to check that the identity morphisms are unit elements for the composition.

We check that the composition law of C is associative. Let (f1, f2, f3) be a sequence
of composable morphisms in C . Remember that we have maps δi : [2] → [3], inducing
morphisms of simplicial sets δi∗ : ∆2 → ∆3. As in the construction of the composition in
(4), we use the pair (f1, f2) to construct a morphism δ3∗(∆2) → X, the pair (f2, f3) to
construct a morphism δ1∗(∆2) → X, and the pair (f1, f3 ◦ f2) to construct a morphism
δ2∗(∆2) → X. These three morphisms glue to a morphism Λ3

1 → X, which extends
uniquely to v : ∆3 → X. In particular, if we define maps αi,j : [1]→ [3] as in (g), we see
as in that question that

v1(α0,3) = v1(α3,2) ◦ v1(α2,0) = f3 ◦ (f2 ◦ f1) = v1(α3,1 ◦ α1,0) = (f3 ◦ f2) ◦ f1.

For n ≥ 1 and 1 ≤ i ≤ n, let the αni : [1]→ [n] be as in the solution of (e).

Let n ≥ 2. If 1 ≤ m ≤ n 0 ≤ i0 < i1 < . . . < im ≤ n, we denote by αi0,...,im : [1] → [n]
the map sending r ∈ [m] to ir ∈ [n]. If x ∈ Xn, we define morphisms f1,x, . . . , fn,x in
C by fi = αni

∗(x). As αni ◦ d0 = αni+1 ◦ d1 for 1 ≤ i ≤ n − 1, the fi form a sequence of
composable morphisms, so (f1, . . . , fn) ∈ N(C )n. We claim that :

(A) For every (f1, . . . , fn) ni N(C )n, there exists x ∈ X such that
(f1,x, . . . , fn,x) = (f1, . . . , fn).
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(B) If x, y ∈ Xn are such that fi,x = fi,y for 1 ≤ i ≤ n, then x = y.

We prove (A). Let (f1, . . . , fn) be a sequence of composable morphisms in C . For
0 ≤ i0 < i1 ≤ n, we define a morphism ui0,i1 : αi0,i1,∗(∆1) → X by sending αi0,i1,∗(e1)
to fi1 ◦ . . . fi0+1 ∈ X1, where e1 ∈ ∆1([1]) is the element defined in (c). Suppose that
0 ≤ i0 < i1 < i2 ≤ n. Then the morphisms ui0,i1 , ui1,i2 and ui0,i2 agree on the inter-
sections of their domains (because the fi are composable), so they glue to a morphism
u′i0,i1,i2 : αi0,i1,i2,∗(∂∆2) → X; by the property of X, this morphism extends uniquely to
a morphism ui0,i1,i2 : αi0,i1,i2,∗(∆2) → X. Now take 0 ≤ i0 < i1 < i2 < i3 ≤ n. Then the
morphisms ui0,i1,i2 , ui0,i1,i3 , ui0,i2,i3 and ui1,i2,i3 agree on the intersections of their domains
(we just recover one of the uir,is on such an intersection), so they glue to a morphism
u′i0,i1,i2,i3 : αi0,i1,i2,i3,∗(∂∆3)→ X; by the property of X, this morphism extends uniquely
to a morphism ui0,i1,i2,i3 : αi0,i1,i2,i3,∗(∆3) → X. We continue in this way until we get a
morphism u0,1,...,n : ∆n → X extending the original ui0,i1 ; the corresponding element of
Xn has the required property.

Now we prove (B). By the Yoneda lemma, the elements u, v ∈ Xn correspond to two
morphisms ux, uy : ∆n → X, and the condition of (B) says that ux and uy agree on
αi0,i1,∗(∆1) for all i0, i1 ∈ [n] such that i0 < i1. But we saw in the proof of (A) that
there is a unique way to extend a family of morphisms αi0,i1,∗(∆1)→ X (agreeing on the
intersections of the αi0,i1,∗(∆1)) to a morphism ∆n → X. So ux = uy, that is, x = y.

Finally, we define u : X → N(C ) by taking u1 and u0 to be the obvious bijections and by
sending x ∈ Xn to the sequence of maps (f1,x, . . . , fn,x), for every n ≥ 2. This induces a
morphism of functors from X≤2 to N(C )≤2 by the definition of the composition and the
description of the maps between the N(C )n in (a). Then the solution of (e) shows that u
is a morphism of simplicial sets. Points (A) and (B) imply that u is an isomorphism.

�
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