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| Representations of topological
groups

.1 Topological groups

Definition I.1.1. A topological group is a topological set G’ with the structure of a group such
that the multiplication map G x G — G, (z,y) — xy and the inversion map G — G,z — z~!
are continuous.

We usually will denote the unit of G by 1 or e.

Example 1.1.2. - Any group with the discrete topology is a topology group. Frequently
used examples include finite groups, free groups (both commutative and noncommutative)
and “arithmetic” matrix groups such as GL,,(Z) and SL,,(Z).

- The additive groups of R and C are topological groups.

- The group GL,,(C), with the topology given by any norm on the C-vector space M,,(C),
is a topological group,ﬂ hence so are all its subgroups if we put the induced topology on
them. For example S! := {z € C||z| = 1}, GL,(R), SU(n), SO(n) etc.

- (See problem set 1.) The additive group of QQ, and the group GL,(Q,) are topological
groups.

Definition I.1.3. We say that a topological space X is locally compact if every point of X has a
compact neighborhood.

Remark 1.1.4. 1f X is Hausdorff, this is equivalent to the fact that every point of X has a basis of
compact neighborhoods.

Note that we do not assume that neighborhoods of points in topological spaces are open.

Notation I.1.5. Let G be a group, and let A, B C G, x € G and n > 1. We use the following

notation :
zA = {xy,y € A} and Az = {yx,y € A}

AB ={yz,y€ A,z € B}

!See problem set 1 for a proof.



I Representations of topological groups

A" =AA.. . A (n factors)
A ={y " ye A}

Definition I.1.6. We say that a subset A of G is symmetric if A = A~1.

Proposition 1.1.7. Let G be a topological group.

1.

A I N

Proof.

If U is an open subset of G and A is any subset of G, then the sets UA, AU and U~! are
open.

If U is a neighborhood of 1 in G, then there is an open symmetric neighborhood V' of 1
such that V? C U.

If H is a subgroup of G, then its closure H is also a subgroup of G.
If H is an open subgroup of G, then it is also closed.
If A and B are compact subsets of G, then the set AB is also compact.
Let H be a subgroup of G. Then the quotient G /| H (with the quotient topology) is :

a) Hausdorffif H is closed;

b) Locally compact if G is locally compact;

c) A topological group if H is normal.

1. For x € G, we denote by [, : G — G (resp. r, : G — @) left (resp. right)

multiplication by x. We also denote by ¢ : G — G the map x — z~!. By the axioms for
topological groups, all these maps are continuous.

Now note that U™ = .7 (U), AU = U, 4 15 (U) and UA = U, o 7.5 (U). So U,
AU and U A are open.

z€EA

. We may assume that U is open. Let m : GxG — G, (x,y) — xy. Then m is continuous,

so W := s~ 1(U) is open. We have (1,1) € W because 1> = 1 € U. By definition of the
product topology on G x G, there exists an open subset {2 5 1 of GG such that 2 x 2 C W.
We have Q2 C U by definition of W. Let V = QN Q~1. We know that Q! is open by (a),
so V is open, and it is symmetric by definition. We clearly have 1 € VV and V2 C Q2 C U.

. Consider the map u : G x G — G, (x,y) — xy~'; then a nonempty subset A of G is a

subgroup if and only if u(A x A) C A. Alos, by the > axioms of topological groups, the map
u is continuous. Hence, for every Z C G' x G, u(Z) C u(Z)). Applying this to H x H
(whose closure is H x H), we see that H is a subgroup of G.

We have G = H U ((G — H)H). If H is open, then (G — H)H is also open by (a), hence
H is closed.

. The multiplication map m : G x G — G is continuous by hypothesis. As AB = m(Ax B)

and A x B is compact, the set AB is also compact.



L1 Topological groups

6. a) Let z,y € G be such that tH # yH. By question (a), (G — H)y~! is open,
so its complement zHy ! is closed. Also, by the assumption that xH # yH, the
unit 1 is not in zHy~!. By (b), there exists a symmetric open set 1 € U such that
U? C G — xHy '. Let’s show that Uz H N UyH = @, which will prove the result
because UxH (resp. UyH) is an open neighborhood of xH (resp. yH) in G/H.
It UzH N UyH # @, then we can find uy,us € U and hy,hy € H such that
u1rhy = ugyhy. Butthen xhihy 'y~ = ui'uy € xHy ' NU?2, which is not possible.

b) LetxH € G/H. If K is a compact neighborhood of x in G, then its image in G/H
is a compact neighborhood of zH in G/ H.

¢) If H is normal, then G/ H is a group. Let’s show that its multiplication is continuous.
Let z,y € G. Any open neighborhood of zyH in G/H is of the form UxyH, with
U an open neighborhood of zy in G. By the continuity of multiplication on G,
there exists open neighborhoods V' and W of x and y in G such that VW C U.
Then V H and W H are open neighborhoods of xH and yH in G/H, and we have
(VH)(WH) Cc UH. (Remember that, as H is normal, AH = H A for every subset
A of G.) Let’s show that inversion is continuous on G/H. Let x € G. Any open
neighborhood of 271 H in G/ H is of the form U H, with U an open neighborhood of
' in G. By question (a), the set U ! is open, so U ' H is an open neighborhood of
rH in G/H, and we have (U™'H)™' = HU = UH.

]

Remark 1.1.8. In particular, if G is a topological group, then G/ m is a Hausdorff topological
group. We are interested in continuous group actions of G on vector spaces, so we could replace
G by G/{1} to study them. Hence, in what follows, we will only Hausdorff topological groups
(unless otherwise specified).

Definition 1.1.9. A compact group (resp. a locally compact group) is a Hausdorff and compact
(resp. locally compact) topological group.

Example 1.1.10. Among the groups of example finiet discrete groups and the groups
S1, SU(n) and SO(n) are compact. All the other groups are locally compact. We get a non-
locally compact group by considering the group of invertible bounded linear endomorphism of
an infinite-dimensional Banach space (see problem set 1).

Translation operators : Let G be a group, z € G and f : G — C be a function. We define two
functions L, f, R,f : G — Cby :

L.f(y)=f(z'y) and  R.f(y) = f(yx).

We chose the convention so that L,, = L, o L, and R,, = R, o R,. Note that, if G is a
topological group and f is continuous, then L, f and R, f are also continuous.

Function spaces : Let X be a topological set. If f : X — C is a function, we write

[flloe = sup [f(2)] € [0, +oc].
reX
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We also us the following notation :

% (X) for the set of continuous functions f : X — C;

¢»(X) for teh set of bounded continuous functions f : X — C (i.e. elements f of €' (X)
such that || ]| < +00);

%o(X) for the set of continuous functions X — C that vanish at infinity (i.e. such that, for
every ¢ > 0, there exists a compact subset K of X such that |f(z)| < ¢ for every x ¢ K);

- %.(X) for the set of continuous functions with compact support from X to C.

Note that we have € (X) D €,(X) D 6, (X) D €.(X), with equality if X is compact. The
function ||.||« is @ norm on %, (X ) and its subspaces, and €,(X ) and %, (X ) are complete for this
norm (but not %.(X ), unless X is compact).

Definition I.1.11. Let G be a topological group. A function f : G — Cis called left (resp. right)
uniformly continuous if | L, f — f|loc — 0asz — 1 (resp. || Rof — flloo = 0asx — 1).

Proposition L.1.12. If f € €.(G), then f is both left and right uniformly continuous.

Proof. We prove that f is right uniformly continuous (the proof that it is left uniformly con-
tinuous is similar). Let K be the support of f. Let ¢ > 0. For every x € K, we choose a
neighborhood U, of 1 such that | f(zy) — f(z)| < § for every y € U,; by proposition [.1.7} we
can find a symmetric open neighborhood V;, of 1 such that V. C U,. We have K C User Ve

As K is compact, we can find z1,...,2, € K such that K C |J_, z;V,,. Let V = ., Va..
this is a symmetric open neighborhood of 1.

We claim that, if y € V, then ||R,f — f|loc < €. Indeed, let y € V, and let z € G. First
assume that x € K. Then there exists ¢ € {1,...,n} such that z € z;V,,. Then we have
xy € x;Vy, Vy, C U, hence

[f(zy) = F(@)] < [f(zy) = )|+ [ (@) = fo) <5+ 5 =e

Now assume that zy € K. Then there exists ¢ € {1,...,n} such that zy € x;V,,, and we have
r=uxyy ! € x;V,,Vy, C x;U,,. Hence

[f(zy) = f(@)| < [f(ey) = fl@)| + [f(2:) = fl2)| < 5+ 5 =&
Finally, if z, zy ¢ K, then f(x) = f(zy) = 0, and of course |f(xy) — f(z)| < e.
L

Remark 1.1.13. We put the topology given by ||.||« on %,(G). Then a function f € %,(G) is
left (resp. right) uniformly continuous if and only if the map G — %,(G), © — L, f (resp.
x — R, f) is continuous at the unit of G.

Using the fact that L,, = L, o L, and R,, = R, o I, and the operators L, and I?, pre-
serve %.(G), we see that the proposition above implies that, if f € %.(G), then the two maps
G — %.(G) sending x € G'to L, f and to R, f are continuous.



1.2 Haar measures
.2 Haar measures

Definition 1.2.1. Let X be a topological space.

1. The o-algebra of Borel sets on X is the o-algebra on X generated by the open subsets of
X. A Borel measure on X is a measure on this o-algebra.

2. A regular Borel measure on X 1s a measure /. on the o-algebra of Borel sets of X satisfying
the following properties :

a) For every compact subset K of X, u(K) < +o0;

b) u is outer regular : for every Borel subset F of X, we have
p(E) =inf{u(U),U D E open};

¢) w 1is inner regular : for every I/ C X that is either Borel of finite measure or open,
we have u(E) = inf{u(K), K C E compact}.
Notation L.2.2. We denote by €. (X) the subset of nonzero f € %.(X) such that f(X) C Rxo.

Theorem 1.2.3 (Riesz representation theorem). Let X be a locally compact Hausdorff space,
and let A : 6.(X) — C be a linear functional such that A(f) > 0 for every f € €. (X). | Then
there exists a unique regular Borel measure 1 on X such that, for every f € €.(X),

M) = | pa

Definition I.2.4. Let GG be a locally compact group. A left (resp. right) Haar measure on G is a
nonzero regular Borel measure ;4 on GG such that, for every Borel set £/ of G and every z € G,
we have u(xE) = pu(F) (resp. p(Fz) = p(E)).

Example 1.2.5. 1. If G is a discrete group, then the counting measure is a left and right Haar
measure on G.

2. Lebesgue measure is a left and right Haar measure on the additive group of R.

Proposition 1.2.6. Ler G be a locally compact group and i be a regular Borel measure on G.

1. Let i be the Borel measure on G defined by ji(E) = pu(E™'). Then i is a left Haar measure
if and only 11 is a right Haar measure.

2. The measure (i is a left Haar measure on G if and only if we have : for every f € €.(G),
foreveryy € G, [, Lyfdu= [, fdpu.

3. If pis a left Haar measure on G, then u(U) > 0 for every nonempty open subset of G and
Jo fdp > 0 for every f € €1(G).

2Such a linear functional is called positive.
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1

Proof. 1. First, note that /1 is a regular Borel measure on G because © — x~* is a homeo-

morphism from G to itself.
If E C GisaBorel setand z € F, then ji( Ex) = p(x~'E~1). This implies the statement.

2. Let z € G, and let p, be the Borel measure on G defined by p,(E) = p(xzE). (This is
indedd a regular Borel measure on (&, because y — xy is a homeomorphism from G to
itself.) Then, for every measurable function f : G — C, we have fG fdp, = |, o Lafdp.
(This is obvious for characteristic functions of Borel subsets, and we get the general case
by approximating f by linear combinations of characteristic functions.)

On the one hand, the measure p is a left Haar measure if and only if p = p, for every
x € (G. On the other hand, by the uniqueness in the Riesz representation theorem (and the
paragraph above), for z € G, we have 1 = yu, if and only |, o fdp = /. o Lz fdp for every
f € €.(G). The statement follows.

3. Suppose that there exists a nonempty open subset U of G such that 4(U) = 0. Then
w(xU) = 0 for every x € GG, so we may assume that 1 € U. Let K be a compact subset
of G. Then K C |J,j 2U, so there exist z1, ..., 2, € K such that K C (J;_, z;,U. As
w(x;U) = 0 for every i, this implies that p(K) = 0. But then, by inner regularity of 1, we
get 1(G) = 0, which contradicts the fact that £ is nonzero.

Let f € €,7(G). Then U := {z € G|f(x) > 5| f|l} is a nonempty open subset of G, so
1(U) > 0. But we have f > 1| f|lolu, hence [, fdp > 5| flloope(U) > 0.

]

Theorem 1.2.7. Let GG be a locally compact group. Then :
1. There exists a left Haar measure on G;

2. If uy and o are two left Haar measures on G, then there exists ¢ € R~ such that j1o = cjiy.
By proposition this theorem implies the similar result for right Haar measures.

Proof. We first prove existence. The idea is very similar to the construction of Lebesgue measure
on R. Suppose that ¢ > 0, and that ¢ € CF(R) is bounded by 1 and very close to the character-
istic function of the interval [0, ¢]. If f € %.(IR) does not vary too quickly on intervals of length
¢, then we can approximate f by a linear combination of left translates of ¢ : f ~ > ¢; L, ¢,
and then [ fdu ~ > ¢;L,, [ pdu. As ¢ — 0, we will be able to approximate every f € C.(R)
(because we know that these functions are uniformly continuous), and we’ll be able to define
f fdu by going to the limit. On a general locally compact group, we replace the intervals by
smaller and smaller compact neighborhoods of 1.

Now here is the rigorous proof. Let f,p € C;/(G). Then U := {z € Glp(z) > 1|l¢[ls} is a
nonempty open subset of G and we have ¢ > ||¢||s 1. As the support of f is compact, it can be
covered by a finite number of translates of U, so there exist x1,...,x, € Gandcy,...,c, € R

10
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such that f < >  ¢;L,,. Hence, if we define (f : ¢) to be the infimum of all finite sums
Y or ¢ with ey, ..., ¢, € Ry and such that there exist 1, ..., z, € G with f < >"  ¢; L.,
we have (f : ¢) < +00. We claim that :

(1.2.0.0.1) (f:p)=(Laf:p) YxEG

(1.2.0.0.2) (it for) < (fi:o)+(f2to)

(1.2.0.0.3) (cf:p)=c(f:p) Yc=0

(L2.0.0.4) (firo) < (far) iffi<fo

(1.2.0.0.5) (f:p)> Hg; H:

(1.2.0.0.6) (fro) < (f:)W:) VY€ e (G)-{0}

The first four properties are easy. For the fifth property, note that, if f < > | ¢;L,, ¢, then

e =S el Lol (z ) ol
=1 =1

Finally, the last property is a consequence of the following fact : Let ¢ € €."(G). If we have
f<>iicalypandy <37 diLy e, then f <370 ST cidiLa,y, ¢

Now we fix fy € %.7(G). By [1.2.0.0.5, we know that (fy;o) > 0. We define
Icp . CKCJF(G) — RZO by

I(f) = £
By[[.2.0.0.1H1.2.0.0.4] we have
I,(f) = 1,(L.f) Yz eG
(f1+f2) < I (fr) + 1p(f2)
I(cf) = cl,(f) Ve=0
L(f1) < 1,(f2) if fi < fo

If the second inequality was an equality (that is, if /, were additive), we could extend I, to a
positive linear functional on %.(G) and apply the Riesz representation theorem. This is not quite
true, but we have the following result :

Claim : For all fi, f» € €.7(G) and € > 0, there exists a neighborhood V' of 1 in G such that
we have 1,(f1) + I,(f2) < I,(fi + f2) + ¢ whenever supp(p) C V.

Let’s first prove the claim. Choose a function ¢ € %.7(G) such that g(z) = 1 for every
x € supp(f1+ f2), and let § be a positive real number. Let b = f; + fo+dg. We define functions
hl,hQ G = RZO by

_ L i filz) #

11
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Note that h; is equal to i hence continuous on the open subset {z € G|h(z) # 0}. As G is the
union of this open subset and of the open subset G — supp( f;) (on which h; is also continuous),
this shows that h; is continuous, hence h; € €."(G). Note also that we have f; = h;h.

By proposition|I.1.12} there exists a neighborhood V' of 1 such that, fori € {1,2} andz,y € G
with y~'z € V, we have |h;(x) — hi(y)| < §. Let p € €.7(G) be such that supp(p) C V. If
C1,...,6n € Rypand 24,...,2, € G are such that h < 27:1 ¢jLg; ¢, then, for every x € G and
ie€{1,2},

filz) = Zc]gp ) chga w; ) (hi(z;) +6),
because ap(a:j_lx) = 0 unless a:j_lx € V. Hence

(frip)+(f2i9) < ch(hl(xj) + ha(z;) + 20).

j=1
Since hy + hy < 1, we get

n

(@) + (i) <(1+20)) ¢

j=1
hence, taking the infimum over the family (cy, .. ., ¢,;,) and dividing by (fo : ), we get

Lo(f1) + 1o(f2) < (1+20)1p(h) < (1+20)([o(fi + f2) + 014(9))-

The right-hand side of this tends to 1,,(f1 + f2) as d tends to 0, so we get the desired inequality
by taking ¢ small enough. This finishes the proof of the claim.

We come back to the construction of a left Haar measure on GG. For every f € €./ (G), let
Xe=1[(fo: )H(f:fo)] CR Let X = 1 ew+ () X - endowed with the product topology.
Then, by Tychonoff’s theorem, X is a compact Hausdorff space. It is the space of functions
I:%(G) — Rsuchthat I(f) € X; for every f (with the topology of pointwise convergence).
Also, by we have I, € [ for every ¢ € 4.7 (G). For every neighborhood V' of 1 in
G, let K (V') be the closure of {I,|supp(y) C V'} in X. We have K (V') # & for every V, so
KW)n...K(V,) D K(N;_, Vi) # @ for every finite family V4, ..., V}, of neighborhoods of 1
in G. As X is compact, this implies that the intersection of all the sets K (1) is nonempty. We
choose an element [ of this intersection.

Let’s show that / is invariant by left translations, additive and homogenous of degree 1.
(That is, it has the same properties as I, but is also additive instead of just subadditive.) Let
fi,fo € €7(G), ¢ € Rsg, z € G and € > 0. Choose a neighborhood V' of 1 in GG such that
I,(f1)+1,(f2) < I,(f1+ f2) +e whenever supp(¢) C V; this exists by the claim. By definition
of 1, it is in the closure {I,|supp(¢) C V'}, which means that there exists ¢ € €. (G) such

12



1.2 Haar measures

that supp(¢) C V and |I(aL,g) — I,(aLyg)| < € for g € {fi, fo. i + fo}. y € {1,2} and
a € {1,c}. Then we get :

|[(L:cf1) - ](fl)’ < |[(fo1) - Icp(La:fl)| + |[<p(La:f1) - Is@(fl)’ + |I¢)(f1) - [(fl)’ < 257

[(cfr) = cI(f)] < [I(cfr) = Lo(cf)] + [Lp(cfr) — elo(f)| + |elp(f1) — el (fi)] < e(l+¢)
and

[L(fr+ fo) = I(f1) = L(fo)| < |Lp(f1 + f2) = Lo(f1) — Lo(fo)]

HI(fr 4 f2) = LU+ F) I+ () = L(fO)l + [1(f2) = L(f2)| < 4e.

As ¢ is arbitrary, this implies that I(L.f,) = I(f1), I(cfi) = «¢I(f;) and
I(fi + f2) = I(fr) + I(f2).

Now we extend I to a linear functional ¢.(G) — C, that we will still denote by /. Let
f € €.(G). Then we can write f = (f1 — f2) +i(g1 — g2), with f1, f2, 91,92 € €. (G) U {0}
(for example, take f; = max(0,Re(f)), fo = max(0,—Re(f)), g1 = max(0,Im(f)) and
g2 = max(0,Im(f))). Weset I(f) = I(f1) — I(f2) +i(I(g1) — I(g2)) (with the convention
that 7(0) = 0). If f = (Fy — F») + i(G; — Gs), with Fy, F5,G1,Gy € €.7(G) U {0}, then
Fi+ fo = F» + f1 and G1 + g2 = G5 + ¢1, so we get the same result for I(f). Also, it is
easy to check that [ is a linear functional from %,.(G) to C, and it is positive by construction.
By the Riesz representation theorem, there exists a regular Borel measure ;¢ on GG such that
I(f) =, o fdup. By proposition this measure is a left Haar measure.

We now prove the second statement of the theorem (uniqueness of left Haar measure up to
a constant). Let jq, pio be two left Haar measures on G. By the uniqueness in the Riesz repre-
sentation theorem (and the fact that .7 (G) generates %.(G)) it suffices to find a positive real
number c¢ such that [ fdu, = c [ fdus for every f € €.7(G). By proposition [1.2.6] we have
Jo fdps > 0 forevery f € €2 (G). So it suffices to show that, if f, g € €. (G), we have

S fdp [ gdm
[ fdps [ gdps

Let f, g € €. (G). Let V; be a symmetric compact neighborhood of 1, and set

A = (supp([f))Vo U Vo(supp(f))
and
B = (supp(g)) Vo U Vi (supp(g)).

Then A and B are compact by proposition If y € Vj, the functions x — f(zy) — f(yx)
and z — g(zy) — g(yx) are supported on A and B respectively.

Let ¢ > 0. By proposition there exists a symmetric neighborhood V' C V; of 1 such
that, for every z € G and every y € V, we have |f(zy) — f(yz)| < e and |g(zy) — g(yx)| < €.

13



I Representations of topological groups
Let h € €.7(G) be such that supp(h) C V and h(z) = h(z~!) for every € G. Then
([ da) [ i) = [ hg) @) (e)dato)
G G GxG
= / h(y) f(ya)dp (x)dpsa(y).
GxG

(We use the left invariance of j;. Also, we can apply Fubini’s theorem, because all the functions
are supported on compact sets, and compact sets have finite measure.) Similarly, we have

( /G B ) ( /G Fdus) = /G @)/ (@)a()
h(y ") f(y)dp (z)dps(y)

xXG

W™ y) f (y)dpa () dpo(y)

Q

X

I
S—a o

. h(y) f(zy)dp (x)dps(y).

Hence

\( [ ) [ g = ([ vaa) ([ s

[ o))~ oot
< e (A) /G hdps,
as supp(h) C V. Dividing by ( [, fdus2)( [, hdus), we get

]( /G ) /G hdjis)™ — ( /G Foun) / fduz)‘l‘ < epm(A) /G Fa).

Similarly, we have

\( /G R ) /G hdjis) ™" — ( /G gdpun)( /G gduz)l' < e (B)( /G gdpi) .

Taking the sum gives

Jo fdm [ 9dm
Jo fdpe [ gdps

As ¢ 1s arbitrary, this gives the desired equality (*).

1 (A) 1 (B)
=c (fcfd,UQ " fcfd,UZ) .

We now want to compare left and right Haar measures.

14



1.2 Haar measures

Proposition 1.2.8. Let G be a locally compact group. Let x € G. Then there exists A(x) € Ry
such that, for every left Haar measure p on G, we have u(Ex) = A(x)u(E). Moreover,
A : G — Ry is a continuous group homomorphism (where the group structure on R is given
by multiplication) and, for every left Haar measure y on G, every x € G and every f € L' (),

we have
/Rxfd,u:A(x_l)/fd,u.
G G

Proof. Let © € G, and u be a left Haar measure on (G. Then the measure j, defined by
w.(FE) = p(FEz) is also a left Haar measure on G, so, by the uniqueness statement in theo-
rem[[.2.7] there exists A(z) € R such that yi, = A(x)p, thatis, p(Ex) = A(z)u(E) for every
Borel subset £ of GG. Suppose that )\ is another left Haar measure on GG. Then, again by theorem
there exists ¢ > 0 such that A = cu, and so we get, fo every Borel subset £ of G,

AMEx) = cu(Ex) = cA(x)u(E) = A(x)A\(E).

This proves the first statement.

We prove that A is a morphism of groups. Let z, y € GG, and let £ be a Borel subset of GG such
that u(E) # 0. Then

A(zy)u(E) = p(Ezy) = Aly)u(Er) = Aly)A(z)u(E),
hence A(zy) = A(z)A(y).

We now prove the last statement. If £ is a Borel subset of G and x € G, then R, 1 = 1p,-1,
So we get

/G RoLpdp = p(Bx ) = Aa)u(E) = Alz) ™ /G vodu

by definition of A. This proves the result for f = y . The general case follows by approximating
f by linear combinations of functions 1.

Finally, we prove that A is continuous. Let f € % (G). We know that the function
G — %.(G), © — R, f is continuous (see remark [L1.13), so the function G — C,
x +— [, R, fdyu is also continuous. But we have just seen that [, R, fdu = A(z) [, fdp,
and we know that | o fdp > 0 by proposition Hence A is continuous.

]

Definition 1.2.9. The function A of the previous proposition is called the modular function of
G. We say that the group G is unimodular if A = 1 (that is, if some (or any) left Haar measure
on ( is also a right Haar measure).

Remark 1.2.10. Suppose that o : G — G is a homeomorphism such that for every x € G, we
have (z) € G satisfying : for every y € G, a(xy) = B(x)a(y). (For example, o could be right
translation by a fixed element of G, or a continuous group isomorphism with continuous inverse.)

15



I Representations of topological groups

Then we can generalize the construction of proposition to get a A(a) € Ry satisfying :
for every f € €.(G), for every left Haar measure 1 on G,

MLj@@MW@=Lﬂ@@@)

(or equivalently u(a(E)) = A(a)u(F) for every Borel subset E of GG). Moreover, if 5 : G — G
satisfies the same conditions as «, then so does « o 5 and we have A(a o §) = A(a)A(p).

Example 1.2.11. 1. Any compact group if unimodular. Indeed, if G is compact, then A(G)

is a compact subgroup of R+, but the only compact subgroup of R~ is {1}. In particular,
a compact group G has a unique left and right Haar measure p such that u(G) = 1; we call
this measure the normalized Haar measure of G.

. Any discrete group if unimodular. Indeed, if G is discrete, then A(G) is a discrete subgroup

of R, but the only discrete subgroup of R- is {1}.

Of course, in this case, we already knew the result, because we have a left Haar measure
on (7 that is also a right Haar measure : the counting measure.

. If G is commutative, then left and right translations are equal on G, so GG is unimodular.
. The groups GL,(R) and GL,,(C) are unimodular.

. The group of invertible upper triangular matrices in M,(R) is not unimodular (see problem

set 1). In fact, its modular function is

A (8 g) — Jac™.

. Remember the commutator subgroup [G,G] is the subgroup generated by all the

xyz~ty~L, for 2,y € G. Itis a normal subgroup of GG, and every group morphism from GG
to a commutative group is trivial on [G, G]. In particular, the modular function A is trivial
on [G, G/, so G is unimodular if G = |G, G]. More generally, using the first example, we
see that GG is unimodular if the quotient group G /[G, G| is compact.

Proposition 1.2.12. Let G be a locally compact group, and let | be a left Haar measure on G.
We define a right Haar measure v on G by v(E) = u(E~1) (see proposition .
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L3 Representations

Proof. We prove the first equality. It is actually true for every f € L'(G). If f is character-
istic function of a Borel subset E, then z — f(z7!) is the characteristic function of !,

[ fx™t)du(z) = [ fdv by definition of v. We get the general result by approximation f by
linear combmatlon of characteristic functions of Borel subsets.

We prove the second equality.  Consider the linear function A : %.(G) — C,
f— [oA( (x)du(x). As A takes its values in R.g, A is positive. Also, for every
y € G, we have

A(Ryf) = /G [y A )dp(a) / F () Al(ay) )y / F(2)A @) dpu(w) =

(using the left invariance of ;4 and the fact that A is morphism of groups). So the unique regular
Borel measure p that corresponds to A by the Riesz representation theorem is a right Haar mea-
sure (see proposition[[.2.6). By theorem [[.2.7] there exists ¢ > 0 such that p = cv. To finish the
proof, it suffices to show that ¢ = 1. Suppose that ¢ # 1. Then we can find a compact symmetric
neighborhood U of 1 such that, for every « € U, we have |[A(z™') — 1| < fle — 1|. As U is
symmetric, we have u(U) = v(U), hence

¢ = Hp(U) = |ev(U) — p(U)] =

[ (a6 = Ddute)| < 5le=11ul0),

which contradicts the fact that ;1 (U) # 0 (by proposition |[.2.6)).

1.3 Representations

In this section, G is a topological group.

1.3.1 Continuous representations

Definition 1.3.1.1. If VV and W are normed C-vector spaces, we denote by Hom(V, W) the C-
vector space of bounded linear operators from V' to W, and we put on it the topology given by
the operator norm ||.||,,. We also write End (V") for Hom(V, V'), and GL(V') for End(V')*, with
the topology induced by that of End (V).

Definition 1.3.1.2. Let VV be a normed C-vector space. Then a (continuous) representation of G
on V' is a group morphism p from G to the group of C-linear automorphisms of V' such that the
actionmap G x V — V, (g,v) — p(g)(v), is continuous.

We refer to the representation by (p, V'), p or often simply by V. Sometimes, we don’t ex-
plicitely name the map p and write the action of G on V as (g, v) — gv.

17



I Representations of topological groups

Remark 1.3.1.3. - The definition makes sense if V' is any topological vector space (over a
topological field).

- If (p, V') is a continuous representation of G, then the action of every g € G on V is a
continuous endomorphism of V', so we get a group morphism p : G — GL(V). But this
morphism is not necessarily continuous, unless V' is finite-dimensional (see proposition
[.3.5.1). An example of this is given by the representations of G on L?(() defined below.

- If p: G — GL(V) is a morphism of groups that is continuous for the weak* topology
on End(V'), then it is not necessarily a continuous representation. (For example, take
G = GL(V), with the topology induced by the weak* topology on End(V'), and p = id.
This is not a continuous representation of G on V'.)

Example 1.3.1.4. - The trivial representation of G on V is the representation given by
p(x) = idy for every x € G. (It is a continuous representation.)

The identity map of GL(V') is a continuous representation of GL(V") on V.

-If G = Standn € Z, the map G — C, z — 2" is a continuous representation of G on
C.

The map p : R — GLy(C), x — ((1) gf) is a continuous representation of R on C2.

See example|[.3.1.11|for the representations of G on its function spaces.

Definition 1.3.1.5. Let (p;, V1) and (p2, V2) be two representations of G. An intertwining opera-
tor (or G-equivariant map) from V) to V; is a bounded C-linear map 7" : V; — V5 such that, for
every g € G and every v € V}, we have T'(p1(g)v) = p2(g)T(v).

We write Homg (V;, V2) for the space of intertwining operators from V; to V5, and Endg (V)
for the space of intertwining operators from V] to itself.

We say that the representations (p1, V1) and (p2, Va) are isomorphic (or equivalent) if there
exists intertwining operators 7" : Vi — Vo and 77 : Vo, — Vj such that 7" o T' = idy, and
ToT =idy,

Definition 1.3.1.6. Let (p, V') be a representation of V.

1. A subrepresentation of V' (or G-invariant subspace) is a linear subspace W such that, for
every g € G, we have p(g)(W) C W.

2. The representation (p, V') is called irreducible if V' # 0 and if its only closed G-invariant
subspaces are 0 and V. Otherwise, the representation is called reducible.

3. The representation (p, V') is called indecomposable if, whenever V- = W; & W, with W,
and W5 two closed G-invariant subspaces of V', we have W, = 0 or Wy = 0.

4. The representation (p, V') is called semisimple if there exists a family (W;);c; of closed
G-invariant subspaces of V' that are in direct sum and such that @,_, W; is dense in V. (If

I is finite, the direct sum is also closed in V/, so this implies that V' = &, _, W;.)

18



L3 Representations

Remark 1.3.1.7. If (p, V') is a representation of G and W C V is a G-stable subspace, then its
closure W is also stable by G.

Example 1.3.1.8. The representation p of R on C? given by p(z) = (é T) is indecomposable

but not irreducible.

Lemma 1.3.1.9. Let (p1, V1) and (pa, Va) be two representations of G, and let T : V} — V5 be
an intertwining operator. Then Ker(T) is a subrepresentation of V;, and Im(T) is a subrepre-
sentation of V5.

Proof. Let v € Ker(T) and ¢ € G. Then T(pi(g9)(v)) = p2(9)(T(v)) = 0, so
p1(g)(v) € Ker(T).

Now let w € Im(7), and choose v € Vi such that w = T(v). Then
p2(g)(w) =T(p1(g)(v)) € Im(T).

Proposition 1.3.1.10. Ler V be a normed vector space and p : G — End (V') be a multiplicative
map. We denote by |.||,, the operator norm on End(V'). Suppose that :

(a) Forevery g € G, we have ||p(9)|o, < 1;
(b) Foreveryv € V, themap G — V, g — p(g)(v) is continuous.

Then (p, V') is a continuous representation of G.

Proof. Let gy € G, vy € V,and € > 0. We want to find a neighborhood U of gin G anda > 0
such that : g € U and [[v — v <6 = [[p(g)(v) — p(g0)(vo)]| <e.

Choose a neighborhood U of g in G such that: g € U = ||p(g)(vo) — p(g0)(v0)]| < €/2, and
take 0 = €/2. Then, if g € U and ||v — vy|| < 0, we have

1p(g)(v) = plgo)(vo)ll < llp(g)(v) = p(g)(wo)ll + ll(9)(v0) = p(go) (w0l
< lp(g)llllv = voll + /2
< €/24¢/2=¢,

because [[p(g)| > 1.
O]

Example 1.3.1.11. 1. We have defined, for every = € G, two endomorphisms L, and R, of
the space of functions on G, and these endomorphisms preserve ||.||.. So, by proposition

[.3.1.10/and remark [I.1.13] they define two representations of G on %.(G).

2. Suppose that G is locally compact Hausdorff. We fix a left Haar measure dz on G, and
we denote LP((G) the LP spaces for this measure, for 1 < p < oco. The left invariance of
the measure implies that the operators L, preserve the LP norm, so we get a C-linear left
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action of G on LP(G), and, by proposition to show that it is a representation, we
just need to show that, if f € L?(G), the map G — LP(G), x — L, f is continuous. This
is not necessarily true if p = oo, but it is for 1 < p < oo, by proposition [[.3.1.13| below.
So we get a representation of G on LP(G) for 1 < p < 0.

If we chose instead a right Haar measure on G, then the operators R, would define a
representation of G on LP(G) for 1 < p < oo. So, if G is unimodular, we get two
commuting representations of G on L”(G).

Definition 1.3.1.12. Let GG be a locally compact group with a left (resp. right) Haar measure dz,
and let L?(G) be the corresponding L? space. The representation of G on L?(G) given by the
operators L, (resp. R,) is called the left (resp. right) regular representation of G.

Proposition 1.3.1.13. Let G be a locally compact group, let |1 be a left Haar measure on GG, and
let LP(Q) be the corresponding L space. Suppose that 1 < p < oo.

Then, for every f € LP(G), we have |L,f — f||, = 0and |R.f — f|l, = 0asz — 1.

Proof. Suppose first that f € %.(G), and fix a compact neighborhood V' of 1. Then
K := V(supp f) U (supp f)V is compact by proposition [I.1.7, so u(K) < +oo. For every

z € V, we have supp(f), supp(L. f), supp(R.f) C K, so [[L.f — [, < N(K)l/pHLx — flloo
and ||R..f — fll, < u(K)YP||Ryf — fl|oo- The result then follows from proposition [[.1.12

Now let f be any element of LP(G). We still fix a compact neighborhood V' of 1, and we set
C = sup,cy A(x)YP. Let e > 0. There exists g € €.(G) such that ||f — g||, < . Then we
have, forx € V,

[Laf = fllp < 1La(f = Dllp + [ L2g — gllp + lg = fllp < 26 + [[Lag — gll,
@as [ L (f = 9)llp = I = gll) and
[Raf = fllp < 1R2(f = 9)llp + [[Rag = gllp + llg = fllp < (1 + C)e + | Rag — gl

(as ||R.(f—9)|l, = A(x)"Y?|| f —gl|,). We have seen in the first part of the proof that || L,g— g,
and ||R,g — g||, tend to 0 as z tends to 1, so we can find a neighborhood U C V of 1 such that
N\L.of — fllp <3cand [|[R.f — fll, < (24 C)eforz € U.

]

1.3.2 Unitary representations

Remember that a (complex) Hilbert space is a C-vector space V' with a Hermitian inner produclﬂ
such that V' is complete for the corresponding norm. If V' is a finite-dimensional C-vector space
with a Hermitian inner product, then it is automatically complete, hence a Hilbert space. We will
usually denote the inner product on all Hermitian inner product spaces by (., .).

3We will always assume Hermitian inner products to be C-linear in the first variable.
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Notation 1.3.2.1. Let VV and W be Hermitian inner product spaces. For every continuous C-
linearmap 7" : V — W, we write T : W — V for the adjoint of 7', if it exists. Remember that
we have (T'(v),w) = (v,T*(w)) for every v € V and w € W, and that 7 always exists if V/
and W are Hilbert spaces.

If V' is a subspace of V, we write V'* for the orthogonal of V’; it is defined by

(VHYE ={ve VW e V', (v,v") =0}.

Finally, we write U(V') for the group of unitary endomorphisms of V/, that is, of endomor-
phisms 7" of V' that preserve the inner product ((T'(v), T'(w)) = (v,w) for all v,w € V). A
unitary endomorphism 7' is automatically bounded and invertible (with inverse equal to 7).

The following result is an immediate corollary of proposition (and of the fact that
unitary operators have norm 1).

Corollary 1.3.2.2. IfV is a Hilbert space and p : G — U(V) is a morphism of groups, then the
following are equivalent :

1. Themap G xV =V, (g,v) — p(g)(v), is continuous.

2. Foreveryv € V, themap G — V, g — p(g)(v), is continuous.
Definition 1.3.2.3. If V' is a Hilbert space, a unitary representation of G on V' is a morphism of
groups p : G — U(V) satisfying the conditions of the proposition above.

These representations are our main object of study.

Example 1.3.2.4. If (X, 1) is any measure space, then L?(X) is a Hilbert space, with the follow-
ing inner product :

(r9) = [ Fa)g@auta)
X
So if GG is a locally compact group, then the left regular representation and right regular repre-
sentations of GG are unitary representations of GG (on the same space if GG is unimodular).

Remark 1.3.2.5. Note that p is still not necessarily a continuous map in general. (Unless
dime V' < +00.) For example, it is not continuous for the left regular representation of S*.

Also, note that we don’t need the completeness of V' in the proof, so the proposition is actually
true for any Hermitian inner product space.

Lemma 1.3.2.6. Let (p, V') be a unitary representation of G. Then, for every G-invariant sub-
space W of V, the subspace W+ is also G-invariant.

In particular, if W is a closed G-invariant subspace of V, then we have V = W @ W+ with
W+ a closed G-invariant subspace.
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Proof. Letv € W+ and g € G. Then, for every w € W, we have

(p(g)(v),w) = (v, p(g)""w) =0
(the last equality comes from the fact that p(g) ~'w € W), hence p(g)(v) € W+.
O]

Lemma 1.3.2.7. Let (p1,V1) and (p2,Va) be two unitary representations of G, and let
T : Vi — V5 be an intertwining operator. Then T™ : Vo — Vi is also an intertwining oper-
ator.

Proof. Letw € Vs and g € G. Then, for every v € V;, we have
(0, T*(p2(9) (w))) = (T(v), pa(9)(w)) = (p2(9) T (v), w) = (T(pr(g) " (v)), w) =

(p1(9) " (v), T*(w)) = (v, pr(9)T* (w)).
S0 T (pa(g)(w)) = p1(g) (T*(w)).
[

Theorem 1.3.2.8. Assume that the group G is compact Hausdorff. Let (V,(.,.)o) be a Hilbert
space and p : G — GL(V') be a continuous representation of G on V. Then there exists a
Hermitian inner product (.,.) on V satisfying the following properties :

1. There exist real numbers c¢,C > 0 such that, for every v € V, we have
cl{(v,v)o| < [{(v,v)| < C|{v,v)o|- In other words, the norms coming from the two in-
ner products are equivalent, and so V' is still a Hilbert space for the inner product (., .).

2. The representation p is unitary for the inner product (., .).

Remark 1.3.1.  (a) If V is irreducible, it follows from Schur’s lemma (see theorem |[.3.4.1) that
this inner product is unique up to a constant.

(b) This is false for noncompact groups. For example, consider the representation p of R on C?
given by p(t) = (1) i . There is no inner product on C? that makes this representation
unitary (otherwise p(R) would be a closed subgroup of the unitary group of this inner
product, hence compact, but this impossible because p(R) ~ R).

Proof of the theorem. We define (.,.) : V x V — C by the following formula : for all v, w € V,

(v, 0) = / (p(9)0, pg)whody,

where dg is a normalized Haar measure on (G. This defines a Hermitian form on V', and we have
(p(g)v, p(g)w) = (v, w) for every v,w € V and g € G by left invariance of the measure.
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If we prove property (1), it will also imply that (., .) is definite (hence an inner product), and so
we will be done. Let v € V. Then the two maps G — V sending v to p(g)(v) and to p(g)~*(v)
are continuous. As GG is compact, they are both bounded. By the uniform boundedness principle
(theorem [L.3.2.11)), there exist A, B € R such that [|p(g)'||l,, < A and [|p(g)lep < B for
every g € (G. By the submultiplicativity of the operator norm, the first inequality implies that
lp(9)|| < AL forevery g € G. So the definition of (., .) (and the fact that G has volume 1) gives
property (1), withc = A=? and C = B2.

[]

Corollary 1.3.2.9. If G is compact Hausdorff, then every nonzero finite-dimensional continuous
representation of G is semisimple.

Proof. We may assume that the representation is unitary by the theorem. We prove the corollary
by induction on dim V. The result is obvious if dim V' < 1, so assume that dim V' > 2 and that
we know the result for all spaces of strictly smaller dimension. If V' is irreducible, we are done.
Otherwise, there is a G-invariant subspace W C V such that W # 0. This subspace is closed
because it is finite-dimensional, and we have V' = W @ W+ with W invariant by lemma
As dim(W), dim(W+) < dim(V'), we can apply the induction hypothesis to W and W+ and
conclude that they are semisimple. But then their direct sum V is also semisimple.

]

Remark 1.3.2.10. This is still true (but harder to prove) for infinite-dimensional unitary rep-
resentations of compact groups, but it is false for infinite-dimensional unitary representations
of noncompact groups, or for finite-dimensional (non-unitary) representations of noncompact
groups.

Theorem 1.3.2.11 (Uniform boundedness principle or Banach-Steinhaus theorem). Let V' and
W be normed vector spaces, and suppose that V' is a Banach space (i.e. that it is complete for

the metric induced by its norm). Let (T};);c; be a family of bounded linear operators from V' to
Ww.

If the family (T;);c1 is pointwise bounded (that is, if sup,c; | T;(v)|| < +oc for every v € V),
then it is bounded (that is, sup,c; || T;||op < +00).

Proof. [Y| Suppose that sup;¢; || 73], = +00, and choose a sequence (i, ),>o of elements of 1
such that |7}, [|,, > 4". We define a sequence (v, ),>0 of elements of V' in the following way :

- For n > 1, we can find, thanks to the lemma below, an element v, of V such that
[0 = vpa|l < 37" and || T, (va)[| > 537"(|T5, [lop-

“4Taken from a paper of Alan Sokal.
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We have [[v, — vy| < $37™ for m > n, so the sequence (v,),>o is a Cauchy se-
quence; as V is complete, it has a limit v, and we have |v, — v|| < %3_” for every
n > 0. The inequality ||7;, (v,)|| > 337"||T},|lp and the triangle inequality now imply that
1T, ()] = 37T lop = #(3)", and so the sequence (||T;, («)||)n>o is unbounded, which
contradicts the hypothesis.

]

Lemma 1.3.2.12. Let V and W be two normed vector spaces, and let T : V' — W be a bounded
linear operator. Then for any v € V and r > 0, we have

sup ||T(U/>|| > THTHOPa

v'€B(v,r)

where B(v,r) = {v' € V|||lv —'|| < r}.
Proof. For every x € V, we have

1T ()] < %(HT(U + o)l + T(v—2)]) < max(|T(v + )|, [|T(v = z)]).

Taking the supremum over = € B(0, ) gives the inequality of the lemma.

Finally, we have the following result, whose proof uses the spectral theorem.

Theorem 1.3.2.13. If G is a compact group, then every irreducible unitary representation is
finite-dimensional.

Proof. See problem set 5.

1.3.3 Cyclic representations

Definition 1.3.3.1. Let (p, V') be a continuous representation of G, and let v € V. Then the
closure W of Span{p(g)(v),g € G} is a subrepresentation of V, called the cyclic subspace
generated by v.

It V =W, we say that V' is a cyclic representation and that v is a cyclic vector for V.

Example 1.3.3.2. An irreducible representation is cyclic, and every nonzero vector is a cyclic
vector for it.

The converse is not true. For example, consider the representation p of the symmetric group
&,, on C" defined by p(c)(z1,...,2n) = (T5-101),-- - To-1()), and let v = (1,0,...,0) € C™.
Then the set p(S,,)(v) is the canonical basis of C™, hence it generates C", and so v is a cyclic
vector for p. But p is not irreducible, because C(1,1, ..., 1) is a subrepresentation.
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L3 Representations

Proposition 1.3.3.3. Every unitary representation of G is a direct sum of cyclic representations.

If the indexing set is infinite, we understand the direct sum to be the closed direct sum (that is,
the closure of the algebraic direct sum).

Proof. Let (m, V') be a unitary representation of G. By Zorn’s lemma, we can find a maximal
collection (W;);cr of pairwise orthogonal cyclic subspaces of V. Suppose that V' is not the direct
sum of the WW;, then there exists a nonzero vector v € (,., W;)*. By lemma the cyclic
subspace generated by v is included in (D, W;)*+, which contradicts the maximality of the

family (W;);c;. Hence V = @, ., Wi.
]

.3.4 Schur’s lemma

The following theorem is fundamental. We will not be able to prove it totally until we have the
spectral theorem for normal endomorphisms of Hilbert spaces.

Theorem 1.3.4.1 (Schur’s lemma). Let (py, V1) and (pa, Va) be two representations of G, and let
T : Vi — V5 be an intertwining operator.

1. If V is irreducible, then T is either zero or injective.
2. If Vi, is irreducible, then T is zero or has dense image.
3. Suppose that V} is unitary. Then it is irreducible if and only if Endg (V1) = C - idy,.

4. Suppose that Vy and Vy are unitary and irreducible. Then Homg(V1,V3) is of dimension
zero (if V and V5 are not isomorphic) or 1 (if Vi and V5 are isomorphic).

Proof. We prove the first two points. By lemma Ker(T) and Im(T) are G-invariant
subspaces of V7 and V5. Moreover, Ker(T') is a closed subspace of V;. If V] is irreducible, then
its only closed invariant subspaces are 0 and V/;; this gives the first point. If V5 is irreducible,
then its only closed invariant subspaces are 0 and V5; this gives the second point.

We prove the third point. Suppose first that V; is not irreducible. Then it has a closed invari-
ant subspace W such that 0 # W = Vi, and orthogonal projection on W is a G-equivariant
endomorphism by lemma|l.3.4.3| So End(1}) strictly contains C - idy,.

Now suppose that V; is irreducible, and let T € Endg (V7). We want to show that 7' € Cidy,.
If V; is finite-dimensional, then 7" has an eigenvalue A, and then Ker(7 — Xidy, ) is a nonzero
G-invariant subspace of V7, hence equal to V4, and we get 7" = Aidy,. In general, we still know
that every 7' € End (V) has a nonzero spectrum (by theorem [[L.1.1.3)), but, if ) is in the spectrum
of T', we only know that 7" — Aidy is not invertible, not that Ker(7" — Aidy) # 0. So we cannot
apply the same strategy. Instead, we will use a corollary of the spectral theorem (theorem [[1.4.1)).
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Note that the subgroup p;(G) of End(V]) satisfies the hypothesis of corollary [I1.4.4] because
V) is irreducible, so its centralizer in End(V}) is equal to Cidy,; but this centralizer is exactly
Endg(V1), so we are done.

We prove the fourth point. Let 7" : V; — V5 be an intertwining operator. Then 7™ : V5, —
is also an intertwining operator by lemma [.3.2.7, so 7*T" € Endg(V}) and TT* € Endg(V3).
By the third point, there exists ¢ € C such that 7*T = cidy,. If ¢ # 0, then T is injective and

||

Im(7) is closed (because || T'(v)|| > mHvH for every v € Vi, see lemma|l.3.4.2), so 7" is an

isomorphism by the second point, and its inverse ¢~7*; hence V; and V; are isomorphic, and
Homg (V1, Va) ~ Endg(V)) is 1-dimensional. Suppose that ¢ = 0. If 7" # 0, then it has dense
image by the second point, but then 7* = 0 by the first point, hence " = (7*)* = 0, which
is absurd; so 7' = 0. So we have proved that, if Homg(V;,V3) # 0, then V; and V5, must be
isomorphic; this finishes the proof of the fourth point.

]

Lemma 1.3.4.2. Let V, W be two normed vector spaces, and let'T' : V. — W be a bounded
linear operator. Suppose that V' is complete. If there exists ¢ > 0 such that ||T(v)|| > c||v|| for
every v € V, then Im(T) is closed.

Proof. Let (v,)nen be a sequence of elements of V' such that the sequence (7'(vy,))nen con-
verges to a w € W. We want to show that w € Im(7). Note that, for all n,m € N, we have
v — vl < ¢ T(v,) — T'(vy,)]|. This implies that (v, ),y is @ Cauchy sequence, so it has a
limit v € V because V is complete. As 7" is continuous, we have w = lim,,_, 1o, T'(v,) = T'(v),
sow € Im(T).

]

Lemma 1.3.4.3. Let (p, V') be a unitary representation of G, let W be a closed subspace of V,
and let  be the orthogonal projection on W, seen as a linear endomorphism of V.

Then W is G-invariant if and only if 7 is G-equivariant.

Proof. Suppose that 7 is G-equivariant. Let w € W and g € (. Then
p(g9)(w) = p(g)(m(w)) = w(p(g)(w)) € W. So W is invariant by G.

Conversely, suppose that W is G-invariant. By lemma [1.3.2.6] its orthogonal W= is also
invariant by G. Let v € V and ¢ € G. We write w = 7(g) and v’ = g — 7(g).

Then p(g)(v) = p(g)(w) + p(g)(w’) with p(g)(w) € W and p(g)(w') € W+, so
m(p(g)(v)) = p(g)(w).

O

Corollary 1.3.4.4. If G is commutative, then every irreducible unitary representation of G is
1-dimensional.
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So each unitary irreducible representation of (G is equivalent to one (and only one) continuous
group morphism G — S*.

Proof. Let (p, V) be an irreducible unitary representation. As G is commutative, the operators
p(x) and p(y) commute for all z,y € G, so we have p(z) € Endg(V) for every z € G.
By Schur’s lemma, this implies that p(z) € C -idy for every x € G. In particular, every
linear subspace of V' is invariant by G. As V' is irreducible, it has no nontrivial closed invariant
subspaces, so it must be 1-dimensional.

[]

Example 1.3.4.5. Let G = R. Then every irreducible unitary representation of G is of the form
py © & — e fory € R. The representation p, factors through S' ~ R/Z if and only
y € 21.

1.3.5 Finite-dimensional representations

Remember that, if V' is a finite-dimensional C-vector space, then all norms on V' are equivalent.
So V has a canonical topology, and so does End (1) (as another finite-dimensional vector space).

Proposition 1.3.5.1. Let V be a normed C-vector space and p : G — GL(V') be a morphism of
groups. Consider the following conditions.

(i) The map G x V. — V, (g,v) — p(g)(v), is continuous (i.e. p is a continuous represen-
tation of G on'V).

(ii) Foreveryv € V, the map G — V, g — p(g)(v), is continuous.
(iii) The map p : G — GL(V) is continuous.

Then we have (iii)=(i)=(ii). If moreover V is finite-dimensional, then all three conditions
are equivalent.

Proof.
(1)=-(ii) is obvious.

(ii)=-(iii) : Suppose that V' is finite-dimensional, and let (e, . . . , e, ) be a basis of V', and let
||.|| be the norm on V defined by || > "7, ze;|| = sup;<;<,, |:|. We use the corresponding
operator norm on End(V) and still denote it by ||.||. Let go € G and let ¢ > 0; we are
looking for a neighborhoord U of gy € G such that: g € U = ||p(g) — p(g0)|| < e.

For every i« € {l1,...,n}, the function G — V, g —— p(g)(e;), is contin-
uous by assumption, so there exists a neighborhood U; of gy in G such that :
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g €U = |lp(g9)(e;) — plgo)(ei)] < e/n. Let U = (-, U;. Thenif g € U, for ev-
eryv =y  xe; €V, wehave

n

lp(g)(v) = vl < Z lz:llllo(g)(e:) = plgo) (el < Y lzle/n < e]lvll,

1=1
which means that ||p(g) — p(g0)]| < €.

(ii)=-(1) : Let go € G, vy € V, and € > 0. We want to find a neighborhood U of g and G
andad > Osuchthat: g € U and |[v — vg]| < = |p(g)(v) — p(g0)(vo)]| < e.

Choose a ¢ such that 0 < § < Mool ( Ik and let U be a neighborhood of ¢, in G such that
19 € G = lplg) — p(9o)ll < sgmeprey- Then, if g € U and [lv — vl < d, we have
lv]] < |Jvol| + 0, and hence

lp(g)(v) = p(go) (vo)l 1p(9)(v) = p(go) (W) [} + [lp(g0) (v) — p(g0) (o)

<
< lp(g) = p(go)llllv]l + [[p(go)[l[lv — wvoll
< W(H%H +6) + [|p(g0)[l6
< g/24¢/2=c¢.

.4 The convolution product and the group algebra

Let GG be a locally compact group, and let dz be a left Haar measure on G. We denote by LP(G)
the LP spaces for this measure. We also denote by A the modular function of G.

1.4.1 Convolution on L!(G) and the group algebra of &

Definition 1.4.1.1. Let f and ¢ be functions from G to C. The convolution of f and g, denoted
by f * g, is the function x — [, f(y)g(y~'x)dy (if it makes sense).

Proposition 1.4.1.2. Let f,g € L'(G). Then the integral [, f(y)g(y~'x)dy is absolutely con-
vergent for almost every x in G, so f*g is defined almost everywhere, and we have fxg € L'(G)
and

1 * glly < [[f111llglls-

Proof. By the Fubini-Tonelli theorem and the left invariance of the measure on G, the function
G xG—C,(z,y) — f(y)g(y~'x) is integrable and we have

/ F )9y o)\ dedy = / F@)lg(@)dedy = £l gl
GxG

GxG
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L4 The convolution product and the group algebra

So the first statement also follows from Fubini’s theorem, and the second statement is obvious.

[]

Note that the convolution product is clearly linear in both arguments.

Proposition 1.4.1.3. Ler f, g € L*(Q).

1. For almost every x € G, we have

f*g(x) Z/Gf(y)g(y‘l-r)dy
- /G F(xy)g(y™)dy

2. Forevery h € L'(G), we have

(fxg)xh=fx(gxh).

(In other words, the convolution product is associative.)
3. Forevery x € G, we have
ng(f *g) = (L:r:f) *g

and
R.(f *g) = [ *(Rzg).

4. If G is abelian, then f x g = g x f.

Proof. 1. We get the equalities of the first four lines by using the substitutions y — xy and
y — y~ L, the left invariance of dy and proposition [[.2.12 The last two lines are just
reformulations of the first two.
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2. For almost every x € (G, we have
(F+9) <)) = [ (£ o) Whly e}y
G

= F(2)g(=" y)hly ™ x)dzdy

GxG

- [ 16 ( [t umt x)dy) dz
z/f(Z) (/ g(y)h(ylzlx)dy> dz

/f (g% h)(z w)dz
(g xh))(z).

3. This follows immediately from the definition and the equality of the first two lines in point

(1).
4. This follows from (1) and from the fact that A = 1.
Il

Definition 1.4.1.4. A Banach algebra (over C) is an associative C-algebra A with a norm ||.||
making A a Banach space (i.e. a complete normed vector space) and such that, for every
z,y € A, we have ||zy|| < ||z|||ly]| (i.e. the norm is submultiplicative). If A has a unit e,
we also require that ||e|| = 1.

Note that we do not assume that A has a unit. If it does, we say that A is unital.
Example 1.4.1.5. (a) If V is a Banach space, then End(V') is a Banach algebra.

(b) By propositions [l.4.1.2 and [1.4.1.3] the space L!(G) with the convolution product is a
Banach algebra. We call it the (L) group algebra of G.

Remark 1.4.1.6. If the group G is discrete and dx is the counting measure, then d; := 17y is a
unit for the convolution product. In general, L'(G) does not always have a unit. (It does if and
only if GG is discrete.) We can actually see it as a subalgebra of a bigger Banach algebra which
does have a unit, the measure algebra .# (G) of G (see for example section 2.5 of [8]) :

Remember that a (complex) Radon measure on G is a bounded linear functional on %;(G)
(with the norm ||.||o.). We denote by .# (G) the space of Radon measures and by ||.|| its norm
(which is the operator norm); this is a Banach space. If i is a Radon measure, we write
f +— [ f(x)du(z) for the corresponding linear functional on €,(G). We define the convo-
lution product p * v of two Radon measures . and v to be the linear functional

fr— f(zy)dp(z)dv(y).
GxG
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L4 The convolution product and the group algebra

Then it is not very hard to check that ||x % v|| < ||p||||v|| and that the convolution product is
associative on . (G). This makes .# (G) into a Banach algebra, and the Dirac measure at 1 is a
unit element of .Z (G).

Note also that .# () is commutative if and only if G is abelian. Indeed, it is obvious on the
definition of « that .# (G) is commutative if G is abelian. To show the converse, we denote by
4, the Dirac measure at z (so |, o fdé, = f(x)). Then we clearly have 6, * 6, = d,, for every
z,y € G. So, if #(G) is commutative, then ¢,, = ¢, for every x,y € G, and this implies that
G is abelian.

Even though L'(G) does not contain the unit of .# (G), we have families of functions called
“approximate identities” that will be almost as good as d; in practice. In particular, we will be
able to prove that L'(G) is commutative if and only if G is abelian.

Definition 1.4.1.7. A (symmetric, continuous) approximate identity with supports in a basis of
neighborhoods % of 1 in G is a family of functions (¢y)yes in €.7(G) such that, for every
U € %, we have

- supp(yv) C U;
- ’(ﬁU(l’il) = @Z)U(ZL'), Vo € G,
- Jotbu(z)de = 1.

For some results, we don’t need the continuity of the ¢y or the fact that ¢y (z71) = ¥y (z).

Proposition 1.4.1.8. For every basis of neighborhoods % of 1 in G, there exists an approximate
identity with supports in % .

Proof. Let U € %/. Then U contains a symmetric neighborhood V' C U of 1 and a com-
pact neighborhood K C V of 1, and, by corollary [A.3.T] there exists a continuous function
f+ X — [0,1] with compact support contained in V' such that fjx = 1. In particular, f # 0,
so f € €. (X). Define g : X — [0,2] by g(z) = f(x) + f(z™'). Then g € €.F(X) (because
gk = 2) and supp(g) C V C U. Now take vy = mg.

]

Proposition 1.4.1.9. Let % be a basis of neighborhoods of 1 in G, and let (Vy)yea be an
approximate identity with supports in % .

1. Forevery f € LY(G), we have ||Yy * f — flli = Oand || f x ¥y — fl1 = 0as U — {1}
In fact, we have :

|y = f— flli <sup||Ly f— flhh
yelU

and
|f * v — flli < sup ||Ry f — flh
yeU
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2. If f € L*™°(G) and f is left (resp. right) uniformly continuous, then ||y * f — f|lc = 0
(resp. ||f * Vv — flloo = 0)as U — {1}. In fact, we have :

1Yo f = flloo < sup Ly f = fllos

and

1f %0 = fllo < sup |Ry f — flloo-
yeU

In point (2), note that if f : G — C is bounded and g € %.(G), then the integral defining
(f * g)(x) converges absolutely for every z € G.

Proof. 1. LetU € % . For every x € (G, we have
(Yo * f)( / Yuly — f())dy
(because [, ¥y (y)dy = 1). So

low # = flls = / / oy ~ f(@)dyldx
< [ v i) - f(o)ldyde

GxG
< / voIL, — fldy
e
< sup || Ly f — )
yelU
The first convergence result then follows from the fact that || L, f — f|l; — Oasy — 1,
which is proposition[[.3.1.13]
The proof of the second convergence result is similar (we get that

If *Yu — flli < supyep [[Ryf — fll1 and apply proposition|.3.1.13).
2. Let U € 7% . Then for every x € G,

(o * f)(x) = flz)] < / Yo ()| Ly f(x) — f(z)|dy.
G
As ¢y (y) = 0 fory ¢ U, this implies that

(o * £)(@) — F(@)] < (sup| Ly f(2) / Su(y)dy) = sup| Ly f(z) — F(2).

yeU yeU

Taking the supremum over x € GG gives

1Yo f = flloo < sup [[Lyf = flloo-
yeU
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So the first statement follows immediately from the definition of left uniform continuity.
The proof of the second statement is similar.

]

Corollary 1.4.1.10. . The Banach algebra L*(G) is commutative if and only if the group G
is abelian.

2. Let . be a closed linear subspace of L*(G). Then % is a left (resp. right) ideal if and
only if it is stable under the operators L, (resp. R,), x € G.

Proof. 1. If G is abelian, then we have already seen that L'(G) is commutative. Conversely,
suppose that L' (G) is commutative. Let 7,y € G. Let f € %.(G), and choose an approx-

imate identity (¢)y/)yes . By proposition[.4.1.3] we have, for every U € %,
(Bof) = (Ryvu) = Ry((Rof) * Yu) = Ry(Yu * (Ro f)) = ByRo(Yu * f) = Rya(f xYv)

and

Evaluating at 1 gives (f ¢y )(zy) = (f*vy)(yx). But proposition|l.4.1.9|(and proposition
[.1.12) implies that || f * ¥y — f|leoc — 0as U — {1}, so we get

fley) = tm (f *dy)(ey) = hm (f *dy)(yz) = fyz).

—{1} U—{1}

As this is true for every f € %.(G), we must have zy = yz (this follows from local
compactness and Urysohn’s lemma).

2. We prove the result for left ideals (the proof for right ideals is similar). Suppose that .#
is a left ideal, and let x € G. Choose an approximate identity (¢y)yes. We know that
Yy *x f — fin LY(G) as U — {1}, and so L,(vy * f) — L,f as U — {1} (because
L, preserves the L' norm). But L, (¢ * f) = (Lgtby) * f by proposition ; as .7 is
a left ideal, we have (L,¢y) * f € & forevery U € %, and as . is closed, this finally
implies that L. f € ..

Conversely, suppose that .# is stable by all the operators L., x € G. Let f € L'(G) and

g € Z. By proposition [[.4.1.3} we have f x g = fG f(y)Lygdy. By the definition of the
integral, the function f * g is in the closure of the span of the L, g, y € G, and soitisin .%

by hypothesis (and because . is closed).
O

1.4.2 Representations of G vs representations of L!(G)

Definition 1.4.2.1. A Banach *-algebra is a Banach algebra A with an involutive anti-
automorphism *. (That, forevery z,y € Aand A € C, we have (z+y)* = 2*+y*, (Az)* = A\z*,
(xy)* = y*x* and (z*)* = z.)
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The anti-automorphism  is called an involution on the Banach algebra A.

Example 1.4.2.2. (a) C, with the involution z* = Z.

(b) If G is a locally compact group with a left Haar measure, then L'(G) with the con-
volution product and the involution * defined by f*(z) = A(xz)~'f(x~1) is a Banach
x-algebra (note that f* is in L'(G) and that we have [, f*(z)dz = [, f(z)dx and
Jo | f*(@)lde = [, |f(x)|dx by proposition[[.2.12} so || f*|[; = || f][1)- It is commutative if

and only G is abelian, and it has a unit if and only G is discrete.

(c) If X is alocally compact Hausdorff space, the space %,(.X) with the norm ||. ||, the usual
(pointwise) multiplication and the involution * defined by f*(z) = f(z) is a commutative
Banach x-algebra. It has a unit if and only if X is compact (and the unit is the constant
function 1).

(d) Let H be a Hilbert space. Then End(H), with the operator norm and the involution
T —— T™ (where T™ is the adjoint of 7" as above) is a unital Banach x-algebra. It is
commutative if and only if dim¢(H) = 1.

Definition 1.4.2.3. (i) If A and B are two Banach x-algebras, a x-homomorphism from A to
B is a morphism of C-algebras v : A — B that is bounded as a linear operator and such
that u(2*) = u(z)*, for every x € A.

(i) A representation of a Banach x-algebra A on a Hilbert space H is a *-homomorphism
7w from A to End(H). We say that the representation is nondegenerate if, for every
v € H — {0}, there exists x € A such that 7(x)(v) # 0.

We will need the following result, which we will prove in the next section. (See corollary

[L.3.9)

Proposition 1.4.2.4. Let V' be a Hilbert space. Then, for every T € End(H) such that
TT* =T*T, we have

— L 1/
||T||0p - T}EEO ||Tn||opn'

Corollary 1.4.2.5. Let A be a Banach x-algebra such that ||z*|| = ||x|| for every x € A, and let
7 be a representation of A on a Hilbert space V. Then ||r||,, < 1.

Proof. By definition, the operator 7 is bounded; let C' = ||7|l,,. Let x € A, and let
T = n(z*x) € End(H). Note that 7" = T™*. For every n > 1, we have

I < Cli="2) || < Cl=f™
(because ||z*|| = ||«||). On the other hand, we have

ITllop = tim 7"
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by proposition hence
7 (@)lop = Il () (@) [lop? = [ Tllgp" < ( lim CH™ laf|*) "2 = .

In other words, ||7||,, < 1.

We now fix a locally compact group G as before.

Theorem 1.4.2.6. . Let (w,V') be a unitary representation of G. We define a map from
LY(G) to the space of linear endomorphisms of V, still denoted by T, in the following way

cif f € LYG), we set
= /Gf(x)w(x)dx

_ /G F(2)m (@) (v)dz

for every v € V (the integral converges by problem set 4).

by which we mean that

Then this is a nondegenerate representation of the Banach x-algebra L'(G) on V, and
moreover we have, for every v € G and every [ € L*(Q),

w(Lof) = n(@)n(f) and (Rof) = Ae) n(f)m(z) .

2. Every nondegenerate representation T of the Banach x-algebra L'(G) on a Hilbert space
V' comes from a unitary representation w of the group G as in point (1).

Moreover, if (Vy)uew is an approximate identity, then, for every x € G and every v € V,
we have

m(z)(v) = lim 7(Lety)(v).

U—{1}

3. Let (m,V) be a unitary representation of G, and m : L*(G) — End(V) be the asso-
ciated x-homomorphism. Then a closed subspace W of V' is G-invariant if and only if

7(f)(W) C W forevery f € L'(G).

4. Let (7, V1) and (ma, V) be unitary representations of G, and w; : L'(G) — End(V}),
1 = 1,2, be the associated x-homomorphisms. Then a bounded linear map T : V|, — V5 is
G-equivariant if and only if T o 711 (f) = 7a(f) o T for every f € L'(QG).

Proof. 1. If f € L'(G), then the map n(f) : V — V is clearly C-linear, and we have for
everyv € V :

=Wl =1 [ f@r@ el < [ 11@lplde < ol
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so the endomorphism 7(f) of V' is bounded and ||7(f)|lo, < || f]l1- Also, it is easy to
see that the map 7 : L'(G) — End(H) sending f to 7(f) is C-linear, and the equality
l7(f)llop < || f]l1 implies that it is also bounded (we also see that ||7||,, is bounded by 1,
as it should according to corollary [.4.2.5]).

Let f,g € L'(G). Then, for every v € V,

w(f*g)(v) = ch F@)gly™ ) (z)(v)dady
)(m

/ fly)m(y
™(9)(v))-
Son(f*g)=mn(f)om(g). Also,

/A )@ () (v)de

f(z)m(z 1) (v)dz by proposition[[.2.12]

so that, if w € V,
(m(f*)(v), w) =/G<W7T($)*(U)W>dfc=/G<v,f(x)ﬂ(év)(w)> = (v, 7(f)(w)).

This means that 7(f*) = 7(f)*. So we have proved that 7 is a *-homomorphism.

Now we show the last statement. Let f € L'(G) and = € G. Then, for every v € V,

and



L4 The convolution product and the group algebra

Finally, we show that the representation 7 : L!'(G) — End(V) is nondegenerate.
Let v € V — {0}, and choose a compact neighborhood K of 1 in G such that
|7 (z)(v) — v| < 3||v]| for every z € K. Let f = vol(K) 1. Then

(1)) =0l = w71 [ (7@)w) = o)zl < gl

and in particular 7(f)(v) # 0.

Finally, we show the last statement. Let (¢)y)yes be an approximate identity, and let
r€Gandv e V.

. Let 7 be a nondegenerate representation of the Banach *-algebra L' (G) on a Hilbert space
V. Choose an approximate identity (¢/)yes of G. The idea of the proof is that 7(z)
should be the limit of the 7(L,vy) as U tends to {1}.

We now make the idea of proof above more rigorous. Note that, by corollary we
have |7, < 1. Let W be the span of the 7(f)(v), for f € L'(G) and v. I claim
thet W is dense in V. Indeed, let v € W, Then, for every f € L'(G), we have
(m(f)(v),v") = (v,m(f*)(v)) = 0 for all v' € V, hence w(f)(v) = 0. As 7 is non-
degenerate, this is only possible if v = 0. Hence W+ = 0, which means that WV is dense
inV.

Let + € G. We want to define an element 7(x) € End(V) such that, for every
f € LYG), we have 7(x)m(f) = w(L,f). This forces us to define 7(z) on an element
w =730 7(f;)(v;) of W (f; € L'(G),v; €V)as

n

A(x)(w) = m(Laf)(v)).

J=1

This is well-defined because, for every > 1, and for all fi,...,f, € L'(G) and
v1,...,0, €V, we have

n n

> w(Laf)(vy) = lim > w(La(vu = f;))(v)

U—{1
J=1 —iL} J=1
n

= lim Y w((Lator) * f;)(v;)

U—{1} st
— Ulg? 7T( wl/JU) (;WUCJ)(UJ))

s0 > i m(Lafi)(v;) = 0if Y77, w(f;)(v;) = 0.

Moreover, as ||[T(L.Yv)|lop < ||7lloplltu]s < 1 for every U € %, we have
|7 (x)(w)|| < ||w]| for every w € W, so 7(x) is a bounded linear operator of norm < 1
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I Representations of topological groups

on W, hence extends by continuity to a bounded linear operator 7(z) € End(V') of norm
<1

Next, using the fact that L,, = L, o L,, we see that, for all z,y € G, 7(xy) = 7(z)7(y)
on I, hence on all of V. Similarly, the fact that L; = id1(¢) implies that 77(1) = idy.
Also, for every x € GG, we have, if v € V,

Il = 7@ ) F@) @) < 17 @D opllF@) )] < 7 @) )] < Jloll,
so [|7(z) ()] = lvll,

Let v € V. We want to show that the map G — V, x — 7(z)(v) is continuous. By
proposition this will imply that 7 : G — End(V) is a unitary representation
of G on V. We first suppose that v = 7(f)(v'), with f € L'(G) and v € V. Then
7(z)(v) = w(Lyf)(v'), so the result follows from the continuity of the map G — L'(G),
x — L, f (see proposition [[.3.1.13), of 7 and of the evaluation map End(V) — V,
T — T(v"). As finite sums of continuous functions G — V" are continuous, we get the
result for every v € . Now we treat the general case. Let x € G and € > 0. We must find
a neighborhood U of z in G such that, for every y € U, we have ||7(y)(v) —7(z)(v)]| < e.
Choose w € W such that ||v — w|| < £/3, and a neighborhood U of x in G such that, for
every y € U, we have ||7(y)(w) — 7(x)(w)]|| < /3 (this is possible by the first part of this
paragraph). Then, for every y € U, we have

17(y) (v) = (@) ()| < [[7(y)(v) = 7 (W) ()] + [[7(y) (w) = 7 (@) (w)]| + [[7(z)(w) — 7(2)(V)]
< |lv—wl|| +¢/3 4+ |[v — w|| (because 7(x) and 7(y) are unitary)
<e,

, T(x) is a unitary operator.

as desired.

We show that the representation 7 of L!(G) induced by 7 is the representation 7 that we
started from. Let f,g € L*(G). Then, for every v € V,

So, if f € L'(G), then 7(f) and 7(f) are equal on W. As TV is dense in V/, this implies
that 7(f) = 7(f).
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L4 The convolution product and the group algebra

Finally, we show the last statement. Let (¢)y)ycs be an approximate identity as above.
Let z € G. We have already seen that, for every v € W, we have

R()() = Jim w(Loti) ().

As both sides are continuous functions of v € V' (for the right hand side, we use the fact
that | 7(L,¢v)|lop = 1, this identity extends to all v € V.

3. Suppose that W is G-invariant. Let f € LY(G) and w € W. As
7(f)(w) = [, f(@)7(x)(w)dz is a limit of linear combinations of elements of the form
m(z)(w), z € G, itis still in W.

Conversely, suppose that 7(f)(W) C W for every f € L'(G). Let x € G, and let
(¥v)uea be an approximate identity. Then, by the last statement of (2), for every w € W,
we have

m(x)(w) = lim 7(Lyy)(w) € W.

U—{1}
So W is G-invariant.
4. LetT : Vi — V5 be a bounded linear map, and let W C V; x V5 be the graph of T'; this is
a closed linear subspace of V; x V5. Then T is G-equivariant if and only W is G-invariant,

and T is L'(G)-equivariant if and only W is stable by all the 7 (f) x ma(f), f € LY(G).
So the conclusion follows from point (3).

O

Example 1.4.2.7. Let 7 be the representation of G given by w(z)(f) = L.,f (see exam-

ple [.3.1.11). Then, for every f,g € L'(G), we have n(f)(g9) = f * g. Indeed, we have
7(f)(g) = [, f(x)L,gdx by definition of 7(f), so the statement follows from problem 4 of

problem set 4.

1.4.3 Convolution on other L? spaces

We will only see a few results that we’ll need later to prove the Peter-Weyl theorem for compact
groups. The most important case is that of L?(G).

Most of the results are based on Minkowski’s inequality, which is proved in problem set 4.
Here, we only state it for functions on G.

Proposition 1.4.3.1 (Minkowski’s inequality). Let p € [1,+00), and let ¢ be a function from

G x GtoC. Then
pdu(x))l/p < /G (/G |30(x,y)|pdu(x))1/p du(y),

(/

in the sense that if the right hand side is finite, then [, o(x,y)du(y) converges absolutely for
almost all x € G, the left hand side is finite and the inequality holds.

/G o(z, v)du(y)
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Corollary 1.4.3.2. Letp € [1,+00), and let f € L*(G) and g € L*(Q).

1. The integral defining f * g(x) converges absolutely for almost every x € G, and we have
fge LP(G)and||f *gll, < [[fll1llglp-

2. If G is unimodular, then the same conclusions hold with f x g replaced by g * f.

Proof. 1. we apply Minkowski’s inequality to the function ¢(z,y) = f(y)g(y~'x). For every
y € G, we have

/wmw ~ 1f() /rg VPdu(z) = £ )P lg]2

by left invariance of 1, so

1/p
/ ( / |¢<x,y>|pdu<x>) duts) = Nl | @)t = 171l

Minkowski’s inequality first says that [, ¢(z,y)du(y) = f * g(z) converges absolutely
for almost all z € G, which is the first statement. The rest of Minkowski’s inequality is
exactly the fact that || f * g||, < || f]l1]l9]l,-

2. Suppose that G is unimodular. Then

g% f(z) = /G 9(y) F () du(z) = /G o(ey™)f (9)du(y).

So the proof is the same as in (1), by applying Minkowski’s ineqality to the function
p(e,y) = g(zy™) f(y)-
[

Now we generalize proposition [[.4.1.9|to other L? spaces.

Corollary 1.4.3.3. Let % be a basis of neighborhoods of 1 in G, and let (Vy)ycy be an ap-
proximate identity with supports in % . Then, for every 1 < p < +o0, if f € LP(G), we have

Yo f—fll, > 1and ||f x¢y — fll, = LasU — {1}.
Proof. LetU € % and f € L*(G). Then we have, for every = € G,
@)= 1) = [ vty — F(@)duy)

(because fG Ypdp = 1). Applying Minkowski’s inequality to the function
o(z,y) = Yu(y)(Lyf(z) — f(x)), we get

i+ £ =l < [ V2] = Dlo()dut) < sup |2, S = F1,

40



L4 The convolution product and the group algebra

Similarly, we have
fxdu(z /fxwa /wU )dp(y

= | (Ruf@) = 1@)iuints).
So applying Minkowski’s inequality to the function p(z,y) = (R, f(x) — f(z))Yu(y) gives

I 50 = 11 < [ IR, = Flbo @)dnts) < sup 1Ry f = 7l

Hence both statements follow from proposition
O

Finally, we prove that the convolution products makes functions more regular in some cases.
The most important case (for us) in the following proposition is when G is compact and

p=q=2.
Proposition 1.4.3.4. Suppose that G is unimodular. Let p, q € (1,+00) such thatp™' +q¢ ' =1
andlet f € LP(G), g € LY(G).

Then f x g exists, f x g € 6o(G) and || f * glloc < || fllpll9l4-
Proof. Let x € (G. We have

f gl /f Ry )dp(y).

As G is unimodular, the function y —— R,g(y™') is still in L?(G) and has the same L9
norm as g. So, by Holder’s inequalityE] the integral above converges absolutely and we have
|f = g(x)] < fllyllgll;- This proves the existence of f * g and the result about its norm. It also
shows that the bilinear map L”(G) x LY(G) — L>®(G), (f,g) — [ * g is continuous. As
%o(G) is closed in L*(G) and 6.(G) is dense in both LP(G) and L?(G), it suffices to prove that
fxg€G(Q)if f,g € C.(G).

Solet f,g € 6.(G). Let z € G, lete > 0, and choose a neighborhood U of z such that, for
every y € G and 2’ € U, we have |g(yz) — g(yz')| < e. Then, if 2’ € U,

Frg@) - Frgle)] < / FWlgly ™) — gl o) lduly) < < /G F@)ldu(y).

This shows that f * g is continuous. Let X' = (supp g)(supp f); this is a compact subset of G.
We want to show that supp( f * ¢g) C K, which will finish the proof. Let z € G, and suppose that
f x g(x) # 0. Then there exists y € G such that f(y)g(y 'x) # 0. We must have y € supp f
and y 'z € supp g, sox € y(suppg) C K.

]

SWhich reduces to the Cauchy-Schwarz inequality when p = ¢ = 2.
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I Some Gelfand theory

Il.1 Banach algebras

In this section, A will be a Banach algebra. (See definition|[[.4.1.4]) Note that the submultiplica-
tivity of the norm implies that the multiplication is a continuous map from A x A to A.

We suppose for now that A has a unit e and denote by A* the group of invertible elements of
A.

II.1.1 Spectrum of an element

Definition I1.1.1.1. Let x € A.

(i) The spectrum of x in A is

o(x) =ca(x) ={AeClhe —x & A*}.

(i1) The spectral radius of x is
p(a) = inf [la" V",

We will see below how that p(z) is equal to sup{|A|, A € o(x)} (which justifies the name
“spectral radius”).

We start by proving some basic properties of invertible elements and the spectral radius. (Note
that point (i) does not use the completeness of A, so it stays true in any normed algebra.)

Proposition IL1.1.2. (i) Ifz,y € A* are such that ||x — y|| < 3||a~!||™", then we have
lo™" =y~ < 2027 (ly — =l.

In particular, the map x — x~! is a homeomorphism from A* onto itself.

(ii) Forevery x € A, we have
p(z) = Tim [la"|"/"
n——+oo

(Gelfand’s formula).
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II Some Gelfand theory

(iii) Let x € A. If p(x) < 1 (for example if ||z|| < 1), then e — x € A* and
(e — )™ = 3,50 2", with the convention that 1° = e. (In particular, the series con-
verges.)

(iv) The group A* is open in A.
Proof. (i) We have

byl = a0 < ™ = = ™ = )l <y~ e — il < 5y~
In particular, ||y ~!|| < 2|[z~!||. Combining this with the inequality above gives
ly™ =27 < ly~ il =yl < 2027 P fle = yll,
which is the first statement. This also show that the map z — 2! is continuous. As this

map is equal to its own inverse, it is a homeomorphism.

(ii) Lete > 0. We want to find N € Z; such that ||2"||*/™ < p(x)+¢ forn > N. (We already
know that ||2"||'/" > p(z) by definition of p(z), so this is enough to establish the result.)
By definition of p(x), we can find m > 1 such that [|z™||'/™ < p(x)+1e. For every integer
n > 1, we can write n = mq(n) +r(n), with ¢(n),r(n) € Nand 0 < r(n) < m — 1. Note

that @:i<1_7’(”)) o

n m n n—too m’

hence
™| |||V ——— [

n—-+o0o

Choose N > 1 such that, for n > 1, we have

m n)/n rin)/n m m €
™ [ " < [ S < p(w)e.

Then, if n > N, we have

" |7 = flam |V < Yl 1O T < pla) + e

)

as desired.

(iii) Fix r € R such that p(x) < r < 1. Then, by (ii), we have ||z"| < r" for n big enough.
For every n € N, we write .S, = ZZZO xF. Then, if m > n are big enough, we have

= 1
HSm N Sn“ _ Z 2F < prtl Zrk — pntl - _
k=n+1 k>0 -

I'The reasoning used in this proof is sometimes called Fekete’s lemma. See https://en.wikipedia.org/
wiki/Subadditivity.
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So the sequence (5,,),>0 is a Cauchy sequence, and it converges because A is complete.
This means that the series Zn>0 x™ converges. Moreover, for every n > 0, we have

n n+1
(e —x)S, =S,(e —x) = Zxk —ka =e— "t
k=0 k=1

This tends to e as n — +00,50 > ., 2" is the inverse of e — .

(iv) Let x € A*. If y € A is such that ||y — z|| < |z7!||7', then we have
lle — 2z Yy|| < ||l=7Y|||z — y|| < 1. So, by (iii), 7'y € A*, hence y € A*.

O

Theorem II.1.1.3. For every © € A, the spectrum o 4(x) is a nonempty compact subset of C,
and we have

p(x) = max{|\|, A € oa(x)}.

This explains the name “spectral radius” for p(z). Note in particular that, although the spec-
trum of = depends on A (for example, if we consider a Banach subalgebra B of A containing z,
then we have () D 04(x), but this may not be an equality), the spectral radius of = does not.

Proof. Consider the map F': C — A sending A\ € C to Ae —x. Then F is continuous, and o 4(x)
is the inverse of the closed subset A — A* of A, so 04(z) is closed in C.

Next, let A € C such that |\| > p(x). Then p(A~'z) < 1, so, by (iii) of proposition|[1.1.1.2]

we have e — A\'z = A7!(\e — z) € A*, which immediately implies that A & o4(z). So we
have shown that

p(x) = sup{|A, A € oa(z)}.
In particular, 0 4(x) is a closed and bounded subset of C, so it is compact.

Let’s show that o 4 () is not empty. Let 7' : A — C be a bounded linear functional, and define
f:C—oalx) > Cby f(A) =T((Ne —z) ™). If \,u € C — 04(x), then

(Ae—z) " =(pe—x)"" = (Ae—z) " ((pe—2)—(Ne—2))(pe—2)"" = —=(A—p)(Ae—z) "} (pe—z) ",

so, if A\ # p, we get
fN) = fu)

S = (e~ a) e )™

Using the continuity of the function y — y~! (see (i) of proposition|[[.1.1.2), we get, for every
Ae C— O'A(:L'),
2\) —
lim J) = ) = -T((Ne —2)7?).
n—A A — 12
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In particular, the function f is holomorphic on C — o 4(x). Let’s prove that f vanishes at oo,
i.e. that f(\) tends to 0 when |A\| — +o00. Let A € C such that |A\| > p(z). Then, by (iii) of

proposition I[I.1.1.2}

L L 11,
()\e—x)lz)\l(e—)\lx)lzxzﬁx,

SO
. 1|zt 1 1
IO — )™ < 57 =
N2 W~ T

This tends to 0 as |A\| — 4o00; as T is continuous, so does f(\).

Now suppose that 04(z) = &. Then f is an entire function, and f(\) — 0 as |\| = +00. By
Liouville’s theorem, this implies that f = 0, i.e. that T((Ae — z)~!) = 0 for every A € C. But
this is true for every 7" € Hom(A, C) and bounded linear functionals on A separate points by
the Hahn-Banach theorem, so we get that (Ae — x)~! = 0 for every A € C. This is impossible,
because (\e — )7t € AX. So oa(x) # @.

Finally, we prove that
p(r) < max{|A|, A € oa(z)}.

Let r = max{|\|, A € oa(z)}. We already know that < p(z). Assume that r < p(x), and
pick 7" such that r < v’ < p(z). Let T' € Hom(A, C) and define f : C — 04(z) — C as before.
Then we have seen that f is holomorphic on C — g4(z) D {X € C||\| > r}. We have also seen

that, if |A| > p(z), then
1
-1 __ n
Ne—x) = E prEsta
n>0

hence

ORI

By uniqueness of the power series expansion, this is still valid for |A| > r. In particular, the

T(xn)

series ano 7)mFT converges, so the sequence ((::/()Ln?l)nzo converges to 0, and in particular
it is bounded. Consider the sequence (a,),>o of bounded linear functionals on Hom(A, C)
defined by «,(T) = (F‘:,()Ln?l We just saw that, for every 77 € Hom(A, C), the sequence
(0 (T'))n>o is bounded. By the uniform boundedness principle (theorem [[.3.2.11)), this implies
that the sequence (||a, ||op)n>0 is bounded. But note that, by the Hahn-Banch theorem, we have
[[="]]

‘ . So the sequence ((T‘/)—n+1>n20 is bounded. Choose a real number C' bounding

HanHop = (T,Q)S—ZH
it. Then we get
p(z) = lim ||z < lLim CY*(")mH0/m =4

n—-4o0o n—-4o0o

a contradiction. So r > p(x).
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11.1.2 The Gelfand-Mazur theorem

It is a well-known fact that every finite-dimensional C-algebra that is a field is isomorphic to C.
This is the Banach algebra analogue.

Corollary I1.1.2.1 (Gelfand-Mazur theorem). Let A be a Banach algebra in which every nonzero
element is invertible. Then A is isomorphic to C (i.e. A = Ce).

Proof. Letx € A. By theorem[l.1.1.3] 04(x) # @. Let A € o4(x), then Ae —z is not invertible,
so x = Ae by hypothesis.

[]

Definition II.1.2.2. We say that a subset / of A is an ideal if it is an ideal in the usual algebraic
sense, i.e. if I is a C-subspace of A that is stable by left and right multiplication by every element
of A. We say that [ is a proper ideal of A if I is an ideal of A and [ # A.

If [ is an ideal of A, then it is easy to see that T is also an ideal.

Remember also the definition of the quotient norm.

Definition ILI.1.2.3. Let V' be a normed vector space and W C V be a closed subspace. Then the
quotient norm on V /W is defined by

|z + W] = inf |jv+ w]|.
weW

If V' is a Banach space, then so is V//W (for the quotient norm).

Proposition I1.1.2.4. (i) If I is a closed ideal of A, then A/I is a Banach algebra for the
quotient norm.

(ii) If I is a proper ideal of A, then so is its closure 1.

Proof. (i) We already know that A/I is a Banach space and an algebra, so we just need to
check that its norm is submultiplicative. Let x,y € A. Then

lz+ Il[lly + 1]l = inf Jlz + alllly + ]
> inf
> inf |+ a)(y+ 1))
= inf ||zy + (ay + xb+ ab)||
a,bel

> in? |zy + c|| (because ay + xb +ab € I'ifa,b € I)
ce

[y + 1]

47



II Some Gelfand theory

(ii) Consider the open ball B = {z € Al|e — z|| < 1}. Then B C A* by proposition[Ll.1.1.2}
so BN I = @. As B is open, this implies that BN [ = &, so [ # A.

]

Corollary I1.1.2.5. Let A be a commutative unital Banach algebra. If m is a maximal ideal of
A, then m is closed, and A/m = C.

This is the Banach algebra analogue of the Nullstellensatz.

Proof. By proposition|lI.1.2.4] the ideal m is also proper; as m is maximal, we must have m = m,
i.e. mis closed. By the same proposition, A/m is a Banach algebra. Also, every nonzero element
of A/m is invertible because m is maximal, so A/m = C by the Gelfand-Mazur theorem.

]

I.2 Spectrum of a Banach algebra

In this section, A is still a Banach algebra, but we don’t assume that it has a unit.

Definition I1.2.1. A multiplicative functional on A is a nonzero linear functional ¢ : A — C
such that p(zy) = p(z)p(y) forall z,y € A

The set of all multiplicative functionals on A is called the spectrum of A and denoted by
o(A). We put the weak™* topology on o(A). In other words, if ¢ € o(A), then a basis of open
neighborhoods of ¢ is given by the sets {1 € o(A)|Vi € {1,...,n}, |p(x;) — ¥(x;)| < ¢}, for
ne€ L, x1,...,0, € Aand ¢y, ..., c, € Ry

Note that we do not assume that ¢ is continuous; in fact, this is automatically the case, as we
will see below.

Lemma I1.2.2. If A is unital, then, for every ¢ € o(A), we have p(e) = 1 and p(A*) C C*.

Proof. Let x € A be such that p(x) # 0. Then p(x) = @(xe) = p(x)p(e), so p(e) = 1. Also,
ify € A%, then 1 = p(e) = p(y)p(y~), so p(y) € C*.

]

Definition II.2.3. Let A be a Banach algebra. Then we define a unital Banach al-
gebra A. by taking the C-vector space A @ Ce, defining the multiplication on A, by
(x + Xe)(y + pe) = (zy + Ay + px) + Aue (for z,y € A and A\, u € C) and the norm by
|z 4+ Xe|| = ||z|| + |\ (for x € A and A € C). If A is a Banach x-algebra, we make A, into a
Banach x-algebra by setting (z + Ae)* = 2* + e (forz € A and \ € C).

This construction is called adjoining an identity to A.
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Remark 11.2.4. If A already has a unit, then A, is not equal to A. In fact, if we denote by e4
the unit of A, then the map A, — A x C sending = + Ae to (x 4+ Aey, A) is an isomorphism of
C-algebras (and a homeomorphism).

Proposition I1.2.5. For every ¢ € o(A), we get an element ¢ € o(A.) by setting
o(x + Xe) = @(x) + N\ This defines an injective map o(A) — o(A.), whose image is
0(Ae) — {poo}, With o defined by poo(x + Ae) = \.

Later, we will identify ¢ and ¢ and simply write o(A.) = 0(A4) U {ps}

Proof. The fact that ¢ is a multiplicative functional follows directly from the definition of the
multiplication on A., and ¢ obviously determines . So we just need to check the statement
about the image of o(A) — o(A,).

Let ¢ € o(A.) such that ¢ # ¢, and let ¢ = 1);4. Then we have ¢ (z + Ae) = p(z) + A
forall x € Aand )\ € C; as ¢ # ¢, the linear functional ¢ : A — C cannot be zero, so ¢ is a
multiplicative functional on A, and we clearly have ) = ©.

[]

Corollary I1.2.6. Let ¢ € o(A). Then ¢ is a bounded linear function on A, and we have
llop < 1, with equality if A is unital.

Proof. By proposition the multiplicative functional extends to a multiplicative functional
pon A.. Letz € A. Forevery A € C such that |A\| > ||z||, the element x — Ae of A, is invertible

by proposition[IL.1.1.2} so p(z) — A = @(x — Xe) # 0. This implies that |p(x)| < [|z|], i.e. that
¢ is bounded and ||¢||,-

If A is unital, then ||e|| = 1 and p(e) = 1, s0 |||, = 1.

Theorem IL1.2.7. Let A be a Banach algebra.
(i) If A is unital, then the space o(A) is compact Hausdorff.

(ii) In general, the space o(A) is locally compact Hausdorff, and o(A.) is its Alexandroff
compactification (a.k.a. one-point compactification).

Remember that, if X is a Hausdorff locally compact topological space, then its Alexandroff
compactification is the space X U {oo} (i.e. X with one point added), and that its open subsets
are the open subsets of X and the complements in X U {oo} of compact subsets of X.

Proof. By corollary [I1.2.6| the spectrum o(A) is a subset of the closed unit ball of Hom(A, C).

We know that this closed unit ball is compact Hausdorff for the weak* topology on Hom(A, C)
(this is Alaoglu’s theorem), and o(A) U {0} is closed in this topology, because it is defined by
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II Some Gelfand theory

the closed conditions p(zy) = ¢(z)p(y), for all z,y € A. So o(A) U {0} is compact (for the
weak* topology), and its open subset o (A) is locally compact. If A is unital, then o(A) is closed
in 0(A) U {0} because it is cut out by the condition ¢(e) = 1, so o(A) is compact.

Now we show the last statement of (ii). If ¢ € o(A) (resp. 0(A.)), z € A and ¢ > 0, we set
Ulp,x,¢) = { € a(A)|lp(r) —¥(z)| < c}

(resp. U(ip, ,¢) = {¢ € a(Ao)l|p(x) — ¢(x)| < c}).
These form a basis for the topology of o(A) (resp. o(A.)).

If p € 0(A), z € Aand ¢ > 0, we have

~ ~J Up,z,0) U{pst  if|p(z)| < c
Ug,z,c) = { U(p,z,c) otherwise.

For the neighborhoods of ¢, we get that, if z € A and ¢ > 0, then
U( s 7,¢) = {9} U {p € 0(A)||o(2)] < c}
=0(A) —{Y € o(A)|[()| = e}

So the topology of o(A) is induced by the topology of o(A.). Also, as {1 € o(Ae)||(x)] > ¢}
is closed in o(A.), hence compact, for all z € A and ¢ > 0, the open neighborhoods of ¢, in
o(A.) are exactly the complements of the compact subsets of o(A). This means that o(A,) is
the Alexandroff compactification of o(A).

]

Definition I1.2.8. Let A be a Banach algebra. For every x € A, the map 7 : 0(A) — C defined
by Z(¢) = () is called the Gelfand transform of .

Note that each 7 is continuous on o(A) by definition of the topology of o(A). The resulting
map ' : A — € (c(A)), v — 7 is called the Gelfand representation of A (or sometimes also
the Gelfand transform).

Note that I is a morphism of C-algebras by definition of the algebra operations on € (c(A)).

Theorem I1.2.9. (i) The map I maps A into 6y(0(A)), and we have ||T||» < ||z|| for every
x e A

(ii) The image of ' separates the points of o(A).
(iii) If A is unital, then € is the constant function 1 on o(A).
Proof. (i) If A is unital, then o(A) is compact, so 6y(c(A)) = € (c(A)). In general, as

o(A.) is the Alexandroff compactification of o(A), we just need to check that Z(p.,) = 0
for every x € A; but this follows immediately from the definitions.
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Let x € A. Then

[Zlloe = sup [Z(p)| = sup [p(z)| < =]
pEa(A) €T (A)

by corollary

(ii) Let ¢, ¢’ € o(A) such that ¢ # ¢'. Then there exists x € A such that p(z) # ¢'(z), i.e.
z(p) # Z(¥).
(iii) This follows immediately from lemma(l1.2.2]
]

For a general Banach algebra (even a unital one), the spectrum can be empty (see problem set
5). But this cannot occur for commutative Banach algebras.

Theorem I1.2.10. Let A be a commutative unital Banach algebra. Then the map ¢ — Ker(p)
induces a bijection from o(A) to the set of maximal ideals of A.

If you have seen another definition of the spectrum (for example in algebraic geometry), this
theorem shows how it is related to our definition.

Proof. If ¢ € o(A), then A/ Ker(p) ~ C (note that  is surjective because it is nonzero), so
Ker(p) is a maximal ideal of A. This shows that the map is well-defined.

If m is a maximal ideal, then it follows from the Gelfand-Mazur theorem that A/m ~ C (see
corollary [I1.1.2.5)), so the map ¢ : A — A/m ~ C is an element of o(A) such that Ker(¢) = m.
This shows that the map is surjective.

Now we need to check injectivity. Let ¢, 1 € o(A) such that m := Ker(yp) = Ker(y). Let
x € A As A/m ~ C, we can write © = Ae + y, with A € C and y € m. Then we have

p(z) =X =1(y).

So ¢ = 1.

Corollary I1.2.11. Let A be a commutative unital Banach algebra. Then, for every x € A :
(i) x € A* if and only if T never vanishes;
(ii) (o (A)) = oa(z);
(iii) ||Z]|oc = p(x).

Proof. (i) If x € A*, then T cannot vanish, because we have zx—! = e = 1. Conversely,
suppose that = is not invertible. Then there exists a maximal ideal containing z, so, by

theorem I1.2.10} there exists ¢ € o(A) such that 0 = ¢(x) = Z(p).
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II Some Gelfand theory

(i) By (i), we have
ga(x) ={X € Clz—Xe & A} = {\ € C|z—\ vanishes at at least one point} = Z(c(A)).

(ii1) This follows from (ii) and from theorem |I1.1.1.3

1.3 C*-algebras and the Gelfand-Naimark theorem

Definition I1.3.1. A Banach x-algebra A is called a C*-algebra if we have |z*z|| = ||z||* for
every x € A.

Remark 11.3.2. Everybody calls this a C*-algebra, except Bourbaki who says “stellar algebra”
(“algebre stellaire™).

Lemma I1.3.3. If A is a C*-algebra, then ||z|| = ||z*|| for every x € A.

Proof. Letx € A— {0}. Then
l2]* = ll="2]| < [l="[ll|]l,

so ||z]| < ||=*||. Applying this to x* and using that (z*)* = x gives ||z*|| < [|z]|.

Example I1.3.4. Most of the examples of example|l.4.2.2| are actually C*-algebras.
(a) Cisa C*-algebra because, for every A € C, we have [A\| = |\|2.

(b) Let G be a locally compact group. Then L'(G) is not a C*-algebra in general, though it
does satisfy the conclusion of lemma|ll.3.3 E]

(c) Let X be a locally compact Haudorff space. Then %,(X) is a C*-algebra, because, for
every f € %p(X), we have

1F* Flloe = sup [f(2) f(2)] = sup | f(2)[* = || fI|2.
zeX reX

(d) Let V' be a Hilbert space. Then End(V') is a C*-algebra. Indeed, let " € End(V). We
want to prove that ||7*T|,, = ||T'||2,. First note that

[P sup (T (v), w)| = sup {0, T(w))| = 1Tllop,

v,weV, [lv||=[lw||=1 v,weV, [Jv|l=[lw||=1

There is a way to modify the norm on L'(G) to make the completion for the new norm a C*-algebra, but we
won’t need this here.
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SO || T*T ||op < |T*||opl|T'|lop = IT|3,- On the other hand,

IT*Tllop = sup  [T"T()| = sup KI"T(v),v)|= sup [T(v),T(v))| =TI,
veV, |lv||=1 veV, [jv||=1 veV, |lv]|=1

Proposition I1.3.5. Let A be a C*-algebra. Then the Gelfand representation I : A — 6(0(A))
is a x-homomorphism.

Remark 11.3.6. The proposition says that everybody multiplicative functional on A is a *-
homomorphism. A Banach x-algebra satisfying this condition is called symmetric. Every C*-
algebra is symmetric, but the converse is not true. (For example, if G is a locally compact
commutative group, then L!(G) is symmetric, see problem set 5.)

Proof. By adjoining an identity to A, we may reduce to the case where A is unital. (See problem
set 5 for the correct choice of norm on A.. Note that changing the norm on A, does not affect
o(A.), because the definition of the spectrum does not involve the norm.)

Letz € Aand ¢ € o(A). We want to prove that p(z*) = z*(p) = Z(p) = @(z). Write
o(x) = a+iband p(x*) = ¢+ id, with a, b, ¢, d € R.

Suppose that b 4+ d # 0. Let

Note that y = y*, and that

1 . ) .
(p(y): b+d(a+@b+c+ld—(a+c>)—l7

so, for every t € R, we have ¢(y + ite) = (1 + t)i, hence
11+t = |p(y +ite)| < ||y + ite]|

(by corollary [[1.2.6). Using the defining property of C*-algebras and the fact that y = y* gives,
forevery t € R,

(1+6)* < |ly+ite|” = ||(y +ite) (y + ite)*|| = ||(y +ite)(y — ite) || = ||ly* + e| < ||y*|| + ¢,

i.e. 1+ 2t < ||y||*. But this implies that ||y|| is infinite, which is not possible. So b+ d = 0, i.e.
d = —b.

Applying the same reasoning to iz and (ix)* = —iz* (and nothing that ¢(iz) = —b + ia and

o((iz*)) = d —ic) gives a — ¢ = 0, i.e. a = c. This finishes the proof that p(z*) = p(z).
O

Proposition 1L.3.7. Let A be a commutative unital C*-algebra. Then, for every v € A, we have
z]] = p(2).
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Proof. If z € Ais such that x = z*, then ||z[|? = [|z*z|| = ||2?]], so ||x*"
n € N.

2" for every

= |

Now let = be any element of A. Then (zz*)* = xz*, so the first part applies to xz*. Also, for
every n € N, (zx*)" = 2™ (2*)™ (because A is commutative). So, if n > 0,

2" = ez |*" = l(z2*)*" || = a*" (@*)*"]| = 2> >

This implies that

on ||27’n

ple) = lm [P = Jo]|

]

Definition IL.3.8. If A is a Banach x-algebra, an element x of A is called normal if xz* = x*x.

Corollary I1.3.9. Let A be a unital C*-algebra, and let v € A be a normal element of A. Then
plx) = |z

In particular, if V' is a Hilbert space and 7" € End (V') is normal, then ||T||,, = p(T').

Proof. Indeed, as x commutes with x*, the closure of the smallest unital C-algebra A’ of A
containing = and z* is a commutative C*-algebra, and p(z) and ||z|| don’t change when we see
z as an element of A’.

]

Theorem I1.3.10 (Gelfand-Naimark theorem). Let A be a commutative unital C*-algebra. Then
the Gelfand representation I : A — € (c(A)) is an isometric x-isomorphism.

Proof. We know that I' is a x-homomorphism by proposition [II.3.5] and that it is an isometry by
corollary [[.2.T1{iii) and proposition[[.3.7] In particular, I" is injective. So it just remains to show
that it is surjective. As I is an isometry and A is complete, the image I'(A) is closed in €’ (o (A));
but it separates points by theorem ii) and contains the constant functions because I'(e) = 1,
so it is equal to € (0 (A)) by the Stone-Weierstrass theorem.

]

It is easy to see that the Gelfand-Naimark theorem implies the following result (but we won’t
need it).

Corollary I1.3.11. Let A be a commutative C*-algebra. Then the Gelfand representation
I': A— %(0(A)) is an isometric x-isomorphism.
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1.4 The spectral theorem

Theorem I1.4.1. Let V' a Hilbert space, and let T € End (V') be normal. We denote by Ar the
closure of the unital subalgebra of End(V') generated by T and T*; it is commutative because T
and T™* commute.

Then there exists an isometric x-isomorphism ® : € (o(T)) — Ar such that, if . is the injection
of o(T) into C, we have (1) = T.

Note that we just write o (T) for ogna(r)(71") (this is the usual spectrum of 7).

This theorem doesn’t look a lot like the spectral theorem of finite-dimensional linear algebra.
See problem set 5 for a way to pass between the two.

Proof. Let A = Ar. First we will prove the result with o 4(7) instead of o(7"), then we’ll show
that o(T") = 04(T). Note that we automatically have o(T) C o4(T) (because, if Aidy, — T is
not invertible in End(7"), then it certainly won’t be invertible in a subalgebra).

Consider the Gelfand transform of 7" (seen as an element of A), this is a continuous map
T o(A) — C. Let’s show that T is injective. Consider 1, ¢y € o(A), i.e. two multiplicative
functionals on A, such that f(gpl) = f(g@), i.e. v1(T) = p2(T). We have seen that the Gelfand
representation is a x-homomorphism, so we have

~

T (1) = T(g1) = T(ga) = T*(i20),

ie. p1(T*) = po(T™). The multiplicative functionals ¢, and ¢, are equal on e, 7" and 7™, and
they are continuous, so they are equal on all of A, which is what we wanted.

Now remember that o(A) is compact Hausdorff, because A is unital. So T induces a homeo-
morphism from o (A) to its image in C, which is o 4(7") by corollary [I1.2.11} Hence composing
with T gives an isometric *-isomorphism W : €' (o 4(T)) = € (c(A)).

Remember that we also have the Gelfand representation of A, which is an isometric *-
isomorphism ' : A = € (c(A)). So we get an isometric *-isomorphism @ : € (c4(T)) = A by
setting® ="' o U,

Let’s show that &(1) = T. AsT': A — ¥ (0(A)) is an isomorphism, it suffices to check that
T =®(1),ie. thatT = U(s). Let p € o(A). We have ¥(¢)(p) = (T (p)) = T(p), as desired.

Finally, we show that the inclusion o (7") C 04(T") is an equality. Let A € 04(7"), and suppose
that A & o(T"). Let e > 0, and choose f € € (04(T)) such that || f|l = 1, f(A\) = 1 and
f(p) =0if [N —p| > e > 0. Let U = O(f) € A, then ||U|l,p = [|f]|c = 1. Note that
®(1) = idy (where 1 is the constant function with value 1), because ® is an isomorphism of
algebras. So 7' — Aidy = ®(¢ — A), and (7" — Aidy) o U = ®((¢ — A\)f). As @ is an isometry,
this implies that

(T = Aidy) 0 Ullop = [[(t = M) flloc < €
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II Some Gelfand theory

(because f is bounded by 1, and f(u) = 0if |[A — p| > €). On the other hand, as A ¢ o(T), the
operator 7' — Aidy is invertible in End(V), so we get

L=fllo = 1Ullop = (T = Xidy) (T = Xidv)U [lop < €l[(T" = Aicky) ™[0

This is true for every € > 0, so it implies that 1 = 0, which is a contradiction.

]

Corollary I1.4.2. Let V be a Hilbert space and T' € End(V') be normal. Then the following
conditions are equivalent :

(i) o(T) is a singleton;
(i) T € Cidy;
(iii) Ap = Cidy.

Proof.

(1)=(ii) If o(T) = {\}, then ¢ is A times the unit of € (o (7)), so T = ®(¢) = Aidy.

(i))=(iii) If T € Cidy, then Cidy is a closed unital subalgebra of A containing 7" and 7™, so it is
equal to Ar.

(ii)=-(iii) Suppose that Ay = Cidy. Let A\, u € o(T). If X # p, then we can find fi, fo € € (0(T))
such that fi(A\) = 1, fo(u) = 1 and fife = 0. But then ®(f;)P(f2) = 0 and
O (f1), ©(f2) # 0, which contradicts the fact that C is a domain.

]

Definition I1.43. If A is a C-algebra and EF C A is a subset, we set
ZA(E) ={x € A|Vy € E, xy = ya}. This is called the centralizer of E in A.

It is easy to see that the centralizer is always a subalgebra of A.

Corollary I1.4.4. Let V be a Hilbert space, and let E be a subset of End (V') such that E* = F.
Suppose that the only closed subspaces of V stable by all the elements of E are {0} and V. Then
Zgnav)(E) = Cidy.

Proof. Let A = Zgnav)(E). Itis a closed subalgebra of End (V). We show that A is stable by =
- If T € A, then, for every U € FE, we have U* € E, hence

T"oU=U"oT) =ToU" ) =UoT",

so T* € A. In particular, the subalgebra A is generated by its normal elements; indeed, for every
T € A,wehave T = (T + T*) + (I' — T*)), and both T' 4+ T* and T — T* are normal.
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Remember that we want to show that each element of A is in Cidy; by what we just showed, it
suffices to prove it for the normal elements of A. So let " € A be normal. By corollary
it suffices to show that the spectrum o (7") of 1" is a singleton. By the spectral theorem (theorem
, we have an isometric *-isomorphism ® : ¢ (o(T)) = Ar, where Ar is the closure
of the unital subalgebra of End(V') generated by 7" and 7™, such that ¢ sends the embedding
t:0(T) — CtoT. Note that A7 C A. Now suppose that o(7") is not a singleton. Then we can
find two nonzero functions fi, fo € € (o(7T')) such that f, fo = 0, and ®(f1), ®(f>) are nonzero
elements of Endg(V) such that ®(f1)®(f2) = 0. Let W = Im(®P(fs)); then W # {0} because
®( f2) is nonzero. Also, as ®(f2) commutes with every element of F, the subspace W is stable
by all the elements of F, so W = V by hypothesis. But we also have ®(f;)(W) = 0 because
O(f1)®(f2) = 0, so ®(f1) = 0, which contradicts the choice of fi, fo. So o(7") is a singleton,

and we are done.

[]

57






Il The Gelfand-Raikov theorem

The goal of this chapter is to prove the Gelfand-Raikov theorem, which says that irreducible
unitary representations of locally groups separate point (i.e., if G is alocally compact group and
x € G — {1}, then there exists an irreducible unitary representation of G such that 7(x) # 1).

In this chapter, G is a locally compact group and p (or just “dx”) is a left Haar measure on G.

1 L2(G)

You can safely ignore this section and assume that all groups are o-compact.

We will be using L°°((G) more seriously in this chapter, and we want it to be the continuous
dual of L*(@), which is not true if G is not o-compact. So we change the definition of L>(G)
to make it true. See section 2.3 of [&]].

More generally, let X be a locally compact Hausdorff topological space and let . be a regular
Borel measure. We say that &/ C X is locally Borel if, for every Borel subset F' of X such that
wu(F) < +oo, we have that E'N F' is a Borel subset of X. If E is locally Borel, we say that E is
locally null if, for every Borel subset F' of X such that u(F) < +oo, we have u(E N F) = 0.
We say that an assertion about points of X is true locally almost everywhere if it is true outside
of a locally null subset. We saw that a function f : X — C is locally measurable if, for every
Borel subset A of C, the set f~'(A) is locally Borel. Now we set L>°(X) to be the space of
locally measurable functions X — C that are bounded locally almost everywhere, modulo the
equivalence relation : f ~ g if f — g = 0 locally almost everywhere. The norm on L>(X) is
given by

| fllo = inf{c € R¢l||f(x)] locally almost everywhere}.

lll.2 Functions of positive type

Definition II1.2.1. A function of positive type on G is a function ¢ € L*°(G) such that, for every
f e LYQ), we

/G(f* v F)(2)p(@)dz > 0.
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III The Gelftand-Raikov theorem

Note that f* * f € LY(G) if f € L'(G), so the integral converges.
Remark II1.2.2. For every p € L>®(G) and every f, g € L'(G), we have

/G (g @e@dr= | @l a)e()dedy

/G GA(?J)_lmg(y_lx)ga(x)dxdy
/G Gﬂ g(yx)p(x)dzdy
:/G TWg@)elye)ddy.

Example I11.2.3. (1) 0 is a function of positive type.

(2) If ¢ : G — S' C Cis a 1-dimensional representation (i.e. p(zy) = @(z)p(y) for all
z,y € G), then it is a function of positive type. Indeed, for every f € L'(G), we have by

remark [[1.2.2]
/G(f dx—/GXGf Yo(y o) dzdy
— [ Ty
GxG
— || eas@ya| =0
e

We will generalize the second example in point (ii) of the following proposition.

Proposition I11.2.4. (i) If ¢ : G — C is a function of positive type, then so is .

(ii) If (m, V') is a unitary representation of G andv € V, then p : G — C, x — (m(z)(v),v)
is a continuous function of positive type.

(iii) Let f € L*(G), and define ]?: G — Cby f(x) = f(z=1). Then f * fmakes sense, it is in
L*>®(@Q), and it is a function of positive type.

Proof. (i) Let f € L*(G). Then, by remark [[11.2.2}

/G o+ Ppdp= [ T ya)pl@)dedy

GxG
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(if) The function ¢ is continuous because G — V, x — m(x)(v) is continuous. Let’s show
that it is of positive type. Note that, for all x,y € G, we have

ply~'z) = (r(y~'2)(v),v) = (n(2)(v), 7 (y)(v))-
Let f € L*(G). Then, by remark [[I1.2.2]

/ P Pedu= | 1@ T@ely " x)dedy

GxG

— /G G(f(x)w(x)(v)y F)m(y)(v))dedy
= (r(f)(v), 7(f)(v)) > 0.

(iii) Let z € G. Then the integral defining f f(m) is

/ ) fz—Ty)d

This integral converges, because both f and L,f : y — f(z~'y) are in L?(G) (by left
invariance of 1). Also, by the Cauchy-Schwarz inequality, we have

| F(@)] < L Fll2lIZaFll2 = [L£13.
So f* f € L*®(G).

Let’s show that f % fis of positive type. Let 7, be the left regular representation of G, i.e.
the unitary representation of G on L?(G) given by 71 (z) = L,. Then, for every x € G,
we have

(mp(z / Fa ) fly)dy = | Fly=ta)fly)dy = f* f(x).
G

So the result follows from (i) and (ii).

The main result of this function is that the example in (ii) above is the only one.

Theorem IIL.2.5. Let ¢ : G — C be a function of positive type. Then there exists a cyclic
unitary representation (m,V') of G and a cyclic vector v for V such that p(x) = (m(z)(v),v)
locally almost everywhere.

Moreover, the representation m and the vector v are uniquely determined by , in the following
sense : if (7', V') is another cyclic unitary representation of G and if v' € V' is a cyclic vector
such that p(x) = (r'(z)(v"),v") locally almost everywhere, then there exists a G-equivariant
isometry T : V' — V' such that T'(v) =
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In fact, we will give a somewhat explicit construction of (7, V') during the proof.

Before proving the theorem, let’s see some easy corollaries.

Corollary IIL2.6. Let ¢ : G — C be a function of positive type. Then p agrees with a con-
tinuous function locally almost everywhere, ||¢llc = ¢(1) and, for every x € G, we have

p(x™h) = ().

Proof. The first statement follows from (ii) of proposition [lII.2.4] To prove the other statements,
choose a cyclic unitary representation (7,V") of G and v € V such that p(z) = (7(z)(v),v).
Then, for every = € G,

lo(@)] < llm(@)()lllv] = [[o]l* = (1)

and

]

Now we come back to the proof of the theorem. Let ¢ : G — C be a function of positive type.
Define a Hermitian form (., .),, on L'(G) by :

(f,0)p = / @+ No=[  F@aely z)drdy

GxG

(see remark [[11.2.2)). In particular, we clearly have, for all f,g € L'(G),

[(F: el < [ fIIllgllllelloo-

As o is of positive type, we have (f, f), > 0, that is, the Hermitian form we just defined is
positive semi-definite; in particular, the Cauchy-Schwarz inequality applies to it, and it gives, for
all f,g € L'(G),

|<f7 g><ﬂ|2 S <f7 f)w(ga g)#"

Let ./ be the kernel (or radical) of the form (., .),, that is, the orthogonal of L'(G), i.e. the
space of f € L*(G) such that (f, g), = 0 forevery g € L'(G). By the Cauchy-Schwarz inequal-
ity, we have f € .4 if and only if (f, f),, = 0. Hence the form (., .),, defines a positive definite
Hermitian form on L'(G) /.4, that we will still denote by (., .),; we denote the associated norm
by ||.||,. For every f € L*(G), we have

1+ A5 < Nl I

Let V,, be the completion of L'(G) /.4 for the norm ||.||,,; this is a Hilbert space.

We want to construct a unitary action of G on V,,. We already have a continuous representation
of G on L'(G), using the operators L,. This will magically give our unitary representation. Note
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II1.2 Functions of positive type

first that, for every L'(G), the map G — L'(G), x — L, f is continuous for the semi-norm
|.]|» because of the inequality ||.||,, < H<p\|1/2H |1 that we just proved.

Let’s prove that (., .),, is invariant by the action of G. Let z € G and f, g € L*(G). Then

(Lof, Lag)y = ; Gf(x‘ly)g(l“lz)w(z‘ly)dydz

= FWg(@)e((x2) " (xy))dydz

GxG

= FW)g(2)e(z"y)dydz = (f,g)e-

GxG

In particular, the radical .4 of the form (., .),, is a G-invariant subspace of L'(G), so we get
an action of G on L'(G) /.4, which preserves the Hermitian inner product and is a continuous
representation by proposition We extend this action to V,, by continuity. This gives a
unitary representation of G on V,,, which we will denote by 7.

Let f,g € L'(G). Then, by example [[.4.2.7, we have

To(f)g+A)=fxg+ N

The following lemma will imply the first statement of theorem [[II.2.

Lemma II1.2.7. There exists a cyclic vector v = v, for V,, such that :
(i) for f € LY(G), we have w,(f)(v) = [+ A;

(ii) we have ¢(x) = (7 (x)(v),v), locally almost everywhere on G.

Proof. By the calculation of 7,(f)(g + -#) for f,g € L'(G) (see above), we see that v would
be the image in L'(G) /.4 of a unit element for * (i.e. a Dirac measure at 1 € G), if such a unit
element existed. In general, it doesn’t, but we can approximate it, and hope that we will get a
Cauchy sequence in L(G)/.A .

So let (¢ )ues be an approximate identity (see definition [I.4.1.7). Note that (¢f;)yes is also
an approximate identity, so, by proposition [[.4.1.9] we have ¢, * f U—{1}> fin LY(Q) for every
ﬁ

f € LY(G). So, for every f € L'(G), we have

Foo)e = [Wix Do —— [ Fodu

U—{1}

Hence f — [, fedy is a bounded (for ||.||; and |.||,) linear functional on L'(G) whose kernel
contains ./". We can descend this bounded linear functional to L'(G)/.#" and extend it to V, by
continuity, and we get a bounded linear functional on V,,, which must be of the form (., v),, for
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III The Gelftand-Raikov theorem

some v € V,, (uniquely determined), because V, is a Hilbert space. By definition of v, we have,
for every f € LY(Q),

(f+A v)p= /Gfsodu,

and this determines v because the image of L'(G) is dense in V.

Now we prove properties (i) and (ii). Let f, g € L'(G). Then

(9, f)o = /G(f* * g)pdp
— [ @ty a)dady
GxG

- / o(y2) F@)p(x)ddy

GxG

= / (y) Ly 9(7)p(z)dzdy

GxG

<9+JV FW)me(y)(v))pd

= <g+</V77Tgo(f)(U)>s0‘

As this is true for every ¢ € L'(G) and as the image of L'(G) is dense in V,,, we get
7,(f)(v) = f 4 4. In particular, the span of {m,(f)(v), f € L'(G)} is dense in V,, so v
is a cyclic vector (by (iii) of theorem [[.4.2.6)).

Also, for f € L'(G), by what we have just seen :

/f (7o (1) (V), V) = ( /f )7 () (v)d, v),

To(f)(V), V)
f + N, 0)y

- [ s

As this is true for every f € L*(G), it implies that p(z) = (m,(x)(v), v}, locally almost every-
where.

]

To finish the proof of theorem [II1.2.5] we just need to establish the following lemma.

Lemma IIL.2.8. Let (7, V') and (w, V') be two cyclic unitary representations of G and v € V,
v' € V' be two cyclic vectors such that, for every x € G, we have

(m(2)(v), v) = (x'(2) (), V).
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/

Then there exists a G-equivariant isometry T : V' — V' such that T'(v) = v'.

Proof. Of course, we want to define 7' : V' — V' by the formula T'(w(x)(v)) = 7'(x)(v"), for
every z € G. We need to make sense of this. Let W = Span{rn(z)(v), € G}. By the
assumption that v is cyclic, the subspace W is dense in V. Let’s check that the formula above
defines an isometry 7' : W — V'. Let xy, ..., z, € Gamd \q,...,\, € C. Then

me) ZZ)\)\ m(z; z;) (v),0)

'Ll]l

:ZZ/\)\ (27 '2;)(v"), )

=1 j5=1

Z A (:) (V)

In particular, if >, A\;w(x;)(v) = 0, then we also have )" \;n'(z;)(v') = 0. So we can
define T : W — V' by T(> ", Mm(w;)(v)) = >, Mim'(x;)(v'), and then the calculation
above shows that 7" is an isometry. Hence 7' is continuous, and so we can extend to a continuous
linear operator 7" : V' — V", which is still an isometry, hence injective and with closed image.
Also, if z € G and w € W, then we have T'(7(x)(w)) = «'(z)(T(w)) by definition of 7. As
T 1s continuous and W is dense in V/, this stays true for every w € W; in other words, 7' is
G-equivariant. Finally, 7'(v) = v by definition of 7', so the image of 7" is dense in V’, hence
equal to V.

2

2

]

lll.3 Functions of positive type and irreducible
representations

We have seen that cyclic unitary representations of GG (together with a fixed cyclic vector) are
parametrized by functions of positive type. The next natural question is “which functions of
positive type correspond to the irreducible representations ?”’

Definition II1.3.1. We denote by Z(G) or & the set of continuous functions of positive type
on G. This is a convex cone in 6, (G). []

Let
P ={p € 2|[|vllec =1} ={p € Z|p(1) =1}
and

Py ={p € Z||¢lle <1} ={p € Z[p(1) < 1}.

1“Cone” means that it is stable by multiplication by elements of R>.
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III The Gelftand-Raikov theorem

(Remember that, by corollary [I[I1.2.6, we have ||¢||.. = ¢(1) for every p € £.)

Then &7, and &, are convex subsets of 4,(G). We denote by & () and & () their sets of
extremal points.

Theorem IIL.3.2. Let ¢ € . Then the unitary representation (V,,,m,) constructed in the
previous section is irreducible if and only if ¢ € &( ).

Remark 1I1.3.3. If ¢ € &7 and ¢ € Ry, then we have (., .), = ¢(.,.)p, 50 Vo, = Vi, e, =
and v., = v,. (But the identity of V,, is not an isometry, because we are using two different
inner products, i.e. (.,.), and (.,.).,). As each nonzero ¢ € & is a of the form ¢y’ for a unique
¢ e Py (we have ¢ = (1)), the theorem does answer the question at the beginning of the
section.

Remark 111.3.4. If G is commutative, the theorem says that G = & ().

Proof. In this proof, we will denote the inner form and norm of V' = V,, by (.,.) and ||.||, and we
will write m = 7. (Unless this introduces confusion.)

We first suppose that 7 is not irreducible. Let 0 # W C V be a closed G-invariant subspace.
As 7 is unitary, W+ is also G-invariant, and we have V = W @& W+, Let v € V be the cyclic
vector of lemma As v is cyclic, it cannot be contained in W or in W (otherwise we
would have W = V or Wt = V). So we can write v = vy + v, with v, € W, vy € W,
and vy, vy # 0. Define ¢1, 09 : G — C by p;(z) = (m(x)(v;),v;). Then 1, ps € & by (ii)
of proposition [[I1.2.4] and we have ¢ = ¢ + pa. Let ¢; = [[v1]|* and o = ||v2]|%; we have
¢1 + ¢ = [|v]]* = ¢(1) = 1 by the Pythagorean theorem, so ¢1,¢; € (0,1). Let ¢; = L;, for
i =1,2. Then ¢ = 191 + oo, and 1y, 10y € Py (because ¢y (1) = (1) = 1). To conclude
that ¢ is not an extremal point of &7, we still need to prove that ¢); # 1), i.e. that ¢, is not of
the form ¢y for ¢ € R

2 .
Let ¢ € R.g. Choose € > 0 such that ¢ < %, i.e. such that el|vs|| < c||v1]|? — ecllv1||.
As v is a cyclic vector for V, we can find x4, ...,z, € Gand ay,...,a, € C such that

n

Z a;m(x;)(v) — v

=1

<e&.

As v = vy + vy withv; € W and v, € W, and as both W and W are stable by the action of
G, we have, for z € G,

(m(@)(v), v1) = (w(x)(v1) + 7(2)(v2), 01) = (w(2)(v1), v1)-
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II1.3 Functions of positive type and irreducible representations

Hence

Z ai<7r<xi)(vl)7 ?)1) - <Ul, U1>

= Z ai<7T(iEi)(?}), 1}1> — <1}1’ Ul)

— <Z a;m(z;)(v) — Ulavl>>|

i=1
<éellvll;

which implies that

lvi]* = eflonll <

Zaxﬂ(%)(vl)ﬂh)

Z a; o1 (fL‘,) .
=1

On the other hand (using the fact that (7(x)(v),ve) = (7(x)(vs), vo) for every x € (), we have

n

Zai<7f(17z‘)(v2)702>

=1

n

= |3 aulm (@) (), v2) — (01, 02)

=1

- <Z a;m () (v) — 01, v2)

n

Z a;m(x;)(v) — vy

i=1
< elfvo|

< vl

< cllvi[* = ecflval]

Z aipr(w;)
i=1

<c

1.e.
n

Z ais02(9€i)

=1

n

Z aigpl (I‘Z> .

=1

<c

So we cannot have s = cp;. As ¢ was arbitrary, this finishes the proof that v); # 15, hence that
 is not an extremal point of &7;.

Conversely, we want to show that ¢ is extremal in &; if 7, is irreducible. Suppose that
© = 1 + @9, with 1, 3 € 2. Forevery f € L'(G), we have

<f7f>301:<f7f><p_<faf>sﬂ2§<f7f><p'

In particular, the kernel of (., ), is contained in the kernel of (.,.),,, so the identity of L!(G)
extends to a continuous surjective map 7" : V, — V,,, and that map is G-equivariant because the
action of G on both V,, and V,,, comes from its action on L' (G) by left translations. Also, as v,,
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III The Gelftand-Raikov theorem

(resp. v, ) is just the limit in V,, (resp. V) of the image of an approximate identity, the operator
T sends v, to v,,. As KerT is a G-invariant subspace of V,,, so is (KerT)*, so T defines a
G-equivariant isomorphism (Ker T')* = V,,, so V,, is isomorphic to a subrepresentation of V.

Now suppose that 7, is irreducible. Then 77" € End(V,,) is G-equivariant, so it is equal to
cidy,, for some ¢ € C by Schur’s lemma (theorem|[.3.4.1). As T'(v,,) = v,,,, forevery x € G, we
have

As ; and ¢ are of positive type, we must have ¢ € R>,. We see similarly that p, must be in
R>op. So ¢ is extremal.

]

1.4 The convex set &,

We have seen in the previous two sections that irreducible unitary representations of G are
parametrized by extremal points of &?;. Remember that we are trying to show that there enough
irreducible unitary representations to separate points on (G. So we want to show that &7, has a
lot of extremal points. A natural ideal is to use the Krein-Milman theorem (theorem that
says that a compact convex set is the closed convex hull of its extremal points), but &; is not
compact in general. However, the set & is convex and weak* compact and closely related to
1, this will be enough to extend the conclusion of the Krein-Milman theorem to #;.

Remember that & is a subset of L*°(G). We identify L>°(G) with the continu-
ous dual of L!'(G) and consider the weak* topology on it and on its subsets &, &,
and &,. For f € L*>®(G), a basis of neighborhoods of f is given by the sets
Ugprogne = LI € L¥(G)|| Jo(f = fgidp| < ¢, 1 <i<n},forn € Zs1, g1, .., 9, € L'(G)

and ¢ > 0. The second main result of this section is that the weak* topology coincides with the
topology of compact convergence on #.

Theorem I11.4.1. The convex hull of & () is dense in &, for the weak* topology.
Lemma I11.4.2. We have & (%) = &(Z71) U {0}.
Proof. First we show that every point of &(2%) U {0} is extremal in Z,. Let @1, ps € P

and ¢;,cy € (0,1) such that ¢; + co = 1. If 101 + capg = 0, then 0 = ¢1¢1(1) + capa(1),
50 p1(1) = @o(1) = 0, 50 [[¢1]lc = [[¢2]lc = 0,ie. @1 = @o = 0. This shows that 0 is
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III.4 The convex set £,

extremal. Suppose that ¢ := c1p; + a2 € &(F1). Then 1 = (1) = c1(1) + ¢2(1), so
©1(1) = @a(1) =1, 50 1, o € Hq; as @ is extremal in Z?y, this implies that p; = ¢,. So @ is
also extremal in &,

Now we show that every extremal point of Z, is in &(Z;) U {0}. Let
p e Py—(E(P)U {0}) If p € &, it is not extremal If p € P, then 0 < ¢(1) < 1,
sop = (1—c¢)0+c ( Sy With ¢ = ¢(1) € (0,1) and Sm% € Z; this shows that ¢ is not
extremal.

O

Proof of the theorem. Note that the conditions defining &2 in L>°((G) are weak* closed condi-
tions, so & is a weak* closed subset of L>®°((G). As &, is the intersection of &2 with the closed
unit ball of L>(G), it is weak* closed in this closed unit ball, hence weak* compact by the
Banach-Alaoglu theorem (theorem . As P, is also convex, the Krein-Milman theorem
(theorem says that the convex hull of &(%) is weak* dense in &,. Also, the lemma
above says that &(Z) = &(#;) U {0}.

Let ¢ € &, and let U be a weak* neighborhood of ¢ of the form
{v e 2| [(0—)gidu| < ¢, 1 <i<n},withn € Zsy, g1,...,9, € L'(G) and ¢ > 0.
We want to find a point of U that is in the convex hull of &(Z?;). Choose ¢ > 0 (we will see
later how small it needs to be). By the first paragraph and the fact that closed balls in L>°(G) are
weak™ closed (a consequence of the Hahn-Banach theorem), we can find %) in the convex hull of
& (1) U{0} such that, forevery i € {1,...,n}, we have | [,(v —1)gidp| < ¢/2 and such that
|¥]|o =1 —e. Write ¢ = 011/11 + ...+, with ey, ..o e € 0,1, 0,0 0, € E(P) and
ci+...+c¢ <1 Leta= II¢|I Thenaw (aci)yr + ...+ (ac,)Y, and acy + ... + ac, =1,
so at) is in the convex hull of &( ;). Let’s show that ay) € U. Ifi € {1,...,n}, we have

‘/G(so—at/))gidu’ < ’/G(so—lb)gidu' ‘/Gw —aw)gidu‘
/Gll)gz‘dﬂ‘
<c/2+¢ (c/2 + ‘/Ggpgid#') ‘

So, if we choose & small enough so that € (¢/2 + | [, pgidu|) < ¢/2 forevery 1 € {1,...,n},
the function av) will be in U.

<c/2+ |1 —dq

[]

As & is a subspace of the space ¥ (), we can also consider the topology of compact conver-
gence on &, that is, of convergence on compact subsets of G. If ¢ € &, a basis of neighbor-
hoods of ¢ for this topology is given by {1 € Z|sup,cx |p(z) — ()| < c}, for all compact
subsets K of GG and all ¢ > 0.
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III The Gelftand-Raikov theorem

Theorem I11.4.3. (Raikov) On the subset &7, of &2, the topology of compact convergence and
the weak* topology coincide.

Remark 111.4.4. This theorem generalizes problem 6 of problem set 3. (See remark [l11.3.4])

Note that the theorem is not true for &,. For example, if G = R, then the topology of compact
convergence and the weak™* topology do not coincide on G U {0} (see the remark at the end of
the solution of problem set 3).

Corollary II1.4.5. The convex hull of &) is dense in &, for the topology of compact con-
vergence.

Proof of the theorem. We first show that the topology of compact convergence on & is finer
than the weak* topology (this is the easier part). Let p € 22;. Let f € L'(G) and ¢ > 0,
andlet U = {¢ € || [, f(p —¥)du| < c}. We want to find a neighborhood of ¢ in the
topology of compact convergence that is contained in U. Let X' C G be a compact subset such
that [o . |fldp < ¢/3, andlet V. = {¢ € Pi|sup,ex|p(x) —(2)| < 5757} Then, if
1 €V, we have

/Gf(so - ww‘ <

/Kf(so—w)du‘Jr‘/G\Kf(w—w)du‘

< 1l sup [(z) — (2)] +2 / Fldu
zeK G\K

<c

so 1) € U (on the second line, we use the fact that ||¢||. = [|]|c = 1).

Now let’s prove the hard direction, i.e. the fact that the weak* topology on
2, is finer than the topology of compact convergence. Let ¢ € ), and let
V = {¢ € Pi|sup,ex l¢(z) — ¥(x)| < ¢}, with K C G compact and ¢ > 0. Let § > 0
be such that § 4+ 4v/8 < c. Let @ be a compact neighborhood of 1 in G such that

sup |¢(x) — 1] < 0.
zEQ

(Such a @ exists because ¢ is continuous and ¢(1) = 1.) As () contains an open set, we have
w(@) # 0. Let f = @IQ. By the first lemma below (applied to V = L(G) and B = £))
and the fact that G — L'(G), © —> L,-1f is continuous (hence {L,1f, = € K} C L'(G)
is compact), we can find a weak* neighborhood U; of ¢ in &?; such that, for every x € K and
every ¢ € U;, we have

/(90 - @b)Lxlf‘ < 4.
G
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Then, for every z € K and every ¢» € U;, we have

fxp(x) — fx()| = /f:vy - (_1))@‘
/G Lo f()(p(y) — ¥ (v))dy

<.

Let Uy = { € 2i||[,(¢—)fdu| < &}. (This is a weak* neighborhood of ¢.) Let
¢ S U1 N UQ. Then

(see corollary [[I1.2.6)

1— ) fd (1-¢)fd — ) fd
G( @b)fu‘ﬁ‘/ fu‘+‘/s0 ¢fu‘

a0

<sup|1— (x)|+ 0
zeQ

< 26.

On the other hand, for every = € GG, we have

1 () — ()| = @/1 ety oy = o [ vt dy\

/ by~ 2)ldy

—) / V/2(1 — Re(t(y)))dy (see the second lemma below)
Q

< % ( / (1= Re((y )))dy) v ( /Q dy> " (Cauchy-Schwarz)

1/2

V5

/G( V) fdu

As ¢ € Us, the previous calculation shows that this is < 2v/5. Note that this also applies
to v = ¢, because of course  is in U; N U,. Putting all these bounds together, we get, is
1/16 UlﬂUQaIleL’GK,

[ih(z) — ()| < () = ()] + [ f () — fro(@)]+ |f* o) — o))
<5+ 4V6
< cC.
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III The Gelftand-Raikov theorem

So U; NU, C V, and we are done.
O

Lemma I11.4.6. Let V be a Banach space, and let B be a norm-bounded subset of Hom(V, C).
Then the topology of compact convergence (i.e. of uniform convergence on compact subsets of
V') and the weak™ topology coincide on B.

Proof. We want to compare the topology of pointwise convergence on V' (i.e. the weak™ topol-
ogy) and the topology of compact convergence on V. The second one is finer than the first one
on all of Hom(V, C), so we just need to show that the first one is finer than the second on B.

Let Ty € B, let K C V be compact and let ¢ > 0. We want to find a weak* neighborhood
of Ty in B contained in {T" € B|sup,cx |T(z) — To(z)| < c}. Let M = suppep ||T|op (this
is finite because B is bounded). Let x1,...,x, € K such that K is contained in the union of
the open balls centered at the x; with radius 33;. Let 7' € B be such that [(T" — Tp) ()| < ¢/3
for ¢« = 1,...,n (this defines a weak* neighborhood of T'). For every x € K, there exists
i € {1,...,n} such that ||z — z;|| < 55, and then we have

T (z) = To(2)| < [T(x = a)| + (T = To)(:)| + [To(x — 25)]
<[ T(loplle = 2ill + ¢/3 + [ Tollopl|x — 4]

<c/3+2M——

sm - ©

SoT e U.

Lemma IIL4.7. Let p € &,. Then, for all x,y € G, we have
o(z) = p()* <2 —2Re(p(yz™")).

Proof. By theorem [[I1.2.5, we can find a unitary representation (7, V') of G and v € V such that
o(x) = (m(z)(v),v) forevery x € G. Also, as (1) = 1, we have ||v|| = 1. So, forall z,y € G,
we have

lo(x) — () = [((7(x) = 7(y))(v),v)]
= (v, (m(z™") = 7(y™))(v))]?
< |l(w(z™") = x(y ) (0)|?
= 7z @) + [[x (=) () * = 2Re((w(z~ 1) (v), 7(y ™) (v)))
=2 —2Re((r(z)(v),7(y™")(v)))
=2 —2Re((m(yz™")(v),v))
=2 —2Re(p(yz™"))
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1.5 The Gelfand-Raikov theorem

Theorem IIL.5.1. (Gelfand-Raikov) Let G be a locally compact group. Then, for all x,y € G
such that x # v, there exists an irreducible unitary representation 7 of G such that 7(x) # 7(y).

More precisely, there exists an irreducible unitary representation (m,V') of G and a vector
v € V such that (m(x)(v),v) # (7(y)(v),v).

Proof. Let x,y € G. Suppose that (w(x)(v),v) = (7(y)(v),v) for every irreducible unitary
representation (7, V') of G and every v € V. By theorem lI1.3.2] this implies that ¢(z) = ¢(y)

for every ¢ € &(1), hence for every ¢ € Z; by corollary [[I1.4.5| (and the fat that {z,y} is a
compact subset of (), hence for every ¢ € & because & = R - Z;.

Let 7, be the left regular representation of G, i.e. the representation of G on L*(G) defined
by 7(2)(f) = L.f for z € G and f € L?*(G). This is a unitary representation of G, so, by

the first paragraph and by proposition [[IL.2.4] we have (7. (x)(f), f) = (m.(y)(f), f) for every
f e L*G). Let fi, fo € L*(G). Then

(m(@)(fi + f2), [1 + f2) = (mo(2)(f1), fr) + (mr(f2), fo) + (mo(@)(f1), f2) + (mo(2)(f2), f1)

and

(rr(z)(fi+ife), fitifa) = (mp(@)(f1), fr) (7L (fo), f2) —imL(@)(f1), fo) +ilmr(z)(f2), f1),

SO

2(mp(2)(f1), f2) = (mo(2)(f1 + f2), f1 + fo) +ilmo(x)(fr +if2), fr +if2)
— (1 +4)({(mo(z)(f1), fr) + (mL(2)(f2), f2))-

We have a similar identity for 77, (y), and this shows that

(mr(z)(f1), f2) = (7L(Y)(f1), fa)-

Now note that
(mL(2)(f1), f2) = /Gszl(Z)de
= / fl(x_lz)mdz
G B —
~ [ B
e
= fox fi(z)

(remember that f; € L2(G) is defined by f1(z) = f1(z=1)), s0 fo * fi(z) = fa * fi(y). This
calculation also shows that f; * f; makes sense and is continuous.
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III The Gelftand-Raikov theorem

As f —> [ is an involution on L*(G), we deduce that f;  fo(z) = f1 % fa(y) for all
f1, f2 € L*(G), and in particular for all f, fo € 6.(G). Let f € 6.(G), and let (¢Yy)pen
be an approximate identity. We have ¢y € 6.(G) for every U € %, and ¢y * f U—{}> f for

—{1

|.]l by proposition [[.4.1.9| (and the fact that f is uniformly continuous, which is proposition
[.1.12). As ¢y x f(x) = Yy * f(y) for every U € %, this implies that f(x) = f(y). But then
we must have © = y (by Urysohn’s lemma).

]
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IV.1 Compact operators

Definition IV.1.1. Let VV and I/ be Banach spaces, and let B be the closed unit ball in V. A

continuous linear operator 7' : V' — W is called compact if T'( B) is compact.

Example IV.1.2. (1) If Im(7) is finite-dimensional (i.e. if 7" has finite rank), then 7" is com-
pact.

(2) If T"is a limit of operators of finite rank, then 7" is compact (see problem 6 of problem set
5). Conversely, if W is a Hilbert space, then every compact operators 7' : V' — W is a
limit of operators of finite rank. [

(3) The identity of V' is compact if and only if V' is finite-dimensional. (This is a consequence
of Riesz’s lemma, see theorem )
In this class, we will only need to use self-adjoint compact endormophisms of Hilbert space.

A much simpler version of the spectral theorem holds for them.

Theorem IV.1.3. Let V' be a Hilbert space over C, and let T : V' — V be a continuous endo-
morphism of V. Assume that T is compact and self-adjoint, and write V\, = Ker(T — \idy) for
every A € C.

Then :
(i) If V) # 0, then A € R.

(i) If \,u € Cand X\ # p, then'V,, C V.

(iii) If A € C — {0}, then dim¢ V), < +o0.

(iv) {\ € C|V) # 0} is finite or countable, and its only possible limit point is 0.
(v) @ cc Vais dense inV.

Proof. We prove (i). Let A € C such that V), # 0, and choose v € V), nonzero. Then
Aol = (A, v) = (T (v),v) = (v, T*(v)) = (v, T(v)) = Ao

'This is not true in general, see https://mathscinet.ams.org/mathscinet-getitem?mr=
4024068.
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As ||v]| # 0, this implies that A € R.

We prove (ii). Let A\, x € C such that A # 1, and let v € V), and w € V,,. We want to prove
that (v, w) = 0. By (i), it suffices to treat the case where A, u € R (otherwise v = w = 0). In
that case, we have

/\<U7w> = <T(U)7w> = <U7T<w)> = ﬁ<v7w> = M<U7w>7
so (v, w) = 0.

Letr > 0. Let W = ®\A|2r Vy. We want to show that dim W < +oo, which will im-
ply (iii) and (iv). Choose a Hilbert basis (¢;);c; of W made up of eigenvectors of 7', i.e. such
that, for every i € I, we have T'(e;) = \e; with |\;| > r. If [ is infinite, then the family
(T'(e;))ier cannot have a convergent (non-stationary) subsequence. Indeed, if we had an in-
jective map N — I, n —— i, such that (7'(e;,)),>0 converges to some vector v of V, then
Ai, €, — v, so v is in the closure of Span(e;,,n > 0). But on the other hand, for every n > 0,
(v,€;,) = limy,100(N;, €i,.,€:,) = 0, s0ov € Span(e;,,n > 0)*. This forces v = 0. But
|v|| = limy,— 400 || Ai, €5, || = 7 > 0, contradiction. As 7" is compact, this show that / cannot be
infinite, i.e. that dim (W) < 4oc.

Let’s prove (v). Let W' = @, Vi, and W = W', We want to show that W = 0.
So suppose that W # 0. As T is self-adjoint and W’ is clearly stable by 7, we have
T(W) c W. (If v € W, then for every w € W', (T'(v),w) = (v,T(w)) = 0.) By defini-
tion of W, we have Ker(Tjy) = {0}, hence ||Tjw|lop > 0. Let B = {x € W|||z| = 1}. As
|Tiw |lop = sup,ep |(T'(x), z)| by the lemma below, there exists a sequence (z,,),>0 of elements
of B such that (T'(z,,), z,,) — X as n — +o00, where A = £||Tjyy||,p. Then

0 < ([T (xn) = Azn]l* = [T (@) I* + A 2al* — 2MT (2n), ) < 2X° = 2T (), 20)

converges to 0 as n — oo, so T'(x,) — Az, itself converges to 0. As 7' is compact, we
may assume that the sequence (7'(z,)),>0 has a limit in W, say w. Then T'(w) — Aw = 0.
By definition of W, we must have w = 0. But then T'(z,,) — 0, so (T'(x,),x,) — 0, so
A = 0= [|[Tjw|op, a contradiction.

[
Lemma IV.1.4. Let V be a Hilbert space, and let T' € End(V') be self-adjoint. Then

ITllop = sup  [(T'(z),z)|.
zeV, Jlz]l=1

Proof. Let ¢ = Sup,ey, o121 |[(T'(z), x)|. We have ¢ < ||T|,, by definition of ||T'[|,p. As
ITllop = SUDP, yev,ja=fyii=1 |{T (%), y)|, to prove the other inequality, it suffices to show that
(T (z),y)| < cforall x,y € V such that ||z| = |ly|| = 1. Let x,y € V. After mutliplying y by
anorm 1 element of C (which doesn’t change ||y||), we may assume that (7'(z),y) € R. Then

(7)) = {(T (@ + ).+ ) —{T( )7~ ),
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SO
Cc C
(T(@), )| < 7z +yl” + lle = yl*) = Sl + l1y71])

(the last equality is the parallelogram identity). This shows the desired result.

Here are some results that are true for compact operators in greater generality (see [16]] 4.16-
4.25).

Theorem IV.1.5. Let V be a Banach space, and let T' € End(V') be a compact endomorphism.
We write o (T) for the spectrum of T in End(V'), i.e.

o(T) = {\ € C|Aidy — T ¢ End(V)*}.

Then :
(i) For every \ # 0, the image of T — Aidy is closed.

(ii) For every X € o(T) — {0}, we have Im(T — Xdy) # V and
dim(Ker(T — Ndy)) = dim(V/ Im(T — Xidy)). f| In particular, Ker(T — Nidy) # {0}.

(iii) For every \ # 0, the increasing sequence (Ker((T' — A\idy)"))n>1 stabilizes, and its limit
is finite-dimensional.

(iv) If dim¢ V = +oo, then 0 € o(T).
(v) The subset o(T) — {0} of C — {0} is discrete. In particular, for every r > 0, there are only
finitely many \ € o(T') such that |\| > r.

In particular, if V' is a Hilbert space and T’ is self-adjoint, then (v) of theorem [V.1.3|become

V=P Ker(T - Ndy).

Ao (T)

IV.2 Semisimplicity of unitary representations of
compact groups

The goal of this section is to prove the following theorem. (Compare with proposition [[.3.3.3])

ZNote that this generalizes the rank-nullity theorem.
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Theorem IV.2.1. Let G be a compact group, and let V' be a unitary representation of G. Then
there exists a family (W;);c; of pairwise orthogonal subrepresentations of V' such that each W

is irreducible and that
V=w.

i€l

We already saw the crucial construction in problem set 5. Let’s summarize it in a proposition.

Proposition IV.2.2. (See problem 6 of problem set 5.) Let G be a compact group, let dx be the
normalized Haar measure on G, and let (7w, V') be a unitary representation of G. If u € V, then
the formula

T(v) = /G (v, () () () (w)dz

defines a continuous G-equivariant self-adjoint compact endormophism of V, and we have
T = 0ifand only if u = 0.

In fact, we even know that 7" is positive, i.e. that (T'(v),v) > 0 for every v € V.

Corollary 1V.2.3. Let V' be a nonzero unitary representation of a compact group G. Then V
contains an irreducible representation of G.

Proof. If V is finite-dimensional, then any nonzero G-invariant subspace of 1/ of minimal di-
mension has to be irreducible.

In the general case, choose u € V' — {0}, and let " € End(V') be the endomorphism of
V' constructed in the proposition. By the spectral theorem for self-adjoint compact operators
(theorem [IV.1.3)), we have

V = P Ker(T — Ndy).
XeC
As T # 0, the closed subspace Ker(7T') of V' is not equal to V. By the equality above, there exists
A € C — {0} such that W := Ker(7T — Aidy) # 0. Then W is a nonzero closed subspace of V,
and it is G-invariant because 7' is G-equivariant, and stable by 7" by definition. Also, the space
W is finite-dimensional by (iii) of theorem[[V.1.3] So W has an irreducible subrepresentation by
the beginning of the proof, and we are done.

]

Proof of the theorem. By Zorn’s lemma, we can find a maximal collection (W;);c; of pairwise
orthogonal irreducible subrepresentations of /. Suppose that the direct sum of the W, is not
dense in V, then W := (@ZE I I/V,»)L is a nonzero closed invariant subspace of V' (see lemma
[.3.2.6). By the corollary above, the representation 1V has an irreducible subrepresentation,

which contradicts the maximality of the family (W;);c;. Hence V = €, Wi.
]
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We finish this section with a remark on two different notions of equivalence for unitary rep-
resentations. Remember that two continuous representations 1/ and V5 of a topological group
G are called equivalent (or isomorphic) if there exists a continuous G-equivariant isomorphism
V1 — V5 with a continuous inverse.

Definition IV.2.4. Two unitary representations 1/ and V5, of a topological group G are called
unitarily equivalent if there exists a G-equivariant isomorphism V; — V5 that is an isometry.

Two unitarily equivalent representations are clearly equivalent.

Example IV.2.5. Let G be a locally compact group, let 1 be a left Haar measure on G, and let v
be the right Haar measure defined by v(E) = pu(E™1).

Then the left and right regular representations of GG are unitarily equivalent, by sending
f € L*(G, u) to the element  — A(z) V2 f(z71) of L*(G,v). (See proposition|[[.2.12])

Proposition IV.2.6. Suppose that V| and V5 are irreducible unitary representations of G. Then
they are equivalent if and only if they are unitarily equivalent.

Proof. Suppose that V; and V5 are equivalent, and let U : V; — V5 be a G-equivariant isomor-
phism. We denote by (.,.); and (., .), the inner products of V; and V5. Let B : V; x V; — C,
(v,w) — (U(v),U(w)),. This is a Hermitian sesquilinear form on V;, and it is bounded be-
cause U is bounded. By the lemma below, there exists a self-adjoint endomorphism 7" € End(V})
such that, for all v, w € V, we have B(v,w) = (T'(v),w);. Let’s prove that T" is G-equivariant.
Letv € V and x € G. For every w € V, we have

(T'(m () (v), wpr = B(mi(z)(v), w)

= (U(m(2)(v), U(w))a
= (m2(2)(U(v)), U(w))s
= (U(v), ma(a™)U(w))2
= (U(v), U(mi ()" (w)))2
= B(v,m(z7")(w))

so T'(my(z)(v)) = mi(x)(T'(v)). As V; is irreducible, Schur’s lemma (theorem [1.3.4.1) implies
that 7' = Aidy, for some A € C. As (T'(v),v); = (U(v),U(v))2 > 0 for every nonzero v € V;,
we must have A € R-(. Then A~/2U is an isometry, so V; and V; are unitarily equivalent.

[]

Lemma IV.2.7. Let V be a Hilbert space, and let B : V xV — C be a bounded sesquilinear form
(i.e. B is C-linear in the first variable and C-antilinear in the second variable; the boundedness
conditions means that Sup,, ,cv. ||| =|w|=1 |B (v, w)| < +00).
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IV The Peter-Weyl theorem

Then there exists a unique T' € End (V') such that, for all v,w €V,

B(v,w) = (T'(v), w).

Moreover, T is self-adjoint if and only if B is Hermitian (which means that B(w,v) = B(v, w)
forallv,w e V).

Proof. The uniqueness of 7T is clear (it follows from the fact that V+ = {0}.)

If v € V, then the map V' — C, w —— B(v,w) is a continuous linear functional on V, so
there exists a unique 7'(v) € V such that B(v, w) = (T'(v),w) for every w € V. The linearity of
T follows from the fact that B is linear in the first variable. Moreover, for every v € V/, we have

|T()l=sup [(T'(v),w)]= sup |B(v,w)| <],
weV, [Jw|=1 weV, ||Jw|=1
where
C= sup |B(z,y)|-
z,yeV, |lz|=[lyll=1
So T is bounded.

Finally, 7' is self-adjoint if and only, for all v,w € V, we have

B(v,w) = (T(v), w) = (v, T(w)) = B(w, v).
This proves the last statement.

]

Definition IV.2.8. We denote by G the set of equivalence (or unitary equivalence) classes of
irreducible unitary representations of (5, and call it the unitary dual of G.

If (7,V) € G, we write dim(7) and End() for dim(V) and End(x).

Note that this notation agrees with the one used in problem set 3 for a commutative group.

IV.3 Matrix coefficients

Definition IV.3.1. Let (7, V') be a unitary representation of a topological group G. A matrix
coefficient of (m, V) is a function G — C of the form = —— (7 (x)(u), v), where u,v € V.

Note that matrix coefficients are continuous functions. We denote by &) or &} the subspace
of € (G) spanned by the matrix coefficients of 7.

We start by proving some general results that are true for any group G.
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1V.3 Matrix coefficients

Proposition IV.3.2. Let (m, V') be a unitary representation of G.

(i) The subspace &, of € (G) only depends on the unitary equivalence class of 7, and it is
invariant by the operators L, and R,, for every x € G.

(ii) If V is finite-dimensional, then & is finite-dimensional and dim(&;) < (dim V)2

(iii) IfV =Vi&...®V, with the V; G-invariant and pairwise orthogonal, then &, = " | &y,.

In particular, we get an action of G x G on &, by making (z,y) € G x G act by
L,oR,=Ry,0L,.

Proof. (1) The first statement is obvious. To prove the second statement, let v,w € V and
x € G. Then, for every y € G,

(m(z7 y)(v), w) = (7(y)(v), 7 (z)(w))
and
(m(yz)(v), w) = (7 (y)(7(z)(v)), w),

so the functions y — (m(z~y)(v), w) and y — (7 (yz)(v), w) are also matrix coeffi-
cients of 7.

(i) Let (eq,...,e,) be abasis of V. Fori,j € {1,...,n}, write ¢;; for the function G — C,
x +— (m(z)(e;), ¢5). I v,w € V, we can write v = Y 1" | a;e; and w = 37, bje;, and
then we have, for every = € G,

(m(z)(v), w) = Z a;bjpi ().
i,j=1
So the family (¢;;)1<i j<n Spans &;.

(iii) For every i € {1,...,n}, we clearly have &, C &,. So Y ., &y, C &,. Conversely, let
v,w € V,and write v = Y v, and w = Y, w;, with v;, w; € V. Then, for every
rzed,

n n

(m(2)(v),w) = Y (m(@)(v:),wy) = Y (w(x) (v:), wi).

ij=1 i=1
So the function x — (m(x)(v),w) isin Y ., &;.
L

Definition IV.3.3. Let (7, V') and (7', V') be continuous representation of . We define an action
pof G x G on Hom(V, V') by

p(z,y)(T) =n'(y) o T o m(x)~",

for T € Hom(V,V’) and z,y € G.
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Proposition IV.3.4. We have

Homg(V, V') ={T € Hom(V,V")\Vz € G, p(z,z)(T) =T}.

Moreover, if the maps G — End(V), © — 7w(x) and G — End(V’'), © —— 7'(x) are
continuous (for example if V and V' are finite-dimensional, see proposition , then the
action defined above is a continuous representation of G x G on Hom(V, V").

Proof. The first statement is obvious. The second statement follows from the continuity of the
composition on Hom spaces, and of inversion on G.

]

In particular, we get actions of G x G on End(V') and V* := Hom(V,C) (using the trivial
action of GG on C); the second one gives an action of G on V* by restriction to the first factor (if
r € Gand A € V*, then (x, A) is sent to A o w(x)~!). This will be the default action on these
spaces.

Definition IV.3.5. Let (7,V) and (7', V’) be continuous representations of V. We define an
action p of G x G on the algebraic tensor product V' ®¢ V' by

p(z,y) (v @ w) = m(x)(v) @ '(y)(w),

forz,y e G,veVandw e V',

This action is well-defined because, for all z,y € G, the map V x V! — V ®¢ V/,
(v,w) — 7(z)(v) ® 7’'(y)(w) is bilinear, hence induces a map p(z,y) : V @c V' — V @¢c V.
If V and V' are finite-dimensional, the resulting action of G x G on V ®¢ V" is continuous by
proposition |[.3.5.1

Note that, if we restrict the action of G X G on V ®¢ W to the first (resp. the second) factor,
we get a representation equivalent to V& 4mW) (resp, 7@ dim(V)y,

Proposition I1V.3.6. Let V, W be continuous representations of G.

(i) The map V* @c W — Hom(V, W) sending A @ w (with A € V*, w € W) to the linear
operator V.— W, v — A(v)w is well-defined and G x G-equivariant. If V- and W are
finite-dimensional, it is an equivalence of continuous representations.

(ii) The map V* @c V — € (G) sending A @ v (with A € V*, v € V) to the function G — C,
x +—> A(m(x)(v)) is well-defined and G x G-equivariant, and its image is &y if V is
unitary.

In particular, if V' is finite-dimensional and unitary, we get a surjective G X (G-equivariant map
EHd(V) — 5‘/.
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Remark 1V.3.7. Point (ii) suggests a way to generalize the definition of a matrix coefficients to
the non-unitary case : just define a matrix coefficient as the image of a pure tensor by the map

V¥ecV — €(G).

Proof. In this proof, we will denote all the actions of G and G x G by a - (this should not cause
confusion, as each space has at most one action).

(1)

(ii)

The map is well-defined, because the map V* @c W — Hom(V, W) sending (A, w) to
(v — A(v)w) is bilinear. Let’s denote it by ¢. To check that it is G x G-equivariant,
it suffices to check it on pure tensors (because they generate V* @c W). Solet A € V*,
we W, x,y € G. Forevery v € V, we have

p((,y) - (A@w)(v) =y M) @ (z-w))(v) = Ay v)(z- w)

and

((z,9)  p(A@w))(v) =2 (p(A@w)(y " -v) =2 (Ay " Jw) = Ay -v)(@ w).

So
plz- (A@w) =z p(A@w).

Suppose that V' is finite-dimensional, let (ey, ..., e,) be a basis of V, and let (e], ..., e})

be the dual basis. Define ¢ : Hom(V, W) — V* @c W by sending T'to Y ", e @ T'(e;).
Let’s show that ¢ is the inverse of .

If j € {1,...,m} and w € W, then
Y(p(e; @ w)) Ze ® (ple; @w)(e;)) = €; @ w.

As the elements e} @ w, for j € {1,...,n} and w € W, generate V* ®@c W, this shows
that ) o ¢ = id.

Conversely, if 7" € Hom(V, W), then, for every v € V/,

n

P((D)) = 3 gle; @ T(ey)) Ze T(v),

i=1

because v = Y ., ef(v)v. So p((T)) =T.

This shows that, if V' is finite-dimensional, the map V* ®c W — Hom(V, W) is an iso-
morphism. The last statement follows immediately.

The map is well-defined because the map V* x V' — %(G) sending (A, v) to the function
x +— A(m(z)(v)) is bilinear. Let’s denote it by a. We show that « is G x G-equivariant.
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As before, it suffices to check it on pure tensors. Solet A € V*, v € V and xz,y € G. For
every z € (G, we have

a((z,y) (A®v))(2) = A" (2 (y-v))) = A2 2y) -v) = ((Lao Ry)(a(A®W)))(2),

hence o((z,y) - (A®v)) = (Ly o Ry)(a(A ®)).

Finally, we show that the image of « is & if V' is unitary. Let A € V*. As V is a Hilbert
space, there exists a unique v € V such that A = (., v). So, for every w € V and every
x € GG, we have

a(A @ w)(v) = (r(z)(w),v).

This shows that o/(A ® w) is a matrix coefficient of 7, and also that we get all the matrix
coefficients of 7 in this way.

]

Now we prove stronger results that are only true for compact groups. If G is a compact group,
we fix a normalized Haar measure on GG, and we denote by LP(G) the LP space for this measure.
Note that we have ¢’ (G) C L?(G) for every p.

Theorem IV.3.8. Let G be a compact group, and let (7, V') be an irreducible unitary represen-
tation of G. Remember that V' is finite-dimensional (by problem 6 of problem set 5).

(i) (Schur orthogonality) If (7', V") is another irreducible unitary representation of G that is
not equivalent to (m, V'), then &, and &, are orthogonal as subspaces of L*(G).

(ii) We have dim(&;) = (dim V)2 More precisely, if (e1,...,eq) is an orthonormal ba-
sis of V and if we denote by ;; the function G — C, x —— (m(x)(e;),e;), then
{\/agpij, 1 <4,7 < d} is an orthonormal basis of &, for the L? inner product.

(iii) The G x G-equivariant map End(V') — &, defined above is an isomorphism.

Proof. Note that (iii) follows immediately from (ii), because End(V') — & is surjective and (ii)
says that dim(&;) = (dim V')? = dim(End(V)).

We prove (i) and (ii). Let (7/, V') be an irreducible unitary representation of G, that could be
equal to (m, V). If A € Hom(V, V"), we define A € Hom(V, V") by

A= /Gﬂ'(x)l o Aom(x)dx

(note that there is no problem with the integral, because the representations are finite-
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dimensional). Then, for every y € GG, we have

Aon(y) = / 7'(z) ' o Aonm(zy)dr
G
= / 7'(zy ')t o Aom(x)dr (right invariance of dz)
G
— (o i

In other words, A is G-equivariant.

Letv € V and v' € V’, and define A € Hom(V, V") by A(u) = (u,v)v'. Then, forallu € V
and v’ € V, we have

(A(u),u’) = /G<(7T'(x)_1 o Aor(x))(u),u)dx
:zgwmxwwm%m*w%MMx
:3quxwwwwmw»wwﬂ

Suppose that 7w and 7’ are not equivalent. Then, by Schur’s lemma, we have A =0 for every
A € Hom(V, V'), and so, by the calculation above, for all u,v € V and v/, v" € V',

(LW@M@WMJGWEE&mzo

This proves (1).

Suppose that 7 = 7', and use the notation of (ii). Take v = e; and v = e, with
i,i" € {1,...,d}, and define A as above. By Schur’s lemma again, there exists ¢ € C such

that A = cidy. So, taking u = e; and u = ejr, we get from the calculation above that

B e ifj=y
<902J790%'7J'>L2(G) - <ce], 63’> - { 0 otherwise.

On the other hand, we have

cd = Tr(A) = /GTr(ﬁ(a:)_l oAomn(z))dr = /GTr(A)dx = Tr(A).

As A is defined by A(w) = (w, e;)ey, we have Tr(A) = 0if ¢ # ¢/, and Tr(A) = 1if i = 7.
This finishes the proof that { \/Egoij, 1 <,7 < d} is an orthonormal basis of &;.

]
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IV.4 The Peter-Weyl theorem

Let G be a compact group. We see L?(() as a representation of G' x G by making (z,y) € Gx G
actby L, o R, = R, o L,. The restriction of this to the first (resp. second) factor is the left (resp.
rigth) regular representation of G.

Theorem IV.4.1. If G is compact, then & := @ __a &, is a dense subalgebra of € (G). (For the
usual pointwise multiplication and the norm ||.||.)

Proof. Let’s prove that & is stable by multiplication. Note that, by (iii) of proposition[[V.3.2]and
theorem [IV.2.1] for every finite-dimensional unitary representation 7 of G, we have &, C &. Let
(m, V) and (7', V') be irreducible unitary representations of G, and let v, w € V and ', w' € V.
Remember that we have defined an action 7 ® 7’ of G on V ®¢ V] and an inner product on
V ®c¢ V' in problem 1 of problem set 7. ﬂ By definition of these, for every x € GG, we have

((r@a)(z)(v©w), v @w) = (7(x)(v), w)(r' (z)(v)), w).

This proves that the product of a matrix coefficient of 7 and a matrix coefficient of 7’ is a matrix
coefficient of 7 ® 7’. By the observation above, every matrix coefficient of 7 ® 7’ is in &, and
we are done.

Now we prove that & is dense in € (G). We have shown that & is a subalgebra, it contains
the constants (they are the matrix coefficients of the trivial representation of G on C) and it sep-
arates points on GG by the Gelfand-Raikov theorem. So it is dense in & by the Stone-Weierstrass
theorem.

]

Corollary IV.4.2. For every p € [1,4+00), the subspace & of LP(G) is dense for the LP norm.

In particular, we have a canonical G X G-equivariant isomorphism

The last statement is what is usually called the Peter-Weyl theorem. It implies that the left and
right regular representations of G are both isomorphic to the completion of P __5 7 dim(m)

Remark IV.4.3. The Peter-Weyl theorem actually predates the Gelfand-Raikov theorem, and the
original proof uses the fact that the operators f * . are compact on L*(G), for f € L*(G).

3This is just the restriction to the diagonal of G x G of the action defined above.
“We don’t need to complete the tensor product here, because V and V' are finite-dimensional.
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IV.5 Characters
IV.5 Characters

Definition IV.5.1. Let (7, V') be a continuous finite-dimensional representation of a topological
group G. The character of 7 is the continuous map yv = x, : G = C, z — Tr(w(x)).

Remark IV.5.2. If (w,V) is a finite-dimensional representation of G and (ey, ..., e,) is an or-
thonormal basis of V/, then, for every z € GG, we have

So xx € &
Definition IV.5.3. We say that a function f : G — C is a central function or a class function if

fleyz™) = f(y) forallz,y € G.

These functions are called central because they are central for the convolution product, as we
will see in section

Proposition IV.5.4. Let G be a topological group, and let (w,V') and (n', V') be continuous
finite-dimensional representations of G. Then :

(i) X is a central function, and it only depends on the equivalence class of .
(ii) Xvev: = Xxv + Xv.
(iii) Foreveryx € G, xy-(z) = x(z7).
(iv) Forall z,y € G, we have

XVecV! (35, y) = XV(IK)XV’ (y) and XHom(v,v')(ﬂ% y) = Xv(l’fl)XV’ (y)

(v) If (z,V) is unitarizable (for example if G is compact), then xv(x™1) = xv(x) for every
x € QqG.

Proof. Point (i) just follows from the properties of the trace, i.e. the fact that Tr(AB) = Tr(BA)
forall A, B € M,(C).

Put arbitrary Hermitian inner products on V and V'. Let (ey,...,e,) (resp. (€},...,¢,)) be

an orthonormal basis of V' (resp. V’). Then (ey,...,e,,€},..., €. ) is an orthonormal basis of
VeV, so, forevery x € G,

n m

xvevi(z) =Y _(m(@)(e) ) + Y (a'(@)(€)). ¢)) = xv (@) + xvi ().

i=1 j=1

This proves (ii).
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IV The Peter-Weyl theorem

Let (e7,...,e’) be the dual basis of (eq,...,e,). Let x € G. Then, if A is the matrix of
7(z~1) in the basis (eq, . . ., e,), the matrix of the endomorphism A — A o w(2~!) in the basis
(er,...,e")is AT, and we have

v+ (z) = Tr(AT) = Tr(A) = xv (7).

This proves (iii).

We prove the formula for xyg.17. We have seen in problem 1 of problem set 7 how to put an
inner product on V ®c V"’ for which (e; ® €})1<i<n,1<j<m is an orthonormal basis. So, for all
x,y € G, we have

xveeri(@,y) =YY (m(@)(e) @' (y)(e)), e @ €)

= 3D rlw)e, e 7 (1)(E). )

= Xv(x)Xv' (y).

Now the formula for X om(v,v+) follows from this, from (iii) and from proposition [[V.3.6(i).

Finally, we prove (v). If V' is unitarizable, we can choose the Hermitian inner form on V' to be
invariant by G. Then, for every € GG, we have

n n n

xv(e™) =) (r@) e e) = Y fenm(@)(e)) = Y (r(w)(en), i) = xv(@).

i=1 =1 i=1

]

Notation IV.5.5. If (7, V) is a representation of a topological group G (continuous or not), we
write

Ve ={veVVred, n(z)(v) =v}.

This is a closed G-invariant subspace of V.
Example IV.5.6. If V and WW are two representations of (=, then
Hom(V, W)% = Homg(V, W).

Theorem IV.5.7. Let G be a compact group and (7, V') be a finite-dimensional continuous rep-
resentation of G. Then

/GXV(x)dx = dim(V%).
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Proof. As V is finite-dimensional, we can find a finite family (V});c; of irreducible subrepre-

sentations of V such that V' = @, , Vi. (Cf. corollary [[.3.2.9) We have xv = > .. xv; by
G G

proposition [IV.5.4, and V“ = @,_, V;“. So it suffices to prove the theorem for V" irreducible.

Suppose that V' is an irreducible representation of V. As V¢ is a G-invariant subspace of
V, we have V¢ = V or V¢ = {0}. If V¢ = V, then G acts trivially on V, so every linear
subspace of V' is invariant by G, so we must have dim V' = 1. On the other hand, we have
xv(z) = Tr(1) = 1 forevery x € G, so [, xv(x)dz = 1. Suppose that V is irreducible and
that V¢ = {0}. Let 7, be the trivial representation of G on C. Then, by theorem i), the
subspaces &, and &, of L?(G) are orthogonal. But &, is the subspace of constant functions,
and we saw above (remark that y € &;. So xy is orthogonal to the constant function 1,
which means exactly that [, xv (z)dz = 0.

[]

Corollary IV.5.8. Let G be a compact group, and let (w,V') and (o,W) be two continuous
finite-dimensional representations of G.

(i) We have (xw,xv)r2c) = dime¢(Home(V, W)).
(ii) If V and W are irreducible and not equivalent, then (Xv, Xw)r2(c) = 0.
(iii) The representation V' is irreducible if and only || x| r2(c) = 1.
Proof. (i) Make G act on Hom(V, W) by x-T = p(x)oT om(x)~!. We know (cf. proposition
1V.3.4) that Homg(V, W) = Hom(V, W)%. Applying the theorem to the representation

Hom(V, W) and using points (iv) and (v) of proposition [[V.5.4|to calculate the character
of this representation, we get :

dime(Homg(V, W)) = dime(Hom(V, W)%)
:/XHom(V,W)(l’)dﬂﬂ
G

/ v @ (2)da

= <XW7 XV>L2(G)-

(ii) This follows from (i) and from Schur’s lemma (theorem [.3.4.T)), or from the fact that
v € &, xw € &y and &y and &y are orthogonal in L?(G) (see theorem [[V.3.8)).

(iii) If V is irreducible, then Schur’s lemma implies that End (1) is 1-dimensional, so we have
Ixvlz2(¢) = 1 by (i). Conversely, suppose that ||xv| ;2 = 1. We write V' = P, Vi,
where [ is finite and the V are irreducible subrepresentations of V. By (ii), the characters
of non-isomorphic irreducible representations of G are orthogonal in L?(G), so we have

|XVHL2(G) Z ”WHXW”L? Z nw,

wed wea
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IV The Peter-Weyl theorem

where, for every W & @,
nw = card({i € I|V; ~ W}).

As |[xv | r2(e) = 1, there is a unique W € @ such that ny # 0, and we must have nyy = 1.
By the definition of the integers nyy, this means that V' ~ W, so V is irreducible.

]

Corollary IV.5.9. Let G be a compact group. Then the family (Xv )y .z of elements of L*(G) (or
€ (G)) is linearly independent.

Proof. This follows from (ii) of the previous corollary.

[]

Corollary IV.5.10. Let 7w and 7' be two continuous finite-dimensional representations of a com-
pact group G. Then 7 and 7' are equivalent if and only if Xrx = X'

Proof. If m and n’ are equivalent, we already know that y, = x,. Conversely, suppose that
Xr = Xa- We decompose 7 and 7’ as direct sums of irreducible representations :

=P
pe@

and

/ m
'~ o,

pe@

with n,,m, € Z>q and n, = m, = 0 for all but a finite number of p € G. By corollary |[V.5.8,
we have y, = Zpe@ npXp and X = Zpe@ m,X, (and these are finite sums). By the linear

independence of the x,, the equality x. = x implies that n, = m,, for every p € CAJ, which in
turn implies that 7 and 7’ are equivalent.

]

IV.6 The Fourier transform

We still assume that G is a compact group.

By propositions [[.4.3.4/and [l.4.1.3| the space L?(G) is actually a Banach algebra for the con-
volution product. This section answers the question “how can we see the algebra structure in the
decomposition given by the Peter-Weyl theorem 7.
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IV.6 The Fourier transform

Definition IV.6.1. Let f € L%(G). For every (r, V) € G, the Fourier transform of f at 7 is the
endomorphism

flr) = /Gf(x)ﬂ(l’l)dﬂc = /Gf(a:)ﬂ(x)*dm
of V.

This is clearly a C-linear endomorphism of V.

Example IV.6.2. Suppose that G = S L. Then we have seen in problem 5 of problem set 3 that
G ~ 7, where n € 7Z corresponds to the representationAG — CX, 2™ — 2™ (with t € R).
So, if f € L'(Q), its Fourier transform is the function f : Z — C sending n to

~ 1 . .
f(n) — /O f(€217rt)€72z7rntdt'

Theorem IV.6.3. (i) For every & € G, the map L2(G) — End(n), f — f(ﬂ) isa G x G-
equivariant x-homomorphism from L*(G) to the opposite algebra of End (7). (Note that
L*(G) C LYG), because G is compact. The involution of L'(G) defined in example

restricts to an involution of L*(G).)

In other words, we have, for f,g € L*(G) and x € G :

— ~

fg(m) =g(m)o f(m),
Lof(w) = f(m) o m(x)™" and R, f(m) = m(x) o f ().
(Compare with (i) of theorem )
(i) Let f € L2(G). Then, for every 7 € G, the function dim(m)Tr(f(r) o 7(.)) € LA(G) is
the orthogonal projection of | on &, and the series
> dim(r) Te(f(w) o 7(.))
el

converges to f in L*(G) (Fourier inversion formula).

(iii) Forevery f € L*(G), we have

I£13 =" dim(m) Tx(f ()" o f(x))

weé
(Parseval formula).

Example 1V.6.4. Take G = S'. Then (ii) and (iii) say that, for every f € L*(S'), the series

o~

> ez f(n)e* ™ converges to f in L'(S") and that

/0 @ Pdy = 3 [T 2

nez
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IV The Peter-Weyl theorem
Proof. (i) We have
Featm) = [ (7 g @t )da

FWg(y " z)m(z")dedy

f(y)g(x)m(x 'y )drdy (change of variable 2’ = y~'x)

Finally,
L) = [ £ ety
= | fy)m(y~ 'z h)dy
AG
= f(r)om(z ™)
and

f)m(zy™)dy

=m(z) o f(m).

(ii) Itisenough to prove the first statement (the second will follow by the Peter-Weyl theorem).
Let (m,V) € G. As in theorem [IV.3.8] fix an orthonormal basis (ej,...,e,) of V and
denote by ¢;; the function G — C, x —— (m(z)(e;), e;). Then we have seen (in (ii) of

theorem [[V.3.8)) that {\/c_lgpij, 1 <i,j < d} is an orthonormal basis of &, for the L? inner
product. So the orthogonal projection of f on & is

d

d Z(ﬁ SOij>L2(G)80ij-

ij=1
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(iii)

1V.7 Characters and Fourier transforms
Foralli,j € {1,...,d}, we have

(frvizirze = | f(x){ei, m(z)(e;))dx

S~

= | f@)(m(x)(e:), ¢j)dx
= (f(m)(e:), e5)-

Lety € G, and let (7(f); ;) and (7(y); ;) be the matrices of f(m) and 7(y) in the basis
(é1,...,eq). Then

) Q

F(m)ig = (F(m)(e), e = {f 500126

and
m(W)ig = (w(y)(e;), e:) = @i;(y),
Te(f(m) om(w) = 3 Fm)amw)iy = D (F@), pis)rxeeis(v).

This gives the desired formula for the orthogonal projection of f on &.

Let 7 € G, and use the notation of the proof of (ii). Let g = dTr(f(w)* o f(w)) It

suffices to show that ||g||3 = dTr(f ( Y of ( )) (because the & for non-isomorphic 7 are
orthogonal, by theorem [[V:3.8)). We have

d d
Tre(f(m)" o f(m Z (m)isl* = Z [(fs i) 12(0)

j=1 ij=1

On the other hand, as g = d szzl (f, vij)L2(c)pij» We get

d
91172 = d? Z [(f, i) 2| = d - dTe(f(x)" o f(m)).

,j=1

IV.7 Characters and Fourier transforms

To finish this chapter, we relate characters and the Fourier transform, and give an explanation of
the name “central function”.

Proposition IV.7.1. Let f € L*(G). Then, for every x € G, we have

~

Tr(f(m) om(x)) = f* X ().
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IV The Peter-Weyl theorem

By theorem [I'V.6.3| this says that the orthogonal projection of f in & is dim(7) f * X, so we
have

f= Zdim(ﬁ)f * X

el

in L*(G).

Proof. We have

Corollary IV.7.2. Forall 7, 7' € @, we have

[ dim(m) e fm=w
X % Xt = { 0 otherwise.

Proof. We know that y, € &, for every 7w € G, that & and &, are orthogonal for m % 7',
and the proposition says that dim(m)y, * x. is the orthogonal projection of x, on &,.. This
immediately implies the formula of the corollary.

]

Definition IV.7.3. For 1 < p < +00, we denote by Z L?(() the subspace of central functions in
LP(G). We also denote by Z% (G) the subspace of central functions in € (G).

Proposition IV.7.4. The space LP(G), 1 < p < +o0 (resp. € (G)) is a Banach algebra for the
convolution product, and Z LP(G) (resp. Z€ (G)) is its center.

Proof. Letp € [1,+00), and let ¢ € [1,+00) be such that p~! + ¢! = 1. As G is compact, the
constant function 1 is in L?((G) and has L? norm equal to 1, so, by Holder’s inequality, f = f -1
isin L' (@), and || f||1 < || f|l,- Now corollary 1.4.3.2 says that, for every g € L?(G), the function
[ * g exists and is in L?(G), and that we have || f * g, < || fll1llgll, < [|fllpllgll,- This shows
that LP(() is a Banach algebra for .

We show that €’(G) is also a Banach algebra for *. If f, g € € (G), then f x g clearly exists,
and, for every x € G,

|/ * g(2)] < /G!f(y)lg(yl)\dy < HfHongHoo/GMy = [I£llollglloo-
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So [If * gllee < 1fllcllglloo-

Finally, we show the statement about the centers. Let f € L?((), and suppose that fxg = gx f
for every g € LP(G). Then, for every x € GG and every g € L”(G), we have

[ sty = [ o) tody= | fumaty s

G G G

This holds if and only if f(zy) = f(yz) almost everywhere on G x G. The proof for f € €(G)
is the same.

]
Corollary IV.7.5. The family (xr),.g is an orthonormal basis of ZL*(G).

Proof. We already know that the x, are in ZL?(G) and that they are pairwise orthogonal, so it
just remains to show that a central function orthogonal to all the y has to 0. Let f € ZL?(G).
By the lemma below, we have (dim7)f * x» = (f, Xx)2(c)Xx fOr every 7 € G, so, if f is
orthogonal to every Y, then its projection on all the spaces & is 0 by proposition hence
f = 0 by theorem [[V.4.1

]
Lemma IV.7.6. If f € ZL'(G) and 7w € G, then (dim 7) f % xr = (f, Xr) 22(G) X

)

() om(.)) by proposition|IV.7.1} For every = € (G, we have

fy)m(y z)dy

Proof. We know that f x x, = Tr(

~~

Fmyom(a) =

flay™ D (y)dy

I
ST—

fy~tz)m(y)dy (because f is central)

fy)m(zy™")dy
(x) o f(m).

~ -~

So f(m) € End(m) is G-equivariant. By Schur’s lemma, this implies that f(7) = cid, with
c € C. Taking the trace gives

Q

Il
)

e(dimm) = Te(F(m)) = / F)Te(w(y™))dy = (. xn) 2(60.

So

-~

(f, Xr) 2y X = (dim ) Tr(f(7) o m(.)) = (dim7) f * X7.
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IV The Peter-Weyl theorem

Remark 1V.7.7. In fact, we can even show that the family (xr). . spans a dense subspace in
ZLP(G) forevery p € [1,4+00) and in Z%'(G). (See proposition 5.25 of [8]].)

Remark IV.7.8. 1If G is finite, then L?(G) is the space of all functions from G to C, and ZL?(G) is
the space of functions that are constant on the conjugacy classes of G. So the proposition above
says that |G| is equal to the number of conjugacy classes in G, and the Peter-Weyl theorem says
that |G| = > _a(dimm)2.

Remark TV.7.9. We have shown in particular that the Banach algebras (ZLP(G),x*) (for
1 < p < +o00) and (ZF(G),*) are commutative. We could ask what their spectrum is. In
fact, the answer is very simple (see theorem 5.26 of [8]) : For every m € @, the formula
f— (dimm) [, fX,dp defines a multiplicative functional on ZL?(G) (resp. Z% (G)), and this

induces a homeomorphism from the discrete set G to the spectrum of ZLP(G) (resp. Z€(G)).
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V Gelfand pairs

In this chapter, G will always be a locally compact group, and K a compact subgroup of G. We
fix a left Haar measure p = p on G and a normalized Haar measure px on K.

V.1 Invariant and bi-invariant functions

Definition V.1.1. A function f on G is called left invariant (resp. right invariant, resp. bi-
invariant) by K if, for every v € K, we have L, f = f (resp. R, f = f,resp. L,f = R, f = f).

If .7 (@) is a space of functions on G (for example %.(G)), we denote by .7 (K \ G) (resp.
F(G/K), resp. .7 (K \G/K)) its subspace of left invariant (resp. right invariant, resp. bi-
invariant) functions.

Let A¢ be the modular function of G. As K is compact, we have Agx = 1, so we can use
the results of problem 1 of problem set 2. In particular :

Proposition V.1.2. Let f € €(G), and define two functions f% : G — Cand X f : G — C by
setting

() = /K f (k) dk

and

“fla) = [ skoyin
K
Then f% is right invariant and ¥ f is left invariant.

Proposition V.1.3. There exists a unique regular Borel measure i/ (resp. prc) on G/K
(resp. K\G) such that, for every f € €.(G), we have

/ f@yde = | < @)dpe ()
G G/K

(resp. /Gf(a:)dx = /K\G Kf(x)d,uK\G(x)).

97



V' Gelfand pairs

Definition V.1.4. If f is a continuous function on GG, we write
KPR =K%y =" n*.

In other words, this is the continuous function on G defined by :

KK (2) = / f(kxk')dkdk'.
KxK

Note that X fX is obviously a bi-invariant function.

Proposition V.1.5. Let f € €(G). Then f is left invariant (resp. right invariant, resp. bi-
invariant) if and only if f = K f (resp. f = f¥, resp. f = K fK).

Proof. This follows immediately from proposition and from the fact that the measure on
K is normalized.

[

Lemma V.1.6. For every [ € 6.(G), we have

/ f(z)dx = / KK (2)dw.
G G
Proof. We have
/ KR (r)dr = / [ (kxk"dxdkdk' = / f(z)dx,
G GxK? G
because, forall k£, k' € K,
/ f(kxk')dx = A(k’)l/ f(x)dz = / f(x)dx
G G G

(by proposition [[.2.8)).

O

Proposition V.1.7. Let (7,V') be a unitary representation of G, and let Px : V' — V be the
orthogonal projection on VX. Then we have, for everyv €V,

PK(U):/KW(k)(U)dk:.

Moreover, if [ € %.(G) and v € V, then w(f)(Px(v)) = =(f%)(v) and
Pr(m(f)(v)) = 7(¥ f)(v). In particular :
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(i) If f € 6.(G) and v € VE, we have 7(f)(v) = w(f)(v).
(ii) If f € 6.(K\G) andv € V, then 7(f)(v) € VE.
(Remember that v : L'(G) — End(V) is defined in theorem|[[.4.2.6])

Proof. Let v € V. The existence of the integral w := [, w(k)(v)dk follows from problem 2 of
problem set 4. If z € K, then we have

m(x)(w) = /Kﬂ(mk)(v)dk :/ (k) (v)dk = w,

K
sow € VE. Also, if w € VX, then

') = [ w0k = [ (orl @k = [ o)k = (o).

So w is the orthogonal projection of v on V¥,

Now we prove the last statement. Let f € 4.(G) andv € V. Then :

_ /G 5 (2)m (@) (0)de = / / f(@k)m(x) (v)dudk
_ / / F()m (@) (k)" (0)dadk

/ / f(z k)(v)dxdk (K is unimodular)
(v)).

/ / f(z v)dkdx
/ / f(k™tx) (v)dkdx
/ / f(kx)n(x)(v)dkdz

=7r(*f)(v

On the other hand :

The same proof gives :
Proposition V.1.8. Let f, g € €.(G). Then

K(fxg)="f)xg and (f*g)" = f=(g").

In particular, if f and g are bi-invariant, then f * g is also bi-invariant, so 6€,(K\G/K) is a
subalgebra of €.(G) for the convolution product.
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Remark V.1.9. Let LP(K \ G/K) be the subspace of bi-invariant functions in L?(G). Then, if
1 <p<+oo,if f € L} K\G/K) and g € LP(K\G/K), then their convolution product f * g
isin LP(K\G/K). This is clear on the formulas defining f * g (see proposition|.4.1.3)); indeed,
we have

frgl@)= / fy)gly™'v)dz = / flay™)gly)dy
a a
(the first formula shows that f * g is right invariant, and the second that f * g is left invariant).

In particular, the subspace L' (K\G/K) of L'(G) is a subalgebra, and we have a similar result
for the L? spaces if G is compact.

Remark V.1.10. All this is easier to remember if we extend the convolution product and the repre-

sentation 7 to the space .# (G) of Radon measures on G. (See remark ) We can see uk as
an element of ./ (G) by identifying it to the Radon measure ¢.(G) — C, f +— [ f(z)dpx(z).
Then we have pix * i = pige, f5 = f* pg, X f = pg » f and Px = 7(ug), so, for example,
the last part of proposition just follows from the fact that 7 is a *-homomorphism.

V.2 Definition of a Gelfand pair

Definition V.2.1. We say that (G, K) is a Gelfand pair if the algebra ¢.(K\G/ K) is commutative
for the convolution product.

Remark V.2.2. If p € [1,4+00), f € LP(K\G/K) and g € €.(G), then

P
dx

— Kgi|p = — kak')dkdk'
T /G]ﬂx) [ gtwai

).

So, by Minkowski’s formula (see problem 7 of PS 4), we have

p
dzx.

/K K Fkak') — glkak'))dkdk'

If = %g~], < / |LeRif — LiRe flldkdk = |If — gll,.

KxK

As 6.(G) is dense in LP(G), every function of LP(K\G/K) can be approximated by elements
of €.(G), hence, by the calculation above, by elements of é.(K \ G/K). In other words, the
space ¢.(K\G/K) is dense in LP(K\G/K). So, in the definition of a Gelfand pair, we could
have replaced the condition “%.(K \ G/K) is commutative for the convolution product” by the
condition “L'(K'\ G/ K) is commutative for the convolution product” (or, for G, we could have
used “L?*(K\G/K) is commutative for the convolution product”).

Example V.2.3. If G is abelian, then (G, {1}) is a Gelfand pair.

Here are other examples (but we will not prove yet that they are Gelfand pairs) :
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- (SO(n + 1),S0(n)), where SO(n) is identified to a subgroup of SO(n + 1) by sending
x € SO(n) to the (n 4+ 1) x (n + 1) matrix <:(§ (1) ;

- (6n+ma 6n X Gm),

- (GLn<Qp)a GLn(Zp))~

Proposition V.2.4. Let (G, K) be a Gelfand pair. Then G' is unimodular.

Proof. By proposition[[.2.12] we have, for every [ € €.(G),

/Gf(a:)da::/GA(x)lf(xl)dx

So it suffices to prove that [, f(x)dz = [ f(z~")dx for every f € €,(G). First note that

/GKfK(:E)dx:/Gf(x)dx
/GKfK(x_l)d:r:/Gf(x_l)dx

by lemma So it suffices to show that [, f(z) Jo f(x™")dx for every
f € ¢.(K\G/K). Fix f € €.(K\G/K). We can ﬁnd g € ‘K(K\G/K) such that g is
equal to 1 on (supp f) U (supp f) ! (because supp f = K (supp f)K). Then

S W

9o 1= [owrw = [ = [

But f x g = g % f because (G, K) is a Gelfand pair, so this implies the desired result.

and

and

The following criterion will allow us to find more Gelfand pairs.

Proposition V.2.5. Suppose that there exists a continuous automorphism 0 : G — G such that :
(a) 0% =idg (i.e. 0 is an involution);
(b) forevery x € G, we have 0(z) € Kz 'K.
Then (G, K) is Gelfand pair.
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V' Gelfand pairs

Proof. Consider the linear functional 4.(G) — C, f — [, f(0(x))dx. This is a left invariant
positive linear functional on €.(G), so, by the uniqueness statement in theorem 7, there exists
¢ € R such that, for every f € €.(G), we have

/f x:c/Gf(:E)daz

As #? = id, we must have ¢ = 1, so ¢ = 1.

Let f, g € %.(G). On the one hand, we have, for every = € G,

(fol)*(go8)(x /f —19(x))dy
/f (2))dy
= (fxg)ol(x)

(the second equality follows from the first paragraph of this proof). On the other hand, for every
z € (G, we have

@ N = [ o sy = [ £ ey = (755w,
where f/(z) = f(z7!) and ¢'(2) = g(z7'). (We used the fact that G is unimodular to do the

change of variables y — y~1.)

Suppose that f and g are bi-invariant. Then we have f(6(z)) = f(z~!) and g(6(x)) = g(z™!)
by condition (b), and a similar equality for g x f because g * f is also bi-invariant, so, for every
rzed,

(f*9)(0(z)) = (fo0) x (go8)(x) = (f'*g)(z) = (g% [)a™") = (g [)(O(z)).
As 6 is an automorphism, this implies that f x g = g * f.
O

Example V.2.6. (1) If G is abelian, then we can take 6 : * — 27!, so (G, K) is a Gelfand
pair for any compact subgroup K, and in particular for K = {1}.

(2) If G is compact, then (G x G,{(z,z), x € G}) is a Gelfand pair. Indeed, it suffices to
apply the proposition above with 0(x,y) = (y, x). Indeed, for every (z,y) € G x G, we

have 0(x,y) = (z,z) (" v 1) (y,y).

V.3 Gelfand pairs and representations

In this section, we will give two representation-theoretic criteria for (G, K) to be a Gelfand pair,
one valid in general and one for G compact.
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V.3.1 Gelfand pairs and vectors fixed by K

Theorem V.3.1.1. The couple (G, K) is a Gelfand pair if and only if, for every irreducible
unitary representation (m, V') of G, we have dim(VE) < 1.

We will need the following variant of the Gelfand-Raikov theorem.

Lemma V.3.1.2. Let f € €.(G). If f # 0, then there exists p € &(,) (see section[lIL.3) such
that [, f(x)p(z)dz # 0.

Proof. Suppose that [, fodu = 0 for every ¢ € &(27). By theorem IH.4.1|, we have
J o fedp = 0 for every function of positive type ¢. By theorem III.2.5|, for every unitary rep-
resentation (7, V") of G and any v € V, we have (7(f)(v),v) = 0. Applying this to the left
regular representation of G, we get that, for every g € L*(G), we have (f * g,9).2() = 0.
As in the proof of theorem [IIL.5.1, we see that this implies that (f * g1, g2)2() = 0 for all
g1,92 € L*(G). Again as in the proof of that theorem, we see that, for all g;, g, € L*(G), we
have (f * g1, 92) 12(c) = (f, 92 % 91) L2(G)>» Where g1 () = gi(2~'). So we get (f, g1 * g2) 2(c) = 0
for all g1, g» € L*(G). Applying this to g; = f and to g» = 1y, where (¢7)yes is an approxi-
mate identity, we finally get (f, f)r2() = 0, hence f = 0.

[]

We also need the following variant of Schur’s lemma.

Lemma V.3.1.3. Let A be a commutative Banach x-algebra, and let u : A — End(V) be a

representation of A on a nonzero Hilbert space V. Suppose that the only closed subspaces of V/
that are fixed by all the u(x), x € A are {0} and V. Then dim'V' = 1.

Proof. By assumption, the subset u(A) satisfies the hypothesis of corollary so its cen-
tralizer in End (V') is equal to Cidy. But as A is commutative, even element of u(A) is in the
centralizer in u(A), so this implies that Im(u) C Cidy. In particular, every subspace of V' is
invariant by all the elements of u(A), so V' has no nontrivial closed subspaces, which is only
possible if dim V' < 1.

O]
Lemma V.3.1.4. Let (7, V) be a unitary representation of G. Then (f) sends VX to itself for

every f € LY(K\G/K). If moreover T is irreducible, then the only closed subspaces of V'
stable by all the 7(f), f € L'(K\G/K), are {0} and V.

Proof. By proposition V.17, for every f € %.(K\G/K) and every v € VX, we have
7(f)(v) € VE. The first statement follows from the fact that 4.(K \ G/K) is dense in
LY(K\G/K).
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V' Gelfand pairs

To prove the second statement, it suffices to show that, for every v € V& — {0}, the space
{7(f)(v), f € €.(K\G/K)}isdensein VE. Letw € V¥, andlete > 0. As V is irreducible, the
space {m(f)(v), f € L'(G)}isdensein V. As ¢.(G) is dense in L'(G), there exists f € €.(G)
such that |7 (f)(v) — w|| < e. By proposition[V.1.7]again, we have 7(f)(v) = 7(f%)(v), and so
7(K &) (v) = P (m(f)(v)), where Pk is the orthogonal projection of V on VE. Asw € VX,
we get [|w(* f5)(v) — w|| = | Pu(m(f)(v)) = w]| < |7 (f)(v) —w] <e.

]

Proof of theorem|V.3.1.1] Suppose that (G, K') is a Gelfand pair. Let (7, V') be an irreducible
unitary representation of G. By lemma[V.3.1.4] 7 defines a *-homomorphism from L!(K\G/K)
to End(VE), and the only closed subspaces of VX stable by all the elements of L!(K\G/K)
are {0} and V. As L'(K\G/K) is commutative, lemma|[V.3.1.3implies that dim (V) < 1.

We prove the converse. Suppose that dim(V %) < 1 for every irreducible unitary representa-
tion (7, V) of G. Let f € 6.(K\G/K) be nonzero. By lemma|V.3.1.2] there exists ¢ € &(Z)
such that |, af gpdu 7& 0. Let (7, V') be a cyclic unitary representation of G and v € V' be a cyclic

vector such that p(z) = (7(z)(v), v) for every x € G (see theorem[[I1.2.5). Then we have
/f d:c—/f o)dr = (r()(0), ),

so 7(f)(v) # 0. By theorem[[I.3.2] the representation (m, V') is irreducible. By lemma|[V.3.1.4]
the endomorphism 7(f) of V preserves VX and, by proposition [V.1.7} if w is the orthogonal

projection of v on VK, then (f)(w) = m(f)(v) # 0. In particular, the subspace VX of V is
nonzero, so dim(V%) = 1 by assumption. Hence End(V %) = C, which means that we have
found a *-homomorphism u : 6.(K\G/K) — C (sending g to m(g)y+) such that u(f) # 0.

Now let fi,fo € G.(K \ G/K). As C is commutative, we have

u(fr x fo — fax f1) = u(fi)u(fe) — u(fo)u(fr) = 0 for every morphism of algebras
u: 6.(K\G/K) — C. By the preceding paragraph, this implies that f; * fo — fo * f; = 0, and
we are done.

]

V.3.2 Gelfand pairs and multiplicity-free representations

Definition V.3.2.1. Let (7, V") be a unitary representation of (G, and suppose that we can write
V = @,., Vi, with the V; closed G-invariant subspaces of V' that are irreducible as representa-
tions of VE] Then we say that (mw, V') is multiplicity-free if, for every irreducible unitary repre-
sentation W of G, the set of ¢ € I such that V; and W are equivalent has cardinality < 1.

Note that the group G acts by left translations on the homogenous space G/ K, so, if t € G
and f is a function on G/ K, we can define L, f by L, f(y) = f(z1y).

"This is always the case if G is compact, see theorem [[V.2.1
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V.3 Gelfand pairs and representations

Definition V.3.2.2. The quasiregular representation of G on L?>(G/K) is the representation de-
finedby x - f = L, f, forevery z € G and every f € L*(G/K).

Proposition V.3.2.3. The definition above makes sense, and gives a unitary representation of G.

Proof. By definition of the measure on G/ K, we have fG/K fduc/x = fG/K L, fdugk for
every f € 6.(G/K) and every x € G. As 6.(G/K) is dense in L*(G/K), this implies that the
operators L, preserve L?(G/K) and are isometries. By proposition it suffices to prove
that, for every f € L*(G/K), the map G — L*(G/K), x —> L, f is continuous. As in the
proof of proposition it suffices to prove this for f € 4.(G/K), in which case it follows

from proposition
[

Remark V.3.1. If we make G act on L*(G) by the right regular representation, then L*(G/K) is
the space of K-invariant vectors in L?(G). The quasi-regular regular representation is then the
restriction of the left regular representation to L?(G/K)

We could also define a quasiregular representation on L?(K \ G) (this is the space of K-
invariant vectors in L?(G) if K acts via the left regular representation, and it gets an action of
G via the right regular representation). The representation we get is unitarily equivalent to the
quasiregular representation on L?(G/K).

Theorem V.3.2.4. Assume that G is compact. Then (G, K) is a Gelfand pair if and only if the
quasiregular representation of G on L*(G/K) is multiplicity-free.

Also, if (G, K) is a Gelfand pair, then we have a G-equivariant isomorphism

L*(G/K) ~ @v

TI'VEG
vK¢o

Proof. First observe that L*(G/K) is the space of vectors of L?(G) that are K-invariant if
K acts by the right regular representation. The Peter-Weyl theorem (corollary says
that, as a representation of G x G, the space L?(G) is isomorphic to the completion of
Dvyea End(V) = B vyea V" ®c V. So L*(G/K) is isomorphic as a representation of

G to the completion of
@ (V*)dim(VK).

(m,V)EG

vEo
Note that, for every (7,V) € @ the representation V'* is also irreducible; this follows for exam-
ple from (iii) of corollary [[V.5.8] because xv+ = Xy, 80 ||xv+|l2 = ||xv||2- So the representation
L?(G/K) is multiplicity-free if and only if, for every irreducible unitary representation (7, V)
of G, we have either VE = 0 or dim(V %) = 1. Hence the first statement of the theorem follows

from theorem
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V' Gelfand pairs

We now prove the second statement. We have already seen that

—

L*(G/K)~ @ V-,

so we just need to show that, if (7, V') is a finite-dimensional representation of G, then VX #£ 0
if and only if (V*)% = 0. Applying theorem [[V.5.7| to the restrictions of the representations V'
and V* to K, we get

dim(VE) = /K v (k)dk

and

dim((V*)") = /KXV*(k:)dk: = /KXV(k:)dk = dim(VK) = dim(V*).

V.4 Spherical functions

In this section, we assume that (G, K) is a Gelfand pair.

Definition V.4.1. Let ¢ € €(K\G/K). We say that pis a spherical function if the linear
functional x, : €.(K\G/K) — C, f +— fxp(1) = [, f( Ddz is a multiplicative
functional, where the multiplication on 6.(K\G/K ) is the convolutlon product.

In other words, the function ¢ is spherical if ¢ # 0 and if, for all f,¢g € €.(K\G/K), we
have X, (f * 9) = X (f)Xe(9)-

Example V4.2. If G is commutative and K = {1}, then every continuous morphism of groups
¢ : G — C* is a spherical function. Indeed, let f, g € €.(G). Then :

/G Frg)@eladr= [ fwgl o)ele)d

GxXG

= FW)g(z)e(z"y ™" dydz
GxG

(/ Jwely™) dy) ( /G Q(Z)so(z‘l)dz),

These are actually the only spherical functions in this case. (This follows immediately from
the next proposition.)

Proposition V.4.3. Let p € € (K\G/K). The following conditions are equivalent :
(i) The function o is spherical.
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V.4 Spherical functions

(ii) The function @ is nonzero and, for all x,y € G, we have
/ p(zky)dk = o(x)p(y).
K

(iii) We have :

(a) o(1) =1;
(b) forevery f € €.(K\G/K), there exists x(f) € C such that f x ¢ = x(f)e.

Proof. We can extend x,, to ¢,(G) by using the same formula, i.e., x,(f) = [, f(@)p(z~")dz.
Note that, for all f, g € €.(G), we have

Xeo(f*g) = " FWaly 'w)e(z™)da

= FW)g(z)e(z"y ") dydz,
GxG

hence

Xo(f % 9) — X (F)xe(9) = o FWa2)(e(z"y ™) — oz ey ™)) dydz.

Let f,g € %.(G). Applying the calculation above to ' := K fX and ¢ := K¢¥ and us-
ing the bi-invariance of ¢ (and the fact that the measure on K is normalized), we get that
Xe ("% 9") = Xo(f')Xp(¢') is equal to

/G2 K f(k1$k2)9(k3yk4)(¢(y—1x—1) _ SO(y—l)()O(ZL,—l))dl_dydkldk:2dk:3dk4
B /G2 K2 f(fl?)g(y)(gp(y_lk;gk;Qx—1> - @("L‘_l)@(y—l))dl’dydedkS

=/ f(@)g(y) (/K o(y ket dk — ¢(x—1)¢(y—1)) drdy.

This shows that x,, is multiplicative if and only [, ¢(y 'kz~")dk = @(y~")p(z~") for all
z,y € G. As x, # 0if and only if ¢ # 0, this proves that (i) and (ii) are equivalent.

Suppose that ¢ satisfies conditions (a) and (b) of (iii). Then, for every f € €.(K\G/K), we
have

Xo(f) = [ *e(1) = x(f).

As f — x(f) is multiplicative (by the associativity of the convolution product), this implies
that ¢ is spherical.
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Finally, suppose that ¢ is spherical. We want to prove that conditions (a) and (b) of (iii) are
satisfied. Let f € 4.(K\G/K). Then we have, for every = € G,

[l /f

= f(y)p(y tkx)dydk (by left invariance of f)
GxK

/ fly (z)dy (by (ii))

= Xo(f)p().

This shows condition (b). Choosing f € 6.(K\G/K) such that x,,(f) # 0, and applying the
equality above to z = 1, we get x,(f) = x,(f)p(1), hence p(1) = 1.

O

Remember that L'(G) is a Banach x-algebra, for the convolution product and the involution
given by f*(z) = f(x1). | We have seen that L' (K\(G/K) is a commutative Banach subalgebra
of L'(@), and it is clear that it is also preserved by the involution. So it is natural to ask what the
spectrum of L'(K'\G/K) is.

If ¢ € 6,(K\G/K) (note the boundedness condition), then the integral [, f(x)p(z™")dx
converges for every f € L'(G), so we can extend the linear functional x,, on ¢.(K\G/K) to a
bounded linear functional on L'( K\ G/K), that we will still denote by x.,.

Theorem V.4.4. The map ¢ +—— X, identifies the set of bounded spherical functions to
o(L(K\G/K)).

Example V.4.5. If G is commutative and K = {1}, a bounded spherical function is a bounded
continuous morphism of groups G — C*, that is, a continuous morphism of groups G' — S L
i.e. an irreducible unitary representation of GG. So we get a canonical bijection G = o(L'(G)).
In particular, every multiplicative functional on L'(G) is a *-homomorphism in this case, that is,
the Banach *-algebra L!(G) is symmetric. This recovers the result of question 4(c) of problem
set 5.

If GG is compact, we will see (in theorem that it is still true that every spherical function
defines a x-homomorphism of L'(K'\G/K), i.e. that L'(K\ G/K). But in general, this is not
true.

Proof of theorem If ¢ is a bounded spherical function, then x, is multiplicative on
%.(K\G/K), hence also on L' (K\G/K) because 6,.(K\G/K) is dense in L'(K\G/K).

Conversely, let x : L'(K\G/K) — C be a multiplicative functional. By corollary [I.2.6, the
linear functional  is continuous and has norm < 1.

2As (G, K) is a Gelfand pair, the group G is automatically unimodular by proposition|V.2.4} so we don’t need the
factor A(z)~!
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By remark [V.2.2} the linear operator 6.(G) — 6.(K\G/K), f — X fX decreases the L!
norm, so it extends to a continuous linear operator L'(G) — L'(K\ G/K), that we will still
denote by f — X f& Then f — x (¥ ) is a continuous linear functional on L!(G), and its
norm is equal to that of y, so there exists a unique ¢ € L*(G) such that ||¢|l« = ||x]|op and
that, for every f € L'(G), we have

/ F@)p(e e = (5 f5).
G

In particular, for all k, k' € K and every f € L'(G), we have

/f o(kz™ k) d:v—/f EHo(x ) de
X" (L R+ )*)
X F5)

/f

So ¢ is bi-invariant.

Let f,g € L'(K\G/K). We have
(e = [ (Fr0@pla s
= | fygly " a)p(a™)dzdy
= | fy)ely'2)g(z"")dydz

GxXG

= / (f * 9)(2)g(=V)dz.
As x(f*g) = x(f)x(g) = x(f) J, v(2)g(z~")dz, this implies that

/G ((F % 9) — X(F)e)(2)g(z)dz = 0.

Hence, for every f € L'(K\G/K), we have f * ¢ = x(f)p. Choose f € 6.(K\G/K)

such that x(f) # 0. Then x(f) = f * ¢(1) = x(f)¢(1), so ¢(1) = 1. Also, the function
f * ¢ is continuous, because it is left uniformly continuous (note that, for every x € GG, we have

[La(f x0) = fx¢lloc = [(Laf = f) *¢lloc < || Laf — fll1]l¢lloc and apply proposition|L.3.1.13).
So ¢ is locally almost everywhere equal to a bi-invariant continuous bounded function, and this
continuous bounded function is spherical by proposition[V.4.3]

Finally, let ' be another bounded spherical function such that, for every f € L'(K\G/K),

we have
| 1@¢@ e = [ sl
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We have seen above that, for every f € L'(G), we have

/ F@)p(e e = x(< fK) = / K PR (o) o )do,
G G

and we have a similar equality for ¢’. So

/G F(@)¢ () de = /G F@)p(a)d

for every [ € L'(G), and this implies that ¢’ = ¢.

V.5 Spherical functions of positive type

For the first result, we don’t need to assume that (G, K) is a Gelfand pair.

Proposition V.5.1. Let ¢ be a function of positive type on G, and let (1,,V,) and v, € V,, be
the unitary representation of G and the cyclic vector associated to p. (See section )

Then v, € Vf if and only if  is bi-invariant.
Proof. Forall k, k' € K and x € GG, we have

o(kxk’) = <7Tso(kmk/)(“so)vv<p> = <7T¢($)<7Tso(k/)(vw)):Ww(k_l)(up))-

So, if v, € VI, we get p(kzk’) = p(x). Conversely, suppose that ¢ is bi-invariant. Taking
k' = 1 in the equation above, we see that, for every & € K and every x € G,

p(x) = (mp(2)(vy), vp) = @k~ 2) = (m(2) (v,), T (K) (V).

As v, is a cyclic vector, the span of {7,(x)(v,), © € G} is dense in V,,, and so this implies that
mo(k)(v,) = v, for every k € K.

[]

Theorem V.5.2. Assume again that (G, K) is a Gelfand pair. Let @ be a continuous bi-invariant
function on G.

If ¢ is a normalized function of positive type (i.e. p € 1), then p is spherical if and only
p € &(P), that is, if and only if the representation (7, V,,) is irreducible.

Proof. We write (7, V) and v for (7, V,,) and v,,. As ¢ is bi-invariant, we know that v € V¥ by
proposition Suppose first that ¢ € &(?), i.e., that 7 is irreducible. By theorem [V.3.1.1]
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V.5 Spherical functions of positive type
we have dim(V*) = 1. Let f € 6.(K\G/K). Then we have, for every z € G,
Frole) = [ FO)EG 0.0y

/ £ () (), 7))y
(@)(v), 7(f)(v))-
As 7(f)(v) € VE, we can write 7(f)(v) = x(f)v, with x(f) € C, and we get, for every z € G,
)

fre(@) = x(f){r(2)(v),v) = x(f)e(z).
By proposition this implies that  is spherical.

Conversely, assume that ¢ is spherical. Then, by proposition again, there exists a map
X : 6.(K\G/K) — C such that, for every f € €.(K\G/K), we have f x ¢ = x(f). In other
words, for every f € 6.(K\G/K) and every x € GG, we have

f ol / @)y ) (), v)dy = (x(2) (), 7(f)())

= x(f)e(x)
= X(f )7 (z)(v),v).

As v is a cyclic vector, this implies that 7(f)(v) = x(f)v € VE. But we have seen in the proof
of lemma|V.3.1.4{that the space {7 (f)(v), f € €.(K\G/K)} is dense in V¥ (if v is cyclic), so
dim(VE) = 1. By lemma|V.5.3] this implies that (7, V) is irreducible.

]

Lemma V.5.3. We don’t assume that (G, K) is a Gelfand pair. Let (m,V') be a unitary repre-
sentation of G, and suppose that there is a cyclic vector in VE. If diim(VE) < 1, then (7, V) is
irreducible.

Proof. Tt suffices to prove that Endg (V) = Cidy. Indeed, if V has a closed G-invariant subspace
W such that W = {0}, V, then the orthogonal projection on W is a G-equivariant endomorphism
of V' (by lemma|l.3.4.3)) that is not a multiple of idy .

Solet T € Endg(V). Then, by proposition the operator 7' commutes with the orthog-
onal projection on VX, so it preserves V. Choose a cyclic vector v € VE. As dim(VE) =1,
we have T'(v) = Av, with A € C. As T is G-equivariant, we get that T'(7(z)(v)) = Ar(z)(v) for
every z € GG. As v is cyclic, this implies that 7' = Aidy .

]

Corollary V.5.4. Assume that (G, K) is a Gelfand pair. Then ¢ — (V) induces a bijec-
tion from the set of spherical functions in &) to the set of unitary equivalence classes of
irreducible unitary representations (7, V') of G such that VX # {0}.
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Proof. The only statement that doesn’t follows immediately from proposition and theo-
rem is the fact that, if two spherical functions in & (%) give rise to unitarily equivalent
representations, then they must be equal. Let 1,y € &(Z7;) be spherical, and suppose that
there is an isometric G-equivariant isomorphism 7" : V,,, — V,,,. By proposition the vec-
tors v, and v,,, are K -invariant. Also, as (G, K) is a Gelfand pair, the spaces Véf and Vé are
both of dimension < 1, hence of dimension 1 because they contain nonzero vectors. But 7T’ is
G-equivariant, so we have (VX)) C Vi, which implies that T'(v,,) = Av,, for some A € C.
ASs [|vg, || = ||vg, || = 1, we must have |A| = 1. So, for every = € G, we get

902( ) = <7T<Pz(w)(v<ﬁ2)av<ﬂ2>

= (7, () (A IT(Ucpl))a)‘_lT(Uw»
= (T (7, (2)(v4,)), T(vgy))
=

T (2) (Vy ) Uy ) -

V.6 The dual space and the spherical Fourier transform

In this section, we suppose that (G, K) is a Gelfand pair. We will state a few results on the
(spherical) Fourier transform without proof. In the next section, we will give proofs of some
version of these results if GG is compact.

Definition V.6.1. The dual space of (G, K) is the set Z of spherical functions in & (%), with
the weak* topology coming from the embedding & () C L*°(G) ~ Hom(L'(G), C).

Example V.6.2. If G is commutative and K = {1}, then Z = G, the dual group of G. (See
problem set 3.)

Proposition V.6.3. The space Z is locally compact, and its topology coincides with the topology
of convergence on compact subsets of G.

Proof. For the first statement, note first that &2, = {v of positive type|y(1) < 1} is weak*
compact, because it is weak* closed in the closed unit ball of L>°(G). By the proof of
theorem the subset &, N € (K \ G/K) is the set of p € P, such that, for ev-
ery f € L'(G), we have [, f(z)p(z " )dx = [,5f¥(x)p(x™")de. These are weak*
closed conditions, so &y N (K \ G/K) is weak* closed in &, hence weak* compact. Fi-
nally, by theorem m the set Z U {O} is the set of gp € Py, NE(K\G/K) such that
Jo(f Bdx = ([, f( da:) (J 9(@)p(z7)dx) for all f,g € L'(K\G/K).
This is a Weak* closed COIldlthl’l SO Z U {0} is weak* compact, and Z is locally compact. Note
that this also proves that Z U {0} is the Alexandroff compactification of Z.

The second statement follows immediately from Raikov’s theorem (theorem [[I1.4.3)).
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V.6 The dual space and the spherical Fourier transform

Definition V.6.4. Let f € L'(K\G/K). The (spherical) Fourier transform of f is the function
f: Z — C defined by

Flo) = /G F(@)p(a )z = xo (f).

Proposition V.6.5. The Fourier transform has the following properties :

(i)
(i1)
(iii)
(v)

Proof.

(111) and (1v)

(ii)

For every f € LY( K\G/K), the function fisin ¢0(Z), and we have ||]/‘"\||C>O < I fll1
The map L (K\G/K) — €o(Z), f —> [ is C-linear and it has dense image.
Forall f,g € LY(K\G/K), we have m = 3.

For every f € L} K\G/K), we have = ?

(1) The continuity J?follows immediately from the definition of the weak™® topology.
In fact, we can extend f (by the same formula) to a continuous linear functional on the
whole space L°°((). But have seen in the proof of proposition that Z U {0} is the
Alexandroff compactification of Z, so this implies that f € %(Z) vanishes at co. The
inequality ||]?||OO < || f|1 just follows from the fact that ||| = 1 for every p € Z.

This is just expressing the fact that x, is a x-homomorphism from L'(K\G/K) to C, for
every p € Z.

The linearity is clear. The second statement follows from the Stone-Weierstrass theorem :
indeed, the image of the spherical Fourier transform is a C-subalgebra of %,(7) by (iii),
it is stable by complex conjugation by (iv), it separates points (because, by theorem [V.4.4]
the map Z — o(L'(K\G/K)), ¢ — (f — f(p)) is injective), and it vanishes nowhere
(for every ¢ € Z, the map f —— f((p) is a multiplicative functional on L*(K'\G/K), so
it is nonzero).

]

Theorem V.6.6. (Fourier inversion) f|Let ¥'(K\G/K) be the space of L* functions that are
complex linear combinations of bi-invariant functions of positive type on G.

Then there exists a unique measure v on Z, called the Plancherel measure, such that, for every
f € VY K\G/K), we have f € L'(Z,v) and, for every z € G,

~

f(z) = / (@) Flp)dv.

Theorem V.6.7. (Plancherelformula)For every f € €.(K\G/K), we have | € L2(Z,v), and

| @ = [ [Fokat).

3See [[18] Theorem 6.4.5.
4See [18] Theorem 6.4.6.
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V' Gelfand pairs

In particular, the map f —s | extends to an isometry L*(K\G/K) — L*(Z,v), and this is an
isomorphism.

Remark V.6.8. If G is commutative and K = {1}, then Z = Gisa locally compact group, the
measure v is a Haar measure on G, and the Pontrjagin duality theorem says that the canonical

map G — G, x — (¢ — @(x)) is an isomorphism of topological groups. (See for example
[[8]] Theorems 4.22 and 4.32, or [[18]] Theorems 5.5.1 and 5.7.1.)

But in general, the Plancherel measure v could be supported on a strict subset of 2.

V.7 The case of compact groups

In this section, we assume that (G, K) is a Gelfand pair, and that G is compact. We also assume
that the Haar measure on G is normalized.

Theorem V.7.1. (i) The dual space Z of (G, K) is discrete, and it is an orthogonal subset of
L*(G).

(ii) Every spherical function on G is of positive type (hence in &(Z,) by theorem |V.5.2)).
In other words, the set Z is in canonical bijection (via ¢ —— (m,,V,,)) with the set of
equivalence classes of irreducible unitary representations of G such that dim(Vf ) =1

(iii) For every p € Z, we have

o(z) = /K \o (k) dk

/ (e dlmV

(iv) If f € LA(K\G/K) and (7,V) € G, then f % x» = 0if VE = {0}, and otherwise f  x»
is a multiple of the element o, of Z corresponding to w by corollary[V.5.4]

for x € G, and

Proof. Let g, ¢’ € Z suchthat ¢ # ’. We know by corollary (and proposition [[V.2.6) that
the representations V,, and V., are unitary and not equivalent. We also know (by construction of
the representation) that ¢ and ¢’ are matrix coefficients of V,, and V., respectively. By Schur

orthogonality (theorem [[V.3.8)), this implies that (¢, ¢') 12(q) = 0.

We prove that 7 is discrete. Let ¢ € Z, and consider U = {¢’ € Z|||¢ — ¢'||0 < ||¢|l2}- This
is open in the topology of convergence on compact subsets of G (because G is compact), hence
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is an open subset of Z by Raikov’s theorem (theorem [[11.4.3)). Also, if ¢’ € U, then we have

|<907 90/>L2(G)| = |<90790>L2(G) - <90, <P/ - 90>L2(G)|
> lells = llell2lle = ¢'ll2

> llellz = llellzlle = &'llo
> 0,

hence, by the first paragraph, ¢’ = . This means that U = {¢}, i.e., that ¢ is an isolated point
of Z.

Let (7, V) be an irreducible unitary representation of G and let f € L?(K\G/K). We want
to calculate f * y,. Let (v1,...,v4) be an orthonomal basis; then, for every = € G, we have
Xx(x) = 20 (m(x)(e;), e;). Hence, for every = € G,

d d

[ xa() = /Gf(y) Y wly o) (e e) = Y (m(@)(er), m(F)(e)-

i=1 i=1

Let Pr € End(V) be the orthogonal projection on V5. As f is bi-invariant, we have
7(f) = Pg o n(f) o Px by proposition Suppose first that VX = {0}. Then the for-
mula above gives f * x, = 0. Now suppose that VX # {0}. Then, by corollary there is
a unique spherical function of positive type ¢, whose associated representation is (7, V'), and a
unitary cyclic vector v € V& such that ¢, (x) = (7(x)(v),v). We may choose the orthonormal
basis such that v; = v. Then Pk (v;) = 0 fori > 2 and Pk (v;) = vy, for every x € GG, we have

d

[ xa(@) = Y (w(2) (v3), Prc(w(F)(Prc(v3)))) = (m(a)(v1), P ((F)(vn)))-

=1

As VX is 1-dimensional, the vector P (7(f)(v1)) is a multiple of vy, and so f * x is a multiple
of .. This proves (iv). Note also that, for every = € GG, we have

/wa(kw)dk;:/}(é(w(kx)(uﬁ,vﬁdk

_ é <7T<x)(vi), /K W(kl)(vi)dk>

(m(z)(vi), Px(v;)) (by proposition [V.1.7)

(@) (01), 1)

(),

~

—~

RS

which gives the first part of (iii).
1V.3.8]

he second part of (iii) is contained in point (ii) of proposition
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Now consider a spherical function ¢ on G. By proposition (i.e. the Fourier inversion
formula), we have an equality (in L?(G))

p = dim(m)e Xr.
€@

By the calculations above, only the m € G with nonzero K-invariant vectors appear in the sum
above, and then ¢ * y, is a multiple of the function that was denoted by ¢, in the previous
paragraph. In other words, using corollary again, we get

o= e,
YeZ

for some ¢, € C. If we denote by x., (resp. xy) the linear functional f —— f % (1) (resp.
[ f*x(1))on L'(K\G/K), we know that it is multiplicative (for y,, this uses theorem

V.5.2). Also, as p = 3, cyth, we have X, = >, cyXy- Let¥h,¢)" € Z such that ¢ # o).
Then ¢ * ¢’ = 1’ *x 1) is a multiple of both ¢) and v’ (by proposition |V.4.3), so ¢ x ¢}’ = 0. In
particular, we have X (¢') = x4/ (1) = 0. This implies that x.,(¢)) = cyxy (1) for every ¥ € Z;

note also that
:/Wg) ldx_/w D@)dz > 0.
G

Hence, if v, ¢ € Z and ¢ # ¢/, then
0= Xo (¥ * ') = X (V)X (V) = cycyxp (V) xw (YY),

S0 cycyy = 0. So at most of one the ¢, can be nonzero, i.e., there exists 1 € Z such that ¢ = c,).
As (1) =1 = 1(1), we must also have ¢, = 1, so finally we see that ¢ = 1) is of positive type.
This finishes the proof of (ii).

O
Corollary V.7.2. (i) We have a G-equivariant isomorphism
L*(G/K) ~ @ V.
peZ
(ii) The family ((dim V,,)Y/2) ¢z is a Hilbert basis of L*( K \G/K).
(iii) Forevery f € L*(K\G/K), we have
= Z dim(V5) f ()¢
peZ
(Fourier inversion formula) and
1f1Z26) = D dim(V,) | f ()
peZ

(Parseval formula).
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Proof. Point (i) is just a reformulation of the last statement of theorem [V.3.2.4]

For (ii), we already know that the family (1/dim(V,,)p),ecz is orthonormal in L?(G). Also, if
f € L*(K\G/K), we have
> dim(V)f = xx

(Tr,V)Gé
by proposition [IV.7.1} so f is in the closure of Span(Z) by point (iv) of the theorem, which
means that Span(7) is dense in L*(K'\G/K).
The second formula of (iii) follows from the first formula and from (ii). To prove the first
formula, it only remains to show that, for every f € L?*(K\G/K) and every ¢ € Z, we have
[ * Xx, = f(@)p. As we already know that f * x, is a multiple of ¢, we just need to check

that f % xr (1) = f ( ). By point (iii) of the theorem, we have p(z) = [} xx, (kz)dk for every
ze€G.So:

[ * X, (1 /f L)X, (7 )da

= flk™ x))<7r (x)dzdk  (f is left invariant and vol(K') = 1)
GxK

= f@)xx (k:x)dmdk
GxK

- [ ree@
[f

O

Remark V.7.3. The corollary says in particular that the Plancherel measure v on 7 is given by

v({e})] = dim(V5,).
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VI Application of Fourier analysis to
random walks on groups

We will mostly be interested in the case of finite groups in this chapter, but we will give some
results for more general groups in the last section.

V1.1 Finite Markov chains

We fix once and for all a probability space € (i.e. a measure space with total volume one).

Definition VI.1.1. Let X be a measurable space (i.e. a space with a g-algebra). A random
variable with values in X is a measurable function X : 2 — X.

For every measurable subset A of X, we write P(X € A) for the measure of X !(A). (We
think of this as the probability that X is in A.) The distribution of X is the probability distribution
pon X defined by u(A) =P(X € A).

We think of random variables as representing the outcome of some experiment or observation.
The probability space (2 is usually not specified (you can think of it as something like “all the
possible universes”). For example, we could think of the outcome of flipping a coin as a random
variable with values in the finite set {heads, tails}. If the coin is unbiased, the distribution of that
random variable is given by p({heads}) = p({tails}) = 3.

In this notes, we will only be concerned with the case where X is finite and its o-algebra is the
set of all subsets of X. We can (and will) think of measures on X as functions p : X — Rxy.

From now on, we assume that X is finite.

Definition VI.1.2. A matrix P = (P,;) € M,(R) is called stochastic if P;,; > 0 for all
i,j€4{1,...,n}and Y 7| P ;= 1foreveryi€ {1,...,n}.

If P: X x X — Ris a function, we think of it as a matrix of size |X| x |X| and we call is

stochastic if P(z,y) > Oforallz,y € X and }_ y P(z,y) = 1foreveryz € X.

Definition VI.1.3. Let P : X2 — R be a stochastic function and v be a probability distribution
on X A (discrete-time homogeneous) Markov chain with state space X, initial distribution v
and transition matrix P is a sequence (X,,),>o of random variables with values in X such that :
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VI Application of Fourier analysis to random walks on groups

(a) The distribution of X is v.

(b) Foreveryn > 0andall zg,..., x4 € X, if P(X,, = 2,,...,Xo = x¢) > 0, then

P(Xoi1 = 2pi1| Xn = 2py ..., Xo = x0) = P2y, Tny1)-

Let P,(Q : X? — R be two functions. We write P() for the function X? — R defined by

PQ(z,y) = > P(z,2)Q(z,y).

zeX

(If we see functions on X2 as matrices, this is the usual matrix product.)

In particular, we write P" for the product PP ... P (n times); by convention, PV is the char-
acteristic function of the diagonal.

Lemma VI.14. Let (X,,)n>0 be a Markov chain on X with initial distribution v and transition
matrix P. Then, for every x € X, we have

P(X, =) =) v(y)P"(y,2).

yeX

In other words, if we see P as a matrix and v as a row vector, then the distribution of X, is
vP"™.

Proof. We prove the result by induction on n. It is obvious for n = 0. Suppose that we know it
for some n, and let’s prove it for n 4+ 1. Let x € X. Then

]P)(Xn+1 = x) = Z ]P)(XnJrl = x|Xn = y)

yeX, P(Xn=y)#0

— Z P(X, = y)P(Xpy1 = 2| X =9)

yeX

= P(X, =y)P(y,x).

yeX

Using the induction hypothesis, we get

P(Xois = 2) = 3 P(,0) 3 v(2)P" () = S w(2) P (z),

yeX zeX zeX
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Example VI.1.5. (1) Random walk on the discrete circle : We take X = Z/rZ, v = 6, and

2)

3)

P defined b
’ Py = {3 Tr-ve i)
Y= 0 otherwise.

The Markov chain is modeling a random walk on the “discrete circle” Z/nZ where we
start at 0 with probability 1, and then, at each time n, we have a 50% chance to go to the
preceding point on the discrete circle and a 50% chance to go to the next point of the circle.

Mixing a deck of cards using random transpositions : We are trying to understand the fol-
lowing situation : We have a deck of NV cards. At each time n, we randomly (uniformly
and independently) choose two cards and switch their positions in the deck. How long will
it take to mix the deck ?

This problem is modeled by a Markov chain with state space Sy (representing all the
possible orderings of the deck), initial distribution the Dirac measure supported at our
starting position, and transition matrix P given by

% ifr=1
P(10,0) =} +» if 7 is a transposition
0  otherwise.

The Bernoulli-Laplace diffusion model : We have two urns labeled by 0 and 1. At the start,
urn O contains 7 red balls and urn 1 contains b blue balls. At each time n, we choose a ball
in each urn (uniformly and independently) and switch them. How long will it take to mix
the balls ?

We model this problem using a Markov chain with state space Sy /6, X G,
where N = r + b, and G, xS, is embedded in Gy via the obvious bijection
{1,...,r} x{1,...,b} ~ {1,...,N}. Indeed, we can think of the N balls as the set
{1,..., N}, where the first r balls are red and the last b balls are blue. A state of the pro-
cess described above is a subset A of {1,..., N} such that | A| = r (the content of urn 0);
note that switching two balls between the urns does not change the number of balls in each
urn. The group & acts transitively on the set 2, of cardinality r subsets of {1,..., N},
and its subgroup &, x &, is the stabilizer of {1,...,r}, so the state set is indeed in bi-
jection with & / &, x &;. The initial distribution is the Dirac measure concentrated at
{1,...,r} The transition matrix P is given by

D=1 e "n_
P(A’,A):{ G ifr—jAnA]=1

otherwise.

Indeed, we need the calculate the number of pairs (A, A’) of subsets of cardinality r of
{1,..., N} such that r — |[A N A’| = 1; note that the condition means that A’ — A and

A — A’ both have exactly one element. There are (TTT;?! choices for A, b choicse for the

element of A’ — A and r choices for the element of A — A’.
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We have been asking if the chains described in the examples converge, but the first question
should be : to what distribution(s) can they converge ?

Definition VI.1.6. Consider a stochastic function P : X? — R. A stationary distribution for P
is a probability distribution x4 on X such that, for every y € X, we have

ply) = p(x)P(z,y).

rzeX

If we think of P as a | X| x | X| matrix and of x as a row vector of size | X |, then the condition
becomes P = .

If a Markov chain with transition matrix P converges in any reasonable sense, then the distri-
bution of its limit should be a stationary distribution of P.

Finally, we define the distance that we will use on random variables. Note that this definition
makes just as much sense if X is a general measure space, and the lemma following it stays true
with essentially the same proof.

Definition VI.1.7. Let 1 and v be two probability distributions on X. Their fotal variation
distance is
IX = Yllrv = max|u(A) = v(A)].

This is clearly a metric on the set of probability distributions, and in fact it is closely related
to the L' metric.
Lemma VI.1.8. Let ;o and v be two probability distributions on X. Then we have

= vl = 5 3 lute) — vi)]

rzeX

Proof. Let B = {x € X|u(z) > v(z)}. Forevery A C X, we have

W(A) = v(A) = w(ANB) —v(ANB) + 3 (ul() - v(a)

<u(ANnB)—-v(ANB) o
=u(B)—v(B) = Y (u(z) —v(x))
< u(B) —v(B).

Similarly, we have

v(A) = p(A) < v(X = B) = p(X — B) = u(B) — v(B).
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Hence |u(A) — v(A)| < u(B) — v(B), with equality if A = Bor A = X — B, and we get

I~ vlirv = u(B) ~ (B) = S(n(B) ~ v(B) + (X ~ B) — u(X ~ B))

= S ule) v+ S )~ v)

€D z€eX—-B

L=l
= —||lp — |1
SLAE

V1.2 The Perron-Frobenius theorem and convergence of
Markov chains

Notation VI.2.1. Let A, B € M,,,,(R). We say that A > B (resp. A > B) if A;; > B,; (resp.
A;; > By;) forevery (7,5) € {1,...,n} x {1,...,m}. We also denote by |A| the n x m matrix
(1441)-

Definition VI.2.2. We say that a matrix P = (P;;) € M,,(R) is positive if P > 0.

Definition VI.2.3. We say that a stochastic matric P € M, (R) is ergodic if there exists a positive
integer 1 such that P" is positive.

Remember the following classical theorem from linear algebra :

Theorem VI.2.4 (Perron-Frobenius theorem). Let P = (P;;) € M,,(R) be an ergodic stochastic
matrix. Then :

(i) The matrix P has 1 as a simple eigenvalue, and every complex eigenvalue )\ of P satisfies
A < L

(ii) The space of row vectors w € My, (R) such that wP = w is 1-dimensional, and it has a
generator v = (vy, ..., v,) such that v; > 0 for every i and vy + ... + v, = 1.

(iii) Let P, be the n X n matrix all of whose rows are equal to the vector v of (ii). Then
P — P, asr — +o00. More precisely, let p = max{|\|, A # 1 eigenvalue of P}, by (i),
we know that p < 1. Fix any norm ||.|| on M, (R). Then there exists a polynomial f € 7Z[t|
such that

|P* = Pall < F(R)6

Lemma VL.2.5. Let A = (A;;) € M,(R) be a positive matrix, let

Z={x=(x1,...,2,) € Rz >0and x, + ... + z, = 1},

123
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and let
A={XeR|Fx € Z, Ax > A\z}.

Then the real number Ao = sup A is positive and a simple root of the characteristic polynomial
of A, and it has an eigenvector all of whose entries are positive. Moreover, for any complex
eigenvalue \ # \g of A, we have |\| < \o.

Proof. Note that A # @ because 0 € A, and A is bounded above by the sum of all the entries of
A. So )¢ is well-defined and nonnegative. Let (1, ),>0 be a sequence of elements of A converging
to \g; for every n > 0, choose 2™ € Z such that Ax(™ > unx(”). As Z is compact, we may
assume that the sequence (2(™), converges to some = € Z, and then we have Az > \gz.
Suppose that Az # Aoz, then, as A > 0, we get A(Azx) > NgAz. As Az > 0 and Az # 0, we
can multiply Az by a positive scalar to get a vector y € Z such that Ay > A\gy, which contradicts
the definition of \g. So Ax = Agx. Also, as x has at least one positive entry and A > 0, the
vector \opx = Ax has all its entries positive, which implies that A\ > 0 and = > 0.

Next we show that every complex eigenvalue A # )\ of A satisfies |[A\| < Ao. Let A be a
complex eigenvalue of A. Then there exists a nonzero vector y = (y1,...,y,) € C" such that
Ay = X\y. Forevery i € {1,...,n}, we have

DAy <D Aiglygl
o =1

In other words, we have Aly| > |A||y|. As we can normalize |y| to get an element of Z, this
shows that |A| < A\g. Suppose that |\| = \g. As A > 0, there exists a positive real number §
such that A’ := A — 61, > 0. Then u — p— 6 induces a bijection between the eigenvalues and
those of A’, and in particular A\ — 0 is the biggest real eigenvalue of A’ (and it is positive because
A" > 0). By applying the beginning of the paragraph to A’, we see that |\ — J| < Ay — J. But
then

Allys| =

Ao=[A=[A=0+5<|A=0]+0d < Ao,
80 |A — & + 0 = |A|, so A € Rss, and we must have A = .

Let’s show that the eigenspace E,, := Ker(A — \g/,,) has dimension 1. Suppose that there
exists y = (yi1,...,yn) € E), (with real entries) such that the family {z,y} is linearly inde-
pendent. We may assume that y has at least one positive entry. Write © = (xy,...,x,), and let
w=sup{v € RVi € {1,...,n}, z; > vy;}. Thenz — vy > 0 and x — vy # 0. The vector
x—vy is nonzero because x and y are linearly independent, and we have A(x—vy) = A\o(z—ry).
As A >0, x — vy > 0and )\, this implies z — vy > 0, contradicting the choice of v.

Now we show that )\, is a simple root of the characteristic polynomial y 4(¢) of A. We can
find ¢ € GL,(R) such that g~*Ag is of the form <)(\)0 ; , with B € M,_;(R). We have
xa(t) = (t — o) xn(t). Suppose that the multiplicity of g as a root of x 4(¢) is > 2. Then X,
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is a root of xp(t), so there exists 2 € R""! such that Bz = \gz. Lety = g <2) € R", then

Ay = Ay + ax for some a € R. As dim(E,,) # 0, the vector y cannot be an eigenvector of
A, so a # 0. An easy induction (using the fact that Az = A\gz) shows that, for every positive
integer r, we have A"y = Aoy + ra\y 'z. As A" > 0, this implies that

Aly| = [Ay| = Mgy + raX; a] = [radg z] = Ajlyl = Ay (r|az] — Aolyl)-

As o # 0 and = > 0, there exists a positive integer 7 such that r|az| — Ag|ly| > Ao|y|, and then
we have A"|y| > Aj|y|. As A" > 0, applying the beginning of the proof to A", we see that this
implies that A" has a real eigenvalue > Aj. But this impossible, because the eigenvalues of A"
are the rth powers of the eigenvalues of A, so they all absolute value < A{.

]

Proof of the theorem. We prove (i). Let vy = (1,...,1) € R™. Then the fact that P is stochastic
is equivalent to the fact P > 0 and Pvy = vy. As all the matrices P" for r > 1 have nonnegative
entries and satisfy P vy = vy, they are all stochastic. Also, if z = (z1,...,2,) € (R>¢)" and
Q = (Qi;) € M,(R) is stochastic, then, for every i € {1,...,n}, we have

(Qx); = ZQz‘j%’ < sup z;.
j=1

1<j<n

Fix an integer » > 1 such that P* > 0. By the lemma, the matrix P" has a simple real
positive eigenvalue \q such that every complex eigenvalue A # \q of P satisfies |A\| < A\g. By
the definition of )\q in the lemma and the observation above about stochastic matrices, we have
Ao < 1. On the other hand, we have Pvy = vy, so 1 is an eigenvalue of P, hence also of P", and
so A\g = 1. Let A € C be an eigenvalue of P, and y € C" be an eigenvector for this eigenvalue.
Then P'y = A"y, so A" is an eigenvalue of P". If A" # 1, then |\"| < 1 by the lemma, hence
|A| < 1. If A" = 1, then the eigenvector y must be in Ker(P" — I,,), and we know (again by the
lemma) that this space is 1-dimensional. As vy € Ker(P" — I,,), the vector y must be a multiple
of vy, and then \ = 1.

Finally, if the characteristic polynomial of P is xp(t) = (t — A1) ... (t — A,.), then that of P"
is xpr(t) = (t — A])...(t — A). So the multiplicity of 1 in xp(¢) is at most its mutliplicity in
X pr(t), which we know is 1 by the lemma. This finishes the proof of (i).

Let’s prove (ii). As P and P? have the same characteristic polynomial, we know that 1 is a
simple eigenvalue of P by (i), so the space of row vectors w such that wP = w has dimension
1. Let w = (wy,...,w,) be a nonzero vector in this space. Then we also have |w|P = |w]|.
Indeed, for every j € {1,...,n}, we have

n
g w; Py
i=1

lw;| =

n
<> jwi|Py
i=1
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VI Application of Fourier analysis to random walks on groups

(because all the P;; are nonnegative). Suppose that |w| # |w|P. Then there exists
Jo € {1,...,n} suchthat |wj,| < >7 | |w;| Py, and this implies that

n n

n
D lwil = wil Py > Yy,
j=1

i=1 ij=1

a contradiction. As w # 0, at least one of the |w;| is positive. If we choose as before
r > 1 such that P* > 0, then |w| = P"|w|, so, for every j € {1,...,n}, we have
lw;| =7 (P");j|lw;| > 0. This finishes the proof of (ii).

We finally prove (iii). As all the norms on M, (R) are equivalent, it suffices to prove the state-
ment for a particular norm. By the existence of the Jordan normal form (actually by the Jordan-

0 B
with B € M,,_1(R) such that B = D + N, with D a diagonal matrix, N a nilpotent matrix and
DN = ND. Choose the operator norm ||.|| on M, (R) coming from the usual Euclidian norm
on R"™. The entries of D are the eigenvalues of P different from 1, so |D|| = p. As D and N
commute, we have, for every k € Z>,

Chevalley decomposition), there exists a matrix g € GL,(R) with g7'Pg = A = (1 O),

B"=(D+ N)kF = Zk: <§) DFTINT,

J=0

If £ > n (in fact, K > n — 1 suffices), then this simplifies to Z?:o (I;) D¥=INJ because N7 = 0
for j > n. Hence, if k£ > n,

" [k . : AN :
1B <3 (j)nDn’f SN < A S RIIN
=0

J=0

1 0
Let A, = <O B.
A* — A as k — +oo (because p < 1). This implies that P¥ — P’ := gA, g~ ' as k — +o0.
Also,

>, with B, = 0 € M,,_(R). Then ||A* — A, || = || B¥|| for every k > 0, so

|1PE = P'|| = [lg" (A* — A )gll < llgllllg™ 1 B,

which is bounded by the product of p* and of a polynomial in k. So it only remains to show that
P’ = P.. As P' = limj_,, . P*, we have P"P = PP’ = P’. Remember that 1 is a simple
eigenvalue of P and of PT. So all the rows of P’ are multiples of the corresponding eigenvector
of PT, ie. of v. Also, as P* is stochastic for every k > 0, its limit P’ is stochastic. So all the
rows of P’ have nonnegative entries whose sum is 1, which means that they are all equal to v,
and that P’ = P..

]

Definition VL.2.6. A Markov chain with transition matrix P is called ergodic if P is ergodic.
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V1.3 A criterion for ergodicity

In example [VI.1.5] all the chains are ergodic, except the Markov chain of (1) when r is even.

Corollary VI.2.7. Let (X,,),>0 be an ergodic Markov chain with transition matrix P. Then P
has a unique stationary distribution i, and, if |, is the distribution of X,,, we have

|t — pellrv < f(n)p",

where f is a polynomial and p = max{|\|, A\ # 1 eigenvalue of P} < 1.

Proof. Let v be the initial distribution of the Markov chain. By lemma we have
wn = vP". Let Py be the limit of the sequence (P"),>o. All the rows of P, are equal to
i, 80 VP, = p. If we use the L! norm on the space of functions from X to R (for the counting
measure on X) to define the operator norm ||.|| on the space of matrices, then we have

| 1, 1 :
e = pllrv = Sl = plls = Sl P" = vPuli < Sl P = Peoll,

so the bound on ||, — p||7v follows immediately from (iii) of the theorem.

]

Remark V1.2.8. Although the bound on ||, — u||7v looks quite good (it is exponential), it is
useless if we want to know when exactly p,, becomes close to the stationary distribution. We
need to analyse the problem more closely to answer that kind of question. This is what we will
now try to do in some particular cases.

Example VI.2.9. The chain of example [VI.1.5(2) is ergodic. Indeed, let 7' C &,, be the union
of {1} and of the set of transpositions. Then, for » > 1 and 0,0’ € &,,, we have P"(¢’,0) > 0
if and only if 0’c~! can be written as a product of exactly r elements of T'; as 1 € T, this is
equivalent to the condition that 0’c~! can be written as a product of s transpositions, for some
s <r. Soifr > @ (the length of the longest element of &,,), then P"(o’,0) > 0 for all
o,0 € G,.

VI.3 A criterion for ergodicity

The definitions and results ot this sectiona are not used in the next sections.

Remember the following definitions :

Definition VI.3.1. A (finite unoriented) graph is a pair G = (X, F), where X is a finite set and
FE is a set of unordered pairs {x, y} of distinct elements of X. We say that X is the set of vertices
of GG and that F is the set of edges.

Let x,y € X. A path connecting = and y in the graph G is a sequence p = (ey,...,e,) of
edges of G such that we can write e; = {z;,y;} with zg = z, y,, = y and y; = x;,; for every
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VI Application of Fourier analysis to random walks on groups

i € {0,...,n — 1}. We call the integer n + 1 the length of the path p and denoted by |p|. If
x =y, we say that the path if a closed path or a loop based at x.

We say that the graph G is connected if for every x,y € X, there exists a path connected x
and y. We say that G is bipartite if there exists a surjective function ¢ : X — {—1, 1} such that,
for every edge e = {x,y} of G, we gave ¢(z) # ¢(y). (In other parts, we can partition X into
two nonempty subsets X, and X such that every edge connects an element of X to an element
of X1.)

For every =,y € X, the distance d(z,y) between x and y is the length of the shortest path
connecting x and y; if there is no such path, then we set d(x,y) = +oco. Note that this defines a
metric on X if G is connected.

The following result is classical.

Proposition VI.3.2. Let G = (X, E) be a connected graph such that | X | > 2. Then the follow-
ing conditions are equivalent :

(i) G is bipartite;
(ii) every loop in G has even length;

(iii) there exists xy such that every loop based at x has even length.

Proof. We show that (i) implies (ii). Suppose that G is bipartite, and let ¢ : X — {—1,1} be as
in the definition above. Let (e, ..., e,) be aloop in G. We write ¢; = {z;,y;} with x; = y;11
for0 <7 <n—1andy, = xo. Then an easy induction on 7 shows that, if 7 is even, we have
¢(z;) = ¢(x0) and ¢(y;) # ¢(z0), and, if ¢ is odd, we have @(z;) # ¢(xo) and ¢(y;) = P(o).
But y,, = 0, 80 ¢(yn) = &(x0), so n is odd, and the loop has even length.

It is obvious that (ii) implies (iii). Now assume (iii) and let’s show (i). Pick zo € X such
that every loop based at z has even length. We want to define a function ¢ : X — {0,1}. Let
y € X. As G is connected, there exists a path p = (ey, . .., e,) connecting o and z, and we set
#(x) = (—1)!"). We need to show that this does not depend on the path. Let ¢ = (fy, ..., fm) be
another path connecting = and x. Then (e, ..., €, fm,-- -, fo) is a loop based at z, so it has
even length by assumption, so |p| + |¢| and even, and (—1)/?l = (—1)l9. Note that ¢(xo) = 1
and that ¢(x) = —1 if {x¢, x} is an edge (such an edge must exist because G is connected and
| X| > 2). So ¢ is surjective. Let e = {x,y} be an edge of G. Let p = (ey,...,e,) be a path
connecting x and x. Then p’ := (ey, . .. .e,, €) is a path connecting x, and y, and |p'| = |p| + 1,
so ¢(x) # ¢(y). This shows that G is bipartite.

]

We now come to the connection with Markov chains.

Proposition VLI.3.3. Let X be a finite set and P : X x X — R be a stochastic function. We
define a graph G = (X, E) in the following way : a pair {x,y} of distinct elements of X is an
edge of G if and only if P(x,y) > 0.
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V1.3 A criterion for ergodicity

Suppose that G is connected and that it is not bipartite. Then the function P is ergodic.

Proof. Note that, for every =,y € X and every n > 1, we have P"(z,y) > 0 if and only if there
exists a path of length n connecting = and y.

By proposition for every x € X, there exists a loop p, of odd length based at x. Write
2m + 1 = maxgex |pz|, with m € Zso. Let z € X. Let’s show that, for every n > 2m, there
is a loop of length n based at =. Let {x, 2z} be an edge. For every r > 0, write g3, for the loop
of length 2r given by ¢o, = ({z, 2}, {z, 2}, ..., {2, 2}, {2,2}). Let n > 2m. If n is even, then

n—|ps|

qn 1s a loop of length n based at x. If n is odd, then r := == is a nonnegative integer, and the

loop obtained by concatening p, and ¢, has length n and contains z.

Let 6 = max, yex d(z,y). (This is called the diameter of the graph G.) Let z,y € X and
n > 2m + 6, and let’s show that there is a path of length connecting x and y (this will finish the
proof). Let p be any path connecting x and y. Then |p| < 9, so, by the previous paragraph, there
exists a loop ¢ of length n — |p| based at x. The concatenation of p and ¢ is the desired path.

O]
Corollary VI.3.4. (i) The chain of example|V1.1.5(1) is ergodic if and only if r is odd.
(ii) The chain of example [VI.1.5(3) is ergodic if r < n — 1.

We will reprove (ii) by a different method in section

Proof. (i) The graph corresponding to the chain has Z/rZ as set of vertices, and there is an
edge between a,b € Z/rZ if and only if a — b € {£1}. This graph is obviously connected,
and ti is easy to see that it is bipartite if and only if 7 is even. In particular, if  is odd, then
the proposition implies that the chain is ergodic.

Now assume that r is even. An easy induction on n shows that, for every n > 1 and all
a,b € Z/rZ, we have P"(a,b) = 0 if the image of n + a + b in Z/27Z is nonzero. Indeed,
this follows from the definition of P if n = 1. Suppose the result known up to some
n > 1, and let’s prove it for n + 1. Let a,b € Z/rZ be such that P"*!(a,b) # 0. As
Pt a,b) = 3 cz),p Pla, ¢)P(c,b), there exists ¢ € Z/rZ such that P(a,c) # 0 and
P™(c,b) # 0. By the induction hypothesis and the case n = 1, this implies that a + ¢ # 0
mod 2andn+c¢+b#0 mod 2,andthenn+a+b+2c=n+a+b=0 mod 2.

(i) The graph corresponding to the Markov chain has the set €2, of cardinality » subsets of
{1,...,n} as its set of vertices, and there is an edge linking A, A’ € €, if and only if
|ANA| =r—1. Let Ay = {1,...,r}. We first show that the graph is connected. Let
A € Q,. We write A = {n4,...,n,}, and we choose the ordering of the elements such that
ANAy={1,...,n:}, with s = |AN Ag|. Let my, ..., m,_, be the elements of Ay — A.
For0 <i<r—s,let B; ={ny,...,nsri,Mis1,...,My_s}. Then By = Ay, B,_s = A,
and there is an edge between B; and B, for every ¢ € {0,...,7 — s — 1}. So the graph
is connected.
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VI Application of Fourier analysis to random walks on groups

Now we show that the graph is not bipartite, by finding a loop of odd length. Let
A={1,...,r=1,r+1}and B={2,...,r,7+ 1}. Then { Ay, A}, {A, B} and { B, Ao}
are edges, so we have found a loop of length 3.

]

V1.4 Random walks on homogeneous spaces

Now suppose that we have a finite group G acting transitively (on the left) on the finite set X.
Fix 7o € X, and let K be the stabilizer of z, in G, so that we have a bijection G/K ~ X,
gr— g - .

Warning : We will be using the counting measure on G to define convolution products and
LP norms in this section. Beware constants ! (The reason for this choice is that we want the
convolution of two probability distributions to be a probability distribution.)

Definition VI.4.1. If 7 is a probability distribution on G, we denote by P, : X x X — R the

function defined by
Pr(xK,yK) = m(yKa™"),

forall x,y € G.

Definition VI.4.2. A left-invariant random walk on X driven by 7 and with initial distribution v
is a Markov chain with state space X, initial distribution v and transition matrix P;.

Here is the description of this Markov chain (X,),>0 in words : We choosing a starting point
on X according to the probability distribution v. At time n, we choose an element of G using
the probability distribution 7 and act on our position by this element to get to the position at time
n+ 1.

Remark V1.4.3. The matrix P; is actually bistochastic, i.e. both P, and its transpose are stochas-
tic. Indeed, for every y € G, we have

Z P.(zK,yK) = Z m(yKa™)

zeG/K zeG/K

=> w(yz")

zeG
=1.

In particular, the uniform probability distribution on X is an invariant distribution for P,. If
P, is ergodic, it is the only invariant distribution.

If the homogeneous space is G itself, we can give a simple criterino for ergodicity. (See lemma
16.20 and proposition 16.21 of [1]].)
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V1.4 Random walks on homogeneous spaces

Proposition V1.4.4. Suppose that X = G, and let S = supp(). Write G g for the set of elements

of G that can be written as ¢, . . . go, for some r > 0, with exactly r of the g; in S and r of the g;
in S~

Then G'g is a subgroup of G, and the function P; is ergodic if and only if G = Gy.

In particular, if (1) # 0, then P, is ergodic if and only S generates G. More generally, if S
generates (G and is not contained in a coset of a strict subgroup of G, then Py is ergodic. (Note
that we have S C gGg forevery g € S.)

Proposition VI.4.5. For every n > 1, we have P]' = P, where 7" is the n-fold convolution
product of .

Proof. We prove the result by induction on n. It is just the definition of P, if n = 1. Suppose
the equality known for some n > 1, and let’s prove it for n + 1. Let z,y € X. Then

PP K yK) = ) Pu(aK, 2K)Pp (2K, yK)
z€G/K
= Z T(zKx Da"(yKz ")

z€G/K

= Z m(za )" (yhz ™)

2€G, heK

_ Z ﬂ_*(?’b—‘rl)(yhx—l)
heK

*(n—l—l)(

= z,y).

]

Corollary V1.4.6. Let 7 a probability measure on (G, and suppose that 7 is right invariant by
K. Consider a left-invariant random walk (X,,),>0 driven by m and with initial distribution
the Dirac measure concentrated at xo € X. Let i, be the distribution of X,, and let |1 be the
uniform probability distribution on X.

Then, for every n > 0, we have
1 . ~/ \¥\n A~/ AR
lpn = pilify < 5 > dim(V)Tr((7(p)*)" 0 7(p)"),
(p,V)eGIVE £0 and pz1

where we denote by 1 the trivial representation of G.

Remember that, if (p, V') € @ is an irreducible unitary representation of G and f : G — Cis

-~

a function, then f(p) is then endomorphism of V' defined by

Fp) =" fl@)p(a™).

zeG
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VI Application of Fourier analysis to random walks on groups

Proof. Fix n > 0. For every x € GG, we have
pin(2) = PP (x0, 7) = 7" (1K)

by lemma [VI.1.4] and proposition Let 7y be the uniform probability distribution on G.
By lemma[VIL.1.8] we have

2

o=l = 3 [ 32 o) - o)

z€G/K

<Z |7 () = mo(x )\)

1

= 717" = ol
G
< Bl —mol,

where the last inequality is the Cauchy-Schwarz inequality. (Note that we are using the counting
measure on G to define the L? norms.) Let f = 7" — my € L*(G). By the Parseval formula
(theorem [[V.6.3(iii), note the factor ﬁ coming from the unnormalized Haar measure), we have

1£11? = }jmm Te(f(p)* o f(p))-

pV)EG

So we need to calculate the j?(p) Note that we have

for every p € G.
Suppose first that p = 1. Then 7(p) = 7i(p) = 1, s0 f(p) =

Let (p,V) € G, and suppose that p 2 1. Then a(p) = 3 ,cqp(z™) is an element of
End(V) that is G-equivariant, hence a multiple of idy, by Schur’s lemma, and has trace equal
to \_Cl¥| > wec X(x) = 0 (by corollary [[V.5.8). So fi(p) = 0, and F(p) = 7(p)". To finish the
proof, we just need to show that T(p) = 0if VX = 0. Let T = 7(p) = >, .o 7(x)p(z~") and
Px = Y .cxp(x). As 7 is right invariant by K, we have p(z) o T = T for every € K,
so P o T = |K|T. But Pg is the orthogonal projection on VX by proposition [V.1.7}, so
Im(T) c VE, andso T = 0if VE = 0.

]

Corollary V1.4.7. With the notation of the previous corollary, suppose that (G, K) is a Gelfand
pair and that 7 is bi- K -invariant. As in section let Z be the dual space of (G, K) (i.e. the
set of spherical functions by theorem[V.7.1)).
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VL5 Application to the Bernoulli-Laplace diffusion model

Then, for every n > 0, we have

1 ) N "
i = w7y < 5 Y. dim(Vp)[r(e)f,
pEZ, p#1

-~

where now, if f € €(K\G/K) and p € Z, the scalar f(p) € C is the spherical Fourier
transform, defined by

Flo) =" fl@)p(a™).

zeG

Proof. The proof is almost the same as for the previous corollary, except that we use the Parseval
formula of corollary to calculate ||7*™ — 7o||2. By this formula, we have

*n 1 : A
|77 = moll3 = = D dim(Ve) [ F (o),
Gl 2=

where f = 7" —m,. If p = 1 is the spherical function corresponding to the trivial representation,
then 7(p) = mo(p) = 1,80 f(p) = 0. If  # 1, then

folp) =D ela™)

zeG

(L, o)z =0

(by (i) of theorem for example). So f(gp) = 7(¢)™, which finishes the proof.

VI.5 Application to the Bernoulli-Laplace diffusion
model

Remember that the Bernoulli-Laplace diffusion model was described in example [VI.1.5(3). We
have two positive integers 7 and b. This model is a Markov chain (X, ),,>0 on the set (2, of subsets
of cardinality  of {1,...,r + b} with initial distribution the Dirac distribution concentrated at
{1,...,r}. The group G := &, acts transitively on 2,, and the stabilizer of Ay := {1,...,r}
is K := 6, X G,. The transition matrix P of the chain is given by

(r=DI(b-1)! .o "n_
P(A',A):{ —<r6b>! iftr—lAnAl=1

otherwise.

Remember that we have defined in 1(e) of problem set 11 a metric d on 2. by
d(A,A) = r —|AnN A’|, and that we have proved in 1(d) (and 1(f)) of the same problem
set that the orbits of K on G/K =~ (), are the spheres with center Ay for this metric. Bi-invariant
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VI Application of Fourier analysis to random walks on groups

probability distributions 7 on G correspond bijectively to probability distributions on the set
K\G/K of K-orbits on G/K, and the description of P implies easily that P = P,, where 7
is the bi-invariant probability distribution that corresponding to the uniform distribution on the
sphere with center Ay and radius 1.

If 11, is the distribution of X,, and y is the uniform distribution of 2,., then, by corollary[VI.4.7]
we have

1 , . iom
1t — pll7v < 1 > dim(Vp)[r(e)["

peZ—{1}

We calculated all these terms in problem set 11. Suppose for example that » < b (if not, we
can just switch r and b and we get an equivalent problem). Then we saw how to decompose
the quasi-regular representation of G on L?((2,) into irreducible subrepresentations in problem
3 of problem set 11 (see 3(j) and 3(k)), and we have exactly » 4+ 1 of them. We denote the
corresponding spherical functions by ¢y, ..., ¢,, as in problem 4. In particular, the function
o 1s just the constant function 1. We calculated these functions in 3(f), but actually we only
need 3(g). Indeed, we only care about 7(y;), for 1 < s < r. As 7 corresponds to the uniform
distribution on the sphere or radius 1 centered at Ay, the number 7(yp;) is just the coefficient of
o1,-1(Ap) in p, (with the notation of problem 3), that is,

s(r+b—s+1)

Rlp) =1- S22

Also, 3(f) says that

ifl1<s<r.

So corollary gives

1 — r+b r+b s(rab—s+1)\*"
lptn — il < (( )—( )) (1— ( >) |
— S s—1 rb

With some more effort, we can get the following result.

Theorem VIL.5.1. (See theorem 10 of chapter 3F of [|/].) There exists a universal constant
a € R such that, if n = ™2 (log(2(r 4 b)) + ¢) with ¢ > 0, then we have

it — pllrv < ae™/2.

A different calculation (still using spherical functions) gives the following theorem :

Theorem VI.5.2. (See theorem 6.3.2 of [6].) If r = b is large enough, then, for
n = =2(log(2(r +b)) — ¢) with 0 < ¢ < log(2(r + b)), we have

[t = el =1 —32e™".
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V1.6 Random walks on locally compact groups

In this section, we will see a few results (mostly without proofs) about random walks on more
general groups. A good reference for many questions that we did not touch on here is Breuillard’s
survey [S].

We fix a locally compact group G and a left Haar measure on G.

VI.6.1 Setup

Definition V1.6.1.1. (See remark[[.4.1.6]) A (complex) Radon measure on G is a bounded linear
functional on %;(G) (with the norm ||.||,). We denote by .# () the space of Radon measures
and by ||.|| its norm (which is the operator norm); this is a Banach space. If ;1 is a Radon measure,
we write f — [, f(z)du(x) for the corresponding linear functional on %,(G).

Example V1.6.1.2. (1) Any regular Borel measure is a Radon measure on GG (such measure
are called “positive” when we want to distinguish them from general Radon measures).

(2) If ¢ € L'(G), then the linear functional f — [, f(z)¢(x)dx is a Radon measure on G,
often denoted by ¢(z)dx or pdz.

(3) Forevery x € G, the linear functional 6,(G) — C, f —— f(z) is a Radon measure on G,
called the Dirac measure at x.

We define the convolution product y * v of two Radon measures i and v to be the linear
functional

fr— f(zy)du(z)dv(y).
GxG

Then it is not very hard to check that || % v|| < ||p||||v|| and that the convolution product is
associative on . (G). This makes .# (G) into a Banach algebra, and the Dirac measure at 1 is a
unit element of .Z (G).

If © = pdx and (' = ¢'dz, then it is easy to check that p * 1/ = (¢ * ¢')dx, where ¢ * ¢’ is
the usual convolution in L'(G).

We denote by G the set of unitary equivalence classes of irreducible unitary representations of
G. We can extend the Fourier transform (both the ordinary and the spherical versions) to .# (G)

(1) If g € .#(G) and (m, V) € G, define 7i() € End(V) by

() () = /G () (0)dp(z).
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(2) Suppose that G is the first entry of a Gelfand pair (G, K'), and that ¢ is a spherical function
of positive type on GG. Then, for every u € .#(G), we define fi(f) € C by :

Af) = / )

For both versions of the Fourier transform, the equality
pox g = !
for all p, i/ € 4 (G) (where the product on the right is composition of endomorphisms in the
first case and multiplication in the second case).

The following theorem is a generalization of Lévy’s convergence criterion. We say that a
sequence (1, )n>0 of Radon measures converges weakly if it converges in the weak* topology of

M (G).
Theorem VI1.6.1.3. (See [9], section 5.2, theorem 5.2.)
(i) If p, ' € A (G) are such that ﬁ(w)ﬁ’(w)for every m € G, then ju = (1.

(ii) Let (in)n>0 be a sequence of (positive) probability measures on G and i be another prob-
ability measure on G. If (p,)n>0 converges weakly to i, then, for every (m,V) € G and
every v € V, we have lim,,_, o0 fin () (v) = fi(7)(v). Conversely, if, for every (z,V) € G
and all v,w € V, we have lim,,_, (i1, (7)(v),w) = ((7w)(v),w), then (w,)n>o con-
verges weakly to [i.

VI.6.2 Random walks

We fix a regular Borel probability measure ;o on (G, and we want to understand the behavior of
W asn — +oo.

The connection with random walks is that 1*" is the distribution of the nth step of a Markov
chain with state space G, initial distribution §; and “transition matrix” y(yz ). (We are choosing
01 as initial distribution to simplify the notation, but this is not really necessary for most results.)
In other words, we consider a sequence (g, ),>1 of independent random variables with values
in G and distribution p. The Markov chain (X,),>¢ is defined by X,, = g1n... g (so X is
the constant function 1). We could also consider random walks on a space GG/ K, where K is a
subgroup of GG : take (g,,),>1 as before, fix some initial random variable X, with values in G/ K
(for example a constant function) and set X,, = g, . .. g1 Xo.

VI1.6.3 Compact groups

In this section, we suppose that GG is compact. We start with a general convergence result, due to
Ito and Kawada ([[L1]], see also theorem 2.3 of [5]).
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V1.6 Random walks on locally compact groups

Remember that the support of u is by definition the set of x € G such that, for every neigh-
borhood U of z, we have p(U) > 0.

Theorem V1.6.3.1. Suppose that the support of | generates a dense subgroup of G and is not
contained in any (left or right) coset of a proper closed subgroup of G. Then the sequence
(™) >0 converges weakly to the normalized Haar measure on G.

The proof is based on the convergence criterion of theorem[VI.6.1.3(ii). We must show that, for
every (m,V) € G nontrivial, the sequence ;" () = 7i(m)™ converges to 0 in End(V/). Note that
V' is finite-dimensional (because G is compact), so all the notions of convergence in End(V) are
equivalent, and we just need to prove that all the eigenvalues of fi(7) are < 1 in absolute value.
Suppose that this not the case, then there exists a unit vector v € V' such that

/G () (W)dpu(x) = M,

with [A| = 1. Itis not hard to see that this forces 7(z~1)(v) to be equal to A\v p-almost everywhere
and contradicts the hypothesis of the theorem.

Note that this result is much weaker that proposition (and the Perron-Frobenius the-
orem), because it only guarantees the weak convergence of (u*"),>o and says nothing about
convergence for other topologies (such as the one induced by the total variation distance) or
about the speed of convergence. If G is finite, all the notions of convergence on the set of prob-
ability measures on G coincide (it’s just a convex subset of the space of functions on GG, which
is finite-dimensional); also, it follows from the upper bound lemma (corollary that the
speed is convergence is exponential and controlled by the biggest eigenvalue of a ji(m) that is
# 1. But if G is infinite, then G is also infinite, so, also ji(7) has all its eigenvalues < 1 (in
absolute value), we can get eigenvalues that are arbitrarily close to 1. In fact, there is a special
name for when this doesn’t happen :

Definition VI.6.3.2. We say that the probability measure 1 on G has a spectral gap if there
exists € > 0 such that, for every 7 € G nontrivial and for every eigenvalue \ of fi(7), we have
A <1—e.

Let’s first look at some examples.

Example VI.6.3.3. If 1 = odx with ¢ € L?(G), then y has a spectral gap. In fact, the upper
bound lemma (corollary [VI.4.6) holds with essentially the same proof : for every n > 0, we have

*n 1 . ~ \n n
I = nelpv <5 D dim(V)T(F(p))" 0 7(p)"),
(p,V)€EGp1

where we denote by 1 the trivial representation of G and by j the normalized Haar measure on
G. (We could also prove a version for random walks on spaces GG/ K.) So we have convergence
in total variation distance and with exponential speed in this case.
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VI Application of Fourier analysis to random walks on groups

At the other extreme, we have measures with finite support.

Example V1.6.3.4. Take G = S'. Let \, ..., )\, € R, and consider the measure

1 T
ILL = 5 ;(5621'77/\5 + (56—22'7\'%5)
on G. Remember that G = Z (where n € Z corresponds to the representation z — z" of G).
For every n € Z, we have

r

Z(CQiﬂn)\s _{_e—QiﬂnAs)‘

s=1

- 1
fi(n) = o
Suppose that the family (1, \;,...,\,) is Q-linearly independent. Then Kronecker’s theorem
(see for example chapter XXIII of [10]) says that the set {(e?™*1 ... e%™A) n € Z} is dense
in (S1)". So we can find n # 0 such that fi(n) is arbitrarily close to 1. In other words, the
measure p has no spectral gap.

The question of which measures on nice groups like SU(d) have a spectral gap is a very
difficult and an active area of research. We’ll give some (difficult) recent results, due to Bourgain
and Gamburd (cf. [4] and [3])) for G = SU(d) and to Benoist and de Saxcé (cf. [2]) for a general
simple compact Lie group.

Theorem V1.6.3.5. Let G be a simple compact Lie group (for example G = SU(d) for d > 2
or G = S0O(d) for d = 3 or d > 5), and let |1 be a probability measure on G. We say that p is
almost Diophantine if there exists c1, co > 0 such that for every proper closed subgroup H of G
and for every n € Z big enough, we have p*"({x € G|d(z, H) < e="}) < e~ " (where d is
any metric on G).

Then yu has a spectral gap if and only if it is amost Diophantine.

Although the next version has a generalization to any simple compact Lie group, we’ll just
state it for SU(d) for simplicity.

Theorem VI.6.3.6. Let G = SU(d), and let i be a probability measure on G such that the
support of |1 generates a dense subgroup of G (such a measure is sometimes called “adapted” ).

If every element of the support of 1 has algebraic entries, then . has a spectral gap.

In fact, Benoist and de Saxcé conjecture that the algebraicity condition is not necessary (so
every adapted measure should have a spectral gap), see the introduction of [2]].

Remark V1.6.3.7. The spectral gap question is also connected to the Banach-Ruziewicz problem
(see chapter 2 of Sarnak’s book [17] for the connection; another good reference on the Banach-
Ruziewicz problem is Lubotzky’s book [12]). This problem asks whether Lebesgue measure is
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V1.6 Random walks on locally compact groups

the only (up to a constant) finitely additive SO(n+ 1)-invariant measure on Lebesgue measurable
subsets of the sphere S” C R”. The answer is known to be “no” for n = 1 and “yes” for n > 2.
For n > 4, it is due to Margulis and Sullivan and uses the fact that SO(n + 1) has a finitely
generated dense subgroup that satisfies Kazhdan’s property (T) for n > 4 (in fact, the same
methods will show that Haar measure is the only left-invariant mean on any simple compact Lie
group that is not SO(n) with n > 4). For n = 2, 3, the solution is originally due to Drinfeld and
uses the Jacquet-Langlands correspondence and the Ramanujan-Petersson conjecture. (All this
and more is explained in [12]].)

V1.6.4 Convergence of random walks with Fourier analysis
We now present some example of random walks on compact groups (or homogeneous spaces)

that can be analyzed using Fourier analysis, in the spirit of section

As we noted before (in example |V1.6.3.3), the upper bound lemma (corollary [VI.4.6)) still
holds for general compact groups.

As for finite groups, Fourier analysis works best if the measure y is conjugation or if p is
bi- K -invariant and (G, K) is a Gelfand pair.

Random reflections in SO(n)

The reference for this result is Rosenthal’s paper [13]. Fix n > 2 and 6 € (0, 27). Let

cosf sind 0
—sinf cosf
Ry = 1 € SO(n),
0 1

and let 19 be the unique conjugation-invariant probability measure concentrated on the conjugacy
class of Ry (in other words, the measure /i is the image of the normalized Haar measure of SO(n)
by the map SO(n) — SO(n), x — zRez ™).

Theorem V1.6.4.1. (i) There exist I') A > 0 (with A independent of 0) such that, for every

n > 1andevery c > 0, if k = mmlogn — cn), then

1
sk — del|py > 1 — Te™2 — A%.

(ii) Suppose that @ = m. Then there exist A, > 0 such that, for every n > 3 and every ¢ > 0,
ifk = inlogn + cn, then
155" — dz||rv < Ae™".
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VI Application of Fourier analysis to random walks on groups

The Gelfand pair case

The reference for this result is Su’s paper [?].
Fix 0 € (0, 7) and consider the following random process on S? ~ SO(3)/SO(2) :
- X is constant with value the North pole;

- to go from X, to X,, 11, choose a direction (independently and uniformly) and move a
distance of # following the geodesic (= big circle) in that direction.

This random walk is not driven by a measure on SO(3), but it is equivalent to one that is (see
section 3 of [?]). Let 1, be the distribution of X, and A be the unique SO(3)-invariant probability
measure on §2. Then we have the following result :

Theorem V1.6.4.2. Ifn = ﬁ with ¢ > 0, then

in

04332 < || — M| pp < 4.442¢/3.

In this theorem, ||.||pp is the discrepancy distance : If X is a metric space and pu, pi’ are two
(Borel) probability measures on X, then

| —|lpp = sup |u(B) —u'(B)|.
BCX ball

It is bounded above by the total variation distance, but it can see some phenomena that the total
variation distance misses (see the next subsection).

Remark about the different types of convergence

The reference for this subsection is Su’s paper [?].

Consider a random walk (X, ),,>0 on the circle S* driven by the masure ;1 = %(562im +0,-2ima),
for some a € R irrational, and let y,, be the distribution of X,,. Then :

- The general convergence result of Ito-Kawada (theorem [V1.6.3.1)) says that (1,,),,>0 con-
verges weakly to the normalized Haar measure dx on S*.

- On the other hand, we have seen in example that 1 has no spectral gap, so the
convergence cannot be too good. In fact, (1, ),>0 does not converge to dx in total variation
distance.

- On the third hand, (x,,),>0 does converge to dz (but not exponentially fast) in discrepancy
distance in many cases. More precisely, we have :

Theorem V1.6.4.3. Let 1) be the type of , i.e.

n = sup{y > 0] lim inf m’{ma} =0}
m—r—+00
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V1.6 Random walks on locally compact groups

(where {.} is the fractional part). Then we have, for every € > 0,
it — dz|[pp = O(n~"/21+)

and
l1tn — da||pp = Qn~1/?77).

If « is irrational quadratic, we can do better : there exist constants cy,co > 0 such that, for

everyn > 1, we have
1

NG

C2

NG

< ||pn — dz||pp <

It is known that = 1 if «v is algebraic, and also that the subset of type 1 elements of [0, 1] has
Lebesgue measure 1.

VI.6.5 Random walks on honcompact groups

We don’t assume that GG is compact anymore. We fix a probability measure p on G. One of the
many questions we can ask is whether a random walk on G driven by p goes to infinity, and if
so, how fast.

The results of this section are proved in the third problem of the final problem set, so a refer-
ence will be added after this problem set is due.

First, we define a continuous linear operator P, : L*(G) — L*(G) by setting

Pu(f)(x) = /G £ (y)du(y)

if f € €.(G) and = € G; this extends to L*(G) by continuity. (If u = pdz with ¢ € L'(G), this
is just the construction of theorem[[.4.2.6(1i) applied to the right regular representation of G.)

We denote by p(F,) the spectral radius of P,, seen as an element of the Banach algebra
End(L?(G)). We always have p(P,) < 1 (because y is a probability measure).

Theorem VI.6.5.1. (i) If G is amenable, then p(P,) = 1.

(ii) Let H be the closure of the subgroup of G generated by the support of . If p(P,) = 1,
then H is amenable.

Definition V1.6.5.2. We say that G is compactly generated if there exists a compact subset K of
G that generates G.

If G is discrete, this just means that G is finitely generated.
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VI Application of Fourier analysis to random walks on groups

Definition V1.6.5.3. Suppose that G is compactly generated, and let X be a symmetric compact
subset generating GG. We define jx : G — Z by

(with the convention that K = {1}).

Lemma VL.6.5.4. If K and L are two symmetric compact subsets generating GG, then there exists
a > 0 such that j;, < ajk.

Corollary V1.6.5.5. Suppose that G is compactly generated, and let K be a symmetric compact
subset generating G. Let 11 be a probability measure on G, and let (g,),>1 be a sequence of
idenpendent random variables valued on G with distribution .

Let H be the closure of the subgroup of G generated by the support of p. If H is not amenable,
then there exist o, e > 0 such that, for every n > 1, we have

P(j(gn---g1) <en) = o(e™™").

In particular, by the Borel-Cantelli lemma (see section 17.1 of [14]]), if n is large enough, we
have jx (g - .. g1) > en almost surely.

We finish with an example. We say that a subgroup H of SLy(R) is non-elementary if no
conjugate of H is contained in SO(2), in

{(5 L) aerver)
(5 ) aemfu{( 2 §) aert.

(An equivalent condition is that H is not compact and does not fix a line in R? or the union of
two lines in R%. Here the action of SLy(R) in R? is the standard one, given by the inclusion
SLy(R) € GL2(R).)

Proposition VL.6.5.6. A closed subgroup of SLy(R) is non-amenable if and only if it is non-

elementary.
Example VL.6.5.7. If t € R*, we set
[t 0
. cosf siné
9=\ —sin® cosf)"

Then, if s,t > 1and 0 < 6 < 7/2, the subgroup of SLy(R) spanned by a, and rga,r,

is non-elementary, and so corollary applies to a random walk driven by the measure
1

H= §(60Lt +9

orin

If 0 € R, we set

1

).
reatr,
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A Urysohn’s lemma and some
consequences

A.1 Urysohn’s lemma

Definition A.1.1. A topological space X is called normal if whenever we have two disjoint
closed subsets A and B of X, there exist open subsets U and V' of X such that A C U and
BcCV.

Proposition A.1.2. Any topological space that is compact Hausdorff or metrizable is normal.

Theorem A.1.3 (Urysohn’s lemma). Let X be a normal topological space, and let A, B be two
disjoint closed subsets of X. Then there exists a continuous functions f : X — [0, 1] such that
f(x) =0 forevery x € Aand f(x) =1 for every x € B.

A.2 The Tietze extension theorem

Corollary A.2.1 (Tietze extension theorem). Let X be a normal topological space, A be a closed
subset of X and f : A — C be a continuous function. Then there exists a continuous function
F : X — Rsuch that Fx = f and that sup,cx |F(x)| = sup,e | f(2)].

A.3 Applications

Corollary A.3.1. Let X be a locally compact Hausdorff topological space, and let K C U be
two subsets of X such that K is compact and U is open. Then there exists a continuous function
with compact support f : X — [0, 1] such that fjx = 1 andsupp f C U.

Proof. As X is locally, for every x € K, we can find an open neighborhood V. of x such that
V, is compact and contained in U. We have K C UIe i Vai as K is compact, we can find
z1,...,7, € K suchthat K C ., Va,. Set K’ = |, V,. Then K’ is a compact subset of
X, it is contained in U and its interior contains K. Applying the same procedure to K'subsetU,
we can find a compact subset K’ C U of X whose interiot contains K.
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The space K" is compact, hence normal, and its subsets K and K" — K" are closed and disjoint,
so, by Urysohn’s lemma, we have a continuous function f : K” — [0, 1] such that fjx = 1 and
fien_gr = 0. We extend [ to X by setting f(z) =0ifx € X — K”. Then f is equal to 0 (hence
comtinuous) on X — K’, and it is also continuous on K". As X — K’ and K" are open subset
whose union is X, the function f is continuous on X. It is clear from the construction of f that
it satisfies all the desired properties.

O

Corollary A.3.2. Let X be a locally compact Hausdorff topological space, and let K C U be
two subsets of X such that K is compact and U is open. Then, for every continuous function
f K — C, there exists a continuous function with compact F' : X — C such that :

(a) supp(F) C U;
(b) Fik = [;
(¢) sup,ex |[F(2)| = supp,ep [ f(2)]-

Proof. By corollary we can find a continuous function with compact support
¢+ X — [0,1] such that ¢k = 1 and supp(v)) C U. On the other hand, we can find, as
in the proof of corollary a compact set K’ C U whose interior contains supp ). Applying
the Tietze extension to the normal space K’, we get a continuous function f’ : K’ — C such
that f{ = f and supp,c [f'(2)| = supp,ck [f(x)[. We define a function F' : X — C by
F(z) = f'(x)¢¥(z)if v € K',and F(z) = 0if z € X — K’. This functuion F clearly satisfies
conditions (a)-(c), so we just need to check that it is continuous. But this follows from the fact
that F is continuous on the open sets X — supp(¢)) (because it is zero on that set) and K’, and
that the union of these open sets is X.

[]
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B Useful things about normed vector
spaces

B.1 The quotient norm

Cf. [15] 18.15 or [16] 1.40, 1.41.

Definition B.1.1. Let IV be a normed vector space and W' C V' be a subspace. Then the quotient
seminorm on V /W is defined by

|z + W] = inf |jv+ w]|.
weW

If W is closed, this is called the quotient norm.

Proposition B.1.2. (i) The formula of the preceding definition gives a seminorm on V /W,
which is a norm if and only if W is closed in V.

(ii) IfV is a Banach space and W is closed in 'V, then V /W is a Banach space for the quotient
norm.
Proof. (i) Letwv,v' € V and A € C. Then we have
lo+v'+W| = inf lv+o'+w| < inf [lv+w||+ inf [0 +w] = v+ W][+]]o"+W].
zeW weW weW

If A =0, then \v € W, so |[A\v 4+ W || = 0; otherwise,
[Av+ Wl = inf |[A+wl = inf [[Av+w)|=[Al inf [[o+w]] = [Al[jv+ W]
weW weW weWw

This shows that the quotient seminorm is indeed a seminorm on V//W. Now let’s prove
that ||v + W|| = 0 if and only v € W, which will imply the last statement. By definition
of |[v + W|| (and the fact that TV is a subspace), we have ||v + W|| = 0 and and only if],
for every € > 0, there exists w € W such that ||v — w|| < e. This is equivalent to v € W.

(ii) Let (v,)n>0 be a sequence in V' such that (v, + W),,>¢ is a Cauchy sequence in V/WW. Up
to replacing (v,,),>o by a subsequence, we may assume that ||v,1 — v, + W| < 27" for
every n > 0. We define another sequence (v,),>¢ such that v/, € v,, + W for n > 0 and
v, — vl || <27 for n > 1, in the following way :
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B Usetul things about normed vector spaces

o Take v, = vy.

e Suppose that we have v{, ..., v), satisfying the two required conditions, with n > 0.
Then we have ||[v,11 — v, + W|| = ||vnt1 — va + W] < 277, so, by definition of
the quotient norm, we can find w € W such that ||v,, 11 — v), + w| < 27". Take
V), 41 = Ung1 + W.

By the second condition, (v/,),>o is a Cauchy sequence, so it has a limit v in V. By the
first condition, v, + W = v,, + W for every n > 0, so v + W is the limit of the sequence
(Un + W)nZO in V/W

]

B.2 The open mapping theorem

This is also known as the Banach-Schauder theorem. See for example theorem 5.10 of [15]].

Theorem B.2.1. Let V and W be Banach spaces, and let T : V. — W be a bounded linear
transformation that is bijective. Then T~ : W — V is also bounded.

B.3 The Hahn-Banach theorem

See [15] Theorem 5.16 or [16] Theorems 3.2-3.7.

Theorem B.3.1 (Hahn-Banach theorem, analytic version, real case). Let V' be a vector space
over R, letp : V — R such that :

(a) p(v+v') <pv)+p)forallv,v' €V (ie. pissubadditive);
(b) p(Av) = Ap(v) for every v € V and ever A € Ry,,.

Let E C V be a K-subspace and let f : E — K be a linear functional such that, for every
x € E, we have f(z) < p(x).

Then there exists a linear function F' : V' — K such that Flyy = f and F(x) < p(x) for every
reV.

Note that, in this version, there is no norm or topology or V' and no continuity condition on
the linear functionals.

Proof. Consider the set X of pairs (W, g), where W D E is a subspace of V and g : W — R
is a linear functional such that gz = f and g(x) < p(z) for every x € W. We order this set by
saying that (W, g) < (W', ¢') if W C W' and g = g[;;,. Suppose that (IW;, g;);er is a nonempty
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B.3 The Hahn-Banach theorem

totally ordered family in X, and let’s show that it has an upper bound. We set W = (J,.; Wi;
this is a subspace of V' because (W;);c; is totally ordered (so, for all ¢, j € I, we have W; C W;
or W; C W;). We define g : W — R in the following way : If v € W, then there exists i €
such that v € W;, and we set g(v) = g;(v). We obviously have g(v) < p(v). Also, if j € [ is
another element such that v € W;, then we have (W;, f;) < (W}, f;) or (W;, f;) < (W;, f;), and

in both cases this forces g;(v) = g;(v), so the definition makes sense. It is also easy to see that g
is R-linear, so that (W, g) € X. This is an upper bound for the family.

So we can apply Zorn’s lemma to the set X. Let (I¥, g) be a maximal element of X, and
let’s show that W = V. Suppose that W # V, and choose v € V' — W. We want to extend g
to a linear functional ~ on on W & Rv such that 4 < p, which will contradict the maximality
of (W, g). This just means that we have to choose the value of h(v), say h(v) = o € R. The
condition i < p means that we want, for every w € W and every t € R :

h(w +tv) = g(w) + ta < p(w + tv).

If the inequality above is true for a¢ € R and all w € W, it is also true for all ct, ¢ € R-(, and
for all w € W (because W is a subspace and the values of both g and p are multiplied by c when
their argument is multiplied by c). So it suffices to check it for £ = £1, which means that we
want, for every w € W :

g(w) + a < p(w+v) and g(w) — a < p(w — v).
In other words, we want to have :

sup (g(w) —p(w —v)) < a < inf (p(w +v) = g(w)).

We can find such a « because we have, for all w, w’ € W,
g(w) +g(w') = g(w + ') < p(w + ') < p(w +v) + p(w' —v),
ie.
g(w') = p(w' —v) < p(w +v) — g(w).
So we get our contradiction, we can conclude that W' was equal to V' after all, and we are done.

]

Theorem B.3.2 (Hahn-Banach theorem, analytic version, complex case). Let V' be a vector
space over C, letp : V — R be a semi-norm, E]let E C V be aC-subspace andlet f : E — C
be a linear functional such that, for every x € E, we have |f(x)| < p(x).

Then there exists a linear function F' : V. — C such that Fjy, = f and |F(x)| < p(x) for
everyxr € V.

I'This means that, for all x,y € V and all A\ € C, we have p(z + y) < p(x) + p(y) and p(\z) = |A|p(z).
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Proof. We see V' and E as R-vector spaces, and define a R-linear functional i : £ — R by

h(v) = 3(f(v) + f(v)).

Then we have, for every v € E,

h(v) < 5(IF @]+ [1f@)]) < po).

Note that satisfies conditions (a) and (b) of theorem [B.3.1l By that theorem, we can find a R-
linear functional H : V' — R such that H|z = h and that H(v) < p(v) for every v € V. Define
F:V — Cby

1
F(v) = H(v) + = H(iv),
)
and let’s show that it has all the desired properties.
(i) F'is R-linear by construction, and, for everey v € V', we have
1
F(iv) = H(iv) + —=H(i(iv)) = iF (v).
1
So F'is C-linear.
(1) If v € E, then
1. . 1 — ... TS
F(v) = h(v) + ~h(iv) = 5(f(v) + f(v) = if(iv) = if (iv)) = f(v)
(because f is C-linear), so Fjp = E.
(iii) Let v € V and choose 6 € R such that e’ F’ (v) € Rsp. Then we have
|F(v)| = e’ F(v) = F(e"v) = H(e"v) — iH (ie”v) € R.
As H(e%v) € R and iH (e?v) € iR, we must have i H (ie?v) = 0. So

|F(v)] = H(e"v) < p(ev) = p(v).

]

Corollary B.3.3. Let V be a normed vector space (over R or C), let W be a subspace of V', and
let Ty be a bounded linear functional on W. Then there exists a bounded linear functional T' on
V such that Ty = Tw and ||T||op = ||Tw |op-

Proof. LetC' = || Tw]||,p. Apply the Hahn-Banach with p(v) = C'||V'||. We get a linear functional
T :V — C extending Ty and such that |T'(v)| < C||v|| for every v € V, which means that 7" is
bounded and || T'||op < ||Tw ||op- As the inequality ||Tw ||,, < ||| is obvious, we are done.

]
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Corollary B.3.4. (See Theorem 5.20 and Remark 5.21 of [l15]].) Let V' be a normed vector space
over K = R or C. We write V* = Hom(V, K'). Then the map V' — V** sending v € V to the
linear functional v : V* — C, T —— T (v) is an isometry.

In particular, this map is injective, which means that bounded linear functionals on V' separate
points.

We can now deduce the geometric versions of the Hahn-Banach theorem. (In finite dimension,
these are sometimes called “the hyperplane separation theorem”).

Definition B.3.5. Let I/ be a vector space over the field K, with K = R or C. We say that V' is
a topological vector space over K if it has a topology such that :

- (V,+) is a topological group;
- themap K x V — V, (a,v) — av is continuous.

We say that a topological vector space is locally convex if every point has a basis of convex
neighborhoods.

Example B.3.6. (a) Any normed vector is a locally convex topological vector, as is its dual
for the weak™* topology.

(b) Let (X, i) be a measure space, let p € (0, 1), and consider the space L?(X, 1), with the
metric given by

d(f.g) = /X (@) — g(@)Pdu(z).

This makes LP(X, i) into a topological vector space, which is not locally convex if y is
atomless and finite (for example if i is Lebesgue measure on a bounded subset of R"”, or
the Haar measure on a compact group).

Theorem B.3.7 (Hahn-Banach theorem, first geometric version). Let V' be a topological R-
vector space, and let A and B be two nonempty convex subsets of V. Suppose that A is open and
that AN B = @.

Then there exists a continuous linear functional f : V — R and ¢ € R such that, for every
x € Aandeveryy € B, we have

flx) <e< fly).

We are going to use as our function p what is called the gauge of an open convex set C' 5 0.

Lemma B.3.8. Let C be a nonempty open convex subset of V, and suppose that 0 € C. We
define the gauge p : V — R of C by

p(v) = inf{a > 0|v € aC'}.

Then p satisfies conditions (a) and (b) of theorem[B.3.1} and moreover :
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B Usetul things about normed vector spaces

(c) If V is a normed vector space, then there exists M € R such that, for everyv € V,

0 < p(v) < MlJo||.
(d) C ={veVp) <1}

Proof. The fact that p(A\v) = Ap(v) for every A € R.( and every v € V follows immediately
from the definition (and doesn’t use the convexity or openness of ().

Let’s prove (c). As C'is open and 0 € C, there exists » > 0 such that C' D {v € V|||v|| < r}.
Then, for every v € V — {0}, we have 7ov € C, so p(v) < |-

Let’s prove (d). Let v € C. As C is open, there exists ¢ > 0 such that (1 + ¢)v € C. So
p(v) < 7= < 1. Conversely, let v € V such that p(v) < 1. Then there exists a € (0, 1) such
that z € aC, i.e. =v € C, and then we have v = a(2v) + (1 — a)0 € C, because C'is convex.

Finally, we prove that p is subadditive, i.e. condition (b). Let v,w € V. Lete > 0. By (b)

(and the first property we proved), we have p(v) v € C and p(w) w € C. As C'is convex, this

implies that, for every ¢ € [0, 1], we have

¢
po)+e ¥ -

p(w)+e

p(v)+e

. _ (’L}
Taklngt = p(v)+p(w)+2e’

we get that

1
p(v) + p(w) + 2¢

(v+w) € C,

ie. that p(v + w) < p(v) + p(w) + 26. As ¢ > 0 was arbitrary, this implies that

p(v+w) < p(v) + p(w).
[
Lemma B.3.9. Let C' C V be a nonempty open convex subset, and let vg € V — C.
Then there exists a continuous linear functional F on V such that, for every v € C, we have
F(v) < F(vp).
Proof. We may assume 0 € C' (by translating the situation). Let p : V' — R be the gauge of
C, i.e. the function defined in the preceding lemma.

Let £ = Rug, and let f : E — R be the linear functional defined by f(Avg) = A, for
every A € R. Let’s show that f < p. If XA <0, then f(Avy) < 0 < p(Avg). If A > 0, then
A = g(Avg) < p(Avg) because 5 (Avg) = vy & C.

So we can apply the analytic form of the Hahn-Banach theorem to get a linear function
F :V — R such that F'(v) < p(v) for every v € V. In particular, F'(vy) = 1, and, if v € C,
then F'(v) < p(v) < 1 (by (d) in the first lemma).
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B.3 The Hahn-Banach theorem

Finally, we show that F' is continuous. Note that, if v € —C, we have —F'(v) = F(—v) < 1.
So, for every v in the open neighborhood U := C' N (—C) of 0, we have |F(v)| < 1. If ¢ > 0,
then €U is an open neighborhood of 0 in V', and we have |F'(v)| < ¢ for every v € eU. So F'
is continuous at 0. As F’ is linear and translations are continuous on V/, this implies that F' is
continous at every point of V.

]

Proof of the theorem. Let C = A— B ={x —vy, v € A,y € B}. Then C is clearly convex, C'
is open because it is equal to (J,.z(A — y), and 0 ¢ C because AN B = &. So we can apply
the second lemma above to get a continuous linear functional f : V' — R such that f(x) < 0 for
every x € C'. Then, for every x € A and every y € B, we have f(z) < f(y). So the conclusion
is true for f and for ¢ = sup,.4 f(x).

]

Theorem B.3.10 (Hahn-Banach theorem, second geometric version). Let V' be a locally convex
topological R-vector space, and let A and B be two nonempty convex subsets of V. Suppose that
A is closed, that B is compact, and that AN B = @.

Then there exists a continuous linear functional f : V — R and ¢ € R such that, for every
x € Aandeveryy € B, we have

f(x) <ec< f(y)

Proof. We first find a convex open neighborhood U of 0 in V' such that (A+U)N(B+U) = @.
(Note : this only uses that V" is locally and that A is closed and B compact, but not the fact that
A and B are convex.)

For every * € B, choose a symmetric convex open neighborhood U, of 0 such that
(x+U, +U, +U,) N A = @; as U, is symmetric, this is equivalent to saying that
(x+U, +U,)N(A+ U, = &. As B is compact, we can find zy,...,z, € B such that
B c UL (x;i+U,,). LetU = ()., Uy,. Then U is a convex open neighborhood of 0, and we
have B+U C U, (z; + Uy, #U)and A+ U C (" (A+U,,),s0 (B+U)N(A+U) = 2.

The sets A + U and B + U are convex and open, so, by theorem there exists a con-
tinuous linear functional f : V' — R and ¢ € R such that f(z) < ¢ < f(y) for every
x € A+ Uandeveryy € B+ U. As B is compact and f continuous, there exists yo € B
such that f(yo) = mingep f(y). In particular, ¢ < mingep f(y). Choose ¢ € R such that
¢ < ¢ <mingep f(y). Then we have f(z) < ¢ < f(y) forevery z € A and every y € B.

]
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B.4 The Banach-Alaoglu theorem

See section 15.1 of [[14] or Theorem 3.15 of [16]]. This theorem is also called “Alaoglu’s theo-

rem’.
Theorem B.4.1. Let V' be a normed vector space. Then the closed unit ball in Hom(V, C) is
compact Hausdorff for the weak* topology.

Compare with the following results, usually called “Riesz’s lemma” or “Riesz’s theorem” (see
section 13.3 of [14] or Theorem 1.22 of [16]) :

Theorem B.4.2. Let V' be normed vector space. Then the closed unit ball of V' is compact if and
only if V' is finite-dimensional.

B.5 The Krein-Milman theorem

See section 14.6 of [[14] (or theorem 3.23 of [16]]).

Definition B.5.1. Let VV be a R-vector space and C be a convex subset of V. We say that z € C
is extremal if, whenever x = ty+ (1 —t)z witht € (0,1) and y, z € C, we musthave y = z = z.

Theorem B.5.2. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V. Then K is the closure of the convex hull of its set of extremal points.

Lemma B.5.3. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V. Then K has an extremal point.

Proof. We say that a subset S of K is extremal if for every z € S, if we have x =ty + (1 — 1)z
with y,z € K and t € (0, 1), then we must have y, z € S. (Note that a point x € K is extremal
if and only if {x} is extremal.)

Let X be the set of nonempty closed extremal subsets of A, ordered by reverse inclusion. Let
Y a nonempty totally ordered subset of X, and let’s show that it has a maximal element. As
Y is totally ordered, for all 7y,...,T,, € Y, there exists ¢ € {1,...,n} such that T; C Tj for
every j € {1,...,n},andthen Ty N...N 7T, D T; # @&. As K is compact, this implies that
S := ey T is not empty. The set S is clearly closed, so if we can show that it is extremal, we
will be done. Let = € S, and write x = ty + (1 — t)z, with y,z € K and ¢ € (0, 1). For every
T €Y, as T is extremal, we must have y, 2 € T. Soy, 2z € S, and S is indeed extremal.

By Zorn’s lemma, the set X has a maximal element, let’s call it S. To finish the proof, we just
need to show that S is a singleton. If |S| > 2, let x,y € S such that = # y. By the geometric
version of the Hahn-Banach theorem (theorem|[B.3.10)), there exists a continuous linear functional
f:V — Rsuch that f(z) < f(y). As S is compact, the continuous function f reaches its
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minimum on S. Let m = min,cg f(2), and let S = {z € S|f(z) < m}. Then 5’ is closed, it
is nonempty by the observation we just made, and S’ # S because y ¢ S’. Let’s show that S’ is
extremal, which will give a contradiction (and imply that S had to be a singleton). Let z € .5,
and write z = t2' + (1 — t)2”, with 2/, 2" € K andt € (0,1). As S, we have 2/, 2" € S. By
definition of m, we have m = f(z) = tf(2') + (1 — t) f(2") < tm + (1 — t)m, which forces
m= f(z) = f(z'),1e. 2/, 2" € 5"

]

Proof of the theorem. Let L be the closure of the convex hull of the set of extremal points of K.
Then L is convex, closed and contained in K; in particular, L is also compact. Suppose that
L # K, and let z € K\ L. By the geometric version of the Hahn-Banach theorem (theorem
[B.3.10), there exists a continuous linear functional f : V' — R such that max,c, f(y) < f(z).
Let M = max,cx f(2),and let K’ = {z € K|f(z) = M}. Then K’ is a closed convex subset
of K (hence it is compact), and K’ N L = &. By the lemma, K’ must have an extremal point z,
and it is easy to see (as in the proof of the lemma) that z is also an extremal point of K. But then
z should be in L, contradiction.

O

B.6 The Stone-Weierstrass theorem

See section 12.3 of [[14] or Thorem 5.7 of [16] for the case of a compact space.

Theorem B.6.1. Let X be a locally compact Hausdorff topological space, and let A be a C-
subalgebra of €,(X) such that :

(a) forevery f € A, the function x — f(x) is also in A;

(b) forall x,y € X such that © # v, there exists [ € A such that f(x) # f(y) (“A separates
the points of X ”);

(c) forevery x € X, there exists f € A such that f(x) # 0 (“A vanishes nowehere on X ”).
Then A is dense in 6o(X).
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