MAT 540 : Problem Set 10

Due Saturday, December 7

1 The Dold-Kan correspondence

You need to look at the results of problems 1 and 2 of problem set 3 to do this problem.

Remember the simplicial category A and the category of simplicial sets sSet from problem
9 of problem set 1 and problem 2 of problem set 2. Let ¢ = kar((Z[A])®) (see problems 1 and
2 of problem set 3), so that ¢ is an additive pseudo-abelian category.

The category Func(A°P, Ab) is called the category of simplicial abelian groups and denoted
by sAb; it is an abelian category, where kernel, cokernels and images are calculated in the
obvious way (that is, Ker(X — Y) = (Ker(X,, = Y3))nen etc).

By the Yoneda lemma, the functor hy : 4 — Func(€°P, Ab) is fully faithful; by problems
1 and 2 of problem set 3, we have an equivalence Func,qq(%°?, Ab) ~ Func(A°P, Ab) = sAb.
So we get a fully faithful functor ¥ — sAb, and we identify % with the essential image of this
functor.

If X is a simplical set, we denote by Z(X) the “free simplicial abelian group on X” : it is

the simplicial abelian group sending [n] to the free abelian group Z») and a : [n] — [m] to
the unique group morphism from Z&m) to Z(Xn) extending o* : X — Xp. Ifu: X — Y is
a morphism of simplicial sets, we simply write w : ZX) — 7Y for the morphism of simplicial
abelian groups induced by u. If a : [n] — [m], we also use « to denote the morphism A,, — A,,
that is the image of a by the Yoneda embedding ha : A — sSet.

(a). (1 point) For every n € N, show that the simplicial abelian group Z(?») is in €. (Hint :
It’s the image of the object [n] of A. Follow the identifications !)

Let n > 1. Remember from problem 9 of problem set 1 that we have defined morphisms
30,01, --,0n : [n—1] = [n] in A by the condition that J; is the unique increasing map [n—1] — [n]
such that ¢ ¢ Im(d;). According to our previous conventions, we get morphisms d; : A,_1 — A,
in sSet and ¢§; : Z(4n-1) — Z(A») in sAb. Remember also that, for k € [n], the horn A} is the
union of the images of the d;, for i € [n] — {k}.

(b). (1 point) Show that ZA %) = > icn]—{k} Im(di), where the sum is by definition the image
of the canonical morphism ;¢ 3 Im(d;) — ZAn) and we have identified Z(\%) to its
image in Z(Bn),

If f : o] — X is a map from [n] to a set X, we also use the notation
(f(0) = f(1) —» ... = f(n)) to represent f. Let n € N, and let S,, be the set of sequences
(a1,...,an) € [n] such that a; € {i —1,i} for every i € {1,...,n}; if a = (a1,...,a,), we write
fa=(0—=a; — ... = a,) € Homget([n], [n]) and e(a) = (—1)card{ilaird),

(c). (1 point) For every a € S, show that f, € Homa/([n], [n]).



(d). (2 points) Let p, =) g €(a)fa € Endy (Z(»")). Show that p, is a projector.

(e). (3 points) Show that ZA6) = Im(idya,) —pn) = Ker(py,). In particular, Z18) is an object
of ¥.

(f). (1 point) Let I,, = Im(py,). This is also an object of €. Show that we have an isomorphism
ZAn) ~ 708 @ T, in €.

(g). (2 points) If X is an object of sAb and f : X — I,, is a surjective morphism (that is, such
that f, is surjective for every r > 0), show that there exists a morphism g : I, — X such
that fog=idy,.

For every k € [n], define a simplicial subset ASF of A,, by taking AS*([m]) equal to the set
of nondecreasing « : [m] — [n] such that either card(Im(a)) < k, or card(Im(«)) = k£ + 1 and
0 € Im(). In particular, question (h)(i) says that AS"~! = AZ. (On the geometric realizations,
|A,| is a simplex of dimension n with vertices numbered by 0,1,...,7n, and |AS¥| is the union
of its faces of dimension < k that contain the vertex 0.)

(h). (i) (1 point) For every k € [n] and every m € N, show that

AL([m]) = {a : [m] = [n] | either card(Im(a)) < n—1, or card(Im()) =n and k € Im(a)}.

(ii) (1 point) For every m € N, show that the set
{a:[m] = [n] [ Im(a) 5 [n] = {0}}
is a basis of the Z-module I, ([m]).
(iii) (1 point) For every k € {1,...,n}, show that

285 787 o [0,

(iv) (1 point) For every k € {1,...,n}, show that
28 ~ g7 g 11,

n

i). (1 point) Show that there is an isomorphism Z(A») ~ @"_ I(") in .
(i). ( ) k=01x

(j)- (2 points) For all n,m € N, show that Home (1,,, I,,) is a free Z-module of finite type. We
denote its rank by a, .

(k). (2 points) Show that a,, > 1 and app+1 > 1 for every n € N. (Hint for the second:
do : [n] = [n+1].)

(1). (2 points) Show that, for all n,m € N, we have

(m). (2 points) Show that, for all n,m € N, we have
n+m+1 — (n+1\ (m
(=2 ()0

(n). (2 points) Show that ay,, = appnt1 =1 for every n € N and ay 0, = 0 if m & {n,n + 1}.



(0).

(2 points) Let .# be the full subcategory of € whose objects are the I, for n € N. If o7 is
an additive category, we consider the category €<°(.7) of complexes of objects of .27 that
are concentrated in degree < 0 (that is, complexes X € Ob(%¢ (7)) such that X" = 0 for
n>1).

Give an equivalence of categories from Func,qq(.#°P, &) to €=°(&).

. (2 points) Deduce an equivalence of categories from Func(A°P, &7) to €<°(&), if & is a

pseudo-abelian additive category. This is called the Dold-Kan equivalence.

. (2 points) Suppose that 7 is an abelian category, and let X, be an object of Func(A°P, o).

Forn € Nandi € {0,1,...,n}, we denote the morphism X,(6}") by d? : X,, = X,,—1. The
normalized chain compler of X, is the complex N(X,) in €=<%(«/) given by: for every

n >0,
[ Ker(d})
1<i<n
and d N(x.) 18 the restriction of d?. This defines a functor N : Func(A%, &) — ¢<0(<).
Show that this functor is isomorphic to the equivalence of categories of the previous
question.

Solution.

(a).

().

(d).

We denote the faithful functor A — % by ¢. Let n € N. If m € N, we have
hig (([n])) (1([m])) = Homeg (¢([m]), o([n])) = ZHomalrbir) — Z(&nlmD) — 7(8) ().

So the image of «([n]) by the fully faithful functor ¢ he Func(¢°P, Ab) = Func(A°P, Ab)
is isomorphic to Z(&).

. If X, is a simplicial set and if m € N, we denote by (ey)yuex,, the canonical basis of

ZXe) ([m]) = 2Xm),

We need to show that, for every m € N, the subgroup Z®1%)([m]) of Z(A»)([m]) is
equal to > ;cpy_gey Im(di([m])). Let m € N. For every i € [n], the morphism
6i([m)) : ZB»=1)([m]) — ZA»)([m]) is given on the canonical basis (ew)ueHoma ([m],[n])
of Z(A»=1)([m]) by 8;([m])(ew) = €5,0u- SO > icin]—{ky Im(di([m])) is the Z-submodule of
727 ([m]) generated by all the e, for u € Homa([m],[n]) factoring through some §;,
i # k. This is the same as Z*%)([m]) by definition of the horn.

We have to show that f, is nondecreasing. Let i € {0,...,n — 1}. If ¢ = 0, then
fa(i) = 0 <i. Then f,(i) = a; € {i — 1,i}, so fo(i) < i. On the other hand, we have
fali+1) =ajs1 € {i,i+ 1}, 50 fo(i+1) >0 > fu(i).

Let a = (a1,...,an) € Sy, and suppose that a # (1,...,n). Then Im(f,) is strictly
contained in [n], and 0 € Im(f,). This means that there exists i9 € {1,...,n}
such that i9g ¢ Im(f,). Let S, = {(b,...,b,) € Sp | b, = io} and
SIo= {(b1,...,bp) € Sy | biy, = io — 1}. We define a map ¢ : S, — S/ by sending
(b1,...,bn) to (b1,...,big—1,90 — 1, biy+1,...,b,). It is easy to see that ¢ is a bijection and
that £(¢(b)) = —e(b) and that fy o fo = fop) © fo for every b e S;,. So

pnofa=Y e®fpofat Y c®)foo fa

besS), beSl

=Y c®fyofa— > c®fsofa
bes!, beSs),

=0.



(h).

On the other hand, if @ = (1,...,n), then e(a) = 1 and f, = id,), 80 py © fo = pn.

This shows that p, o p, = pn.

. As p, is a projector, we know that Ker(p,,) exists in ¢ and that Ker(py,) = Im(idya,) —pn)

by problem 2 of problem set 3.

For every a € S, such that a # (1,...,n), we have seen that there exists
i€{l,...,n} —Im(f,), and then f, factors through d;, so the image of f, in the abelian
category sAb is contained in ZA8), As idyan —pn = _ZQGSH—{(L...,H)} £(a)fa, this

shows that ITm(idya,) — pn) C Z4A0).

If i € {1,...,n}, then the same proof as in the solution of question (d) shows that
pn 06 = 0, hence (idya,) — pp) 0 6 = 6. As ZA18) = 3 Tm(;) by question (b), this
implies that Z"8) Im(idyan) — pn)-

. This is question (b) of problem 2 of problem set 3.
. Let i = idj,; € An([n]), let e; be the corresponding element of ZA)([n]), and let & be

its image in I,([n]). As f is surjective, we can find z € X,, such that f,(z) = €;. Let
¢ : Z(®) — X be the morphism corresponding to z by the bijection

Homgap (Z»"), X) ~ Homgget (Ap, X) ~ X,

and let ¢ = g o ¢’, where q : ZAn) — I, is the canonical projection. We want to show
that g o f =idy,. By the construction of g, we have g o f(€;) = €;. Let m € N. Remem-
ber that we denote by (€u)ucHoma ([m],[n)) the canonical basis of ZAn) ([m]). The family

(q(ew))uctoma (m),[n)) SPans In([m]), so it suffices to show that g, o fi(gm(ew)) = qlew)
for every u. Let u € Homa ([m], [n]). Then iou = u, so e, = u*(e;), and

fm © gm(gm(ew)) = u*(fn o gnlan(ei))) = v (q(e:) = q(ew).

(i) The set A} ([m]) is the set of nondecreasing maps o : [m] — [n] that factor through
some §;, for i € [n] —{k}. If @ : [m] — [n] is a nondecreasing map, then, by definition
of §;, the map « factors through §; if and only if ¢ & Im(c). This shows that A} ([m])
does not contain any surjective «, contains all the « such that | Im(a)| <n —1, and
contains an « such that |Im(«a)| = n if and only if [n] — Im(«) # {k}, i.e. k € Im(a).
This is what we wanted to prove.

(ii) By (i), we have
{a € An([m]) [ Im(a) O [n] = {0}} = An([m]) = Ag([m]),

so the family (gm(€a))aca, ([m)), Im(a)>[n]—{o} is @ basis of I,,([m]) (where g is as before
the canonical projection Z(A») — I,,).

(iii) Wefix k € {1,...,n}. Let Q be the set of A C [n] such that 0 € A and |A| = k+1. For
every A € Q, let B4 : [k] — [n] be the composition of the unique order-preserving bi-
jection [k] = A and of the inclusion A C [n]; note that 84(0) = 0. Consider the mor-
phism f4 : Z(*%) — Z(An) such that, for every m € N and every a € Homa ([m], [k]),
we have fa(ea) = €8,0a- Note that Im(fa) C Z(A’ék), SO we can see fj as a mor-
phism from Z(*%) to ZA3). Let m € N and o € AE([m]); if |Tm(a)| < k — 1, then
|Im(Baoa)| < k—1andso Broa € ASF~1([m]); if | Im(a)| = k and 0 € Im(a), then
|Im(B4 0 )| =k and 0 € Im(B4 0 ), and so B4 0 a € AS*¥1([m]). This shows that
fa(Zh8)) ¢ Z(A§k71), hence that f4 induces a morphism gy : I, — Z(A’ék)/Z(A’ékil).



(k).

. By question (h)(iv) (and an easy induction), we have an isomorphism Z(*») ~ @7} _ T, Ig

<k <k—1

Let g =3 scq9a: If} — ZAF7) J7(3%7 ) We claim that g is an isomorphism; this
will finish the proof, because [Q| = (Z) Let m € N. For every A € Q and every
a € Homa ([m], [k]) such that either |Im(«)| = k+ 1, or |Im(a)| = k and 0 & Im(a),
we denote by e4 o € 1 ,? the basis element e, of the copy of I} corresponding to A € Q.
By (ii), this gives a basis of (I{})([m]). On the other, a basis of (Z(A’Sbk)/Z(A’%k_l))([m])
is given by the images of the basis elements eg € Z(A§k)([m]) for 8 € Homa ([m], [n])
such that either |[Im(8)] = k+ 1 and 0 € Im(53), or |Im(8)| = k and 0 & Im(53). To
show that g, : (I)([m]) — (Z(A#)/Z(A’%k_l))([m]) is an isomorphism, it suffices to
notice that each 5 € Homa ([m], [n]) as in the previous sentence is equal to 54 o« for
a unique A € Q and a unique o € Homa ([m], [k]) (indeed, we must have A = Im(f3)
if | Im(8)| = k+1and 0 € Im(B), and A = {0} UIm(p) if | Im(B)| = k and 0 & Im(p),
and then A determines « because (34 is injective), and that we then have either

|Im(a)| =k + 1, or | Im(a)| = k and 0 & Im(c).
(iv) This follows easily from (iii) and from question (g).
)

in sAb. As both sides are objects of € by question (f), and as € is a full subcategory of
sAb, this isomorphism is an isomorphism in %.

. As I, (resp. I,) is a direct factor of Z(*n) (resp. Z(Am)) by question (f), the abelian

group Home (I, I),) = Homgap (I, I;;,) admits an injective morphism into
HomSAb(Z(A”), Z(Am)) = Homgget (A, Z(Am)) — Z(Am)([n}) — g(Homa([n],[m]))

As the latter group is free and finitely generated, so is Homey (I, Iy,).

We have I,, # 0 because Afj C Ay, so 0 # id;, € Homy (I, 1), s0 app > 1.

Consider the unique nondecreasing injective map dg : [n] — [n + 1] such that 0 ¢ Im(dp).
(In other words, we have dp(i) = i + 1 for every ¢ € [n].) This induces a morphism
FEA /O ”+1). If m € Nand o € Aj([m ]) then ]Im( )| <mn,so |Im(dpoa)] <n
and 8 o o € Al ([m]). This shows that f(ZA8)) ¢ Z®o ) hence that f induces a
morphism g : I, — I41. Also, if a = idy, € Homa([n], [n]), then oo & AFt([n]), so
the image by g of the class of e, in I,([n]) is not 0. This shows that g # 0, hence that
Homy (I, Int1) # 0 and so ap 41 > 1.

. Let n,m € N. We have seen in the solution of question (j) that Homgay, (Z(4), Z(Am)) is

a free Z-module of rank | Homa ([n], [m])| = ("J“:';H) = (”‘;Tfl) On the other hand, by
question (i), we have

Homgap (23, 25m)) =~ B @) (Homgab (I, 1) (1),
k=0 =0

and the right hand side is a free Z-module of rank > o > " ar:(3) (7).

. Remember that Vandermonde’s identity says that, for all a, b, c € N, we have

()-2005)

Applying this to @ = n+ 1 and b = ¢ = m and using the fact that ('}) = (,™,) for

0 <k <m, we get
n+m+1 " /m\ [n+1
)= ()



To prove Vandermonde’s identity, we consider an indeterminate t. By the binomial theo-

rem, we have
a
a .
1+6)%= t
(1+1) Z(J ,

=0
b b 4
(l—i—t)b:Z(.)tJ
=0 M
and ,
a+
+b
1+oett =3 (C77) e
(1+1) ZO< )

As (1+ )"0 = (1 +)%(1 +1)b, if ¢ € N, we get two formulas for the coefficient of ¢ in
this polynomial. The first formula is (ajb), and the second formula is

> (0)-2(2)0)

4,720, i+j=c 7=0

. By questions (1) and (m), we have

NE

() -2 00T 200

()G

where the second equality comes from Pascal’s rule (ngl) = (2) + (kfl). By question (k)
(and the obvious that all the aj; are nonnegative), we have

25 (002000

This implies that, for k € [n] and [ € [m], we have ap; = 01if | € {k,k+ 1} and ay; = 1 if
l € {k,k+1}. As n and m were arbitrary, we get the conclusion.

B
Il

. Let F € Func(.#°P, o7). We define a complex X € ¥<Y(«/) in the following way: For

every n € N, we take X ™ = F(I,) and d" ' : X "' = F(I,,11) — X" = F(I,,) to the
image by F' of the element g,, of Hom¢ (I, I,,+1) constructed in the solution of question
(k). This defines a functor ® : Func,qq(.#°P, &) — €=9().

Conversely, let X be an object of €<(). We define a functor F : .#°P — o in the fol-
lowing way: For every n € N, we take F/(I,,) = X ™. Let n,m € Nand f € Homg (I, I,,).
If m € {n,n+ 1}, then f = 0, so we must F(f) = 0. If m = n, then, by question (n),
the morphism is of the form a -idj,, where a € Z, and we must set F(f) = aidy-n.
If m = n + 1, then, by question (n), the morphism f is of the a - g, with a € Z, and
we set F(f) = a-dy" ' : X\ = F(I,41) - X" = F(I,). This defines a functor
U 6<0(o7) — Funcaqq (L, ).

The fact that ® o W = idg<o(,) follows immediately from the definitions of the functors
® and ¥, and the fact that ¥ o ® = idpypc,, (sor o) follows easily from the definition of
these functors and from question (n).

. By problems 1 and 2 of problem set 3, we have an equivalence

Funcaqq(€°P, &) ~ Func(A°P, /), so we can define a functor Func(A°P, ) — €<0(<7)
by composing a quasi-inverse of this equivalence, the restriction functor
Funcaqq(6°P, &) — Funcagq(-#°P, «7) and the equivalence Func,qq(.#°P, &) = ¢<°(<).



Showing that this is an equivalence of categories amounts to showing that the restriction
functor Func,qq(€°P, &) — Func,qq(-#°P, &) is an equivalence of categories.

By the construction of the pseudo-abelian completion in problem 2 of problem set 3,
every object of ¢ is a direct summand of an object of Z[A]?®] hence, by construction of
the universal additive category in problem 1 of problem set 3, a direct summand of an
object of the form @, ; Z(An) | for (n;)icr a finite family of nonnegative integers. By
question (i), this implies that every object of ¥ is a direct summand of an object of the
form @, In;, for (n;)icr a finite family of nonnegative integers.

Let .#’ be the full subcategory of ¢ whose objects are finite direct sums of objects of
#; in other words, the category .#’ is the category .#% defined in problem 2 of prob-
lem set 3. Then .#’ is an additive category and the preceding paragraph says that &
is the pseudo-abelian completion of .#’. By problem 2 of problem set 3 (applied to
the opposite categories), the restriction functor Func,qq(¢°P, «) — Funcaqq(S'?, o)
is an an equivalence of categories. So it remains to show that the restriction functor
Func,qq (2P, &) — Funcagqa(F°P, ) is an equivalence of categories. But this is proved
in problem 1 of problem set 3.

(q). Let DK : Func(A°P, &) — €<°(7) be the equivalence of categories of question (p).

Let Xo € Func(A°P, 7). We still denote by X, the corresponding functor P — <.
Let n € N, and let § = Y27, 6; : @, Z(A»-1) — Z(An) | where we use the notation of
question (b); by that question, we have Z(®1¢) = Im(§), and by question (f), the canoni-
cal projection Z(®") — I, identifies I,, to Cokerd and both Imd and Cokerd are direct
summands of Z(A»), Tt is easy to deduce from this that, if F' : °P — %’ is any addi-
tive functor, then the morphism F(I,) — F(Z(*")) is a kernel of F(§). Applying this
to FF = Xo : P — o, we see that F(I,) = DK(X,)™™ is canonically isomorphic to
Ker(@;, : d? : X, — X_) = o Ker(d') = N(X*®)~™. Also, as the nonzero mor-
phism from I, to I, constructed in the solution of question (k) is the restriction of
8o : ZAn=1) — 7(An) (followed by the canonical projection Z(*n) — I,,), its image by X,
is the restriction of dj. So we get an isomorphism of complexes DK (X,) ~ N(X,), and
this isomorphism is clearly functorial in X,.

O

2 The model structure on complexes

Let R be a ring, and let &/ = pMod. [

We denote by W the set of quasi-isomorphisms of %' (<7), by Fib the set of morphisms
f:X — Y in €(«) such that f* : X" — Y" is surjective for every n € Z and by Cof
the set of morphisms of € (<) that have the left lifting property relatively to every morphism
of W NFib. We say that X € Ob(%(«)) is fibrant (resp. cofibrant) if the unique morphism
X — 0 (resp. 0 — X) is in Fib (resp. in Cof). The goal of this problem is to show that
(W, Fib, Cof) is a model structure on ¢ (</).

For every M € Ob(4), let K(M,n) = M[—n] € Ob(¢ (<)), and let D"(M) be the complex
X such that X" = X" = M d% = idy and X* = 0 if i € {n,n + 1}. We also write
S™ = K(R,n) and D™ = D"(R). For every M € Ob(4/), the identity of M induces a morphism
of complexes K (M,n) — D"~1(M) (which is clearly functorial in M).

"We only need o/ to have all small limits and colimits and a nice enough projective generator, but we take
&/ = rMod to simplify the notation.



. (2 points) Show that the functor D" : pMod — %(</) is left adjoint to the functor

€ (o) — o, X — X", and that the functor K(-,n) : & — € (&) is left adjoint to the
functor Z™.

. (1 point) Show that a morphism of ¢ (<) is in Fib is and only if it has the right lifting

property relatively to 0 — D™ for every n € Z.

. (1 point) Show that D™ is cofibrant for every n € Z.
. (2 points) Show that S™ is cofibrant for every n € Z.
. Let p: X — Y be a morphism of € ().

(i) (2 points) If p is in W N Fib, show that it has the right lifting property relatively to
the canonical morphism S" = K(R,n) — D"~ ! for every n € Z.

(ii) (3 points) If p has the right lifting property relatively to the canonical morphism
S™ — D" for every n € Z, show that it is in W N Fib.

. (1 point) Show that the canonical morphism S™ — D"~! is in Cof.

. Let f: X — Y be a morphism of ¢(#/). Let £ = X & D, ez, yeyn D" let i: X = E

be the obvious inclusion and let p : £ — Y be the morphism that is equal to f on
the summand X and that, for every n € Z and y € Y", is equal on the corresponding
summand D™ to the morphism D™ — Y corresponding to y € Y™ = Hompg(R,Y™) by the
adjunction of question (a). We clearly have poi = f.

(i) (1 point) Show that ¢ is in W.
(ii) (1 point) Show that ¢ has the left lifting property relatively to any morphism of Fib.
(iii) (1 point) Show that p is in Fib.

. Let f: X — Y be a morphism of ¢ (). Let Xg = X and fy = f. For every i € N, we

construct morphisms of complexes j; : X; — X411 and fi+1 @ X;41 — Y such that j; is
a monomorphism and in Cof and f;+1 o j; = f; in the following way: Suppose that we
already have f; : X; — Y. Consider the set Z; of commutative squares

(D) s TP,
T
pro-l .y

9D

(for some np € Z). Let j; : X; — X1 be defined by the cocartesian square

@peg, 5" = x,

\L lji
@peg, PP — Xin
The morphisms f; : X; — Y and > gp : @De% D™~1 Y induce a morphism
fir1 : Xix1 — Y, and we clearly have f;11 0 j; = f;.

Finally, let F = hﬂieN X; (where the transition morphisms are the j;), let j : X — F be
the morphism induced by jp and let g : F' — Y be the morphism induced by the f;.

(i) (1 points) Show that goj = f.



(ii) (1 point) Show that j is a monomorphism.
iii) (2 points) Show that j is in Cof.

(
(iv) (2 points) Show that ¢ is in W N Fib.

(1 point) Show that every element of Cof is a monomorphism.

(2 points) Show that every element of W N Cof has the left lifting property relatively to
elements of Fib. (Hint: Use question (g).)

. (3 points) Show that (I, Fib, Cof) is a model structure on €' ().
. (2 points) Show that the intersections of (W, Fib, Cof) with ¢~ () also give a model

structure on this category.

. (2 points) Let f: A — B be a morphism of «/. Show that f has the left lifting property

relatively to epimorphisms of &7 if and only if it is injective with projective cokernel.

. (3 points) Let ¢ : X — Y be a morphism of ¢~ (). Show that ¢ is in Cof if and only if,

for every n € Z, the morphism ¢" is injective with projective cokernel.

Solution.

(a).

Let X be an object of €' (/) and M be a left R-module. Giving a morphism of complexes
from D"(M) to X amounts to giving R-linear maps f : M — X" and g : M — X"+!
such that g = d% o f; so there is no extra condition on f, and g is determined by f. In
other words, we have constructed a bijection

Homcg(%)(D"(M), X) 5 Homp (M, X™),

which is clearly functorial in M and X.

On the other hand, giving a morphism of complexes from K (M, n) to X amounts to giving
a R-linear map f : M — X" such that d% o f = 0; this is the same as giving a R-linear
map M — Ker(d%) = Z"(X). In other words, we have constructed a bijection

Hom‘g(d) (K(M7 n)? X) = HOHIR(M, Zn(X))a

which is clearly functorial in M and X.

Moreover, these adjunctions have the following property (which is clear on their construc-
tion): Let u : K(M,n) — D" (M) be the morphism of complexes induced by idys. If
we have a morphism f : D" 1(M) — X corresponding to # € X" ! then the morphism
fou:K(M,n) — X corresponds to d% *(z) € Z"(X).

. Let f: X — Y be a morphism of € (/). Saying that f has the right lifting property

with respect to 0 — D™ means that, for every morphism g : D" — Y, there exists
h : D™ — X such that foh = g. By question (a), this is equivalent to saying that the
map Hompg(R, X") — Hompg(R,Y™), h — f o h is surjective, which is equivalent to the
fact that f™: X™ — Y™ is surjective. This proves the assertion.

. By question (b), the morphism 0 — D" has the left lifting property with respect to every

fibration, so it is a cofibration.

. Let f: X — Y be amorphism in WNFib, and let n € Z. We want to show that 0 — S™ has

the left lifting property relatively to f. As Homy(,)(S™, C) = Homg(R, Z"(C)) = Z™(C)
for every object C' of € (&) (by question (a)), this is equivalent to the fact that the
map Z"(X) — Z™(Y) induced by f™ is surjective. So let y € Z™(Y). As f is a



().
(2)-

quasi-isomorphism, there exists x € Z"(X) such that f"(z) —y € B™(Y). Write
f(z) —y = d¥_,(y), with ¢ € Y"1, As f is in Fib, there exists 2’ € X"~! such
that f*~1(2') = ¢/, and then we have

y=["(2) = dp () = f(2) = dp 1 (7)) = (2 — di 4 (2)

Also, as dX o dX | =0, we still have x — dX | (2/) € Z"(X).

. By the solution of (a), saying that p : X — Y has the right lifting property relatively

to 8" — D" ! is equivalent to the following statement: For every v/ € Y™ ! and for
every x € Z"(X) such that div ' (y') = p"(x) € Z™(Y), there exists z' € X" ! such that
dv(z') =z and p" L (2) = ¥/

(i) Suppose that p € W N Fib, and let 3 € Y" ! and + € Z"(X) be such that
dy ' (y') = p™(z). In particular, we have p"(X) € B"(Y); as p is a quasi-
isomorphism, this implies that 2 € B"(X), so there exists ' € X"~ ! such that
dv(2') = x. We have

dy ) — ) = p"(dy (@) — P (x) =0,

so p" (') —y € Z"1(Y). By question (d), there exists 2/ € Z"}(X) such that
pt 2"y = pn i (a)) — o, ie. oy — p" (2! — 2”). Moreover, as 2" € Z" (X)), we
have dy (2’ — 2") = d' ' (2') = x. So we are done.

(ii) Suppose that p has the right lifting property relatively to S™ — D"~! for every
n € Z.

We first show that p" induces a surjective map Z"(X) — Z"(Y) for every n € Z.
Indeed, let n € Z and y € Z™(Y). Then d(y) = 0 = p"T1(0), so there exists € X"
such that d% (z) =0, i.e. € Z"(X), and that p"(z) = y.

Now we show that p" : X™ — Y™ is surjective for everyn € Z. Let n € Z and y € Y".
Then d%(y) € Z"1(Y), so, by the previous paragraph, there exists 2/ € Z"T(X)
such that p"™1(a’) = d(y). Then, by assumption, there exists z € X" such that
d%(z) = 2’ and p"(z) = y.

We finally show that p is a quasi-isomorphism. Let n € Z. We already know that
the map H"(p) : H*(X) — H"(Y) is surjective (because Z"(X) — Z"(Y') is surjec-
tive), so it remains to show that it is injective. Let = € Z"(X), and suppose that
p"(z) € B"(Y). Then there exists y' € Y™ ! such that p"(z) = d} (y'), so we can
also find 2/ € X! such that dy *(2') = x and p"~*(2’) = ¢/. In particular, we have
x € B"(X).

This follows from question (e) and from the definition of Cof.

(i) An easy calculation shows that the complex D™ has zero cohomology for every n € Z.
As i is the direct sum of idx and of morphisms 0 — D™, this implies that 7 is a quasi-
isomorphism.

(ii) The morphism idx has the left lifting property relatively to any morphism of ¢(<7),
and morphisms 0 — D" have the left lifting property relatively to morphisms of Fib
by question (b). Also, for every morphism of € (<), the set of morphisms that have
the left lifting property relatively to f is stable by direct sums (this is easy, and it is
also proved in Proposition VI.5.2.1 of the notes).

(iii) It is clear on the definition of p that every element of Y™ is in the image of p", for
every n € Z. So p is in Fib.

10



(h).

(i)

For every ¢ € N, the composition X — X; f# Y is equal to
fio(jic10ji—20...0 fo) = fic10(0ji—20...0fo) =...= fiojo=f.

Soqoj=f.

For every ¢ € N, the morphism X — X; (which is j;_1 0j;_20...07g) is a monomor-
phism. As filering colimits are exact in ¢ (rMod) (because they are exact in pMod),
this implues that j is a monomorphism.

For every i € N, the morphism @B pey. S™P — Dpey. D"~ is in Cof by question
(e). This easily implies that j; is in Cof for every i € N, and then that j is is Cof
(see Proposition VI.5.2.1 of the notes).

By question (e), it suppose to show that g has the right lifting property with respect
to S™ — D"~ ! for every n € Z. So fix n € Z, and consider a commutative square:

gn__ % S F

\L 7
- q
s

Ve h J{

Dn—l — Y

We want to find h : D! — Y making the diagram commute. Remember that
Homg () (S™, F) = Z"(F) by (a). As F" = lim, X", there exists ¢ € N and
x € X' such that the element z of Z"(F') corresponding to u is the image of z; in
F". As d}f(z) = 0, the image in F"*! of d% (z;) is 0. But the morphism X; — F
is a monomorphism (for the same reason as in (i)), so dj (z;) = 0, i.e. x; € Z"(X;).
Let u; : S™ — X; be the morphism corresponding to x;. By definition of X1, there
is a morphism h; : D™ — Y making the following diagram commute:

S”LXi

L

-1
D" " ——= Xit1
1

We get the desired morphism h : D™ — F by composing h; with the canonical
morphism X;,1 — F.

(i). Let i« : X — Y be an element of Cof. By question (h), we can write i = ¢q o j, with

j + X — F a monomorphism and ¢ € W N Fib. In particular, we have a commutative
square

By definition of Cof, there exists A : Y — F such that goh = idy and hoi =j. As jis a
monomorphism, this implies that ¢ is also a monomorphism.

. Let j: X = Y be an element of W N Cof. By question (h), we can write j = p o i, where
i € W has the left lifting property relatively to fibrations and p € Fib. As j € W, we also

11



have p € W. Consider the commutative square

XA

) h/1
il L7
s

Y =—=Y

As p e WNFib and j € Cof, there exists h: Y — A such that poh =idy and hoi = j.
So we have a commutative diagram

X=—X=—7—=X

ji i J

Y —A——Y
h p

which shows that j is a retract of 7. As ¢ has the left lifting property relatively to fibrations,
so does j. (This is easy, see Proposition VI.5.2.1 of the notes for a proof.)

. We check the axioms. First, the sets W, Fib and Cof clearly contain the identity mor-

phisms and are stable by composition. Also, we know that ¥’ (rMod) has all small limits
and colimits, which is axiom (MC1). Axiom (MC2) (the fact that W satisfies the two out
of three property) and the fact that W and Fib are stable by retracts are clear. The fact
that Cof is stable by retract follows from its definition as the set of morphisms having the
left lifting property relatively to elements of W N Fib; this finishes the proof of (MC3).
The existence of the two factorizations of axiom (MC5) is proved in questions (g) and (h).
Finally, consider a commutative square

f

. X
7

h ,
s p
v

o

i

-

Sy

— Y

g

as in axiom (MC4). If p € W NFib and i € Cof, the existence of h follows from the
definition of Cof. If i € W N Cof and p € Fib, the existence of h follows from question (j).

. Let W, Fib™ and Cof™ be the intersections of W, Fib and Cof with 4~ (rMod). By

the description of the functors Homeg(,moa)(S™, ) and Homeg(,nmoea) (D", ) in question
(a), if f: X — Y is a morphism of ¥~ (rMod), then the algorithms of questions (g) and
(h) produce factorizations of f in €~ (gMod). So, to prove the statement, it suffices to
check that Cof™ is the set of morphisms of ¥~ (rMod) having the left lifting property
relatively to the elements of W~ N Fib~. The fact that every morphism of Cof™ satisfies
this property is clear. Conversely, let j : A — B be a morphism of ¥~ (rpMod) that has
the left lifting property relatively to the elements of W~ NFib™, and let p: X — Y be in
W N Fib. Consider a commutative square

A*f>X

J p

As A, B € Ob(¢~(gkMod)), there exists N € Z such that A = 7<¥A and B = 7<VB.
Also, by question (d) and the properties of the truncation functors, the morphism

12



7=Np . 7=NX 5 7=NY s still in W N Fib, hence it is in W~ N Fib~. So we have a
commutative square

T<N§f
— s rsNx

A
h' /1
i // -,—SNP
s
B

— > =Ny
<N

with 7<Np € W~ NFib~. By the hypothesis on j, there exists /’B — 7= X making the
diagram commute. Composing A’ with the canonical morphism 7=V X — X, we get a
morphism h : B — X such that poh =g and ho j = f.

. Let f: A — B be a morphism of left R-modules.

Suppose that f has the left lifting property with respect to every surjective morphism
of left R-modules. Denote the canonical surjection A — Im f by ¢. Applying the lifting
property of f to the commutative square

A—q>1mf

|

B——0

we get a morphism h : B — Im f such that ho f = ¢. Applying the lifting property of f
again, this time to the commutative square

Aa g

i

we get a morphism s : B — A such that so f = id4. So f is injective and we have
B =1Imf & P, with P = Kers. It remains to show that P is projective. Let u: M — N
be a surjective morphism of left R-modules, and let g : P — N be a R-linear map. We
extend it to a R-linear map ¢’ : B — N by taking ¢ = 0 on Im f. Then we have a
commutative square

Ao M
1k
B——=N
g
so there exists b/ : B — M such that uoh/ = ¢'. If h = hip, we have uoh = g.
Conversely, suppose that f is injective with projective cokernel P = Coker f. Let

p : B — P be the canonical surjection. As P is projective, there exists s : P — B
such that pos = idp. Hence B ~ A @ P, so we may assume that B = A @ P and that

id . .
f= 94 | Consider a commutative square
0

AL M

f q

B——N
v

with g a surjective map. As P is projective, there exists b’ : P — M such that goh’ = v|p-
Let h=(u h):B=A®P — N. Then ho f=wand goh= (u vp)="0.
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(n). We first prove that, for every n € Z, the functor D"~ ! : RMod — ¥ (gMod) is right
adjoint to the functor ¥(gkMod) — rMod, X — X". Let n € Z, let M be a left
R-module and let X be an object of ¥(gMod). Then giving a morphism of complexes
u: X — D" Y(M) is equivalent to giving two R-linear maps u"~! : X"~! — M and
u™ : X™ — M such that v ! o d’;{Q = 0 and u" ody = u™1: as the second condition
determines ™! and implies the first condition, this is equivalent to giving u" : X™ — M.
So we have constructed a bijective map

Hom%”(RMod)(Xa Dnil(M)) — HOII]R(Xn, M),

which is clearly functorial in X and M.

Let i : A — B be a morphism of ¥(gMod). We suppose that 7 is in Cof, and we want to
show that ¢" is injective with projective kernel for every n € Z:

(1) Suppose first that A = 0, and let n € Z. We want to show that B" is a projective R-
module. Let p: M — N be a surjective map of left R-modules, and let f: B® — N
be a R-linear map. Then the morphism D"~ 1(p) : D"~Y(M) — D""1(N) is a fibra-
tion, and it is acyclic because both D"~'(M) and D" !(N) are acyclic complexes.
Consider the morphism of complexes u : B — D" 1(N) corresponding to f : B® — N
by the adjunction of the first paragraph. As B is cofibrant, there exists a morphism
h: B — D" '(M) making the following diagram commute:

0—— D" (M)

l / lD"—l(m

BZ—= D"L(N)

and then A" : B" — M satisfies the identity p o A"™ = f. This shows that B" is a
projective R-module.

(2) Now we treat the general case. Note that we have a cocartesian diagram

A 0
I
B —— Coker(i)

By Corollary VI.1.2.4 of the notes, this implies that 0 — Coker(i) is a cofibration,
i.e. that Coker(i) is cofibrant. By (1), this shows that ¢" has projective cokernel for
every n € Z. To show that i" is injective, consider the morphism u : A — D"~ 1(A")
corresponding to id4» by the adjunction of the first paragraph. As D" '(A") is
an acyclic complex, the morphism D"~1(A") is an acyclic fibration, so there exists
h: B — D" 1A such that hoi = u, and in particular we have h" o0 i"® = id4», which
implies that ¢™ is injective.

Conversely, suppose that, for every n € Z, the morphism ¢" is injective and has projective
cokernel. We want to show that ¢ is a cofibration. Let P = Coker(i). As each P" is a
projective, the morphisms " : A™ — B"™ are split injections (i.e. there exists morphisms
a™ : B™ — A™ such that a™ o™ = idgn), so, without loss of generality, we may assume

that B" = A" @ P" and that " = <1dA"

0 ) As 7 is a morphism of complexes, we have

n o (da " with u™ : P* — A"+l
B -_ n ] . .
0 dp
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Consider a commutative square (in € (rMod))

f

o x
n,7
/
7/

h

7 p

-

Sy

— =Y
g

with p an acyclic fibration. We want to show that there exists a morphism A : B — X
making the diagram commute. As goi¢ = po f, we have ¢g" = (p” o fm v") with
v P" — Y" and the fact that ¢ is a morphism of complexes is equivalent to the
identities

(1) r}L/ o™ :pn—i—l o fn+l ou™ + Un—i—l o drILD

If h: B — X is a morphism such that hoi = f, then we must have h" = (f” w”), with
w™ : P* — X™. The fact that h is a morphism of complexes is equivalent to the identities

2) Yow' = T ou 4w od,

and we have po h = ¢ if and only p" o w™ = v" for every n € Z.
Let n € Z. As p™ : X™ — Y™ is surjective and P" is a projective R-module, there exists

a R-linear map k™ : P™* — X™ such that p” o k™ = v™.

X?’L

7
k™ - n
2 p

s/
Pt —=Y"
v

Let v =d'% o k" — Entlo dp — frtlowu™: P — X" We have
pn+1 o ,rn _ d$+1 Opn o kn . pn+1 o kn—l—l o d?]m} o pn+1 o fn+1 o un
_ d$+1 o ,Un _ Un+1 ° d7113 _pn+1 ° fn—l—l o un
=0 by (1).

Let K = Ker(p). We just proved that " : P* — X"*! factors through a R-linear map
s P" — K™, Also, we have

rtodh =dyt o k" odp — fM o u™ M o dl

and
d}+l or™ — _dr)z(—i-l o kn+1 ° d% o d}-i—l o fnJrl ou™
_ _d’r)l,(+1 o kn+1 ° dr}LD o fn+2 o d;LlJrl ou™
_ 7d&+1 o kn+1 ° dr}LD o fn+2 o un+1 o dT}é,
so s"Tl o dl = —d! o s™. This means that the family (s"),cz defines a morphism of

complexes from P to K[1]. As P is a bounded above complex of projective R-modules
and K is an acyclic complex, the dual of Theorem IV.3.2.1(i) of the notes says that s is
homotopic to 0. This means that there exists a family of R-linear maps (t" : P" — K")pez
such that, for every n € Z, we have

3":t""’lod’]é—i—dan[ll]ot":t""'lod’fg— ot

15



For every n € Z, we set w" = k"™ +t" : P* — X" and A" = (f" w”) : B" — X™ As
K™ = Ker(p"™), we have
pnown:pnokn:vn’

so p" o h™ = ¢g™. It remains to check that A is a morphism of complexes from B to X, so
we check identity (2). Let n € Z. We have

Yow" =dy ok" +d%y ot"
=d% o k" +t" T odp — 1"
:tn+10d7113—|—]€n+10d7;5—|—fn+10un

— ,wnJrl o dg + fnJrl o un’

which is exactly (2).
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