
MAT 540 : Problem Set 10

Due Saturday, December 7

1 The Dold-Kan correspondence

You need to look at the results of problems 1 and 2 of problem set 3 to do this problem.

Remember the simplicial category ∆ and the category of simplicial sets sSet from problem
9 of problem set 1 and problem 2 of problem set 2. Let C = kar((Z[∆])⊕) (see problems 1 and
2 of problem set 3), so that C is an additive pseudo-abelian category.

The category Func(∆op,Ab) is called the category of simplicial abelian groups and denoted
by sAb; it is an abelian category, where kernel, cokernels and images are calculated in the
obvious way (that is, Ker(X → Y ) = (Ker(Xn → Yn))n∈N etc).

By the Yoneda lemma, the functor hC : C → Func(C op,Ab) is fully faithful; by problems
1 and 2 of problem set 3, we have an equivalence Funcadd(C op,Ab) ' Func(∆op,Ab) = sAb.
So we get a fully faithful functor C → sAb, and we identify C with the essential image of this
functor.

If X is a simplical set, we denote by Z(X) the “free simplicial abelian group on X” : it is
the simplicial abelian group sending [n] to the free abelian group Z(Xn) and α : [n] → [m] to
the unique group morphism from Z(Xm) to Z(Xn) extending α∗ : Xm → Xn. If u : X → Y is
a morphism of simplicial sets, we simply write u : Z(X) → Z(Y ) for the morphism of simplicial
abelian groups induced by u. If α : [n]→ [m], we also use α to denote the morphism ∆n → ∆m

that is the image of α by the Yoneda embedding h∆ : ∆→ sSet.

(a). (1 point) For every n ∈ N, show that the simplicial abelian group Z(∆n) is in C . (Hint :
It’s the image of the object [n] of ∆. Follow the identifications !)

Let n ≥ 1. Remember from problem 9 of problem set 1 that we have defined morphisms
δ0, δ1, . . . , δn : [n−1]→ [n] in ∆ by the condition that δi is the unique increasing map [n−1]→ [n]
such that i 6∈ Im(δi). According to our previous conventions, we get morphisms δi : ∆n−1 → ∆n

in sSet and δi : Z(∆n−1) → Z(∆n) in sAb. Remember also that, for k ∈ [n], the horn Λnk is the
union of the images of the δi, for i ∈ [n]− {k}.

(b). (1 point) Show that Z(Λn
k ) =

∑
i∈[n]−{k} Im(δi), where the sum is by definition the image

of the canonical morphism
⊕

i∈[n]−{k} Im(δi)→ Z(∆n) and we have identified Z(Λn
k ) to its

image in Z(∆n).

If f : [n] → X is a map from [n] to a set X, we also use the notation
(f(0) → f(1) → . . . → f(n)) to represent f . Let n ∈ N, and let Sn be the set of sequences
(a1, . . . , an) ∈ [n] such that ai ∈ {i− 1, i} for every i ∈ {1, . . . , n}; if a = (a1, . . . , an), we write
fa = (0→ a1 → . . .→ an) ∈ HomSet([n], [n]) and ε(a) = (−1)card({i|ai 6=i}).

(c). (1 point) For every a ∈ Sn, show that fa ∈ Hom∆([n], [n]).
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(d). (2 points) Let pn =
∑

a∈Sn
ε(a)fa ∈ EndC (Z(∆n)). Show that pn is a projector.

(e). (3 points) Show that Z(Λn
0 ) = Im(idZ(∆n)−pn) = Ker(pn). In particular, Z(Λn

0 ) is an object
of C .

(f). (1 point) Let In = Im(pn). This is also an object of C . Show that we have an isomorphism
Z(∆n) ' Z(Λn

0 ) ⊕ In in C .

(g). (2 points) If X is an object of sAb and f : X → In is a surjective morphism (that is, such
that fr is surjective for every r ≥ 0), show that there exists a morphism g : In → X such
that f ◦ g = idIn .

For every k ∈ [n], define a simplicial subset ∆≤kn of ∆n by taking ∆≤kn ([m]) equal to the set
of nondecreasing α : [m] → [n] such that either card(Im(α)) ≤ k, or card(Im(α)) = k + 1 and
0 ∈ Im(α). In particular, question (h)(i) says that ∆≤n−1

n = Λn0 . (On the geometric realizations,
|∆n| is a simplex of dimension n with vertices numbered by 0, 1, . . . , n, and |∆≤kn | is the union
of its faces of dimension ≤ k that contain the vertex 0.)

(h). (i) (1 point) For every k ∈ [n] and every m ∈ N, show that

Λnk([m]) = {α : [m]→ [n] | either card(Im(α)) ≤ n−1, or card(Im(α)) = n and k ∈ Im(α)}.

(ii) (1 point) For every m ∈ N, show that the set

{α : [m]→ [n] | Im(α) ⊃ [n]− {0}}

is a basis of the Z-module In([m]).

(iii) (1 point) For every k ∈ {1, . . . , n}, show that

Z(∆≤k
n )/Z(∆≤k−1

n ) ' I(nk)
k .

(iv) (1 point) For every k ∈ {1, . . . , n}, show that

Z(∆≤k
n ) ' Z(∆≤k−1

n ) ⊕ I(nk)
k .

(i). (1 point) Show that there is an isomorphism Z(∆n) '
⊕n

k=0 I
(nk)
k in C .

(j). (2 points) For all n,m ∈ N, show that HomC (In, Im) is a free Z-module of finite type. We
denote its rank by an,m.

(k). (2 points) Show that an,n ≥ 1 and an,n+1 ≥ 1 for every n ∈ N. (Hint for the second:
δ0 : [n]→ [n+ 1].)

(l). (2 points) Show that, for all n,m ∈ N, we have(
n+m+ 1

m

)
=

n∑
k=0

m∑
l=0

ak,l

(
n

k

)(
m

l

)
.

(m). (2 points) Show that, for all n,m ∈ N, we have(
n+m+ 1

m

)
=

m∑
k=0

(
n+ 1

k

)(
m

k

)
.

(n). (2 points) Show that an,n = an,n+1 = 1 for every n ∈ N and an,m = 0 if m 6∈ {n, n+ 1}.
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(o). (2 points) Let I be the full subcategory of C whose objects are the In for n ∈ N. If A is
an additive category, we consider the category C≤0(A ) of complexes of objects of A that
are concentrated in degree ≤ 0 (that is, complexes X ∈ Ob(C (A )) such that Xn = 0 for
n ≥ 1).

Give an equivalence of categories from Funcadd(I op,A ) to C≤0(A ).

(p). (2 points) Deduce an equivalence of categories from Func(∆op,A ) to C≤0(A ), if A is a
pseudo-abelian additive category. This is called the Dold-Kan equivalence.

(q). (2 points) Suppose that A is an abelian category, and let X• be an object of Func(∆op,A ).
For n ∈ N and i ∈ {0, 1, . . . , n}, we denote the morphism X•(δ

n
i ) by dni : Xn → Xn−1. The

normalized chain complex of X• is the complex N(X•) in C≤0(A ) given by: for every
n ≥ 0,

N(X•)
−n =

⋂
1≤i≤n

Ker(dni )

and d−nN(X•)
is the restriction of dn0 . This defines a functor N : Func(∆op,A )→ C≤0(A ).

Show that this functor is isomorphic to the equivalence of categories of the previous
question.

Solution.

(a). We denote the faithful functor ∆→ C by ι. Let n ∈ N. If m ∈ N, we have

hC (ι([n]))(ι([m])) = HomC (ι([m]), ι([n])) = Z(Hom∆([m],[n])) = Z(∆n([m])) = Z(∆n)([m]).

So the image of ι([n]) by the fully faithful functor C
hC→ Func(C op,Ab)

∼→ Func(∆op,Ab)
is isomorphic to Z(∆n).

(b). If X• is a simplicial set and if m ∈ N, we denote by (eu)u∈Xm the canonical basis of
Z(X•)([m]) = Z(Xm).

We need to show that, for every m ∈ N, the subgroup Z(Λn
k )([m]) of Z(∆n)([m]) is

equal to
∑

i∈[n]−{k} Im(δi([m])). Let m ∈ N. For every i ∈ [n], the morphism

δi([m]) : Z(∆n−1)([m]) → Z(∆n)([m]) is given on the canonical basis (eu)u∈Hom∆([m],[n])

of Z(∆n−1)([m]) by δi([m])(eu) = eδi◦u. So
∑

i∈[n]−{k} Im(δi([m])) is the Z-submodule of

Z(∆n)([m]) generated by all the eu for u ∈ Hom∆([m], [n]) factoring through some δi,
i 6= k. This is the same as Z(Λn

k )([m]) by definition of the horn.

(c). We have to show that fa is nondecreasing. Let i ∈ {0, . . . , n − 1}. If i = 0, then
fa(i) = 0 ≤ i. Then fa(i) = ai ∈ {i − 1, i}, so fa(i) ≤ i. On the other hand, we have
fa(i+ 1) = ai+1 ∈ {i, i+ 1}, so fa(i+ 1) ≥ i ≥ fa(i).

(d). Let a = (a1, . . . , an) ∈ Sn, and suppose that a 6= (1, . . . , n). Then Im(fa) is strictly
contained in [n], and 0 ∈ Im(fa). This means that there exists i0 ∈ {1, . . . , n}
such that i0 6∈ Im(fa). Let S′n = {(b1, . . . , bn) ∈ Sn | bi0 = i0} and
S′′n = {(b1, . . . , bn) ∈ Sn | bi0 = i0 − 1}. We define a map ι : S′n → S′′n by sending
(b1, . . . , bn) to (b1, . . . , bi0−1, i0− 1, bi0+1, . . . , bn). It is easy to see that ι is a bijection and
that ε(ι(b)) = −ε(b) and that fb ◦ fa = fε(b) ◦ fa for every b ∈ S′n. So

pn ◦ fa =
∑
b∈S′n

ε(b)fb ◦ fa +
∑
b∈S′′n

ε(b)fb ◦ fa

=
∑
b∈S′n

ε(b)fb ◦ fa −
∑
b∈S′n

ε(b)fb ◦ fa

= 0.
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On the other hand, if a = (1, . . . , n), then ε(a) = 1 and fa = id[n], so pn ◦ fa = pn.

This shows that pn ◦ pn = pn.

(e). As pn is a projector, we know that Ker(pn) exists in C and that Ker(pn) = Im(idZ(∆n)−pn)
by problem 2 of problem set 3.

For every a ∈ Sn such that a 6= (1, . . . , n), we have seen that there exists
i ∈ {1, . . . , n} − Im(fa), and then fa factors through δi, so the image of fa in the abelian
category sAb is contained in Z(Λn

0 ). As idZ(∆n) − pn = −
∑

a∈Sn−{(1,...,n)} ε(a)fa, this

shows that Im(idZ(∆n) − pn) ⊂ Z(Λn
0 ).

If i ∈ {1, . . . , n}, then the same proof as in the solution of question (d) shows that
pn ◦ δi = 0, hence (idZ(∆n) − pn) ◦ δi = δi. As Z(Λn

0 ) =
∑n

i=1 Im(δi) by question (b), this
implies that Z(Λn

0 ) ⊂ Im(idZ(∆n) − pn).

(f). This is question (b) of problem 2 of problem set 3.

(g). Let i = id[n] ∈ ∆n([n]), let ei be the corresponding element of Z(∆n)([n]), and let ei be
its image in In([n]). As f is surjective, we can find x ∈ Xn such that fn(x) = ei. Let
g′ : Z(∆n) → X be the morphism corresponding to x by the bijection

HomsAb(Z(∆n), X) ' HomsSet(∆n, X) ' Xn,

and let g = q ◦ g′, where q : Z(∆n) → In is the canonical projection. We want to show
that g ◦ f = idIn . By the construction of g, we have g ◦ f(ei) = ei. Let m ∈ N. Remem-
ber that we denote by (eu)u∈Hom∆([m],[n]) the canonical basis of Z(∆n)([m]). The family
(q(eu))u∈Hom∆([m],[n]) spans In([m]), so it suffices to show that gm ◦ fm(qm(eu)) = q(eu)
for every u. Let u ∈ Hom∆([m], [n]). Then i ◦ u = u, so eu = u∗(ei), and

fm ◦ gm(qm(eu)) = u∗(fn ◦ gn(qn(ei))) = u∗(q(ei)) = q(eu).

(h). (i) The set Λnk([m]) is the set of nondecreasing maps α : [m] → [n] that factor through
some δi, for i ∈ [n]−{k}. If α : [m]→ [n] is a nondecreasing map, then, by definition
of δi, the map α factors through δi if and only if i 6∈ Im(α). This shows that Λnk([m])
does not contain any surjective α, contains all the α such that | Im(α)| ≤ n− 1, and
contains an α such that | Im(α)| = n if and only if [n]− Im(α) 6= {k}, i.e. k ∈ Im(α).
This is what we wanted to prove.

(ii) By (i), we have

{α ∈ ∆n([m]) | Im(α) ⊃ [n]− {0}} = ∆n([m])− Λn0 ([m]),

so the family (qm(eα))α∈∆n([m]), Im(α)⊃[n]−{0} is a basis of In([m]) (where q is as before

the canonical projection Z(∆n) → In).

(iii) We fix k ∈ {1, . . . , n}. Let Ω be the set of A ⊂ [n] such that 0 ∈ A and |A| = k+1. For
every A ∈ Ω, let βA : [k]→ [n] be the composition of the unique order-preserving bi-
jection [k]

∼→ A and of the inclusion A ⊂ [n]; note that βA(0) = 0. Consider the mor-
phism fA : Z(∆k) → Z(∆n) such that, for every m ∈ N and every α ∈ Hom∆([m], [k]),

we have fA(eα) = eβA◦α. Note that Im(fA) ⊂ Z(∆≤k
n ), so we can see fA as a mor-

phism from Z(∆k) to Z(∆≤k
n ). Let m ∈ N and α ∈ Λk0([m]); if | Im(α)| ≤ k − 1, then

| Im(βA ◦α)| ≤ k−1 and so βA ◦α ∈ ∆≤k−1
n ([m]); if | Im(α)| = k and 0 ∈ Im(α), then

| Im(βA ◦ α)| = k and 0 ∈ Im(βA ◦ α), and so βA ◦ α ∈ ∆≤k−1
n ([m]). This shows that

fA(Z(Λn
0 )) ⊂ Z(∆≤k−1

n ), hence that fA induces a morphism gA : Ik → Z(∆≤k
n )/Z(∆≤k−1

n ).
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Let g =
∑

A∈Ω gA : IΩ
k → Z(∆≤k

n )/Z(∆≤k−1
n ). We claim that g is an isomorphism; this

will finish the proof, because |Ω| =
(
n
k

)
. Let m ∈ N. For every A ∈ Ω and every

α ∈ Hom∆([m], [k]) such that either | Im(α)| = k+ 1, or | Im(α)| = k and 0 6∈ Im(α),
we denote by eA,α ∈ IΩ

k the basis element eα of the copy of Ik corresponding to A ∈ Ω.

By (ii), this gives a basis of (IΩ
k )([m]). On the other, a basis of (Z(∆≤k

n )/Z(∆≤k−1
n ))([m])

is given by the images of the basis elements eβ ∈ Z(∆≤k
n )([m]) for β ∈ Hom∆([m], [n])

such that either | Im(β)| = k + 1 and 0 ∈ Im(β), or | Im(β)| = k and 0 6∈ Im(β). To

show that gm : (IΩ
k )([m])→ (Z(∆≤k

n )/Z(∆≤k−1
n ))([m]) is an isomorphism, it suffices to

notice that each β ∈ Hom∆([m], [n]) as in the previous sentence is equal to βA ◦α for
a unique A ∈ Ω and a unique α ∈ Hom∆([m], [k]) (indeed, we must have A = Im(β)
if | Im(β)| = k+1 and 0 ∈ Im(β), and A = {0}∪ Im(β) if | Im(β)| = k and 0 6∈ Im(β),
and then A determines α because βA is injective), and that we then have either
| Im(α)| = k + 1, or | Im(α)| = k and 0 6∈ Im(α).

(iv) This follows easily from (iii) and from question (g).

(i). By question (h)(iv) (and an easy induction), we have an isomorphism Z(∆n) '
⊕n

k=0 I
(nk)
k

in sAb. As both sides are objects of C by question (f), and as C is a full subcategory of
sAb, this isomorphism is an isomorphism in C .

(j). As In (resp. Im) is a direct factor of Z(∆n) (resp. Z(∆m)) by question (f), the abelian
group HomC (In, Im) = HomsAb(In, Im) admits an injective morphism into

HomsAb(Z(∆n),Z(∆m)) = HomsSet(∆n,Z(∆m)) = Z(∆m)([n]) = Z(Hom∆([n],[m])).

As the latter group is free and finitely generated, so is HomC (In, Im).

(k). We have In 6= 0 because Λn0 ( ∆n, so 0 6= idIn ∈ HomC (In, In), so an,n ≥ 1.

Consider the unique nondecreasing injective map δ0 : [n]→ [n+ 1] such that 0 6∈ Im(δ0).
(In other words, we have δ0(i) = i + 1 for every i ∈ [n].) This induces a morphism
f : Z(∆n) → Z(∆n+1). If m ∈ N and α ∈ Λn0 ([m]), then | Im(α)| ≤ n, so | Im(δ0 ◦ α)| ≤ n

and δ0 ◦ α ∈ Λn+1
0 ([m]). This shows that f(Z(Λn

0 )) ⊂ Z(Λn+1
0 ), hence that f induces a

morphism g : In → In+1. Also, if α = id[n] ∈ Hom∆([n], [n]), then δ0 ◦ α 6∈ Λn+1
0 ([n]), so

the image by g of the class of eα in In([n]) is not 0. This shows that g 6= 0, hence that
HomC (In, In+1) 6= 0 and so an,n+1 ≥ 1.

(l). Let n,m ∈ N. We have seen in the solution of question (j) that HomsAb(Z(∆n),Z(∆m)) is
a free Z-module of rank |Hom∆([n], [m])| =

(
n+m+1

m

)
=
(
n+m+1
n+1

)
. On the other hand, by

question (i), we have

HomsAb(Z(∆n),Z(∆m)) '
n⊕
k=0

m⊕
l=0

(HomsAb(Ik, Il))
(nk)(

m
l ),

and the right hand side is a free Z-module of rank
∑n

k=0

∑m
l=0 ak,l

(
n
k

)(
m
l

)
.

(m). Remember that Vandermonde’s identity says that, for all a, b, c ∈ N, we have(
a+ b

c

)
=

c∑
j=0

(
b

j

)(
a

c− j

)
.

Applying this to a = n + 1 and b = c = m and using the fact that
(
m
k

)
=
(
m

m−k
)

for
0 ≤ k ≤ m, we get (

n+m+ 1

m

)
=

m∑
k=0

(
m

k

)(
n+ 1

k

)
.
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To prove Vandermonde’s identity, we consider an indeterminate t. By the binomial theo-
rem, we have

(1 + t)a =

a∑
i=0

(
a

i

)
ti,

(1 + t)b =

b∑
j=0

(
b

j

)
tj

and

(1 + t)a+b =

a+b∑
c=0

(
a+ b

c

)
tc.

As (1 + t)a+b = (1 + t)a(1 + t)b, if c ∈ N, we get two formulas for the coefficient of tc in
this polynomial. The first formula is

(
a+b
c

)
, and the second formula is

∑
i,j≥0, i+j=c

(
a

i

)(
b

j

)
=

c∑
j=0

(
a

c− j

)(
b

j

)
.

(n). By questions (l) and (m), we have

n∑
k=0

m∑
l=0

ak,l

(
n

k

)(
m

l

)
=

m∑
k=0

(
m

k

)(
n+ 1

k

)
=

m∑
k=0

(
m

k

)(
n

k

)
+

m∑
k=1

(
m

k

)(
n

k − 1

)
,

where the second equality comes from Pascal’s rule
(
n+1
k

)
=
(
n
k

)
+
(
n
k−1

)
. By question (k)

(and the obvious that all the ak,l are nonnegative), we have

n∑
k=0

m∑
l=0

ak,l

(
n

k

)(
m

l

)
≥

m∑
k=0

(
n

k

)(
m

k

)
+

m∑
k=1

(
n

k − 1

)(
m

k

)
.

This implies that, for k ∈ [n] and l ∈ [m], we have ak,l = 0 if l 6∈ {k, k + 1} and ak,l = 1 if
l ∈ {k, k + 1}. As n and m were arbitrary, we get the conclusion.

(o). Let F ∈ Func(I op,A ). We define a complex X ∈ C≤0(A ) in the following way: For
every n ∈ N, we take X−n = F (In) and d−n−1

X : X−n−1 = F (In+1)→ X−n = F (In) to the
image by F of the element gn of HomC (In, In+1) constructed in the solution of question
(k). This defines a functor Φ : Funcadd(I op,A )→ C≤0(A ).

Conversely, let X be an object of C≤0(A ). We define a functor F : I op → A in the fol-
lowing way: For every n ∈ N, we take F (In) = X−n. Let n,m ∈ N and f ∈ HomC (In, Im).
If m 6∈ {n, n + 1}, then f = 0, so we must F (f) = 0. If m = n, then, by question (n),
the morphism is of the form a · idIn , where a ∈ Z, and we must set F (f) = aidX−n .
If m = n + 1, then, by question (n), the morphism f is of the a · gn with a ∈ Z, and
we set F (f) = a · d−n−1

X : X−n−1 = F (In+1) → X−n = F (In). This defines a functor
Ψ : C≤0(A )→ Funcadd(I op,A ).

The fact that Φ ◦ Ψ = idC≤0(A ) follows immediately from the definitions of the functors
Φ and Ψ, and the fact that Ψ ◦ Φ = idFuncadd(I op,A ) follows easily from the definition of
these functors and from question (n).

(p). By problems 1 and 2 of problem set 3, we have an equivalence
Funcadd(C op,A ) ' Func(∆op,A ), so we can define a functor Func(∆op,A ) → C≤0(A )
by composing a quasi-inverse of this equivalence, the restriction functor
Funcadd(C op,A )→ Funcadd(I op,A ) and the equivalence Funcadd(I op,A )

∼→ C≤0(A ).
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Showing that this is an equivalence of categories amounts to showing that the restriction
functor Funcadd(C op,A )→ Funcadd(I op,A ) is an equivalence of categories.

By the construction of the pseudo-abelian completion in problem 2 of problem set 3,
every object of C is a direct summand of an object of Z[∆]⊕, hence, by construction of
the universal additive category in problem 1 of problem set 3, a direct summand of an
object of the form

⊕
i∈I Z(∆ni ), for (ni)i∈I a finite family of nonnegative integers. By

question (i), this implies that every object of C is a direct summand of an object of the
form

⊕
i∈I Ini , for (ni)i∈I a finite family of nonnegative integers.

Let I ′ be the full subcategory of C whose objects are finite direct sums of objects of
I ; in other words, the category I ′ is the category I ⊕ defined in problem 2 of prob-
lem set 3. Then I ′ is an additive category and the preceding paragraph says that C
is the pseudo-abelian completion of I ′. By problem 2 of problem set 3 (applied to
the opposite categories), the restriction functor Funcadd(C op,A ) → Funcadd(I ′op,A )
is an an equivalence of categories. So it remains to show that the restriction functor
Funcadd(I ′op,A )→ Funcadd(I op,A ) is an equivalence of categories. But this is proved
in problem 1 of problem set 3.

(q). Let DK : Func(∆op,A )→ C≤0(A ) be the equivalence of categories of question (p).

Let X• ∈ Func(∆op,A ). We still denote by X• the corresponding functor C op → A .
Let n ∈ N, and let δ =

∑n
i=1 δi :

⊕n
i=1 Z(∆n−1) → Z(∆n), where we use the notation of

question (b); by that question, we have Z(Λn
0 ) = Im(δ), and by question (f), the canoni-

cal projection Z(∆n) → In identifies In to Coker δ and both Im δ and Coker δ are direct
summands of Z(∆n). It is easy to deduce from this that, if F : C op → C ′ is any addi-
tive functor, then the morphism F (In) → F (Z(∆n)) is a kernel of F (δ). Applying this
to F = X• : C op → A , we see that F (In) = DK(X•)

−n is canonically isomorphic to
Ker(

⊕n
i=1 : dni : Xn → Xn

n−1) =
⋂n
i=1 Ker(dni ) = N(X•)−n. Also, as the nonzero mor-

phism from In−1 to In constructed in the solution of question (k) is the restriction of
δ0 : Z(∆n−1) → Z(∆n) (followed by the canonical projection Z(∆n) → In), its image by X•
is the restriction of dn0 . So we get an isomorphism of complexes DK(X•) ' N(X•), and
this isomorphism is clearly functorial in X•.

�

2 The model structure on complexes

Let R be a ring, and let A = RMod. 1

We denote by W the set of quasi-isomorphisms of C (A ), by Fib the set of morphisms
f : X → Y in C (A ) such that fn : Xn → Y n is surjective for every n ∈ Z and by Cof
the set of morphisms of C (A ) that have the left lifting property relatively to every morphism
of W ∩ Fib. We say that X ∈ Ob(C (A )) is fibrant (resp. cofibrant) if the unique morphism
X → 0 (resp. 0 → X) is in Fib (resp. in Cof). The goal of this problem is to show that
(W,Fib,Cof) is a model structure on C (A ).

For every M ∈ Ob(A ), let K(M,n) = M [−n] ∈ Ob(C (A )), and let Dn(M) be the complex
X such that Xn = Xn+1 = M , dnX = idM and Xi = 0 if i 6∈ {n, n + 1}. We also write
Sn = K(R,n) and Dn = Dn(R). For every M ∈ Ob(A ), the identity of M induces a morphism
of complexes K(M,n)→ Dn−1(M) (which is clearly functorial in M).

1We only need A to have all small limits and colimits and a nice enough projective generator, but we take
A = RMod to simplify the notation.
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(a). (2 points) Show that the functor Dn : RMod → C (A ) is left adjoint to the functor
C (A ) → A , X 7−→ Xn, and that the functor K(·, n) : A → C (A ) is left adjoint to the
functor Zn.

(b). (1 point) Show that a morphism of C (A ) is in Fib is and only if it has the right lifting
property relatively to 0→ Dn for every n ∈ Z.

(c). (1 point) Show that Dn is cofibrant for every n ∈ Z.

(d). (2 points) Show that Sn is cofibrant for every n ∈ Z.

(e). Let p : X → Y be a morphism of C (A ).

(i) (2 points) If p is in W ∩ Fib, show that it has the right lifting property relatively to
the canonical morphism Sn = K(R,n)→ Dn−1 for every n ∈ Z.

(ii) (3 points) If p has the right lifting property relatively to the canonical morphism
Sn → Dn−1 for every n ∈ Z, show that it is in W ∩ Fib.

(f). (1 point) Show that the canonical morphism Sn → Dn−1 is in Cof.

(g). Let f : X → Y be a morphism of C (A ). Let E = X ⊕
⊕

n∈Z, y∈Y n Dn, let i : X → E
be the obvious inclusion and let p : E → Y be the morphism that is equal to f on
the summand X and that, for every n ∈ Z and y ∈ Y n, is equal on the corresponding
summand Dn to the morphism Dn → Y corresponding to y ∈ Y n = HomR(R, Y n) by the
adjunction of question (a). We clearly have p ◦ i = f .

(i) (1 point) Show that i is in W .

(ii) (1 point) Show that i has the left lifting property relatively to any morphism of Fib.

(iii) (1 point) Show that p is in Fib.

(h). Let f : X → Y be a morphism of C (A ). Let X0 = X and f0 = f . For every i ∈ N, we
construct morphisms of complexes ji : Xi → Xi+1 and fi+1 : Xi+1 → Y such that ji is
a monomorphism and in Cof and fi+1 ◦ ji = fi in the following way: Suppose that we
already have fi : Xi → Y . Consider the set Di of commutative squares

(D) SnD
fD //

��

Xi

fi
��

DnD−1
gD
// Y

(for some nD ∈ Z). Let ji : Xi → Xi+1 be defined by the cocartesian square

⊕
D∈Di

SnD

∑
fD //

��

Xi

ji

��⊕
D∈Di

DnD−1 // Xi+1

The morphisms fi : Xi → Y and
∑
gD :

⊕
D∈Di

DnD−1 → Y induce a morphism
fi+1 : Xi+1 → Y , and we clearly have fi+1 ◦ ji = fi.

Finally, let F = lim−→i∈NXi (where the transition morphisms are the ji), let j : X → F be
the morphism induced by j0 and let q : F → Y be the morphism induced by the fi.

(i) (1 points) Show that q ◦ j = f .
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(ii) (1 point) Show that j is a monomorphism.

(iii) (2 points) Show that j is in Cof.

(iv) (2 points) Show that q is in W ∩ Fib.

(i). (1 point) Show that every element of Cof is a monomorphism.

(j). (2 points) Show that every element of W ∩ Cof has the left lifting property relatively to
elements of Fib. (Hint: Use question (g).)

(k). (3 points) Show that (W,Fib,Cof) is a model structure on C (A ).

(l). (2 points) Show that the intersections of (W,Fib,Cof) with C−(A ) also give a model
structure on this category.

(m). (2 points) Let f : A→ B be a morphism of A . Show that f has the left lifting property
relatively to epimorphisms of A if and only if it is injective with projective cokernel.

(n). (3 points) Let i : X → Y be a morphism of C−(A ). Show that i is in Cof if and only if,
for every n ∈ Z, the morphism in is injective with projective cokernel.

Solution.

(a). Let X be an object of C (A ) and M be a left R-module. Giving a morphism of complexes
from Dn(M) to X amounts to giving R-linear maps f : M → Xn and g : M → Xn+1

such that g = dnX ◦ f ; so there is no extra condition on f , and g is determined by f . In
other words, we have constructed a bijection

HomC (A )(D
n(M), X)

∼→ HomR(M,Xn),

which is clearly functorial in M and X.

On the other hand, giving a morphism of complexes from K(M,n) to X amounts to giving
a R-linear map f : M → Xn such that dnX ◦ f = 0; this is the same as giving a R-linear
map M → Ker(dnX) = Zn(X). In other words, we have constructed a bijection

HomC (A )(K(M,n), X)
∼→ HomR(M,Zn(X)),

which is clearly functorial in M and X.

Moreover, these adjunctions have the following property (which is clear on their construc-
tion): Let u : K(M,n) → Dn−1(M) be the morphism of complexes induced by idM . If
we have a morphism f : Dn−1(M) → X corresponding to x ∈ Xn−1, then the morphism
f ◦ u : K(M,n)→ X corresponds to dn−1

X (x) ∈ Zn(X).

(b). Let f : X → Y be a morphism of C (A ). Saying that f has the right lifting property
with respect to 0 → Dn means that, for every morphism g : Dn → Y , there exists
h : Dn → X such that f ◦ h = g. By question (a), this is equivalent to saying that the
map HomR(R,Xn) → HomR(R, Y n), h 7→ f ◦ h is surjective, which is equivalent to the
fact that fn : Xn → Y n is surjective. This proves the assertion.

(c). By question (b), the morphism 0→ Dn has the left lifting property with respect to every
fibration, so it is a cofibration.

(d). Let f : X → Y be a morphism inW∩Fib, and let n ∈ Z. We want to show that 0→ Sn has
the left lifting property relatively to f . As HomC (A )(S

n, C) = HomR(R,Zn(C)) = Zn(C)
for every object C of C (A ) (by question (a)), this is equivalent to the fact that the
map Zn(X) → Zn(Y ) induced by fn is surjective. So let y ∈ Zn(Y ). As f is a
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quasi-isomorphism, there exists x ∈ Zn(X) such that fn(x) − y ∈ Bn(Y ). Write
fn(x) − y = dYn−1(y′), with y′ ∈ Y n−1. As f is in Fib, there exists x′ ∈ Xn−1 such
that fn−1(x′) = y′, and then we have

y = fn(x)− dYn−1(y′) = fn(x)− dYn−1(fn−1(x′)) = fn(x− dXn−1(x′)).

Also, as dXn ◦ dXn−1 = 0, we still have x− dXn−1(x′) ∈ Zn(X).

(e). By the solution of (a), saying that p : X → Y has the right lifting property relatively
to Sn → Dn−1 is equivalent to the following statement: For every y′ ∈ Y n−1, and for
every x ∈ Zn(X) such that dn−1

Y (y′) = pn(x) ∈ Zn(Y ), there exists x′ ∈ Xn−1 such that
dn−1
X (x′) = x and pn−1(x′) = y′.

(i) Suppose that p ∈ W ∩ Fib, and let y′ ∈ Y n−1 and x ∈ Zn(X) be such that
dn−1
Y (y′) = pn(x). In particular, we have pn(X) ∈ Bn(Y ); as p is a quasi-

isomorphism, this implies that x ∈ Bn(X), so there exists x′ ∈ Xn−1 such that
dn−1
X (x′) = x. We have

dn−1
Y (pn−1(x′)− y′) = pn(dn−1

X (x′))− pn(x) = 0,

so pn−1(x′) − y′ ∈ Zn−1(Y ). By question (d), there exists x′′ ∈ Zn−1(X) such that
pn−1(x′′) = pn−1(x′) − y′, i.e. y′ − pn−1(x′ − x′′). Moreover, as x′′ ∈ Zn−1(X), we
have dn−1

X (x′ − x′′) = dn−1
X (x′) = x. So we are done.

(ii) Suppose that p has the right lifting property relatively to Sn → Dn−1 for every
n ∈ Z.

We first show that pn induces a surjective map Zn(X) → Zn(Y ) for every n ∈ Z.
Indeed, let n ∈ Z and y ∈ Zn(Y ). Then dnY (y) = 0 = pn+1(0), so there exists x ∈ Xn

such that dnX(x) = 0, i.e. x ∈ Zn(X), and that pn(x) = y.

Now we show that pn : Xn → Y n is surjective for every n ∈ Z. Let n ∈ Z and y ∈ Y n.
Then dnY (y) ∈ Zn+1(Y ), so, by the previous paragraph, there exists x′ ∈ Zn+1(X)
such that pn+1(x′) = dnY (y). Then, by assumption, there exists x ∈ Xn such that
dnX(x) = x′ and pn(x) = y.

We finally show that p is a quasi-isomorphism. Let n ∈ Z. We already know that
the map Hn(p) : Hn(X) → Hn(Y ) is surjective (because Zn(X) → Zn(Y ) is surjec-
tive), so it remains to show that it is injective. Let x ∈ Zn(X), and suppose that
pn(x) ∈ Bn(Y ). Then there exists y′ ∈ Y n−1 such that pn(x) = dn−1

Y (y′), so we can
also find x′ ∈ Xn−1 such that dn−1

X (x′) = x and pn−1(x′) = y′. In particular, we have
x ∈ Bn(X).

(f). This follows from question (e) and from the definition of Cof.

(g). (i) An easy calculation shows that the complex Dn has zero cohomology for every n ∈ Z.
As i is the direct sum of idX and of morphisms 0→ Dn, this implies that i is a quasi-
isomorphism.

(ii) The morphism idX has the left lifting property relatively to any morphism of C (A ),
and morphisms 0→ Dn have the left lifting property relatively to morphisms of Fib
by question (b). Also, for every morphism of C (A ), the set of morphisms that have
the left lifting property relatively to f is stable by direct sums (this is easy, and it is
also proved in Proposition VI.5.2.1 of the notes).

(iii) It is clear on the definition of p that every element of Y n is in the image of pn, for
every n ∈ Z. So p is in Fib.
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(h). (i) For every i ∈ N, the composition X → Xi
fi→ Y is equal to

fi ◦ (ji−1 ◦ ji−2 ◦ . . . ◦ f0) = fi−1 ◦ (◦ji−2 ◦ . . . ◦ f0) = . . . = f1 ◦ j0 = f.

So q ◦ j = f .

(ii) For every i ∈ N, the morphism X → Xi (which is ji−1 ◦ ji−2 ◦ . . . ◦ j0) is a monomor-
phism. As filering colimits are exact in C (RMod) (because they are exact in RMod),
this implues that j is a monomorphism.

(iii) For every i ∈ N, the morphism
⊕

D∈Di
SnD →

⊕
D∈Di

DnD−1 is in Cof by question
(e). This easily implies that ji is in Cof for every i ∈ N, and then that j is is Cof
(see Proposition VI.5.2.1 of the notes).

(iv) By question (e), it suppose to show that q has the right lifting property with respect
to Sn → Dn−1 for every n ∈ Z. So fix n ∈ Z, and consider a commutative square:

Sn
u //

��

F

q

��
Dn−1

v
//

h

<<

Y

We want to find h : Dn−1 → Y making the diagram commute. Remember that
HomC (A )(S

n, F ) = Zn(F ) by (a). As Fn = lim−→i∈NX
n
i , there exists i ∈ N and

x ∈ Xn
i such that the element z of Zn(F ) corresponding to u is the image of xi in

Fn. As dnF (z) = 0, the image in Fn+1 of dnXi
(xi) is 0. But the morphism Xi → F

is a monomorphism (for the same reason as in (i)), so dnxi(xi) = 0, i.e. xi ∈ Zn(Xi).
Let ui : Sn → Xi be the morphism corresponding to xi. By definition of Xi+1, there
is a morphism hi : Dn → Y making the following diagram commute:

Sn
ui //

��

Xi

ji
�� fi

��

Dn−1
hi
//

v //

Xi+1 fi+1

!!
Y

We get the desired morphism h : Dn → F by composing hi with the canonical
morphism Xi+1 → F .

(i). Let i : X → Y be an element of Cof. By question (h), we can write i = q ◦ j, with
j : X → F a monomorphism and q ∈ W ∩ Fib. In particular, we have a commutative
square

X
j //

i
��

F

q

��
Y

h
>>

Y

By definition of Cof, there exists h : Y → F such that q ◦ h = idY and h ◦ i = j. As j is a
monomorphism, this implies that i is also a monomorphism.

(j). Let j : X → Y be an element of W ∩ Cof. By question (h), we can write j = p ◦ i, where
i ∈W has the left lifting property relatively to fibrations and p ∈ Fib. As j ∈W , we also
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have p ∈W . Consider the commutative square

X
i //

j
��

A

p

��
Y

h
>>

Y

As p ∈ W ∩ Fib and j ∈ Cof, there exists h : Y → A such that p ◦ h = idY and h ◦ i = j.
So we have a commutative diagram

X

j
��

X

i
��

X

j
��

Y
h
// A p

// Y

which shows that j is a retract of i. As i has the left lifting property relatively to fibrations,
so does j. (This is easy, see Proposition VI.5.2.1 of the notes for a proof.)

(k). We check the axioms. First, the sets W , Fib and Cof clearly contain the identity mor-
phisms and are stable by composition. Also, we know that C (RMod) has all small limits
and colimits, which is axiom (MC1). Axiom (MC2) (the fact that W satisfies the two out
of three property) and the fact that W and Fib are stable by retracts are clear. The fact
that Cof is stable by retract follows from its definition as the set of morphisms having the
left lifting property relatively to elements of W ∩ Fib; this finishes the proof of (MC3).
The existence of the two factorizations of axiom (MC5) is proved in questions (g) and (h).
Finally, consider a commutative square

A
f //

i
��

X

p

��
B g

//

h
>>

Y

as in axiom (MC4). If p ∈ W ∩ Fib and i ∈ Cof, the existence of h follows from the
definition of Cof. If i ∈W ∩Cof and p ∈ Fib, the existence of h follows from question (j).

(l). Let W−, Fib− and Cof− be the intersections of W , Fib and Cof with C−(RMod). By
the description of the functors HomC (RMod)(S

n, ·) and HomC (RMod)(D
n, ·) in question

(a), if f : X → Y is a morphism of C−(RMod), then the algorithms of questions (g) and
(h) produce factorizations of f in C−(RMod). So, to prove the statement, it suffices to
check that Cof− is the set of morphisms of C−(RMod) having the left lifting property
relatively to the elements of W− ∩ Fib−. The fact that every morphism of Cof− satisfies
this property is clear. Conversely, let j : A → B be a morphism of C−(RMod) that has
the left lifting property relatively to the elements of W− ∩Fib−, and let p : X → Y be in
W ∩ Fib. Consider a commutative square

A
f //

j
��

X

p

��
B g

// Y

As A,B ∈ Ob(C−(RMod)), there exists N ∈ Z such that A = τ≤NA and B = τ≤NB.
Also, by question (d) and the properties of the truncation functors, the morphism
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τ≤Np : τ≤NX → τ≤NY is still in W ∩ Fib, hence it is in W− ∩ Fib−. So we have a
commutative square

A
τ≤Nf //

j

��

τ≤NX

τ≤Np
��

B
τ≤Ng

//

h′
<<

τ≤NY

with τ≤Np ∈W− ∩ Fib−. By the hypothesis on j, there exists h′B → τ≤NX making the
diagram commute. Composing h′ with the canonical morphism τ≤NX → X, we get a
morphism h : B → X such that p ◦ h = g and h ◦ j = f .

(m). Let f : A→ B be a morphism of left R-modules.

Suppose that f has the left lifting property with respect to every surjective morphism
of left R-modules. Denote the canonical surjection A → Im f by q. Applying the lifting
property of f to the commutative square

A
q //

f
��

Im f

��
B // 0

we get a morphism h : B → Im f such that h ◦ f = q. Applying the lifting property of f
again, this time to the commutative square

A
idA //

f
��

A

q

��
B

h
// Im f

we get a morphism s : B → A such that s ◦ f = idA. So f is injective and we have
B = Im f ⊕ P , with P = Ker s. It remains to show that P is projective. Let u : M → N
be a surjective morphism of left R-modules, and let g : P → N be a R-linear map. We
extend it to a R-linear map g′ : B → N by taking g′ = 0 on Im f . Then we have a
commutative square

A
0 //

f
��

M

u
��

B
g′
// N

so there exists h′ : B →M such that u ◦ h′ = g′. If h = h′|P , we have u ◦ h = g.

Conversely, suppose that f is injective with projective cokernel P = Coker f . Let
p : B → P be the canonical surjection. As P is projective, there exists s : P → B
such that p ◦ s = idP . Hence B ' A ⊕ P , so we may assume that B = A ⊕ P and that

f =

(
idA
0

)
. Consider a commutative square

A
u //

f
��

M

q

��
B v

// N

with q a surjective map. As P is projective, there exists h′ : P →M such that q◦h′ = v|P .

Let h =
(
u h′

)
: B = A⊕ P → N . Then h ◦ f = u and q ◦ h =

(
u v|P

)
= v.
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(n). We first prove that, for every n ∈ Z, the functor Dn−1 : RMod → C (RMod) is right
adjoint to the functor C (RMod) → RMod, X 7→ Xn. Let n ∈ Z, let M be a left
R-module and let X be an object of C (RMod). Then giving a morphism of complexes
u : X → Dn−1(M) is equivalent to giving two R-linear maps un−1 : Xn−1 → M and
un : Xn → M such that un−1 ◦ dn−2

X = 0 and un ◦ dnX = un−1; as the second condition
determines un−1 and implies the first condition, this is equivalent to giving un : Xn →M .
So we have constructed a bijective map

HomC (RMod)(X,D
n−1(M))→ HomR(Xn,M),

which is clearly functorial in X and M .

Let i : A→ B be a morphism of C (RMod). We suppose that i is in Cof, and we want to
show that in is injective with projective kernel for every n ∈ Z:

(1) Suppose first that A = 0, and let n ∈ Z. We want to show that Bn is a projective R-
module. Let p : M → N be a surjective map of left R-modules, and let f : Bn → N
be a R-linear map. Then the morphism Dn−1(p) : Dn−1(M)→ Dn−1(N) is a fibra-
tion, and it is acyclic because both Dn−1(M) and Dn−1(N) are acyclic complexes.
Consider the morphism of complexes u : B → Dn−1(N) corresponding to f : Bn → N
by the adjunction of the first paragraph. As B is cofibrant, there exists a morphism
h : B → Dn−1(M) making the following diagram commute:

0 //

��

Dn−1(M)

Dn−1(p)
��

B u
//

h

;;

Dn−1(N)

and then hn : Bn → M satisfies the identity p ◦ hn = f . This shows that Bn is a
projective R-module.

(2) Now we treat the general case. Note that we have a cocartesian diagram

A

i
��

// 0

��
B // Coker(i)

By Corollary VI.1.2.4 of the notes, this implies that 0 → Coker(i) is a cofibration,
i.e. that Coker(i) is cofibrant. By (1), this shows that in has projective cokernel for
every n ∈ Z. To show that in is injective, consider the morphism u : A→ Dn−1(An)
corresponding to idAn by the adjunction of the first paragraph. As Dn−1(An) is
an acyclic complex, the morphism Dn−1(An) is an acyclic fibration, so there exists
h : B → Dn−1A such that h ◦ i = u, and in particular we have hn ◦ in = idAn , which
implies that in is injective.

Conversely, suppose that, for every n ∈ Z, the morphism in is injective and has projective
cokernel. We want to show that i is a cofibration. Let P = Coker(i). As each Pn is a
projective, the morphisms in : An → Bn are split injections (i.e. there exists morphisms
an : Bn → An such that an ◦ in = idAn), so, without loss of generality, we may assume

that Bn = An ⊕ Pn and that in =

(
idAn

0

)
. As i is a morphism of complexes, we have

dnB =

(
dnA un

0 dnP

)
, with un : Pn → An+1.
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Consider a commutative square (in C (RMod))

A
f //

i
��

X

p

��
B g

//

h
>>

Y

with p an acyclic fibration. We want to show that there exists a morphism h : B → X
making the diagram commute. As g ◦ i = p ◦ f , we have gn =

(
pn ◦ fn vn

)
with

vn : Pn → Y n, and the fact that g is a morphism of complexes is equivalent to the
identities

(1) dnY ◦ vn = pn+1 ◦ fn+1 ◦ un + vn+1 ◦ dnP .

If h : B → X is a morphism such that h ◦ i = f , then we must have hn =
(
fn wn

)
, with

wn : Pn → Xn. The fact that h is a morphism of complexes is equivalent to the identities

(2) dnX ◦ wn = fn+1 ◦ un + wn+1 ◦ dnP ,

and we have p ◦ h = g if and only pn ◦ wn = vn for every n ∈ Z.

Let n ∈ Z. As pn : Xn → Y n is surjective and Pn is a projective R-module, there exists
a R-linear map kn : Pn → Xn such that pn ◦ kn = vn.

Xn

pn

��
Pn

kn
<<

vn
// Y n

Let rn = dnX ◦ kn − kn+1 ◦ dnP − fn+1 ◦ un : Pn → Xn+1. We have

pn+1 ◦ rn = dn+1
Y ◦ pn ◦ kn − pn+1 ◦ kn+1 ◦ dnP − pn+1 ◦ fn+1 ◦ un

= dn+1
Y ◦ vn − vn+1 ◦ dnP − pn+1 ◦ fn+1 ◦ un

= 0 by (1).

Let K = Ker(p). We just proved that rn : Pn → Xn+1 factors through a R-linear map
sn : Pn → Kn+1. Also, we have

rn+1 ◦ dnP = dn+1
X ◦ kn+1 ◦ dnP − fn+2 ◦ un+1 ◦ dnP

and

dn+1
X ◦ rn = −dn+1

X ◦ kn+1 ◦ dnP − dn+1
X ◦ fn+1 ◦ un

= −dn+1
X ◦ kn+1 ◦ dnP − fn+2 ◦ dn+1

A ◦ un

= −dn+1
X ◦ kn+1 ◦ dnP − fn+2 ◦ un+1 ◦ dnP ,

so sn+1 ◦ dnP = −dn+1
K ◦ sn. This means that the family (sn)n∈Z defines a morphism of

complexes from P to K[1]. As P is a bounded above complex of projective R-modules
and K is an acyclic complex, the dual of Theorem IV.3.2.1(i) of the notes says that s is
homotopic to 0. This means that there exists a family of R-linear maps (tn : Pn → Kn)n∈Z
such that, for every n ∈ Z, we have

sn = tn+1 ◦ dnP + dn−1
K[1] ◦ t

n = tn+1 ◦ dnP − dnK ◦ tn.
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For every n ∈ Z, we set wn = kn + tn : Pn → Xn and hn =
(
fn wn

)
: Bn → Xn. As

Kn = Ker(pn), we have
pn ◦ wn = pn ◦ kn = vn,

so pn ◦ hn = gn. It remains to check that h is a morphism of complexes from B to X, so
we check identity (2). Let n ∈ Z. We have

dnX ◦ wn = dnX ◦ kn + dnX ◦ tn

= dnX ◦ kn + tn+1 ◦ dnP − rn

= tn+1 ◦ dnP + kn+1 ◦ dnP + fn+1 ◦ un

= wn+1 ◦ dnP + fn+1 ◦ un,

which is exactly (2).

�
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