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1 Fields

First we introduce the sets that are going to serve as the generalizations of the scalars.

Definition 1.1 We say that a set K with two laws + and × is a field if the following
conditions hold :

(1) The law + has the following properties :

a) It’s commutative : a+ b = b+ a;

b) It’s associative : a+ (b+ c) = (a+ b) + c;

c) It has an identity element 0 (which means that 0 + a = a + 0 = a for every
a ∈ K).

d) For every a ∈ K, there exists b ∈ K such that a + b = b + a = 0. (We write
b = −a.)

(2) The law× is also commutative (a×b = b×a) and associative (a×(b×c) = (a×b)×c),
it also has an identity element, which is called a (so we have a× 1 = 1× a = a for
every a ∈ K), and moreover × is distributive with respect to +, which means that
: for every a, b, c ∈ K,

a× (b+ c) = (a× b) + (a× c) and (b+ c)× a = (b× a) + (c× a).

(3) For every a ∈ K such that a 6= 0, there exists b ∈ K such that a× b = b× a = 1.
(We say that b is the inverse of a and write b = a−1.)

(4) 0 6= 1.

Remark 1.2 • If K satisfies conditions 1 and 2 only, we say that K is a commutative
ring. An example is the ring of polynomials Q[X]. We could do linear algebra over
commutative rings, but it’s more complicated and is not the goal of this class.

• If K satisfies conditions 1 and 2, except for the commutativity of ×, we say that
K is a ring. An example is the set square n × n matrices Mn(Q). Rings are
very interesting but are also not the focus of this class; we will only meet a few
examples, so it’s convenient to have a name.
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• We often don’t write the sign × (so we write ab instead of a× b). We also usually
write a− b instead of a+ (−b).

• There are a few facts that we take for granted in usual arithmetic, such as the fact
that a × 0 = 0. In a general field, they are still true but we have to prove them
before we can use them. To prove some of these facts effectively, the notion of a
group will be useful, though it’s not necessary to know what it is to understand
linear algebra.

Example 1.3 Here are some examples (and non-examples).

• N := Z≥0 is not a field or even a ring, because 2 (for example) has no additive
inverse in N.

• Z is not a field, becaues 2 has no multiplicative inverse in Z. However, it is a
commutative ring.

• Q, R and C are all field.

• Let n ∈ Z≥1. The set of integers modulo n, Z/nZ, 1 is a commutative ring. It is
a field if and only if n is a prime number (see problem set 1). If n = p is a primer
number, we also write Fp for Z/pZ.

Definition 1.4 We say that a set G with one law ∗ is a group if the following conditions
hold :

(1) ∗ is associative : a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(2) ∗ admits an identity, denoted by e (so we have a ∗ e = e ∗ a = a for every a ∈ G).

(3) For every a ∈ G, there exists b ∈ G such that a ∗ b = b ∗ a = e. We say that b is
the inverse of a.

If moreover ∗ is commutative (a ∗ b = b ∗a), we say that G is a commutative group (or
abelian group).

Lemma 1.5 Let G be a group (with the law ∗). Then its identity element is unique,
and, for every a ∈ G, the element b of (3) is also unique.

Proof. Suppose that we have two identity elements, e and e′. Then, using the property
of (2), we get e = e ∗ e′ = e′.

Let a ∈ G, and suppose that we have two elements b, b′ ∈ G such that a ∗ b = b ∗a = e
and a ∗ b′ = b′ ∗ a = e. Then :

b = b ∗ e = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = e ∗ b′ = e.

�

1http://en.wikipedia.org/wiki/Modular arithmetic
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Example 1.6 • If K is a ring (in particular a field), the set K with the law + is a
commutative group. Its identity element is 0, and the inverse of a (for the addition)
is −a.

• Let K be a ring (commutative or not). Let K× be the set of a in K that admit
an inverse (that is, such that there exist b in K with ab = ba = 1). The K× with
the law × is a group. The identity element is 1, and the inverse of a is a−1.

Note that, if K is a field, then K× = K − {0}.

• If X is a set, the set SX of bijections u : X → X, together with the law of
composition, is a group (it’s not commutative if |X| ≥ 2). If X = {1, . . . , n}, we
write SX = Sn, and call it the symmetric group. This is just an example and you
can forget it for now.

Lemma 1.7 Let K be a field (or even just a ring). Then :

(i) The identity element 0 of addition, the additive inverse −a of a ∈ K, the multi-
plicative identity 1, and the multiplicative inverse a−1 of a ∈ K (if it exists) are
all uniquely determined.

(ii) For every a, b ∈ K, a× 0 = 0× a = 0 and a× (−b) = −ab.

Proof. Point (i) follows from the properties of groups that we proved above, and the
examples following it. Let’s prove property (ii). Fix a, b ∈ K. Then :

(a× 0) = (a× 0) +a−a = a× 0 + (a× 1)−a = a× (0 + 1)−a = (a× 1)−a = a−a = 0,

and
ab+ a(−b) = a(b− b) = a× 0 = 0.

�

2 Vector spaces

Definition 2.1 Let K be a field. A vector space over K (or K-vector space) is a set
V together with two laws, an addition that takes two elements v, w of V and returns
an element v + w of V , and a scalar multiplication that takes an element a of K and
an element v of V and returns an element a × v = av of V , satisfying the following
properties :

(1) The set V with the operation + is a commutative group (which means that + is
commutative and associative, that it has an identity element which we’ll call 0,
and that every v ∈ V has an inverse for V , which we’ll call −v).

(2) We have 1× v = v for every v ∈ V .

(3) For every a, b ∈ K and v ∈ V , we have a(bv) = (ab)v.
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(4) The law × is distributive with respect to the addition on K and on V , that is, for
every a, b ∈ K and v, w ∈ V :

(a+ b)v = av + bv

a(v + w) = av + aw.

Note that we cannot multiply two elements of V ! We can only multiply an element
of V by an element of K. Note also that are using the same notation 0 for the additive
identities in K and in V , although those are two different objects.

Note also that property (1) is just saying that V with the law + is a commutative
group.

Very often, we call the elements of V vectors and the elements of K scalars.
Just as before, there are some properties that we are tempted to take for granted, but

we actually have to prove them.

Lemma 2.2 Let V be a K-vector space. Then the following hold :

(i) For every v ∈ V , 0× v = 0 and (−1)× v = −v.

(ii) For every a ∈ K and v ∈ V , (−a)v = a(−v) = −(av).

(iii) For every a ∈ K, a× 0 = 0.

In the future, we’ll just write −av for −(av).

Proof. Let a ∈ K and v ∈ V . We have :

0× v = 0× v + v − v = 0× v + 1× v − v = (0 + 1)v − v = 1× v − v = v − v = 0.

Then we get :

v + (−1)× v = 1× v + (−1)× v = (1− 1)× v = 0× v = 0.

This proves (i). To prove (ii), note that :

av + (−a)v = (a− a)v = 0× v = 0

(by (i)), so (−a)v = −(av). On the other hand :

a(−v) = a((−1)× v) = (a× (−1))v = (−a)v,

and we have just proved that this is −(av). Finally, for (iii), note that

a× 0 = a× (v − v) = av + a× (−v) = av − av = 0.

�
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Example 2.3 There are two basic examples of K-vector spaces. The first one is a
particular case of the second one (take I = {1, . . . , n}).

• If n ∈ Z≥1, the set Kn of ordered n-uples o(x1, . . . , xn) of elements of K is a
K-vector space with the following two laws :

- (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn);

- a(x1, . . . , xn) = (ax1, . . . , axn), if a ∈ K.

For example, you might have met R2 and R3 before.

• Let I be a non-empty set. The set KI of functions f : I → K is a K-vector space,
with the following two laws :

– If f, g ∈ KI , f + g ∈ KI is defined by (f + g)(i) = f(i) + g(i) for every i ∈ I.

– If f ∈ KI and a ∈ K, af ∈ KI is defined by (af)(i) = af(i) for every i ∈ I.

Note that the additive identity in KI is the constant function equal to 0. We
denote it by 0, in agreement with our general convention.

Checking that these sets indeed satisfy all the properties is straightforward but wquite
tedious. (You should do it as en exercise.) Usually, it’s easier to check that something
is a subspace, as in the following definition :

Definition 2.4 Let V be aK-vector space. We say that a subsetW of V is aK-subspace
(or just a subspace if K is clear) if we have :

(1) 0 ∈W ;

(2) For every v, w ∈W , v + w ∈W .

(3) For every v ∈W and a ∈ K, av ∈W .

Note that, by (3), if v ∈W , then −v = (−1)v is also in W .
The following is a straightforward-but-tedious verification and left as an exercise.

Lemma 2.5 If V is a K-vector space and W is a K-subspace of V , then W is also a
K-vector space.

Example 2.6 If V is a K-vector space, then V itself and {0} are subspaces of V .

2/9/2017

Example 2.7 • Take K = R and V = R3. Then the subset defined by x1+x2+x3 =
1 is not a subspace (because it doesn’t contain 0), but the subset defined by
2x1 − x2 + 3x3 = 0 is a subspace.

• In R, Q is a Q-subspace but not a R-subspace.
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• Let K be a field and I be a non-empty set, and consider the K-vector space KI

of last time. If f ∈ KI , its support supp(f) is by definition the set of i ∈ I such
that f(i) 6= 0. Let K(I) be the subset of KI of functions with finite support. Then
K(I) is a K-subspace of KI .

Why is it a subspace ? This follows from the follwing three properties of the
support (exercise) :

- supp(0) = ∅;

- for every f, g ∈ KI , supp(f + g) ⊂ supp(f) ∪ supp(g);

- for every a ∈ K and f ∈ KI , supp(af) ⊂ supp(f).

• Here is a subexample of the previous example. Let’s take I = N := Z≥0. Then K(N)

is sometimes written K[X] and called the space of polynomials with coefficients in
K (in one indeterminate). When we do this, the convention is that Xn denote tha
function f that sends n to 1 and every m 6= n to 0; we also write 1 = X0. Then
a function f ∈ K(N) can be rewritten as

∑
n∈N f(n)Xn (the sum is finite because

we assumed that the support of f is finite).

We can also define a multiplication on K[X], by setting XnXm = Xn+m and
extending this by distributivity. Then K[X] becomes a commutative ring.

• Here is an example of vector space over the field F2 = Z/2Z. Let I be a non-empty
set, and take V to be the set of subsets of I, with the following operations :

- If A,B ∈ V , then A+B = (A ∪B)− (A ∩B).

- If A ∈ V , then 0×A = ∅ and 1×A = A.

This is a somewhat silly example, because it is actually the same as the vector
space FI2. We just have to identify the subset A with its characteristic function,
that is, the function fA defined by

fA(i) =

{
1 if i ∈ A
0 if i 6∈ A.

It’s easy to check that the operations are the same.

3 Matrices

Let K be a field.

Definition 3.1 A n×m matrix with coefficients in K is a table of elements of K with
n rows and m columns. We call these elements of K the entries of the matrix.

The set of n ×m matrices with coeffiecients in K is denoted by Mnm(k). If n = m,
we write Mn(K) instead of Mnn(K) (and we talk about square matrices of size n).

There are two standard ways to refer to the entries of a matrix. Either we write “let
A = (xij) be a n×m matrix”, then this means that the entry in position (i, j) is called

7



xij . Or we just write “let A be a n × m matrix”, then the entry in position (i, j) is
usually called Aij .

Now let’s define some operations on matrices.

Addition and scalar multiplication

If A and B are in Mnm(K) and x ∈ K, we define :

- the sum A+B ∈Mnm(K) by (A+B)ij = Aij +Bij ;

- the product xA ∈Mnm(K) by (xA)ij = xAij .

This makes Mnm(K) into a K-vector space, in fact, it’s the same vector space as Knm.
(For example, as vector spaces, M23(K) = K6.)

In particular, both Mn1(K) and M1n(K) can be identified with Kn. We call the

elements of Mn1(K) column vectors and write them

x1...
xn

. We call the elements of

M1n(K) row vectors and write them
(
x1 . . . xn

)
. Usually we think of Kn as the

space of column vectors.

Transpose

Definition 3.2 If A ∈Mnm(K), its transpose, denoted by tA or AT , is the m×n matrix
given by (AT )ij = Aji.

Lemma 3.3 Let A,B ∈Mnm(K) and a ∈ K. Then :

(i) (AT )T = A.

(ii) (A+B)T = AT +BT .

(iii) (aA)T = aAT .

Proof. Points (ii) and (iii) are obvious verifications. For (ii), note that (AT )T is a n×m
matrix (the same size as A), and that we have, for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
:

((AT )T )ij = (AT )ji = Aij .

So (AT )T = A.
�

Note that, if v =

x1...
xn

 is a column vector, then vT =
(
x1 . . . xn

)
is a row vector.

(And vice versa.)
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Matrix multiplication

Definition 3.4 Let A ∈ Mnm(K) and B ∈ Mmp(K). (Note the sizes : the number of
columns of A is equal to the number of rows of B.) Then their product AB is the n× p
matrix defined by :

(AB)ij =
m∑
r=1

AirBrj ,

for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

We have the following properties of matrix multiplication (all very easy and proved in
class) :

Lemma 3.5 Suppose that A,B ∈Mnm(K), C,D ∈Mmp(K), and E ∈Mpq(K).

(i) (A+B)C = AC +BC.

(ii) A(C +D) = AC +AD.

(iii) (AC)E = A(CE).

Definition 3.6 the identity matrix of size n is the square matrix In of size n defined
by :

(In)ij =

{
1 if i = j
0 if i 6= j.

We also write In =

1 0
. . .

0 1

.

The following was also proved in class :

Lemma 3.7 If A ∈Mnm(K), then InA = AIm = A.

Remark 3.8 In particular, in the space of square matrices Mn(k), we have an addition
and a multiplication that satisfy the following properties : addition is commutative
and associative, it has an identity element and additive inverses exist; multiplication is
associative, has an identity element and is distributive with respect to addition. This is
what we called a ring (although you don’t need to remember this).

Remark 3.9 Here are some properties that multiplication of matrices does not have :

(1) It is not commutative. First, if A ∈ Mnm(K) and B ∈ Mmp(K), then AB makes
sense but BA does not make sense in general. Suppose that p = n, then BA makes
sense, but it is square of size m while AB is square of size n, so if n 6= m it does not
make sense to ask if AB and BA are the same. Finally, assume that p = n = m,
so that A and B are both square of size n. Then it is still not true in general that
AB and BA are the same !
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Here is an example : A =

(
0 1
0 0

)
∈M2(Q), B =

(
0 0
0 1

)
∈M2(Q). Then :

AB =

(
0 1
0 0

)
∈M2(Q) 6= BA =

(
0 0
0 0

)
∈M2(Q).

(2) It is not true that general nonzero square n matrices have inverses. (And the
question doesn’t even make sense for non-square matrices.) For example, take

A =

(
0 1
0 0

)
∈M2(Q) and B =

(
0 0
0 1

)
∈M2(Q) as in the previous example. We

have seen that BA = 0. Suppose that A had an inverse, that means that there is
a 2× 2 matrix C such that AC = CA = I2. Then we would have :

B = B(AC) = (BA)C = 0C = 0,

which is not true. So A doesn’t have an inverse, even though it is nonzero.

4 Linear systems and matrices

Definition 4.1 Let ~v1, . . . , ~vm, ~w be elements of Kn.

(1) We say that ~w is a linear combination of ~v1, . . . , ~vm if there exists scalars λ1, . . . , λm ∈
K such that ~w = λ1~v1 + · · ·+ λm~vm.

(2) We say that the vectors ~v1, . . . , ~vm are linearly independent (or free) if the only
scalars λ1, . . . , λm ∈ K such that λ1~v1 + · · · + λm~vm = 0 are λ1 = · · · = λm = 0.
(In other words, λ1~v1 + · · ·+ λm~vm = 0⇔ λ1 = · · · = λm = 0.)

2/14/2017

Definition 4.2 (sequel)

(3) The span of the family (~v1, . . . , ~vm) is the set of linear combinations of ~v1, . . . , ~vm
(as in (1)). We denote this set by Span(~v1, . . . , ~vm). (It’s easy to see that it’s a
subspace of Kn, and we will also give a proof of this later.)

Here is the connection with linear systems : Let A = (aij) be the n×m matrix whose
columns are ~v1, . . . , ~vm (seen as column vectors), in that order. This means that ~vj is

the column vector

a1j...
anj

. We also see ~w as a column vector (= a n × 1 matrix), and

we write λ for the column vector

λ1
...
λm

 (this one is a m× 1 matrix).
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Then it follows directly from the definition that the matrix product Aλ is the n × 1
matrix (= column vector) λ1~v1 + · · ·+ λm~vm : indeed, its entry at the position (i, 1) is
equal to

m∑
j=1

aijλj =

m∑
j=1

λjaij ,

which is exactly the jth coordinate of λ1~v1 + · · ·+ λm~vm.

Now let ~x =

 v1
...
xm

 be a column vector of unknowns. If ~w =

b1...
bn

, then the matrix

equation
A~x = ~w

is just another (and more compact) way to write the following system of linear equations
in the unknowns x1, . . . , xm :

(S)


a11x1 + · · ·+ a1mxm = b1

. . .
an1x1 + · · ·+ anmxm = bn

We can reformulate the definitions above in the following way :

(1) The vector ~w is a linear combination of the vectors ~v1, . . . , ~vm if and only if the
system (S) above has a least one solution.

(2) The vectors ~v1, . . . , ~vm are linearly independent if and only if the only solution of
the system : 

a11x1 + · · ·+ a1mxm = 0
. . .

an1x1 + · · ·+ anmxm = 0

is x1 = x2 = · · · = xm = 0.

(3) The span of ~v1, . . . , ~vm is the set of ~w =

b1...
bn

 such that the system (S) above has

at least one solution.

So it is useful to know how to solve systems of linear equations.
Here are two other definitions (basically two other names for things we already know)

:

Definition 4.3 Let A be a n × m matrix. As before, we denote by ~v1, . . . , ~vm the
columns of A, seen as elements of Kn.

(1) The image of A, denoted by Im(A), is the subset of Kn made up of ~w such that
the equation A~x = ~w has at lest one solution. In other words, it’s just another
name for the span of ~v1, . . . , ~vn (= the span of the columns of A).
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(2) The kernel of A, denoted by Ker(A), is the subset of Km made up of the vectors

~λ =

λ1
...
λm

 such that A~λ = 0. In other words, it’s the set of solutions of the

equation A~x = 0.

It’s an easy exercise to show that Im(A) is a K-subspace of Kn and Ker(A) is a
K-subspace of Km. (This will come up again later.)

5 Resolution of linear systems

You have probably learned how to solve systems of linear equations before. The standard
algorithm is to apply elementary operations on the rows, without forgetting the second
term, until the system is in reduced two echelon form. Remember that “elementary row
operations” are the following three operations : switching two rows, multiplying a row
by a nonzero scalar, adding a multiple of a row to another row. We’ll see shortly how
to reinterpret them as matrix operations, but for now let’s review reduced row echelon
form.

Definition 5.1 We say that a matrix A is in reduced row echelon form if :

(1) Every row of A is of the form
(
0 . . . 0 1 ∗ . . . ∗

)
. That is, it starts with

some number of 0’s, then there’s a 1, then we allow any scalars as entries. Note
that we allow the row to start with the 1 directly (that is, the number of 0’s in
front can be zero), and we also allow the row to be all 0’s.

(2) For every i, the first 1 on the row i+ 1 has to appear at a later position than the
first 1 on the row i.

The 1’s that start the rows of A are called the pivots of A, and the number of pivots
is called the rank of A.2

Example 5.2 The following matrices are in reduced row echelon form :

1 2 0 −5 7
0 0 1 0 0
0 0 0 1 9

 ,


0 1 −5
0 0 1
0 0 0
0 0 0


The following matrices are not :

0 2 0 7
0 0 1 1
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0
0 0 0
0 1 −5
0 0 1


2This is not the standard definition of rank and will be superseded later.
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Suppose that we want to solve a system of linear equations, write in matrix form
A~x = ~w as above. The augmented matrix of the system is by definition the matrix
B = (A|~w). (That is, the matrix A with the column vector ~w added as a last column.)
To solve the system, we perform elementary row operations to put the augmented matrix
B in reduced rwo echelon form. The point is that this does not change the set of solutions
of the system, and that a system in reduced row echelon form is very easy to solve.

Definition 5.3 Here is a list of the three elementary row operations, and their matricial
interpretation :

(1) Switching two rows of B : if we switch the rows number r and s of B, this is the
same as multiplying B on the left by the n× n matrix C given by

Cij =


1 if i = j and i 6= r and j 6= s
1 if (i, j) = (r, s) or (i, j) = (s, r)
0 otherwise

Note that this matrix C is invertible, and in fact we have C2 = In (so C is its own
inverse).

(2) Multiplying a row of B by a nonzero scalar : multiplying row number r of B by
the nonzero scalar a ∈ K is the same as multiplying the matrix B on the left by
the n× n matrix C given by

Cij =


1 if i = j and i 6= r
a if i = j = r
0 if i 6= j

Note that this matrix C is invertible, and in fact its inverse is the matrix C ′ defined
like C but replacing a by a−1.

(3) Adding a multiple of a row to another row : adding a times row number r to row
number s of B (with a ∈ K and r 6= s) is the same as multiplying B on the left
by the matrix C given by

Cij =


1 if i = j
a if (i, j) = (s, r)
0 otherwise

Note this matrix C is invertible, and in fact its inverse is the matrix C ′ defined
like C but replacing a by −a.

Theorem 5.4 Let B be a n×p matrix. Then B can be put in reduced row echelon form
after a finite number of elementary row operations. In other words, there exists a square
matrix C of size n, product of matrices as in the description above, such that CB is in
reduced row echelon form.

13



We define the rank of B to be the rank of CB.3

Suppose that B = (A|~w) is the augmented matrix of the system A~x = ~w as above,
and choose C as in the theorem. By the remarks above, C is invertible. So

A~x = ~w ⇔ (CB)~x = C ~w,

which means that the systems with augmented matrices B and CB have the same
solutions. This is why our method of solving systems works. Note that the system has
solutions if and only the matrix CB has no rows of the form

(
0 . . . 0 1

)
. If we are

trying to find equations of the span of the columns of A, then the second term of the
system, ~w, is a vector of indeterminates, and the condition that we cannot put B in
reduced row echelon form with a row of the form

(
0 . . . 0 1

)
will translate as some

linear conditions on the entries of ~w.

Now let’s prove the theorem.

Proof. We prove the theorem by induction on the number n of rows of B.
If n = 1, then we multiply the only row of B by the inverse of the first nonzero

coefficient of that row to put B in reduced row echelon form. This is an elementary row
operation, so we’re done.

Suppose that n ≥ 2 and that we know the theorem for n− 1. First, let i0 ∈ {1, . . . , n}
be the number such that row number i0 starts with the smallest number of 0’s among
all the rows of B. If i0 6= 1, we switch rows 1 and i0, which is allowed. Then we
multiply row 1 (the ex-row i0) by the inverse of its first nonzero coeffiecient to make
its first nonzero coefficient equal to 1. Suppose that the new matrix is equal to (dij),
with d11 = d12 = · · · = d1,s−1 = 0 and d1s = 1 (s can be equal to 1). Then, for each
i ∈ {1, . . . , n}, we replace row i by row i plus (−dis) times row 1. This has the effect of
killing all the cofficients in the sth column except for the one in the first row. Also, by
the choice of i0 above, the coefficients in columns 1, 2, . . . , s − 1 are all 0. This means
that the new matrix B is of the form :

B =

(
0 . . . 0 1 b

0
. . . 0 0 B′

)
,

where b is a row vector of size 1×(p−s−1) and B′ is a matrix of size (n−1)×(p−s−1).
To finish the proof, we apply the induction hypothesis to B′. (Nothing that elementary
row operations on B′ can be seen as elementary row operations on B that only affects
rows 2 to n.)

�

Example 5.5 Suppose that we want to put the matrix B =

0 0 3 1 1
0 2 0 7 −1
0 1 0 −3 0

 in

reduced row echelon form. (This one is slightly different from the example done in

3Again, this is not the standard definition and will be superseded. It is also not clear a priori that the
rank is well-defined. We will prove this later, when we give the more standard definition.
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class.) Here is the sequence of operations described in the proof above (if we unpack the
induction) :

• Switch rows 1 and 3 to get

0 1 0 −3 0
0 2 0 7 −1
0 0 3 1 1

 (Note : there is a choice here,

we could also have started by switching rows 1 and 2.)

• Add −2 times row 1 to row 2 (to make the first nonzero coefficient of row 2 be on

the right of the leading 1 of row 1, as it should be). We get

0 1 0 −3 0
0 0 0 13 −1
0 0 3 1 1

.

• Switch rows 2 and 3 to get

0 1 0 −3 0
0 0 3 1 1
0 0 0 13 −1

.

• Multiply row 2 by 1/3 to get

0 1 0 −3 0
0 0 1 1/3 1/3
0 0 0 13 −1

.

• Multiply row 3 by 1/13 to get

0 1 0 −3 0
0 0 1 1/3 1/3
0 0 0 1 −1/13

.

And we’re done !

6 Calculating the inverse of a matrix using elementary row and column
operations

Suppose that A is a square n × n matrix and that we want to decide if it’s invertible,
and to calculate its inverse if it is. There is a method to do this that is very similar to
what we did to solve systems.

Consider the matrix B = (A|In). (That’s a n× (2n) matrix.) Applying the algorithm
of the previous section gives an invertible matrix C such that CB = (CA|C) is in reduced
row echelon form. (Note that we do not have to keep track of C, since it will naturally
appear as the right half of CB.)

If the last line of CA is
(
0 . . . 0

)
, then the matrix A is not invertible. (Why ?

Because, iff A were invertible, then CA would be invertible too. But a matrix whose
last line is

(
0 . . . 0

)
cannot be invertible. This is obvious if n = 1, because then the

condition says that CA = 0. If n = 2, then multiplying CA on the right by the nonzero

matrix

(
In−1 0

0 0

)
would give 0, and we have seen before that this prevents a matrix

from being invertible.)

If the last row of CA is not
(
0 . . . 0

)
, then CA is of the form

1 ∗
. . .

0 1

.
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Then I claim that we can perform some more elementary row operations on CB
to pur it in the form (In|∗). That is, we can find another invertible matrix C ′ such
that C ′(CB) = (In|C ′C). (Note again that we do not need to keep track of C ′C, the
second half of the matrix does it for us.) And then C ′C is the inverse of A. Indeed,
C ′(CB) = (C ′C)B = ((C ′C)A|C ′C) = (In|C ′C), so (C ′C)A = In.4

So we just have to prove the following theorem to check that everything works :

Theorem 6.1 If D is a n×n matrix of the form

1 ∗
. . .

0 1

, then we can transform

D into the identity matrix In by a finite number of elementary row operations.

Proof. We reason by induction on n. If n = 1, then D = I1 and there is nothing to
prove.

Suppose that n ≥ 2 and that we know the result for n−1. For every i ∈ {1, . . . , n−1},
we add (−Din) times the last row to row numer i. This has the effect of making the

last column of D equal to

0
...
1

, and so D becomes of the form

(
D′ 0
0 1

)
, where D′ is a

square matrix of size n−1 such that D′ =

1 ∗
. . .

0 1

. Then we conclude by applying

the induction hypothesis to D′.
�

7 Linear combination and linear independence in general vector spaces

We still suppose that K is a field, and we fix a K-vector space V .

Definition 7.1 Let ~v1, . . . , ~vn be elements of V .

(1) We say that ~w ∈ V is a linear combination of ~v1, . . . , ~vm if there exists scalars
λ1, . . . , λm ∈ K such that ~w = λ1~v1 + · · ·+ λm~vm.

(2) We say that the vectors ~v1, . . . , ~vm are linearly independent (or free) if the only
scalars λ1, . . . , λm ∈ K such that λ1~v1 + · · · + λm~vm = 0 are λ1 = · · · = λm = 0.
(In other words, λ1~v1 + · · ·+ λm~vm = 0⇔ λ1 = · · · = λm = 0.)

(3) The span of the family (~v1, . . . , ~vm) is the set of linear combinations of ~v1, . . . , ~vm
(as in (1)).

4Note that we have only show that (C′C)A = In, and normally we should also show that A(C′C) = In.
Later, we will see that the second condition follows automatically from the first.
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You might notice that this is exactly the same definition as in Kn (definition 4.1).

Example 7.2 Suppose that V = K[X], and consider the family of vectors (1, X,X3).
Then 2 − 3X + 4X3 is a linear combination of these vectors, but 1 − 2X + X2 is not.
Also, the family (1, X,X3) is linearly independent (because a polynomial is 0 if and only
if all its coefficients are 0.)

We also have a definition for a possibly infinite family of vectors. These are the only
reasonable definitions, given that we can only form finite sums.

Definition 7.3 Let (~vi)i∈I be a family of elements of V .

(1) We say that ~w ∈ V is a linear combination the family (~vi)i∈I if there exists m ≥ 1,
i1, . . . , im ∈ I and scalars λ1, . . . , λm ∈ K such that ~w = λ1~vi−1 + · · · + λm~vim .
(That is, if ~w is a linear combination of some finite subfamily of (~vi∈I).

(2) We say that the family (~vi)i∈I is linearly independent (or free) if every finite sub-
family of (~vi)i∈I is free.

(3) The span Span(~vi, i ∈ I) of the family (~vi)i∈I is the set of linear combinations of
(~vi)i∈I (as in (1)). We also say that (~vi)i∈I is a generating family of Span(~vi, i ∈ I).

By convention, the span of the empty family is {0}. (This is coherent with the standard
convention that an empty sum should be {0}.)

2/16/2017

Example 7.4 In V = K[X], consider the infinite family (Xn)n≥0. (Remember that
X0 = 1.) Then this family is free (because a polynomial is 0 if and only if all its
coefficients are 0), and its span is V itself (because every polynomial is by definition a
linear combination of the Xn.)

It’s also useful to think about the case of two or three vectors in R2 and R3, what it
means for them to be linearly independent and what the span is.

Proposition 7.5 Let (~vi)i∈I be a family of vectors in a K-vector space V .

(i) The span of the family (~vi)i∈I is the smallest K-subspace of V containing all the
~vi.

(ii) If ~v ∈ Span(~vi, i ∈ I), then Span(~vi, i ∈ I) = Span(~v,~vi, i ∈ I).

(iii) If the family (~vi)i∈I is free, and if ~v 6∈ Span(~vi, i ∈ I), then the family (~v,~vi, i ∈ I)
is also free.

Proof.
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(i) Let W = Span(~vi, i ∈ I). First we must show that W is a K-subspace of V . There
are three conditions to check :

– 0 ∈W : This is true because 0 is equal to the empty sum. 5

– If ~v, ~w ∈ W , then ~v + ~w ∈ W : Indeed we can write ~v =
∑n

r=1 λr~vir and
~w =

∑m
s=1 µs~vjs , with λ1, . . . , λn, µ1, . . . , µm ∈ K and i1, . . . , in, j1, . . . , jm ∈

I. Then ~v+ ~w =
∑n

r=1 λr~vir +
∑m

s=1 µs~vjs is also a linear combination of the
~vi, i ∈ I.

– If ~v ∈ W and λ ∈ K, then λ~v ∈ W : Indeed we can write ~v =
∑n

r=1 λr~vir as
before, and then λ~v =

∑n
r=1(λλr)~vir , which is clearly still a linear combination

of the ~vi, i ∈ I.

Now we also have to see that, if W ′ is another K-subspace of V such that ~vi is
in W ′ for every i ∈ I, then W ⊂ W ′. Let ~v be an element of W . By definition
of the span, we have ~v =

∑n
r=1 λr~vir with λ1, . . . , λn ∈ K and i1, . . . , in ∈ I. As

~vi1 , . . . , ~vin ∈W ′ (by hypothesis), we have λ1~vi1 , . . . , λr~vin ∈W ′, and so their sum
~v is also in W ′. As this is true for any element of W , we have shown that W ⊂W ′.

(ii) This follows from (i). (If ~v ∈ Span(~vi, i ∈ I), then Span(~vi, i ∈ I) is a subspace
containing ~v and all the ~vi, so it contains Span(~v,~vi, i ∈ I).)

(iii) We prove the result by contradiction. Suppose that the family (~v,~vi, i ∈ I) is not
free, then there exists i1, . . . , in ∈ I and λ, λ1, . . . , λn ∈ K such that λ~v + λ1~vi1 +
· · · + λn~in = 0 and that at least one of λ, λ1, . . . , λn is nonzero. If λ = 0, then
we get that λ1~vi1 + · · · + λn~in = 0 and that at least of the λi is nonzero, which
contradicts the freeness of the family (~vi)i∈I . So λ 6= 0. But then we have

~v = −λ−1(λ1~vi1 + · · ·+ λn~in),

which shows that ~v ∈ Span(~vi, i ∈ I), contradiction.

�

8 Bases

Definition 8.1 Let V be a K-vector space. A family (~vi)i∈I of vectors of V is called a
basis of V if it is free and its span is V .

Lemma 8.2 Let V be a K-vector space. A family B = (vi)i∈I of vectors of V is basis if
and only if, for every ~v ∈ V , there exists a unique family (λi)i∈I of elements of K such
that :

(a) All but a finite number of the λi are zero.

5This might sound like cheating. Another way to think about it is to say that, if I is not empty, then
we can choose some i ∈ I and then 0 = 0~vi. And remember that the span of the empty family is {0}
by convention.
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(b) ~v =
∑

i∈I λi~vi (this sum is finite thanks to (a)).

(In other words, if and only if every element of V can be written as a linear combination
of the ~vi in a unique way.)

The λi are called the coordinates of ~v in the basis B, and we sometimes write (λi)i∈I =
[~v]B (this is usually seen as a column vector if I is finite).

Proof. Suppose that (~vi)i∈I is a basis of V , and let ~v be in V . As (~vi)i∈I , there exists a
family (λi)i∈I satisfying (a) and (b). Suppose that we have another family (λ′i)i∈I also
satisfying (a) and (b), and let µi = λi − λ′i. Then all but a finite number of the µi are
zero, so the sum

∑
i∈I µi~vi makes sense, and this sum is equal to ~v − ~v = 0. As the

family (~vi∈I is free, all the µi must be zero, which means that λi = λ′i for every i ∈ I.
Conversely, suppose that, for every ~v ∈ V , we have a unique family (λi)i∈I satisfying

(a) and (b). Then in particular every ~v ∈ V is a linear combination of the ~vi, so the
family (~vi)i∈I spans V . Let’s show that it is free. Suppose that we have a relation
a1~vi1 + · · · + an~vin = 0 (with i1, . . . , in pairwise distinct). Then setting λi = ar for
i = ir and λi = 0 for i 6∈ {i1, . . . , in}, we get a family (λi)i∈I satisfying (a) and (b) for
~v = 0. By the uniqueness, this implies that λi = 0 for every i ∈ I, and in particular
a1 = · · · = an = 0.

�

Example 8.3 • InKn, the family of the vectors ~e1 = (1, 0, . . . , 0), ~e2 = (0, 1, 0, . . . , 0),. . . ,~en =
(0, . . . , 0, 1) is a basis, called the canonical basis of Kn.

To prove this, we just have need to notice that
∑n

i=1 xiei = (x1, . . . , xn) if x1, . . . , xn ∈
K, so every element of Kn is a linear combination of ~e1, . . . , ~en in a unique way.
(And in fact the coordinates of an element of Kn are its coordinates in the canonical
basis.)

• In K[X], the family (1, X,X2, X3, . . . ) is a basis (also often called the canonical
basis). The coordinates of a polynomial in this basis are its coefficients.

• More generally, let I be a set and consider the K-vector space K(I). For every
i ∈ I, define an element ei ∈ K(I) by setting

ei(j) =

{
1 if j = i
0 if j 6= i

Then (ei)i∈I is a basis of K(I), still called the canonical basis. If f ∈ K(I), we have
f =

∑
i∈I f(i)ei, so the coordinates of f in the basis (ei)i∈I are given by the family

(f(i))i∈I .
6

• The family (1, 2), (0, 1)) is a basis of R2.

6Note that if we tried to use KI instead of K(I), this would fail because we could get an infinite sum
if we wrote

∑
i∈I f(i)ei.
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9 Dimension

Definition 9.1 We say that a K-vector V is finite-dimensional if it has a finite gener-
ating family (that is, if it can be be spanned by a finite family of vectors). Otherwise
we say that V is infinite-dimensional.

If V is finite-dimensional, its dimension dim(V ) is by definition the minimum of the
cardinalities of the generating families of V .

We will see shortly that a finite-dimensional vector space always has a finite basis, and
that the dimension is just the cardinality of a basis (and that all bases have the same
cardinality).

Remark 9.2

The only 0-dimensional K-vector space is {0}.

Theorem 9.3 Let V be a finite-dimensional K-vector space, and let n = dim(V ).

(i) If (~vi)i∈I is a finite generating family of V , then there exists a subset J of I such
that (~vi)i∈J is a basis of V . (In other words, we can extract a basis from any finite
generating family.) In particular, V admits finite bases.

(ii) Any basis of V has cardinality n.

Proof.

(i) If the family (~vi)i∈I is free, then we are done.

Otherwise, there is a linear relation λ1~vi1 + · · · + λr~vir = 0, with λ1, . . . , λr ∈ K
not all zero, and i1, . . . , ir ∈ I pairwise distinct. Up to changing the numbering,
we may assume that λ1 6= 0. Then

~vi1 = −λ−11 (λ2~vi2 + · · ·+ λr~vir ,

so ~vi1 ∈ Span(~vi, i ∈ I − {i1}), so Span(~vi, i ∈ I − {i1}) = Span(~vi, i ∈ I) = V .

We repeat the previous step with the family (~vi)I−{i1}, which has cardinality stricly
smaller than |I|. Because I is finite, this process has to stop after a finite number
of steps, and produces a subfamily of (~vi)i∈I which is both free and generating,
also known as a basis.

(ii) We reason by induction on n. The statement if empty if n = 0, so let’s assume
n ≥ 1. Fix a basis (~e1, . . . , ~en) of V (such a basis exists by (i)7) Let (~v1, . . . , ~vm)
be another basis of V . We have m ≥ n by definition of the dimension, and we
want to show that m = n. Let W = Span(~e2, . . . ~en). We have dim(W ) ≤ n − 1

7Choose a generating family (e1, . . . , en) with minimal cardinality, which is n = dim(V ). If it were not
free, we could use the process of the proof of (i) to extract a smaller generating family from it, which
would contradict the minimality of the cardinality.
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by the induction hypothesis (because dim(W ) ≤ n − 1 and (~e2, . . . , ~en) is a basis
of W ), so W 6= V . As (~v1, . . . , ~vm) generates V , one of the ~vi has to be in V −W .
After renumbering, we may assume that it’s ~v1. Let’s write each ~vi in the basis
(~e1, . . . , ~en), ~vi =

∑n
j=1 xi,j~ei. As ~v1 6∈ W , x1,1 6= 0. For every i ∈ {2, . . . ,m}, let

~fi = ~vi − (x−11,1xi,1)~v1. Note that

~fi =
n∑
j=1

xi,j~ej −
xi,1
x1,1

m∑
j=1

x1,j~ej =

m∑
j=2

(xi,j −
xi,1
x1,1

x1,j)~ej ,

so ~fi ∈W . Suppose that we can show that (~f2, . . . , ~fm) is a basis of W . Then the
induction hypothesis gives that m − 1 = dim(W ) = n − 1, and we can conclude
that n = m.

So we just need to show that (~f2, . . . , ~fm) is a basis of W . There are two conditions
to check, freeness and generation :

– Let λ2, . . . , λm ∈ K such that λ2 ~f2 + · · · + λm ~fm = 0. Replacing the ~fi by
their values gives (

−
m∑
i=2

λi
xi,1
x1,1

)
~v1 +

m∑
i=2

λi~vi = 0.

As (~v1, . . . , ~vm) is free, this implies that λ2 = · · · = λm = 0.

– Let ~v ∈ W . As (~v1, . . . , ~m) spans V (and ~v is also an element of W ), we can
write ~v =

∑m
i=1 λi~vi. By the definition of the ~fi,

~v =

m∑
i=1

λi~vi =

m∑
i=2

λi ~fi +

(
λ1 −

m∑
i=2

λi
xi,1
x1,1

)
~v1.

As ~v, ~f2, ~fm ∈W , this implies that
(
λ1 −

∑m
i=2 λi

xi,1
x1,1

)
~v1 ∈W . But ~v1 6∈W ,

so this forces λ1−
∑m

i=2 λi
xi,1
x1,1

= 0, and hence ~v =
∑m

i=2 λi
~fi. We have shown

that (~f2, . . . , ~fm) spans W .

�

21/2/2017

By (i) and (ii) of theorem 9.3 above, we now know that a finite-dimensional vector space
V always has a basis, and that the dimension of V is just equal to the cardinality of any
basis. So we can give examples.

Example 9.4 (1) The K-vector space Kn is finite-dimensional, and its dimension is
n (because that’s the cardinality of the canonical basis).

21



(2) The C-vector space C is 1-dimensional. But if we see C as a R-vector, it’s 2-
dimensional (with basis (1, i) for example). So the dimension depends on the field
of scalars K. If we want to make K explicit, we write dimK instead of dim, as in
dimC(C) = 1 and dimR(C) = 2.

Another example of this phenomenon : As a R-vector space, R has dimension 1.
But as a Q-vector space, R is infinite-dimensional.

(3) Suppose that the K-vector V is finite as a set (if V 6= {0}, this implies that K is
a finite field). Then it is automatically finite-dimensional (because it’s generated
by the finite family of all its vectors).

(4) If I is an infinite set, both KI and K(I) are infinite-dimensional. (We know this for
K(I) because we constructed a particular infinite basis of it in example 8.3. The
case of KI follows because it contains K(I) as a subspace.) In particular, K[X] is
infinite-dimensional.

(5) The R-vector space of infinitely differentiable functions from R to R is infinite-
dimensional. One way to show this is to show that the family of functions (eat)a∈R
is free in this space.

Theorem 9.5 (continued) Let V be a finite-dimensional K-vector space, and let n =
dim(V ).

(iii) If (~v1, . . . , ~vr) is a free family of V and (~w1, . . . , ~ws) is a generating family of V ,
then there exist i1, . . . , im ∈ {1, . . . , s} such that (~v1, . . . , ~vr, ~wi1 , . . . , ~wim) is a basis
of V . (This is sometimes called the incomplete basis theorem.)

(iv) Any generating family of V has cardinality ≥ n, and any free family has cardinality
≤ n.

(v) Let (~v1, . . . , ~vn) be a family of V (note that the cardinality of the family is dim(V )).
Then :

(~v1, . . . , ~vn) is free ⇔ (~v1, . . . , ~vn) generates V ⇔ (~v1, . . . , ~vn) is a basis

(vi) If W is a K-subspace of V , then W is finite-dimensional, and dim(W ) ≤ dim(V ),
and this is an equality if and only if W = V .

Proof.

(iii) LetX be the set of subsets I of {1, . . . ,m} such that the family (~v1, . . . , ~vr, ~wi, i ∈ I)
is free. Then X 6= ∅ because ∅ ∈ X. Let J be an element of X that is maximal for
the inclusion. Then the family (~v1, . . . , ~vr, wj , j ∈ J) is free by hypothesis, and we
call W the subspace of V that it spans. If i 6∈ J , then the family (~v1, . . . , ~vr, ~wj , j ∈
J, ~wi) is not free (by maximality of J), so ~wi ∈W (otherwise, by (iii) of proposition
7.5, the family we just wrote would be automatically free). SoW contains all the ~wj
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for j ∈ J and for j ∈ {1, . . . ,m}−J , that is, it contains all the ~wj for j ∈ {1, . . . ,m}.
As (~w1, . . . , ~wm) spans V , this implies that W = V , and so (~v1, . . . , ~vr, ~wj , j ∈ J)
is a basis of V .

(iv) Let (~v1, . . . , ~vr) be a free family of V , and (~w1, . . . , ~ws) be a generating fanmily
of V . By (iii), there exists i1, . . . , im ∈ {1, . . . , s} (pairwise distinct) such that
(~v1, . . . , ~vr, ~wi1 , . . . , ~wim) is a basis of V , and so r + m = n. In particular, r ≤ n.
If we apply this to the case where the family (~v1, . . . , ~vr) is empty (r = 0), we get
m = n, and so s ≥ m = n.

(v) If (~v1, . . . , ~vn) is free but not a basis, then by (iii) we can add vectors to it to
make it a basis, but then we get a basis of cardinality > n, which contradicts (ii).
Similarly, if (~v1, . . . , ~vn) spans V but is not free, then by (i) we can extract a basis
of V of cardinality < n from it, which contradicts (ii).

(vi) A family that is free in W is also free in V . By (v), every free family in W has
cardinality ≤ n, so by proposition 9.6 below W is finite-dimensional, and by (ii)
dim(W ) ≤ dim(V ). Suppose that dim(W ) = dim(V ). Then a basis of W is a free
family of cardinality n in V , hence a basis of V by (v), and so W = V .

�

Proposition 9.6 If V is an infinite-dimensional K-vector space, then it has an infinite
free family.

Proof. We construct the elements ~v1, ~v2, . . . , ~vn, . . . of the infinite free family by induction
on n.

First, V 6= {0} because {0} is finite-dimensional, so we can find a nonzero ~v1 is
W . Now assume that n ≥ 1, and that we have constructed ~v1, . . . , ~vn forming a free
family in V . As V is infinite-dimensional, V 6= Span(~v1, . . . , ~vn), so we can find ~vn+1 ∈
V − Span(~v1, . . . , ~vn). By a lemma above, the family (~v1, . . . , ~vn+1) is also free.

�

Remark 9.7 By (vi) of the theorem, every subspace of Kn is of dimension ≤ n (in
particular finite-dimensional), and the only dimension n subspace of Kn is Kn itself.

10 Operations on subspaces

Let V be a K-vector space, and let W1, . . . ,Wn be subspaces of V . Here are two ways
to get more subspaces from W1, . . . ,W )n :

(1) The intersection W1 ∩ · · · ∩Wn is also a subspace of V . Indeed :

– 0 is in every Wi, so it’s in W1 ∩ · · · ∩Wn.
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– Let ~v, ~w ∈W1 ∩ · · · ∩Wn and λ ∈ K. For every i ∈ {1, . . . , n}, ~v + ~w and λ~v
are in Wi because Wi is a subspace. So ~v + ~w and λ~v are in W1 ∩ · · · ∩Wn.

(2) The sum W1 + · · · + Wn is by definition the subset of V of elements of the form
~v1 + · · ·+ ~vn, with ~v1 ∈W1,. . . ,~vn ∈Wn. This is also a subspace of V . Indeed :

– 0 = 0 + · · ·+ 0 with 0 ∈Wi, so 0 ∈W1 + · · ·+Wn.

– Let ~v, ~w ∈ W1 + · · · + Wn and λ ∈ K. Write ~v = ~v1 + · · · + ~vn and ~w =
~w1 + · · ·+ ~wn with ~vi, ~wi ∈Wi. Then

~v + ~w = (~v1 + ~w1) + · · ·+ (~vn + ~wn) ∈W1 + · · ·+Wn

and
λ~v = λ~v1 + · · ·+ λ~vn ∈W1 + · · ·+Wn.

Exercise 10.1 (1) In R2 or R3, determine the intersection and sum of two lines, a
line and a plane, or two planes.

(2) These definitions generalize to infinite families. How ?

Definition 10.2 Let V,W1, . . . ,Wn be as above, and let W = W1 + · · ·+Wn. We say
that the sum of the Wi is direct (or that the Wi are in direct sum, or that W is the direct
sum of the Wi) and write W = W1 ⊕ · · · ⊕Wn if, for every ~v ∈W , there exist a unique
family (~v1, . . . , ~vn) such that ~vi ∈Wi for every i and that ~v = ~v1 + · · ·+ ~vn.

Lemma 10.3 Let W1, . . . ,Wn be subspaces of V . Then they are in direct sum if and
only if for every ~v1 ∈W1, . . . , ~vn ∈Wn,

~v1 + · · ·+ ~vn = 0⇒ ~v1 = · · · = ~vn = 0.

Proof. If W1, . . . ,Wn are in direct sum, the condition is clearly true (because we can
write 0 = 0 + · · ·+ 0 with 0 ∈W1,. . . , 0 ∈Wn, and this must be the unique way).

So suppose that the second condition is true, and let’s show that W1, . . . ,Wn are in
direct sum. Let ~v ∈ W1 + · · · + Wn, and suppose that we haev ~v = ~w1 + · · · + ~wn =
~w′1 + · · ·+ ~w′n, with ~wi, ~w

′
i ∈ Wi for every i. We want to show that ~wi = ~w′i for every i.

But we have
(~w1 − ~w′1) + · · ·+ (~wn − ~w′n) = 0,

with ~wi − ~w′i ∈Wi, so ~w1 − ~w′1 = · · · = ~wn − ~w′n = 0.
�

Now let’s see the relation of sums with bases and dimension.

Proposition 10.4 Let V be a K-vector space and W1,W2 be finite-dimensional K-
subspaces of V such that W1 +W2 = V . Then :

(i) V is also finite-dimensional, and we have dim(V ) ≤ dim(W1) + dim(W2).
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(ii) We have dim(V ) = dim(W1) + dim(W2) if and only the sum W1 + W2 is direct
(that it, if and only V = W1 ⊕W2).

(iii) Suppose that V = W1 ⊕W2, that (~e1, . . . , ~er) is a basis of W1 and that (~f1, . . . , ~fs)
is a basis of W2. Then (~e1, . . . , ~er, ~f1, . . . , ~fs) is a basis of V .

This generalizes to more than two subspaces (it’s an easy induction).

Proof. Let (~e1, . . . , ~er) be a basis of W1 and (~f1, . . . , ~fs) be a basis of W2. Then the
family (~e1, . . . , ~er, ~f1, . . . , ~fs) generates W1 + W2 = V , so V is finite-dimensional and
dim(V ) ≤ dim(W1) + dim(W2). This proves (i).

Suppose that V = W1⊕W2, and let’s show that (~e1, . . . , ~er, ~f1, . . . , ~fs) is a basis of V ,
which will show (iii) and half of (ii). We already know that this family is generating, so
we only need to show that it’s free. Let λ1, . . . , λr, µ1, . . . , µs ∈ K such that λ1~e1 + · · ·+
λr~er + µ1 ~f1 + · · ·+ µs ~fs = 0. By lemma 10.3, λ1~e1 + · · ·+ λr~er = µ1 ~f1 + · · ·+ µs ~fs = 0.
As the families (~e1, . . . , ~er) and (~f1, . . . , ~fs) are both free, this implies that λ1 = · · · =
λr = µ1 = · · · = µs = 0.

Suppose that dim(V ) = dim(W1) + dim(W2) = r + s. Then by (vi) of theorem 9.3,
(~e1, . . . , ~er, ~f1, . . . , ~fs) is a basis of V , and so in particular it’s free. Let’s show that
V = W1 ⊕W2. We use lemma 10.3 again. So let ~v1 ∈ W1 and ~v2 ∈ W2 be such taht
~v1 + ~v2 = 0. We can write ~v1 = λ1~e1 + · · · + λr~er and ~v2 = µ1 ~f1 + · · · + µs ~fs, with
λ1, . . . , λr, µ1, . . . , µs ∈ K. Then λ1~e1 + · · ·+ λr~er + µ1 ~f1 + · · ·+ µs ~fs = ~v1 + ~v2 = 0, so
all the λi and all the µj have to be 0, and this gives that ~v1 = ~v2 = 0.

�

Theorem 10.5 Let V be a finite-dimensional K-vector space, and let W be a K-
subspace of V . Then there exists another K-subspace W ′ of V such that V = W ⊕W ′.

Proof. Let (~e1, . . . , ~er) be a basis of W . Then the family (~e1, . . . , ~er) is free in V , so by
(iii) theorem 9.3, we can find ~er+1, . . . , ~en ∈ V such that (~e1, . . . , ~en) is a basis of V . Let
W ′ = Span(~er+1, . . . , ~en). I claim that V = W +W ′.

Indeed, if ~v ∈ V , then we can write ~v = λ1~e1 + · · · + λn~en, with λ1, . . . , λn ∈ K.
Setting ~w = λ1~e1 + · · · + λr~er and ~w′ = λr+1~er+1 + · · · + λn~en, we see that ~w ∈ W ,
~w′ ∈ W ′ and ~v = ~w + ~w′. This shows that V = W + W ′. But we also know that
dim(V ) = n = r + (n− r) = dim(W ) + dim(W ′), so V = W ⊕W ′ by (ii) of proposition
10.4.

�

Corollary 10.6 Let V be a K-vector space and W1,W2 be two subspaces of V . Then

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

Proof. By theorem 10.5, there exist subspaces W ′1 of W1 and W ′2 of W2 such that W1 =
(W1∩W2)⊕W ′1 and W2 = (W1∩W2)⊕W ′2. I claim that W1+W2 = (W1∩W2)⊕W ′1⊕W ′2.
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This will suffice, by proposition 10.4, we will then have

dim(W1) = dim(W1 ∩W2) + dim(W ′1)

dim(W2) = dim(W1 ∩W2) + dim(W ′2)

and
dim(W1 +W2) = dim(W1 ∩W2) + dim(W ′1) + dim(W ′2),

which easily implies the equality we want to prove.
Now let’s prove the claim. Let ~v ∈ W1 + W2. By definition of W1 + W2, we have

~v = ~w1 + ~w2, with ~w1 ∈ W1 and ~w2 ∈ W2. Also, we can write ~w1 = ~w′1 + ~y1 and
~w2 = ~w′2 + ~y2, with ~w′1 ∈W ′1, ~w′2 ∈W ′2 and ~y1, ~y2 ∈W1 ∩W2. Then ~v = (~y1 + ~y2) + ~w′1 +
~w′2 ∈ (W1 ∩W2) +W ′1 +W ′2. This proves that W1 +W2 = (W1 ∩W2) +W ′1 +W ′2.

Let’s prove that the sum is direct. Let ~w1 ∈W ′1, ~w ∈W1∩W2 and ~w2 ∈W ′2 such that
~w1 + ~w+ ~w2 = 0. Then we have ~w2 = −(~w1 + ~w) ∈W2 ∩W1 (because the left hand side
is in W2 and the right hand side is in W1). As W ′2 and W1 ∩W2 are in direct sum, this
forces ~w2 = 0 (otherwise we’d have another decomposition of 0 : 0 = ~w2 + (−~w2), with
~w2 ∈W ′2 and −~w2 ∈W1 ∩W2). So ~w + ~w1 = 0. As W1 ∩W2 and W ′1 are in direct sum,
this implies that ~w = ~w1 = 0.

�

23/2/2017

11 Image and kernel of a matrix

Remember the following definitions (definition 4.3) :

Definition 11.1 Let A ∈ Mnm(K). The image Im(A) is the subspace of Kn spanned
of the column vectors of A, and the kernel Ker(A) of A is the subset of ~v ∈ Km such
that A~v = 0.

We have already seen that Im(A) is a subspace of Kn. Let’s show that Ker(A) is a
subspace of Km :

Lemma 11.2 For every A ∈Mnm(K), Ker(A) is a subspace of Km.

Proof. We have 0 ∈ Ker(A) because A0 = 0. If ~v, ~w ∈ Ker(A) and λ ∈ K, we have
A(~v + ~w) = A~v + A~w = 0 + 0 = 0, so ~v + ~w ∈ Ker(A), and A(λ~v) = λ(A~v) = λ0 = 0 8,
so λ~v ∈ K.

�

8Exercise : A(λB) = (λA)B = λ(AB) if A ∈Mnm(K), B ∈Mmp(K) and λ ∈ K
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Remark 11.3 Let A ∈ Mnm(K), and let (~e1, . . . , ~em) be the canonical basis of Km.
Then A~ei is the ith column of A for every i, so Im(A) = Span(A~e1, . . . , A~em). As
multiplication by A sends linear combinations to linear combinations and (~e1, . . . , ~em) is
a basis of Km, this means that Im(A) = {A~v,~v ∈ Km}.

Lemma 11.4 Let A be an invertible n× n matrix.

(i) Let ~v1, . . . , ~vr be vectors in Kn. Then the family (~v1, . . . , ~vr) is free if and only if
(A~v1, . . . , A~vr) is free.

(ii) If W is a subspace of Kn, AV := {A~v,~v ∈ V } is also a subspace, and then
dim(W ) = dim(A(W )), where A(W ) = {A~v,~v ∈ V }. In fact, if (~v1, . . . , ~vr) is a
basis of W , then (A~v1, . . . , A~vr) is a basis of A(W ).

Proof. Let B be the inverse of A.
Let’s prove (i). Assume that (~v1, . . . , ~vr) is free. Let λ1, . . . , λr ∈ K be such that

λ1(A~v1) + . . . λr(A~vr) = 0. Multiplying by B on the left gives λ1~v1 + · · · + λr~vr = 0,
which implies λ1 = · · · = λr = 0. So (A~v1, . . . , A~vr) is also free. This gives one direction
of (i). The other direction follows from what we just proved, applied to B instead of A
(because (~v1, . . . , ~vr) = (BA~v1, . . . , BA~vr).)

Let’s prove (ii). The fact that AV is also a subspace follows from the properties of
matrix multiplication (see lemma 3.5). Let (~v1, . . . , ~vr) be a basis of V . Then by (i) the
family (A~v1, . . . , A~vr) of AV is free, so by (iv) of theorem 9.3 we have dim(V ) = r ≤
dim(AV ). As V = B(AV ) and B is invertible too, we also get dim(AV ) ≤ dim(V ), and
this gives (ii).

�

Theorem 11.5 Let A be a n×m matrix.

(A) If A is in reduced row echelon form, then rank(A) = dim(Im(A)) = dim(Im(AT )).

(B) If B is a matrix in reduced row echelon form obtained after applying a finite number
of elementary row operations to A (which is always possible by theorem 5.4), then
dim(Im(A)) = dim(Im(B)) and dim(Im(BT )) = dim(Im(AT )).

Remember that rank(A) is the number of pivots if A is in reduced row echelon form.
On the other hand, Im(A) is the span of the columns of A, a subspace of Kn. As for
Im(AT ), it’s the span of the column vectors of AT , which is the same as the span of the
row vectors of A, and is a subspace of Km. The theorem says in particular that the
number of pivots of a reduced row echelon form of A only depends on A, and is equal to
dim(Im(A)), so we may set rank(A) = dim(Im(A)) (which is the usual definition). The
theorem then also gives that rank(A) = rank(AT ).

Proof. Let’s prove (A). Suppose that A is in reduced row echelon form. Let r = rank(A),
and write ~l1, . . . ,~ln for the rows of A. Each row either contains a pivot or contains only
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zeros, and the rows with only zeros must me at the bottom. So ~lr+1 = · · · = ~ln = 0, and
Im(AT ) = Span(~l1, . . . ,~lr) has dimension ≤ r. To show that rank(A) = dim(Im(AT )),
we have to show that the family (~l1, . . . ,~lr) is free. Write ~li = (ai,1, . . . , ai,m). Because
A is in reduced row echelon form, we have integers 1 ≤ j1 < j2 < · · · < jr ≤ m such
that, for every i ∈ {1, . . . , r} :

• ai,j = 0 for i < ji;

• ai,ji = 1.

Let x1, . . . , xr ∈ K such that x1~l1 + · · · + xr~lr = 0, and suppose that not all the xi
are zero. Let i be the smallest index such that xi 6= 0. Then the jith coefficient of
x1~l1 + · · · + xr~lr is 0 =

∑n
s=1 xsas,ji = xiai,ji = xi, which is a contradiction. So the

family (~l1, . . . ,~lr) is free, and we have shown that rank(A) = dim(Im(AT )).
We still have to show that rank(A) = dim(Im(A)). Let ~c1, . . . ,~cm ∈ Kn be the

columns of A, and let V be the subspace of Kn formed of vectors (x1, . . . , xn) such that
xr+1 = · · · = xn = 0. Then a basis of V is given by the first r elements of the canonical
basis (~e1, . . . , ~en) of Kn (defined in example 8.3), so dim(V ) = r. As rows r + 1 to n
of A are 0, the columns of A are all in V , and so Im(A) ⊂ V , and dim(Im(A)) ≤ r
(by (vi) of theorem 9.3). To finish the proof that r = dim(Im(A)), we have to show
that Im(A) = V , that is, that the columns ~c1, . . . ,~cm span V . Remember the integers
1 ≤ j1 < j2 < · · · < jr ≤ m defined above. The property defining them translates to :
cji = (∗, . . . , ∗, 1, 0, . . . , 0), where the 1 comes in the ith position. Let’s show that ~ei is in
Span(~cj1 , . . . ,~cji) for every i ∈ {1, . . . , r}, which will finish the proof. We do an induction
on i. The result is clear for i = 1, because ~e1 = ~cj1 . Suppose that i ≥ 2, and that the
result is known for 1, 2, . . . , i−1. Then ei−~cji ∈ Span(~e1, . . . , ~ei−1) ⊂ Span(~cj1 , . . . ,~cji−1)
(by the induction hypothesis), and so we indeed have ~ei ∈ Span(~cj1 , . . . ,~cji).

Now let’s show (B). We just need to show that dim(Im(A)) and dim(Im(AT )) don’t
change if we perform one elementary row operation on A. So let’s perform an elementary
row operation on A, which corresponds to multiplying A on the left by some invertible
C ∈ Mn(K) as explained in definition 5.3. Let B = CA. We see easily that Im(B) =
C Im(A) (where C Im(A) is defined in lemma 11.4, and so dim(Im(B)) = dim(Im(A))
by that same lemma. We also have to show that dim(Im(BT )) = dim(Im(AT )). In fact
we’ll show that Im(BT ) = Im(AT ). Let ~l1, . . . ,~ln ∈ Kn be the rows of A. We have three
cases, corresponding to the three types of elementary row operations :

(1) B is obtained from A by switching rows i and j. Then obviously the span of the
rows of B is the same as the span of the rows of A (because the span doesn’t
depend on the order of the vectors).

(2) B is obtained from A by multiplying row i by a ∈ K − {0}. Then the rows of
B are all in Span(~l1, . . . ,~ln), so Im(BT ) ⊂ Im(AT ). As we can get A from B by
performing an elementary row operation of the same type (multiplying row i by
a−1), the same reasoning shows that Im(AT ) ⊂ Im(BT ).
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(3) B is obtained from A by adding a times row i to row j (a ∈ K, i 6= j). Then
again, every row of B is in Span(~l1, . . . ,~ln), so Im(BT ) ⊂ Im(AT ). As A can be
obtained from B by performing the same type of elementary row operation (adding
−a times row i to row j), the same reasoning gives that Im(BT ) ⊂ Im(AT ).

�

Theorem 11.6 (Rank-nullity theorem.) For every A ∈Mnm(K),

rank(A) + dim(Ker(A)) = m.

In other words,
dim(Im(A)) + dim(Ker(A)) = m.

Proof. Let’s choose a basis (~v1, . . . , ~vr) of Ker(A) and a basis ~w1, . . . , ~ws of Im(A). By
remark 11.3, we can find ~u1, . . . , ~us ∈ Km such that ~wj = A~uj for every j ∈ {1, . . . , s}.
Let’s show that (~v1, . . . , ~vr, ~u1, . . . , ~us) is a basis of Km, which will imply that m =
r + s = dim(Ker(A)) + dim(Im(A)) as desired.

First we show that this family spans Km. Let ~v ∈ Km. As A~v ∈ Im(A), we can write
A~v = µ1 ~w1 + · · ·+ µs ~ws. Let ~w = ~v − (µ1~u1 + · · ·+ µs~us). Then

A(~v − ~w) = (µ1 ~w1 + · · ·+ µs ~ws)− (µ1 ~w1 + · · ·+ µs ~ws) = 0,

so ~v − ~w ∈ Ker(A) = Span(~v1, . . . , ~vr), so ~v ∈ Span(~v1, . . . , ~vr) + Span(~u1, . . . , ~us), as
desired.

Then we show that this family is free. Let λ1, . . . , λr, µ1, . . . , µs ∈ K such that λ1~v1 +
· · ·+ λr~vr + µ1~u1 + · · ·+ µs~us = 0. Applying A to this gives µ1 ~w1 + · · ·+ µs ~ws = 0. As
(~w1, . . . , ~ws) is free, this implies that µ1 = · · · = µs = 0. But then λ1~v1 + · · ·+ λr~vr = 0.
As (~v1, . . . , ~vr) is free, this implies that λ1 = · · · = λr = 0.

�

Theorem 11.7 Let A and B be a square n× n matrices. Then

AB = In ⇔ BA = In.

In particular, to check that B is the inverse of A, we only need to check that BA = In
(or that AB = In; but not both, that’s the point).

Proof. We only need to prove that AB = In implies BA = In. (We’ll then get the
reverse implication by exchanging the roles of A and B.) So suppose that AB = In.
Then we have A(B~v) = (AB)~v = ~v for every ~v ∈ Kn, so by the description of Im(A)
in remark 11.3, Im(A) = Kn, and so rank(A) = n. Let (~v1, . . . , ~vn) be the rows of A
and (~e1, . . . , ~en) be the canonical basis of Kn. (We see all these as rwo vectors.) By the
fact that rank(A) = rank(AT ) (theorem 11.5) and (v) of theorem 9.3, (~v1, . . . , ~vn) is a
basis of Kn. So we can write the vectors ~e1, . . . , ~en in this basis : ~ej =

∑m
j=1 cij~vi. Let
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C = (cij) ∈ Mn(K). Then by definition of C, CA is the matrix with rows ~e1, . . . , ~en,
that is, CA = In. Using the associativity of the product of matrices gives :

C = C(AB) = (CA)B = B.

�

Corollary 11.8 Let A be a square n× n matrix. Then the following are equivalent :

(i) A is invertible.

(ii) rank(A) = n.

(iii) rank(AT ) = n.

(iv) Ker(A) = {0}.

(v) The columns of A form a basis of Kn.

(vi) The columns of A span Kn.

(vii) The columns of A form a free family in Kn.

(viii) The rows of A form a basis of Kn.

(ix) The rows of A span Kn.

(x) The rows of A form a free family in Kn.

Proof. We know that (v), (vi) and (vii) are equivalent by (v) of theorem 9.3, and (viii),
(ix) and (x) are equivalent for the same reason. Theorem 11.5 gives the equivalence of (ii)
and (vi), as well as the equivalence of (iii) and (viii), that of (ii) and (iii), and that of (ii)
and (xi). The equivalence of (ii) and (iv) follows from the rank-nullity theorem (theorem
11.6). If A is invertible, then Ker(A) = {0} (because if A~v = 0, then ~v = A−1(A~v) = 0),
so (i) implies (iv). If (v) is true, then we can as in the proof of theorem 11.7 find a
matrix C ∈ Mn(K) such that CA = In, and then theorem 11.7 implies that AC = In,
so that A is invertible; so (v) implies (i).

�

2/28/2017

12 The change of basis formula

The problem is the following : Let V be a finite-dimensional K-vector space, let A =
(~v1, . . . , ~vn) and B = (~w1, . . . , ~wn) be two bases of V . If ~x ∈ V , what is the relationship
between [~x]A and [~x]B (the column vectors of coordinates of ~v in the bases A and B) ?
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The answer is very simple, and rather than trying to memorize it, it’s better to re-
member how to rederive it.

Let A be the n×n matrix whose ith column is the coordinate vector of ~wi in the basis
(~v1, . . . , ~vn), that is, [~wi]A. (This is called the change of basis matrix.)

Proposition 12.1 For every ~x ∈ V ,

[~x]A = A[~x]B.

Proof. To remember whether you should use A or A−1 (that is, which basis you should
express in the other), just test the above formula on ~x = ~wi. The left hand side is [~wi]A,
which is the ith column of A. The right hand side is A[~wi]B = A~ei (where (~e1, . . . , ~en)
is the canonical basis of Kn); this is also the ith column of A.

This also gives the proof in the general case. Indeed, let ~x ∈ V , and write ~v = x1 ~w1 +
· · ·+xn ~wn with x1, . . . , xn ∈ K. Then it is easy to see that [~x]A = x1[~w1]A+· · ·+xn[~wn]A.

On the other hand, [~x]B =

x1. . .

xn

, so A[~x]B is also equal to x1[~w1]A + · · · + xn[~wn]A.

(Because [~wi]A is the ith column of A.)
�

Corollary 12.2 Let A, B and A be as in the proposition, and let B be the n × n
matrix with columns [~v1]B, . . . , [~vn]B. (That is, the change of basis matrix in the other
direction.)

Then AB = BA = In. That is, A and B are invertible and B = A−1.

Proof. Let’s apply the change of basis formula to the vectors ~v1, . . . , ~vn. The matrix with
columns [~v1]A, . . . , [~vn]A is just the identity matrix In. On the other hands, the matrix
with columns [~v1]B, . . . , [~vn]B is B by definition. So the change of basis formula gives
AB = In. By theorem 11.7, this implies that BA = In. (We could also use the change
of basis formula in the other direction.)

�

13 Linear transformations

We fix a field K.

Definition 13.1 If V and W are two K-vector spaces, a (K)-linear transformation (or
linear map) from V to W (also called a morphism or homomorphism of vector spaces)
is a map f : V →W satisfying the following two conditions :

(1) For every v, v′ ∈ V , f(v + v′) = f(v) + f(v′).
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(2) For every v ∈ V and λ ∈ K, f(λv) = λf(v).

Note that we automatically have f(0) = 0 (because 0 = 0 + 0, so (1) implies that that
f(0) = 2f(0), hence f(0) = 0).

We write Hom(V,W ) (or HomK(V,W ) if K is not clear from the context) for the set
of linear transformations from V to W . If V = W , we also write End(V ) (or EndK(V ))
instead of Hom(V, V ), and we call linear transformations from V to V endomophisms of
V .

Here are some examples of linear transformations.

Example 13.2 • The zero map from V toW (it sends every element of V to 0 ∈W ).

• The identity map from V to V .

• The trace : Mn(K)→ K, A 7→ Tr(A) :=
∑n

i=1Aii.

• Mnm(K)→Mmn(K), A 7→ AT .

• f : R3 → R, (x1, x2, x3) 7→ 3x1 − x2 + 18x3.

• Any linear transformation f : K →W is of the form x 7→ x~w, for some ~w ∈W .

• The real and imaginary part are R-linear transformations from C to R.

• Let p be a prime number. Suppose that char(K) = p, which means that p = 0
in K (for example, this is true if K = Fp := Z/pZ). Then the map Frob : K →
K, x 7→ xp is a Fp-linear transformation (called the Frobenius map).

• The maps P 7→ P ′ and P 7→ P (X + 2) are endormorphisms of K[X].

• Let V be the R-vector space of infinitely differentiable functions from R to R (or
from R to C). Then the map f 7→ f ′ is an endomorphism of V .

• Let V be the R-vector space of continuous functions from [0, 1] to R. Then the
map f 7→

∫ 1
0 f(t)dt is a linear transformation from V to R.

• The map f 7→ f(5) is a linear transformation from RR to R.

Here are few non-examples.

Example 13.3 • x 7→ x2 is not a linear transformation from K to K, unless K has
characteristic 2, i.e. 2 = 0 in K. (In general, maps that involve squares or higher
powers or inverses tend not to be linear, but see the example of the Frobenius.)

• f 7→ f(0) + 1 is not a linear transformation from RR to R (it does not send 0 to
0).

Here are a few easy properties of linear transformations. (“Easy” as in “every proof
is a straightforward check and will be left as an exercise”.)
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Lemma 13.4 Let V,W,U be three K-vector spaces.

(i) If f, g ∈ Hom(V,W ) and λ ∈ K, then f + g and λf are also in Hom(V,W ).
(Where the sum and scalar multiplication are defined by (f + g)(v) = f(v) + g(v)
and (λf)(v) = λf(v), for every v ∈ V ).

(ii) With the operations of (i), Hom(V,W ) is a K-vector space.

(iii) If f ∈ Hom(V,W ) and g ∈ Hom(W,U), then g ◦ f ∈ Hom(V,U).

(iv) If f, f ′ ∈ Hom(V,W ), g, g′ ∈ Hom(W,U) and λ ∈ K, then

f ◦ (g + g′) = f ◦ g + f ◦ g′

(f + f ′) ◦ g = f ◦ g + f ◦ g′

(λf) ◦ g = f ◦ (λg) = λ(f ◦ g).

(Remember that ◦ has priority over +.)

In particular, End(V ), with the additive and the composition, is a ring (noncommu-
tative in general), just like Mn(K). This is not a coincidence, as we will see later. (Also,
this is a useless remark. I just like to say “ring”. Ring ring ring ring.)

Finally we can make a precise definition of what is means for two K-vector spaces to
“look exactly the same”.

Definition 13.5 If V and W are two K-vector spaces, an isomorphism from V to W
is a linear transformation f : V →W that is also a bijection. We say that two K-vector
spaces are isomorphic if there exists an isomorphism between them.

Example 13.6 • When I said in the first week of class that “Mnm(K) is the same as
Knm”, what I actually meant is “these spaces are isomorphic”. The isomorphism
I gave was the one that sends A ∈Mnm(K) to the element

(A11, A12, . . . , A1m, A21, A22, . . . , A2m, . . . , An1, . . . , Anm)

of Knm (But there are other isomorphisms.) Note this is totally incompatible with
matrix multiplication.

• Let V be a n-dimensional vector space, and let B = (~v1, . . . , ~vn) be a basis of V .
Remember that, for ~v ∈ V , we write [~v]B ∈ Kn for the family of coordinates of ~v
in the basis B. Then the map ~v 7→ [~v]B is an isomorphism from V to Kn. The
inverse isomorphism is (x1, . . . , xn) 7→ x1~v1 + · · ·+ xn~vn.

In particular, all finite-dimensional K-vector spaces of the same dimension are
isomorphic (since they are all isomorphic to Kn).

Lemma 13.7 If f : V → W is an isomorphism, then its inverse f−1 : W → V is also
a linear transformation. (So it is also an isomorphism.)
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Proof. Let ~w, ~w′ ∈W and λ ∈ K. Using the fact that f is linear and that f ◦ f−1 = id,
we get :

f(f−1(~w + ~w′)) = ~w + ~w′ = f(f−1(~w)) + f(f−1(~w′)) = f(f−1(~w) + f−1(~w))

and
f(f−1(λ~w)) = λ~w = λ(f(f−1(~w))) = f(λf−1(~w)).

As f is bijective, this implies that

f−1(~w + ~w′) = f−1(~w) + f−1(~w′)

and
f−1(λ~w) = λf−1(~w),

as desired.
�

Lemma 13.8 Let f : V → W be an isomorphism and (~vi)i∈I be a family of vectors of
V . Then :

(i) (~vi)i∈I is free if and only (f(~vi))i∈I is free.

(ii) (~vi)i∈I generates V if and only (f(~vi))i∈I generates W .

(iii) (~vi)i∈I is a basis of V if and only if (f(~vi))i∈I is a basis of W .

In particular, two isomorphic vector spaces have the same dimension.

Proof. (iii) follows from (i) and (ii) by definition of a basis. As every isomorphism has
an inverse that’s also an isomorphism, we only need to prove the implications ⇒ in (i)
and (ii).

We start with (i). Suppose that (~vi)i∈I is free, and let λ1, . . . , λn ∈ K and i1, . . . , in ∈ I
distinct such that λ1f(~vi1) + · · · + λn(~vin) = 0. By linearity of f , this gives f(λ1~vi1 +
· · · + λn~vin) = 0, and using the fact that f is bijective (and that f(0) = 0), we get
λ1~vi1 + · · ·+ λ~vin = 0. As (~vi)i∈I is free, this implies that λ1 = · · · = λn = 0, as desired.

Now let’s prove (ii). Suppose that (~vi)i∈I generates V , and let ~w ∈ W . We write
f−1(~w) =

∑
i∈I λi~vi, where only a finite number of the λi are nonzero. Then

~w = f(f−1(~w)) = f(
∑
i∈I

λi~vi) =
∑
i∈I

λif(~vi).

�
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14 Linear transformations and matrices

Theorem 14.1 Let V and W be two K-vectors spaces.

(i) If (~vi)i∈I is a generating family of V and f, g : V →W are two linear transforma-
tions such that f(~vi) = g(~vi) for every i ∈ I, then f = g.

(ii) If (~vi)i∈I is a basis of V and (~wi)i∈I is a family of vectors in W , then there exists
one and only one linear transformation f : V →W such that f(~vi) = ~wi for every
i ∈ I.

Proof.

(i) Let ~v ∈ V , and write ~v =
∑

i∈I λi~vi, where only a finite number of the λi are
nonzero. Then

f(~v) = f(
∑
i∈I

λi~vi) =
∑
i∈I

λif(~vi) =
∑
i∈I

λig(~vi) = g(
∑
i∈I

λi~vi) = g(~v).

(ii) The uniqueness follows from (i). Now defined f in the following way : If ~v ∈ V ,
then there exists a unique family (λi)i∈I of elements of K such that all but a finite
number of the λi are zero and that ~v =

∑
i∈I λi~vi. We set

f(~v) =
∑
i∈I

λi ~wi.

It is now easy to check that f is linear.

�
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Definition 14.2 Let V and W be finite-dimensional vector spaces., and fix bases A =
(~v1, . . . , ~vn) of V and B = (~w1, . . . , ~wm) of W . If f ∈ Hom(V,W ), we write [f ]B,A for
the m×n matrix with columns [f(~v1)]B, . . . , [f(~vn)]B and call it matrix of f in the bases
A and B.

If V = W and A = B, we’ll just write [f ]B instead of [f ]B,B.

Corollary 14.3 Let V,W,A,B be as the definition above. Then the map{
Hom(V,W ) → Mm,n(K)

f 7→ [f ]B,A

is an isomorphism of K-vector spaces. Its inverse is defined as follows : a matrix
A ∈ Mmn(K) goes to the linear trasnformation that sends ~v ∈ V to the unique vector
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~w ∈ W such that [~w]B = A[~v]A (the right hand side is the matrix product of A by the
column vector [~v]A).

Moreover, if U is a third vector space with a basis C, then for every f ∈ Hom(V,W )
and g ∈ Hom(W,U),

[g ◦ f ]C,A = [g]C,B[f ]B,A

(the product on the right hand side is the matrix product).

Remark 14.4 Note the very important corollary of the corollary : If V and W are
finite-dimensional vector spaces, and if we write n = dimV and m = dimW , then :

dim(Hom(V,W )) = dim(Mm,m(K)) = nm = (dimV )(dimW ).

Proof. By (ii) of theorem 14.1 above, the map Hom(V,W )→Wn, f 7→ (f(~v1), . . . , f(~vn)),
is bijective. As it is clearly linear, it’s an isomorphism. To finish the proof of the first
statement, we just need to notice that, by definition of a basis, the map W →Mm1(K),
~w 7→ [~w]B, is an isomorphism.

Let’s prove the second sentence of the corollary. Let f ∈ Hom(V,W ). For every
r ∈ {1, . . . , n}, we write f(~vr) =

∑m
s=1 asr ~ws. Then [f ]B,A = (aij)1≤i≤m,1≤j≤n. Now let

~v ∈ V , and write ~v = x1~v1 + · · · + xn~vn, that is, [~v]A =

x1...
xn

. Then the coefficient of

~ws in f(~v) is
∑n

r=1 asrxr, which is also the (s, 1)-entry of the m × 1 matrix [f ]B,A[~v]A.
So we see that we indeed recover f from [f ]B,A by the formula of the corollary.

Now let’s prove the formula for the composition. Write C = (~u1, . . . , ~up). We also
write [f ]B,A = (aij) and [g]C,B = (bij), which means that f(~vr) =

∑m
s=1 asr ~ws and

g(~ws) =
∑p

t=1 bts~ut. For r ∈ {1, . . . , n}, the rth column of [g ◦ f ]C,A is [(g ◦ f)(~vr)]C. We
have

(g ◦ f)(~vr) = g(

m∑
s=1

asr ~ws) =

p∑
t=1

m∑
s=1

btsasr~ut =

p∑
t=1

(

m∑
s=1

btsasr)~ut.

Note that the coefficient of ~ut is just the entry in position (t, s) of the matrix [g]C,B[f ]B,A.
In other words, the rth column of [g ◦ f ]C,A is equal to the rth column of [g]C,B[f ]B,A.

�

Remark 14.5 Suppose that V = W = U and A = B = C. Note that [idV ]B = In (the
identity matrix).9

Then the corollary implies that, for every f ∈ End(V ) : f is an isomorphism if and
only if [f ]B is invertible.

Moreover, if f is an isomorphism, then [f−1]B = [f ]B.

9Beware, if A and B are two dictinct bases of V , then [idV ]B,A is not the identity matrix !
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Proof. Suppose that f is an isomorphism. Then

In = [idV ]B = [f−1 ◦ f ]B = [f−1]B[f ]B.

By theorem 11.7, this implies that [f ]B is inversible and that its inverse is [f−1]B.
Conversely, assume that [f ]B is inversible, and let A be its inverse. By corollary 14.3,

there exists a unique g ∈ End(V ) such that [g]B = A. Then we have :

[g ◦ f ]B = [g]B[f ]B = A[f ]B = In = [idV ]

and
[f ◦ g]B = [f ]BA = In = [idV ],

so g ◦ f = f ◦ g = idV .
�

Remark 14.6 Actually, using the same proof as in the previous remark, we can get
a slightly more general result : If V and W are K-vector spaces of the same finite
dimension, A is a basis of V and B is a basis of W , then a linear application f : V →W
is an isomorphism if and only if the matrix [f ]B,A is invertible. (Note that this matrix
is square because dim(V ) = dim(W ), so it makes sense to ask if it’s invertible.)

We also have a change of basis formula for the matrix of a linear transformation. Here,
we’ll just give the most useful case, which is the case where V = W . (Again, it is a very
bad idea to try to memorize this without understanding it.)

Proposition 14.7 Let V be a finite-dimensional K-vector space, let A = (~v1, . . . , ~vn)
and B = (~w1, . . . , ~wn) be two bases of V . We write A for the matrix with columns
[~w1]A, . . . , [~wn]A. (The change of basis matrix from B to A.)

Then, for every f ∈ End(V ),

[f ]B = A−1[f ]AA.

Proof. By the change of basis formula (and corollary 12.2), for every ~v ∈ V :

[~v]A = A[~v]B

and
[~v]B = A−1[~v]A.

Remember also that [f ]B is the unique n × n matrix such that, for every ~v ∈ V ,
[f(~v)]B = [f ]B[~v]B and [f ]A is the unique n × n matrix such that, for every ~v ∈ V ,
[f(~v)]A = [f ]A[~v]A

So we have to prove that A−1[f ]AA satisfies the property that characterizes [f ]B. Let
~v ∈ V . We have :

(A−1[f ]AA)[~v]B = (A−1[f ]A)(A[~v]B) = A−1[f ]A[~v]A = A−1[f(~v)]A = [f(~v)]B.

�
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Example 14.8 Linear transformations from Kn to Km

In this subsection, we take V = Kn and W = Km, and we use the canonical basis
on both sides. If f ∈ Hom(Kn,Km), the matrix of f in the canonical bases is often
just called “the matrix of f”. This gives an isomorphism Hom(Kn,Km)

∼→ Mmn(K),
and composition corresponds to matrix multiplication by this isomorphism. This is the
main reason that we defined matrix multiplication that way, and also the reason that
it’s distributive with respect to matrix addition.

In the other direction, if A ∈ Mm,n(K), then we recover the corresponding f ∈
Hom(Kn,Km) by the formula f(~v) = A~v. (By corollary 14.3.)

In particular, the identity matrix In ∈ Mn(K) corresponding to the identity map
idKn (hence the name). Also, a matrix A ∈ Mn(K) is invertible if and only if the
endomorphism of Kn that it defines is an isomorphism.

Now let’s generalize the notions of kernel, image and rank from matrices to linear
transformation.

15 Kernel and image of a linear transformation

Let V and W be K-vector spaces.

Definition 15.1 If f ∈ Hom(V,W ), then :

(i) The kernel of f is the subset Ker(f) of V defined by Ker(f) = {~v ∈ V |f(~v) = 0}.

(ii) The image of f is the subset Im(f) of W defined by Im(f) = {~w ∈ W |∃~v ∈
V, f(~v) = ~w}.

(iii) The rank of f is rank(f) = dim(Im(f)). (It’s a nonnegative integer or +∞.)

Example 15.2 If V = Kn, W = Km, f ∈ Hom(V,W ) and A ∈Mmn(K) is the matrix
of f (in the canonical bases), then Ker(f) = Ker(A), Im(f) = Im(A) and rank(f) =
rank(A).

More examples.

Lemma 15.3 Let f : V →W be a linear transformation. Then Ker(f) is a subspace of
V and Im(f) is a subspace of W .

Proof.

• Ker(f) : We have 0 ∈ Ker(f) because f(0) = 0. Let ~v, ~w ∈ Ker(f) and λ ∈ K.
Then

f(~v + ~w) = f(~v) + f(~w) = 0 + 0 = 0

f(λ~v) = λf(~v) = λ0 = 0

so ~v + ~w and λ~v are also in Ker(f).
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• Im(f) : We have 0 ∈ Im(f) because 0 = f(0). Let ~v, ~w ∈ Im(f) and λ ∈ K. By
definition of Im(f), we have vectors ~v′, ~w′ in V such that ~v = f(~v′) and ~w = f(~w′).
Then

~v + ~w = f(~v′) + f(~w′) = f(~v′ + ~w′) ∈ Im(f)

and
λ~v = λf(~v′) = f(λ~v′) ∈ Im(f).

�

The following result is very important, even though its proof is so short.

Proposition 15.4 Let f : V → W be a linear transformation. Then f is injective if
and only if Ker(f) = {0}.

Proof. Suppose that f is injective. Then, if ~v ∈ Ker(f), we have f(~v) = 0 = f(0), so
~v = 0 by injectivity of f .

Suppose that Ker(f) = {0}. Let ~v, ~w ∈ V be such that f(~v) = f(~w). Then f(~v− ~w) =
f(~v)− f(~w) = 0, so ~v − ~w ∈ Ker(f), so ~v − ~w = 0, so ~v = ~w.

�

16 Rank-nullity theorem for linear transformations

Here is the rank-nullity theorem for linear transformations.

Theorem 16.1 Let V and W be finite-dimensional K-vector spaces, and let f : V →W
be a linear transformation. Then :

dim(Ker(f)) + rank(f) = dim(V ).

Proof. We can deduce this theorem from the rank-nullity theorem for n ×m matrices
(theorem 11.6), by choosing bases A of V and B of W and relating the kernel and image
of f to the kernel and image of the matrix [f ]B,A of f in those bases. Here is the relation :
Write A = [f ]B,A. Then ~v ∈ V is in Ker(f) if and only if [~v]A ∈ Ker(A), and ~w ∈W is in
Im(f) if and only if [~w]B ∈ Im(A). (This follows from the formula [f(~v)]B = [f ]B,A[~v]A
of corollary 14.3.)

Or we could just adapt the proof of theorem 11.6 to this case. Let’s do this as an
exercise : Let’s choose a basis (~v1, . . . , ~vr) of Ker(f) and a basis ~w1, . . . , ~ws of Im(f).
Choose ~u1, . . . , ~us ∈ V such that ~wj = f(~uj) for every j ∈ {1, . . . , s}. Let’s show
that (~v1, . . . , ~vr, ~u1, . . . , ~us) is a basis of V , which will imply that dim(V ) = r + s =
dim(Ker(f)) + dim(Im(f)) as desired.

First we show that this family spans V . Let ~v ∈ V . As f(~v) ∈ Im(f), we can write
f(~v) = µ1 ~w1 + · · ·+ µs ~ws. Let ~w = ~v − (µ1~u1 + · · ·+ µs~us). Then

f(~v − ~w) = (µ1 ~w1 + · · ·+ µs ~ws)− (µ1 ~w1 + · · ·+ µs ~ws) = 0,
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so ~v − ~w ∈ Ker(f) = Span(~v1, . . . , ~vr), so ~v ∈ Span(~v1, . . . , ~vr) + Span(~u1, . . . , ~us), as
desired.

Then we show that this family is free. Let λ1, . . . , λr, µ1, . . . , µs ∈ K such that λ1~v1 +
· · ·+ λr~vr + µ1~u1 + · · ·+ µs~us = 0. Applying f to this gives µ1 ~w1 + · · ·+ µs ~ws = 0. As
(~w1, . . . , ~ws) is free, this implies that µ1 = · · · = µs = 0. But then λ1~v1 + · · ·+ λr~vr = 0.
As (~v1, . . . , ~vr) is free, this implies that λ1 = · · · = λr = 0.

�

Corollary 16.2 With the notation of the theorem, suppose that dim(V ) = dim(W ).
Then :

f is injective ⇔ f is surjective ⇔ f is an isomorphism.

Proof. The rank-nullity theorem (and the hypothesis on the dimensions) says that
dim(W ) = dim(V ) = dim(Ker(f)) + dim(Im(f)). Also, by proposition 15.4, we know
that f is injective if and only if Ker(f) = {0}, which is equivalent to dim(Ker(f)) = 0.

Suppose that f is injective. Then dim(Ker(f)) = 0, so dim(Im(f)) = dim(W ). As
Im(f) is a subspace of W , this implies that W = Im(f) (by (vi) of theorem 9.3).

Suppose that f is surjective, that is, that W = Im(f). Then dim(Ker(f)) = dim(W )−
dim(Im(f)) = 0, so f is also injective.

�

Remark 16.3 We can also use the rank-nullity theorem to prove that, if W1 and W2 are
two finite-dimensional subspaces of a vector space W , then dim(W1 +W2) = dim(W1) +
dim(W2)− dim(W1 ∩W2) (corollary 10.6).

Consider the vector space V := W1 ×W2 :10 This is the set of pairs (~w1, ~w2), with
~w1 ∈ W1 and ~w2 ∈ W2. Addition and scalar multiplication are defined entry by entry
(just like for Kn). Note that dim(V ) = dim(W1) + dim(W2), because if (~v1, . . . , ~vr) is a
basis of W1 and (~w1, . . . , ~ws) is a basis of W2, then the family ((~vi, ~wj))(i,j)∈{1,...,r}×{1,...,s}
is a basis of V .

Let f : V →W be the map sending (~w1, ~w2) to ~w1− ~w2. I claim that Im(f) = W1+W2

and Ker(f) = W1 ∩ W2 (we see this as a subspace of V by sending ~w ∈ W1 ∩ W2

to (~w, ~w) ∈ V ). This immediately implies the dimension formula by the rank-nullity
theorem. Let’s first calculate Ker(f). Clearly, if ~w ∈W1∩W2, then f(~w, ~w) = ~w− ~w = 0.
Let (~w1, ~w2) ∈ Ker(f). Then ~w1 − ~w2 = 0, so ~w1 = ~w2 ∈ W1 ∩W2. Now let’s calculate
Im(f). If ~v ∈ W1 + W2, write ~v = ~w1 + ~w2 with ~w1 ∈ W1 and ~w2 ∈ W2; then ~v =
f(~w1,−~w2) ∈ Im(f). If ~v ∈ Im(f), write ~v = f(~w1, ~w2); then ~v = ~w1+(−~w2) ∈W1+W2.

Remark 16.4 The corollary to the rank-nullity theorem is totally false for infinite-
dimensional vector spaces. Here are counterexamples.

10This vector space is also sometimes denoted W1 ⊕W2, but I won’t do this here to avoid confusion.
Note however that the notation is coherent : With this notation, saying that W1 and W2 are in
direct sum is equivalent to saying that the map W1 ⊕W2 → W1 + W2, (~w1, ~w2) 7→ ~w1 + ~w2 is an
isomorphism. (Please ignore this remark if you find it confusing.)
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Let’s take V = W = K[X]. First consider f : V → V, P 7→ XP . Then f is linear and
injective (because Ker(f) = {0}), but it’s not surjective; in fact, Im(f) is the subspace
of polynomials with zero constant term. Now let’s consider g : V → V, P 7→ P ′.
Then g is linear and surjective (every polynomials can be written as the derivative of
another polynomial), but not injective; indeed, the constant polynomials are in Ker(f),
so Ker(f) = {0}.

3/7/2017

17 Dual space

At the beginning of the semester, I said that we would give a linear algebraic reinter-
pretation of the transpose of a matrix. Now the time has come.

We fix a field K and a K-vector space V .

Definition 17.1 (1) A linear form (or linear functional) on V is a linear transforma-
tion from V to K.

(2) The dual (space) of V is the K-vector space V ∗ = Hom(V,K). In other words, it’s
the space of linear forms on V .

(3) V ∗∗ := (V ∗)∗ is called the bidual of V .

Remark 17.2 By remark 14.4, if V is finite-dimensional, then :

dim(V ∗) = (dimV )(dimK) = dimV.

If f ∈ V ∗ and ~v ∈ V , we sometimes write 〈f,~v〉 instead of f(~v).

Lemma 17.3 The map ι : V → V ∗∗ that sends ~v ∈ V to the linear form on ι : V ∗ → K
given by ι(f) = f(~v) is a linear transformation. If V is finite-dimensional, this linear
transformation is injective, hence it is an isomorphism.

Proof. We actually have three things to prove here :

(A) ι(~v) : V ∗ → K is a linear map for every ~v ∈ V .

(B) The map ι : V → V ∗∗ is linear.

(C) If V is finite-dimensional, then the map ι is injective.

Note that the last part (the fact that ι is an isomorphism if V is finite-dimensional)
follows from the fact that ι is injective, the fact that dim(V ∗∗) dim(V ∗) = dim(V ) (see
remark 17.2), and corollary 16.2.

Let’s prove (A). Let ~v ∈ V . If f1, f2 ∈ V ∗ and λ ∈ K, then

(ι(~v))(f1 + f2) = (f1 + f2)(~v) = f1(~v) + f2(~v) = (ι(~v))(f1) + (ι(~v))(f2)
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and
(ι(~v))(λf) = (λf)(~v) = λf(~v) = λ(ι(~v))(f).

11

Let’s prove (B). Let ~v1, ~v2 ∈ V and λ ∈ K. Then, for every f ∈ V ∗,

(ι(~v1 + ~v2))(f) = f(~v1 + ~v2) = f(~v1) + f(~v2) = (ι(~v1))(f) + (ι(~v2))(f)

and
(ι(λ~v))(f) = f(λ~v) = λf(~v) = λ(ι(~v))(f),

so ι(~v1 + ~v2) = ι(~v1) + ι(~v2) and ι(λ~v) = λι(~v).
Let’s prove (C). By proposition 15.4, it’s enough to prove that Ker(ι) = {0}. Suppose

that Ker(ι) 6= {0}, and choose ~v ∈ Ker(ι) such that ~v 6= 0. Then (by (iii) of theorem 9.3)
we can find ~v2, . . . , ~vn ∈ V such that (~v,~v2, . . . , ~vn) is a basis of V . By (ii) of theorem
14.1, there exists a unique linear transformation f : V → K such that f(~v) = 1 and
f(~v2) = · · · = f(~vn) = 0. But then (ι(~v))(f) = f(~v) = 1, which contradicts the fact that
~v ∈ Ker(ι). So we must have Ker(ι) = {0}.

�

Remark 17.4 What happens if V is infinite-dimensional ? If we admit the axiom of
choice, we are also able to complete any nonzero vector of V to a basis, and then the
proof of (C) works and shows that ι is injective. However, if we don’t admit the axiom
the choice, then the existence of vector spaces V such that ι is not injective does not
contradict the other axioms of set theory (the Zermelo-Fraenkel axioms).

Example 17.5 If V = K3, let’s calculate V ∗. One element of V ∗ is the linear transfor-
mation T1 : V → K, (x1, x2, x3) 7→ x1. Others are T2 : V → K, (x1, x2, x3) 7→ x2 and
T3 : V → K, (x1, x2, x3) 7→ x3.

In fact, these three form a basis of V ∗. Why ? Well, if we think of V as the space
of column matrices with 3 rows, then we have seen in example 14.8 that V ∗, which is
Hom(V,K), can be identified with M1,3(K), and then the map V ∗ × V → K, (f,~v) 7→
f(~v), is just matrix multiplication. In that identification, T1 corresponds to the matrix(
1 0 0

)
, T2 corresponds to the matrix

(
0 1 0

)
and T3 corresponds to the matrix(

0 0 1
)
. It is clear that these three matrices form a basis of M1,3(K).

Here is another way to show that (T1, T2, T3) is a basis of V ∗. Let (~e1, ~e2, ~e3) be the
canonical basis of V . First we show that T1, T2 and T3 are linearly independent : Let
λ1, λ2, λ3 ∈ K such that the linear transformation T = λ1T1 +λ2T2 +λ3T3 is equal to 0.
Then 0 = T (~e1) = λ1, and similarly λ2 = T (~e2) = 0 and λ3 = T (~e3) = 0. Now let’s show
that V ∗ = Span(T1, T2, T3). Let T ∈ V ∗, and let U = T −(T (~e1)T1+T (~e2)T2+T (~e3)T3).
Then U(~e1) = U(~e2) = U(~e3) = 0, so U = 0, so T = T (~e1)T1 + T (~e2)T2 + T (~e3)T3 ∈
Span(T1, T2, T3).

11Note that we have not used the fact that the maps f1 and f2 are linear. In fact, if ~v ∈ V , the map
KV → K, f 7→ f(~v), is linear; ι(~v) is just the restriction of this map to Hom(V,K) ⊂ KV .
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Example 17.6 Let’s consider the subspace V of Q3 defined by the equation x+y+z = 0.
What does the dual of V look like ?

First note that the element T1, T2, T3 ∈ (Q3)∗ of the previous example can be retricted
to V and give elements U1, U2, U3 ∈ V ∗. It seems logical that these should generate V ∗,
but the proof of the previous example doesn’t work because neither ~e1 nor ~e2 nor ~e3 are
in V . So let’s try something else. By theorem 10.5, there exists a subspace W of Q3 such
that Q3 = V ⊕W . (In fact it is easy to construct such a W , we can take for example
W the line generated by the vector (1, 1, 1).) Let U ∈ V ∗. We define T : Q3 → Q in
the following way : If ~v ∈ Q3, write ~v = ~v1 + ~v2 with ~v1 ∈ V and ~v2 ∈ W and set
T (~v) = U(~v1); this makes sense because the decomposition of ~v is unique, and it’s linear
for the same reason.

For example, taking W = Span((1, 1, 1)), let’s calculate what this gives for U = U2. If
~v = (x, y, z) ∈ Q3, then ~v = ~v1 + ~v2, with ~v1 = (x− (x+ y + z)/3, y − (x+ y + z)/3, z −
(x+ y+ z)/3) ∈ V and ~v2 = ((x+ y+ z)/3, (x+ y+ z)/3, (x+ y+ z)/3) ∈W . Then the
corresponding T sends (x, y, z) to y − (x+ y + z)/3 = −x/3 + 2y/3− z/3.

Anyway, if U ∈ V ∗, we have shown how to find T ∈ (Q3)∗ such that U = T|V . By the
previous example, we can write T = a1T1 + a2T2 + a3T3 with a1, a2, a3 ∈ Q, and then
U = a1U1 + a2U2 + a3U3.

We next have to see if U1, U2, U3 are linearly independent, but this cannot be true
because U3 = −U1 − U2. So let’s see if U1 and U2 are linearly independent. Let
a1, a2 ∈ Q such that U := a1U1 + a2U2 = 0. Then U((1,−1, 0)) = a1 − a2 = 0 and
U((1, 0,−1)) = a1 = 0, so a1 = 0 and a2 = 0. So finally, we get that (U1, U2) is a basis
of V ∗.

Example 17.7 Let I be a set. Then the dual of K(I) is isomorphic to KI in a natural
way. Indeed, consider the map ϕ : KI → (K(I))∗ that sends f : I → K to the function
ϕ(f) : K(I) → K, g 7→

∑
i∈I f(i)g(i) (the sum is finite because g has finite support, so

it makes sense). This map u is linear (exercise). Before we continue, remember that we
have the canonical basis (ei)i∈I of K(I) defined in example 8.3.

Let’s show that ϕ is injective, which amounts to showing that Ker(ϕ) = {0}. Let
f ∈ Ker(ϕ). Then, for every i ∈ I,

(ϕ(f))(ei) =
∑
j∈I

f(j)ei(j) = f(i) = 0.

So f = 0.
Let’s show that ϕ is surjective. Let u ∈ (K(I))∗. We define f : I → K by f(i) = u(ei).

Then, for every i ∈ I, (ϕ(f))(ei) = f(i) = u(ei). As (ei)i∈I is a basis of K(I), this shows
(by theorem 14.1) that ϕ(f) = u.

In particular, we get an isomorphism (Kn)∗
∼→ Kn. Note that the map (Kn)∗×Kn →

K, (f,~v) 7→ f(~v) then becomes Kn × Kn → K, ((x1, . . . , xn), (y1, . . . , yn)) 7→ x1y1 +
· · ·+ xnyn.

Definition 17.8 (Dual basis.) Suppose that V is finite-dimensional, and let (~v1, . . . , ~vn)
be a basis of V . Define a family of vectors (~v∗1, . . . , ~v

∗
n) of V ∗ in the following way : For
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every i, j ∈ {1, . . . , n},

~v∗i (~vj) =

{
1 if i = j
0 if i 6= j.

(This uniquely determines the ~v∗i by theorem 14.1.)
This family is called the dual basis of the basis (~v1, . . . , ~vn).

Remark 17.9 We are still in the situation of definition 17.8. Write B = (~v1, . . . , ~vn).
If ~v ∈ V , we can write ~v = λ1~v1 + · · ·+ λn~vn. Then, for every i ∈ {1, . . . , n},

~vi(~v) = ~v∗i (λ1~v1 + · · ·+ λn~vn) = ~v∗i (λi~vi) = ~vi.

In other words, we get the following formula :

[~vB] = (~v∗1(~v), . . . , ~v∗n(~v)).

The name “dual basis” is justified by the following result :

Proposition 17.10 With the notation and assumptions of definition 17.8, (~v∗1, . . . , ~v
∗
n)

is a basis of V ∗.

Note that this reproves the fact that V ∗ is finite-dimensional and dim(V ∗) = dim(V ).

Proof. Let’s show that this family is linearly independent. Let λ1, . . . , λn ∈ K be such
that λ1~v

∗
1 + · · ·+ λn~v

∗
n = 0. Then, for every i ∈ {1, . . . , n},

λi = λi~v
∗
i (~vi) = (λ1~v

∗
1 + · · ·+ λn~v

∗
n)(~v1) = 0,

Let’s show that this family generates V ∗. Let f ∈ V ∗, and let λi = f(~vi) for i ∈
{1, . . . , n}. Then, for every i,

(f − (λ1~v
∗
1 + · · ·+ λn~v

∗
n))(~vi) = f(~vi)− λi~v∗i (~vi) = 0.

By theorem 14.1, f = λ1~v
∗
1 + · · ·+ λn~v

∗
n.

�

Example 17.11 The basis (T1, T2, T3) of 17.5 is the dual basis of the canonical basis.

Example 17.12 In example 17.6, we found a basis (U1, U2) of V ∗, where V is the
subspace of Q3 defined by the equation x + y + z = 0. We have a basis (~v1, ~v2) of V
given by ~v1 = (1,−1, 0) and ~v2 = (1, 0,−1). Note that (U1, U2) is not the dual basis of
(~v1, ~v2), because U1(~v1) = 1 but U2(~v1) = −1. So what is the dual basis of (~v1, ~v2) ?

Well, we need two linear transformations ~v∗1, ~v
∗
2 : V → K such that ~v∗1(~v1) = ~v∗2(~v2) = 1

and ~v∗1(~v2) = ~v∗2(~v1) = 0. If we write ~v∗1 in the form (x, y, z) 7→ ax+ by + cz, this means
that we must have a − b = 1 and b − c = 0, hence b = c and a = 1 + b. So we can
take b = c = 0 and a = 1, which gives ~v∗1 = U1 : (x, y, z) 7→ x. For ~v∗2, if we write it as
(x, y, z) 7→ ax + by + cz, then we must have a − c = 1 and a − b = 0, hence a = b and
a = 1+c. So we can take c = 0 and a = b = 1, which gives ~v∗2 = U1+U2 : (x, y, z) 7→ x+y.
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Example 17.13 If we identity (Kn)∗ to Kn as in example 17.7 (see also example 17.5
for n = 3), then the dual basis of the canonical basis is just the canonical basis.

Corollary 17.14 If V is finite-dimensional, then the map ι : V → V ∗∗ is an isomor-
phism. Moreover, for every basis (~v1, . . . , ~vn), the basis (ι(~v1), . . . , ι(~vn)) of V ∗∗ is the
dual basis of (~v∗1, . . . , ~v

∗
n).

Proof. We know that ι is injective, and we also know that dim(V ∗∗) = dim(V ∗) =
dim(V ). By corollary 16.2, this implies that ι is an isomorphism.

Let (~v1, . . . , ~vn) be a basis of V . Then, for every i, j ∈ {1, . . . , n},

(ι(~vi))(~v
∗
j ) = ~v∗j (~vi) =

{
1 if i = j
0 if i 6= j.

This proves the second sentence.
�

Definition 17.15 (Transpose of a linear transformation.) Let V and W be two vector
spaces, and let u : V →W be a linear transformation.

Then the map tu : W ∗ → V ∗ sending f ∈W ∗ to f ◦u is a linear transformation, called
the transpose of u.

That tu is linear follows directly from the properties of composition (see lemma 13.4).

Example 17.16 Consider the linear transformation u : K3 → K2 given by the matrix

A =

(
0 1 2
3 4 5

)
. What is tu ?

We identify K3 and K2 to their duals as in example 17.13, so we can also look at the
matrix of tu in the canonical bases of these spaces.

Let ~v = (a, b) ∈ K2. As an element of (K2)∗, this is the linear transformation a~e∗1+b~e∗2,
which sends (x, y) to ax+ by. So tu(~v) ∈ (K3)∗ is the linear transformation :

(x, y, z) 7→ u(x, y, z) = (y+2z, 3x+4y+5z) 7→ a(y+2z)+b(3x+4y+5z) = (3b)x+(a+4b)y+(2a+5b)z.

In other words, tu(~v) = (3b)~e∗1 + (a + 4b)~e∗2 + (2a + 5b)~e∗3. This means that the matrix

of tu in the duals bases of the canonical bases is

0 3
1 4
2 5

, which is AT . This is not a

coincidence.

Proposition 17.17 Let V and W be finite-dimensional vector spaces. Fix a basis A of
V and a basis B of W , and denote by A∗ and B∗ the dual bases.

Then for every linear transformation u : V →W , we have

[tu]A∗,B∗ = [u]TB,A.
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Proof. Let A = [u]B,A and B = [tu]A∗,B∗ . Write A = (~v1, . . . , ~vn) and B = (~w1, . . . , ~wm).
Remember that, by definition, A is the matrix with columns [u(~v1)]B, . . . , [u(~vn)]B. By
remark 17.9, the (j, i)th of A is

~w∗j (u(~vi)) = (~w∗j ◦ u)(~vi) = (ι(~vi))(
tu(~w∗j )).

By corollary 17.14 (and remark 17.9 again, this times used to calculate the entries of
B), this is exactly the (i, j)th entry of B. So we indeed have B = AT .

�

3/9/2017

18 Determinants 1 : multilinear forms

You might have met the notion of the determinant of a matrix before. It’s a number,
calculated in some mysterious and complicated way, that tells you whether a matrix is

invertible. And for a 2× 2 matrix

(
a b
c d

)
, the determinant is simply ad− bc.

The goal of this section (and the following ones) is to explain the theory behind
determinants.

Let K be a field and V be a K-vector space.

Definition 18.1 A bilinear form on V is a map f : V × V → K that is linear in each
variable, that is :

• For every ~v1, ~v2, ~w ∈ V , f(~v1 + ~v2, ~w) = f(~v1, ~w) + f(~v2, ~w).

• For every ~v, ~w1, ~w2 ∈ V , f(~v, ~w1 + ~w2) = f(~v, ~w1) + f(~v, ~w2).

• For every ~v, ~w ∈ V , for every λ ∈ K, f(λ~v, ~w) = f(~v, λ~w) = λf(~v′, ~w).

More generally, if n ≥ 2, a n-linear form on V is a map f : V n → K that is linear in
each variable. That is, for every i ∈ {1, . . . , n} and for every ~v1, . . . , ~vi−1, ~vi+1, . . . , ~vn ∈
V , the map ~v 7→ f(~v1, . . . , ~vi−1, ~v,~vi+1, . . . , ~vn) is a linear form on V .

Remark 18.2 If W is another K-vector space, we can define similarly n-linear maps
from V n to W . Even more generally, if V1, . . . , Vn,W are K-vector spaces, we can talk
about n-linear (or multilinear) maps from V1 × · · · × Vn to W .

Example 18.3 (1) If V = Kn, the following map is a bilinear form on V :

f : ((x1, . . . , xn), (y1, . . . , yn)) 7→ x1y1 + · · ·+ xnyn.

Note that we have f(~v, ~w) = f(~w,~v). This property of f is called being symmetric.

(2) If V = K2, the map f : ((x1, x2), (y1, y2)) 7→ x1y2 − x2y1 is a bilinear form on V .
Note that we have f(~v,~v) = 0. (Such a f is called alternating.)
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(3) If V = K[X] and x1, . . . , xn ∈ K, the map k : (P1, . . . , Pn) 7→ P1(x1) . . . Pn(xn) is
a n-linear form on V .

(4) Suppose that f1, . . . , fn ∈ V ∗. Then the map f : V n → K sending (~v1, . . . , ~vn) to
f1(~v1) . . . fn(~vn) is a n-linear form. We’ll denote it by f1 ⊗ · · · ⊗ fn.

We’ll generalize the property of example (2).

Definition 18.4 A n-linear form f on V is called alternating if f(~v1, . . . , ~vn) = 0 as
soon as there exist i 6= j such that ~vi = ~vj .

Note that alteranting n-linear forms form a subspace of the space of n-linear forms
(that is, a linear combination of alternating n-linear forms stays alternating).

Here are some more basic properties of alternating forms :

Lemma 18.5 Let f be an alternating n-linear form on V .

(i) For all ~v1, . . . , ~vn ∈ V and 1 ≤ i < j ≤ n, we have

f(~v1, . . . , ~vi−1, ~vj , ~vi+1, . . . ~vj−1, ~vi, ~vj+1, . . . , ~vn) = −f(~v1, . . . , ~vn).

(ii) Let ~v1, . . . , ~vn ∈ V , pick i ∈ {, . . . , n} and λj ∈ K, j 6= i. Then :

f(~v1, . . . , ~vi−1, ~vi +
∑
j 6=i

λj~vj , ~vi+1, . . . , ~vn) = f(~v1, . . . , ~vn).

(iii) If (~v1, . . . , ~vn) is not linearly independent, then f(~v1, . . . , ~vn) = 0.

Proof.

(i) Let’s consider the ~vr, r 6= i, j as fixed and write g(~vi, ~vj) for f(~v1, . . . , ~vn).

So we know that g(~vi, ~vj) = 0 if ~vi = ~vj , and we’re trying to prove that g(~vj , ~vi) =
−g(~vi, ~vj). For this we calculate, using the linearity in each variable :

0 = g(~vi+~vj , ~vi+~vj) = g(~vi, ~vi)+g(~vi, ~vj)+g(~vj , ~vi)+g(~vj , ~vj) = g(~vi, ~vj)+g(~vj , ~vi),

which gives the conclusion.

(ii) We have f(~v1, . . . , ~vi−1, ~vi +
∑

j 6=i λj~vj , ~vi+1, . . . , ~vn) =

f(~v1, . . . , ~vn) +
∑
j 6=i

λjf(~v1, . . . , ~vi−1, ~vj , ~vi+1, . . . , ~vn).

All the terms in the sum except the first one are zero, because f is alternating.
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(iii) If (~v1, . . . , ~vn) is not linearly independent, then we have λ1, . . . , λn ∈ K not all zero
such that λ1~v1 + · · · + λn~vn = 0. Fix i ∈ {1, . . . , n} such that λi 6= 0, and write
µj = −λ−1i λj for j 6= i. Then ~vi =

∑
1≤j≤n,j 6=i µj~vj . Hence :

f(~v1, . . . , ~vn) = f(~v1, . . . , ~vi−1,
∑
j 6=i

µj~vj , ~vi+1, . . . , ~vn)

=
∑
j 6=i

µjf(~v1, . . . , ~vi−1, ~vj , ~vi+1, . . . , ~vn)

= 0

(By definition of “alternating”, every term in the last sum is zero.)

�

Remark 18.6 If char(K) 6= 2 (which means that 2 is invertible in K), then any n-linear
form that satisfies part (i) of the lemma is alternating.

To generalize point (i) of the lemma, we need a more efficient way to talk about
permutations of the indices 1, . . . , n.

19 Determinants 2 : the symmetric group Sn

Definition 19.1 The symmetric group Sn is the set of bijections σ : {1, . . . , n} →
{1, . . . , n}. If σ, τ ∈ Sn, we usually write στ instead of σ ◦ τ . We also write 1 for the
identity of {1, . . . , n}.

Remark 19.2 Sn is a group in the sense of definition 1.4. Remember that this just
means that it has a multiplication (here it’s composition), that the multiplication is
associative (which is true for composition), that there is an identity element (here it’s
given by the identity map of {1, . . . , n}), and that each element has an inverse for the
multiplication (which is true here because all the elements of Sn are assumed to be
bijections).

Remark 19.3 • We have

|Sn| = n! := n× (n− 1)× · · · × 2× 1.

• There is an often-used short notation for elements of Sn. It’s best explained on
examples.

For example, (354) ∈ S6 is the element σ given by σ(1) = 1, σ(2) = 2, σ(3) = 5,
σ(4) = 3, σ(5) = 4, σ(6) = 6.

Or (14)(23) ∈ S4 is the element σ given by σ(1) = 4, σ(2) = 3, σ(3) = 2, σ(4) = 1.

Or (12 . . . n) ∈ Sn is the element σ given by σ(i) = i+ 1 if i ≤ n− 1 and σ(n) = 1.
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Remark 19.4 We see Sn as a subset12 of Sn+1 in the following way : If σ ∈ Sn, we
can see it as the element of Sn+1 that sends each i ≤ n to σ(i) and sends n+ 1 to n+ 1.

Definition 19.5 An element of Sn of the form σ = (ij) for i 6= j13 is called a transpo-
sition.

Note that if σ is a transposition, then σ−1 = σ.

Proposition 19.6 Let n ≥ 1. Then any σ ∈ Sn is a product of transpositions. (In
general, in many different ways.)

By convention, we think of 1 as the product of zero transpositions.

Proof. We do an induction on n. If n = 1, then Sn = {1} and the result is obvious.
Suppose that n ≥ 2 and that the result is known for n−1. Let σ ∈ Sn. If σ(n) = n, then
we can see σ as an element of Sn−1 as in remark 19.4 and use the induction hypothesis.
Otherwise, let i = σ(n), and let τ = (in)σ. Then τ(n) = n, so, as before, τ is a
product of transpositions by the induction hypothesis. Then as σ = (in)τ (remember
that (in)−1 = (in)), σ is also a product of transpositions.

�

The second thing we will need about the symmetric group is the definition of the sign
of a permutation.

Definition 19.7 Let σ ∈ Sn. Then its sign (or signature) is defined by :

sgn(σ) = (−1)|{(i,j)∈{1,...,n}
2|i<j and σ(j)>σ(i)}|.

Example 19.8 If σ = 1, then sgn(σ) = 1.

Example 19.9 If σ is a transposition, then sgn(σ) = −1.
Indeed, suppose that σ = (ij) with i < j. We have to find all the pairs (a, b) ∈
{1, . . . , n}2 such that a < b and σ(a) > σ(b). This is only possible if at least one of a, b
is in {i, j}, and we get three cases :

(a) (a, b) = (i, j).

(b) a = i and i < b < j (j − i− 1 possible pairs (a, b)).

(c) i < a < j and b = j (j − i− 1 possible pairs (a, b)).

So sgn(σ) = (−1)1+2(j−i−1) = −1.

For theoretical purposes, the following formula is more convenient :

12Actually a subgroup, which means a subset containing 1 and stable by multiplication and inversion.
13This means that σ(i) = j, σ(j) = i, and σ(k) = k if k 6= i, j.
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Proposition 19.10 Let σ ∈ Sn. Then

sgn(σ) =
∏

1≤i<j≤n

σ(i)− σ(j)

i− j
.

Proof. Let σ ∈ Sn, and write sgn′ for
∏

1≤i<j≤n
σ(i)−σ(j)

i−j . Note that sgn′ ∈ Q.
We also have

(sgn′)2 =

∏
i<j

σ(i)− σ(j)

i− j

2

=
(
∏
i<j(σ(i)− σ(j)))2

(
∏
i<j(i− j))2

.

If i < j, then (i− j)2 = (j − i)2 and (σ(i)− σ(j))2 = (σ(j)− σ(i))2. So we also have :

(sgn′)2 =
(
∏
i>j(σ(i)− σ(j)))2

(
∏
i>j(i− j))2

.

This implies that :

(sgn′)4 =

∏
i 6=j(σ(i)− σ(j))4∏

i 6=j(i− j)4
.

As σ is a bijection, (sgn′)4 = 1. As sgn′ ∈ Q, sgn′ ∈ {±1}.
So we only need to show that sgn′ has the same sign as sgn(σ). But the sign of sgn′

is clearly (−1) raised to the number of couples (i, j) such that i < j and σ(i) > σ(j), so
we are done.

�

Corollary 19.11 For every σ, τ ∈ Sn, sgn(στ) = sgn(σ) sgn(τ). 14

Proof. We have :

sgn(στ) =
∏

1≤i<j≤n

στ(i)− στ(j)

i− j

=
∏

1≤i<j≤n

στ(i)− στ(j)

τ(i)− τ(j)

τ(i)− τ(j)

i− j

=
∏

1≤i<j≤n

στ(i)− στ(j)

τ(i)− τ(j)

∏
1≤i≤n

τ(i)− τ(j)

i− j

= sgn(τ)
∏

1≤i<j≤n

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)

To finish the proof, we need to show that :

sgn(σ) =
∏

1≤i<j≤n

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
.

14We say that sgn is a morphism of groups from Sn to {±1}.
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Let α, β ∈ {1, . . . , n} such that α < β. There are unique numbers i, j ∈ {1, . . . , n} such
that i < j and {τ(i), τ(j)} = {α, β}. (Note that this is an equality of sets, not of ordered
pairs.) There are two possibilities :

- If τ(i) = α and τ(j) = β, then :

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
=
σ(α)− σ(β)

α− β
.

- If τ(i) = β and τ(j) = α, them :

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
=
σ(β)− σ(α)

β − α
=
σ(α)− σ(β)

α− β
.

So we get :

sgn(σ) =
∏
α<β

σ(α)− σ(β)

α− β
=
∏
i<j

σ(τ(i))− σ(τ(j))

τ(i)− τ(j)
.

�

Remark 19.12 In particular, for every σ ∈ Sn, we have sgn(σ−1) = sgn(σ)−1. But as
sgn(σ) ∈ {±1}, this gives :

sgn(σ−1) = sgn(σ).

3/14/2017 : Snow day

3/16/2017

20 Determinants 3 : alternating n-linear forms on a n-dimensional vector
space

Example 20.1 Suppose that V = K2 and that we use the basis (~e1, ~e2). If f is an alter-
nating bilinear form on K2 such that f(~e1, ~e2) = 1, then we get for any (x1, x2), (y1, y2) ∈
K2 :

f((x1, x2), (y1, y2)) = f(x1~e1 + x2~e2, y1~e1 + y2~e2) =

= x1y1f(~e1, ~e1) + x1y2f(~e1, ~e2) + x2y1f(~e2, ~e1) + x2y2f(~e2, ~e2) = x1y2 − x2y1.

It is easy to see that this formula indeed defines an alternating bilinear form on K2.
A similar (but longer) calculation would show that, if f is an alternating 3-linear form

on K3 such that f(~e1, ~e2, ~e3) = 1, then :

f((x1, x2, x3), (y1, y2, y3), (z1, z2, z3)) = x1y2z3−x1y3z2−x2y1z3+x2y3z1+x3y1z2−x3y2z1.

We will now generalize this example to n-dimensional vector spaces.
We fix a K-vector space V . For every n ≥ 1, we write

∧n(V,K) for the space of
alternating n-linear forms on V (definition 18.4).
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Proposition 20.2 Let f ∈
∧n(V,K).

(i) If ~v1, . . . , ~vn ∈ V and σ ∈ Sn, then :

f(~vσ(1), . . . , ~vσ(n)) = sgn(σ)f(~v1, . . . , ~vn).

(ii) Let ~v1, . . . , ~vn ∈ V , let A = (aij) ∈ Mn(K), and write ~wi =
∑n

j=1 aji~vj, 1 ≤ i ≤
n.15

Let f ∈
∧n(V,K). Then :

f(~w1, . . . , ~wn) =

(∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

)
f(~v1, . . . , ~vn) =

(∑
τ∈Sn

sgn(τ)
n∏
i=1

aτ(i),i

)
f(~v1, . . . , ~vn).

Proof. Let’s prove (i). By proposition 19.6, we know that σ is a product of transpositions.
Write σ = τ1 . . . τr, where each τs is a transposition. We prove (i) by induction on r. If
r = 0, then σ is the identity of {1, . . . , n} and there is nothing to prove. Otherwise, we
can write σ = ττr, with τr a transposition and (i) known for τ . We write τr = (ij) with
i < j. Then :

f(~vσ(1), . . . , ~vσ(n)) = f(~vτ(1), . . . , ~vτ(i−1), ~vτ(j), ~vτ(i+1), . . . , ~vτ(j−1), ~vτ(i), ~vτ(j+1), . . . , ~vτ(n)),

which is equal to −f(~vτ(1), . . . , ~vτ(n)) by (i) of lemma 18.5. By thye induction hypothesis
(that is, the formula of (i) for τ), we get :

f(~vσ(1), . . . , ~vσ(n)) = − sgn(τ)f(~v1, . . . , ~vn).

The conclusion then follows from the fact that sgn(σ) = sgn(τ) sgn(τn) = − sgn(τ). (Use
corollary 19.11 and example 19.9.)

Let’s prove (ii). The two formulas in (ii) are equivalent, as we see by doing the change
of variable τ = σ−1 and using the fact that sgn(σ−1) = sgn(σ) for every σ ∈ Sn (remark
19.12). So we will only prove the second formula.

By the n-linearity of f , we have :

f(~w1, . . . , ~wn) = f

 n∑
j1=1

aj1,1~vj1 , . . . ,
n∑

jn=1

ajn,n~vjn


=

n∑
j1=1

· · ·
n∑

jn=1

aj1,1 . . . ajn,nf(~vj1 , . . . , ~vjn)

By the definition of alternating forms, f(~vj1 , . . . , ~vjn) = 0 unless all the ~vjr are distinct,
which is equivalent to saying that the map r 7→ jr is an element of Sn. So we get :

f(~w1, . . . , ~wn) =
∑
σ∈Sn

aσ(1),1 . . . aσ(n),nf(~vσ(1), . . . , ~vσ(n)).

15In other words, the matrix B with columns ~v1, . . . , ~vn and the matrix C with columns ~w1, . . . , ~wn are
related by C = BA.
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By (i), this is equal to :∑
σ∈Sn

sgn(σ)aσ(1),1 . . . aσ(n),nf(~v1, . . . , ~vn).

�

Theorem 20.3 Suppose that dim(V ) = n < +∞. Then dim(
∧n(V,K)) = 1.

More precisely, let (~v1, . . . , ~vn) be a basis of V . Then there exists a unique alternating
n-linear form f on V such that f(~v1, . . . , ~vn) = 1, and every alternating n-linear form
on V is a multiple of f (that is, of the form λf with λ ∈ K).

The unique alternating n-linear form on V sending (~v1, . . . , ~vn) to 1 will be called
det(~v1,...,~vn).

Proof. Let (~v∗1, . . . , ~v
∗
n) be the dual basis of (~v1, . . . , ~vn) (definition 17.8). We set :

f =
∑
σ∈Sn

sgn(σ)~v∗σ(1) ⊗ · · · ⊗ ~v
∗
σ(n),

with the definition of (4) of example 18.3. Remember that this just means that, for all
~w1, . . . , ~wn ∈ V :

f(~w1, . . . , ~wn) =
∑
σ∈Sn

sgn(σ)~v∗σ(1)(~w1) . . . ~v
∗
σ(n)(~wn) =

∑
σ∈Sn

sgn(σ)~v∗1(~wσ(1)) . . . ~v
∗
n(~wσ(n)).

(We get the second formula by doing the change of variable σ 7→ σ−1 and using the fact
that sgn(σ−1) = sgn(σ).) This is a n-linear form, and, by definition of the ~v∗i , we have
f(~v1, . . . , ~vn) = 1.

So to prove the theorem, we need to prove the two following facts :

(A) f is alternating.

(B) Every element of
∧n(V,K) is a multiple of f . (That is, f is a basis of

∧n(V,K).

Let’s prove (A). Let ~w1, . . . , ~wn ∈ V , and suppose that we have ~wi = ~wj with 1 ≤ i <
j ≤ n. Let τ = (ij) ∈ Sn. Then, for every σ ∈ Sn,

(~wσ(1), . . . , ~wσ(n)) = (~wτσ(1), . . . , ~wτσ(n)).

Let X = {σ ∈ Sn|σ(i) < σ(j)}. Then, for every σ ∈ Sn, we have either σ ∈ X, or
τσ = τ−1σ ∈ X. So :

f(~w1, . . . , ~wn) =
∑
σ∈Sn

sgn(σ)~v∗1(~wσ(1)) . . . ~v
∗
n(~wσ(n))

=
∑
σ∈X

(sgn(σ)~v∗1(~wσ(1)) . . . ~v
∗
n(~wσ(n)) + sgn(τσ)~v∗1(~wτσ(1)) . . . ~v

∗
n(~wτσ(n))

=
∑
σ∈X

(1 + sgn(τ)) sgn(σ)~v∗1(~wσ(1)) . . . ~v
∗
n(~wσ(n)).
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As sgn(τ) = 0, this is equal to 0, and so f is alternating.
Let’s prove (B). Take g ∈

∧n(V,K), and let λ = g(~v1, . . . , ~vn). We’ll show that g = λf .
Let ~w1, . . . , ~wn ∈ V . As (~v1, . . . , ~vn) is a basis of V , we can write ~wi =

∑n
j=1 aji~vj , for

1 ≤ i ≤ n. Then, by (ii) of proposition 20.2 :

f(~w1, . . . , ~wn) =

(∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

)
f(~v1, . . . , ~vn) =

∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

and

g(~w1, . . . , ~wn) =

(∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

)
g(~v1, . . . , ~vn) = λ

∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

So g(~w1, . . . , ~wn) = λf(~w1, . . . , ~wn), as desired.
�

21 Determinants 4 : determinant of an endomorphism

In this section, we fix a finite-dimensional K-vector space V , and we let n = dim(V ).

Theorem 21.1 Let u ∈ End(V ).16 Then there exists a unique scalar det(u) ∈ K such
that, for every alternating n-linear form f on K and for all ~v1, . . . , ~vn, we have :

f(u(~v1, . . . , ~vn)) = det(u)f(~v1, . . . , ~vn).

We call this scalar the determinant of u.
Moreover, we have the following properties :

(i) det(idV ) = 1.

(ii) If u, v ∈ End(V ), then det(u ◦ v) = det(u) det(v).

(iii) det(u) 6= 0 if and only if u is invertible.

(iv) If (~v1, . . . , ~vn) is a basis of V and A is the matrix of u in the basis (~v1, . . . , ~vn),
then

det(u) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

Proof. Remember that we wrote
∧n(V,K) for the space of alternating n-linear forms on

V . Let u ∈ End(V ). If f ∈
∧n(V,K), we define u∗(f) : V n → K by :

u∗(f)(~v1, . . . , ~vn) = f(u(~v1), . . . , u(~vn)).

16This means that u is a linear transformation from V to itself.
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As u is linear, this is also a n-linear form, and it is clearly alternating. So u∗(f) ∈∧n(V,K). Also, it follows readily from the definition that the map u∗ :
∧n(V,K) →∧n(V,K) is K-linear. (This means that u∗(f+g) = u∗(f)+u∗(g) and u∗(λf) = λu∗(f),

which is easy to check on the formula for u∗.)
Now we use theorem 20.3. It says that the K-vector space

∧n(V,K) is of dimension
1, and so any endomorphism of this vector space is of the form f 7→ λf for some
uniquely determined λ ∈ K. This means that there exists a unique det(u) ∈ K such
that u∗(f) = det(u)f for every f ∈

∧n(V,K). Looking at the definition of u∗, we see
that this is exactly the property that we wanted for det(u).

Now let’s prove (i), (ii) and (iii). If u = idV , then u∗ is the identity map of
∧n(V,K),

and so det(u) = 1. For (ii), let u, v ∈ End(V ). Then, for every f ∈
∧n(V,K),

((u◦v)∗(f))(~v1, . . . , ~vn) = f(uv(~v1, . . . , ~vn)) = (u∗(f))(v(~v1, ), . . . , ~vn) = (v∗(u∗f))(~v1, . . . , ~vn),

so (u◦v)∗ = v∗◦u∗. As (u◦v)∗ is multiplication by det(u◦v) and v∗◦u∗ is multiplication
by det(v) det(u), this gives (ii).

Let’s prove (iii). If u is invertible, then, by (i) and (ii),

1 = det(idV ) = det(u ◦ u−1) = det(u) det(u)−1,

so det(u) 6= 0. Conversely, suppose that det(u) 6= 0. Let (~v1, . . . , ~vn) be a basis of V ,
and take f ∈

∧n(V,K) such that f(~v1, . . . , ~vn) = 1 (such a f exists by theorem 20.3).
Then

f(u(~v1, . . . , ~vn) = det(u)f(~v1, . . . , ~vn) = det(u) 6= 0,

so, by (ii) of lemma 18.5, the vectors u(~v1), . . . , u(~vn) are linearly independent. By (v)
of theorem 9.5, they form a basis of V . As Im(u) is the span of u(~v1), . . . , u(~vn), it is
equal to V , and so u is an isomorphism (by corollary 16.2).

Finally, (iv) follows from (ii) of proposition 20.2.
�

3/28/2017

22 Determinants 5 : determinant of a square matrix

Fix n ≥ 1.

Definition 22.1 If A ∈Mn(K), the determinant of A is by definition the determinant of
the linear transformation Kn → Kn sending ~v to A~v. (In other words, the endomorphism
of Kn whose matrix in the canonical basis is A.)

We can use the results of the previous sections to get the expected properties of the
determinants.

Proposition 22.2 Let A,B ∈Mn(K).
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(i) det(In) = 1.

(ii) det(A) 6= 0 if and only if A is invertible.

(iii) det(AB) = det(A) det(B).

(iv) If B is invertible, then det(B−1) = det(B)−1 and det(BAB−1) = det(A).

(v) If A = (aij), then :

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aσ(i),i.

(vi) If V is a n-dimensional K-vector space, T ∈ End(V ), B is any basis of V and A
is the matrix of T in B, then det(T ) = det(A).

In particular, if n = 2, we recover the usual formula :

det

(
a11 a12
a21 222

)
= a11a22 − a12a21.

Proof. Remember that the endomorphism u of Kn corresponding to A ∈ Mn(K) is
given by u(~v) = A~v, that u = idV if A = In, that u is an isomorphism if and only A
is invertible and that this bijection Mn(K)

∼→ End(Kn) sends matrix multiplication to
composition. So (i)-(iii) just follow from theorem 21.1, and (iv) follows from (i) and (iii).

As for (v) and (vi), they both follow immediately from (iv) of theorem 21.1.
�

Here are a few additional properties of determinants of matrices :

Proposition 22.3 (i) det(A) = det(AT ).

(ii) det(A) is linear in the columns and in the rows of A.

(iii) If λ ∈ K, then det(λA) = λn det(A).

(iv) If we apply a permutation σ to the columns (or the rows) of A, then this multi-
plies det(A) by sgn(σ). In particular, switching two columns (or two rows) of A
multiplies the determinant by −1.

(v) A bit more generally, the map that sends (~v1, . . . , ~vn) ∈ (Kn)n to the determinant
of the matrix with columns ~v1, . . . , ~vn is a n-linear alternating form. (And we have
the same statement if we replace “columns” by “rows”.)

(vi) If we add a linear combination of columns of A to another column of A, this does
not change the determinant. Same statement for rows.
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(vii) If A =


a11 ∗

a22
. . .

0 ann

, that is, all the entries of A below the diagonal are

0 (such a A is called upper triangular), then det(A) = a11a22 . . . ann.

This suggests a method for calculating det(A) (other than the formula of proposition
22.2(v), which is almost always unwieldy in practice) : Put A in upper triangular form
using elementary row operations (we know exactly what that will do to the determinant
by (ii), (iv) and (v)), and then apply (vi).

Proof. To prove (i), we use the explicit formula of proposition 22.2(v). Write A = (aij).
Then :

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

and

det(AT ) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aσ(i),i =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aσ−1(i),i

(we get the last equality by the change of variable σ 7→ σ−1, using the fact that sgn(σ) =
sgn(σ−1)). For every σ ∈ Sn, σ is a bijection, so

n∏
i=1

aσ−1(i),i =

n∏
i=1

as,σ(i).

Finally, we get :

det(AT ) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i) = det(A).

We can deduce (ii), (iv), (v) and (vi) from the explicit formula of proposition 22.2(v)
or from the definition of the determinant. Let’s do the second. Let (~e1, . . . , ~en) be the
canonical basis of Kn. By theorem 20.3, there exists a unique alternating n-form f on
Kn such that f(~e1, . . . , ~en) = 1. By definition 22.1 and theorem 21.1, det(A) is the
scalar f(A~e1, . . . , A~en). But A~e1, . . . , A~en are the columns of A, and f is n-linear, so
indeed det(A) is linear and alternating in the columns of A. We also get (iv) by applying
proposition 20.2(i) and (v) by applying lemma 18.5(ii). To deduce the statement for the
rows, use the fact, proved in (i), that det(A) = det(AT ).

(iii) follows from (ii) : We get λA by multiplying each column of A by λ. As the
determinant is linear in each column, this multiplies it by λn.

To prove (vi), write A = (aij), and use the formula

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ(i).
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Let σ ∈ Sn. Suppose that σ 6= 1. Let i be the biggest element of {1, . . . , n} such that
σ(i) 6= i. Then σ(j) = j for j > n, and in particular σ(i) 6∈ {i + 1, . . . , n}, so σ(i) < i.
As A is upper triangular, ai,σ(i) = 0, and so

∏n
j=1 aj,σ(j) = 0. So the only nonzero term

in the formula above for det(A) is the term for σ = 1, and we get (vi).
�

23 Determinants 6 : further properties of determinants

In this section, we’ll see an additional method to calculate a determinant (very useful
in practice), and applications of determinants to calculating the inverse of a matrix and
solving linear system (less useful in practice).

Let A = (aij) be a n × n matrix. For every i, j ∈ {1, . . . , n}, let A(i, j) be the
(n − 1) × (n − 1) matrix that we obtain by erasing the ith row and the jth column of
A.17

Theorem 23.1 (i) For every i ∈ {1, . . . , n},

det(A) =

n∑
j=1

(−1)i+jai,j det(A(i, j)).

(ii) For every j ∈ {1, . . . , n},

det(A) =
n∑
i=1

(−1)i+jai,j det(A(i, j)).

The formula in (i) is called “expanding along the ith row” and the formula in (ii) is
called “expanding along the jth column”.

Proof. If we prove (i), then (ii) will follow by the fact that det(A) = det(AT ) (and by
aplplying (i) to AT ). So let’s prove (i).

Fix i ∈ {1, . . . , n}. To prove (i), we only need to prove that
∑n

j=1(−1)i+jai,j det(A(i, j))
is linear and alternating in the columns of A, and that it is equal to 1 if A = In. (This
is enough by theorem 20.3 and propositions 22.2 and 22.3.)

Let’s first check the second statement. Suppose that A = In. If j 6= i, then the
(n − 1) × (n − 1) matrix A(i, j) only has n − 2 nonzero entries, so its determinant is 0
(because formula (v) of proposition 22.2 for det(A(i, j)) only involves products of n− 1
distinct entries of A(i, j), and each of these products has to be zero). If i = j, then
A(i, i) = In−1. So

n∑
j=1

(−1)i+jai,j det(A(i, j)) = (−1)i+iai,i det(In−1) = 1.

17This is not standard notation, because there is no standard notation.
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Now we check that
∑n

j=1(−1)i+jai,j det(A(i, j)) is linear and alternating in the columns
of A. The linearity is a simple consequence of the formula, so we start with that. We
just need to check that each term in the sum is linear in the columns of A. Fix j.
Whatever det(A(i, j)) is, we know, by the formula of (v) of proposition 22.2, that it
is a sum with some signs of terms of the form

∏
r 6=i ar,σ(r), with σ a bijection from

{1, . . . , i− 1, i+ 1, . . . , n} to {1, . . . , j − 1, j + 1, . . . , n}. So aij det(Aij) is linear in each
column of A.

Now let’s check that
∑n

j=1(−1)i+jai,j det(A(i, j)) is alternating in the columns of A.
Let 1 ≤ α < β ≤ n, and suppose that ar,α = ar,β for every r ∈ {1, . . . , n}. We want
to show that

∑n
j=1(−1)i+jai,j det(A(i, j)) = 0. Let j ∈ {1, . . . , n}. If j 6= α and j 6= β,

then Ai,j has two identical columns, and so det(Ai,j) = 0. Also, Ai,α is just Ai,β where
we moved column number α to the (β − 1)st place, so (by (iv) of proposition 22.3)
det(Ai,α) = (−1)β−1−α det(Ai,β). Finally, we get :

n∑
j=1

(−1)i+jai,j det(A(i, j)) = (−1)i+α det(Ai,α) + (−1)i+β det(Ai,β)

= (−1)i+α+β−1−α det(Ai,β) + (−1)i+β det(Ai,β) = 0.

�

3/30/2017

Corollary 23.2 Suppose that the n× n matrix A can be written :

A =

(
B C

0 D

)
where B is a r× r matrix, D is a (n− r)× (n− r) matrix and C is a r× (n− r) matrix.
Then :

det(A) = det(B) det(D).

Proof. Note that we have A = A1A2, where

A1 =

(
Ir 0

0 D

)
and

A2 =

(
B C

0 In−r

)
.

So det(A) = det(A1) det(A2), and we only need to prove that det(A1) = det(D) and
det(A2) = det(B). That is, we have reduced the problem to the case where either B or
D is the identity matrix.
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Both calculations are similar, one uses expanding along columns and the other ex-
panding along rows. Let’s start with det(A1). We prove by induction on r that, if

A1 =

(
Ir 0

0 D

)
, then det(A1) = det(D). This is clear if r = 0 (because then A1 = D).

Let’s suppose that r ≥ 1, and let’s use expansion along the first column. We get

det(A1) = (−1)1+1 det(A1(1, 1)),

with

A1(1, 1) =

(
Ir−1 0

0 D

)
.

So the induction hypothesis gives det(A1) = det(A1(1, 1)) = det(D).

Now let’s calculate det(A2). We prove by induction on n−r that, if A2 =

(
B C

0 In−r

)
,

then det(A2) = det(B). This is clear if n− r = 0 (because then A2 = B). Let’s suppose
that n− r ≥ 1, and let’s use expansion along the last row. We get :

det(A2) = (−1)n+n det(A2(n, n)),

with

A2(n, n) =

(
B C

0 In−r−1

)
.

So the induction hypothesis gives det(A2) = det(A2(n, n)) = det(B).
�

Example 23.3 Let a1, . . . , an ∈ K. The Vandermonde determinant V dM(a1, . . . , an)
is the determinant of the following n × n matrix (called the Vandermonde matrix for
a1, . . . , an) :

A =


1 a1 a21 . . . an−11

1 a2 a22 . . . an−12
...

...
...

...
1 an a2n . . . an−1n


I claim that we have :

V dM(a1, . . . , an) =
∏

1≤i<j≤n
(aj − ai).

Let’s prove this. The method is very similar to the one used in question 10(c) of
problem set, and explains the result of this question. We can use the elementary row
operations of the solution of PS1 10(c), or use elementary column operations. Let’s do
the second. First we subtract a1 times column n − 1 from column n, then subtract a1
times column n − 2 from column n − 1,. . . , finally subtract a1 times column 1 from
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column 2. These operations don’t change the determinant, and in the end we get the
matrix :

B =


1 0 0 . . . 0

1 a2 − a1 a2(a2 − a1) . . . an−22 (a2 − a1)
...

...
...

...
1 an − a1 an(an − a1) . . . an−2n (an − a1)


Expanding along the first row, we get :

V dM(a1, . . . , an) = det(B(1, 1)).

Using the linearity in each column of the determinant, we get :

det(B(1, 1)) = (a2 − a1)(a3 − a1) . . . (an − a1)V dM(a2, . . . , an−1),

hence :

V dM(a1, . . . , an) =

(
n∏
i=2

(ai − a1)

)
V dM(a2, . . . , an−1).

This suggests an induction. If n = 1, the result is obvious. If n ≥ 2 and the result is
known for n− 1, then the result for n follows directly from the formula above.

Example 23.4 Here is another way to calculate the Vandermonde determinant V dM(a1, . . . , an)
of the matrix A defined in example 23.3. First, if two of the ai are equal, then
V dM(a1, . . . , an) = 0, because it’s the determinant of a matrix with two identical
columns. So we may assume that aa, . . . , an are distinct.

Let’s make a1 an indeterminate T and write P (T ) = V dM(T, a2, . . . , an). Using the
expansion along the first row to calculate the determinant of A gives :

P (T ) =
n∑
j=1

(−1)j+1T j−1 det(A(1, j)).

In particular, P (T ) is a polynomial in T of degree at most n − 1. Also, we have
V dM(ai, a2, . . . , an) = 0 for every 2 ≤ i ≤ n (because the determinant of a matrix
with two identical columns is zero), so P (ai) = 0 for 2 ≤ i ≤ n. This means that P (T )
is divisible by (T − ai) for every i ≥ 2. As the ai are distinct and P (T ) is of degree
at most n − 1, we get P (T ) = c(T − a2) . . . (T − an), for some c ∈ K. This c is just
the coefficient of Tn−1 in P (T ), which is (−1)n+1 det(A(1, n)) by the formula for P (T )
above. By looking at A, we see that A(1, n) is the Vandermonde matrix for a2, . . . , an−1.
So we get :

P (T ) = (−1)n+1(T−a2) . . . (Tan)V dM(a2, . . . , an) = (a2−T ) . . . (an−T )V dM(a2, . . . , an)

(because (−1)n+1 = (−1)n−1). Evaluating at T = a1 gives :

V dM(a1, . . . , an) =

(
n∏
i=2

(ai − a1)

)
V dM(a2, . . . , an−1),

and then we can finish by induction as in example 23.3.
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Definition 23.5 Let A ∈ Mn(K). The comatrix of A (or matrix of cofactors of A) is
the n× n matrix co(A) defined by :

co(A)i,j = (−1)i+j det(A(i, j)).

In this country, it is more common to talk about the adjoint matrix of A, denoted by
adj(A) and defined by adj(A) = co(A)T . In other words, we have :

adj(A)i,j = (−1)i+j det(A(j, i)).

The significance of the adjoint matrix comes from the following theorem :

Theorem 23.6 Let A ∈Mn(K). Then we have :

A adj(A) = adj(A)A = det(A)In.

In particular, if A is invertible, then :

A−1 =
1

det(A)
adj(A).

Remark 23.7 For 2×2 matrices, this is a well-known formula and you might have seen

it already. Write A =

(
a b
c d

)
. Then :

adj(A) =

(
d −b
−c a

)
.

The matrix A is invertible if and only det(A) = ad− bc 6= 0, and then we have :

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Now let’s prove the theorem.

Proof. Let’s calculate A adj(A). Its entry in position (i, j) is (by definition of the matrix
product and of adj(A)) :

n∑
r=1

aik(−1)k+j det(A(j, k)).

If j = i, this is equal to det(A) by (i) of theorem 23.1 (it’s the expansion of det(A) along
the ith row of A). If j 6= i, we can also use (i) of theorem 23.1 to identify the expression
above : It’s the expansion along the ith row of the determinant of the matrix that we
get from A by repeating its ith row and deleting its jth row. This matrix has two equal
rows, hence its deterinant is 0, and we get :

n∑
r=1

aik(−1)k+j det(A(j, k)) = 0
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if j 6= i. This gives A adj(A) = det(A)In. The proof of adj(A)A = det(A)In is similar,
using expansion along columns instead of rows (i.e., (ii) of 23.1).

�

Example 23.8 As you may have guessed, using the adjoint matrix is not the best way
to calculate an inverse. (We have already seen a better way before, which is the Gauss
algorithm, i.e. using elementary row operations.) However, it does have interesting uses.
For example, let A ∈ Mn(Q) be invertible, and suppose that all the entries of A are in
Z. I can ask the following question : When does A−1 have all its entries in Z too ?18

Here is the answer : Let A be as above. Then A−1 has all its entries in Z if and only
if det(A) = ±1.

And here is the proof : First suppose that A−1 has all its entries in Z. Then det(A−1) ∈
Z, and of course det(A) ∈ Z. As det(A) det(A−1) = 1, this forces det(A) to be ±1.

Conversely, suppose that det(A) = ±1. As A has all its entries in Z, so does adj(A).
As A−1 = det(A)−1 adj(A) and det(A)−1 = ±1, we see that A−1 has all its entries in Z.

From the theorem above, we can deduced Cramer’s rule to solve systems of linear
equations. (This is not the most general formulation, but it’s general enough for us.)

Theorem 23.9 Let A ∈Mn(K), and let ~b =

b1...
bn

 ∈Mn1(K) be a column vector. For

every i ∈ {1, . . . , n}, we write A(i|~b) for the matrix that we obtain by replacing the ith
column of A by ~b.

Suppose that A is invertible. Then the unique solution of the system A~x = ~b is given

by ~x =

x1...
xn

, with :

xi =
det(A(i|~b))

det(A)
.

Needless to say, this is not the most efficient way to solve a system by hand.

Proof. The unique solution of A~x = ~b is ~x = A−1~b. By theorem 23.6, this is equal to
1

det(A) adj(A)~b, so :

xi =
1

det(A)

n∑
j=1

(−1)i+j det(A(j, i))bj .

This is 1
det(A) times the expansion along the ith column of the determinant of the matrix

A(i|~b).
�

18This kind of question comes up, for example, when you’re writing an exam subject and want a matrix
whose inverse is not too difficult to manipulate.
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24 Eigenvalues, eigenvectors and eigenspaces

Definition 24.1 Let V be a K-vector space and T be an endomorphism of V . We say
that λ ∈ K is an eigenvalue of T if Ker(T − λidV ) 6= {0}; in that case, the subspace
Ker(T −λidV ) of V is called the eigenspace of T for the eigenvalue λ. An eigenvector of
T (for the eigenvalue λ) is a nonzero element of Ker(T −λidV ), that is, a nonzero ~v ∈ V
such that T (~v) = λ~v.

Definition 24.2 Let A be a n× n matrix with entries in K. We say that λ ∈ K is an
eigenvalue of A if Ker(A−λIn) 6= {0}; in that case, the subspace Ker(A−λIn) of Kn is
called the eigenspace of A for the eigenvalue λ. An eigenvector of A (for the eigenvalue
λ) is a nonzero element of Ker(A− λIn), that is, a nonzero ~v ∈ Kn such that A~v = λ~v.

Remark 24.3 If T is an endomorphism ofKn, then its eigenvalues/ eigenspaces/eigenspaces
coincide with those of its matrix A in the canonical basis of Kn.

Thanks to this remark, every result about eigenthings that we prove for endomor-
phisms will go over to matrices.

Example 24.4 0 is an eigenvalue of T if and only if T is not injective.

Remark 24.5 In definition 24.1, suppose that V is finite-dimensional. Then, for λ ∈ K,
the following conditions are equivalent :

(i) λ is an eigenvalue of T .

(ii) T − λidV is not injective, i.e. has kernel 6= {0}.

(iii) T − λidV is not surjective, i.e. has rank < dim(V ).

(iv) T − λidV is not an isomorphism, i.e. is not invertible.

(v) det(T − λidV ) = 0.

Remark 24.6 For a matrix A ∈ Mn(K), the analogue of the previous remark is the
following : For λ ∈ K, the following conditions are equivalent :

(i) λ is an eigenvalue of A.

(ii) Ker(A− λIn) 6= {0}, i.e. the system (A− λIn)~x = 0 admits nontrivial solutions.

(iii) rank(A− λIn) < n.

(iv) A− λIn is not invertible.

(v) det(A− λIn) = 0.

These two remarks will motivate the definition of the characteristic polynomial in the
next section.

Here is an elementary but fundamental result about eigenspaces.
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Theorem 24.7 Let V be a K-vector space and T an endomorphism of V . Let λ1, . . . , λr ∈
K be distinct eigenvalues of T . Then the eigenspaces Ker(T−λ1idV ) . . . ,Ker(T−λridV )
are in direct sum.

Proof. Thanks to lemma 10.3, we only to check the following : If ~v1 ∈ Ker(T−λ1idV ),. . . ,
~vr ∈ Ker(T − λridV ) are such that ~v1 + · · ·+ ~vr = 0, then ~v1 = · · · = ~vr = 0.

So suppose that this is not true. We choose a family ~v1 ∈ Ker(T − λ1idV ),. . . ,~vr ∈
Ker(T − λridV ) such that ~v1 + · · · + ~vr = 0, that not all ~vi are 0, and that the number
s of nonzero ~vi is as small as possible. Let 1 ≤ i1 < · · · < is ≤ r be the indices i such
that ~vi 6= 0. We have ~vi1 + · · ·+ ~vis = 0. (Note that this implies taht s ≥ 2.) Applying
T and using the fact that ~vi ∈ Ker(T − λiidV ) for every i gives,

λi1~vi1 + · · ·+ λis~vis = 0,

while multiplying by λi1 gives

λi1~vi1 + · · ·+ λis~vi1 = 0.

If we substract the second equality from teh first, we get

(λi2 − λi1)~vi2 + · · ·+ (λis − λi1)~vis = 0.

Also, for every j ∈ {2, . . . , s}, (λij − λi1)~vij is in Ker(T − λij idV ) and nonzero (here we
use that λij 6= λi1). So, setting ~v′i = (λij − λi1)~vij if i = ij and ~v′i = 0 if i 6∈ {i2, . . . , is},
we have a found a relation ~v′1 + · · ·+~v′r = 0 with each ~v′i in Ker(T −λiidV ), with some ~v′i
nonzero, and with the number of nonzero ~v′i smaller than s. This contradicts the choice
of the family ~v1, . . . , ~vr.

�

25 The characteristic polynomial

If V is finite-dimensional and T ∈ End(V ), we have seen that λ ∈ K is an eigenvalue
of T if and only if det(T − λidV ) = 0. This motivates the introduction of the following
polynomial, as a convenient way to find all the eigenvalues of T .

Definition 25.1 Let A ∈Mn(K). The characteristic polynomial of A is the polynomial

fT (A) = det(XIn −A).

Remember also the following definition from PS2 problem 6 and PS5 problem 3 :

Definition 25.2 Let A = (aij) ∈Mn(K). The trace of A is the scalar

Tr(A) =

n∑
i=1

aii.
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Proposition 25.3 Let A ∈Mn(K).

(i) If λ ∈ K, then λ is an eigenvalue of A if and only if fA(λ) = 0.

(ii) fA(X) is a polynomial of degree n. Its leading term is Xn, the coefficient of Xn−1

is −Tr(A) and its constant term is (−1)n det(A).

(iii) If S ∈Mn(K) is an invertible matrix, then fA(X) = fSAS−1(X).

Proof. (i) follows from the definition of fA(X) and the remark above that λ is an
eigenvalue of A if and only if det(A− λidV ) = 0.

Write A = (aij). Then XIn − A = (bij), with bij = −aij if i 6= j, and bii = X − aii.
We know that :

fA(X) = det(XIn −A) =
∑
σ∈Sn

sgn(n)
n∏
i=1

biσ(i).

Note that the degree of the polynomial
∏n
i=1 bi,σ(i) is |{i ∈ {1, . . . , n}|σ(i) = i}|. If

σ 6= 1, then there are at most n − 2 elements i ∈ {1, . . . , n} such that σ(i) = i, so
deg(

∏n
i=1 bi,σ(i)) ≤ n− 2. If σ = 1, then

n∏
i=1

bi,σ(i) =

n∏
i=1

(X − aii)

has degree n and leading term Xn, and the Xn−1 term in this polynomial is

−a11Xn−1 − a22Xn−1 − · · · − annXn−1 = −Tr(A)Xn−1.

This proves that deg(fA(X)) = n, that the leading term of fA(X) is Xn, and that
the coefficient of Xn−1 is −Tr(A). Finally, the constant term of fA(X) is fA(0) =
det(0In −A) = det(−A) = (−1)n det(A).

For (iii), just note that, is S ∈Mn(K) is invertible, then :

fSAS−1(X) = det(XIn−SAS−1) = det(S(XIn−A)S−1) = det(S) det(XIn−A) det(S)−1 = fA(X).

�

4/4/2017

We can now define the characteristic polynomial of an endomorphism.

Proposition-Definition 25.4 Let V be a finite-dimensional vector space and let T be
an endomorphism of V . If A is a basis of V and A = [T ]A, we set fT (X) = fA(X). This
does not depend on the choice of the basis A and we call it the characteristic polynomial
of teh endomorphism T .
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Proof. This is an application of the change of basis formula. Let B be another basis of
V and let B = [T ]B. By the change of basis formula (proposition 14.7), there exists an
invertible matrix S such that B = SAS−1.19 Then we have fA(T ) = fB(T ) by (iii) of
proposition 25.3.

�

Applying proposition 25.3 immediately gives the following properties of fT (X) :

Corollary 25.5 Let T be an endomorphism of a finite-dimensional vector space V .
Then :

(i) If λ ∈ K, then λ is an eigenvalue of T if and only if fT (λ) = 0.

(ii) fT (X) is a polynomial of degree n. Its leading term is Xn and its constant term
is (−1)n det(T ).

Remark 25.6 We can also define Tr(T ) to be minus the coefficient of Xdim(V )−1 in
fT (X). Then, if B is any basis of V and A = [T ]B, we have Tr(T ) = Tr(A).

Proposition 25.7 If T ∈ End(V ) and dimV = n, then T has at most n distinct
eigenvalues.

Proof. Let λ1, . . . , λr be distinct eigenvalues of T . For each i, we choose an eigenvector
~vi with eigenvalue λi. By theorem 24.7, the family (~v1, . . . , ~vr) is linearly independent.
So we must have r ≤ n.

�

Example 25.8 Let A = (aij) ∈Mn(K), and suppose that A is upper triangular, which
means that aij = 0 if i > j. That is, the entries of A below the diagonal are 0, and we
have :

A =


a11 ∗

a22
. . .

0 ann


and

XIn −A =


X − a11 ∗

X − a22
. . .

0 X − ann

 .

Then we can apply (vii) of propoposition 22.3 to calculate fA(X). We get :

fA(X) = (X − a11)(X − a22) . . . (X − ann).

19Note that we don’t care what S is, just that it is invertible.
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By proposition 25.3(i), the eigenvalues of A are a11, . . . , ann.
In particular, fIn(X) = (X − 1)n, and the only eigenvalue of In is 1 (which was of

course clear from the definition of eigenvalues).

The following property of characteristic polynomials will be very useful in induction
arguments later.

Proposition 25.9 Let V be a finite-dimensional vector space, let T be an endomorphism
of V , and let W be a subspace of V such that T (W ) ⊂ W . We write TW for the
endomorphism of W given by T . Then fTW (X) divides fT (X).

More precisely, if we choose a basis B = (~v1, . . . , ~vn) of V such that (~v1, . . . , ~vr) is
a basis of W (which we know is always possible), and if A = [T ]B, then the fact that
T (W ) ⊂W implies that we have

A =

(
B C

0 D

)
,

where B is the matrix of TW in the basis (~v1, . . . , ~vr), and we have :

fT (X) = fTW (X)fD(X).

Proof. This follows directly from corollary 23.2.
�

26 Diagonalization

First we introduce some vocabulary about matrices.

Definition 26.1 (1) A square matrix A = (aij) is called diagonal if all its non-
diagonal entries are 0, that is, if aij = 0 for i 6= j.

(2) Two matrices A,B ∈Mn(K) are called similar if there exists S ∈Mn(K) invertible
such that A = SBS−1.

Remark 26.2 (a) The definition of “similar” is symmetric in A and B (because if
A = SBS−1, then B = S−1AS).

(b) A matrix is always similar to itself (use S = In).

(c) Suppose that A and B are similar, and that B and C are similar. Then A and C
are similar. (Indeed, if B = SAS−1 and C = PBP−1, then C = (PS)A(PS)−1.)

Remark 26.3 If A is similar to In, then A = In. Indeed, let S ∈ Mn(K) invertible
such that A = SInS

−1. Then A = SS−1 = In.
A bit more generally (and with the same proof), if A is similar to λIn, then A = λIn.
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Now we define diagonalizable endomorphisms and matrices.

Definition 26.4 (1) Let V be a finite-dimensional vector space and T be an endo-
morphism of V . We say that T is diagonalizable if there exists a basis (~v1, . . . , ~vn)
such that every ~vi is an eigenvector of T . (Cf definition 24.1.)

(2) A matrix A ∈Mn(K) is called diagonalizable if it is similar to a diagonal matrix.

Example 26.5 Let T : C2 → C2 be the endomorphism whose matrix in the canonical

basis is

(
cos θ − sin θ
sin θ cos θ

)
. Then, by problem 1 of PS4, T is diagonalizable.

Proposition 26.6 Let V be a finite-dimensional vector space and T be an endomor-
phism of V . Then the following statements are equivalent :

(i) T is diagonalizable.

(ii) There exists a basis B of V such that the matrix [T ]B of T in B is diagonal.

(iii) There exists a basis B of V such that [T ]B is diagonalizable.

(iv) For every basis B of V , [T ]B is diagonalizable.

Proof. (ii) is just a reformulation of (i). As a diagonal matrix is diagonalizable (because
it’s similar to itself), (ii) implies (iii).

We show that (iii) implies (iv). Assume that (iii) is true for a basis B of V , and let
A be another basis of V . Then, by the change of basis formula, there is an invertible
matrix S ∈Mn(K) such that [T ]A = S[T ]BS

−1. By assumption, [T ]B is diagonalizable,
so there exists a diagonal matrix D ∈Mn(K) and an invertible matrix C ∈Mn(K) such
that [T ]B = CDC−1. Then :

[T ]A = S[T ]BS
−1 = S(CDC−1)S−1 = (SC)D(SC)−1,

and SC is invertible, so [T ]A is diagonalizable.
Now let’s show that (iv) implies (ii). Let A = (~v1, . . . , ~vn) be a basis of V . By (iv),

[T ]A is diagonalizable, so there exists a diagonal matrix D ∈ Mn(K) and an invertible
matrix S ∈ Mn(K) such that [T ]A = SDS−1. In other words, D = S−1[T ]AS. Write
S = (cij). For every j ∈ {1, . . . , n}, define ~wj ∈ V by

~wj =
n∑
i=1

cij~vi.

In other words, ~wj is the vector of V with coordinates [~wj ]A in the basis A given by the
jth column of S.

I claim that B = (~w1, . . . , ~wn) is a basis of V . Indeed, the vectors ~w1, . . . , ~wn have to
be linearly indepedent, because otherwise the columns of S would be linearly dependent,
which contradicts the fact that S is invertible.
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Now that we know that B is a basis, we can use the change of basis formula, which
says that [T ]B = S−1[T ]AS. In other words, [T ]B = D, so we have found a basis where
the matrix of T is diagonal, and this proves (ii).

�

In general, it is not always easy to say whether an endomorphism (or a matrix)
is diagonalizable. But here is a sufficient condition. First, remember the following
definition.

Definition 26.7 Let f(X) ∈ K[X]. We say that a root (=zero) λ ∈ K of f(X) is
simple if (X − λ)2 does not divide f(X).

Proposition 26.8 Let T ∈ End(V ) as above. If fT (X) has all its roots in K and all
these roots are simple, then T is diagonalizable.

We have a similar statement for matrices.

Proof. The second statement follows from proposition 26.6 above. Let’s prove the
first. If fT (X) has all its roots in K, then we have fT (X) = (X − λ1) . . . (X − λn)
(n = dimV = deg(fT (X))). The fact that all the roots are simple means that the λi are
all different. For every i ∈ {1, . . . , n}, we know that λi is an eigenvalue of T by corollary
25.5, so we can pick an eigenvector ~vi for the eigenvalue λi. By theorem 24.7, the vectors
~v1, . . . , ~vn are linearly independent. As dimV = n, (~v1, . . . , ~vn) is a basis of V . So T is
indeed diagonalizable.

�

Remark 26.9 The condition in the proposition above is far from necessary. For exam-
ple, In is diagonalizable (it’s even diagonal), but its characteristic polynomial fIn(X) =
(X − 1)n doesn’t have simple roots.

Example 26.10 Here is a very useful application of the proposition. Let A ∈ Mn(K),
and suppose that A is upper triangular, so that

A =


a11 ∗

a22
. . .

0 ann

 .

Suppose also that the diagonal entries a11, . . . , ann are all different. Then A is automat-
ically diagonalizable, and in fact it’s similar to the diagonal matrix

a11 0
a22

. . .

0 ann

 .

70



Indeed, we have seen that the characteristic polynomial of A is (X − a11) . . . (X − ann).
For example, you can tell just by looking at it that the matrix

A =

1 2 3
0 −1 7
0 0 −5


is diagonalizable and that its eigenvalues are 1,−1,−5. But this doesn’t give you a basis
of eigenvectors, you still have to calculate it.

Remark 26.11 The conclusion in the example above becomes totally false if the di-

agonal entries of A are not distinct. For example, take A =

(
1 1
0 1

)
. Then A is not

diagonalizable.
Indeed, the only eigenvalue of A is 1 by example 25.8. So if A were diagonalizable,

then it would be similar to the matrix

(
1 0
0 1

)
= I2. But we have seen that the only

matrix similar to I2 is I2 itself, and obviously A 6= I2.

Diagonalizing an endomorphism T means finding a basis where the matrix of T is
diagonal, and diagonalizing a matrix A means finding an invertible matrix S such that
SAS−1 is diagonal. The general procedure to diagonalize an endomorphism T is the
following (if you want to diagonalize a matrix A, you can apply this procedure to the
endomorphism T of Kn with matrix A in the canonical basis) :

(1) Find the eigenvalues of T : The most direct method is to calculate fT (X) and try
to find all its roots. You can also try to solve the equation T (~v) − λ~v = 0, where
λ is a parameter, and determine for which values of λ it has nonzero solutions.

(2) For every eigenvalue λ of T , calculate Ker(T − λidV ) and find a basis of it.

(3) Put all the bases of step (2) together. If you get a family with dim(V ) elements,
you’ve won. Otherwise, T was not diagonalizable.

4/6/2017

27 Triangularization

Even when T is not diagonalizable, we might still be able to find a basis of V where the
matrix of T is upper triangular. This is sometimes called triangularization and is much
easier.

Definition 27.1 We say that an endomorphism T of a finite-dimensional vector space
V is triangularizable if there exists a basis of V in which the matrix of T is upper
triangular.

We say that a matrix is triangularizable if it is similar to an upper triangular matrix.
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Remark 27.2 If we replace “upper triangular” by “lower triangular” in the definition
above, we pbtain equivalent notions. (Exercise : why ?)

Remark 27.3 In problem 2 of problem set 4, we’ve seen that the two following state-
ments are equivalent :

(i) Then there exists a basis B of V such that [T ]B is upper triangular (i.e. T is
triangularizable).

(ii) There exists a sequence of subspaces {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V such that
dim(Vi) = i and T (Vi) ⊂ Vi, for all 0 ≤ i ≤ n.

Theorem 27.4 Let T ∈ End(V ) as above, and suppose that fT (X) has all its roots in
K.20 Then T is triangularizable.

We have a similar statement for matrices : If A ∈Mn(K) is such that fA(X) has all
its roots in K, then A is triangularizable.

Remark 27.5 The converse is true : If there exists a basis of V in which the matrix
of T is upper triangular, then fT (X) has all its roots in K. Indeed, we have seen in
example 26.10 that the characteristic polynomial of an upper triangular matrix is of the
form (X −λ1) . . . (X −λn), where λ1, . . . , λn are the diagonal entries; such a polyonimal
has all its roots in K.

Remark 27.6 By proposition 25.9 and the theorem above, if T is triangularizable and
W is a subspace of V such that T (W ) ⊂W , then the endomorphism TW of W induced
by T is also triangularizable.

Proof. The statement for matrices follows from the statement for endomorphisms. Let’s
prove the statement for endomorphisms. Let n = dimV . We do an induction on n.

If n = 1, then T is a multiplication by a scalar, so its matrix is upper triangular in
any basis.

Suppose that n ≥ 2 and that we know the result for n− 1. As fT (X) has all its roots
in K, we can pick a root λ1 ∈ K of fT (X), which is an eigenvalue of T . Let ~v1 ∈ V
be an eigenvector of T for the eigenvalue λ1. Complete ~v1 to a basis (~v1, . . . , ~vn) of V .
Then the matrix of T in B is of the form(

λ1 ∗
0 B

)
.

Let W = Span(~v2, . . . , ~vn), and let p : V → W be the linear transformation defined by
p(~v1) = 0 and p(~vi) = ~vi for 2 ≤ i ≤ n. Then the (n−1)× (n−1) matrix B is the matrix
of the endomorphism p ◦ T|W of W in the basis (~v2, . . . , ~vn). By proposition 25.9, we
have fT (X) = (X − λ1)fB(X), so the chaacteristic polynomial fB(X) of p ◦ T|W has all
its roots in K. By the induction hypothesis, we can find a basis (~w2, . . . , ~wn) in which

20For example, this is automatically true if K = C.
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the matrix of p ◦ T|W is upper triangular. Then (~v1, ~w2, . . . , ~wn) is a basis of V , and the
matrix of T in this basis is upper triangular.

�

Example 27.7 The matrix A =

(
0 1
−1 0

)
has characteristic polynomial X2 + 1. So

it is not similar to an upper triangular matrix as an element of M2(R), but it is as an
element of M2(C).

Remark 27.8 By proposition 25.9 and

The following lemma will be used again and again.

Lemma 27.9 Let T and U be two endomorphisms of a K-vector space V , and suppose
that T ◦ U = U ◦ T . Let λ be an eignevalue of T , and let Eλ = Ker(T − λidV ) be the
corresponding eigenspace. Then U(Eλ) ⊂ Eλ.

Proof. If ~v ∈ Eλ, then

T (U(~v)) = U(T (~v)) = U(λ~v) = λU(~v),

so U(~v) ∈ Eλ.
�

Theorem 27.10 (Simultaneous triangularization.) Let T and U be two endomorphism
of a finite-dimensional vector space V . Suppose that T and U are both triangularizable
and that T ◦U = U ◦ T . Then there exists a basis B of V such that both [T ]B and [U ]B
are upper triangular.

Similarly, if A and B are triangularizable matrices in Mn(K) and if AB = BA,
then there exists S ∈ Mn(K) invertible such that both SAS−1 and SBS−1 are upper
triangular.

Remark 27.11 There is an analogous result with “diagonalizable” instead of “trian-
gularizable” (and “diagonal” instead of “upper triangular”), but we don’t yet have the
tools to prove it.

Proof. The statement for matrices follows from the statement for endomorphisms. Let’s
prove the statement for endomorphisms. Let n = dimV . We do an induction on n.

If n = 1, then T and U are both multiplication by some scalar, so their matrices are
upper triangular in any basis.

Suppose that n ≥ 2 and that we know the result for n − 1. First we need to show
that T and U have a common eigenvector. As fT (X) has all its roots in K, we can pick
a root λ ∈ K of fT (X), which is an eigenvalue of T . Let Eλ = Ker(T − λidV ) be the
correspondaing eigenspace of T . By lemma 27.9 above, U(Eλ) ⊂ Eλ. By remark 27.6
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above, the restriction of U to Eλ is triangularizable, so U has at least one eigenvector ~v1
in Eλ; let µ be its eigenvalue. As ~v1 is in Eλ, it’s also an eigenvector of T with eigenvalue
λ.

Complete ~v1 to a basis (~v1, . . . , ~vn) of V . Then the matrix of T in B is of the form(
λ ∗
0 B

)
,

and the matrix of U in B is of the form(
µ ∗
0 C

)
,

Let W = Span(~v2, . . . , ~vn), and let p : V → W be the linear transformation defined
by p(~v1) = 0 and p(~vi) = ~vi for 2 ≤ i ≤ n. Then the (n − 1) × (n − 1) matrix B is the
matrix of the endomorphism p ◦ T|W of W in the basis (~v2, . . . , ~vn), and C is the matrix
of the endomorphism p◦U|W of W in the basis (~v2, . . . , ~vn). By proposition 25.9, we have
fT (X) = (X − λ)fB(X) and fU (X) = (X − µ)fC(X), so the characteristic polynomials
fB(X) and fC(X) of p ◦ T|W and p ◦ U|W have all their roots in K. By the induction
hypothesis, we can find a basis (~w2, . . . , ~wn) in which the matrices of p◦T|W and p◦U|W
are both upper triangular. Then (~v1, ~w2, . . . , ~wn) is a basis of V , and the matrices of T
and U in this basis and upper triangular.

�

28 Some properties of polynomials

Remember the following definitions for polynomials.

Definition 28.1 (1) If P,A ∈ K[X], we say that Q divides P if there exists R ∈ K[X]
such that P = QR. This implies that deg(Q) ≤ deg(P ).

(2) If P ∈ K[X], we say that a ∈ K is a root (or zero) of P if P (a) = 0; this is
equivalent to saying that X−a divides P . In this case, the multiplicity of the root
a of P is the biggest integer m such that (X − a)m divides P , and we say that a
is a simple root of P if its multiplicity is 1 (i.e. if (X − a)2 does not divide P ).

(3) We say that a nonzero polynomial P ∈ K[X] is monic if the coefficient of its
highest degree term is 1.

Theorem 28.2 (Euclidian division for polynomials.) Let A,B ∈ K[X], and assume
that B 6= 0. Then there exists a unique pair of polynomials (Q,R) such that :

(1) A = BQ+R;

(2) deg(R) < deg(B).
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We say that Q (resp. R) is the quotient (resp. remainder) of the Euclidian division
of A by B. Note that R = 0 if and only if B divides A.

If you’ve seen Euclidian division for integers, this is a very similar result.

Proof. Let’s first prove uniqueness of Q and R. Suppose that we have two pairs of
polynomials (Q1, R1) and (Q2, R2) satisfying conditions (1) and (2). Then A = BQ1 +
R1 = BQ2+R2, so B(Q1−Q2) = R2−R1, hence deg(B)+deg(Q1−Q2) = deg(R2−R1).
As R1 and R2 have degree < deg(B), so does R2 − R1, and the equality above is only
possible if Q1 −Q2 = 0, i.e. Q1 = Q2. Then this also implies that R1 = R2.

We now prove existence by induction on deg(A). If deg(A) < deg(B), we take Q = 0
and R = A. Suppose that deg(A) ≥ deg(B) and that we know the results for all
polynomials A1 of degree < deg(A). Let d = deg(A) and r = deg(B) ≤ d. Write
A =

∑d
i=0 aiX

i, B =
∑r

i=0 biX
i, and set A1 = A− adb−1r Xd−rB. Then deg(A1) < d =

deg(A), so by the induction hypothesis we have a couple (Q1, R1) of polynomials such
that A1 = BQ1 + R1 and deg(R1) < deg(B). We can now take Q = adb

−1
r Xd−r + Q1

and R = R1.
�

We will now give the main consequence of this result. We introduce a convenient piece
of vocabulary from commutative algebra for this (but you don’t need to remember this
definition for the homework of exams).

4/11/2017

Definition 28.3 A subset I of K[X] is called an ideal if :

(0) 0 ∈ I.

(1) For every A,B ∈ I, A+B ∈ I.

(2) For every A ∈ I and every P ∈ K[X]21, PA is in I.

Example 28.4 If A ∈ K[X], then the set I of multiples of A is an ideal of K[X],
traditionnally denoted by (A).

The existence of Euclidian division implies that every ideal is of the form above.

Corollary 28.5 If I is an ideal of K[X] and I 6= {0}, then there exists a unique monic
polynomial A ∈ K[X] such that I = (A) (i.e. I is the set of multiples of A).

Proof. First we prove uniqueness. Suppose that we have two monic polynomials A and
B such that I = (A) = (B). Then A divides B and B divides A, so there exists c ∈ K
nonzero such that A = cB. As both A and B are monic, this implies that A = B.

21not just I !
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Let’s prove existence. Let A be a nozero polynomial of minimal degree in I. After
multiplying A by a scalar, we may assume that A is monic. By definition of an ideal, we
have (A) ⊂ I. Let’s prove that I ⊂ (A). Let B ∈ I. By the theorem above, there exist
polynomials Q,R ∈ K[X] such that B = AQ + R and deg(R) < deg(A). As A,B ∈ I,
R = B −QA ∈ I. As no nonzero element of I can have degree deg(A) (by the choice of
A), R = 0, which means that A divides B, i.e. B ∈ (A).

�

This result allows us, after defining the greatest common divisor of a family of poly-
nomials, to extend Bezout’s theorem to polynomials.

Definition 28.6 Let P1, . . . , Pn ∈ K[X] not all zero. The greatest common divisor
(gcd) of P1, . . . , Pn is of the monic polynomial D of maximal degree that divides all the
Pi for 1 ≤ i ≤ n.

We say that the polynomials P1, . . . , Pn are relatively prime if their greatest common
divisor is 1.

Theorem 28.7 (Bezout’s theorem.) Let P1, . . . , Pn be polynomials that are not all zero,
and let D be their greatest common divisor. Then there exist polynomials Q1, . . . , Qn
such that D = P1Q1 + · · ·+ PnQn.

In particular, if P1, . . . , Pn are relatively prime, then their exist polynomials Q1, . . . , Qn
such that P1Q1 + · · ·+ PnQn = 1.

Proof. Let I be the set of all polynomials of the form P1Q1 + · · ·+PnQn, for Q1, . . . , Qn
varying in K[X]. It follows directly from the definition that I is an ideal, and we have
I 6= {0} because all the Pi are in I and at least of the Pi is nonzero.

By corollary 28.5, there exists a unique monic polynomial A ∈ K[X] such that I = (A).
I claim that A = D, which implies the theorem by definition of I. First, since each Pi is
in I, A divides each Pi, so by definition of D we have deg(A) ≤ deg(D). Second, because
D divides each Pi, it also divides each polynomial of the form P1Q1 + · · ·+ PnQn, and
in particular it divides A. As deg(D) ≥ deg(A), this means that A = cD with c ∈ K
nonzero. As both A and D are monic, this implies that A = D.

�

Proposition 28.8 Let A,B,C ∈ K[X] be such that gcd(A,B) = gcd(A,C) = 1. Then
A and BC are relatively prime.

Proof. As A and B are relatively prime, by theorem 28.7, there exist polynomials
U, V ∈ K[X] such that UA + V B = 1. As A and C are relatively prime, by theorem
28.7, there exist polynomials P,Q ∈ K[X] such that PA+QB = 1. So we get :

1 = (UA+V B)(PA+QC) = UPA2+UQAC+V PAB+V QBC = (UPA+UQC+V PB)A+(V Q)BC.

This proves that the greatest common divisor of A and BC divides 1, hence that it is
equal to 1.
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29 Polynomials of matrices

Notation 29.1 Let P (X) =
∑d

i=0 aiX
i ∈ K[X], and let A be a n × n matrix. Then

the notation P (A) means :

adA
d + · · ·+ a1A+ a0In.

(That is, P (A) =
∑d

i=0 aiA
i, where by convention A0 = In.)

We have a similar notation for T ∈ End(V ) : We set P (T ) =
∑d

i=0 aiT
i, where by

convention T 0 = idV .

Remark 29.2 We have (PQ)(T ) = P (T ) ◦Q(T ). (Indeed, this is clear if P and Q are
monomials, and then this extends to all polynomials by linearity.) As PQ = QP , this
implies that P (T ) ◦ Q(T ) = Q(T ) ◦ P (T ). In particular, for every P ∈ K[X], T and
P (T ) commute (i.e. T ◦ P (T ) = P (T ) ◦ T ).

Lemma 29.3 Let T ∈ End(V ), with V a vector space of any dimension, and P ∈ K[X].
If λ ∈ K is an eigenvalue of T and P (T ) = 0, then P (λ) = 0.

Similarly, let A ∈ Mn(K) and P ∈ K[X]. If λ ∈ K is an eigenvalue of A and
P (A) = 0, then P (λ) = 0.

Proof. Let ~v be an eigenvector of T for the eigenvalue λ. Then T (~v) = λ~v, so, for
every i ≥ 0, T i(~v) = λi~v. Hence 0 = P (T )(~v) = P (λ)~v. As ~v 6= 0 (by definition of an
eignevector), this implies that P (λ) = 0.

�

Remark 29.4 The converse is totally false. For example, if A = In and P = X(X−1),
then P (A) = 0 and P (0) = 0, but 0 is not an eigenvalue of A.

Although it looks like a weird technical result, the following theorem is absolutely
fundamental in reduction theory.

Theorem 29.5 Let T be an endomorphism of a vector space V (if any dimension), and
let P ∈ K[X] such that P (T ) = 0. Suppose that P = P1 . . . Pn, and that, for each i 6 j,
the polynomials Pi and Pj are relatively prime. Then :

V = Ker(P1(T ))⊕ · · · ⊕Ker(Pn(T )).

Example 29.6 In problem 3 of problem set 4, we defined a projection as an endomor-
phism T of V such that T 2 = T . This condition can also be written as P (T ) = 0, where
P is the polynomial X2−X. As X2−X = X(X− 1) and the polynomials X and X− 1
are relatively prime, the theorem implies that V = Ker(T ) ⊕ Ker(T − id − V ). If V is
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finite-dimensional, this implies the conclusion of problem 3 of PS4 : if we choose a basis
of Ker(T − idV ) and a basis of Ker(T ) and put them together to get a basis of V , then
the matrix of T in this basis is of the form(

Ir 0
0 0

)
,

where r = rank(T ).

Example 29.7 In problem 4 of problem set 4, we defined an involution as an endomor-
phism T of V such that T 2 = idV . This condition can also be written as P (T ) = 0, where
P is the polynomial X2−1. As X2−X = (X+1)(X−1) and the polynomials X+1 and
X−1 are relatively prime, the theorem implies that V = Ker(T +idV )⊕Ker(T − id−V ).
If V is finite-dimensional, this implies the conclusion of problem 4 of PS4 : if we choose
a basis of Ker(T − idV ) and a basis of Ker(T + idV ) and put them together to get a
basis of V , then the matrix of T in this basis is of the form(

Ir 0
0 −In−r

)
,

where r = dim Ker(T − idV ).

Proof. We reason by induction on n. The result is obvious if n = 1, because then
P1 = P , so P1(T ) = 0, so V = Ker(P1(T )).

Let’s prove the theorem for n = 2. Write W1 = Ker(P1(T )) and W2 = Ker(P2(T )).
First we note that W1 and W2 are stable by T (i.e. T (W1) ⊂ W1 and T (W2) ⊂ W2).
Indeed, this follows from lemma 27.9 and from the fact that T commutes with P1(T )
and P2(T ).

By Bezout’s theorem, there exists polynomials Q1, Q2 ∈ K[X] such that Q1P1 +
Q2P2 = 1. This gives Q1(T )◦P1(T )+Q2(T )◦P2(T ) = idV . So for every ~v ∈ V , we have

~v = Q1(T )(~w2) +Q2(T )(~w1),

with ~w2 = P1(T )(~v) and ~w2 = P2(T )(~v). As

P2(T )(~w2) = P2(T )(P1(T )(~v)) = (P2P1)(T )(~v) = P (T )(~v) = 0,

we have ~w2 ∈W2. Similarly, ~w1 ∈W1. We noted above that W1 and W2 are both stable
by T , so Q1(T )(~w2) ∈W2 and Q2(T )(~w1) ∈W1. So we have proved that V = W1 +W2.

To finish the proof in the case n = 2, we need to show that W1 ∩W2 = {0}. Let
~v ∈W1 ∩W2. Then P1(T )(~v) = P2(T )(~v) = 0, so

~v = Q1(T )(P1(T )(~v)) +Q2(T )(P2(T )(~v)) = 0.

Now suppose that n ≥ 3 and that we have proved the theorem for all smaller values
of n. Let Q2 = P2 . . . Pn. Then P1 and Q2 are relatively prime (by proposition 28.8), so,
by the case n = 2 of the theorem, we have :

V = Ker(P1(T ))⊕Ker(Q2(T )).

78



Let W = Ker(Q2(T )), and let U ∈ End(W ) be the restriction of T to W (we know that
W is stable by T , because T and Q(T ) commute). Then Q2(U) = 0 and Q2 = P2 . . . Pn,
so, by the induction hypothesis :

W = Ker(P2(U))⊕ · · · ⊕Ker(Pn(U)) = Ker(P2(T ))⊕ · · · ⊕Ker(Pn(T )).

These two equalities gives the result.
�
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Corollary 29.8 Let T ∈ End(V ), with V finite-dimensional. Then T is diagonalizable
if and only if there exists a polynomial P ∈ K[X] such that all the roots of P are simple
and in K, and such that P (T ) = 0.

We have a similar result for matrices : A ∈ Mn(K) is diagonalizable if and only if
there exists a polynomial P ∈ K[X] such that all the roots of P are simple and in K,
and such that P (Q) = 0.

Proof. Suppose that T is diagonalizable, and choose a basis B = (~v1, . . . , ~vn) of V in
which the matrix of T is diagonal. Let λ1, . . . , λr be the eigenvalues of T (with the λi
distinct), and let P (X) = (X − λ1) . . . (X − λr). If i ∈ {1, . . . , n}, then there exists j
such that T (~vi) = λj~vi, hence (T − λj idV )(~vi) = 0, hence P (T )(~vi) = 0. As this is true
for every i and B is a basis of V , we have P (T ) = 0. Also, the polynomial P has all its
roots simple and in K by construction.

Conversely, let P be a polnynomial such that all the roots of P are simple and in
K, and assume that P (T ) = 0. By the hypothesis on the roots of P , we have P (X) =
(X−λ1) . . . (X−λr), with the λi distinct. This means that, for i 6= j, X−λi and X−λj
are relatively prime. As P (T ) = 0, theorem 29.5 above gives

V = Ker(T − λ1idV )⊕ · · · ⊕Ker(T − λridV ).

This implies that T is diagonalizable. (Take bases of each Ker(T −λiidV ), and then take
their union to get a basis of V where the matrix of T is diagonal.)

�

Example 29.9 If A ∈Mn(C) is such that A100 = In, then A is diagonalizable. Indeed,
the polynomial X100 − 1 has simple roots, and these roots are all in C.

Corollary 29.10 If T ∈ End(V ) is diagonalizable and W is a subspace of V such that
T (W ) ⊂W , then the endomorphism TW of W induced by T is diagonalizable.

Proof. Let P ∈ K[X] be a polynomial such that all the roots of P are simple and in K
and that P (T ) = 0. Then P (TW ) = 0, so by the corollary above TW is diagonalizable.
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Now we can prove the result mentioned just after theorem 27.10.

Corollary 29.11 Let T and U be two endomorphism of a finite-dimensional vector
space V . Suppose that T and U are both diagonalizable and that T ◦ U = U ◦ T . Then
there exists a basis B of V such that both [T ]B and [U ]B are diagonal.

Similarly, if A and B are diagonalizable matrices in Mn(K) and if AB = BA, then
there exists S ∈Mn(K) invertible such that both SAS−1 and SBS−1 are diagonal.

Proof. Let λ1, . . . , λr be the eigenvalues of T , and let Eλi = Ker(T − λiidV ). As T is
diagonalizable, we have :

V = Eλ1 ⊕ · · · ⊕ Eλr .

By lemma 27.9, each Eλi is stable by U . By the corollary above, the endomorphism Ui
of Eλi induced by U is diagonalizable. For every i, we choose a basis Bi of Eλi such
that the matrix of Ui in Bi is diagonal. Let B = B1 ∪ . . .Br. Then B is a basis of V ,
and the matrices of T and U in B are both diagonal.

�

30 Cayley-Hamilton theorem and minimal polynomial

Theorem 30.1 (Cayley-Hamilton theorem.) Let T ∈ End(V ) with V finite-dimensional.
Then fT (T ) = 0.

We have a similar result for matrices : For every A ∈Mn(K), fA(A) = 0.

Remark 30.2 To prove this theorem for A ∈ Mn(K), it is very tempting to write
fA(A) = det(AIn − A) = det(0) = 0. But this doesn’t work. To see why, note that
XIn −A is the matrix X − a11 . . . −a1n

. . .

−an1 . . . X − ann

 ,

where A = (aij). So if we replace X by A, we don’t get the zero matrix, we get the
matrix A− a11In . . . −a1nIn

. . .

−an1In . . . A− annIn


(with entries in Mn(K) !). Also, it is not clear that determinants will work well in that
case (we were using commutativity in the proofs), and even if they do it is not clear that
the determinant of this matrix is zero.

Proof. As usual, it’s enough to prove the result for endomorphisms. We will give two
different proofs.
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Here is the first proof. Suppose that the characteristic polynomial fT (X) of T has all
its roots in K. 22 Then, by theorem 27.4, we can find a basis B = (~v1, . . . , ~vn) such that
[T ]B is upper triangular. Let λ1, . . . , λn be the diagonal entries of [T ]B. Then we have

T (~vi)− λi~vi ∈ Span(~v1, . . . , ~vi−1)

for every i. Also, by example 25.8,

fT (X) = (X − λ1) . . . (X − λn).

For every i ∈ {1, . . . , n}, let Wi = Span(~v1, . . . , ~vi). We have T (Wi) ⊂Wi because the
matrix of T in B is upper triangular. Also, by the first displayed formula above,

(T − λiidV )(Wi) ⊂Wi−1

for every i ≥ 1, where we set W0 = {0}. Hence

fT (T )(Wn) = ((T − λ1idV ) ◦ · · · ◦ (T − λnidV ))(Wn) ⊂

⊂ ((T − λ1idV ) ◦ · · · ◦ (T − λn−1idV ))(Wn−1) ⊂ · · · ⊂ (T − λ1idV )(W1) = {0}

As Wn = V , this means that fT (T ) = 0.
The second proof is a bit longer but doesn’t require us to enlarge K. Let ~v ∈ V

be nonzero. We want to prove that fT (T )(~v) = 0. Let d be the smallest positive
integer such that the family (~v, T (~v), . . . , T d−1(~v)) is linearly independent, and let W =
Span(~v, T (~v), . . . , T d−1(~v)). By (iii) of proposition 7.5, T d(~v) ∈W . Let a0, . . . , ad−1 ∈ K
such that

T d(~v) =

d−1∑
i=0

aiT
i(~v),

and let f(T ) = Xd −
∑d−1

i=0 aiX
i ∈ K[X].

First let’s prove by induction on r that T r(~v) ∈W for every r ≥ 0. We already know
it for r ≤ d, so let’s assume that r > d a,d that the result is known for smaller values of
r. Then

[T r(~v) = T r−d(T d(~v)) = T r−d(
d−1∑
i=0

aiT
i(~v)) =

d−1∑
i=0

aiT
r−d+i(~v).

As every term in the last sum is in W by the induction hypothesis, T r(~v) is also in W .
By the previous paragraph and the definition of W , we have T (W ) ⊂ W . Let TW be

the endomorphism of W induced by T . By proposition 25.9, fTW (X) divides fT (X). So
if we show that fTW (T )(~v), it will follow that fT (T )(~v) = 0 (thanks to remark 29.2).

Remember the polynomial f(T ) = Xd−
∑d−1

i=0 aiX
i from above. By the choice of the ai,

we have f(T )(~v) = 0. So to finish the proof, it suffices to show that f(X) = fTW (X).

22 This can always be achieved by formally adding the roots of fT (X) to K, although making this
mathematical construction precise requires things more advanced than MAT 217. It is also always
true if K = C.
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To prove this last equality, we first note that the family (~v, T (~v), . . . , T d−1(~v)) is a
basis of W (it’s linearly independent by the choice of d and spans W by definition of
W ). In this basis, the matrix of TW is

A =


0 . . . 0 a0

1
. . .

...
...

0
. . . 0 ad−2

0 0 1 ad−1

 .

(This kind of matrix is called a companion matrix.) So we just need to prove that
fA(X) = f(X). We do this by induction on d. The result is easy for d = 1, so let’s
suppose that d ≥ 2 and that we know it for d− 1. We have :

fA(X) = det


X . . . 0 −a0
−1

. . .
...

...

0
. . . X −ad−2

0 0 −1 X − ad−1

 .

Developing along the first row gives :

fA(X) = X det


X 0 0 −a1
−1

. . .
...

0
. . . X −ad−2

0 0 −1 X − ad−1

− (−1)1+da0 det


−1 X 0 0

0 −1
. . . 0

...
. . .

. . . X
0 . . . 0 −1

 .

Using the induction hypothesis to calculate the first (d − 1) × (d − 1) determinant, we
get :

fA(X) = X(Xd−1 −
d−1∑
i=1

aiX
i−1)− a0 = f(X).

�

Corollary 30.3 Let T ∈ End(V ) with V a n-dimensional K-vector space. Then T is
nilpotent if and only if fT (X) = Xn. Also, if T is nilpotent, then Tn = 0. 23

For matrices, this becomes : Let A ∈ Mn(K). Then A is nilpotent if and only if
fA(X) = Xn. Also, if A is nilpotent, then An = 0.

Proof. Let’s prove the result for endomorphisms. If fT (X) = Xn, then Tn = 0 by
theorem 30.1, and we also get the second sentence.

Now suppose that T is nilpotent. We show by induction on n := dim(V ) that fT (X) =
Xn. If n = 1, then T = 0, so the result is obvious. Assume that n ≥ 2 and that the

23Remember that we say that T is nilpotent if there exists N ≥ 1 such that TN = 0.
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result is know for n − 1. As T is nilpotent, it cannot be invertible, so Ker(T ) 6= {0}.
Choose a nonzero ~v1 ∈ Ker(T ), and complete it to a basis (~v1, . . . , ~vn) of V . In this
basis, the matrix of T is of the form

A =

(
0 ∗
0 B

)
,

with B ∈Mn−1(K). For every N , we have

AN =

(
0 ∗
0 BN

)
.

As A is nilpotent, B is also nilpotent, so the induction hypothesis gives fB(T ) = Tn−1.
By proposition 25.9, fA(X) = XfB(X) = Xn.

�

4/18/2017

Another application of the Cayley-Hamilton theorem is to the minimal polynomial of an
endormorphism or matrix. First we must define this polynomial.

Proposition-Definition 30.4 Let T be an endomorphism of a finite-dimensional vec-
tor space V . Then the set IT of polynomials f(X) ∈ K[X] such that f(T ) = 0 is a ideal
of K[X] different from {0}.

By corollary 28.5, there is a unique monic polynomial f(X) ∈ K[X] such that IT =
(f(X)). This f(X) is called the minimal polynomial of T .

We have a similar definition for matrices.

In other words, the minimal polynomial of T is the monic polynomial of smallest
degree f(X) such that f(T ) = 0, and it divides every other polynomial g(X) such that
g(T ) = 0.

Proof. It is a straightforward verification to check that IT is an ideal of K[X], but it is not
totally obvious that it is not equal to {0}. So we must find a nonzero polynomial f(X)
such that f(T ) = 0. As End(V ) is a finite-dimensional K-vector space and the family
(Tn, n ≥ 0) of elements of End(V ) is infinite, this family is free. So there existsN ≥ 0 and
scalars a0, . . . , aN ∈ K not all zero such that

∑N
r=0 arT

r = 0. So f(X) :=
∑N

r=0 arX
r is

a nonzero element of IT .
�

The following corollary follows immediately from theorem 30.1 (which says, in the
notation of the definition above, that the characteristic polynomial fT (X) is in IT ).

Corollary 30.5 Let T ∈ End(V ) be as above, and let f(X) be its minimal polynomial.
Then f(X) divides fT (X). In particular, deg(f(X)) ≤ dim(V ).

We have a similar statement for matrices.
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Example 30.6 The minimal and characteristic polynomials of an endomorphism (or
matrix) can be different. For example, if A = In, the the minimal polynomial of A is
X − 1, but its characteristic polynomial is (X − 1)n. If T is a projection and T 6= 0, idV ,
then its minimal polynomial is X(X−1), but its characteristic polynomial is Xn−r(X−
1)r, where r = rank(T ). If T is an involution such that T 6= ±idV , then its minimal
polynomial is (X − 1)(X + 1), but its characteristic polynomial is (X − 1)r(X + 1)n−r,
where r = dim(Ker(T − idV )).

31 Characteristic subspaces

In this section, V is always a finite-dimensional vector space.

Definition 31.1 Let T ∈ End(V ), and let λ be an eigenvalue of T . We write fT (X) =
(X − λ)rP (X), with P (λ) 6= 0. Then :

(1) The characteristic space of T for the eigenvalue λ is Ker((T − λidV )r). We some-
times denote it by Cλ.

(2) The algebraic multiplicity of λ is ma(λ) = r (i.e. the multiplicity of λ as a root of
fT (X)).

(3) The geometric multiplicity of λ is mg(λ) = dim(Ker(T −λidV )) (i.e. the dimension
of the λ-eigenspace of T ).

Proposition 31.2 Let T , λ and fT (X) = (X − λ)rP (X) be as in the definition above.
Then :

(i) Ker(T−λidV ) ⊂ Ker((T−λidV )r) (the characteristic space contains the eigenspace).

(ii) dim Ker((T − λidV )r) = r = ma(λ).

(iii) ma(λ) ≥ mg(λ).

Proof. First, note that (i) follows from the fact that r ≥ 1 (because λ is a root of fT (X)),
and that (iii) follows from (ii). So we just need to prove (ii). Let Cλ = Ker((T −λidV )r)
and W = Ker(P (T )). As P (λ) 6= 0, X − λ does not divide P , so gcd(X − λ, P ) = 1. By
theorem 29.5, we have

V = Cλ ⊕W.

By lemma 27.9, T (Cλ) ⊂ Cλ and T (W ) ⊂W . Let T1 ∈ End(Cλ) be the restriction of T ,
and T2 ∈ End(W ) be the restriction of T . By proposition 25.9, fT (X) = fT1(X)fT2(X).

On the one hand, (T1 − λidCλ)r = 0 (by definition of Cλ), so T1 − λidCλ is nilpotent,
so, by corollary 30.3, its charactistic polynomial is Xd, where d = dim(Cλ). As

fT1(X) = det(Xid− T1) = det((X − λ)id− (T1 − λid)) = fT1−λid(X − λ),

we get fT1(X) = (X − λ)d. As fT1(X) divides fT (X), d ≤ r.
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On the other hand, P (T2) = 0 (by definition of W ). As P (λ) 6= 0, this implies by
lemma 29.3 that λ is not an eigenvalue of T2, so that fT2(λ) 6= 0. As fT2(X) divides
fT (X) = (X − λ)rP (X), we get that fT2(X) divides P (X).

But now we have fT (X) = (X − λ)rP (X) = fT1(X)fT2(X), with fT1(X) dividing
(X−λ)r and fT2(X) dividing P (X). The only way this can happen is if fT1(X) = (X−λ)r

and fT2(X) = P (X). In particuliar,

dim(Cλ) = deg(fT1(X)) = r,

which gives (ii).
�

Proposition 31.3 Let T ∈ End(V ). For every eigenvalue λ of T , denote by Cλ the
corresponding characteristic space. Assume that fT (X) has all its roots in K, and call
these these roots λ1, . . . , λm. Then :

V = Cλ1 ⊕ · · · ⊕ Cλm .

Proof. If fT (X) has all its roots in K, then we have fT (X) = (X−λ1)r1 . . . (X−λm)rm .
By definition, Cλi = Ker((T − λiidV )ri). By theorem 29.5, V = Cλ1 ⊕ · · · ⊕ Cλm .

�

Corollary 31.4 Let T ∈ End(V ), and suppose that fT (X) has all its roots in K. Denote
by Eλ and Cλ the eigenspace and characteristic space corresponding to an eigenvalue λ.
Then the following conditions are equivalent :

(i) T is diagonalizable.

(ii) For every eigenvalue λ of T , Eλ = Cλ.

(iii) For every eigenvalue λ of T , mg(λ) = ma(λ).

Proof. We have seen in proposition 31.2 that, for every eigenvalue λ of T , Eλ ⊂ Cλ,
mg(λ) = dim(Eλ) and ma(λ) = dim(Cλ). This shows that (ii) and (iii) are equivalent.

We have seem in proposition 31.3 that V = Cλ1 ⊕· · ·⊕Cλm , where λ1, . . . , λm are the
eigenvalues of T . By definition, T is diagonalizable if and only if V = Eλ1 ⊕ . . . Eλm . As
Eλi ⊂ Cλi for every i, this shows that (i) and (ii) are equivalent.

�

32 Jordan-Chevalley decomposition

Theorem 32.1 (Jordan-Chevalley decomposition) Let T ∈ End(V ), with dim(V ) <
+∞. Suppose that fT (X) has all its roots in K.24

Then there exist unique endomorphisms Td, Tn of V such that :

24For example, this is automatically true if K = C.
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(a) T = Td + Tn.

(b) Td ◦ Tn = Tn ◦ Td.

(c) Td is diagonalizable and Tn is nilpotent.

We have a similary theorem for matrices :

Theorem 32.2 Let A ∈Mn(K). Suppose that fA(X) has all its roots in K.
Then there exists unique matrices Ad, An ∈Mn(K) such that :

(a) A = Ad +An.

(b) AdAn = AnAd.

(c) Ad is diagonalizable and An is nilpotent.

Example 32.3 Let A =

(
1 2
0 3

)
. Then A is diagonalizable, so its Jordan-Chevalley

decomposition is given by A = Ad +An, with Ad = A and An = 0.

Proof. We prove the theorem for endomorphisms. Let λ1, . . . , λm be the eigenvalues of
T , and let Cλ1 , . . . , Cλm be the corresponding characteristic spaces. Then V = Cλ1 ⊕
· · · ⊕ Cλm by proposition 31.3.

Existence : We define Td and Tn in the following way : for every i ∈ {1, . . . ,m}, for
every ~v ∈ Cλi , Td(~v) = λi~v and Tn(~v) = T (~v)−λi~v. As V = Cλ1⊕· · ·⊕Cλm , this formula
defines unique endomorphisms Td and Tn of V , and we have T = Td + Tn because this
is true on each Cλi .

Let’s check that Td is diagonalizable. For every i, Cλi ⊂ Ker(Td − λiidV ). So

V =
m∑
i=1

Ker(Td − λiidV ),

and so we can find a basis of V made up of eigenvectors of Td.
Let’s check that Tn is nilpotent. Write fT (X) = (X − λ1)r1 . . . (X − λm)rm . Then

(T − λiidV )ri(Cλi) = 0 for every i (by definition of Ci), so T rin (Cλi) = 0 for every i. As
V = Cλ1 ⊕ · · · ⊕ Cλm , we see that, if N ≥ sup(r1, . . . , rm), then TNn = 0.

Finally, let’s check that Td ◦Tn = Tn ◦Td. This is true on each Cλi (because Td is just
λiidCλi on Cλi), so it’s true on all of V because V = Cλ1 ⊕ · · · ⊕ Cλm .

4/20/2017

Uniqueness : Suppose that we have another couple (Ud, Un) satisfying conditions (a), (b)
and (c). By (b), Ud commutes with Un, so by (a) it also commutes with T = Ud + Un,
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and hence, by lemma 27.9, Ud(Cλi) ⊂ Cλi for every i. As Td is just λiidCλi on Cλi , we see
that Td◦Ud = Ud◦Td on Cλi . As V = Cλ1⊕· · ·⊕Cλm , this implies that Td◦Ud = Ud◦Td.

By corollary 29.11, there exists a basis B of V such that both [Td]B and [Ud]B are
diagonal. But then [Ud − Td]B = [Ud]B − [Td]B is also diagonal, and so Ud − Td is
diagonalizable.

Now we know that Ud commutes with T and Td, so it also commutes with Tn = T−Td.
And Tn commutes with T and Ud, so it also commutes with Un = T − Ud. This implies
that Tn − Un is nilpotent. Indeed, choose N big enough so that TNn = 0 and UNn = 0.
Then :

(Tn − Un)2N =
2N∑
i=0

(−1)2N−i
(

2N

i

)
T in ◦ U2N−i

n

(using the fact that Tn and Un commute). For every i ∈ {0, . . . , 2N}, either i ≥ N and
then T in = 0, or 2N − i ≥ N and then U2N−i

n = 0. So (Tn − Un)2N = 0.
In summary, we have proved that Ud − Td is diagonalizable and that Tn − Un is

nilpotent. We also have T = Td + Tn = Ud + Un, so Tn − Un = Ud − Td. So Tn − Un is
both diagonalizable and nilpotent. As it is nilpotent, its only eigenvalue is 0, and as it
is diagonalizable, its matrix in some basis must therefore be the zero matrix. But then
Tn − Un has to be 0, so Tn = Un, and then Ud = Td.

�

33 Jordan normal/canonical form

We now push the analysis of the previous section one step further and show that, if all
the roots of fT (X) are in K, then we can find a basis of V where the matrix of T is very
simple. The base case is that of nilpotent endomorphisms.

Theorem 33.1 Let V be a n-dimensional vector space, and let T ∈ End(V ) be nilpotent.
Then we can write V = V1 ⊕ · · · ⊕ Vr, with :

(a) T (Vi) ⊂ Vi for every i ∈ {1, . . . , r}.

(b) For every i ∈ {1, . . . , r}, there exists a basis Bi of Vi such that, if Ti ∈ End(Vi) is
the restriction of T :

[Ti]Bi =


0 1 . . . 0

. . .
. . .

...
. . . 1

0 0

 .

By taking B = B1 ∪ · · · ∪Br, we get a basis of V such that

[T ]B =


0 c1 . . . 0

. . .
. . .

...
. . . cn−1

0 0

 ,
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where each cj is either 0 or 1.

Proof. We prove the result by induction on n. If n = 1, then T = 0 and we are done.
So suppose that n ≥ 2 and that we know the result for smaller values of n.

By corollary 30.3, fT (X) = Xn. Let fmin(X) be the minimal polynomial of T . Then
fmin(X) divides fT (X), so fmin(X) = Xd, with d ≤ n. By definition of the minimal
polynomial, T d−1 6= 0 (otherwise fmin(X) would have to divide Xd−1). Choose ~v ∈ V
such that T d−1(~v) 6= 0, and let W = Span(~v, T (~v), . . . , T d−1(~v)). As T d(~v) = 0 ∈W , we
have T (W ) ⊂W . I claim that (~v, T (~v), . . . , T d−1(~v)) is a basis of W . As this family spans
W , we just need to show that is is linearly independent. This was done in a problem set
and the midterm : Let a0, . . . , ad−1 ∈ K be such that a0~v+a1T (~v)+ · · ·+ad−1T d−1(~v) =
0, and suppose that a0, . . . , ad−1 are not all 0. Let i be the smaller integer such that
ai 6= 0. Then

0 = T d−1−i(aiT
i(~v) + · · ·+ ad−1T

d−1(~v)) = aiT
d−1(~v)

(the other terms disappear because T j(~v) = 0 if j ≥ d), hence T d−1(~v) = 0, contradic-
tion.

Let U ∈ End(W ) be the restriction of T . In the basis (T d−1(~v), . . . , T (~v), ~v) of W , the
matrix of U is 

0 1 . . . 0
. . .

. . .
...

. . . 1
0 0

 .

So W can be our V1 in the theorem. To invoke the induction hypothesis, we need to
find another subspace E of V such that V = W ⊕ E and T (E) ⊂ E. We have to be a
bit careful in the choice of E if we want the second condition to be true.

Write (~e1, . . . , ~ed) = (~v, T (~v), . . . , T d−1(~v)), and complete this to a basis (~e1, . . . , ~en)
of V . Let (~e∗1, . . . , ~e

∗
n) be the dual basis, and let

E = {~v ∈ V |∀i ≥ 0, ~e∗d(T
i(~v)) = 0} =

⋂
i≥0

Ker(~e∗d ◦ T i).

This is a subspace of V , and we have to show that it works.
First, if ~v ∈ E, then for every i ≥ 0,

~e∗d(T
i(T (~v))) = ~e∗d(T

i+1(~v)) = 0,

so T (~v) ∈ E. So T (E) ⊂ E.
Second, let’s show that W ∩ E = {0}. Let ~v ∈ W ∩ E. If ~v 6= 0, we can write

~v = a1~e1 + · · ·+ ar~er, with r ≤ d and ar 6= 0. Then

T d−r(~v) = a1~ed−r+1 + · · ·+ ar~ed,

so
~e∗d(T

d−r(~v)) = ar 6= 0,
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which contradicts the fact that ~v ∈ E.
It remains to show that W + E = V . By corollary 10.6, we have

dim(V ) ≥ dim(W + E) = dim(W ) + dim(E)− dim(W ∩ E) = dim(W ) + dim(E),

so we just need to show that dim(E) ≥ n − d. Noting that T r = 0 for r ≥ d (because
the minimal polynomial of T is Xd), we see that

E = Ker(~e∗d) ∩Ker(e∗d ◦ T ) ∩ · · · ∩Ker(e∗d ◦ T d−1).

For every i ≥ 0, ~e∗d◦T i is a linear transformation from V to K, so its rank is ≤ dim(K) =
1, so, by the rank-nullity theorem, dim(Ker(e∗d ◦ T i)) ≥ n− 1. Note also that, if V1 and
V2 are subspaces of V , then by corollary 10.6 again,

dim(V1 ∩ V2) = dim(V1) + dim(V2)− dim(V ).

So finally :

dim(E) = dim(

d−1⋂
i=0

Ker(e∗d ◦ T i))

= dim(Ker(e∗d ◦ T d−1))− dim(V ) + dim(
d−2⋂
i=0

Ker(e∗d ◦ T i))

≥ −1 + dim(
d−2⋂
i=0

Ker(e∗d ◦ T i))

= −1 + dim(Ker(e∗d ◦ T d−2))− dim(V ) + dim(
d−3⋂
i=0

Ker(e∗d ◦ T i))

≥ −2 + dim(

d−3⋂
i=0

Ker(e∗d ◦ T i))

= . . .
≥ −(d− 1) + dim(Ker(e∗d)) ≥ n− d.

So we’ve found a subspace E of V such that V = W ⊕ E and T (E) ⊂ E. Applying
the induction hypothesis to E finishes the proof.

�

Corollary 33.2 (Jordan normal form) Let T ∈ End(V ), with V finite-dimensional.
Assume that fT (X) has all its roots in K, and write fT (X) = (X−λ1)r1 . . . (X−λm)rm.
Then there exists a basis B of V such that

[T ]B =


A1 0

A2

. . .

0 Am

 ,
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where, for every i ∈ {1, . . . ,m}, Ai ∈Mri(K) is of the form

Ai =


λi ci,1 . . . 0

. . .
. . .

...
. . . ci,ri−1

0 λi

 ,

with the ci,j in {0, 1}.

Proof. By theorem 29.5, we have V = V1 ⊕ · · · ⊕ Vm, where Vi = Ker((T − λiidV )ri).
Fix i ∈ {1, . . . ,m}. Then T − λiidV sends Vi to itself and is nilpotent on Vi, so, by

theorem 33.1, there exists a basis Bi of Vi such that the matrix of the endomorphism of
Vi given by T − λiidV in Bi is 

0 ci,1 . . . 0
. . .

. . .
...

. . . ci,ri−1
0 0

 ,

with the ci,j in {0, 1}. So T (Vi) ⊂ Vi, and the matrix in Bi of the endomorphism of Vi
induced by T is

Ai :=


λi ci,1 . . . 0

. . .
. . .

...
. . . ci,ri−1

0 λi

 .

Let B = B1 ∪ · · · ∪Bm. Then B is a basis of T , and

[T ]B =


A1 0

A2

. . .

0 Am

 .

�

4/25/2017

34 Matrix of a bilinear form

Remember the following definition :

Definition 34.1 Let V be a K-vector space. A bilinear form on V is a function f :
V × V → K such that f is linear in each variable.
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We can use matrices to represent bilinear forms in the following way.

Definition 34.2 Let V be a finite-dimensional K-vector space, let B = (~v1, . . . , ~vn),
and let f be a bilinear form of V .

The matrix of f in the basis B is the matrix B = (bi,j) ∈Mn(K) defined by :

bij = f(~vi, ~vj).

This matrix has the following property.

Lemma 34.3 With the notation as in the definition above, we have : For every ~v, ~w ∈
V ,

f(~v, ~w) = [~v]TBB[~w].

Proof. Writen [~v]B =

x1...
xn

 and [~w]B =

y1...
yn

. Then

~v = x1~v1 + · · ·+ xn~vn

and
~w = y1~v1 + · · ·+ yn~vn,

so

f(~v, ~w) =
n∑
i=1

n∑
j=1

xiyjf(~vi, ~vj) =
n∑
i=1

n∑
j=1

xiyjbij .

This also happens to be the unique entry of the 1× 1 matrix

(
x1 . . . xn

)
B

y1...
yn

 .

�

Remark 34.4 If A and B are two matrices in Mn(K) such that, for every X,Y ∈
Mn1(K), XTAY = XTBY , then A = B. Indeed, taking X to be the ith column of In
and Y to be its jth column, we get that the(i, j)-entries of A and B are equal.

In particular, the matrix of f in B is the only n×n matrix that satisfies the conclusion
of lemma 34.3.

We also have a change of basis formula (note that it’s different from the change of
basis formula for the matrix of an endomorphism).
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Proposition 34.5 Let V , B, f and B be as in defintiion 34.2. Let A = (~w1, . . . , ~w1)
be another basis of V , and let A be the matrix of f in this basis. Let P be the matrix
with columns [~w1]B, . . . , [~wn]B.

Then
A = P TBP.

Proof. Let ~x, ~y ∈ V . By proposition 12.1, we have

[~x]TA(P TBP )[~y]A = (P [~x]A)TB(P [~y]A) = [~x]BB[~y]B = f(~x, ~y).

�

35 Symmetric bilinear form vs quadratic forms

Definition 35.1 (i) A bilinear form f on a K-vector space V is called symmetric if,
for every ~v, ~w ∈ V ,

f(~v, ~w) = f(~w,~v).

(ii) A bilinear form f on a K-vector space V is called antisymmetric if, for every
~v, ~w ∈ V ,

f(~v, ~w) = −f(~w,~v).

(iii) A matrix B ∈ Mn(K) is called symmetric if B = BT , and antisymmetric if B =
−BT .

Lemma 35.2 Suppose that V is finite-dimensional, let B be a basis of V , let f be a
bilinear form on V and let B be its matrix in B.

Then f is symmetric if and only if B is symmetric, and f is antisymmetric if and
only B is antisymmetric.

Proof. Let ~v, ~w ∈ V . Then :

f(~w,~v) = ~wTB~v = (~vTBT ~w)T = ~vTBT ~w

(because T doesn’t change 1× 1 matrices). This (and remark 34.4) gives the result.
�

Definition 35.3 Let V be a K-vector space. A quadratic form on V is a function
q : V → K such that there exists a symmetric bilinear form f on V satisfying :

q(~v) = f(~v,~v),

for every ~v ∈ V .

Note that we then have q(λ~v) = λ2q(~v), for ~v ∈ V and λ ∈ K.
We will now show that, if char(K) 6= 2, the form f in the definition is unique.
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Proposition 35.4 Suppose that char(K) 6= 2 (that is, that 2 is invertible in K), and
let q be a quadratic form on V . Then there exists a unique symmetric bilinear form f
on V such that q(~v) = f(~v,~v).

Moreover, we have :

f(~v, ~w) =
1

2
(q(~v + ~w)− q(~v)− q(~w)) =

1

4
(q(~v + ~w)− q(~v − ~w))

The symmetric bilinear form f is sometimes called the polar form of q.
So, if 2 is invertible in K (for example if K = R or C), it’s the same to give a symmetric

bilinear form on V or a quadratic form on V . We’ll sometimes speak about the matrix
of a quadratic form (in a given basis) for the matrix of the corresponding symmetric
bilinear form (in the same basis).

Proof. Existence follows from the definition of quadratic forms.
Let’s show uniquemess. Let f be a symmetric bilinear form on V such that q(~v) =

f(~v,~v). Then :

q(~v+ ~w) = f(~v+ ~w,~v+ ~w) = f(~v,~v)+f(~w, ~w)+f(~v, ~w)+f(~w,~v) = q(~v)+q(~w)+2f(~v, ~w),

hence

f(~v, ~w) =
1

2
(q(~v + ~w)− q(~v)− q(~w)).

The second formula for f can be checked in the same way, or deduced from the first.
�

36 Non-degenerate and definite forms

Definition 36.1 Let f be a symmetric bilinear form on a K-vector spacce V . The
kernel of f is defined by

Ker(f) = {~v ∈ V |∀~w ∈ V, f(~v, ~w) = 0}.

We say that f is non-degenerate if Ker(f) = {0}.

Proposition 36.2 With the notation of the definition above, we have :

(i) Ker(f) is a subspace of V , and we have

Ker(f) = {~w ∈ V |∀~v ∈ V, f(~v, ~w) = 0}.

(ii) If V is finite-dimensional, B is a basis of V and B is the matrix of f in B, then :

~v ∈ Ker(f)⇔ [~v]B ∈ Ker(B).

(iii) Consider the map uf : V → V ∗ sending ~v ∈ V to the linear form uf (~v) : ~w 7→
f(~v, ~w). Then uf is linear, and Ker(f) = Ker(uf ). In particular, f is non-
degenerate if and only if uf is injective, and if V is finite-dimensional, then f is
non-degenerate if and only if uf is an isomorphism.
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Proof.

(i) The formula for Ker(f) follows from the fact the f is symmetric, and the fact that
Ker(f) is a subspace follows from (iii). (But it can also be checked directly.)

(ii) Let ~v ∈ V . Then ~v ∈ Ker(f) if and only if XT (B~v) = 0 for every X ∈ Mn1(K).
So B~v = 0 implies that ~v ∈ Ker(f). By taking for X the columns of the identity
matrix In, we see that ~v ∈ Ker(f) implies that B~v = 0.

(iii) The fact that uf (~v) (for a given ~v) is in V ∗ (i.e. linear) follows from the linearity
of f in the first variable. The fact that uf is linear (i.e. that uf (λ~v1 + ~v2) =
λuf (~v1) + uf (~v2)) follows from the linearity of f in the second variable.

Finally, we have :

~v ∈ Ker(f)⇔ ∀~w ∈W, f(~v, ~w) = 0⇔ ∀~w ∈W, (uf (~v))(~w) = 0⇔ uf (~v) = 0.

�

Definition 36.3 The isotropic cone of a symmetric bilinear form is

Cf = {~v ∈ V |f(~v,~v) = 0}.

We say that f is definite if Cf = {0}.

Remark 36.4 Note that Cf is not a subspace of V in general, but it is a cone, which
means that 0 ∈ Cf and λ~v ∈ Cf if ~v ∈ Cf and λ ∈ K.

Remark 36.5 We have Ker(f) ⊂ Cf by the definitions, so a definite form is non-
degenerate, but the converse is false. For example, the form

f((x1, x2), (y1, y2)) = x1y1 − x2y2

on K2 is non-degenerate, but it is not definite.

4/27/2017

37 Orthogonals

We fix a K-vector space V and a symmetric bilinear form f on V .

Definition 37.1 We say that ~v and ~w in V are orthogonal (with respect to f) if f(~v, ~w).
In that case, we write ~v ⊥ ~w.

If A is a subset of V , we write

A⊥ = {~v ∈ V |∀~w ∈ A, ~v ⊥ ~w}.

If A = {~v}, we also write ~v⊥ for A⊥.
We say that two subsets A and B of V are orthogonal to each other (and we write

A ⊥ B) if B ⊂ A⊥ (i.e. every element of A is orthogonal to every element of B).
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Remark 37.2 We have
A⊥ =

⋂
~v∈A

~v⊥,

and Ker(f) = V ⊥.

Lemma 37.3 (Exercise.) Let A be a subset of V . Then :

(i) We have
A⊥ = Span(A)⊥,

and this is a subspace of V .

(ii) We have A ⊂ (A⊥)⊥.

(iii) If B ⊃ A, then B⊥ ⊂ A⊥.

Proposition 37.4 Suppose that V is finite-dimensional. Then, for every subspace W
of V :

(i) dim(W ) + dim(W⊥) = dim(V ) + dim(W ∩Ker(f)).

(ii) (W⊥)⊥ = W + Ker(f).

In particular, if f is non-degenerate, then dim(W ) + dim(W⊥) = dim(V ) and W =
(W⊥)⊥.

Proof.

(i) Remember the linear transformation uf : V → V ∗ sending ~v ∈ V to the linear
form ~w 7→ f(~v, ~w). Let T = uf |W : W → V ∗. We’ve seen in the remark above that
Ker(uf ) = Ker(f), so Ker(T ) = W ∩Ker(f). The rank-nullity theorem gives :

dim(W ) = dim(W ∩Ker(T )) + dim(Im(T )).

Note that

W⊥ = {~v ∈ V |∀~w ∈W, T (~w)(~v) = 0} =
⋂
~w∈W

Ker(T (~w)) =
⋂

ϕ∈Im(T )

Ker(ϕ).

Let (~v∗1, . . . , ~v
∗
r ) be a basis of Im(T ), and complete it to a basis (~v∗1, . . . , ~v

∗
n) of V ∗.

Let (~v1, . . . , ~vn) be the basis of V such that (~v∗1, . . . , ~v
∗
n) is its dual basis.25 I claim

that (~vr+1, . . . , ~vn) is a basis of W⊥. All these vectors are in W⊥ because

W⊥ =
⋂

ϕ∈Im(T )

Ker(ϕ) =

r⋂
i=1

Ker(~e∗i ),

25This exists for the following reason : We have an isomorphism V → V ∗∗ given by ~x 7→ (ϕ 7→ ϕ(~x)),
and (~v1, . . . , ~vn) is the inverse image by this isomorphism of the dual basis of (~v∗1 , . . . , ~v

∗
n).

95



so we just need to show that they span W⊥. Let ~v ∈ W⊥, and write ~v = a1~v1 +
· · ·+an~vn. Then if 1 ≤ i ≤ r, we have ai = e∗i (~v) = 0. So ~v = ar+1~v

∗
r + · · ·+an~vn ∈

Span(~vr+1, . . . , ~vn).

Finally, we have proved that dim(W⊥) = dim(V )− dim(Im(T )), so we get :

dim(W ) = dim(W ∩Ker(f)) + dim(V )− dim(W⊥),

which is what we wanted.

(ii) We already know that W ⊂ (W⊥)⊥ and Ker(f) = V ⊥ ⊂ (W⊥)⊥, so W+Ker(f) ⊂
(W⊥)⊥. Also, by (i) (for W⊥),

dim((W⊥)⊥) = dim(V ) + dim(W⊥ ∩Ker(f))− dim(W⊥).

As Ker(f) = V ⊥ ⊂W⊥, this simplifies to

dim((W⊥)⊥) = dim(V )− dim(W⊥) + dim(Ker(f)).

Using (i) again (this time for W ) gives

dim((W⊥)⊥) = dim(V )− (dim(V )− dim(W ) + dim(W ∩Ker(f))) + dim(Ker(f))

= dim(W ) + dim(Ker(f))− dim(W ∩Ker(f)) = dim(W + Ker(f)),

and this implies the result.

�

Corollary 37.5 Suppose that V is finite-dimensional and that f is definite, and let W
be a subspace of W . Then W ∩W⊥ = {0}, so we have :

W ⊕W⊥ = V.

38 Orthogonal bases

We fix a K-vector space V and a symmetric bilinear form f on V . “Orthogonal” means
“orthogonal with respect to f”.

Definition 38.1 We say that a fanily (~vi)i∈I of vectors of ~v is orthogonal if ~vi ⊥ ~vj for
i 6= j. If this family is a basis of V , we call it an orthogonal basis.

Remark 38.2 If (~v1, . . . , ~vr) is an orthogonal family and ~v = a1~v1 + · · · + ar~vr, ~w =
b1~v1 + · · ·+ br~vr, then

f(~v, ~w) =

r∑
i=1

r∑
j=1

aibjf(~vi, ~vj) =

r∑
i=1

aibif(~vi, ~vi).

Also, by definition, the matrix of f in an orthogonal basis (if V is finite-dimensional)
is a diagonal matrix.
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Lemma 38.3 If f is definite, then every orthogonal family made up of nonzero vectors
is linearly independent.

This is not true in general. For example, if we have ~v 6= 0 such that f(~v,~v) = 0, then
the family (~v,~v) is orthogonal but not linearly independent.

Proof. Suppose that we have i1, . . . , ir ∈ I distinct and a1, . . . , ar ∈ K such that a1~vi1 +
· · ·+ ar~vir = 0. Let s ∈ {1, . . . , r}. Then :

0 = f(~vis , a1~vi1 + · · ·+ ar~vir) = asf(~vis , ~vis).

By assumption, ~vis 6= 0, so f(~vis , ~vis) 6= 0 as f is definite. Hence as = 0.
�

Proposition 38.4 Suppose that V is finite-dimensional and that char(K) 6= 2. Then it
has an orthogonal basis.

In matrix terms, this says : If B ∈ Mn(K) is a symetric matrix, then there exists an
invertible matrix P ∈Mn(K) and a diagonal matrix D ∈Mn(K) such that B = P TDP .
(Use the change of basis formula for the matrix of f and remark 38.2.)

Proof. By induction on dim(V ). If dim(V ) = 1, any basis is orthogonal. So assume
that dim(V ) ≥ 2 and that the result is known in smaller dimensions. If f(~v,~v) = 0 for
every ~v ∈ V , then f = 0 by proposition 35.4, so every basis is orthogonal and we are
done. Otherwise, choose ~v ∈ V such that f(~v,~v) 6= 0. Let W = ~vT = (Span(~v))T . Then
we have Span(~v) ∩ W = Span(~v) ∩ Ker(f) = {0}, so by proposition 37.4 dim(W ) =
dim(V )− 1, and so dim(Span(~v) +W ) = dim(V ), which implies that V = Span(~v)⊕W .
By the induction hypothesis, we can find an orthogonal basis (~v2, . . . , ~vn) of W , and then
(~v,~v2, . . . , ~vn) is an orthogonal basis of V .

�

Corollary 38.5 If V is finite-dimensional and char(K) 6= 2, then there exists linearly
independent linear forms ϕ1, . . . , ϕr ∈ V ∗ and scalars λ1, . . . , λr ∈ K such that, for every
~v ∈ V ,

f(~v,~v) =
r∑
i=1

λi(ϕi(~v))2.

Proof. Let (~v1, . . . , ~vn) be an orthogonal basis of V , let (~v∗1, . . . , ~v
∗
n) be the dual basis,

and write λi = f(~vi, ~vi). By remark 38.2, we have

f(~v,~v) =

n∑
i=1

λi(~v
∗
i (~v))2

for every ~v ∈ V .
�
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39 Real vector spaces

Now assume that K = R and that V is finite-dimensional.

Theorem 39.1 Let f be a symmetric bilinear form on V . Then there exists nonnegative
integers p and q and linearly independent linear forms ϕ1, . . . , ϕp+q ∈ V ∗ such that, for
every ~v ∈ V ,

f(~v,~v) =

p∑
i=1

(ϕi(~v))2 −
q∑
j=1

(ϕp+j(~v))2.

Moreover, the integers p and q are uniquely determined by f , we have dim(Ker(f)) =
n− (p+ q) (so f is non-degenerate if and only if p+ q = dim(V )), and f is definite is
and only if p = dim(V ) or q = dim(V ).

Proof. Let’s show that existence of p and q and ϕ1, . . . , ϕp+q. By corollary 38.5, we have
linearly independent linear forms χ1, . . . , χr ∈ V ∗ and scalars λ1, . . . , λr ∈ R such that

f(~v,~v) =
r∑
i=1

λi(χ
∗
i (~v))2.

Let p be the sunmber of positive λi’s. After changing the order of the χi and deleting
the ones for which λi = 0, we may assume that λi > 0 for 1 ≤ i ≤ p and λi < 0 for
p + 1 ≤ i ≤ r. For 1 ≤ i ≤ p, choose µi ∈ R such that µ2i = λi and set ϕi = µiχi. For
r+ 1 ≤ i ≤ r, choose µi ∈ R such that µ2i = −λi and set ϕ = µiχi. Then these ϕi work.

Now we show the uniqueness of p and q. Suppose that we have two pairs of inte-
gers (p, q) and (r, s) and two families (ϕ1, . . . , ϕp+q) and (ψ1, . . . , ψr+s) satisfying the
condition of the theorem, and that p 6= r. Without loss of generality, we may assume
that r > p. Complete (ψ1, . . . , ψr+s) to a basis (ψ1, . . . , ψn) of V ∗. Then the family
(ϕ1, . . . , ϕp, ψr+1, . . . , ψn) has n− r + p ≤ n− 1 elements, so its span E is not equal to
V ∗, so there exists ~v ∈ V nonzero such that

ϕ1(~v) = · · · = ϕp(v) = ψr+1(~v) = · · · = ψn(~v) = 0.

Using the fact that

f(~v,~v) =

p∑
i=1

(ϕi(~v))2 −
q∑
j=1

(ϕp+j(~v))2,

we see that f(~v,~v) ≤ 0. On the other hand, we cannot have ψ1(~v) = · · · = ψr(~v) = 0,
otherwise ψi(~v) would be 0 for every i ∈ {1, . . . , n}, which would force ~v to be 0. So at
least one ψi(~v) is nonzero for 1 ≤ i ≤ r, and using

f(~v,~v) =
r∑
i=1

(ψi(~v))2 −
s∑
j=1

(ψr+j(~v))2,

we see that f(~v,~v) > 0. This is a contradiction, and so p = r. The proof that q = s is
similar.
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Let’s prove the last statement. By proposition 35.4, we have

f(~v, ~w) =
1

2
(f(~v + ~w,~v + ~w)− f(~v,~v)− f(~w, ~w)).

If we write

f(~v,~v) =

p∑
i=1

(ϕi(~v))2 −
q∑
j=1

(ϕp+j(~v))2

as above, this gives

f(~v, ~w) =

p∑
i=1

ϕi(~v)ϕi(~w)−
q∑
j=1

ϕp+j(~v)ϕp+j(~w).

Complete (ϕ1, . . . , ϕp+q) to a basis (ϕ1, . . . , ϕn) of V ∗, and let (~v1, . . . , ~vn) be the basis
of V such that (~v∗1, . . . , ~v

∗
n) = (ϕ1, . . . , ϕn). I claim that Ker(f) = Span(~vp+q+1, . . . , ~vn)

is a basis of Ker(f), which will prove that dim(Ker(f)) = n − (p + q). Indeed, these
vectors are clearly in Ker(f), so we just need to show that they span it. Let ~v ∈ Ker(f),
and write ~v = a1~v1 + · · ·+ an~vn. Then, for 1 ≤ i ≤ p+ q,

0 = f(~v,~vi) = ±ai,

hence ai = 0. Now assume that f is definite. It has to be non-degenerate, so p+ q = n.
if p ≥ 1 and q ≥ 1, then

f(~v1 + ~vn, ~v1 + ~vn) = ϕ1(~v1)
2 − ϕn(~vn)2 = 0,

contradiction. So p = 0 or q = 0. Conversely, if p = n, then f(~v,~v) > 0 for every ~v 6= 0,
so f is definite. Similarly, if q = n, then f(~v,~v) < 0 for every ~v 6= 0, so f is definite.

�

40 Inner products

We still take K = R.

Definition 40.1 We say that a definite symmetric bilinear form on a R-vector space V
is positive (resp. negative) if, for every nonzero ~v ∈ V , f(~v,~v) > 0 (resp. f(~v,~v) < 0).

An inner product on a R-vector space V is a positive definite symmetric bilinear form
on V .

A R-space space together with an inner product on it is called an inner product space.
We often denote its inner product by 〈, 〉 instead of f , and we write ‖~v‖ =

√
〈~v,~v〉 and

call it the norm of ~v.
A finite-dimensional inner product space is called an Euclidian space. An inner product

space that is complete (for the distance function given by the inner product) is called a
(real) Hilbert space.
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Example 40.2 Rn with the usual (standard) inner product :

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi

(or 〈~x, ~y〉 = ~xT~y for ~x, ~y ∈ Mn1(R) = Rn), Mn(R) with 〈A,B〉 = Tr(ATB), V :=
{continuous functions [0, 1]→ R} with 〈f, g〉 7→

∫ 1
0 f(t)g(t)dt.

Theorem 40.3 (Cauchy-Schwarz inequality) Let V be a R-vector space, and let f be a
symmetric bilinear form on V such that f(~v,~v) ≥ 0 for every ~v ∈ V .

Then, for every ~v, ~w ∈ V ,

f(~v, ~w)2 ≤ f(~v,~v)f(~w, ~w).

If moreover f is an inner product (i.e. if f is also definite), then the above inequality
is an equality if and only if the family (~v, ~w) is linearly dependent (i.e. the vectors are
collinear).

Proof. For every λ ∈ R, we have

f(λ~v + ~w, λ~v + ~w) = λ2f(~v,~v)2 + 2λf(~v, ~w) + f(~w, ~w)2 ≥ 0

So the discriminant of this degree 2 polynomial in λ is nonpositive, i.e.

f(~v, ~w)2 − f(~v,~v)f(~w, ~w) < 0.

If moreover f is definite and ~v, ~w are linearly independent, then, because λ~v + ~w 6= 0
for every λ, the degree 2 polynomial in λ above almost takes positive positive values, so
its discriminant is negative, and we get the strict inequality.

�

Let’s reformulate this in the inner product case.

Corollary 40.4 (Cauchy-Schwarz inequality) Let V be an inner product space. Then,
for every ~v, ~w ∈ V ,

|〈~v, ~w〉| ≤ ‖~v,~v‖‖~w, ~w‖,

with equality if and only if the family (~v, ~w) is linearly dependent (i.e. the vectors are
collinear).

Corollary 40.5 (Minkowski inequality) Let V be an inner product space. Then, for
every ~v, ~w ∈ V ,

‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖.
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Proof. We have
‖~v + ~w‖2 = ‖~v‖2 + ‖~w‖2 + 2〈~v, ~w〉

by definition, so the Cauchy-Schwarz inequality gives

‖~v + ~w‖2 ≤ ‖~v‖2 + ‖~w‖2 + 2‖~v‖|~w‖ = (‖~v‖+ ‖~w‖)2.

�

Corollary 40.6 Let V be an inner product space. Then the function d : V × V → R≥0
defined by d(~v, ~w) = ‖~v − ~w‖ is a distance function on V .

Proposition 40.7 Let V be an inner product space. Then, for every ~v, ~w ∈ V ,

‖~v + ~w‖2 + ‖~v − ~w‖2 = 2(‖~v‖2 + ‖~w‖2).

Proof. It’s a direct calculation from the definition of ‖.‖.
�

Proposition 40.8 (Pythagorean theorem) Let V be an inner product space. Then, if
~v, ~w ∈ V are orthogonal, we have

‖~v + ~w‖2 = ‖~v‖2 + ‖~w‖2.

Proof. It’s a direct calculation from the definition of ‖.‖.
�

41 Orthonormal bases

Let V be an inner product space, and assume that it’s finite-dimensional.
Remember that, by corollary 37.5, we have W ⊕W⊥ = V and W = (W⊥)⊥ for every

subspace W of V .

Definition 41.1 A basis of V is called orthonormal if it is orthogonal and all its ele-
ments have norm 1. In other words, if the basis is called (~v1, . . . , ~vn), then it’s orthonor-
mal if

〈~vi, ~vj〉 =

{
1 if i = j
0 otherwise.

Remark 41.2 If B is an orthonormal basis of V , then the matrix of the inner product
in B is In. In other words, for every ~v, ~w ∈ V ,

〈~v, ~w〉 = [~v]TB[~w]B.

This means that the map T : ~v 7→ [~v]B is an isomorphism from V to Rn that sends
the inner product of V to the standard inner product of Rn. In particular, T is a
homeomorphism of V to Rn.
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The coefficients of vectors in an orthonormal basis are particularly easy to calculate :

Proposition 41.3 Let B = (~v1, . . . , ~vn) be an orthonormal basis of V . Then, for every
~v ∈ V , we have

~v =
n∑
i=1

〈~v,~vi〉~vi.

In other words,

[~v]B =

〈~v,~v1〉...
〈~v,~vn〉

 .

In particular,

‖~v‖2 =
n∑
i=1

〈~v,~vi〉2.

Proof. Let ~v ∈ V , and write ~v = λ1~v1 + · · ·+ λn~vn. Then, for every i ∈ {1, . . . , n},

〈~v,~vi〉 =

n∑
j=1

λj〈~vj , ~vi〉 = λi.

The second formula follows from the Pythagorean theorem (proposition 40.8).
�

By proposition 38.4, we can find an orthogonal basis (~v1, . . . , ~vn) of V , and then
(‖~v1‖−1~v1, . . . , ‖~vn‖−1~vn) is an orthonormal basis.

We will now see an inductive algorithm that takes any basis (~v1, . . . , ~vn) of V and
returns an orthogonal basis (~u1, . . . , ~un) with the property that

Span(~v1, . . . , ~vr) = Span(~u1, . . . , ~ur)

for every 1 ≤ r ≤ n. This is called the Gram-Schmidt orthogonalization process.
We can then obtain an orthonormal basis (~e1, . . . , ~en) by taking ~e1 = 1

‖~ui‖~ui.

Step 1 : Take ~u1 = ~v1.
Step 2 (nor strictly necessary) : We want to have ~u2 = ~v2 + λ2~u1 and 〈~u1, ~u2〉 = 0.

This forces us to take

λ2 = −〈~u1, ~v2〉
‖~u1‖2

.

Induction step : Suppose ~u1, . . . , ~ur−1 constructed, with r ≥ 2. We want to find ~ur of
the form ~ur = ~vr + λ1~u1 + · · ·+ λr−1~ur−1, and such that 〈~ur, ~ui〉 = 0 for 1 ≤ i ≤ r − 1.
This forces us to take

λi = −〈~ui, ~vr〉
‖~ui‖2

.

Here is a consequence of this algorithm :
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Proposition 41.4 Let W be a subspace of V , and let (~w1, . . . , ~wr) be an orthonormal
basis of W . Then we can complete (~w1, . . . , ~wr) to an orthonormal basis of V .

Proof. Complete (~w1, . . . , ~wr) to a basis (~w1, . . . , ~wn) of V , and apply the Gram-Schmidt
algorithm to it. This will not change ~w1, . . . , ~wr (because all the λi that appear above
will be 0 in the first r steps, as the vectors ~w1, . . . , ~wr are orthogonal), and will output
an orthonormal basis of V .

�

Orthogonal projection

Let V be a finite-dimensional inner product space.

Definition 41.5 Let W be a subspace of V . The orthogonal projection on W is the
endomorphism p of V defined in the following way : For every ~v ∈ V , p(~v) is the unique
element of W such that ~v − p(~v) ∈W⊥.

Remark 41.6 We have seen that V = W⊕W⊥, hence the definition above makes sense
and does give a linear transformation. (If ~v ∈ V , then we can write it in a unique way
as ~v = ~v1 + ~v2 with ~v1 ∈ W and ~v2 ∈ W⊥, and then we take p(~v) = ~v1. If there were
another element ~w of W such that ~v− ~w ∈W⊥, then ~v = ~w+ (~v− ~w) would be another
decomposition of ~v in the direct sum W ⊕W⊥, which is impossible.)

Also, if ~v ∈ W , then p(~v) = ~v. Hence p(p(~v)) = p(~v) for every ~v ∈ V (because
p(~v) ∈W ) by definition, and p is indeed a projection.

Proposition 41.7 Let V and W be as above, and let p be the orthogonal projection on
W .

(i) If (~w1, . . . , ~wr) is an orthonormal basis of W , then, for every ~v ∈ V ,

p(~v) =

r∑
i=1

〈~v, ~wi〉~wi.

(ii) For every ~w ∈W such that ~w 6= p(~v), we have

‖~v − ~w‖ > ‖~v − p(~v)‖.

Part (ii) says that p(~v) is the point of W that is closest to ~v. In particular, the distance
from ~v to W , defined as

d(~v,W ) = inf
~w∈W

d(~v, ~w),

is equal to ‖~v − p(~v)‖.

Proof.
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(i) By proposition 41.4, we can complete (~w1, . . . , ~wr) to an orthonormal basis (~w1, . . . , ~wn)
of V . By proposition 41.3, we have ~v =

∑n
i=1〈~v,~vi〉~vi. So, if ~w =

∑r
i=1〈~v,~vi〉~vi,

then ~w ∈ W and ~v − ~w =
∑n

i=r+1〈~v,~vi〉~vi ∈ W⊥ (because ~wr+1, . . . , ~wn ∈ W⊥).
This implies that ~w = p(~v).

(ii) Let ~v ∈ V and ~w ∈ W . Then ~w − p(~v) is in W⊥ and ~w − p(~v) is in W , so, by the
Pythagorean theorem (proposition 40.8), we have :

‖~v − ~w‖2 = ‖~v − p(~v)‖2 + ‖p(~v)− ~w|2.

This shows that ‖~v − ~w‖ is always greater than equal to ‖~v − p(~v)‖, and is equal
to it if and only if ~w = p(~v).

�

42 A little bit of topology

If V is an inner product space, we have seen that we can define a distance function on
V by

d(~v, ~w) = ‖~v − ~w‖.

We will always use the topology on V given by this distance function.
We will need a few results about this topology.

Proposition 42.1 Let V be an inner product space. Then the inner product is a con-
tinuous map from V × V to R.

Proof. Let ~v1, ~w1, ~v2, ~w2 ∈ V . Then

〈~v1, ~w1〉−〈~v2, ~w2〉 = 〈~v1, ~w1〉−〈~v1, ~w2〉+〈~v1, ~w2〉−〈~v2, ~w2〉 = 〈~v1, ~w1− ~w2〉+〈~v1−~v2, ~w2〉.

so

|〈~v1, ~w1〉 − 〈~v2, ~w2〉| ≤ |〈~v1, ~w1 − ~w2〉|+ |〈~v1 − ~v2, ~w2〉| ≤ ‖~v1‖‖~w1 − ~w2‖+ ‖~v1 − ~v2‖‖~w2‖,

where the last inequality comes from the Cauchy-Schwarz theorem (theorem 40.3).
Fix ~v1 and ~w1. Let δ > 0 such that ‖~v1 − ~v2‖ ≤ δ and ‖~w1 − ~w2‖ ≤ δ. Then

‖~w2‖ ≤ ‖~w1‖+ ‖~w2 − ~w1‖ ≤ ‖~w1‖+ δ,

so
|〈~v1, ~w1〉 − 〈~v2, ~w2〉| ≤ δ‖~v1‖+ δ(‖~w2‖+ δ).

As δ goes to 0, δ‖~v1‖+ δ(‖~w2‖+ δ) also goes to 0, and this proves the result.
�
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Definition 42.2 Let V be an inner product space. The unit ball of V is

B = {~v ∈ V |‖~v‖ ≤ 1}.

We say that a subset X of V is bounded if there exists λ > 0 such that X ⊂ λB (i.e.
such that ‖~v‖ ≤ λ for every ~v ∈ X).

Theorem 42.3 Let V and W be finite-dimensional inner product spaces. Then any
linear transformation T : V → W is continuous, and moreover if X ⊂ V is bounded,
then so is T (X) ⊂W .

Proof. Choose an orthonormal basis (~e1, . . . , ~en) of V . (This is not strictly necessary
but makes the calculations a bit simpler.) Let ~v, ~w ∈ V , and write ~v − ~w =

∑n
i=1 λi~ei.

Then

‖~v − ~w‖2 =
n∑
i=1

λ2i .

On the other hand, T (~v − ~w) =
∑n

i=1 λiT (~ei), so

‖T (~v − ~w)‖ ≤
n∑
i=1

|λi|‖T (~ei)‖ ≤M
n∑
i=1

|λi‖,

where
M = sup

1≤i≤n
‖T (~ei)‖.

If ‖~v − ~w‖ ≤ δ, then
n∑
i=1

λ2i ≤ δ2,

so ‖λi‖ ≤ δ for every i, and so

‖T (~v − ~w)‖ ≤ nMδ.

As δ goes to 0, nMδ also goes to 0, so we get the result.
Now let X ⊂ V be bounded, and suppose that ‖~v‖ ≤ λ for every ~v ∈ X. By the

calculation above, if ‖~v‖ ≤ λ, then ‖T (~v)‖ ≤ nMλ. So T (X) is also bounded.
�

Corollary 42.4 If V is a finite-dimensional inner product space, then a subset X of V
is compact if and only it is closed and bounded.

Proof. As V is fnite-dimensional, we have an isomorphism T : V → Rn, where n =
dim(V ). By theorem 42.3, both T and T−1 are continuous, so T is a homeomorphism.
Moreover, this theorem (applied to T and T−1) also says that X ⊂ V is bounded if and
only if T (X) ⊂ Rn is bounded. As we know that a subset of Rn is compact if and only
if it is closed and bounded, this gives the result.

�
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Remark 42.5 Conversely, if the unit ball of an inner product space V is compact, then
V is finite-dimensional. (This is known as Riesz’s lemma and is true more generally for
any normed vector space, as is theorem 42.3.)

43 Isometries (a.k.a. orthogonal transformations)

Let V be an inner product space.

Definition 43.1 An endomorphism T of V is called an isometry (or an orthogonal
transformation) if, for every ~v ∈ V ,

‖T (~v)‖ = ‖~v‖.

Proposition 43.2 Let T ∈ End(V ). Then T is an isometry if and only if, for every
~v, ~w ∈ V ,

〈T (~v), T (~w)〉 = 〈~v, ~w〉.

Proof. If T satisfies the condition of the proposition, then is it an isometry (take ~v = ~w).
Conversely, suppose that T is an isometry. Let ~v, ~w ∈ V . By proposition 35.4, we have

〈T (~v), T (~w)〉 =
1

2
(‖T (~v+~w)‖2−‖T (~v)‖2−‖T (~w)‖2) =

1

2
(‖~v+~w‖2−‖~v‖2−‖~w‖2) = 〈~v, ~w〉.

�

Definition 43.3 We say that A ∈Mn(R) is an orthogonal matrix if AAT = ATA = In.

Remark 43.4 (a) Any orthogonal matrix A is invertible, and we have A−1 = AT .

(b) By theorem 11.7, A ∈Mn(K) is orthogonal if and only if AAT = In if and only if
ATA = In.

(c) If A is orthogonal, then

det(AAT ) = det(A) det(AT ) = det(A)2 = det(In) = 1,

so det(A) = ±1.

(c) In is orthogonal.

(d) If A,B ∈Mn(R) are orthogonal, then AB and A−1 are also orthogonal.

(e) A is orthogonal if and only if AT is orthogonal.

(f) A is orthogonal if and only if the columns of A form an orthonormal basis of Rn
(for the standard inner product), if and only if the rows of A form an orthonormal
basis of Rn.
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Theorem 43.5 Let T ∈ End(V ), and suppose that V is finite-dimensional. Then the
following conditions are equivalent :

(i) T is an isometry.

(ii) For every orthonormal basis (~e1, . . . , ~en) of V , (T (~e1), . . . , T (~en)) is an orthonormal
basis of V .

(iii) There exists an orthonormal basis (~e1, . . . , ~en) of V such that (T (~e1), . . . , T (~en)) is
an orthonormal basis of V .

(iv) For every orthonormal basis B = (~e1, . . . , ~en) of V , [T ]B is an orthogonal matrix.

(v) There exists an orthonormal basis B = (~e1, . . . , ~en) of V such that [T ]B is an
orthogonal matrix.

In particular, every isometry is an isomorphism and has determinant ±1.

Proof. It’s clear that (ii) implies (iii) and (iv) implies (v).
Let’s show that (i) implies (ii). So suppose that T is an isometry, and let (~e1, . . . , ~en)

be an orthonormal basis of V . By proposition 43.2, we have

〈T (~ei), T (~ej)〉 = 〈~ei, ~ej〉 =

{
1 if i = j
0 otherwise.

In particular, the family (T (~e1), . . . , T (~en)) is orthogonal, so it’s linearly independent by
lemma 38.3. As it has n elements, it’s a basis of V , and the calculation above says that
it’s an orthonormal basis.

Let’s show that (ii) implies (iv). Let B = (~e1, . . . , ~en) be an orthonormal basis of V .
By (ii), (T (~e1), . . . , T (~en)) is also an orthonormal basis of V . By proposition 41.3, we
have

T (~ei) =

n∑
j=1

〈T (~ei), ~ej〉~ej ,

so the matrix A = [T ]B is given by

Aji = 〈T (~ei), ~ej〉.

Let’s show that ATA = In. The (i, j)th entry of ATA is

n∑
r=1

(AT )irArj =

n∑
r=1

AriArj =

n∑
r=1

〈T (~ei), ~er〉〈T (~ej), ~er〉.

As

T (~ei) =
n∑
r=1

〈T (~ei), ~er〉~er

107



and 〈., .〉 is linear in the second variable,

(ATA)ij =

〈
T (~ej),

n∑
r=1

〈T (~ei), ~er〉~er

〉
= 〈T (~ej), T (~ei)〉 =

{
1 if i = j
0 otherwise.

Hence ATA = In, which shows that A is orthogonal.
Let’s show that (v) implies (iii). If (v) is true, then there exists an orthonormal basis

B = (~e1, . . . , ~en) of V such that the matrix A of T in B is orthogonal. Write A = (aij),
then we have

T (~ei) =
n∑
j=1

aji~ej .

So

〈T (~ei), T (~ej)〉 = 〈
n∑
r=1

ari~er,

n∑
s=1

asj~es〉

=
n∑
r=1

n∑
s=1

〈ari~er, asj~es〉

=

n∑
r=1

ariarj

= (ATA)ij

=

{
1 if i = j
0 otherwise.

This shows that the family (T (~e1), . . . , T (~en)) is orthogonal, so it’s linearly independent
by lemma 38.3. As it has n elements, it’s a basis of V , and the calculation above says
that it’s an orthonormal basis.

To finish the proof, we just need to show that (iii) implies (i). Let (~e1, . . . , ~en) be an
orthonormal basis of V such that (T (~e1), . . . , T (~en)) is also an orthonormal basis. Let
~v ∈ V . By proposition 41.3,

~v =
n∑
i=1

〈~v,~ei〉~ei,

so

T (~v) =

n∑
i=1

〈~v,~ei〉T (~ei).

As the (~e1, . . . , ~en) and (T (~e1), . . . , T (~en)) are both orthonormal, the Pythagorean the-
orem (proposition 40.8) gives

‖~v‖2 =
n∑
i=1

〈~v,~ei〉2

and

‖T (~v)‖2 =
n∑
i=1

〈~v,~ei〉2.
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So ‖~v‖ = ‖T (~v)‖ for every ~v ∈ V , and we have proved that T is an isometry.
�

44 Adjoint of a linear transformation

Let V be an inner product space.

Definition 44.1 Two endomrophisms T1 and T2 of V are called adjoint if, for every
~v, ~w ∈ V ,

〈T1(~v), ~w〉 = 〈~v, T2(~w)〉.

Note that this definition is symmetric in T1 and T2, because the inner product is
symmetric.

Proposition 44.2 Let T ∈ End(V ). Then there exists at most one U ∈ End(V ) such
that T and U are adjoint.

If such a U exists, we say that T has an adjoint and we write U = T ∗ and call it the
adjoint of T . Then T ∗ also has an adjoint, and we have T = (T ∗)∗.

Proof. Let U1, U2 ∈ End(T ) be such that T and U1 are adjoint, and that T and U2 are
adjoint. We want to show that U1 = U2. Let ~v ∈ V . Then, for every ~w ∈ V ,

〈~w,U1(~v)− U2(~v)〉 = 〈~w,U1(~v)〉 − 〈~w,U2(~v)〉 = 〈T (~w), ~v〉 − 〈T (~w), ~v〉 = 0.

Taking ~w = U1(~v)− U2(~v), we get

‖U1(~v)− U2(~v)‖2 = 0,

hence U1(~v) = U2(~v). This shows that U1 = U2.
If T has an adjoint T ∗, then T ∗ and T are adjoint, so T ∗ has T as adjoint (i.e.

(T ∗)∗ = T ).
�

Theorem 44.3 Suppose that V is finite-dimensional. Then every T ∈ End(V ) has an
adjoint.

Moreover, for every orthonormal basis B of V ,

[T ∗]B = [T ]TB.

Proof. Let T ∈ End(V ). Let ~w ∈ V . The function ~v 7→ 〈T (~v), ~w〉 is a linear transfor-
mation on V . As the inner product is definite, it is non-degenerate, and so by (iii)of
proposition 36.2 there exists a unique vector ~x ∈ V such that, for every ~v ∈ V ,

〈T (~v), ~w〉 = 〈~v, ~x〉.
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We set T ∗(~w) = ~x.
So we have defined a map T ∗ : V → V , and if we can prove that it is linear, it will be

adjoint to T by its definition. Let ~w1, ~w2 ∈ V and λ ∈ R. For every ~v ∈ V , we have

〈~v, T ∗(λ~w1+~w2)〉 = 〈T (~v), λ~w1+~w2〉 = λ〈T (~v), ~w1〉+〈T (~v), ~w2〉 = λ〈~v, T ∗(~w1)〉+〈~v, T ∗(~w2)〉

= 〈~v, λT ∗(~w1) + T ∗(~w2)〉.

In other words, for every ~v ∈ V ,

〈~v, T ∗(λ~w1 + ~w2)− λT ∗(~w1) + T ∗(~w2)〉 = 0.

Taking ~v =, T ∗(λ~w1 + ~w2)− λT ∗(~w1) + T ∗(~w2), we get that

‖T ∗(λ~w1 + ~w2)− λT ∗(~w1) + T ∗(~w2)‖2 = 0,

hence
T ∗(λ~w1 + ~w2)− λT ∗(~w1) + T ∗(~w2) = 0.

This proves that T ∗ is linear.
Now we prove the statement about the matrix of T ∗. Let B be an orthonormal basis

of V , and let A = [T ]B. By remark 41.2, we know that, for every ~v, ~w ∈ V ,

〈~v, ~w〉 = [~v]TB[~w]B.

Now let ~v, ~w ∈ V . We have

〈T (~v), ~w〉 = [T (~v)]TB[~w]B(A[~v]B)T [~w]B = [~v]TB(AT [~w]B) = 〈~v, T ∗ ~w〉,

so [T ∗(~w)]B = AT [~w]B. This proves that [T ∗]B = AT .
�

Remark 44.4 The statement about the matrix of T is totally false if B is not an
orthonormal basis.

45 The spectral theorem : diagonalization of self-adjoint transformations

Let V be an inner product space.

Definition 45.1 We say that T ∈ End(V ) is self-adjoint if it is adjoint to itself. In
other words, this means that, for every ~v, ~w ∈ V ,

〈T (~v), ~w〉 = 〈~v, T (~w)〉.

Remark 45.2 By theorem 44.3, if V is finite-dimensional and T ∈ End(V ), then T is
self-adjoint if and only if its matrix in some (or any) orthonormal basis is symmetric.
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The following lemma is elementary but very useful.

Lemma 45.3 Let T ∈ End(V ), and suppose that T is self-adjoint. Let W be a subspace
of V such that T (W ) ⊂W .

Then T (W⊥) ⊂W⊥.

Proof. Let ~v ∈W⊥. Then, for every ~w ∈W ,

〈~w, T (~v)〉 = 〈T (~w), ~v〉 = 0

because T (~w) ∈W and ~v ∈W⊥. Hence T (~v) ∈W⊥.
�

Theorem 45.4 (Spectral theorem.) Suppose that V is finite-dimensional. Let T be a
self-adjoint endomorphism of V . Then T is diagonalizable 26 in an orthonormal basis
(i.e. there exists an orthonormal basis of eigenvectors of T ).

Here is the matrix version : Let A ∈Mn(R) be a symmetric matrix. Then there exists
an orthogonal matrix S such that SAS−1 = SAST is diagonal.

The translation betweem the endomorphism and matrix statements uses (f) of remark
43.4.

Proof. By induction on n := dim(V ). The theorem is true for n = 1 (because every
nonzero vector is an eigenvector of T ). Suppose that n ≥ 2, and that we know the
theorem in dimension n− 1.

The hardest part is finding the first eigenvectors of T , i.e. showing that T has at least
one real eigenvalue. Consider the map ϕ : V → R defined by

ϕ(~v) = 〈~v, T (~v)〉.

By proposition 42.1 and theorem 42.3, this is a continuous map. By corollary 42.4, the
unit sphere

S := {~v ∈ V |‖~v‖ = 1}

of V is compact. Hence there exists ~v0 ∈ S such that

λ := ϕ(~v0) = sup
~v∈S

ϕ(~v).

(This λ will be our eigenvalue of T .)
Note also that ϕ is a quadratic form on V , because T is self-adjoint (so the bilinear

form 〈~v, T (~w)〉 is symmetric). Define ϕ1 : V → R by ϕ1(~v) = λ‖~v‖2 − ϕ(~v). This is also
a quadratic form on V . For every nonzero ~v ∈ V , we have ~v = ‖~v‖~x with ~x = 1

‖~v‖~v ∈ S,
so

ϕ1(~v) = ‖~v‖ϕ1(~x) = ‖~v‖(λ− ϕ(~x)) ≥ 0

26Over R, so all its eigenvalues are real numbers.
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(by definition of λ). Let f1 be the polar form of ϕ1 (proposition 35.4). We have

f1(~v, ~w) = λ〈~v, ~w〉 − 〈~v, T (~w)〉 = 〈~v, (λidV − T )(~w)〉.

By the Cauchy-Schwarz inequality (theorem 40.3), we have

|f1(~v, ~w)| ≤ ϕ1(~v)ϕ1(~w)

for every ~v, ~w ∈ V . As ϕ1(~v0) = 0, this implies that ~v0 ∈ Ker(f1). So ~v0 cannot be in
the image of λidV − T : if ~v0 = (λidv − T )(~w), then

0 = f(~v0, ~w) = 〈~v0, ~v0〉 = ‖~v0‖2 = 1,

contradiction. Hence λidV − T is not surjective, so it’s not injective, so it has nonzero
kernel, so there exists ~e1 ∈ V nonzero such that λ~e1 = T (~e1). After dividing ~e1 by ‖~e1‖,
we may assume that ‖~e1‖ = 1. This is our first eigenvector.

To use the induction hypothesis, need a subspace W of V such that :

- V = Span(~e1)⊕W .

- ~e1 ⊥W .

- T (W ) ⊂W .

We can just take W = ~e⊥1 , this will satisfy the third condition thanks to lemma 45.3
above.

�

46 The case of C-vector spaces

All the definitions and results of the theory of inner product spaces also work for C-
vector spaces (with very similar proofs), but we need to make the followin adaptations
(here V is a C-vector space) :

• For every matrix M ∈Mpq(C),

M∗ = M
T

(and M is the p× q matrix with (i, j)th entry M ij).

We say that the matrix M is Hermitian if M = M∗. (This is only possible if M is
square).

• Instead of bilinear forms, we use sesquilinear forms. Those are maps f : V ×V → C
that are linear in the second variable, compatible with addition in the first variable,
and satisfy

f(λ~v, ~w) = λf(~v, ~w)

for every ~v, ~w ∈ V and λ ∈ C.
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• If V is finite-dimensional, the matrix B of a sesquilinear form f in a basis B is
given by the same formula as in the bilinear case, and we have

f(~v, ~w) = [~v]∗BB[~w]B.

• The change of basis formula takes the form A = P ∗BP (same notation as in
proposition 34.5.

• The condition of being symmetric is replaced by the condition of being skew-
symmetric, where f skew-symmetric means that

f(~w,~v) = f(~v, ~w).

In finite dimension, a sesquilinear form is skew-symmetric if and only its matrix in
some basis is Hermitian.

• The definition of the kernel and of the isotropic cone don’t change.

• If f is a skew-symmetric sesquilinear form on V , then for every ~v ∈ V ,

f(~v,~v) = f(~v,~v),

so f(~v,~v) ∈ R and it makes sense to say that f(~v,~v) is positive or negative. We
say that f is definite positive if f(~v,~v) > 0 for every nonzero ~v ∈ V .

Also, we can define Hermitian quadratic forms (analogously to quadratic forms)
and relate them to skew-symmetric sesquilinear forms as in the real case. (Note
that these forms take values in R, not C.)

• In the analogue proposition 36.2(iii), the map uf is not linear anymore. It is
compatible with addition but we have uf (λ~v) = λuf (~v). However, uf is still R-
linear, so we can define Ker(uf ) as in the bilinear symmetric and it is still true
that Ker(uf ) = Ker(f), and that uf is injective if and only if f is non-degenerate.

• Everything about orthogonals and orthogonal bases stays true.

• Theorem 39.1 on the signature stays true, but we have to replace the (ϕi(~v))2 by
‖ϕi(~v)|2.

• A Hermitian inner product on V is a positive definite skew-symmetric sesquilinear
form on V . We can use this form to define a norm ‖.‖ and a distance function
on V as in the real case. The Cauchy-Schwarz inequality and the various results
about the norm are still true.

• A finite-dimensional C-vector space with a Hermitian inner product is called a Her-
mitian space. A C-vector with a Hermitian inner product that makes it complete
(as a metric space) is called a (complex) Hilbert space.
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• The definitions and results about orthonormal bases and the Gram-Schmidt algo-
rithm still work. No modification in the Gram-Schmidt algorithm, but in remark
41.2 we must use [~v]∗B[~w]B (instead of [~v]TB[~w]B), and the coefficients of ~v in an
orthonormal basis (~v1, . . . , ~vn) are given by 〈~vi, ~v〉 (instead of 〈~v,~vi〉).

• Also, the standard Hermitian inner product on Cn is

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi.

• Orthogonal projections are defined the same way, but teh formula in proposition
41.7 becomes

p(~v) =
r∑
i=1

〈~wi, ~v〉~wi.

• The topological results are still true.

• The isometry are now called unitary transformations, and we say that A ∈Mn(C)
is a unitary matrix if AA∗ = A∗A = In. In finite dimension, T is an isometry if
and only if its matrix in an orthonormal basis is unitary.

• Unitary matrices are still stable by multiplication and inversion, and if A is unitary,
then |det(A)| = 1. (Because det(A∗) = det(A) for every A ∈Mn(C).)

• The adjoint of an endomorphism of a space with a Hermitian inner products has
the same definition as before. If the space is finite-dimensional, the adjoint of
T always exists, and its matrix in an orthonormal basis B is given by [T ]∗B. So
self-adjoint endomorphisms have Hermitian matrices in orthonormal bases.

• The spectral theorem takes the following form : Let V be a finite-dimensional
C-vector with a Hermitian inner product. Let T be a self-adjoint endomorphism
of V . Then T is diagonalizable in an orthonormal basis, and all the eigenvalues of
T are real numbers.

• The matrix version of the spectral theorem becomes : Let A ∈ Mn(C) be a Her-
mitian matrix. Then there exists a unitary matrix S such that SAS−1 = SAS∗ is
diagonal with real entries.
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