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I Representations of topological
groups

I.1 Topological groups

Definition I.1.1. A topological group is a topological set G with the structure of a group such
that the multiplication mapG×G→ G, (x, y) 7−→ xy and the inversion mapG→ G, x 7−→ x−1

are continuous.

We usually will denote the unit of G by 1 or e.

Example I.1.2. - Any group with the discrete topology is a topology group. Frequently
used examples include finite groups, free groups (both commutative and noncommutative)
and “arithmetic” matrix groups such as GLn(Z) and SLn(Z).

- The additive groups of R and C are topological groups.

- The group GLn(C), with the topology given by any norm on the C-vector space Mn(C),
is a topological group,1 hence so are all its subgroups if we put the induced topology on
them. For example S1 := {z ∈ C||z| = 1}, GLn(R), SU(n), SO(n) etc.

- (See problem set 1.) The additive group of Qp and the group GLn(Qp) are topological
groups.

Definition I.1.3. We say that a topological space X is locally compact if every point of X has a
compact neighborhood.

Remark I.1.4. If X is Hausdorff, this is equivalent to the fact that every point of X has a basis of
compact neighborhoods.

Note that we do not assume that neighborhoods of points in topological spaces are open.

Notation I.1.5. Let G be a group, and let A,B ⊂ G, x ∈ G and n ≥ 1. We use the following
notation :

xA = {xy, y ∈ A} and Ax = {yx, y ∈ A}

AB = {yz, y ∈ A, z ∈ B}
1See problem set 1 for a proof.
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I Representations of topological groups

An = AA . . . A (n factors)

A−1 = {y−1, y ∈ A}

Definition I.1.6. We say that a subset A of G is symmetric if A = A−1.

Proposition I.1.7. Let G be a topological group.

1. If U is an open subset of G and A is any subset of G, then the sets UA, AU and U−1 are
open.

2. If U is a neighborhood of 1 in G, then there is an open symmetric neighborhood V of 1
such that V 2 ⊂ U .

3. If H is a subgroup of G, then its closure H is also a subgroup of G.

4. If H is an open subgroup of G, then it is also closed.

5. If A and B are compact subsets of G, then the set AB is also compact.

6. Let H be a subgroup of G. Then the quotient G/H (with the quotient topology) is :

a) Hausdorff if H is closed;

b) Locally compact if G is locally compact;

c) A topological group if H is normal.

Proof. 1. For x ∈ G, we denote by lx : G → G (resp. rx : G → G) left (resp. right)
multiplication by x. We also denote by ι : G→ G the map x 7−→ x−1. By the axioms for
topological groups, all these maps are continuous.

Now note that U−1 = ι−1(U), AU =
⋃
x∈A l

−1
x−1(U) and UA =

⋃
x∈A r

−1
x−1(U). So U−1,

AU and UA are open.

2. We may assume that U is open. Letm : G×G→ G, (x, y) 7−→ xy. Thenm is continuous,
so W := s−1(U) is open. We have (1, 1) ∈ W because 12 = 1 ∈ U . By definition of the
product topology on G×G, there exists an open subset Ω 3 1 of G such that Ω×Ω ⊂ W .
We have Ω2 ⊂ U by definition of W . Let V = Ω∩Ω−1. We know that Ω−1 is open by (a),
so V is open, and it is symmetric by definition. We clearly have 1 ∈ V and V 2 ⊂ Ω2 ⊂ U .

3. Consider the map u : G × G → G, (x, y) 7−→ xy−1; then a nonempty subset A of G is a
subgroup if and only if u(A×A) ⊂ A. Alos, by the axioms of topological groups, the map
u is continuous. Hence, for every Z ⊂ G × G, u(Z) ⊂ u(Z)). Applying this to H × H
(whose closure is H ×H), we see that H is a subgroup of G.

4. We have G = H t ((G−H)H). If H is open, then (G−H)H is also open by (a), hence
H is closed.

5. The multiplication mapm : G×G→ G is continuous by hypothesis. AsAB = m(A×B)
and A×B is compact, the set AB is also compact.
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I.1 Topological groups

6. a) Let x, y ∈ G be such that xH 6= yH . By question (a), x(G − H)y−1 is open,
so its complement xHy−1 is closed. Also, by the assumption that xH 6= yH , the
unit 1 is not in xHy−1. By (b), there exists a symmetric open set 1 ∈ U such that
U2 ⊂ G − xHy−1. Let’s show that UxH ∩ UyH = ∅, which will prove the result
because UxH (resp. UyH) is an open neighborhood of xH (resp. yH) in G/H .
If UxH ∩ UyH 6= ∅, then we can find u1, u2 ∈ U and h1, h2 ∈ H such that
u1xh1 = u2yh2. But then xh1h

−1
2 y−1 = u−1

1 u2 ∈ xHy−1∩U2, which is not possible.

b) Let xH ∈ G/H . If K is a compact neighborhood of x in G, then its image in G/H
is a compact neighborhood of xH in G/H .

c) If H is normal, then G/H is a group. Let’s show that its multiplication is continuous.
Let x, y ∈ G. Any open neighborhood of xyH in G/H is of the form UxyH , with
U an open neighborhood of xy in G. By the continuity of multiplication on G,
there exists open neighborhoods V and W of x and y in G such that VW ⊂ U .
Then V H and WH are open neighborhoods of xH and yH in G/H , and we have
(V H)(WH) ⊂ UH . (Remember that, as H is normal, AH = HA for every subset
A of G.) Let’s show that inversion is continuous on G/H . Let x ∈ G. Any open
neighborhood of x−1H in G/H is of the form UH , with U an open neighborhood of
x−1 in G. By question (a), the set U−1 is open, so U−1H is an open neighborhood of
xH in G/H , and we have (U−1H)−1 = HU = UH .

Remark I.1.8. In particular, if G is a topological group, then G/{1} is a Hausdorff topological
group. We are interested in continuous group actions of G on vector spaces, so we could replace
G byG/{1} to study them. Hence, in what follows, we will only Hausdorff topological groups
(unless otherwise specified).

Definition I.1.9. A compact group (resp. a locally compact group) is a Hausdorff and compact
(resp. locally compact) topological group.

Example I.1.10. Among the groups of example I.1.2, finiet discrete groups and the groups
S1, SU(n) and SO(n) are compact. All the other groups are locally compact. We get a non-
locally compact group by considering the group of invertible bounded linear endomorphism of
an infinite-dimensional Banach space (see problem set 1).

Translation operators : Let G be a group, x ∈ G and f : G→ C be a function. We define two
functions Lxf,Rxf : G→ C by :

Lxf(y) = f(x−1y) and Rxf(y) = f(yx).

We chose the convention so that Lxy = Lx ◦ Ly and Rxy = Rx ◦ Ry. Note that, if G is a
topological group and f is continuous, then Lxf and Rxf are also continuous.

Function spaces : Let X be a topological set. If f : X → C is a function, we write

‖f‖∞ = sup
x∈X
|f(x)| ∈ [0,+∞].
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I Representations of topological groups

We also us the following notation :

- C (X) for the set of continuous functions f : X → C;

- Cb(X) for teh set of bounded continuous functions f : X → C (i.e. elements f of C (X)
such that ‖f‖∞ < +∞);

- C0(X) for the set of continuous functions X → C that vanish at infinity (i.e. such that, for
every ε > 0, there exists a compact subset K of X such that |f(x)| < ε for every x 6∈ K);

- Cc(X) for the set of continuous functions with compact support from X to C.

Note that we have C (X) ⊃ Cb(X) ⊃ C0(X) ⊃ Cc(X), with equality if X is compact. The
function ‖.‖∞ is a norm on Cb(X) and its subspaces, and Cb(X) and C0(X) are complete for this
norm (but not Cc(X), unless X is compact).

Definition I.1.11. LetG be a topological group. A function f : G→ C is called left (resp. right)
uniformly continuous if ‖Lxf − f‖∞ → 0 as x→ 1 (resp. ‖Rxf − f‖∞ → 0 as x→ 1).

Proposition I.1.12. If f ∈ Cc(G), then f is both left and right uniformly continuous.

Proof. We prove that f is right uniformly continuous (the proof that it is left uniformly con-
tinuous is similar). Let K be the support of f . Let ε > 0. For every x ∈ K, we choose a
neighborhood Ux of 1 such that |f(xy) − f(x)| < ε

2
for every y ∈ Ux; by proposition I.1.7, we

can find a symmetric open neighborhood Vx of 1 such that V 2
x ⊂ Ux. We have K ⊂

⋃
x∈K xVx.

As K is compact, we can find x1, . . . , xn ∈ K such that K ⊂
⋃n
i=1 xiVxi . Let V =

⋃n
i=1 Vxi ,

this is a symmetric open neighborhood of 1.

We claim that, if y ∈ V , then ‖Ryf − f‖∞ < ε. Indeed, let y ∈ V , and let x ∈ G. First
assume that x ∈ K. Then there exists i ∈ {1, . . . , n} such that x ∈ xiVxi . Then we have
xy ∈ xiVxiVxi ⊂ xiUxi , hence

|f(xy)− f(x)| ≤ |f(xy)− f(xi)|+ |f(xi)− f(x)| < ε
2

+ ε
2

= ε.

Now assume that xy ∈ K. Then there exists i ∈ {1, . . . , n} such that xy ∈ xiVxi , and we have
x = xyy−1 ∈ xiVxiVxi ⊂ xiUxi . Hence

|f(xy)− f(x)| ≤ |f(xy)− f(xi)|+ |f(xi)− f(x)| < ε
2

+ ε
2

= ε.

Finally, if x, xy 6∈ K, then f(x) = f(xy) = 0, and of course |f(xy)− f(x)| < ε.

Remark I.1.13. We put the topology given by ‖.‖∞ on Cb(G). Then a function f ∈ Cb(G) is
left (resp. right) uniformly continuous if and only if the map G → Cb(G), x 7−→ Lxf (resp.
x 7−→ Rxf ) is continuous at the unit of G.

Using the fact that Lxy = Lx ◦ Ly and Rxy = Rx ◦ Ry and the operators Lx and Rx pre-
serve Cc(G), we see that the proposition above implies that, if f ∈ Cc(G), then the two maps
G→ Cc(G) sending x ∈ G to Lxf and to Rxf are continuous.
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I.2 Haar measures

I.2 Haar measures

Definition I.2.1. Let X be a topological space.

1. The σ-algebra of Borel sets on X is the σ-algebra on X generated by the open subsets of
X . A Borel measure on X is a measure on this σ-algebra.

2. A regular Borel measure onX is a measure µ on the σ-algebra of Borel sets ofX satisfying
the following properties :

a) For every compact subset K of X , µ(K) < +∞;

b) µ is outer regular : for every Borel subset E of X , we have
µ(E) = inf{µ(U), U ⊃ E open};

c) µ is inner regular : for every E ⊂ X that is either Borel of finite measure or open,
we have µ(E) = inf{µ(K), K ⊂ E compact}.

Notation I.2.2. We denote by C +
c (X) the subset of nonzero f ∈ Cc(X) such that f(X) ⊂ R≥0.

Theorem I.2.3 (Riesz representation theorem). Let X be a locally compact Hausdorff space,
and let Λ : Cc(X)→ C be a linear functional such that Λ(f) ≥ 0 for every f ∈ C +

c (X). 2 Then
there exists a unique regular Borel measure µ on X such that, for every f ∈ Cc(X),

Λ(f) =

∫
X

fdµ.

Definition I.2.4. Let G be a locally compact group. A left (resp. right) Haar measure on G is a
nonzero regular Borel measure µ on G such that, for every Borel set E of G and every x ∈ G,
we have µ(xE) = µ(E) (resp. µ(Ex) = µ(E)).

Example I.2.5. 1. If G is a discrete group, then the counting measure is a left and right Haar
measure on G.

2. Lebesgue measure is a left and right Haar measure on the additive group of R.

Proposition I.2.6. Let G be a locally compact group and µ be a regular Borel measure on G.

1. Let µ̃ be the Borel measure onG defined by µ̃(E) = µ(E−1). Then µ is a left Haar measure
if and only µ̃ is a right Haar measure.

2. The measure µ is a left Haar measure on G if and only if we have : for every f ∈ Cc(G),
for every y ∈ G,

∫
G
Lyfdµ =

∫
G
fdµ.

3. If µ is a left Haar measure on G, then µ(U) > 0 for every nonempty open subset of G and∫
G
fdµ > 0 for every f ∈ C +

c (G).

2Such a linear functional is called positive.
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I Representations of topological groups

Proof. 1. First, note that µ̃ is a regular Borel measure on G because x 7−→ x−1 is a homeo-
morphism from G to itself.

If E ⊂ G is a Borel set and x ∈ E, then µ̃(Ex) = µ(x−1E−1). This implies the statement.

2. Let x ∈ G, and let µx be the Borel measure on G defined by µx(E) = µ(xE). (This is
indedd a regular Borel measure on G, because y 7−→ xy is a homeomorphism from G to
itself.) Then, for every measurable function f : G → C, we have

∫
G
fdµx =

∫
G
Lxfdµ.

(This is obvious for characteristic functions of Borel subsets, and we get the general case
by approximating f by linear combinations of characteristic functions.)

On the one hand, the measure µ is a left Haar measure if and only if µ = µx for every
x ∈ G. On the other hand, by the uniqueness in the Riesz representation theorem (and the
paragraph above), for x ∈ G, we have µ = µx if and only

∫
G
fdµ =

∫
G
Lxfdµ for every

f ∈ Cc(G). The statement follows.

3. Suppose that there exists a nonempty open subset U of G such that µ(U) = 0. Then
µ(xU) = 0 for every x ∈ G, so we may assume that 1 ∈ U . Let K be a compact subset
of G. Then K ⊂

⋃
x∈K xU , so there exist x1, . . . , xn ∈ K such that K ⊂

⋃n
i=1 xiU . As

µ(xiU) = 0 for every i, this implies that µ(K) = 0. But then, by inner regularity of µ, we
get µ(G) = 0, which contradicts the fact that µ is nonzero.

Let f ∈ C +
c (G). Then U := {x ∈ G|f(x) > 1

2
‖f‖∞} is a nonempty open subset of G, so

µ(U) > 0. But we have f ≥ 1
2
‖f‖∞11U , hence

∫
G
fdµ ≥ 1

2
‖f‖∞µ(U) > 0.

Theorem I.2.7. Let G be a locally compact group. Then :

1. There exists a left Haar measure on G;

2. If µ1 and µ2 are two left Haar measures onG, then there exists c ∈ R>0 such that µ2 = cµ1.

By proposition I.2.6, this theorem implies the similar result for right Haar measures.

Proof. We first prove existence. The idea is very similar to the construction of Lebesgue measure
on R. Suppose that c > 0, and that ϕ ∈ C+

c (R) is bounded by 1 and very close to the character-
istic function of the interval [0, c]. If f ∈ Cc(R) does not vary too quickly on intervals of length
c, then we can approximate f by a linear combination of left translates of ϕ : f '

∑
ciLxiϕ,

and then
∫
fdµ '

∑
ciLxi

∫
ϕdµ. As c → 0, we will be able to approximate every f ∈ Cc(R)

(because we know that these functions are uniformly continuous), and we’ll be able to define∫
fdµ by going to the limit. On a general locally compact group, we replace the intervals by

smaller and smaller compact neighborhoods of 1.

Now here is the rigorous proof. Let f, ϕ ∈ C+
c (G). Then U := {x ∈ G|ϕ(x) > 1

2
‖ϕ‖∞} is a

nonempty open subset ofG and we have ϕ ≥ 1
2
‖ϕ‖∞11U . As the support of f is compact, it can be

covered by a finite number of translates of U , so there exist x1, . . . , xn ∈ G and c1, . . . , cn ∈ R≥0
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I.2 Haar measures

such that f ≤
∑n

i=1 ciLxiϕ. Hence, if we define (f : ϕ) to be the infimum of all finite sums∑n
i=1 ci with c1, . . . , cn ∈ R≥0 and such that there exist x1, . . . , xn ∈ G with f ≤

∑n
i=1 ciLxiϕ,

we have (f : ϕ) < +∞. We claim that :

(f : ϕ) = (Lxf : ϕ) ∀x ∈ G(I.2.0.0.1)
(f1 + f2 : ϕ) ≤ (f1 : ϕ) + (f2 + ϕ)(I.2.0.0.2)

(cf : ϕ) = c(f : ϕ) ∀c ≥ 0(I.2.0.0.3)
(f1 : ϕ) ≤ (f2 : ϕ) if f1 ≤ f2(I.2.0.0.4)

(f : ϕ) ≥ ‖f‖∞
‖ϕ‖∞(I.2.0.0.5)

(f : ϕ) ≤ (f : ψ)(ψ : ϕ) ∀ψ ∈ C +
c (G)− {0}(I.2.0.0.6)

The first four properties are easy. For the fifth property, note that, if f ≤
∑n

i=1 ciLxiϕ, then

‖f‖∞ ≤
n∑
i=1

ci‖Lxiϕ‖∞ =

(
n∑
i=1

ci

)
‖ϕ‖∞.

Finally, the last property is a consequence of the following fact : Let ψ ∈ C +
c (G). If we have

f ≤
∑n

i=1 ciLxiψ and ψ ≤
∑m

j=1 djLyjϕ, then f ≤
∑n

i=1

∑n
j=1 cidjLxiyjϕ.

Now we fix f0 ∈ C +
c (G). By I.2.0.0.5, we know that (f0;ϕ) > 0. We define

Iϕ : C +
c (G)→ R≥0 by

Iϕ(f) = (f :ϕ)
(f0:ϕ)

.

By I.2.0.0.1-I.2.0.0.4, we have

Iϕ(f) = Iϕ(Lxf) ∀x ∈ G
Iϕ(f1 + f2) ≤ Iϕ(f1) + Iϕ(f2)

Iϕ(cf) = cIϕ(f) ∀c ≥ 0

Iϕ(f1) ≤ Iϕ(f2) if f1 ≤ f2

If the second inequality was an equality (that is, if Iϕ were additive), we could extend Iϕ to a
positive linear functional on Cc(G) and apply the Riesz representation theorem. This is not quite
true, but we have the following result :

Claim : For all f1, f2 ∈ C +
c (G) and ε > 0, there exists a neighborhood V of 1 in G such that

we have Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ε whenever supp(ϕ) ⊂ V .

Let’s first prove the claim. Choose a function g ∈ C +
c (G) such that g(x) = 1 for every

x ∈ supp(f1 +f2), and let δ be a positive real number. Let h = f1 +f2 +δg. We define functions
h1, h2 : G→ R≥0 by

hi(x) =

{
fi(x)
h(x)

if fi(x) 6= 0

0 if fi(x) = 0.

11



I Representations of topological groups

Note that hi is equal to fi
h

, hence continuous on the open subset {x ∈ G|h(x) 6= 0}. As G is the
union of this open subset and of the open subset G− supp(fi) (on which hi is also continuous),
this shows that hi is continuous, hence hi ∈ C +

c (G). Note also that we have fi = hih.

By proposition I.1.12, there exists a neighborhood V of 1 such that, for i ∈ {1, 2} and x, y ∈ G
with y−1x ∈ V , we have |hi(x) − hi(y)| < δ. Let ϕ ∈ C +

c (G) be such that supp(ϕ) ⊂ V . If
c1, . . . , cn ∈ R≥0 and x1, . . . , xn ∈ G are such that h ≤

∑m
j=1 cjLxjϕ, then, for every x ∈ G and

i ∈ {1, 2},

fi(x) = h(x)hi(x) ≤
n∑
j=1

cjϕ(x−1
j x)hi(x) ≤

n∑
j=1

cjϕ(x−1
j x)(hi(xj) + δ),

because ϕ(x−1
j x) = 0 unless x−1

j x ∈ V . Hence

(f1 : ϕ) + (f2 : ϕ) ≤
n∑
j=1

cj(h1(xj) + h2(xj) + 2δ).

Since h1 + h2 ≤ 1, we get

(f1 : ϕ) + (f2 : ϕ) ≤ (1 + 2δ)
n∑
j=1

cj,

hence, taking the infimum over the family (c1, . . . , cm) and dividing by (f0 : ϕ), we get

Iϕ(f1) + Iϕ(f2) ≤ (1 + 2δ)Iϕ(h) ≤ (1 + 2δ)(Iϕ(f1 + f2) + δIϕ(g)).

The right-hand side of this tends to Iϕ(f1 + f2) as δ tends to 0, so we get the desired inequality
by taking δ small enough. This finishes the proof of the claim.

We come back to the construction of a left Haar measure on G. For every f ∈ C +
c (G), let

Xf = [(f0 : f)−1, (f : f0)] ⊂ R. Let X =
∏

f∈C+
c (G) Xf , endowed with the product topology.

Then, by Tychonoff’s theorem, X is a compact Hausdorff space. It is the space of functions
I : C +

c (G)→ R such that I(f) ∈ Xf for every f (with the topology of pointwise convergence).
Also, by I.2.0.0.6, we have Iϕ ∈ I for every ϕ ∈ C +

c (G). For every neighborhood V of 1 in
G, let K(V ) be the closure of {Iϕ| supp(ϕ) ⊂ V } in X . We have K(V ) 6= ∅ for every V , so
K(V1) ∩ . . . K(Vn) ⊃ K(

⋂n
i=1 Vi) 6= ∅ for every finite family V1, . . . , Vn of neighborhoods of 1

in G. As X is compact, this implies that the intersection of all the sets K(V ) is nonempty. We
choose an element I of this intersection.

Let’s show that I is invariant by left translations, additive and homogenous of degree 1.
(That is, it has the same properties as Iϕ, but is also additive instead of just subadditive.) Let
f1, f2 ∈ C +

c (G), c ∈ R≥0, x ∈ G and ε > 0. Choose a neighborhood V of 1 in G such that
Iϕ(f1)+Iϕ(f2) ≤ Iϕ(f1 +f2)+ε whenever supp(ϕ) ⊂ V ; this exists by the claim. By definition
of I , it is in the closure {Iϕ| supp(ϕ) ⊂ V }, which means that there exists ϕ ∈ C +

c (G) such

12



I.2 Haar measures

that supp(ϕ) ⊂ V and |I(aLyg) − Iϕ(aLyg)| < ε for g ∈ {f1, f2, f1 + f2}, y ∈ {1, x} and
a ∈ {1, c}. Then we get :

|I(Lxf1)− I(f1)| ≤ |I(Lxf1)− Iϕ(Lxf1)|+ |Iϕ(Lxf1)− Iϕ(f1)|+ |Iϕ(f1)− I(f1)| < 2ε,

|I(cf1)− cI(f1)| ≤ |I(cf1)− Iϕ(cf1)|+ |Iϕ(cf1)− cIϕ(f1)|+ |cIϕ(f1)− cI(f1)| < ε(1 + c)

and
|I(f1 + f2)− I(f1)− I(f2)| ≤ |Iϕ(f1 + f2)− Iϕ(f1)− Iϕ(f2)|

+|I(f1 + f2)− Iϕ(f1 + f2)|+ |I(f1)− Iϕ(f1)|+ |I(f2)− Iϕ(f2)| < 4ε.

As ε is arbitrary, this implies that I(Lxf1) = I(f1), I(cf1) = cI(f1) and
I(f1 + f2) = I(f1) + I(f2).

Now we extend I to a linear functional Cc(G) → C, that we will still denote by I . Let
f ∈ Cc(G). Then we can write f = (f1 − f2) + i(g1 − g2), with f1, f2, g1, g2 ∈ C +

c (G) ∪ {0}
(for example, take f1 = max(0,Re(f)), f2 = max(0,−Re(f)), g1 = max(0, Im(f)) and
g2 = max(0, Im(f))). We set I(f) = I(f1) − I(f2) + i(I(g1) − I(g2)) (with the convention
that I(0) = 0). If f = (F1 − F2) + i(G1 − G2), with F1, F2, G1, G2 ∈ C +

c (G) ∪ {0}, then
F1 + f2 = F2 + f1 and G1 + g2 = G2 + g1, so we get the same result for I(f). Also, it is
easy to check that I is a linear functional from Cc(G) to C, and it is positive by construction.
By the Riesz representation theorem, there exists a regular Borel measure µ on G such that
I(f) =

∫
G
fdµ. By proposition I.2.6, this measure is a left Haar measure.

We now prove the second statement of the theorem (uniqueness of left Haar measure up to
a constant). Let µ1, µ2 be two left Haar measures on G. By the uniqueness in the Riesz repre-
sentation theorem (and the fact that C +

c (G) generates Cc(G)) it suffices to find a positive real
number c such that

∫
fdµ1 = c

∫
fdµ2 for every f ∈ C +

c (G). By proposition I.2.6, we have∫
G
fdµ2 > 0 for every f ∈ C +

C (G). So it suffices to show that, if f, g ∈ C +
c (G), we have∫

fdµ1∫
fdµ2

=

∫
gdµ1∫
gdµ2

(∗).

Let f, g ∈ C +
c (G). Let V0 be a symmetric compact neighborhood of 1, and set

A = (supp(f))V0 ∪ V0(supp(f))

and
B = (supp(g))V0 ∪ V0(supp(g)).

Then A and B are compact by proposition I.1.7. If y ∈ V0, the functions x 7−→ f(xy) − f(yx)
and x 7−→ g(xy)− g(yx) are supported on A and B respectively.

Let ε > 0. By proposition I.1.12, there exists a symmetric neighborhood V ⊂ V0 of 1 such
that, for every x ∈ G and every y ∈ V , we have |f(xy)− f(yx)| < ε and |g(xy)− g(yx)| < ε.

13
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Let h ∈ C +
c (G) be such that supp(h) ⊂ V and h(x) = h(x−1) for every x ∈ G. Then

(

∫
G

hdµ2)(

∫
G

fdµ1) =

∫
G×G

h(y)f(x)dµ1(x)dµ2(y)

=

∫
G×G

h(y)f(yx)dµ1(x)dµ2(y).

(We use the left invariance of µ1. Also, we can apply Fubini’s theorem, because all the functions
are supported on compact sets, and compact sets have finite measure.) Similarly, we have

(

∫
G

hdµ1)(

∫
G

fdµ2) =

∫
G×G

h(x)f(y)dµ1(x)dµ2(y)

=

∫
G×G

h(y−1x)f(y)dµ1(x)dµ2(y)

=

∫
G×G

h(x−1y)f(y)dµ1(x)dµ2(y)

=

∫
G×G

h(y)f(xy)dµ1(x)dµ2(y).

Hence∣∣∣∣(∫
G

hdµ1)(

∫
G

fdµ2)− (

∫
G

hdµ2)(

∫
G

fdµ1)

∣∣∣∣ =

∣∣∣∣∫
G×G

h(y)(f(xy)− f(yx))dµ1(x)µ2(y)

∣∣∣∣
≤ εµ1(A)

∫
G

hdµ2,

as supp(h) ⊂ V . Dividing by (
∫
G
fdµ2)(

∫
G
hdµ2), we get∣∣∣∣(∫

G

hdµ1)(

∫
G

hdµ2)−1 − (

∫
G

fdµ1)(

∫
G

fdµ2)−1

∣∣∣∣ ≤ εµ1(A)(

∫
G

fdµ2)−1.

Similarly, we have∣∣∣∣(∫
G

hdµ1)(

∫
G

hdµ2)−1 − (

∫
G

gdµ1)(

∫
G

gdµ2)−1

∣∣∣∣ ≤ εµ1(B)(

∫
G

gdµ2)−1.

Taking the sum gives ∣∣∣∣
∫
G
fdµ1∫

G
fdµ2

−
∫
G
gdµ1∫

G
gdµ2

∣∣∣∣ ≤ ε

(
µ1(A)∫
G
fdµ2

+
µ1(B)∫
G
fdµ2

)
.

As ε is arbitrary, this gives the desired equality (*).

We now want to compare left and right Haar measures.
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I.2 Haar measures

Proposition I.2.8. Let G be a locally compact group. Let x ∈ G. Then there exists ∆(x) ∈ R>0

such that, for every left Haar measure µ on G, we have µ(Ex) = ∆(x)µ(E). Moreover,
∆ : G→ R>0 is a continuous group homomorphism (where the group structure on R>0 is given
by multiplication) and, for every left Haar measure µ on G, every x ∈ G and every f ∈ L1(µ),
we have ∫

G

Rxfdµ = ∆(x−1)

∫
G

fdµ.

Proof. Let x ∈ G, and µ be a left Haar measure on G. Then the measure µx defined by
µx(E) = µ(Ex) is also a left Haar measure on G, so, by the uniqueness statement in theo-
rem I.2.7, there exists ∆(x) ∈ R>0 such that µx = ∆(x)µ, that is, µ(Ex) = ∆(x)µ(E) for every
Borel subset E of G. Suppose that λ is another left Haar measure on G. Then, again by theorem
I.2.7, there exists c > 0 such that λ = cµ, and so we get, fo every Borel subset E of G,

λ(Ex) = cµ(Ex) = c∆(x)µ(E) = ∆(x)λ(E).

This proves the first statement.

We prove that ∆ is a morphism of groups. Let x, y ∈ G, and let E be a Borel subset of G such
that µ(E) 6= 0. Then

∆(xy)µ(E) = µ(Exy) = ∆(y)µ(Ex) = ∆(y)∆(x)µ(E),

hence ∆(xy) = ∆(x)∆(y).

We now prove the last statement. If E is a Borel subset of G and x ∈ G, then Rx11E = 11Ex−1 ,
so we get ∫

G

Rx11Edµ = µ(Ex−1) = ∆(x−1)µ(E) = ∆(x)−1

∫
G

χEdµ

by definition of ∆. This proves the result for f = χE . The general case follows by approximating
f by linear combinations of functions 11E .

Finally, we prove that ∆ is continuous. Let f ∈ C +
c (G). We know that the function

G → Cc(G), x 7−→ Rx−1f is continuous (see remark I.1.13), so the function G → C,
x 7−→

∫
G
Rx−1fdµ is also continuous. But we have just seen that

∫
G
Rx−1fdµ = ∆(x)

∫
G
fdµ,

and we know that
∫
G
fdµ > 0 by proposition I.2.6. Hence ∆ is continuous.

Definition I.2.9. The function ∆ of the previous proposition is called the modular function of
G. We say that the group G is unimodular if ∆ = 1 (that is, if some (or any) left Haar measure
on G is also a right Haar measure).

Remark I.2.10. Suppose that α : G → G is a homeomorphism such that for every x ∈ G, we
have β(x) ∈ G satisfying : for every y ∈ G, α(xy) = β(x)α(y). (For example, α could be right
translation by a fixed element ofG, or a continuous group isomorphism with continuous inverse.)
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Then we can generalize the construction of proposition I.2.8 to get a ∆(α) ∈ R>0 satisfying :
for every f ∈ Cc(G), for every left Haar measure µ on G,

∆(α)

∫
G

f(α(x))dµ(x) =

∫
G

f(x)dµ(x)

(or equivalently µ(α(E)) = ∆(α)µ(E) for every Borel subset E of G). Moreover, if β : G→ G
satisfies the same conditions as α, then so does α ◦ β and we have ∆(α ◦ β) = ∆(α)∆(β).

Example I.2.11. 1. Any compact group if unimodular. Indeed, if G is compact, then ∆(G)
is a compact subgroup of R>0, but the only compact subgroup of R>0 is {1}. In particular,
a compact group G has a unique left and right Haar measure µ such that µ(G) = 1; we call
this measure the normalized Haar measure of G.

2. Any discrete group if unimodular. Indeed, ifG is discrete, then ∆(G) is a discrete subgroup
of R>0, but the only discrete subgroup of R>0 is {1}.

Of course, in this case, we already knew the result, because we have a left Haar measure
on G that is also a right Haar measure : the counting measure.

3. If G is commutative, then left and right translations are equal on G, so G is unimodular.

4. The groups GLn(R) and GLn(C) are unimodular.

5. The group of invertible upper triangular matrices inM2(R) is not unimodular (see problem
set 1). In fact, its modular function is

∆ :

(
a b
0 c

)
7−→ |ac−1|.

6. Remember the commutator subgroup [G,G] is the subgroup generated by all the
xyx−1y−1, for x, y ∈ G. It is a normal subgroup of G, and every group morphism from G
to a commutative group is trivial on [G,G]. In particular, the modular function ∆ is trivial
on [G,G], so G is unimodular if G = [G,G]. More generally, using the first example, we
see that G is unimodular if the quotient group G/[G,G] is compact.

Proposition I.2.12. Let G be a locally compact group, and let µ be a left Haar measure on G.
We define a right Haar measure ν on G by ν(E) = µ(E−1) (see proposition I.2.6).

Then, for every f ∈ Cc(G), we have∫
G

f(x−1)dµG(x) =

∫
G

f(x)dν(x) =

∫
G

∆(x−1)f(x)dµ(x).

We also write this property as dν(x) = ∆(x−1)dµ(x), or dµG(x−1) = ∆(x−1)dµG(x).
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Proof. We prove the first equality. It is actually true for every f ∈ L1(G). If f is character-
istic function of a Borel subset E, then x 7−→ f(x−1) is the characteristic function of E−1, so∫
f(x−1)dµ(x) =

∫
fdν by definition of ν. We get the general result by approximation f by

linear combination of characteristic functions of Borel subsets.

We prove the second equality. Consider the linear function Λ : Cc(G) → C,
f 7−→

∫
G

∆(x−1)f(x)dµ(x). As ∆ takes its values in R>0, Λ is positive. Also, for every
y ∈ G, we have

Λ(Ryf) =

∫
G

f(xy)∆(x−1)dµ(x) = ∆(y)

∫
G

f(xy)∆((xy)−1)dµ(x) =

∫
G

f(x)∆(x−1)dµ(x) = Λ(f)

(using the left invariance of µ and the fact that ∆ is morphism of groups). So the unique regular
Borel measure ρ that corresponds to Λ by the Riesz representation theorem is a right Haar mea-
sure (see proposition I.2.6). By theorem I.2.7, there exists c > 0 such that ρ = cν. To finish the
proof, it suffices to show that c = 1. Suppose that c 6= 1. Then we can find a compact symmetric
neighborhood U of 1 such that, for every x ∈ U , we have |∆(x−1) − 1| ≤ 1

2
|c − 1|. As U is

symmetric, we have µ(U) = ν(U), hence

|c− 1|µ(U) = |cν(U)− µ(U)| =
∣∣∣∣∫
U

(∆(x−1)− 1)dµ(x)

∣∣∣∣ ≤ 1

2
|c− 1|µ(U),

which contradicts the fact that µ(U) 6= 0 (by proposition I.2.6).

I.3 Representations

In this section, G is a topological group.

I.3.1 Continuous representations

Definition I.3.1.1. If V and W are normed C-vector spaces, we denote by Hom(V,W ) the C-
vector space of bounded linear operators from V to W , and we put on it the topology given by
the operator norm ‖.‖op. We also write End(V ) for Hom(V, V ), and GL(V ) for End(V )×, with
the topology induced by that of End(V ).

Definition I.3.1.2. Let V be a normed C-vector space. Then a (continuous) representation of G
on V is a group morphism ρ from G to the group of C-linear automorphisms of V such that the
action map G× V → V , (g, v) 7−→ ρ(g)(v), is continuous.

We refer to the representation by (ρ, V ), ρ or often simply by V . Sometimes, we don’t ex-
plicitely name the map ρ and write the action of G on V as (g, v) 7−→ gv.
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Remark I.3.1.3. - The definition makes sense if V is any topological vector space (over a
topological field).

- If (ρ, V ) is a continuous representation of G, then the action of every g ∈ G on V is a
continuous endomorphism of V , so we get a group morphism ρ : G → GL(V ). But this
morphism is not necessarily continuous, unless V is finite-dimensional (see proposition
I.3.5.1). An example of this is given by the representations of G on Lp(G) defined below.

- If ρ : G → GL(V ) is a morphism of groups that is continuous for the weak* topology
on End(V ), then it is not necessarily a continuous representation. (For example, take
G = GL(V ), with the topology induced by the weak* topology on End(V ), and ρ = id.
This is not a continuous representation of G on V .)

Example I.3.1.4. - The trivial representation of G on V is the representation given by
ρ(x) = idV for every x ∈ G. (It is a continuous representation.)

- The identity map of GL(V ) is a continuous representation of GL(V ) on V .

- If G = S1 and n ∈ Z, the map G → C, z 7−→ zn is a continuous representation of G on
C.

- The map ρ : R→ GL2(C), x 7−→
(

1 x
0 1

)
is a continuous representation of R on C2.

- See example I.3.1.11 for the representations of G on its function spaces.

Definition I.3.1.5. Let (ρ1, V1) and (ρ2, V2) be two representations of G. An intertwining opera-
tor (or G-equivariant map) from V1 to V2 is a bounded C-linear map T : V1 → V2 such that, for
every g ∈ G and every v ∈ V1, we have T (ρ1(g)v) = ρ2(g)T (v).

We write HomG(V1, V2) for the space of intertwining operators from V1 to V2, and EndG(V1)
for the space of intertwining operators from V1 to itself.

We say that the representations (ρ1, V1) and (ρ2, V2) are isomorphic (or equivalent) if there
exists intertwining operators T : V1 → V2 and T ′ : V2 → V1 such that T ′ ◦ T = idV1 and
T ◦ T ′ = idV2 .

Definition I.3.1.6. Let (ρ, V ) be a representation of V .

1. A subrepresentation of V (or G-invariant subspace) is a linear subspace W such that, for
every g ∈ G, we have ρ(g)(W ) ⊂ W .

2. The representation (ρ, V ) is called irreducible if V 6= 0 and if its only closed G-invariant
subspaces are 0 and V . Otherwise, the representation is called reducible.

3. The representation (ρ, V ) is called indecomposable if, whenever V = W1 ⊕W2 with W1

and W2 two closed G-invariant subspaces of V , we have W1 = 0 or W2 = 0.

4. The representation (ρ, V ) is called semisimple if there exists a family (Wi)i∈I of closed
G-invariant subspaces of V that are in direct sum and such that

⊕
i∈IWi is dense in V . (If

I is finite, the direct sum is also closed in V , so this implies that V =
⊕

i∈IWi.)
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Remark I.3.1.7. If (ρ, V ) is a representation of G and W ⊂ V is a G-stable subspace, then its
closure W is also stable by G.

Example I.3.1.8. The representation ρ of R on C2 given by ρ(x) =

(
1 x
0 1

)
is indecomposable

but not irreducible.

Lemma I.3.1.9. Let (ρ1, V1) and (ρ2, V2) be two representations of G, and let T : V1 → V2 be
an intertwining operator. Then Ker(T ) is a subrepresentation of V1, and Im(T ) is a subrepre-
sentation of V2.

Proof. Let v ∈ Ker(T ) and g ∈ G. Then T (ρ1(g)(v)) = ρ2(g)(T (v)) = 0, so
ρ1(g)(v) ∈ Ker(T ).

Now let w ∈ Im(T ), and choose v ∈ V1 such that w = T (v). Then
ρ2(g)(w) = T (ρ1(g)(v)) ∈ Im(T ).

Proposition I.3.1.10. Let V be a normed vector space and ρ : G→ End(V ) be a multiplicative
map. We denote by ‖.‖op the operator norm on End(V ). Suppose that :

(a) For every g ∈ G, we have ‖ρ(g)‖op ≤ 1;

(b) For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v) is continuous.

Then (ρ, V ) is a continuous representation of G.

Proof. Let g0 ∈ G, v0 ∈ V , and ε > 0. We want to find a neighborhood U of g in G and a δ > 0
such that : g ∈ U and ‖v − v0‖ < δ⇒ ‖ρ(g)(v)− ρ(g0)(v0)‖ < ε.

Choose a neighborhood U of g in G such that : g ∈ U ⇒ ‖ρ(g)(v0)− ρ(g0)(v0)‖ < ε/2, and
take δ = ε/2. Then, if g ∈ U and ‖v − v0‖ < δ, we have

‖ρ(g)(v)− ρ(g0)(v0)‖ ≤ ‖ρ(g)(v)− ρ(g)(v0)‖+ ‖ρ(g)(v0)− ρ(g0)(v0)‖
< ‖ρ(g)‖‖v − v0‖+ ε/2
< ε/2 + ε/2 = ε,

because ‖ρ(g)‖ ≥ 1.

Example I.3.1.11. 1. We have defined, for every x ∈ G, two endomorphisms Lx and Rx of
the space of functions on G, and these endomorphisms preserve ‖.‖∞. So, by proposition
I.3.1.10 and remark I.1.13, they define two representations of G on Cc(G).

2. Suppose that G is locally compact Hausdorff. We fix a left Haar measure dx on G, and
we denote Lp(G) the Lp spaces for this measure, for 1 ≤ p ≤ ∞. The left invariance of
the measure implies that the operators Lx preserve the Lp norm, so we get a C-linear left
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action of G on Lp(G), and, by proposition I.3.1.10, to show that it is a representation, we
just need to show that, if f ∈ Lp(G), the map G→ Lp(G), x 7−→ Lxf is continuous. This
is not necessarily true if p = ∞, but it is for 1 ≤ p < ∞, by proposition I.3.1.13 below.
So we get a representation of G on Lp(G) for 1 ≤ p <∞.

If we chose instead a right Haar measure on G, then the operators Rx would define a
representation of G on Lp(G) for 1 ≤ p < ∞. So, if G is unimodular, we get two
commuting representations of G on Lp(G).

Definition I.3.1.12. Let G be a locally compact group with a left (resp. right) Haar measure dx,
and let L2(G) be the corresponding L2 space. The representation of G on L2(G) given by the
operators Lx (resp. Rx) is called the left (resp. right) regular representation of G.

Proposition I.3.1.13. Let G be a locally compact group, let µ be a left Haar measure on G, and
let Lp(G) be the corresponding Lp space. Suppose that 1 ≤ p <∞.

Then, for every f ∈ Lp(G), we have ‖Lxf − f‖p → 0 and ‖Rxf − f‖p → 0 as x→ 1.

Proof. Suppose first that f ∈ Cc(G), and fix a compact neighborhood V of 1. Then
K := V (supp f) ∪ (supp f)V is compact by proposition I.1.7, so µ(K) < +∞. For every
x ∈ V , we have supp(f), supp(Lxf), supp(Rxf) ⊂ K, so ‖Lxf − f‖p ≤ µ(K)1/p‖Lx − f‖∞
and ‖Rxf − f‖p ≤ µ(K)1/p‖Rxf − f‖∞. The result then follows from proposition I.1.12.

Now let f be any element of Lp(G). We still fix a compact neighborhood V of 1, and we set
C = supx∈V ∆(x)−1/p. Let ε > 0. There exists g ∈ Cc(G) such that ‖f − g‖p < ε. Then we
have, for x ∈ V ,

‖Lxf − f‖p ≤ ‖Lx(f − g)‖p + ‖Lxg − g‖p + ‖g − f‖p ≤ 2ε+ ‖Lxg − g‖p

(as ‖Lx(f − g)‖p = ‖f − g‖p) and

‖Rxf − f‖p ≤ ‖Rx(f − g)‖p + ‖Rxg − g‖p + ‖g − f‖p ≤ (1 + C)ε+ ‖Rxg − g‖p

(as ‖Rx(f−g)‖p = ∆(x)−1/p‖f−g‖p). We have seen in the first part of the proof that ‖Lxg−g‖p
and ‖Rxg − g‖p tend to 0 as x tends to 1, so we can find a neighborhood U ⊂ V of 1 such that
‖Lxf − f‖p ≤ 3ε and ‖Rxf − f‖p ≤ (2 + C)ε for x ∈ U .

I.3.2 Unitary representations

Remember that a (complex) Hilbert space is a C-vector space V with a Hermitian inner product3

such that V is complete for the corresponding norm. If V is a finite-dimensional C-vector space
with a Hermitian inner product, then it is automatically complete, hence a Hilbert space. We will
usually denote the inner product on all Hermitian inner product spaces by 〈., .〉.

3We will always assume Hermitian inner products to be C-linear in the first variable.
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I.3 Representations

Notation I.3.2.1. Let V and W be Hermitian inner product spaces. For every continuous C-
linear map T : V → W , we write T ∗ : W → V for the adjoint of T , if it exists. Remember that
we have 〈T (v), w〉 = 〈v, T ∗(w)〉 for every v ∈ V and w ∈ W , and that T ∗ always exists if V
and W are Hilbert spaces.

If V ′ is a subspace of V , we write V ′⊥ for the orthogonal of V ′; it is defined by

(V ′)⊥ = {v ∈ V |∀v′ ∈ V ′, 〈v, v′〉 = 0}.

Finally, we write U(V ) for the group of unitary endomorphisms of V , that is, of endomor-
phisms T of V that preserve the inner product (〈T (v), T (w)〉 = 〈v, w〉 for all v, w ∈ V ). A
unitary endomorphism T is automatically bounded and invertible (with inverse equal to T ∗).

The following result is an immediate corollary of proposition I.3.1.10 (and of the fact that
unitary operators have norm 1).

Corollary I.3.2.2. If V is a Hilbert space and ρ : G→ U(V ) is a morphism of groups, then the
following are equivalent :

1. The map G× V → V , (g, v) 7−→ ρ(g)(v), is continuous.

2. For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v), is continuous.

Definition I.3.2.3. If V is a Hilbert space, a unitary representation of G on V is a morphism of
groups ρ : G→ U(V ) satisfying the conditions of the proposition above.

These representations are our main object of study.

Example I.3.2.4. If (X,µ) is any measure space, then L2(X) is a Hilbert space, with the follow-
ing inner product :

〈f, g〉 =

∫
X

f(x)g(x)dµ(x).

So if G is a locally compact group, then the left regular representation and right regular repre-
sentations of G are unitary representations of G (on the same space if G is unimodular).

Remark I.3.2.5. Note that ρ is still not necessarily a continuous map in general. (Unless
dimC V < +∞.) For example, it is not continuous for the left regular representation of S1.

Also, note that we don’t need the completeness of V in the proof, so the proposition is actually
true for any Hermitian inner product space.

Lemma I.3.2.6. Let (ρ, V ) be a unitary representation of G. Then, for every G-invariant sub-
space W of V , the subspace W⊥ is also G-invariant.

In particular, if W is a closed G-invariant subspace of V , then we have V = W ⊕W⊥ with
W⊥ a closed G-invariant subspace.
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Proof. Let v ∈ W⊥ and g ∈ G. Then, for every w ∈ W , we have

〈ρ(g)(v), w〉 = 〈v, ρ(g)−1w〉 = 0

(the last equality comes from the fact that ρ(g)−1w ∈ W ), hence ρ(g)(v) ∈ W⊥.

Lemma I.3.2.7. Let (ρ1, V1) and (ρ2, V2) be two unitary representations of G, and let
T : V1 → V2 be an intertwining operator. Then T ∗ : V2 → V1 is also an intertwining oper-
ator.

Proof. Let w ∈ V2 and g ∈ G. Then, for every v ∈ V1, we have

〈v, T ∗(ρ2(g)(w))〉 = 〈T (v), ρ2(g)(w)〉 = 〈ρ2(g)−1T (v), w〉 = 〈T (ρ1(g)−1(v)), w〉 =

〈ρ1(g)−1(v), T ∗(w)〉 = 〈v, ρ1(g)T ∗(w)〉.

So T ∗(ρ2(g)(w)) = ρ1(g)(T ∗(w)).

Theorem I.3.2.8. Assume that the group G is compact Hausdorff. Let (V, 〈., .〉0) be a Hilbert
space and ρ : G → GL(V ) be a continuous representation of G on V . Then there exists a
Hermitian inner product 〈., .〉 on V satisfying the following properties :

1. There exist real numbers c, C > 0 such that, for every v ∈ V , we have
c|〈v, v〉0| ≤ |〈v, v〉| ≤ C|〈v, v〉0|. In other words, the norms coming from the two in-
ner products are equivalent, and so V is still a Hilbert space for the inner product 〈., .〉.

2. The representation ρ is unitary for the inner product 〈., .〉.

Remark I.3.1. (a) If V is irreducible, it follows from Schur’s lemma (see theorem I.3.4.1) that
this inner product is unique up to a constant.

(b) This is false for noncompact groups. For example, consider the representation ρ of R on C2

given by ρ(t) =

(
1 t
0 1

)
. There is no inner product on C2 that makes this representation

unitary (otherwise ρ(R) would be a closed subgroup of the unitary group of this inner
product, hence compact, but this impossible because ρ(R) ' R).

Proof of the theorem. We define 〈., .〉 : V × V → C by the following formula : for all v, w ∈ V ,

〈v, w〉 =

∫
G

〈ρ(g)v, ρ(g)w〉0dg,

where dg is a normalized Haar measure on G. This defines a Hermitian form on V , and we have
〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for every v, w ∈ V and g ∈ G by left invariance of the measure.
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If we prove property (1), it will also imply that 〈., .〉 is definite (hence an inner product), and so
we will be done. Let v ∈ V . Then the two maps G → V sending v to ρ(g)(v) and to ρ(g)−1(v)
are continuous. As G is compact, they are both bounded. By the uniform boundedness principle
(theorem I.3.2.11), there exist A,B ∈ R>0 such that ‖ρ(g)−1‖op ≤ A and ‖ρ(g)‖op ≤ B for
every g ∈ G. By the submultiplicativity of the operator norm, the first inequality implies that
‖ρ(g)‖ ≤ A−1 for every g ∈ G. So the definition of 〈., .〉 (and the fact thatG has volume 1) gives
property (1), with c = A−2 and C = B2.

Corollary I.3.2.9. If G is compact Hausdorff, then every nonzero finite-dimensional continuous
representation of G is semisimple.

Proof. We may assume that the representation is unitary by the theorem. We prove the corollary
by induction on dimV . The result is obvious if dimV ≤ 1, so assume that dimV ≥ 2 and that
we know the result for all spaces of strictly smaller dimension. If V is irreducible, we are done.
Otherwise, there is a G-invariant subspace W ( V such that W 6= 0. This subspace is closed
because it is finite-dimensional, and we have V = W⊕W⊥ withW⊥ invariant by lemma I.3.2.6.
As dim(W ), dim(W⊥) < dim(V ), we can apply the induction hypothesis to W and W⊥ and
conclude that they are semisimple. But then their direct sum V is also semisimple.

Remark I.3.2.10. This is still true (but harder to prove) for infinite-dimensional unitary rep-
resentations of compact groups, but it is false for infinite-dimensional unitary representations
of noncompact groups, or for finite-dimensional (non-unitary) representations of noncompact
groups.

Theorem I.3.2.11 (Uniform boundedness principle or Banach-Steinhaus theorem). Let V and
W be normed vector spaces, and suppose that V is a Banach space (i.e. that it is complete for
the metric induced by its norm). Let (Ti)i∈I be a family of bounded linear operators from V to
W .

If the family (Ti)i∈I is pointwise bounded (that is, if supi∈I ‖Ti(v)‖ < +∞ for every v ∈ V ),
then it is bounded (that is, supi∈I ‖Ti‖op < +∞).

Proof. 4 Suppose that supi∈I ‖Ti‖op = +∞, and choose a sequence (in)n≥0 of elements of I
such that ‖Tin‖op ≥ 4n. We define a sequence (vn)n≥0 of elements of V in the following way :

- v0 = 0;

- For n ≥ 1, we can find, thanks to the lemma below, an element vn of V such that
‖vn − vn−1‖ ≤ 3−n and ‖Tin(vn)‖ ≥ 2

3
3−n‖Tin‖op.

4Taken from a paper of Alan Sokal.
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We have ‖vn − vm‖ ≤ 1
2
3−n for m ≥ n, so the sequence (vn)n≥0 is a Cauchy se-

quence; as V is complete, it has a limit v, and we have ‖vn − v‖ ≤ 1
2
3−n for every

n ≥ 0. The inequality ‖Tin(vn)‖ ≥ 2
3
3−n‖Tin‖op and the triangle inequality now imply that

‖Tin(x)‖ ≥ 1
6
3−n‖Tin‖op ≥ 1

6
(4

3
)n, and so the sequence (‖Tin(x)‖)n≥0 is unbounded, which

contradicts the hypothesis.

Lemma I.3.2.12. Let V and W be two normed vector spaces, and let T : V → W be a bounded
linear operator. Then for any v ∈ V and r > 0, we have

sup
v′∈B(v,r)

‖T (v′)‖ ≥ r‖T‖op,

where B(v, r) = {v′ ∈ V |‖v − v′‖ < r}.

Proof. For every x ∈ V , we have

‖T (x)‖ ≤ 1

2
(‖T (v + x)‖+ T (v − x)‖) ≤ max(‖T (v + x)‖, ‖T (v − x)‖).

Taking the supremum over x ∈ B(0, r) gives the inequality of the lemma.

Finally, we have the following result, whose proof uses the spectral theorem.

Theorem I.3.2.13. If G is a compact group, then every irreducible unitary representation is
finite-dimensional.

Proof. See problem set 5.

I.3.3 Cyclic representations

Definition I.3.3.1. Let (ρ, V ) be a continuous representation of G, and let v ∈ V . Then the
closure W of Span{ρ(g)(v), g ∈ G} is a subrepresentation of V , called the cyclic subspace
generated by v.

If V = W , we say that V is a cyclic representation and that v is a cyclic vector for V .

Example I.3.3.2. An irreducible representation is cyclic, and every nonzero vector is a cyclic
vector for it.

The converse is not true. For example, consider the representation ρ of the symmetric group
Sn on Cn defined by ρ(σ)(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)), and let v = (1, 0, . . . , 0) ∈ Cn.
Then the set ρ(Sn)(v) is the canonical basis of Cn, hence it generates Cn, and so v is a cyclic
vector for ρ. But ρ is not irreducible, because C(1, 1, . . . , 1) is a subrepresentation.
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Proposition I.3.3.3. Every unitary representation of G is a direct sum of cyclic representations.

If the indexing set is infinite, we understand the direct sum to be the closed direct sum (that is,
the closure of the algebraic direct sum).

Proof. Let (π, V ) be a unitary representation of G. By Zorn’s lemma, we can find a maximal
collection (Wi)i∈I of pairwise orthogonal cyclic subspaces of V . Suppose that V is not the direct
sum of the Wi, then there exists a nonzero vector v ∈ (

⊕
i∈IWi)

⊥. By lemma I.3.2.6, the cyclic
subspace generated by v is included in (

⊕
i∈IWi)

⊥, which contradicts the maximality of the
family (Wi)i∈I . Hence V =

⊕
i∈IWi.

I.3.4 Schur’s lemma

The following theorem is fundamental. We will not be able to prove it totally until we have the
spectral theorem for normal endomorphisms of Hilbert spaces.

Theorem I.3.4.1 (Schur’s lemma). Let (ρ1, V1) and (ρ2, V2) be two representations of G, and let
T : V1 → V2 be an intertwining operator.

1. If V1 is irreducible, then T is either zero or injective.

2. If V2 is irreducible, then T is zero or has dense image.

3. Suppose that V1 is unitary. Then it is irreducible if and only if EndG(V1) = C · idV1 .

4. Suppose that V1 and V2 are unitary and irreducible. Then HomG(V1, V2) is of dimension
zero (if V1 and V2 are not isomorphic) or 1 (if V1 and V2 are isomorphic).

Proof. We prove the first two points. By lemma I.3.1.9, Ker(T ) and Im(T ) are G-invariant
subspaces of V1 and V2. Moreover, Ker(T ) is a closed subspace of V1. If V1 is irreducible, then
its only closed invariant subspaces are 0 and V1; this gives the first point. If V2 is irreducible,
then its only closed invariant subspaces are 0 and V2; this gives the second point.

We prove the third point. Suppose first that V1 is not irreducible. Then it has a closed invari-
ant subspace W such that 0 6= W 6= V1, and orthogonal projection on W is a G-equivariant
endomorphism by lemma I.3.4.3. So EndG(V1) strictly contains C · idV1 .

Now suppose that V1 is irreducible, and let T ∈ EndG(V1). We want to show that T ∈ CidV1 .
If V1 is finite-dimensional, then T has an eigenvalue λ, and then Ker(T − λidV1) is a nonzero
G-invariant subspace of V1, hence equal to V1, and we get T = λidV1 . In general, we still know
that every T ∈ End(V ) has a nonzero spectrum (by theorem II.1.1.3), but, if λ is in the spectrum
of T , we only know that T − λidV is not invertible, not that Ker(T − λidV ) 6= 0. So we cannot
apply the same strategy. Instead, we will use a corollary of the spectral theorem (theorem II.4.1).
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Note that the subgroup ρ1(G) of End(V1) satisfies the hypothesis of corollary II.4.4 because
V1 is irreducible, so its centralizer in End(V1) is equal to CidV1; but this centralizer is exactly
EndG(V1), so we are done.

We prove the fourth point. Let T : V1 → V2 be an intertwining operator. Then T ∗ : V2 → V1

is also an intertwining operator by lemma I.3.2.7, so T ∗T ∈ EndG(V1) and TT ∗ ∈ EndG(V2).
By the third point, there exists c ∈ C such that T ∗T = cidV1 . If c 6= 0, then T is injective and
Im(T ) is closed (because ‖T (v)‖ ≥ |c|

‖T ∗‖op‖v‖ for every v ∈ V1, see lemma I.3.4.2), so T is an
isomorphism by the second point, and its inverse c−1T ∗; hence V1 and V2 are isomorphic, and
HomG(V1, V2) ' EndG(V1) is 1-dimensional. Suppose that c = 0. If T 6= 0, then it has dense
image by the second point, but then T ∗ = 0 by the first point, hence T = (T ∗)∗ = 0, which
is absurd; so T = 0. So we have proved that, if HomG(V1, V2) 6= 0, then V1 and V2 must be
isomorphic; this finishes the proof of the fourth point.

Lemma I.3.4.2. Let V , W be two normed vector spaces, and let T : V → W be a bounded
linear operator. Suppose that V is complete. If there exists c > 0 such that ‖T (v)‖ ≥ c‖v‖ for
every v ∈ V , then Im(T ) is closed.

Proof. Let (vn)n∈N be a sequence of elements of V such that the sequence (T (vn))n∈N con-
verges to a w ∈ W . We want to show that w ∈ Im(T ). Note that, for all n,m ∈ N, we have
‖vn − vm‖ ≤ c−1‖T (vn)− T (vm)‖. This implies that (vn)n∈N is a Cauchy sequence, so it has a
limit v ∈ V because V is complete. As T is continuous, we have w = limn→+∞ T (vn) = T (v),
so w ∈ Im(T ).

Lemma I.3.4.3. Let (ρ, V ) be a unitary representation of G, let W be a closed subspace of V ,
and let π be the orthogonal projection on W , seen as a linear endomorphism of V .

Then W is G-invariant if and only if π is G-equivariant.

Proof. Suppose that π is G-equivariant. Let w ∈ W and g ∈ G. Then
ρ(g)(w) = ρ(g)(π(w)) = π(ρ(g)(w)) ∈ W . So W is invariant by G.

Conversely, suppose that W is G-invariant. By lemma I.3.2.6, its orthogonal W⊥ is also
invariant by G. Let v ∈ V and g ∈ G. We write w = π(g) and w′ = g − π(g).
Then ρ(g)(v) = ρ(g)(w) + ρ(g)(w′) with ρ(g)(w) ∈ W and ρ(g)(w′) ∈ W⊥, so
π(ρ(g)(v)) = ρ(g)(w).

Corollary I.3.4.4. If G is commutative, then every irreducible unitary representation of G is
1-dimensional.
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So each unitary irreducible representation of G is equivalent to one (and only one) continuous
group morphism G→ S1.

Proof. Let (ρ, V ) be an irreducible unitary representation. As G is commutative, the operators
ρ(x) and ρ(y) commute for all x, y ∈ G, so we have ρ(x) ∈ EndG(V ) for every x ∈ G.
By Schur’s lemma, this implies that ρ(x) ∈ C · idV for every x ∈ G. In particular, every
linear subspace of V is invariant by G. As V is irreducible, it has no nontrivial closed invariant
subspaces, so it must be 1-dimensional.

Example I.3.4.5. Let G = R. Then every irreducible unitary representation of G is of the form
ρy : x 7−→ eixy, for y ∈ R. The representation ρy factors through S1 ' R/Z if and only
y ∈ 2πZ.

I.3.5 Finite-dimensional representations

Remember that, if V is a finite-dimensional C-vector space, then all norms on V are equivalent.
So V has a canonical topology, and so does End(V ) (as another finite-dimensional vector space).

Proposition I.3.5.1. Let V be a normed C-vector space and ρ : G→ GL(V ) be a morphism of
groups. Consider the following conditions.

(i) The map G × V → V , (g, v) 7−→ ρ(g)(v), is continuous (i.e. ρ is a continuous represen-
tation of G on V ).

(ii) For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v), is continuous.

(iii) The map ρ : G→ GL(V ) is continuous.

Then we have (iii)⇒(i)⇒(ii). If moreover V is finite-dimensional, then all three conditions
are equivalent.

Proof.

(i)⇒(ii) is obvious.

(ii)⇒(iii) : Suppose that V is finite-dimensional, and let (e1, . . . , en) be a basis of V , and let
‖.‖ be the norm on V defined by ‖

∑x
i=1 xiei‖ = sup1≤i≤n |xi|. We use the corresponding

operator norm on End(V ) and still denote it by ‖.‖. Let g0 ∈ G and let ε > 0; we are
looking for a neighborhoord U of g0 ∈ G such that : g ∈ U ⇒ ‖ρ(g)− ρ(g0)‖ ≤ ε.

For every i ∈ {1, . . . , n}, the function G → V , g 7−→ ρ(g)(ei), is contin-
uous by assumption, so there exists a neighborhood Ui of g0 in G such that :
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g ∈ U ⇒ ‖ρ(g)(ei) − ρ(g0)(ei)‖ ≤ ε/n. Let U =
⋂n
i=1 Ui. Then if g ∈ U , for ev-

ery v =
∑n

i=1 xiei ∈ V , we have

‖ρ(g)(v)− ρ(g0)(v)‖ ≤
n∑
i=1

‖xi‖‖ρ(g)(ei)− ρ(g0)(ei)‖ <
n∑
i=1

|xi|ε/n ≤ ε‖v‖,

which means that ‖ρ(g)− ρ(g0)‖ ≤ ε.

(iii)⇒(i) : Let g0 ∈ G, v0 ∈ V , and ε > 0. We want to find a neighborhood U of g and G
and a δ > 0 such that : g ∈ U and ‖v − v0‖ < δ⇒ ‖ρ(g)(v)− ρ(g0)(v0)‖ < ε.

Choose a δ such that 0 < δ ≤ ε
2‖ρ(g0)‖ , and let U be a neighborhood of g0 in G such that

: g ∈ G ⇒ ‖ρ(g) − ρ(g0)‖ < ε
2(‖v0‖+δ) . Then, if g ∈ U and ‖v − v0‖ < δ, we have

‖v‖ ≤ ‖v0‖+ δ, and hence

‖ρ(g)(v)− ρ(g0)(v0)‖ ≤ ‖ρ(g)(v)− ρ(g0)(v)‖+ ‖ρ(g0)(v)− ρ(g0)(v0)‖
≤ ‖ρ(g)− ρ(g0)‖‖v‖+ ‖ρ(g0)‖‖v − v0‖
<

ε

2(‖v0‖+ δ)
(‖v0‖+ δ) + ‖ρ(g0)‖δ

≤ ε/2 + ε/2 = ε.

I.4 The convolution product and the group algebra

Let G be a locally compact group, and let dx be a left Haar measure on G. We denote by Lp(G)
the Lp spaces for this measure. We also denote by ∆ the modular function of G.

I.4.1 Convolution on L1(G) and the group algebra of G

Definition I.4.1.1. Let f and g be functions from G to C. The convolution of f and g, denoted
by f ∗ g, is the function x 7−→

∫
G
f(y)g(y−1x)dy (if it makes sense).

Proposition I.4.1.2. Let f, g ∈ L1(G). Then the integral
∫
G
f(y)g(y−1x)dy is absolutely con-

vergent for almost every x inG, so f ∗g is defined almost everywhere, and we have f ∗g ∈ L1(G)
and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Proof. By the Fubini-Tonelli theorem and the left invariance of the measure on G, the function
G×G→ C, (x, y) 7−→ f(y)g(y−1x) is integrable and we have∫

G×G
|f(y)g(y−1x)|dxdy =

∫
G×G
|f(y)||g(x)|dxdy = ‖f‖1‖g‖1.
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So the first statement also follows from Fubini’s theorem, and the second statement is obvious.

Note that the convolution product is clearly linear in both arguments.

Proposition I.4.1.3. Let f, g ∈ L1(G).

1. For almost every x ∈ G, we have

f ∗ g(x) =

∫
G

f(y)g(y−1x)dy

=

∫
G

f(xy)g(y−1)dy

=

∫
G

f(y−1)g(yx)∆(y−1)dy

=

∫
G

f(xy−1)g(y)∆(y−1)dy

=

∫
G

f(y)Lyg(x)dy

=

∫
G

g(y−1)Ryf(x)dy.

2. For every h ∈ L1(G), we have

(f ∗ g) ∗ h = f ∗ (g ∗ h).

(In other words, the convolution product is associative.)

3. For every x ∈ G, we have

Lx(f ∗ g) = (Lxf) ∗ g

and

Rx(f ∗ g) = f ∗ (Rxg).

4. If G is abelian, then f ∗ g = g ∗ f .

Proof. 1. We get the equalities of the first four lines by using the substitutions y 7−→ xy and
y 7−→ y−1, the left invariance of dy and proposition I.2.12. The last two lines are just
reformulations of the first two.
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2. For almost every x ∈ G, we have

((f ∗ g) ∗ h)(x) =

∫
G

(f ∗ g)(y)h(y−1x)dy

=

∫
G×G

f(z)g(z−1y)h(y−1x)dzdy

=

∫
G

f(z)

(∫
G

g(z−1y)h(y−1x)dy

)
dz

=

∫
G

f(z)

(∫
G

g(y)h(y−1z−1x)dy

)
dz

=

∫
G

f(z)(g ∗ h)(z−1x)dz

= (f ∗ (g ∗ h))(x).

3. This follows immediately from the definition and the equality of the first two lines in point
(1).

4. This follows from (1) and from the fact that ∆ = 1.

Definition I.4.1.4. A Banach algebra (over C) is an associative C-algebra A with a norm ‖.‖
making A a Banach space (i.e. a complete normed vector space) and such that, for every
x, y ∈ A, we have ‖xy‖ ≤ ‖x‖‖y‖ (i.e. the norm is submultiplicative). If A has a unit e,
we also require that ‖e‖ = 1.

Note that we do not assume that A has a unit. If it does, we say that A is unital.

Example I.4.1.5. (a) If V is a Banach space, then End(V ) is a Banach algebra.

(b) By propositions I.4.1.2 and I.4.1.3, the space L1(G) with the convolution product is a
Banach algebra. We call it the (L1) group algebra of G.

Remark I.4.1.6. If the group G is discrete and dx is the counting measure, then δ1 := 11{1} is a
unit for the convolution product. In general, L1(G) does not always have a unit. (It does if and
only if G is discrete.) We can actually see it as a subalgebra of a bigger Banach algebra which
does have a unit, the measure algebra M (G) of G (see for example section 2.5 of [8]) :

Remember that a (complex) Radon measure on G is a bounded linear functional on C0(G)
(with the norm ‖.‖∞). We denote by M (G) the space of Radon measures and by ‖.‖ its norm
(which is the operator norm); this is a Banach space. If µ is a Radon measure, we write
f 7−→

∫
G
f(x)dµ(x) for the corresponding linear functional on C0(G). We define the convo-

lution product µ ∗ ν of two Radon measures µ and ν to be the linear functional

f 7−→
∫
G×G

f(xy)dµ(x)dν(y).
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I.4 The convolution product and the group algebra

Then it is not very hard to check that ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖ and that the convolution product is
associative on M (G). This makes M (G) into a Banach algebra, and the Dirac measure at 1 is a
unit element of M (G).

Note also that M (G) is commutative if and only if G is abelian. Indeed, it is obvious on the
definition of ∗ that M (G) is commutative if G is abelian. To show the converse, we denote by
δx the Dirac measure at x (so

∫
G
fdδx = f(x)). Then we clearly have δx ∗ δy = δxy for every

x, y ∈ G. So, if M (G) is commutative, then δxy = δyx for every x, y ∈ G, and this implies that
G is abelian.

Even though L1(G) does not contain the unit of M (G), we have families of functions called
“approximate identities” that will be almost as good as δ1 in practice. In particular, we will be
able to prove that L1(G) is commutative if and only if G is abelian.

Definition I.4.1.7. A (symmetric, continuous) approximate identity with supports in a basis of
neighborhoods U of 1 in G is a family of functions (ψU)U∈U in C +

c (G) such that, for every
U ∈ U , we have

- supp(ψU) ⊂ U ;

- ψU(x−1) = ψU(x), ∀x ∈ G;

-
∫
G
ψU(x)dx = 1.

For some results, we don’t need the continuity of the ψU or the fact that ψU(x−1) = ψU(x).

Proposition I.4.1.8. For every basis of neighborhoods U of 1 in G, there exists an approximate
identity with supports in U .

Proof. Let U ∈ U . Then U contains a symmetric neighborhood V ⊂ U of 1 and a com-
pact neighborhood K ⊂ V of 1, and, by corollary A.3.1, there exists a continuous function
f : X → [0, 1] with compact support contained in V such that f|K = 1. In particular, f 6= 0,
so f ∈ C +

c (X). Define g : X → [0, 2] by g(x) = f(x) + f(x−1). Then g ∈ C +
c (X) (because

g|K = 2) and supp(g) ⊂ V ⊂ U . Now take ψU = 1∫
G g(x)dx

g.

Proposition I.4.1.9. Let U be a basis of neighborhoods of 1 in G, and let (ψU)U∈U be an
approximate identity with supports in U .

1. For every f ∈ L1(G), we have ‖ψU ∗ f − f‖1 → 0 and ‖f ∗ ψU − f‖1 → 0 as U → {1}.
In fact, we have :

‖ψU ∗ f − f‖1 ≤ sup
y∈U
‖LY f − f‖1

and
‖f ∗ ψU − f‖1 ≤ sup

y∈U
‖RY f − f‖1.
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2. If f ∈ L∞(G) and f is left (resp. right) uniformly continuous, then ‖ψU ∗ f − f‖∞ → 0
(resp. ‖f ∗ ψU − f‖∞ → 0) as U → {1}. In fact, we have :

‖ψU ∗ f − f‖∞ ≤ sup
y∈U
‖LY f − f‖∞

and
‖f ∗ ψU − f‖∞ ≤ sup

y∈U
‖RY f − f‖∞.

In point (2), note that if f : G → C is bounded and g ∈ Cc(G), then the integral defining
(f ∗ g)(x) converges absolutely for every x ∈ G.

Proof. 1. Let U ∈ U . For every x ∈ G, we have

(ψU ∗ f)(x)− f(x) =

∫
G

ψU(y)(Lyf(x)− f(x))dy

(because
∫
G
ψU(y)dy = 1). So

‖ψU ∗ f − f‖1 =

∫
G

|
∫
G

ψU(y)(Lyf(x)− f(x))dy|dx

≤
∫
G×G

ψU(y)|Lyf(x)− f(x)|dydx

≤
∫
G

ψU(y)‖Ly − f‖1dy

≤ sup
y∈U
‖Lyf − f‖1.

The first convergence result then follows from the fact that ‖Lyf − f‖1 → 0 as y → 1,
which is proposition I.3.1.13.

The proof of the second convergence result is similar (we get that
‖f ∗ ψU − f‖1 ≤ supy∈U ‖Ryf − f‖1 and apply proposition I.3.1.13).

2. Let U ∈ U . Then for every x ∈ G,

|(ψU ∗ f)(x)− f(x)| ≤
∫
G

ψU(y)|Lyf(x)− f(x)|dy.

As ψU(y) = 0 for y 6∈ U , this implies that

|(ψU ∗ f)(x)− f(x)| ≤ (sup
y∈U
|Lyf(x)− f(x)|)(

∫
G

ψU(y)dy) = sup
y∈U
|Lyf(x)− f(x)|.

Taking the supremum over x ∈ G gives

‖ψU ∗ f − f‖∞ ≤ sup
y∈U
‖Lyf − f‖∞.
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So the first statement follows immediately from the definition of left uniform continuity.
The proof of the second statement is similar.

Corollary I.4.1.10. 1. The Banach algebra L1(G) is commutative if and only if the group G
is abelian.

2. Let I be a closed linear subspace of L1(G). Then I is a left (resp. right) ideal if and
only if it is stable under the operators Lx (resp. Rx), x ∈ G.

Proof. 1. If G is abelian, then we have already seen that L1(G) is commutative. Conversely,
suppose that L1(G) is commutative. Let x, y ∈ G. Let f ∈ Cc(G), and choose an approx-
imate identity (ψU)U∈U . By proposition I.4.1.3, we have, for every U ∈ U ,

(Rxf) ∗ (RyψU) = Ry((Rxf) ∗ ψU) = Ry(ψU ∗ (Rxf)) = RyRx(ψU ∗ f) = Ryx(f ∗ ψU)

and

(Rxf) ∗ (RyψU) = (RyψU) ∗ (Rxf) = Rx(f ∗ (RyψU)) = RxRy(f ∗ψU) = Rxy(f ∗ψU).

Evaluating at 1 gives (f∗ψU)(xy) = (f∗ψU)(yx). But proposition I.4.1.9 (and proposition
I.1.12) implies that ‖f ∗ ψU − f‖∞ → 0 as U → {1}, so we get

f(xy) = lim
U→{1}

(f ∗ ψU)(xy) = lim
U→{1}

(f ∗ ψU)(yx) = f(yx).

As this is true for every f ∈ Cc(G), we must have xy = yx (this follows from local
compactness and Urysohn’s lemma).

2. We prove the result for left ideals (the proof for right ideals is similar). Suppose that I
is a left ideal, and let x ∈ G. Choose an approximate identity (ψU)U∈U . We know that
ψU ∗ f → f in L1(G) as U → {1}, and so Lx(ψU ∗ f) → Lxf as U → {1} (because
Lx preserves the L1 norm). But Lx(ψU ∗ f) = (LxψU) ∗ f by proposition I.4.1.3; as I is
a left ideal, we have (LxψU) ∗ f ∈ I for every U ∈ U , and as I is closed, this finally
implies that Lxf ∈ I .

Conversely, suppose that I is stable by all the operators Lx, x ∈ G. Let f ∈ L1(G) and
g ∈ I . By proposition I.4.1.3, we have f ∗ g =

∫
G
f(y)Lygdy. By the definition of the

integral, the function f ∗ g is in the closure of the span of the Lyg, y ∈ G, and so it is in I
by hypothesis (and because I is closed).

I.4.2 Representations of G vs representations of L1(G)

Definition I.4.2.1. A Banach ∗-algebra is a Banach algebra A with an involutive anti-
automorphism ∗. (That, for every x, y ∈ A and λ ∈ C, we have (x+y)∗ = x∗+y∗, (λx)∗ = λx∗,
(xy)∗ = y∗x∗ and (x∗)∗ = x.)
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The anti-automorphism ∗ is called an involution on the Banach algebra A.

Example I.4.2.2. (a) C, with the involution z∗ = z.

(b) If G is a locally compact group with a left Haar measure, then L1(G) with the con-
volution product and the involution ∗ defined by f ∗(x) = ∆(x)−1f(x−1) is a Banach
∗-algebra (note that f ∗ is in L1(G) and that we have

∫
G
f ∗(x)dx =

∫
G
f(x)dx and∫

G
|f ∗(x)|dx =

∫
G
|f(x)|dx by proposition I.2.12; so ‖f ∗‖1 = ‖f‖1). It is commutative if

and only G is abelian, and it has a unit if and only G is discrete.

(c) If X is a locally compact Hausdorff space, the space C0(X) with the norm ‖.‖∞, the usual
(pointwise) multiplication and the involution ∗ defined by f ∗(x) = f(x) is a commutative
Banach ∗-algebra. It has a unit if and only if X is compact (and the unit is the constant
function 1).

(d) Let H be a Hilbert space. Then End(H), with the operator norm and the involution
T 7−→ T ∗ (where T ∗ is the adjoint of T as above) is a unital Banach ∗-algebra. It is
commutative if and only if dimC(H) = 1.

Definition I.4.2.3. (i) If A and B are two Banach ∗-algebras, a ∗-homomorphism from A to
B is a morphism of C-algebras u : A → B that is bounded as a linear operator and such
that u(x∗) = u(x)∗, for every x ∈ A.

(ii) A representation of a Banach ∗-algebra A on a Hilbert space H is a ∗-homomorphism
π from A to End(H). We say that the representation is nondegenerate if, for every
v ∈ H − {0}, there exists x ∈ A such that π(x)(v) 6= 0.

We will need the following result, which we will prove in the next section. (See corollary
II.3.9.)

Proposition I.4.2.4. Let V be a Hilbert space. Then, for every T ∈ End(H) such that
TT ∗ = T ∗T , we have

‖T‖op = lim
n→∞

‖T n‖1/n
op .

Corollary I.4.2.5. Let A be a Banach ∗-algebra such that ‖x∗‖ = ‖x‖ for every x ∈ A, and let
π be a representation of A on a Hilbert space V . Then ‖π‖op ≤ 1.

Proof. By definition, the operator π is bounded; let C = ‖π‖op. Let x ∈ A, and let
T = π(x∗x) ∈ End(H). Note that T = T ∗. For every n ≥ 1, we have

‖T n‖ ≤ C‖(x∗x)‖n1 ≤ C‖x‖2n

(because ‖x∗‖ = ‖x‖). On the other hand, we have

‖T‖op = lim
n→+∞

‖T n‖1/n
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by proposition I.4.2.4, hence

‖π(x)‖op = ‖π(x)∗π(x)‖1/2
op = ‖T‖1/2

op ≤ ( lim
n→+∞

C1/n‖x‖2n/n)1/2 = ‖x‖.

In other words, ‖π‖op ≤ 1.

We now fix a locally compact group G as before.

Theorem I.4.2.6. 1. Let (π, V ) be a unitary representation of G. We define a map from
L1(G) to the space of linear endomorphisms of V , still denoted by π, in the following way
: if f ∈ L1(G), we set

π(f) =

∫
G

f(x)π(x)dx,

by which we mean that

π(f)(v) =

∫
G

f(x)π(x)(v)dx

for every v ∈ V (the integral converges by problem set 4).

Then this is a nondegenerate representation of the Banach ∗-algebra L1(G) on V , and
moreover we have, for every x ∈ G and every f ∈ L1(G),

π(Lxf) = π(x)π(f) and π(Rxf) = ∆(x)−1π(f)π(x)−1.

2. Every nondegenerate representation π of the Banach ∗-algebra L1(G) on a Hilbert space
V comes from a unitary representation π of the group G as in point (1).

Moreover, if (ψU)U∈U is an approximate identity, then, for every x ∈ G and every v ∈ V ,
we have

π(x)(v) = lim
U→{1}

π(LxψU)(v).

3. Let (π, V ) be a unitary representation of G, and π : L1(G) → End(V ) be the asso-
ciated ∗-homomorphism. Then a closed subspace W of V is G-invariant if and only if
π(f)(W ) ⊂ W for every f ∈ L1(G).

4. Let (π1, V1) and (π2, V2) be unitary representations of G, and πi : L1(G) → End(Vi),
i = 1, 2, be the associated ∗-homomorphisms. Then a bounded linear map T : V1 → V2 is
G-equivariant if and only if T ◦ π1(f) = π2(f) ◦ T for every f ∈ L1(G).

Proof. 1. If f ∈ L1(G), then the map π(f) : V → V is clearly C-linear, and we have for
every v ∈ V :

‖π(f)(v)‖ = ‖
∫
G

f(x)π(x)(v)dx‖ ≤
∫
G

|f(x)|‖v‖dx ≤ ‖v‖‖f‖1,
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so the endomorphism π(f) of V is bounded and ‖π(f)‖op ≤ ‖f‖1. Also, it is easy to
see that the map π : L1(G) → End(H) sending f to π(f) is C-linear, and the equality
‖π(f)‖op ≤ ‖f‖1 implies that it is also bounded (we also see that ‖π‖op is bounded by 1,
as it should according to corollary I.4.2.5).

Let f, g ∈ L1(G). Then, for every v ∈ V ,

π(f ∗ g)(v) =

∫
G×G

f(y)g(y−1x)π(x)(v)dxdy

=

∫
G

f(y)

(∫
G

g(y−1x)π(x)(v)dx

)
dy

=

∫
G

f(y)

(∫
G

g(x)π(yx)(v)dx

)
dy

=

∫
G

f(y)π(y)(π(g)(v))dy

= π(f)(π(g)(v)).

So π(f ∗ g) = π(f) ◦ π(g). Also,

π(f ∗)(v) =

∫
G

∆(x)−1f(x−1)π(x)(v)dx

=

∫
G

f(x)π(x−1)(v)dx by proposition I.2.12

=

∫
G

f(x)π(x)∗(v)dx,

so that, if w ∈ V ,

〈π(f ∗)(v), w〉 =

∫
G

〈f(x)π(x)∗(v), w〉dx =

∫
G

〈v, f(x)π(x)(w)〉 = 〈v, π(f)(w)〉.

This means that π(f ∗) = π(f)∗. So we have proved that π is a ∗-homomorphism.

Now we show the last statement. Let f ∈ L1(G) and x ∈ G. Then, for every v ∈ V ,

π(x)(π(f)(v)) =

∫
G

f(y)π(x)(π(y)(v))dy

=

∫
G

f(x−1y)π(y)(v)dy

π(Lxf)(v)

and

π(f)(π(x)−1(v)) =

∫
G

f(y)π(y)(π(x−1)(v))dy

= ∆(x)

∫
G

f(yx)π(y)(v)dy

= ∆(x)π(Rxf)(v).
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Finally, we show that the representation π : L1(G) → End(V ) is nondegenerate.
Let v ∈ V − {0}, and choose a compact neighborhood K of 1 in G such that
‖π(x)(v)− v‖ ≤ 1

2
‖v‖ for every x ∈ K. Let f = vol(K)−111K . Then

‖π(f)(v)− v‖ =
1

vol(K)
‖
∫
K

(π(x)(v)− v)dx‖ ≤ 1

2
‖v‖,

and in particular π(f)(v) 6= 0.

Finally, we show the last statement. Let (ψU)U∈U be an approximate identity, and let
x ∈ G and v ∈ V .

2. Let π be a nondegenerate representation of the Banach ∗-algebra L1(G) on a Hilbert space
V . Choose an approximate identity (ψU)U∈U of G. The idea of the proof is that π(x)
should be the limit of the π(LxψU) as U tends to {1}.

We now make the idea of proof above more rigorous. Note that, by corollary I.4.2.5, we
have ‖π‖op ≤ 1. Let W be the span of the π(f)(v), for f ∈ L1(G) and v. I claim
thet W is dense in V . Indeed, let v ∈ W⊥. Then, for every f ∈ L1(G), we have
〈π(f)(v), v′〉 = 〈v, π(f ∗)(v′)〉 = 0 for all v′ ∈ V , hence π(f)(v) = 0. As π is non-
degenerate, this is only possible if v = 0. Hence W⊥ = 0, which means that W is dense
in V .

Let x ∈ G. We want to define an element π̃(x) ∈ End(V ) such that, for every
f ∈ L1(G), we have π̃(x)π(f) = π(Lxf). This forces us to define π̃(x) on an element
w =

∑n
j=1 π(fj)(vj) of W (fj ∈ L1(G), vj ∈ V ) as

π̃(x)(w) =
n∑
j=1

π(Lxfj)(vj).

This is well-defined because, for every ≥ 1, and for all f1, . . . , fn ∈ L1(G) and
v1, . . . , vn ∈ V , we have

n∑
j=1

π(Lxfj)(vj) = lim
U→{1}

n∑
j=1

π(Lx(ψU ∗ fj))(vj)

= lim
U→{1}

n∑
j=1

π((LxψU) ∗ fj))(vj)

= lim
U→{1}

π(LxψU)

(
n∑
j=1

π(fj)(vj)

)

so
∑n

j=1 π(Lxfj)(vj) = 0 if
∑n

j=1 π(fj)(vj) = 0.

Moreover, as ‖π(LxψU)‖op ≤ ‖π‖op‖ψU‖1 ≤ 1 for every U ∈ U , we have
‖π̃(x)(w)‖ ≤ ‖w‖ for every w ∈ W , so π̃(x) is a bounded linear operator of norm ≤ 1
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on W , hence extends by continuity to a bounded linear operator π̃(x) ∈ End(V ) of norm
≤ 1.

Next, using the fact that Lxy = Lx ◦ Ly, we see that, for all x, y ∈ G, π̃(xy) = π̃(x)π̃(y)
on W , hence on all of V . Similarly, the fact that L1 = idL1(G) implies that π̃(1) = idV .
Also, for every x ∈ G, we have, if v ∈ V ,

‖v‖ = ‖π̃(x−1)π̃(x)(v)‖ ≤ ‖π̃(x−1)‖op‖π̃(x)(v)‖ ≤ ‖π̃(x)(v)‖ ≤ ‖v‖,

so ‖π̃(x)(v)‖ = ‖v‖, i.e., π̃(x) is a unitary operator.

Let v ∈ V . We want to show that the map G → V , x 7−→ π̃(x)(v) is continuous. By
proposition I.3.1.10, this will imply that π̃ : G → End(V ) is a unitary representation
of G on V . We first suppose that v = π(f)(v′), with f ∈ L1(G) and v′ ∈ V . Then
π̃(x)(v) = π(Lxf)(v′), so the result follows from the continuity of the map G → L1(G),
x 7−→ Lxf (see proposition I.3.1.13), of π and of the evaluation map End(V ) → V ,
T 7−→ T (v′). As finite sums of continuous functions G → V are continuous, we get the
result for every v ∈ W . Now we treat the general case. Let x ∈ G and ε > 0. We must find
a neighborhood U of x in G such that, for every y ∈ U , we have ‖π̃(y)(v)− π̃(x)(v)‖ < ε.
Choose w ∈ W such that ‖v − w‖ < ε/3, and a neighborhood U of x in G such that, for
every y ∈ U , we have ‖π̃(y)(w)− π̃(x)(w)‖ < ε/3 (this is possible by the first part of this
paragraph). Then, for every y ∈ U , we have

‖π̃(y)(v)− π̃(x)(v)‖ ≤ ‖π̃(y)(v)− π̃(y)(w)‖+ ‖π̃(y)(w)− π̃(x)(w)‖+ ‖π̃(x)(w)− π̃(x)(v)‖
< ‖v − w‖+ ε/3 + ‖v − w‖ (because π̃(x) and π̃(y) are unitary)
< ε,

as desired.

We show that the representation π̃ of L1(G) induced by π̃ is the representation π that we
started from. Let f, g ∈ L1(G). Then, for every v ∈ V ,

π̃(f)π(g)(v) =

∫
G

f(x)π̃(x)π(g)(v)dx

=

∫
G

f(x)π(Lxg)(v)dx

=

∫
G

π(f(x)Lxg)(v)dx

= π

(∫
G

f(x)Lxgdx

)
(v)

= π(f ∗ g)(v)

= π(f)π(g)(v).

So, if f ∈ L1(G), then π̃(f) and π(f) are equal on W . As W is dense in V , this implies
that π̃(f) = π(f).
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Finally, we show the last statement. Let (ψU)U∈U be an approximate identity as above.
Let x ∈ G. We have already seen that, for every v ∈ W , we have

π̃(x)(v) = lim
U→{1}

π(LxψU)(v).

As both sides are continuous functions of v ∈ V (for the right hand side, we use the fact
that ‖π(LxψU)‖op = 1, this identity extends to all v ∈ V .

3. Suppose that W is G-invariant. Let f ∈ L1(G) and w ∈ W . As
π(f)(w) =

∫
G
f(x)π(x)(w)dx is a limit of linear combinations of elements of the form

π(x)(w), x ∈ G, it is still in W .

Conversely, suppose that π(f)(W ) ⊂ W for every f ∈ L1(G). Let x ∈ G, and let
(ψU)U∈U be an approximate identity. Then, by the last statement of (2), for every w ∈ W ,
we have

π(x)(w) = lim
U→{1}

π(LxψU)(w) ∈ W.

So W is G-invariant.

4. Let T : V1 → V2 be a bounded linear map, and let W ⊂ V1 × V2 be the graph of T ; this is
a closed linear subspace of V1×V2. Then T is G-equivariant if and only W is G-invariant,
and T is L1(G)-equivariant if and only W is stable by all the π1(f) × π2(f), f ∈ L1(G).
So the conclusion follows from point (3).

Example I.4.2.7. Let π be the representation of G given by π(x)(f) = Lxf (see exam-
ple I.3.1.11). Then, for every f, g ∈ L1(G), we have π(f)(g) = f ∗ g. Indeed, we have
π(f)(g) =

∫
G
f(x)Lxgdx by definition of π(f), so the statement follows from problem 4 of

problem set 4.

I.4.3 Convolution on other Lp spaces

We will only see a few results that we’ll need later to prove the Peter-Weyl theorem for compact
groups. The most important case is that of L2(G).

Most of the results are based on Minkowski’s inequality, which is proved in problem set 4.
Here, we only state it for functions on G.

Proposition I.4.3.1 (Minkowski’s inequality). Let p ∈ [1,+∞), and let ϕ be a function from
G×G to C. Then(∫

G

∣∣∣∣∫
G

ϕ(x, y)dµ(y)

∣∣∣∣p dµ(x)

)1/p

≤
∫
G

(∫
G

|ϕ(x, y)|pdµ(x)

)1/p

dµ(y),

in the sense that if the right hand side is finite, then
∫
G
ϕ(x, y)dµ(y) converges absolutely for

almost all x ∈ G, the left hand side is finite and the inequality holds.
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Corollary I.4.3.2. Let p ∈ [1,+∞), and let f ∈ L1(G) and g ∈ Lp(G).

1. The integral defining f ∗ g(x) converges absolutely for almost every x ∈ G, and we have
f ∗ g ∈ Lp(G) and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

2. If G is unimodular, then the same conclusions hold with f ∗ g replaced by g ∗ f .

Proof. 1. we apply Minkowski’s inequality to the function ϕ(x, y) = f(y)g(y−1x). For every
y ∈ G, we have∫

G

|ϕ(x, y)|pdµ(x) = |f(y)|p
∫
G

|g(x)|pdµ(x) = |f(y)|p‖g‖pp

by left invariance of µ, so∫
G

(∫
G

|ϕ(x, y)|pdµ(x)

)1/p

dµ(y) = ‖g‖p
∫
G

|f(y)|dµ(y) = ‖f‖1‖g‖p.

Minkowski’s inequality first says that
∫
G
ϕ(x, y)dµ(y) = f ∗ g(x) converges absolutely

for almost all x ∈ G, which is the first statement. The rest of Minkowski’s inequality is
exactly the fact that ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

2. Suppose that G is unimodular. Then

g ∗ f(x) =

∫
G

g(y)f(y−1x)dµ(x) =

∫
G

g(xy−1)f(y)dµ(y).

So the proof is the same as in (1), by applying Minkowski’s ineqality to the function
ϕ(x, y) = g(xy−1)f(y).

Now we generalize proposition I.4.1.9 to other Lp spaces.

Corollary I.4.3.3. Let U be a basis of neighborhoods of 1 in G, and let (ψU)U∈U be an ap-
proximate identity with supports in U . Then, for every 1 ≤ p < +∞, if f ∈ Lp(G), we have
‖ψU ∗ f − f‖p → 1 and ‖f ∗ ψU − f‖p → 1 as U → {1}.

Proof. Let U ∈ U and f ∈ Lp(G). Then we have, for every x ∈ G,

ψU ∗ f(x)− f(x) =

∫
G

ψU(y)(Lyf(x)− f(x))dµ(y)

(because
∫
G
ψUdµ = 1). Applying Minkowski’s inequality to the function

ϕ(x, y) = ψU(y)(Lyf(x)− f(x)), we get

‖ψU ∗ f − f‖p ≤
∫
G

‖Lyf − f‖pψU(y)dµ(y) ≤ sup
y∈U
‖Lyf − f‖p.
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Similarly, we have

f ∗ ψU(x)− f(x) =

∫
G

f(xy)ψU(y−1)dµ(y)− f(x)

∫
G

ψU(y)dµ(y)

=

∫
G

(Ryf(x)− f(x))ψU(y)dµ(y).

So applying Minkowski’s inequality to the function ϕ(x, y) = (Ryf(x)− f(x))ψU(y) gives

‖f ∗ ψU − f‖p ≤
∫
G

‖Ry − f‖pψU(y)dµ(y) ≤ sup
y∈U
‖Ryf − f‖p.

Hence both statements follow from proposition I.3.1.13.

Finally, we prove that the convolution products makes functions more regular in some cases.
The most important case (for us) in the following proposition is when G is compact and
p = q = 2.

Proposition I.4.3.4. Suppose that G is unimodular. Let p, q ∈ (1,+∞) such that p−1 + q−1 = 1
and let f ∈ Lp(G), g ∈ Lq(G).

Then f ∗ g exists, f ∗ g ∈ C0(G) and ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.

Proof. Let x ∈ G. We have

f ∗ g(x) =

∫
G

f(y)Rxg(y−1)dµ(y).

As G is unimodular, the function y 7−→ Rxg(y−1) is still in Lq(G) and has the same Lq

norm as g. So, by Hölder’s inequality,5 the integral above converges absolutely and we have
|f ∗ g(x)| ≤ ‖f‖p‖g‖q. This proves the existence of f ∗ g and the result about its norm. It also
shows that the bilinear map Lp(G) × Lq(G) → L∞(G), (f, g) 7−→ f ∗ g is continuous. As
C0(G) is closed in L∞(G) and Cc(G) is dense in both Lp(G) and Lq(G), it suffices to prove that
f ∗ g ∈ C0(G) if f, g ∈ Cc(G).

So let f, g ∈ Cc(G). Let x ∈ G, let ε > 0, and choose a neighborhood U of x such that, for
every y ∈ G and x′ ∈ U , we have |g(yx)− g(yx′)| ≤ ε. Then, if x′ ∈ U ,

|f ∗ g(x)− f ∗ g(x′)| ≤
∫
G

|f(y)||g(y−1x)− g(y−1x′)|dµ(y) ≤ ε

∫
G

|f(y)|dµ(y).

This shows that f ∗ g is continuous. Let K = (supp g)(supp f); this is a compact subset of G.
We want to show that supp(f ∗g) ⊂ K, which will finish the proof. Let x ∈ G, and suppose that
f ∗ g(x) 6= 0. Then there exists y ∈ G such that f(y)g(y−1x) 6= 0. We must have y ∈ supp f
and y−1x ∈ supp g, so x ∈ y(supp g) ⊂ K.

5Which reduces to the Cauchy-Schwarz inequality when p = q = 2.
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II.1 Banach algebras

In this section, A will be a Banach algebra. (See definition I.4.1.4.) Note that the submultiplica-
tivity of the norm implies that the multiplication is a continuous map from A× A to A.

We suppose for now that A has a unit e and denote by A× the group of invertible elements of
A.

II.1.1 Spectrum of an element

Definition II.1.1.1. Let x ∈ A.

(i) The spectrum of x in A is

σ(x) = σA(x) = {λ ∈ C|λe− x 6∈ A×}.

(ii) The spectral radius of x is
ρ(x) = inf

n≥1
‖xn‖1/n.

We will see below how that ρ(x) is equal to sup{|λ|, λ ∈ σ(x)} (which justifies the name
“spectral radius”).

We start by proving some basic properties of invertible elements and the spectral radius. (Note
that point (i) does not use the completeness of A, so it stays true in any normed algebra.)

Proposition II.1.1.2. (i) If x, y ∈ A× are such that ‖x− y‖ ≤ 1
2
‖x−1‖−1, then we have

‖x−1 − y−1‖ ≤ 2‖x−1‖2‖y − x‖.

In particular, the map x 7−→ x−1 is a homeomorphism from A× onto itself.

(ii) For every x ∈ A, we have
ρ(x) = lim

n→+∞
‖xn‖1/n

(Gelfand’s formula).
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(iii) Let x ∈ A. If ρ(x) < 1 (for example if ‖x‖ < 1), then e − x ∈ A× and
(e − x)−1 =

∑
n≥0 x

n, with the convention that x0 = e. (In particular, the series con-
verges.)

(iv) The group A× is open in A.

Proof. (i) We have

‖y−1‖ − ‖x−1‖ ≤ ‖y−1 − x−1‖ = ‖y−1(x− y)x−1‖ ≤ ‖y−1‖‖x− y‖‖x−1‖ ≤ 1

2
‖y−1‖.

In particular, ‖y−1‖ ≤ 2‖x−1‖. Combining this with the inequality above gives

‖y−1 − x−1‖ ≤ ‖y−1‖‖x− y‖‖x−1‖ ≤ 2‖x−1‖2‖x− y‖,

which is the first statement. This also show that the map x 7−→ x−1 is continuous. As this
map is equal to its own inverse, it is a homeomorphism.

(ii) Let ε > 0. We want to findN ∈ Z≥1 such that ‖xn‖1/n ≤ ρ(x)+ε for n ≥ N . (We already
know that ‖xn‖1/n ≥ ρ(x) by definition of ρ(x), so this is enough to establish the result.)
By definition of ρ(x), we can findm ≥ 1 such that ‖xm‖1/m ≤ ρ(x)+ 1

2
ε. For every integer

n ≥ 1, we can write n = mq(n) + r(n), with q(n), r(n) ∈ N and 0 ≤ r(n) ≤ m− 1. Note
that

q(n)

n
=

1

m

(
1− r(n)

n

)
−−−−→
n→+∞

1

m
,

hence
‖xm‖q(n)/n‖x‖r(n)/n −−−−→

n→+∞
‖xm‖1/m.

Choose N ≥ 1 such that, for n ≥ 1, we have

‖xm‖q(n)/n‖x‖r(n)/n ≤ ‖xm‖1/m +
ε

2
≤ ρ(x)ε.

Then, if n ≥ N , we have

‖xn‖1/n = ‖xmq(n)xr(n)‖1/n ≤ ‖xm‖q(n)/n‖x‖r(n)/n ≤ ρ(x) + ε,

as desired. 1

(iii) Fix r ∈ R such that ρ(x) < r < 1. Then, by (ii), we have ‖xn‖ ≤ rn for n big enough.
For every n ∈ N, we write Sn =

∑n
k=0 x

k. Then, if m ≥ n are big enough, we have

‖Sm − Sn‖ =

∣∣∣∣∣
m∑

k=n+1

xk

∥∥∥∥∥ ≤ rn+1
∑
k≥0

rk = rn+1 1

1− r
.

1The reasoning used in this proof is sometimes called Fekete’s lemma. See https://en.wikipedia.org/
wiki/Subadditivity.
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II.1 Banach algebras

So the sequence (Sn)n≥0 is a Cauchy sequence, and it converges because A is complete.
This means that the series

∑
n≥0 x

n converges. Moreover, for every n ≥ 0, we have

(e− x)Sn = Sn(e− x) =
n∑
k=0

xk −
n+1∑
k=1

xk = e− xn+1.

This tends to e as n→ +∞, so
∑

n≥0 x
n is the inverse of e− x.

(iv) Let x ∈ A×. If y ∈ A is such that ‖y − x‖ < ‖x−1‖−1, then we have
‖e− x−1y‖ ≤ ‖x−1‖‖x− y‖ < 1. So, by (iii), x−1y ∈ A×, hence y ∈ A×.

Theorem II.1.1.3. For every x ∈ A, the spectrum σA(x) is a nonempty compact subset of C,
and we have

ρ(x) = max{|λ|, λ ∈ σA(x)}.

This explains the name “spectral radius” for ρ(x). Note in particular that, although the spec-
trum of x depends on A (for example, if we consider a Banach subalgebra B of A containing x,
then we have σB(x) ⊃ σA(x), but this may not be an equality), the spectral radius of x does not.

Proof. Consider the map F : C→ A sending λ ∈ C to λe−x. Then F is continuous, and σA(x)
is the inverse of the closed subset A− A× of A, so σA(x) is closed in C.

Next, let λ ∈ C such that |λ| > ρ(x). Then ρ(λ−1x) < 1, so, by (iii) of proposition II.1.1.2,
we have e − λ−1x = λ−1(λe − x) ∈ A×, which immediately implies that λ 6∈ σA(x). So we
have shown that

ρ(x) ≥ sup{|λ|, λ ∈ σA(x)}.

In particular, σA(x) is a closed and bounded subset of C, so it is compact.

Let’s show that σA(x) is not empty. Let T : A→ C be a bounded linear functional, and define
f : C− σA(x)→ C by f(λ) = T ((λe− x)−1). If λ, µ ∈ C− σA(x), then

(λe−x)−1−(µe−x)−1 = (λe−x)−1((µe−x)−(λe−x))(µe−x)−1 = −(λ−µ)(λe−x)−1(µe−x)−1,

so, if λ 6= µ, we get
f(λ)− f(µ)

λ− µ
= −T ((λe− x)−1(µe− x)−1).

Using the continuity of the function y 7−→ y−1 (see (i) of proposition II.1.1.2), we get, for every
λ ∈ C− σA(x),

lim
µ→λ

f(λ)− f(µ)

λ− µ
= −T ((λe− x)−2).
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In particular, the function f is holomorphic on C − σA(x). Let’s prove that f vanishes at ∞,
i.e. that f(λ) tends to 0 when |λ| → +∞. Let λ ∈ C such that |λ| > ρ(x). Then, by (iii) of
proposition II.1.1.2,

(λe− x)−1 = λ−1(e− λ−1x)−1 =
1

λ

∑
n≥0

1

λn
xn,

so

‖(λe− x)−1‖ ≤ 1

|λ|
∑
n≥0

‖x‖n

|λ|n
=

1

|λ|
1

1− |λ|−1‖x‖
.

This tends to 0 as |λ| → +∞; as T is continuous, so does f(λ).

Now suppose that σA(x) = ∅. Then f is an entire function, and f(λ)→ 0 as |λ| → +∞. By
Liouville’s theorem, this implies that f = 0, i.e. that T ((λe − x)−1) = 0 for every λ ∈ C. But
this is true for every T ∈ Hom(A,C) and bounded linear functionals on A separate points by
the Hahn-Banach theorem, so we get that (λe − x)−1 = 0 for every λ ∈ C. This is impossible,
because (λe− x)−1 ∈ A×. So σA(x) 6= ∅.

Finally, we prove that
ρ(x) ≤ max{|λ|, λ ∈ σA(x)}.

Let r = max{|λ|, λ ∈ σA(x)}. We already know that r ≤ ρ(x). Assume that r < ρ(x), and
pick r′ such that r < r′ < ρ(x). Let T ∈ Hom(A,C) and define f : C− σA(x)→ C as before.
Then we have seen that f is holomorphic on C− σA(x) ⊃ {λ ∈ C||λ| > r}. We have also seen
that, if |λ| > ρ(x), then

(λe− x)−1 =
∑
n≥0

1

λn+1
xn,

hence

f(λ) =
∑
n≥0

T (xn)

λn+1
.

By uniqueness of the power series expansion, this is still valid for |λ| > r. In particular, the
series

∑
n≥0

T (xn)
(r′)n+1 converges, so the sequence ( T (xn)

(r′)n+1 )n≥0 converges to 0, and in particular
it is bounded. Consider the sequence (αn)n≥0 of bounded linear functionals on Hom(A,C)

defined by αn(T ) = T (xn)
(r′)n+1 . We just saw that, for every T ∈ Hom(A,C), the sequence

(αn(T ))n≥0 is bounded. By the uniform boundedness principle (theorem I.3.2.11), this implies
that the sequence (‖αn‖op)n≥0 is bounded. But note that, by the Hahn-Banch theorem, we have

‖αn‖op =
∥∥∥ xn

(r′)n+1

∥∥∥. So the sequence ( ‖x
n‖

(r′)n+1 )n≥0 is bounded. Choose a real number C bounding
it. Then we get

ρ(x) = lim
n→+∞

‖xn‖1/n ≤ lim
n→+∞

C1/n(r′)(n+1)/n = r′,

a contradiction. So r ≥ ρ(x).
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II.1.2 The Gelfand-Mazur theorem

It is a well-known fact that every finite-dimensional C-algebra that is a field is isomorphic to C.
This is the Banach algebra analogue.

Corollary II.1.2.1 (Gelfand-Mazur theorem). LetA be a Banach algebra in which every nonzero
element is invertible. Then A is isomorphic to C (i.e. A = Ce).

Proof. Let x ∈ A. By theorem II.1.1.3, σA(x) 6= ∅. Let λ ∈ σA(x), then λe−x is not invertible,
so x = λe by hypothesis.

Definition II.1.2.2. We say that a subset I of A is an ideal if it is an ideal in the usual algebraic
sense, i.e. if I is a C-subspace ofA that is stable by left and right multiplication by every element
of A. We say that I is a proper ideal of A if I is an ideal of A and I 6= A.

If I is an ideal of A, then it is easy to see that I is also an ideal.

Remember also the definition of the quotient norm.

Definition II.1.2.3. Let V be a normed vector space and W ⊂ V be a closed subspace. Then the
quotient norm on V/W is defined by

‖x+W‖ = inf
w∈W
‖v + w‖.

If V is a Banach space, then so is V/W (for the quotient norm).

Proposition II.1.2.4. (i) If I is a closed ideal of A, then A/I is a Banach algebra for the
quotient norm.

(ii) If I is a proper ideal of A, then so is its closure I .

Proof. (i) We already know that A/I is a Banach space and an algebra, so we just need to
check that its norm is submultiplicative. Let x, y ∈ A. Then

‖x+ I‖‖y + I‖ = inf
a,b∈I
‖x+ a‖‖y + b‖

≥ inf
a,b∈I
‖(x+ a)(y + b)‖

= inf
a,b∈I
‖xy + (ay + xb+ ab)‖

≥ inf
c∈I
‖xy + c‖ (because ay + xb+ ab ∈ I if a, b ∈ I)

= ‖xy + I‖.
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(ii) Consider the open ball B = {x ∈ A|‖e− x‖ < 1}. Then B ⊂ A× by proposition II.1.1.2,
so B ∩ I = ∅. As B is open, this implies that B ∩ I = ∅, so I 6= A.

Corollary II.1.2.5. Let A be a commutative unital Banach algebra. If m is a maximal ideal of
A, then m is closed, and A/m = C.

This is the Banach algebra analogue of the Nullstellensatz.

Proof. By proposition II.1.2.4, the ideal m is also proper; as m is maximal, we must have m = m,
i.e. m is closed. By the same proposition, A/m is a Banach algebra. Also, every nonzero element
of A/m is invertible because m is maximal, so A/m = C by the Gelfand-Mazur theorem.

II.2 Spectrum of a Banach algebra

In this section, A is still a Banach algebra, but we don’t assume that it has a unit.

Definition II.2.1. A multiplicative functional on A is a nonzero linear functional ϕ : A → C
such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A

The set of all multiplicative functionals on A is called the spectrum of A and denoted by
σ(A). We put the weak* topology on σ(A). In other words, if ϕ ∈ σ(A), then a basis of open
neighborhoods of ϕ is given by the sets {ψ ∈ σ(A)|∀i ∈ {1, . . . , n}, |ϕ(xi)− ψ(xi)| < ci}, for
n ∈ Z≥1, x1, . . . , xn ∈ A and c1, . . . , cn ∈ R>0.

Note that we do not assume that ϕ is continuous; in fact, this is automatically the case, as we
will see below.

Lemma II.2.2. If A is unital, then, for every ϕ ∈ σ(A), we have ϕ(e) = 1 and ϕ(A×) ⊂ C×.

Proof. Let x ∈ A be such that ϕ(x) 6= 0. Then ϕ(x) = ϕ(xe) = ϕ(x)ϕ(e), so ϕ(e) = 1. Also,
if y ∈ A×, then 1 = ϕ(e) = ϕ(y)ϕ(y−1), so ϕ(y) ∈ C×.

Definition II.2.3. Let A be a Banach algebra. Then we define a unital Banach al-
gebra Ae by taking the C-vector space A ⊕ Ce, defining the multiplication on Ae by
(x + λe)(y + µe) = (xy + λy + µx) + λµe (for x, y ∈ A and λ, µ ∈ C) and the norm by
‖x + λe‖ = ‖x‖ + |λ| (for x ∈ A and λ ∈ C). If A is a Banach ∗-algebra, we make Ae into a
Banach ∗-algebra by setting (x+ λe)∗ = x∗ + λe (for x ∈ A and λ ∈ C).

This construction is called adjoining an identity to A.
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Remark II.2.4. If A already has a unit, then Ae is not equal to A. In fact, if we denote by eA
the unit of A, then the map Ae → A × C sending x + λe to (x + λeA, λ) is an isomorphism of
C-algebras (and a homeomorphism).

Proposition II.2.5. For every ϕ ∈ σ(A), we get an element ϕ̃ ∈ σ(Ae) by setting
ϕ̃(x + λe) = ϕ(x) + λ. This defines an injective map σ(A) → σ(Ae), whose image is
σ(Ae)− {ϕ∞}, with ϕ∞ defined by ϕ∞(x+ λe) = λ.

Later, we will identify ϕ and ϕ̃ and simply write σ(Ae) = σ(A) ∪ {ϕ∞}.

Proof. The fact that ϕ̃ is a multiplicative functional follows directly from the definition of the
multiplication on Ae, and ϕ̃ obviously determines ϕ. So we just need to check the statement
about the image of σ(A)→ σ(Ae).

Let ψ ∈ σ(Ae) such that ψ 6= ϕ∞, and let ϕ = ψ|A. Then we have ψ(x + λe) = ϕ(x) + λ
for all x ∈ A and λ ∈ C; as ψ 6= ϕ∞, the linear functional ϕ : A → C cannot be zero, so ϕ is a
multiplicative functional on A, and we clearly have ψ = ϕ̃.

Corollary II.2.6. Let ϕ ∈ σ(A). Then ϕ is a bounded linear function on A, and we have
‖ϕ‖op ≤ 1, with equality if A is unital.

Proof. By proposition II.2.5, the multiplicative functional extends to a multiplicative functional
ϕ̃ on Ae. Let x ∈ A. For every λ ∈ C such that |λ| > ‖x‖, the element x− λe of Ae is invertible
by proposition II.1.1.2, so ϕ(x)− λ = ϕ̃(x− λe) 6= 0. This implies that |ϕ(x)| ≤ ‖x‖, i.e. that
ϕ is bounded and ‖ϕ‖op.

If A is unital, then ‖e‖ = 1 and ϕ(e) = 1, so ‖ϕ‖op = 1.

Theorem II.2.7. Let A be a Banach algebra.

(i) If A is unital, then the space σ(A) is compact Hausdorff.

(ii) In general, the space σ(A) is locally compact Hausdorff, and σ(Ae) is its Alexandroff
compactification (a.k.a. one-point compactification).

Remember that, if X is a Hausdorff locally compact topological space, then its Alexandroff
compactification is the space X ∪ {∞} (i.e. X with one point added), and that its open subsets
are the open subsets of X and the complements in X ∪ {∞} of compact subsets of X .

Proof. By corollary II.2.6, the spectrum σ(A) is a subset of the closed unit ball of Hom(A,C).
We know that this closed unit ball is compact Hausdorff for the weak* topology on Hom(A,C)
(this is Alaoglu’s theorem), and σ(A) ∪ {0} is closed in this topology, because it is defined by
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the closed conditions ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ A. So σ(A) ∪ {0} is compact (for the
weak* topology), and its open subset σ(A) is locally compact. If A is unital, then σ(A) is closed
in σ(A) ∪ {0} because it is cut out by the condition ϕ(e) = 1, so σ(A) is compact.

Now we show the last statement of (ii). If ϕ ∈ σ(A) (resp. σ(Ae)), x ∈ A and c > 0, we set

U(ϕ, x, c) = {ψ ∈ σ(A)||ϕ(x)− ψ(x)| < c}

(resp. Ũ(ϕ, x, c) = {ψ ∈ σ(Ae)||ϕ(x)− ψ(x)| < c}).

These form a basis for the topology of σ(A) (resp. σ(Ae)).

If ϕ ∈ σ(A), x ∈ A and c > 0, we have

Ũ(ϕ̃, x, c) =

{
U(ϕ, x, c) ∪ {ϕ∞} if |ϕ(x)| < c
U(ϕ, x, c) otherwise.

For the neighborhoods of ϕ∞, we get that, if x ∈ A and c > 0, then

Ũ(ϕ∞, x, c) = {ϕ∞} ∪ {ϕ ∈ σ(A)||ϕ(x)| < c}
= σ(Ae)− {ψ ∈ σ(Ae)||ψ(x)| ≥ c}.

So the topology of σ(A) is induced by the topology of σ(Ae). Also, as {ψ ∈ σ(Ae)||ψ(x)| ≥ c}
is closed in σ(Ae), hence compact, for all x ∈ A and c > 0, the open neighborhoods of ϕ∞ in
σ(Ae) are exactly the complements of the compact subsets of σ(A). This means that σ(Ae) is
the Alexandroff compactification of σ(A).

Definition II.2.8. Let A be a Banach algebra. For every x ∈ A, the map x̂ : σ(A)→ C defined
by x̂(ϕ) = ϕ(x) is called the Gelfand transform of x.

Note that each x̂ is continuous on σ(A) by definition of the topology of σ(A). The resulting
map Γ : A → C (σ(A)), x 7−→ x̂ is called the Gelfand representation of A (or sometimes also
the Gelfand transform).

Note that Γ is a morphism of C-algebras by definition of the algebra operations on C (σ(A)).

Theorem II.2.9. (i) The map Γ maps A into C0(σ(A)), and we have ‖x̂‖∞ ≤ ‖x‖ for every
x ∈ A.

(ii) The image of Γ separates the points of σ(A).

(iii) If A is unital, then ê is the constant function 1 on σ(A).

Proof. (i) If A is unital, then σ(A) is compact, so C0(σ(A)) = C (σ(A)). In general, as
σ(Ae) is the Alexandroff compactification of σ(A), we just need to check that x̂(ϕ∞) = 0
for every x ∈ A; but this follows immediately from the definitions.
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Let x ∈ A. Then
‖x̂‖∞ = sup

ϕ∈σ(A)

|x̂(ϕ)| = sup
ϕ∈σ(A)

|ϕ(x)| ≤ ‖x‖

by corollary II.2.6.

(ii) Let ϕ, ϕ′ ∈ σ(A) such that ϕ 6= ϕ′. Then there exists x ∈ A such that ϕ(x) 6= ϕ′(x), i.e.
x̂(ϕ) 6= x̂(ϕ′).

(iii) This follows immediately from lemma II.2.2.

For a general Banach algebra (even a unital one), the spectrum can be empty (see problem set
5). But this cannot occur for commutative Banach algebras.

Theorem II.2.10. Let A be a commutative unital Banach algebra. Then the map ϕ 7−→ Ker(ϕ)
induces a bijection from σ(A) to the set of maximal ideals of A.

If you have seen another definition of the spectrum (for example in algebraic geometry), this
theorem shows how it is related to our definition.

Proof. If ϕ ∈ σ(A), then A/Ker(ϕ) ' C (note that ϕ is surjective because it is nonzero), so
Ker(ϕ) is a maximal ideal of A. This shows that the map is well-defined.

If m is a maximal ideal, then it follows from the Gelfand-Mazur theorem that A/m ' C (see
corollary II.1.2.5), so the map ϕ : A→ A/m ' C is an element of σ(A) such that Ker(ϕ) = m.
This shows that the map is surjective.

Now we need to check injectivity. Let ϕ, ψ ∈ σ(A) such that m := Ker(ϕ) = Ker(ψ). Let
x ∈ A. As A/m ' C, we can write x = λe+ y, with λ ∈ C and y ∈ m. Then we have

ϕ(x) = λ = ψ(y).

So ϕ = ψ.

Corollary II.2.11. Let A be a commutative unital Banach algebra. Then, for every x ∈ A :

(i) x ∈ A× if and only if x̂ never vanishes;

(ii) x̂(σ(A)) = σA(x);

(iii) ‖x̂‖∞ = ρ(x).

Proof. (i) If x ∈ A×, then x̂ cannot vanish, because we have x̂x̂−1 = ê = 1. Conversely,
suppose that x is not invertible. Then there exists a maximal ideal containing x, so, by
theorem II.2.10, there exists ϕ ∈ σ(A) such that 0 = ϕ(x) = x̂(ϕ).
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(ii) By (i), we have

σA(x) = {λ ∈ C|x−λe 6∈ A×} = {λ ∈ C|x̂−λ vanishes at at least one point} = x̂(σ(A)).

(iii) This follows from (ii) and from theorem II.1.1.3.

II.3 C∗-algebras and the Gelfand-Naimark theorem

Definition II.3.1. A Banach ∗-algebra A is called a C∗-algebra if we have ‖x∗x‖ = ‖x‖2 for
every x ∈ A.

Remark II.3.2. Everybody calls this a C∗-algebra, except Bourbaki who says “stellar algebra”
(“algèbre stellaire”).

Lemma II.3.3. If A is a C∗-algebra, then ‖x‖ = ‖x∗‖ for every x ∈ A.

.

Proof. Let x ∈ A− {0}. Then

‖x‖2 = ‖x∗x‖ ≤ ‖x∗‖‖x‖,

so ‖x‖ ≤ ‖x∗‖. Applying this to x∗ and using that (x∗)∗ = x gives ‖x∗‖ ≤ ‖x‖.

Example II.3.4. Most of the examples of example I.4.2.2 are actually C∗-algebras.

(a) C is a C∗-algebra because, for every λ ∈ C, we have |λλ| = |λ|2.

(b) Let G be a locally compact group. Then L1(G) is not a C∗-algebra in general, though it
does satisfy the conclusion of lemma II.3.3. 2

(c) Let X be a locally compact Haudorff space. Then C0(X) is a C∗-algebra, because, for
every f ∈ C0(X), we have

‖f ∗f‖∞ = sup
x∈X
|f(x)f(x)| = sup

x∈X
|f(x)|2 = ‖f‖2

∞.

(d) Let V be a Hilbert space. Then End(V ) is a C∗-algebra. Indeed, let T ∈ End(V ). We
want to prove that ‖T ∗T‖op = ‖T‖2

op. First note that

‖T ∗‖op = sup
v,w∈V, ‖v‖=‖w‖=1

|〈T ∗(v), w〉| = sup
v,w∈V, ‖v‖=‖w‖=1

|〈v, T (w)〉| = ‖T‖op,

2There is a way to modify the norm on L1(G) to make the completion for the new norm a C∗-algebra, but we
won’t need this here.
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so ‖T ∗T‖op ≤ ‖T ∗‖op‖T‖op = ‖T‖2
op. On the other hand,

‖T ∗T‖op = sup
v∈V, ‖v‖=1

‖T ∗T (v)‖ ≥ sup
v∈V, ‖v‖=1

|〈T ∗T (v), v〉| = sup
v∈V, ‖v‖=1

|〈T (v), T (v)〉| = ‖T‖2
op.

Proposition II.3.5. Let A be a C∗-algebra. Then the Gelfand representation Γ : A→ C0(σ(A))
is a ∗-homomorphism.

Remark II.3.6. The proposition says that everybody multiplicative functional on A is a ∗-
homomorphism. A Banach ∗-algebra satisfying this condition is called symmetric. Every C∗-
algebra is symmetric, but the converse is not true. (For example, if G is a locally compact
commutative group, then L1(G) is symmetric, see problem set 5.)

Proof. By adjoining an identity to A, we may reduce to the case where A is unital. (See problem
set 5 for the correct choice of norm on Ae. Note that changing the norm on Ae does not affect
σ(Ae), because the definition of the spectrum does not involve the norm.)

Let x ∈ A and ϕ ∈ σ(A). We want to prove that ϕ(x∗) = x̂∗(ϕ) = x̂(ϕ) = ϕ(x). Write
ϕ(x) = a+ ib and ϕ(x∗) = c+ id, with a, b, c, d ∈ R.

Suppose that b+ d 6= 0. Let

y =
1

b+ d
(x+ x∗ − (a+ c)e) ∈ A.

Note that y = y∗, and that

ϕ(y) =
1

b+ d
(a+ ib+ c+ id− (a+ c)) = i,

so, for every t ∈ R, we have ϕ(y + ite) = (1 + t)i, hence

|1 + t| = |ϕ(y + ite)| ≤ ‖y + ite‖

(by corollary II.2.6). Using the defining property of C∗-algebras and the fact that y = y∗ gives,
for every t ∈ R,

(1 + t)2 ≤ ‖y+ ite‖2 = ‖(y+ ite)(y+ ite)∗‖ = ‖(y+ ite)(y− ite)‖ = ‖y2 + t2e‖ ≤ ‖y2‖+ t2,

i.e. 1 + 2t ≤ ‖y‖2. But this implies that ‖y‖ is infinite, which is not possible. So b + d = 0, i.e.
d = −b.

Applying the same reasoning to ix and (ix)∗ = −ix∗ (and nothing that ϕ(ix) = −b + ia and
ϕ((ix∗)) = d− ic) gives a− c = 0, i.e. a = c. This finishes the proof that ϕ(x∗) = ϕ(x).

Proposition II.3.7. Let A be a commutative unital C∗-algebra. Then, for every x ∈ A, we have
‖x‖ = ρ(x).
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Proof. If x ∈ A is such that x = x∗, then ‖x‖2 = ‖x∗x‖ = ‖x2‖, so ‖x2n‖ = ‖x‖2n for every
n ∈ N.

Now let x be any element of A. Then (xx∗)∗ = xx∗, so the first part applies to xx∗. Also, for
every n ∈ N, (xx∗)n = xn(x∗)n (because A is commutative). So, if n ≥ 0,

‖x‖2n+1

= ‖xx∗‖2n = ‖(xx∗)2n‖ = ‖x2n(x∗)2n‖ = ‖x2n‖2.

This implies that
ρ(x) = lim

x→+∞
‖x2n‖2−n = ‖x‖.

Definition II.3.8. If A is a Banach ∗-algebra, an element x of A is called normal if xx∗ = x∗x.

Corollary II.3.9. Let A be a unital C∗-algebra, and let x ∈ A be a normal element of A. Then
ρ(x) = ‖x‖.

In particular, if V is a Hilbert space and T ∈ End(V ) is normal, then ‖T‖op = ρ(T ).

Proof. Indeed, as x commutes with x∗, the closure of the smallest unital C-algebra A′ of A
containing x and x∗ is a commutative C∗-algebra, and ρ(x) and ‖x‖ don’t change when we see
x as an element of A′.

Theorem II.3.10 (Gelfand-Naimark theorem). Let A be a commutative unital C∗-algebra. Then
the Gelfand representation Γ : A→ C (σ(A)) is an isometric ∗-isomorphism.

Proof. We know that Γ is a ∗-homomorphism by proposition II.3.5, and that it is an isometry by
corollary II.2.11(iii) and proposition II.3.7. In particular, Γ is injective. So it just remains to show
that it is surjective. As Γ is an isometry andA is complete, the image Γ(A) is closed in C (σ(A));
but it separates points by theorem II.2.9(ii) and contains the constant functions because Γ(e) = 1,
so it is equal to C (σ(A)) by the Stone-Weierstrass theorem.

It is easy to see that the Gelfand-Naimark theorem implies the following result (but we won’t
need it).

Corollary II.3.11. Let A be a commutative C∗-algebra. Then the Gelfand representation
Γ : A→ C0(σ(A)) is an isometric ∗-isomorphism.
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II.4 The spectral theorem

Theorem II.4.1. Let V a Hilbert space, and let T ∈ End(V ) be normal. We denote by AT the
closure of the unital subalgebra of End(V ) generated by T and T ∗; it is commutative because T
and T ∗ commute.

Then there exists an isometric ∗-isomorphism Φ : C (σ(T ))
∼→ AT such that, if ι is the injection

of σ(T ) into C, we have Φ(ι) = T .

Note that we just write σ(T ) for σEnd(T )(T ) (this is the usual spectrum of T ).

This theorem doesn’t look a lot like the spectral theorem of finite-dimensional linear algebra.
See problem set 5 for a way to pass between the two.

Proof. Let A = AT . First we will prove the result with σA(T ) instead of σ(T ), then we’ll show
that σ(T ) = σA(T ). Note that we automatically have σ(T ) ⊂ σA(T ) (because, if λidV − T is
not invertible in End(T ), then it certainly won’t be invertible in a subalgebra).

Consider the Gelfand transform of T (seen as an element of A), this is a continuous map
T̂ : σ(A) → C. Let’s show that T̂ is injective. Consider ϕ1, ϕ2 ∈ σ(A), i.e. two multiplicative
functionals on A, such that T̂ (ϕ1) = T̂ (ϕ2), i.e. ϕ1(T ) = ϕ2(T ). We have seen that the Gelfand
representation is a ∗-homomorphism, so we have

T̂ ∗(ϕ1) = T̂ (ϕ1) = T̂ (ϕ2) = T̂ ∗(ϕ2),

i.e. ϕ1(T ∗) = ϕ2(T ∗). The multiplicative functionals ϕ1 and ϕ2 are equal on e, T and T ∗, and
they are continuous, so they are equal on all of A, which is what we wanted.

Now remember that σ(A) is compact Hausdorff, because A is unital. So T̂ induces a homeo-
morphism from σ(A) to its image in C, which is σA(T ) by corollary II.2.11. Hence composing
with T̂ gives an isometric ∗-isomorphism Ψ : C (σA(T ))

∼→ C (σ(A)).

Remember that we also have the Gelfand representation of A, which is an isometric ∗-
isomorphism Γ : A

∼→ C (σ(A)). So we get an isometric ∗-isomorphism Φ : C (σA(T ))
∼→ A by

setting Φ = Γ−1 ◦Ψ.

Let’s show that Φ(ι) = T . As Γ : A → C (σ(A)) is an isomorphism, it suffices to check that
T̂ = Φ̂(ι), i.e. that T̂ = Ψ(ι). Let ϕ ∈ σ(A). We have Ψ(ι)(ϕ) = ι(T̂ (ϕ)) = T̂ (ϕ), as desired.

Finally, we show that the inclusion σ(T ) ⊂ σA(T ) is an equality. Let λ ∈ σA(T ), and suppose
that λ 6∈ σ(T ). Let ε > 0, and choose f ∈ C (σA(T )) such that ‖f‖∞ = 1, f(λ) = 1 and
f(µ) = 0 if |λ − µ| ≥ ε > 0. Let U = Φ(f) ∈ A, then ‖U‖op = ‖f‖∞ = 1. Note that
Φ(1) = idV (where 1 is the constant function with value 1), because Φ is an isomorphism of
algebras. So T − λidV = Φ(ι − λ), and (T − λidV ) ◦ U = Φ((ι − λ)f). As Φ is an isometry,
this implies that

‖(T − λidV ) ◦ U‖op = ‖(ι− λ)f‖∞ ≤ ε
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(because f is bounded by 1, and f(µ) = 0 if |λ− µ| ≥ ε). On the other hand, as λ 6∈ σ(T ), the
operator T − λidV is invertible in End(V ), so we get

1 = ‖f‖∞ = ‖U‖op = ‖(T − λidV )−1(T − λidV )U‖op ≤ ε‖(T − λidV )−1‖op.

This is true for every ε > 0, so it implies that 1 = 0, which is a contradiction.

Corollary II.4.2. Let V be a Hilbert space and T ∈ End(V ) be normal. Then the following
conditions are equivalent :

(i) σ(T ) is a singleton;

(ii) T ∈ CidV ;

(iii) AT = CidV .

Proof.

(i)⇒(ii) If σ(T ) = {λ}, then ι is λ times the unit of C (σ(T )), so T = Φ(ι) = λidV .

(ii)⇒(iii) If T ∈ CidV , then CidV is a closed unital subalgebra of A containing T and T ∗, so it is
equal to AT .

(ii)⇒(iii) Suppose that AT = CidV . Let λ, µ ∈ σ(T ). If λ 6= µ, then we can find f1, f2 ∈ C (σ(T ))
such that f1(λ) = 1, f2(µ) = 1 and f1f2 = 0. But then Φ(f1)Φ(f2) = 0 and
Φ(f1),Φ(f2) 6= 0, which contradicts the fact that C is a domain.

Definition II.4.3. If A is a C-algebra and E ⊂ A is a subset, we set
ZA(E) = {x ∈ A|∀y ∈ E, xy = yx}. This is called the centralizer of E in A.

It is easy to see that the centralizer is always a subalgebra of A.

Corollary II.4.4. Let V be a Hilbert space, and let E be a subset of End(V ) such that E∗ = E.
Suppose that the only closed subspaces of V stable by all the elements of E are {0} and V . Then
ZEnd(V )(E) = CidV .

Proof. Let A = ZEnd(V )(E). It is a closed subalgebra of End(V ). We show that A is stable by ∗
: If T ∈ A, then, for every U ∈ E, we have U∗ ∈ E, hence

T ∗ ◦ U = (U∗ ◦ T )∗ = (T ◦ U∗)∗ = U ◦ T ∗,

so T ∗ ∈ A. In particular, the subalgebra A is generated by its normal elements; indeed, for every
T ∈ A, we have T = 1

2
((T + T ∗) + (T − T ∗)), and both T + T ∗ and T − T ∗ are normal.
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Remember that we want to show that each element of A is in CidV ; by what we just showed, it
suffices to prove it for the normal elements of A. So let T ∈ A be normal. By corollary II.4.2,
it suffices to show that the spectrum σ(T ) of T is a singleton. By the spectral theorem (theorem
II.4.1), we have an isometric ∗-isomorphism Φ : C (σ(T ))

∼→ AT , where AT is the closure
of the unital subalgebra of End(V ) generated by T and T ∗, such that Φ sends the embedding
ι : σ(T ) ↪→ C to T . Note that AT ⊂ A. Now suppose that σ(T ) is not a singleton. Then we can
find two nonzero functions f1, f2 ∈ C (σ(T )) such that f1f2 = 0, and Φ(f1),Φ(f2) are nonzero
elements of EndG(V ) such that Φ(f1)Φ(f2) = 0. Let W = Im(Φ(f2)); then W 6= {0} because
Φ(f2) is nonzero. Also, as Φ(f2) commutes with every element of E, the subspace W is stable
by all the elements of E, so W = V by hypothesis. But we also have Φ(f1)(W ) = 0 because
Φ(f1)Φ(f2) = 0, so Φ(f1) = 0, which contradicts the choice of f1, f2. So σ(T ) is a singleton,
and we are done.
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The goal of this chapter is to prove the Gelfand-Raikov theorem, which says that irreducible
unitary representations of locally groups separate point (i.e., if G is alocally compact group and
x ∈ G− {1}, then there exists an irreducible unitary representation of G such that π(x) 6= 1).

In this chapter, G is a locally compact group and µ (or just “dx”) is a left Haar measure on G.

III.1 L∞(G)

You can safely ignore this section and assume that all groups are σ-compact.

We will be using L∞(G) more seriously in this chapter, and we want it to be the continuous
dual of L1(G), which is not true if G is not σ-compact. So we change the definition of L∞(G)
to make it true. See section 2.3 of [8].

More generally, let X be a locally compact Hausdorff topological space and let µ be a regular
Borel measure. We say that E ⊂ X is locally Borel if, for every Borel subset F of X such that
µ(F ) < +∞, we have that E ∩ F is a Borel subset of X . If E is locally Borel, we say that E is
locally null if, for every Borel subset F of X such that µ(F ) < +∞, we have µ(E ∩ F ) = 0.
We say that an assertion about points of X is true locally almost everywhere if it is true outside
of a locally null subset. We saw that a function f : X → C is locally measurable if, for every
Borel subset A of C, the set f−1(A) is locally Borel. Now we set L∞(X) to be the space of
locally measurable functions X → C that are bounded locally almost everywhere, modulo the
equivalence relation : f ∼ g if f − g = 0 locally almost everywhere. The norm on L∞(X) is
given by

‖f‖∞ = inf{c ∈ R≥0||f(x)| locally almost everywhere}.

III.2 Functions of positive type

Definition III.2.1. A function of positive type on G is a function ϕ ∈ L∞(G) such that, for every
f ∈ L1(G), we ∫

G

(f ∗ ∗ f)(x)ϕ(x)dx ≥ 0.
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Note that f ∗ ∗ f ∈ L1(G) if f ∈ L1(G), so the integral converges.

Remark III.2.2. For every ϕ ∈ L∞(G) and every f, g ∈ L1(G), we have∫
G

(f ∗ ∗ g)(x)ϕ(x)dx =

∫
G×G

f ∗(y)g(y−1x)ϕ(x)dxdy

=

∫
G×G

∆(y)−1f(y−1)g(y−1x)ϕ(x)dxdy

=

∫
G×G

f(y)g(yx)ϕ(x)dxdy

=

∫
G×G

f(y)g(x)ϕ(y−1x)dxdy.

Example III.2.3. (1) 0 is a function of positive type.

(2) If ϕ : G → S1 ⊂ C is a 1-dimensional representation (i.e. ϕ(xy) = ϕ(x)ϕ(y) for all
x, y ∈ G), then it is a function of positive type. Indeed, for every f ∈ L1(G), we have by
remark III.2.2 ∫

G

(f ∗ ∗ f)(x)ϕ(x)dx =

∫
G×G

f(y)f(yx)ϕ(y−1x)dxdy

=

∫
G×G

f(y)f(x)ϕ(y)ϕ(x)dxdy

=

∣∣∣∣∫
G

ϕ(x)f(x)dx

∣∣∣∣2 ≥ 0.

We will generalize the second example in point (ii) of the following proposition.

Proposition III.2.4. (i) If ϕ : G→ C is a function of positive type, then so is ϕ.

(ii) If (π, V ) is a unitary representation of G and v ∈ V , then ϕ : G→ C, x 7−→ 〈π(x)(v), v〉
is a continuous function of positive type.

(iii) Let f ∈ L2(G), and define f̃ : G→ C by f̃(x) = f(x−1). Then f ∗ f̃ makes sense, it is in
L∞(G), and it is a function of positive type.

Proof. (i) Let f ∈ L1(G). Then, by remark III.2.2,∫
G

(f ∗ ∗ f)ϕdµ =

∫
G×G

f(y)f(yx)ϕ(x)dxdy

=

∫
G×G

f(y)f(yx)ϕ(x)dxdy

=

∫
(f
∗ ∗ f)ϕdµ ≥ 0.
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(ii) The function ϕ is continuous because G → V , x 7−→ π(x)(v) is continuous. Let’s show
that it is of positive type. Note that, for all x, y ∈ G, we have

ϕ(y−1x) = 〈π(y−1x)(v), v〉 = 〈π(x)(v), π(y)(v)〉.

Let f ∈ L1(G). Then, by remark III.2.2,∫
(f ∗ ∗ f)ϕdµ =

∫
G×G

f(x)f(y)ϕ(y−1x)dxdy

=

∫
G×G
〈f(x)π(x)(v), f(y)π(y)(v)〉dxdy

= 〈π(f)(v), π(f)(v)〉 ≥ 0.

(iii) Let x ∈ G. Then the integral defining f ∗ f̃(x) is∫
G

f(y)f(x−1y)dy.

This integral converges, because both f and Lxf : y 7−→ f(x−1y) are in L2(G) (by left
invariance of µ). Also, by the Cauchy-Schwarz inequality, we have

|f ∗ f̃(x)| ≤ ‖f‖2‖Lxf‖2 = ‖f‖2
2.

So f ∗ f̃ ∈ L∞(G).

Let’s show that f ∗ f̃ is of positive type. Let πL be the left regular representation of G, i.e.
the unitary representation of G on L2(G) given by πL(x) = Lx. Then, for every x ∈ G,
we have

〈πL(x)(f), f〉 =

∫
G

f(x−1y)f(y)dy =

∫
G

f̃(y−1x)f(y)dy = f ∗ f̃(x).

So the result follows from (i) and (ii).

The main result of this function is that the example in (ii) above is the only one.

Theorem III.2.5. Let ϕ : G → C be a function of positive type. Then there exists a cyclic
unitary representation (π, V ) of G and a cyclic vector v for V such that ϕ(x) = 〈π(x)(v), v〉
locally almost everywhere.

Moreover, the representation π and the vector v are uniquely determined by ϕ, in the following
sense : if (π′, V ′) is another cyclic unitary representation of G and if v′ ∈ V ′ is a cyclic vector
such that ϕ(x) = 〈π′(x)(v′), v′〉 locally almost everywhere, then there exists a G-equivariant
isometry T : V → V ′ such that T (v) = v′.
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In fact, we will give a somewhat explicit construction of (π, V ) during the proof.

Before proving the theorem, let’s see some easy corollaries.

Corollary III.2.6. Let ϕ : G → C be a function of positive type. Then ϕ agrees with a con-
tinuous function locally almost everywhere, ‖ϕ‖∞ = ϕ(1) and, for every x ∈ G, we have
ϕ(x−1) = ϕ(x).

Proof. The first statement follows from (ii) of proposition III.2.4. To prove the other statements,
choose a cyclic unitary representation (π, V ) of G and v ∈ V such that ϕ(x) = 〈π(x)(v), v〉.
Then, for every x ∈ G,

|ϕ(x)| ≤ ‖π(x)(v)‖‖v‖ = ‖v‖2 = ϕ(1)

and
ϕ(x−1) = 〈π(x−1)(v), v〉 = 〈π(x)∗(v), v〉 = 〈v, π(x)(v)〉 = ϕ(x).

Now we come back to the proof of the theorem. Let ϕ : G→ C be a function of positive type.
Define a Hermitian form 〈., .〉ϕ on L1(G) by :

〈f, g〉ϕ =

∫
(g∗ ∗ f)ϕ =

∫
G×G

f(x)g(y)ϕ(y−1x)dxdy

(see remark III.2.2). In particular, we clearly have, for all f, g ∈ L1(G),

|〈f, g〉ϕ| ≤ ‖f‖1‖g‖1‖ϕ‖∞.

As ϕ is of positive type, we have 〈f, f〉ϕ ≥ 0, that is, the Hermitian form we just defined is
positive semi-definite; in particular, the Cauchy-Schwarz inequality applies to it, and it gives, for
all f, g ∈ L1(G),

|〈f, g〉ϕ|2 ≤ 〈f, f〉ϕ〈g, g〉ϕ.

Let N be the kernel (or radical) of the form 〈., .〉ϕ, that is, the orthogonal of L1(G), i.e. the
space of f ∈ L1(G) such that 〈f, g〉ϕ = 0 for every g ∈ L1(G). By the Cauchy-Schwarz inequal-
ity, we have f ∈ N if and only if 〈f, f〉ϕ = 0. Hence the form 〈., .〉ϕ defines a positive definite
Hermitian form on L1(G)/N , that we will still denote by 〈., .〉ϕ; we denote the associated norm
by ‖.‖ϕ. For every f ∈ L1(G), we have

‖f + N ‖2
ϕ ≤ ‖ϕ‖∞‖f‖2

1.

Let Vϕ be the completion of L1(G)/N for the norm ‖.‖ϕ; this is a Hilbert space.

We want to construct a unitary action ofG on Vϕ. We already have a continuous representation
of G on L1(G), using the operators Lx. This will magically give our unitary representation. Note
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first that, for every L1(G), the map G → L1(G), x 7−→ Lxf is continuous for the semi-norm
‖.‖ϕ because of the inequality ‖.‖ϕ ≤ ‖ϕ‖1/2

∞ ‖.‖1 that we just proved.

Let’s prove that 〈., .〉ϕ is invariant by the action of G. Let x ∈ G and f, g ∈ L1(G). Then

〈Lxf, Lxg〉ϕ =

∫
G×G

f(x−1y)g(x−1z)ϕ(z−1y)dydz

=

∫
G×G

f(y)g(z)ϕ((xz)−1(xy))dydz

=

∫
G×G

f(y)g(z)ϕ(z−1y)dydz = 〈f, g〉ϕ.

In particular, the radical N of the form 〈., .〉ϕ is a G-invariant subspace of L1(G), so we get
an action of G on L1(G)/N , which preserves the Hermitian inner product and is a continuous
representation by proposition I.3.1.10. We extend this action to Vϕ by continuity. This gives a
unitary representation of G on Vϕ, which we will denote by πϕ.

Let f, g ∈ L1(G). Then, by example I.4.2.7, we have

πϕ(f)(g + N ) = f ∗ g + N .

The following lemma will imply the first statement of theorem III.2.5.

Lemma III.2.7. There exists a cyclic vector v = vϕ for Vϕ such that :

(i) for f ∈ L1(G), we have πϕ(f)(v) = f + N ;

(ii) we have ϕ(x) = 〈πϕ(x)(v), v〉ϕ locally almost everywhere on G.

Proof. By the calculation of πϕ(f)(g + N ) for f, g ∈ L1(G) (see above), we see that v would
be the image in L1(G)/N of a unit element for ∗ (i.e. a Dirac measure at 1 ∈ G), if such a unit
element existed. In general, it doesn’t, but we can approximate it, and hope that we will get a
Cauchy sequence in L1(G)/N .

So let (ψU)U∈U be an approximate identity (see definition I.4.1.7). Note that (ψ∗U)U∈U is also
an approximate identity, so, by proposition I.4.1.9, we have ψ∗U ∗ f −−−−→

U→{1}
f in L1(G) for every

f ∈ L1(G). So, for every f ∈ L1(G), we have

〈f, ψU〉ϕ =

∫
(ψ∗U ∗ f)ϕdµ −−−−→

U→{1}

∫
fϕdµ.

Hence f 7−→
∫
G
fϕdµ is a bounded (for ‖.‖1 and ‖.‖ϕ) linear functional on L1(G) whose kernel

contains N . We can descend this bounded linear functional to L1(G)/N and extend it to Vϕ by
continuity, and we get a bounded linear functional on Vϕ, which must be of the form 〈., v〉ϕ for
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III The Gelfand-Raikov theorem

some v ∈ Vϕ (uniquely determined), because Vϕ is a Hilbert space. By definition of v, we have,
for every f ∈ L1(G),

〈f + N , v〉ϕ =

∫
G

fϕdµ,

and this determines v because the image of L1(G) is dense in Vϕ.

Now we prove properties (i) and (ii). Let f, g ∈ L1(G). Then

〈g, f〉ϕ =

∫
G

(f ∗ ∗ g)ϕdµ

=

∫
G×G

g(x)f(y)ϕ(y−1x)dxdy

=

∫
G×G

g(yx)f(y)ϕ(x)dxdy

=

∫
G×G

f(y)Ly−1g(x)ϕ(x)dxdy

=

∫
G

f(y)〈πϕ(y−1)(g + N ), v〉ϕdx

=

∫
G

〈g + N , f(y)πϕ(y)(v)〉ϕdx

= 〈g + N , πϕ(f)(v)〉ϕ.

As this is true for every g ∈ L1(G) and as the image of L1(G) is dense in Vϕ, we get
πϕ(f)(v) = f + N . In particular, the span of {πϕ(f)(v), f ∈ L1(G)} is dense in Vϕ, so v
is a cyclic vector (by (iii) of theorem I.4.2.6).

Also, for f ∈ L1(G), by what we have just seen :∫
G

f(x)〈πϕ(x)(v), v〉ϕdx = 〈
∫
G

f(x)πϕ(x)(v)dx, v〉ϕ

= 〈πϕ(f)(v), v〉ϕ
= 〈f + N , v〉ϕ

=

∫
G

f(x)ϕ(x)dx.

As this is true for every f ∈ L1(G), it implies that ϕ(x) = 〈πϕ(x)(v), v〉ϕ locally almost every-
where.

To finish the proof of theorem III.2.5, we just need to establish the following lemma.

Lemma III.2.8. Let (π, V ) and (π, V ′) be two cyclic unitary representations of G and v ∈ V ,
v′ ∈ V ′ be two cyclic vectors such that, for every x ∈ G, we have

〈π(x)(v), v〉 = 〈π′(x)(v′), v′〉.
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Then there exists a G-equivariant isometry T : V → V ′ such that T (v) = v′.

Proof. Of course, we want to define T : V → V ′ by the formula T (π(x)(v)) = π′(x)(v′), for
every x ∈ G. We need to make sense of this. Let W = Span{π(x)(v), x ∈ G}. By the
assumption that v is cyclic, the subspace W is dense in V . Let’s check that the formula above
defines an isometry T : W → V ′. Let x1, . . . , xn ∈ G amd λ1, . . . , λn ∈ C. Then∥∥∥∥∥

n∑
i=1

λiπ(xi)(v)

∥∥∥∥∥
2

=
n∑
i=1

n∑
j=1

λiλj〈π(x−1
j xi)(v), v〉

=
n∑
i=1

n∑
j=1

λiλj〈π′(x−1
j xi)(v

′), v′〉

=

∥∥∥∥∥
n∑
i=1

λiπ
′(xi)(v

′)

∥∥∥∥∥
2

.

In particular, if
∑n

i=1 λiπ(xi)(v) = 0, then we also have
∑n

i=1 λiπ
′(xi)(v

′) = 0. So we can
define T : W → V ′ by T (

∑n
i=1 λiπ(xi)(v)) =

∑n
i=1 λiπ

′(xi)(v
′), and then the calculation

above shows that T is an isometry. Hence T is continuous, and so we can extend to a continuous
linear operator T : V → V ′, which is still an isometry, hence injective and with closed image.
Also, if x ∈ G and w ∈ W , then we have T (π(x)(w)) = π′(x)(T (w)) by definition of T . As
T is continuous and W is dense in V , this stays true for every w ∈ W ; in other words, T is
G-equivariant. Finally, T (v) = v′ by definition of T , so the image of T is dense in V ′, hence
equal to V ′.

III.3 Functions of positive type and irreducible
representations

We have seen that cyclic unitary representations of G (together with a fixed cyclic vector) are
parametrized by functions of positive type. The next natural question is “which functions of
positive type correspond to the irreducible representations ?”

Definition III.3.1. We denote by P(G) or P the set of continuous functions of positive type
on G. This is a convex cone in Cb(G). 1

Let
P1 = {ϕ ∈P|‖ϕ‖∞ = 1} = {ϕ ∈P|ϕ(1) = 1}

and
P0 = {ϕ ∈P|‖ϕ‖∞ ≤ 1} = {ϕ ∈P|ϕ(1) ≤ 1}.

1“Cone” means that it is stable by multiplication by elements of R≥0.
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III The Gelfand-Raikov theorem

(Remember that, by corollary III.2.6, we have ‖ϕ‖∞ = ϕ(1) for every ϕ ∈P .)

Then P1 and P0 are convex subsets of Cb(G). We denote by E (P1) and E (P0) their sets of
extremal points.

Theorem III.3.2. Let ϕ ∈ P1. Then the unitary representation (Vϕ, πϕ) constructed in the
previous section is irreducible if and only if ϕ ∈ E (P1).

Remark III.3.3. If ϕ ∈ P and c ∈ R>0, then we have 〈., .〉cϕ = c〈., .〉ϕ, so Vcϕ = Vϕ, πcϕ = πϕ
and vcϕ = vϕ. (But the identity of Vϕ is not an isometry, because we are using two different
inner products, i.e. 〈., .〉ϕ and 〈., .〉cϕ). As each nonzero ϕ ∈P is a of the form cϕ′ for a unique
ϕ′ ∈ P1 (we have c = ϕ(1)), the theorem does answer the question at the beginning of the
section.

Remark III.3.4. If G is commutative, the theorem says that Ĝ = E (P1).

Proof. In this proof, we will denote the inner form and norm of V = Vϕ by 〈., .〉 and ‖.‖, and we
will write π = πϕ. (Unless this introduces confusion.)

We first suppose that π is not irreducible. Let 0 6= W ( V be a closed G-invariant subspace.
As π is unitary, W⊥ is also G-invariant, and we have V = W ⊕W⊥. Let v ∈ V be the cyclic
vector of lemma III.2.7. As v is cyclic, it cannot be contained in W or in W⊥ (otherwise we
would have W = V or W⊥ = V ). So we can write v = v1 + v2, with v1 ∈ W , v2 ∈ W⊥,
and v1, v2 6= 0. Define ϕ1, ϕ2 : G → C by ϕi(x) = 〈π(x)(vi), vi〉. Then ϕ1, ϕ2 ∈ P by (ii)
of proposition III.2.4, and we have ϕ = ϕ1 + ϕ2. Let c1 = ‖v1‖2 and c2 = ‖v2‖2; we have
c1 + c2 = ‖v‖2 = ϕ(1) = 1 by the Pythagorean theorem, so c1, c2 ∈ (0, 1). Let ψi = 1

ci
ϕi, for

i = 1, 2. Then ϕ = c1ψ1 + c2ψ2, and ψ1, ψ2 ∈ P1 (because ψ1(1) = ψ2(1) = 1). To conclude
that ϕ is not an extremal point of P1, we still need to prove that ψ1 6= ψ2, i.e. that ϕ2 is not of
the form cϕ1 for c ∈ R>0.

Let c ∈ R>0. Choose ε > 0 such that ε < c‖v1‖2
‖v2‖+c‖v1‖ , i.e. such that ε‖v2‖ < c‖v1‖2 − εc‖v1‖.

As v is a cyclic vector for V , we can find x1, . . . , xn ∈ G and a1, . . . , an ∈ C such that

∥∥∥∥∥
n∑
i=1

aiπ(xi)(v)− v1

∥∥∥∥∥ < ε.

As v = v1 + v2 with v1 ∈ W and v2 ∈ W⊥, and as both W and W⊥ are stable by the action of
G, we have, for x ∈ G,

〈π(x)(v), v1〉 = 〈π(x)(v1) + π(x)(v2), v1〉 = 〈π(x)(v1), v1〉.
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Hence ∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v1), v1〉 − 〈v1, v1〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v), v1〉 − 〈v1, v1〉

∣∣∣∣∣
=

∣∣∣∣∣〈
n∑
i=1

aiπ(xi)(v)− v1, v1〉〉

∣∣∣∣∣
< ε‖v1‖,

which implies that

‖v1‖2 − ε‖v1‖ <

∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v1), v1〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

aiϕ1(xi)

∣∣∣∣∣ .
On the other hand (using the fact that 〈π(x)(v), v2〉 = 〈π(x)(v2), v2〉 for every x ∈ G), we have∣∣∣∣∣

n∑
i=1

ai〈π(xi)(v2), v2〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v), v2〉 − 〈v1, v2〉

∣∣∣∣∣
=

∣∣∣∣∣〈
n∑
i=1

aiπ(xi)(v)− v1, v2〉

∣∣∣∣∣
≤

∥∥∥∥∥
n∑
i=1

aiπ(xi)(v)− v1

∥∥∥∥∥ ‖v2‖

< ε‖v2‖
< c‖v1‖2 − εc‖v1‖

< c

∣∣∣∣∣
n∑
i=1

aiϕ1(xi)

∣∣∣∣∣
i.e. ∣∣∣∣∣

n∑
i=1

aiϕ2(xi)

∣∣∣∣∣ < c

∣∣∣∣∣
n∑
i=1

aiϕ1(xi)

∣∣∣∣∣ .
So we cannot have ϕ2 = cϕ1. As c was arbitrary, this finishes the proof that ψ1 6= ψ2, hence that
ϕ is not an extremal point of P1.

Conversely, we want to show that ϕ is extremal in P1 if πϕ is irreducible. Suppose that
ϕ = ϕ1 + ϕ2, with ϕ1, ϕ2 ∈P . For every f ∈ L1(G), we have

〈f, f〉ϕ1 = 〈f, f〉ϕ − 〈f, f〉ϕ2 ≤ 〈f, f〉ϕ.

In particular, the kernel of 〈., 〉ϕ is contained in the kernel of 〈., .〉ϕ1 , so the identity of L1(G)
extends to a continuous surjective map T : Vϕ → Vϕ1 , and that map is G-equivariant because the
action of G on both Vϕ and Vϕ1 comes from its action on L1(G) by left translations. Also, as vϕ
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III The Gelfand-Raikov theorem

(resp. vϕ1) is just the limit in Vϕ (resp. Vϕ1) of the image of an approximate identity, the operator
T sends vϕ to vϕ1 . As KerT is a G-invariant subspace of Vϕ, so is (KerT )⊥, so T defines a
G-equivariant isomorphism (KerT )⊥

∼→ Vϕ1 , so Vϕ1 is isomorphic to a subrepresentation of Vϕ.

Now suppose that πϕ is irreducible. Then T ∗T ∈ End(Vϕ) is G-equivariant, so it is equal to
cidVϕ for some c ∈ C by Schur’s lemma (theorem I.3.4.1). As T (vϕ) = vϕ1 , for every x ∈ G, we
have

ϕ1(x) = 〈πϕ1(x)(vϕ1), vϕ1〉ϕ1

= 〈πϕ1(x)(T (vϕ)), T (vϕ)〉ϕ1

= 〈T (πϕ(x)(vϕ)), T (vϕ)〉ϕ1

= 〈T ∗T (πϕ(x)(vϕ)), vϕ〉ϕ
= cϕ(x).

As ϕ1 and ϕ are of positive type, we must have c ∈ R≥0. We see similarly that ϕ2 must be in
R≥0ϕ. So ϕ is extremal.

III.4 The convex set P1

We have seen in the previous two sections that irreducible unitary representations of G are
parametrized by extremal points of P1. Remember that we are trying to show that there enough
irreducible unitary representations to separate points on G. So we want to show that P1 has a
lot of extremal points. A natural ideal is to use the Krein-Milman theorem (theorem B.5.2, that
says that a compact convex set is the closed convex hull of its extremal points), but P1 is not
compact in general. However, the set P0 is convex and weak* compact and closely related to
P1; this will be enough to extend the conclusion of the Krein-Milman theorem to P1.

Remember that P is a subset of L∞(G). We identify L∞(G) with the continu-
ous dual of L1(G) and consider the weak* topology on it and on its subsets P , P0

and P1. For f ∈ L∞(G), a basis of neighborhoods of f is given by the sets
Ug1,...,gn,c = {f ′ ∈ L∞(G)||

∫
G

(f − f ′)gidµ| < c, 1 ≤ i ≤ n}, for n ∈ Z≥1, g1, . . . , gn ∈ L1(G)
and c > 0. The second main result of this section is that the weak* topology coincides with the
topology of compact convergence on P1.

Theorem III.4.1. The convex hull of E (P1) is dense in P1 for the weak* topology.

Lemma III.4.2. We have E (P0) = E (P1) ∪ {0}.

Proof. First we show that every point of E (P1) ∪ {0} is extremal in P0. Let ϕ1, ϕ2 ∈ P0

and c1, c2 ∈ (0, 1) such that c1 + c2 = 1. If c1ϕ1 + c2ϕ2 = 0, then 0 = c1ϕ1(1) + c2ϕ2(1),
so ϕ1(1) = ϕ2(1) = 0, so ‖ϕ1‖∞ = ‖ϕ2‖∞ = 0, i.e. ϕ1 = ϕ2 = 0. This shows that 0 is

68
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extremal. Suppose that ϕ := c1ϕ1 + c2ϕ2 ∈ E (P1). Then 1 = ϕ(1) = c1ϕ(1) + ϕ2(1), so
ϕ1(1) = ϕ2(1) = 1, so ϕ1, ϕ2 ∈P1; as ϕ is extremal in P1, this implies that ϕ1 = ϕ2. So ϕ is
also extremal in P0.

Now we show that every extremal point of P0 is in E (P1) ∪ {0}. Let
ϕ ∈ P0 − (E (P1) ∪ {0}). If ϕ ∈ P1, it is not extremal. If ϕ 6∈ P1, then 0 < ϕ(1) < 1,
so ϕ = (1 − c)0 + c 1

ϕ(1)
ϕ, with c = ϕ(1) ∈ (0, 1) and 1

ϕ(1)
ϕ ∈ P0; this shows that ϕ is not

extremal.

Proof of the theorem. Note that the conditions defining P in L∞(G) are weak* closed condi-
tions, so P is a weak* closed subset of L∞(G). As P0 is the intersection of P with the closed
unit ball of L∞(G), it is weak* closed in this closed unit ball, hence weak* compact by the
Banach-Alaoglu theorem (theorem B.4.1). As P0 is also convex, the Krein-Milman theorem
(theorem B.5.2) says that the convex hull of E (P0) is weak* dense in P0. Also, the lemma
above says that E (P0) = E (P1) ∪ {0}.

Let ϕ ∈ P1, and let U be a weak* neighborhood of ϕ of the form
{ψ ∈ P1||

∫
G

(ϕ − ψ)gidµ| < c, 1 ≤ i ≤ n}, with n ∈ Z≥1, g1, . . . , gn ∈ L1(G) and c > 0.
We want to find a point of U that is in the convex hull of E (P1). Choose ε > 0 (we will see
later how small it needs to be). By the first paragraph and the fact that closed balls in L∞(G) are
weak* closed (a consequence of the Hahn-Banach theorem), we can find ψ in the convex hull of
E (P1)∪{0} such that, for every i ∈ {1, . . . , n}, we have |

∫
G

(ϕ−ψ)gidµ| < c/2 and such that
‖ψ‖∞ ≥ 1− ε. Write ψ = c1ψ1 + . . .+ crψr, with c1, . . . , cr ∈ [0, 1], ψ1, . . . , ψr ∈ E (P1) and
c1 + . . .+ cr ≤ 1. Let a = 1

‖ψ‖∞ . Then aψ = (ac1)ψ1 + . . .+ (acr)ψr and ac1 + . . .+ acr = 1,
so aψ is in the convex hull of E (P1). Let’s show that aψ ∈ U . If i ∈ {1, . . . , n}, we have∣∣∣∣∫

G

(ϕ− aψ)gidµ

∣∣∣∣ ≤ ∣∣∣∣∫
G

(ϕ− ψ)gidµ

∣∣∣∣ ∣∣∣∣∫
G

(ψ − aψ)gidµ

∣∣∣∣
< c/2 + |1− a|

∣∣∣∣∫
G

ψgidµ

∣∣∣∣
< c/2 + ε

(
c/2 +

∣∣∣∣∫
G

ϕgidµ

∣∣∣∣) .
So, if we choose ε small enough so that ε

(
c/2 +

∣∣∫
G
ϕgidµ

∣∣) < c/2 for every 1 ∈ {1, . . . , n},
the function aψ will be in U .

As P is a subspace of the space C (G), we can also consider the topology of compact conver-
gence on P , that is, of convergence on compact subsets of G. If ϕ ∈ P , a basis of neighbor-
hoods of ϕ for this topology is given by {ψ ∈ P| supx∈K |ϕ(x) − ψ(x)| < c}, for all compact
subsets K of G and all c > 0.
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Theorem III.4.3. (Raikov) On the subset P1 of P , the topology of compact convergence and
the weak* topology coincide.

Remark III.4.4. This theorem generalizes problem 6 of problem set 3. (See remark III.3.4.)

Note that the theorem is not true for P0. For example, ifG = R, then the topology of compact
convergence and the weak* topology do not coincide on Ĝ ∪ {0} (see the remark at the end of
the solution of problem set 3).

Corollary III.4.5. The convex hull of E (P1) is dense in P1 for the topology of compact con-
vergence.

Proof of the theorem. We first show that the topology of compact convergence on P1 is finer
than the weak* topology (this is the easier part). Let ϕ ∈ P1. Let f ∈ L1(G) and c > 0,
and let U = {ψ ∈ P1|

∣∣∫
G
f(ϕ− ψ)dµ

∣∣ < c}. We want to find a neighborhood of ϕ in the
topology of compact convergence that is contained in U . Let K ⊂ G be a compact subset such
that

∫
G\K |f |dµ < c/3, and let V = {ψ ∈ P1| supx∈K |ϕ(x) − ψ(x)| ≤ c

3‖f‖1+1
}. Then, if

ψ ∈ V , we have ∣∣∣∣∫
G

f(ϕ− ψ)dµ

∣∣∣∣ ≤ ∣∣∣∣∫
K

f(ϕ− ψ)dµ

∣∣∣∣+

∣∣∣∣∫
G\K

f(ϕ− ψ)dµ

∣∣∣∣
≤ ‖f‖1 sup

x∈K
|ϕ(x)− ψ(x)|+ 2

∫
G\K
|f |dµ

< c

so ψ ∈ U (on the second line, we use the fact that ‖ϕ‖∞ = ‖ψ‖∞ = 1).

Now let’s prove the hard direction, i.e. the fact that the weak* topology on
P1 is finer than the topology of compact convergence. Let ϕ ∈ P1, and let
V = {ψ ∈ P1| supx∈K |ϕ(x) − ψ(x)| < c}, with K ⊂ G compact and c > 0. Let δ > 0

be such that δ + 4
√
δ < c. Let Q be a compact neighborhood of 1 in G such that

sup
x∈Q
|ϕ(x)− 1| ≤ δ.

(Such a Q exists because ϕ is continuous and ϕ(1) = 1.) As Q contains an open set, we have
µ(Q) 6= 0. Let f = 1

µ(Q)
11Q. By the first lemma below (applied to V = L1(G) and B = P1)

and the fact that G → L1(G), x 7−→ Lx−1f is continuous (hence {Lx−1f, x ∈ K} ⊂ L1(G)
is compact), we can find a weak* neighborhood U1 of ϕ in P1 such that, for every x ∈ K and
every ψ ∈ U1, we have ∣∣∣∣∫

G

(ϕ− ψ)Lx−1f

∣∣∣∣ ≤ δ.
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Then, for every x ∈ K and every ψ ∈ U1, we have

|f ∗ ϕ(x)− f ∗ ψ(x)| =
∣∣∣∣∫
G

f(xy)(ϕ(y−1)− ψ(y−1))dy

∣∣∣∣
=

∣∣∣∣∫
G

Lx−1f(y)(ϕ(y)− ψ(y))dy

∣∣∣∣ (see corollary III.2.6)

≤ δ.

Let U2 = {ψ ∈ P1|
∣∣∫
G

(ϕ− ψ)fdµ
∣∣ < δ}. (This is a weak* neighborhood of ϕ.) Let

ψ ∈ U1 ∩ U2. Then ∣∣∣∣∫
G

(1− ψ)fdµ

∣∣∣∣ ≤ ∣∣∣∣∫
G

(1− ϕ)fdµ

∣∣∣∣+

∣∣∣∣∫
G

(ϕ− ψ)fdµ

∣∣∣∣
≤ 1

µ(Q)

∣∣∣∣∫
Q

(1− ϕ(x))dx

∣∣∣∣+ δ

≤ sup
x∈Q
|1− ϕ(x)|+ δ

≤ 2δ.

On the other hand, for every x ∈ G, we have

|f ∗ ψ(x)− ψ(x)| =
∣∣∣∣ 1

µ(Q)

∫
G

11Q(y)ψ(y−1x)dy − 1

µ(Q)

∫
Q

ψ(x)dy

∣∣∣∣
=

1

µ(Q)

∣∣∣∣∫
Q

(ψ(y−1x)− ψ(x))dy

∣∣∣∣
≤ 1

µ(Q)

∫
Q

|ψ(y−1x)− ψ(x)|dy

≤ 1

µ(Q)

∫
Q

√
2(1− Re(ψ(y)))dy (see the second lemma below)

≤
√

2

µ(Q)

(∫
Q

(1− Re(ψ(y)))dy

)1/2(∫
Q

dy

)1/2

(Cauchy-Schwarz)

≤
√

2√
µ(Q)

∣∣∣∣∫
Q

(1− ψ(y))dy

∣∣∣∣1/2
=
√

2

∣∣∣∣∫
G

(1− ψ)fdµ

∣∣∣∣1/2
As ψ ∈ U2, the previous calculation shows that this is ≤ 2

√
δ. Note that this also applies

to ψ = ϕ, because of course ϕ is in U1 ∩ U2. Putting all these bounds together, we get, is
ψ ∈ U1 ∩ U2 and x ∈ K,

|ψ(x)− ϕ(x)| ≤ |ψ(x)− f ∗ ψ(x)|+ |f ∗ ψ(x)− f ∗ ϕ(x)|+ |f ∗ ϕ(x)− ϕ(x)|
≤ δ + 4

√
δ

< c.
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So U1 ∩ U2 ⊂ V , and we are done.

Lemma III.4.6. Let V be a Banach space, and let B be a norm-bounded subset of Hom(V,C).
Then the topology of compact convergence (i.e. of uniform convergence on compact subsets of
V ) and the weak* topology coincide on B.

Proof. We want to compare the topology of pointwise convergence on V (i.e. the weak* topol-
ogy) and the topology of compact convergence on V . The second one is finer than the first one
on all of Hom(V,C), so we just need to show that the first one is finer than the second on B.

Let T0 ∈ B, let K ⊂ V be compact and let c > 0. We want to find a weak* neighborhood
of T0 in B contained in {T ∈ B| supx∈K |T (x) − T0(x)| < c}. Let M = supT∈B ‖T‖op (this
is finite because B is bounded). Let x1, . . . , xn ∈ K such that K is contained in the union of
the open balls centered at the xi with radius c

3M
. Let T ∈ B be such that |(T − T0)(xi)| < c/3

for i = 1, . . . , n (this defines a weak* neighborhood of T ). For every x ∈ K, there exists
i ∈ {1, . . . , n} such that ‖x− xi‖ < c

3M
, and then we have

|T (x)− T0(x)| ≤ |T (x− xi)|+ |(T − T0)(xi)|+ |T0(x− xi)|
≤ ‖T‖op‖x− xi‖+ c/3 + ‖T0‖op‖x− xi‖

< c/3 + 2M
c

3M
= c.

So T ∈ U .

Lemma III.4.7. Let ϕ ∈P1. Then, for all x, y ∈ G, we have

|ϕ(x)− ϕ(y)|2 ≤ 2− 2 Re(ϕ(yx−1)).

Proof. By theorem III.2.5, we can find a unitary representation (π, V ) of G and v ∈ V such that
ϕ(x) = 〈π(x)(v), v〉 for every x ∈ G. Also, as ϕ(1) = 1, we have ‖v‖ = 1. So, for all x, y ∈ G,
we have

|ϕ(x)− ϕ(y)|2 = |〈(π(x)− π(y))(v), v〉|
= |〈v, (π(x−1)− π(y−1))(v)〉|2

≤ ‖(π(x−1)− π(y−1))(v)‖2

= ‖π(x−1)(v)‖2 + ‖π(x−1)(v)‖2 − 2 Re(〈π(x−1)(v), π(y−1)(v)〉)
= 2− 2 Re(〈π(x−1)(v), π(y−1)(v)〉)
= 2− 2 Re(〈π(yx−1)(v), v〉)
= 2− 2 Re(ϕ(yx−1)).
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III.5 The Gelfand-Raikov theorem

Theorem III.5.1. (Gelfand-Raikov) Let G be a locally compact group. Then, for all x, y ∈ G
such that x 6= y, there exists an irreducible unitary representation π of G such that π(x) 6= π(y).

More precisely, there exists an irreducible unitary representation (π, V ) of G and a vector
v ∈ V such that 〈π(x)(v), v〉 6= 〈π(y)(v), v〉.

Proof. Let x, y ∈ G. Suppose that 〈π(x)(v), v〉 = 〈π(y)(v), v〉 for every irreducible unitary
representation (π, V ) of G and every v ∈ V . By theorem III.3.2, this implies that ϕ(x) = ϕ(y)
for every ϕ ∈ E (P1), hence for every ϕ ∈ P1 by corollary III.4.5 (and the fat that {x, y} is a
compact subset of G), hence for every ϕ ∈P because P = R≥0 ·P1.

Let πL be the left regular representation of G, i.e. the representation of G on L2(G) defined
by πL(z)(f) = Lzf for z ∈ G and f ∈ L2(G). This is a unitary representation of G, so, by
the first paragraph and by proposition III.2.4, we have 〈πL(x)(f), f〉 = 〈πL(y)(f), f〉 for every
f ∈ L2(G). Let f1, f2 ∈ L2(G). Then

〈πL(x)(f1 + f2), f1 + f2〉 = 〈πL(x)(f1), f1〉+ 〈πL(f2), f2〉+ 〈πL(x)(f1), f2〉+ 〈πL(x)(f2), f1〉

and

〈πL(x)(f1+if2), f1+if2〉 = 〈πL(x)(f1), f1〉+〈πL(f2), f2〉−i〈πL(x)(f1), f2〉+i〈πL(x)(f2), f1〉,

so

2〈πL(x)(f1), f2〉 = 〈πL(x)(f1 + f2), f1 + f2〉+ i〈πL(x)(f1 + if2), f1 + if2〉
− (1 + i)(〈πL(x)(f1), f1〉+ 〈πL(x)(f2), f2〉).

We have a similar identity for πL(y), and this shows that

〈πL(x)(f1), f2〉 = 〈πL(y)(f1), f2〉.

Now note that

〈πL(x)(f1), f2〉 =

∫
G

Lxf1(z)f2(z)dz

=

∫
G

f1(x−1z)f2(z)dz

=

∫
G

f2(z)f̃1(z−1x)dz

= f2 ∗ f̃1(x)

(remember that f̃1 ∈ L2(G) is defined by f̃1(z) = f1(z−1)), so f2 ∗ f̃1(x) = f2 ∗ f̃1(y). This
calculation also shows that f2 ∗ f̃1 makes sense and is continuous.
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As f 7−→ f̃ is an involution on L2(G), we deduce that f1 ∗ f2(x) = f1 ∗ f2(y) for all
f1, f2 ∈ L2(G), and in particular for all f1, f2 ∈ Cc(G). Let f ∈ Cc(G), and let (ψU)U∈U

be an approximate identity. We have ψU ∈ Cc(G) for every U ∈ U , and ψU ∗ f −−−−→
U→{1}

f for

‖.‖∞ by proposition I.4.1.9 (and the fact that f is uniformly continuous, which is proposition
I.1.12). As ψU ∗ f(x) = ψU ∗ f(y) for every U ∈ U , this implies that f(x) = f(y). But then
we must have x = y (by Urysohn’s lemma).
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IV.1 Compact operators

Definition IV.1.1. Let V and W be Banach spaces, and let B be the closed unit ball in V . A
continuous linear operator T : V → W is called compact if T (B) is compact.

Example IV.1.2. (1) If Im(T ) is finite-dimensional (i.e. if T has finite rank), then T is com-
pact.

(2) If T is a limit of operators of finite rank, then T is compact (see problem 6 of problem set
5). Conversely, if W is a Hilbert space, then every compact operators T : V → W is a
limit of operators of finite rank. 1

(3) The identity of V is compact if and only if V is finite-dimensional. (This is a consequence
of Riesz’s lemma, see theorem B.4.2.)

In this class, we will only need to use self-adjoint compact endormophisms of Hilbert space.
A much simpler version of the spectral theorem holds for them.

Theorem IV.1.3. Let V be a Hilbert space over C, and let T : V → V be a continuous endo-
morphism of V . Assume that T is compact and self-adjoint, and write Vλ = Ker(T − λidV ) for
every λ ∈ C.

Then :

(i) If Vλ 6= 0, then λ ∈ R.

(ii) If λ, µ ∈ C and λ 6= µ, then Vµ ⊂ V ⊥λ .

(iii) If λ ∈ C− {0}, then dimC Vλ < +∞.

(iv) {λ ∈ C|Vλ 6= 0} is finite or countable, and its only possible limit point is 0.

(v)
⊕

λ∈C Vλ is dense in V .

Proof. We prove (i). Let λ ∈ C such that Vλ 6= 0, and choose v ∈ Vλ nonzero. Then

λ‖v‖2 = 〈λv, v〉 = 〈T (v), v〉 = 〈v, T ∗(v)〉 = 〈v, T (v)〉 = λ‖v‖2.

1This is not true in general, see https://mathscinet.ams.org/mathscinet-getitem?mr=
402468.
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IV The Peter-Weyl theorem

As ‖v‖ 6= 0, this implies that λ ∈ R.

We prove (ii). Let λ, µ ∈ C such that λ 6= µ, and let v ∈ Vλ and w ∈ Vµ. We want to prove
that 〈v, w〉 = 0. By (i), it suffices to treat the case where λ, µ ∈ R (otherwise v = w = 0). In
that case, we have

λ〈v, w〉 = 〈T (v), w〉 = 〈v, T (w)〉 = µ〈v, w〉 = µ〈v, w〉,

so 〈v, w〉 = 0.

Let r > 0. Let W =
⊕
|λ|≥r Vλ. We want to show that dimW < +∞, which will im-

ply (iii) and (iv). Choose a Hilbert basis (ei)i∈I of W made up of eigenvectors of T , i.e. such
that, for every i ∈ I , we have T (ei) = λiei with |λi| ≥ r. If I is infinite, then the family
(T (ei))i∈I cannot have a convergent (non-stationary) subsequence. Indeed, if we had an in-
jective map N → I , n 7−→ in, such that (T (ein))n≥0 converges to some vector v of V , then
λinein → v, so v is in the closure of Span(ein , n ≥ 0). But on the other hand, for every n ≥ 0,
〈v, ein〉 = limm→+∞〈λimeim , ein〉 = 0, so v ∈ Span(ein , n ≥ 0)⊥. This forces v = 0. But
‖v‖ = limn→+∞ ‖λinein‖ ≥ r > 0, contradiction. As T is compact, this show that I cannot be
infinite, i.e. that dim(W ) < +∞.

Let’s prove (v). Let W ′ =
⊕

λ∈C Vλ, and W = W ′⊥. We want to show that W = 0.
So suppose that W 6= 0. As T is self-adjoint and W ′ is clearly stable by T , we have
T (W ) ⊂ W . (If v ∈ W , then for every w ∈ W ′, 〈T (v), w〉 = 〈v, T (w)〉 = 0.) By defini-
tion of W , we have Ker(T|W ) = {0}, hence ‖T|W‖op > 0. Let B = {x ∈ W |‖x‖ = 1}. As
‖T|W‖op = supx∈B |〈T (x), x〉| by the lemma below, there exists a sequence (xn)n≥0 of elements
of B such that 〈T (xn), xn〉 → λ as n→ +∞, where λ = ±‖T|W‖op. Then

0 ≤ ‖T (xn)− λxn‖2 = ‖T (xn)‖2 + λ2‖xn‖2 − 2λ〈T (xn), xn〉 ≤ 2λ2 − 2λ〈T (xn), xn〉

converges to 0 as n → +∞, so T (xn) − λxn itself converges to 0. As T is compact, we
may assume that the sequence (T (xn))n≥0 has a limit in W , say w. Then T (w) − λw = 0.
By definition of W , we must have w = 0. But then T (xn) → 0, so 〈T (xn), xn〉 → 0, so
λ = 0 = ‖T|W‖op, a contradiction.

Lemma IV.1.4. Let V be a Hilbert space, and let T ∈ End(V ) be self-adjoint. Then

‖T‖op = sup
x∈V, ‖x‖=1

|〈T (x), x〉|.

Proof. Let c = supx∈V, ‖x‖=1 |〈T (x), x〉|. We have c ≤ ‖T‖op by definition of ‖T‖op. As
‖T‖op = supx,y∈V,‖x‖=‖y‖=1 |〈T (x), y〉|, to prove the other inequality, it suffices to show that
|〈T (x), y〉| ≤ c for all x, y ∈ V such that ‖x‖ = ‖y‖ = 1. Let x, y ∈ V . After mutliplying y by
a norm 1 element of C (which doesn’t change ‖y‖), we may assume that 〈T (x), y〉 ∈ R. Then

〈T (x), y〉 =
1

4
(〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉),

76



IV.2 Semisimplicity of unitary representations of compact groups

so
|〈T (x), y〉| ≤ c

4
(‖x+ y‖2 + ‖x− y‖2) =

c

2
(‖x‖2 + ‖y2‖)

(the last equality is the parallelogram identity). This shows the desired result.

Here are some results that are true for compact operators in greater generality (see [16] 4.16-
4.25).

Theorem IV.1.5. Let V be a Banach space, and let T ∈ End(V ) be a compact endomorphism.
We write σ(T ) for the spectrum of T in End(V ), i.e.

σ(T ) = {λ ∈ C|λidV − T 6∈ End(V )×}.

Then :

(i) For every λ 6= 0, the image of T − λidV is closed.

(ii) For every λ ∈ σ(T ) − {0}, we have Im(T − λidV ) 6= V and
dim(Ker(T − λidV )) = dim(V/ Im(T − λidV )). 2 In particular, Ker(T − λidV ) 6= {0}.

(iii) For every λ 6= 0, the increasing sequence (Ker((T − λidV )n))n≥1 stabilizes, and its limit
is finite-dimensional.

(iv) If dimC V = +∞, then 0 ∈ σ(T ).

(v) The subset σ(T )−{0} of C−{0} is discrete. In particular, for every r > 0, there are only
finitely many λ ∈ σ(T ) such that |λ| ≥ r.

In particular, if V is a Hilbert space and T is self-adjoint, then (v) of theorem IV.1.3 become

V =
⊕
λ∈σ(T )

Ker(T − λidV ).

IV.2 Semisimplicity of unitary representations of
compact groups

The goal of this section is to prove the following theorem. (Compare with proposition I.3.3.3.)

2Note that this generalizes the rank-nullity theorem.
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Theorem IV.2.1. Let G be a compact group, and let V be a unitary representation of G. Then
there exists a family (Wi)i∈I of pairwise orthogonal subrepresentations of V such that each Wi

is irreducible and that
V =

⊕
i∈I

Wi.

We already saw the crucial construction in problem set 5. Let’s summarize it in a proposition.

Proposition IV.2.2. (See problem 6 of problem set 5.) Let G be a compact group, let dx be the
normalized Haar measure on G, and let (π, V ) be a unitary representation of G. If u ∈ V , then
the formula

T (v) =

∫
G

〈v, π(x)(u)〉π(x)(u)dx

defines a continuous G-equivariant self-adjoint compact endormophism of V , and we have
T = 0 if and only if u = 0.

In fact, we even know that T is positive, i.e. that 〈T (v), v〉 ≥ 0 for every v ∈ V .

Corollary IV.2.3. Let V be a nonzero unitary representation of a compact group G. Then V
contains an irreducible representation of G.

Proof. If V is finite-dimensional, then any nonzero G-invariant subspace of V of minimal di-
mension has to be irreducible.

In the general case, choose u ∈ V − {0}, and let T ∈ End(V ) be the endomorphism of
V constructed in the proposition. By the spectral theorem for self-adjoint compact operators
(theorem IV.1.3), we have

V =
⊕
λ∈C

Ker(T − λidV ).

As T 6= 0, the closed subspace Ker(T ) of V is not equal to V . By the equality above, there exists
λ ∈ C− {0} such that W := Ker(T − λidV ) 6= 0. Then W is a nonzero closed subspace of V ,
and it is G-invariant because T is G-equivariant, and stable by T by definition. Also, the space
W is finite-dimensional by (iii) of theorem IV.1.3. So W has an irreducible subrepresentation by
the beginning of the proof, and we are done.

Proof of the theorem. By Zorn’s lemma, we can find a maximal collection (Wi)i∈I of pairwise
orthogonal irreducible subrepresentations of V . Suppose that the direct sum of the Wi is not
dense in V , then W :=

(⊕
i∈IWi

)⊥ is a nonzero closed invariant subspace of V (see lemma
I.3.2.6). By the corollary above, the representation W has an irreducible subrepresentation,
which contradicts the maximality of the family (Wi)i∈I . Hence V =

⊕
i∈IWi.
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We finish this section with a remark on two different notions of equivalence for unitary rep-
resentations. Remember that two continuous representations V1 and V2 of a topological group
G are called equivalent (or isomorphic) if there exists a continuous G-equivariant isomorphism
V1 → V2 with a continuous inverse.

Definition IV.2.4. Two unitary representations V1 and V2 of a topological group G are called
unitarily equivalent if there exists a G-equivariant isomorphism V1 → V2 that is an isometry.

Two unitarily equivalent representations are clearly equivalent.

Example IV.2.5. Let G be a locally compact group, let µ be a left Haar measure on G, and let ν
be the right Haar measure defined by ν(E) = µ(E−1).

Then the left and right regular representations of G are unitarily equivalent, by sending
f ∈ L2(G, µ) to the element x 7−→ ∆(x)−1/2f(x−1) of L2(G, ν). (See proposition I.2.12.)

Proposition IV.2.6. Suppose that V1 and V2 are irreducible unitary representations of G. Then
they are equivalent if and only if they are unitarily equivalent.

Proof. Suppose that V1 and V2 are equivalent, and let U : V1 → V2 be a G-equivariant isomor-
phism. We denote by 〈., .〉1 and 〈., .〉2 the inner products of V1 and V2. Let B : V1 × V1 → C,
(v, w) 7−→ 〈U(v), U(w)〉2. This is a Hermitian sesquilinear form on V1, and it is bounded be-
causeU is bounded. By the lemma below, there exists a self-adjoint endomorphism T ∈ End(V1)
such that, for all v, w ∈ V , we have B(v, w) = 〈T (v), w〉1. Let’s prove that T is G-equivariant.
Let v ∈ V and x ∈ G. For every w ∈ V , we have

〈T (π1(x)(v)), w〉1 = B(π1(x)(v), w)

= 〈U(π1(x)(v)), U(w)〉2
= 〈π2(x)(U(v)), U(w)〉2
= 〈U(v), π2(x−1)U(w)〉2
= 〈U(v), U(π1(x)−1(w))〉2
= B(v, π1(x−1)(w))

= 〈T (v), π1(x)−1(w)〉1
= 〈π1(x)(T (v)), w〉1,

so T (π1(x)(v)) = π1(x)(T (v)). As V1 is irreducible, Schur’s lemma (theorem I.3.4.1) implies
that T = λidV1 for some λ ∈ C. As 〈T (v), v〉1 = 〈U(v), U(v)〉2 > 0 for every nonzero v ∈ V1,
we must have λ ∈ R>0. Then λ−1/2U is an isometry, so V1 and V2 are unitarily equivalent.

Lemma IV.2.7. Let V be a Hilbert space, and letB : V×V → C be a bounded sesquilinear form
(i.e. B is C-linear in the first variable and C-antilinear in the second variable; the boundedness
conditions means that supv,w∈V, ‖v‖=‖w‖=1 |B(v, w)| < +∞).
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Then there exists a unique T ∈ End(V ) such that, for all v, w ∈ V ,

B(v, w) = 〈T (v), w〉.

Moreover, T is self-adjoint if and only ifB is Hermitian (which means thatB(w, v) = B(v, w)
for all v, w ∈ V ).

Proof. The uniqueness of T is clear (it follows from the fact that V ⊥ = {0}.)

If v ∈ V , then the map V → C, w 7−→ B(v, w) is a continuous linear functional on V , so
there exists a unique T (v) ∈ V such that B(v, w) = 〈T (v), w〉 for every w ∈ V . The linearity of
T follows from the fact that B is linear in the first variable. Moreover, for every v ∈ V , we have

‖T (v)‖ = sup
w∈V, ‖w‖=1

|〈T (v), w〉| = sup
w∈V, ‖w‖=1

|B(v, w)| ≤ C‖v‖,

where
C = sup

x,y∈V, ‖x‖=‖y‖=1

|B(x, y)|.

So T is bounded.

Finally, T is self-adjoint if and only, for all v, w ∈ V , we have

B(v, w) = 〈T (v), w〉 = 〈v, T (w)〉 = B(w, v).

This proves the last statement.

Definition IV.2.8. We denote by Ĝ the set of equivalence (or unitary equivalence) classes of
irreducible unitary representations of G, and call it the unitary dual of G.

If (π, V ) ∈ Ĝ, we write dim(π) and End(π) for dim(V ) and End(π).

Note that this notation agrees with the one used in problem set 3 for a commutative group.

IV.3 Matrix coefficients

Definition IV.3.1. Let (π, V ) be a unitary representation of a topological group G. A matrix
coefficient of (π, V ) is a function G→ C of the form x 7−→ 〈π(x)(u), v〉, where u, v ∈ V .

Note that matrix coefficients are continuous functions. We denote by Eπ or EV the subspace
of C (G) spanned by the matrix coefficients of π.

We start by proving some general results that are true for any group G.
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Proposition IV.3.2. Let (π, V ) be a unitary representation of G.

(i) The subspace Eπ of C (G) only depends on the unitary equivalence class of π, and it is
invariant by the operators Lx and Rx, for every x ∈ G.

(ii) If V is finite-dimensional, then Eπ is finite-dimensional and dim(Eπ) ≤ (dimV )2.

(iii) If V = V1⊕. . .⊕Vn with the Vi G-invariant and pairwise orthogonal, then Eπ =
∑n

i=1 EVi .

In particular, we get an action of G × G on Eπ by making (x, y) ∈ G × G act by
Lx ◦Ry = Ry ◦ Lx.

Proof. (i) The first statement is obvious. To prove the second statement, let v, w ∈ V and
x ∈ G. Then, for every y ∈ G,

〈π(x−1y)(v), w〉 = 〈π(y)(v), π(x)(w)〉

and
〈π(yx)(v), w〉 = 〈π(y)(π(x)(v)), w〉,

so the functions y 7−→ 〈π(x−1y)(v), w〉 and y 7−→ 〈π(yx)(v), w〉 are also matrix coeffi-
cients of π.

(ii) Let (e1, . . . , en) be a basis of V . For i, j ∈ {1, . . . , n}, write ϕij for the function G → C,
x 7−→ 〈π(x)(ei), ej〉. If v, w ∈ V , we can write v =

∑n
i=1 aiei and w =

∑n
j=1 bjej , and

then we have, for every x ∈ G,

〈π(x)(v), w〉 =
n∑

i,j=1

aibjϕij(x).

So the family (ϕij)1≤i,j≤n spans Eπ.

(iii) For every i ∈ {1, . . . , n}, we clearly have EVi ⊂ Eπ. So
∑n

i=1 EVi ⊂ Eπ. Conversely, let
v, w ∈ V , and write v =

∑n
i=1 vi and w =

∑n
i=1wi, with vi, wi ∈ Vi. Then, for every

x ∈ G,

〈π(x)(v), w〉 =
n∑

i,j=1

〈π(x)(vi), wj〉 =
n∑
i=1

〈π(x)(vi), wi〉.

So the function x 7−→ 〈π(x)(v), w〉 is in
∑n

i=1 EVi .

Definition IV.3.3. Let (π, V ) and (π′, V ′) be continuous representation of V . We define an action
ρ of G×G on Hom(V, V ′) by

ρ(x, y)(T ) = π′(y) ◦ T ◦ π(x)−1,

for T ∈ Hom(V, V ′) and x, y ∈ G.
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Proposition IV.3.4. We have

HomG(V, V ′) = {T ∈ Hom(V, V ′)|∀x ∈ G, ρ(x, x)(T ) = T}.

Moreover, if the maps G → End(V ), x 7−→ π(x) and G → End(V ′), x 7−→ π′(x) are
continuous (for example if V and V ′ are finite-dimensional, see proposition I.3.5.1), then the
action defined above is a continuous representation of G×G on Hom(V, V ′).

Proof. The first statement is obvious. The second statement follows from the continuity of the
composition on Hom spaces, and of inversion on G.

In particular, we get actions of G × G on End(V ) and V ∗ := Hom(V,C) (using the trivial
action of G on C); the second one gives an action of G on V ∗ by restriction to the first factor (if
x ∈ G and Λ ∈ V ∗, then (x,Λ) is sent to Λ ◦ π(x)−1). This will be the default action on these
spaces.

Definition IV.3.5. Let (π, V ) and (π′, V ′) be continuous representations of V . We define an
action ρ of G×G on the algebraic tensor product V ⊗C V

′ by

ρ(x, y)(v ⊗ w) = π(x)(v)⊗ π′(y)(w),

for x, y ∈ G, v ∈ V and w ∈ V ′.

This action is well-defined because, for all x, y ∈ G, the map V × V ′ → V ⊗C V ′,
(v, w) 7−→ π(x)(v)⊗ π′(y)(w) is bilinear, hence induces a map ρ(x, y) : V ⊗C V

′ → V ⊗C V
′.

If V and V ′ are finite-dimensional, the resulting action of G × G on V ⊗C V
′ is continuous by

proposition I.3.5.1.

Note that, if we restrict the action of G× G on V ⊗C W to the first (resp. the second) factor,
we get a representation equivalent to V ⊕ dim(W ) (resp. W⊕ dim(V )).

Proposition IV.3.6. Let V,W be continuous representations of G.

(i) The map V ∗ ⊗C W → Hom(V,W ) sending Λ ⊗ w (with Λ ∈ V ∗, w ∈ W ) to the linear
operator V → W , v 7−→ Λ(v)w is well-defined and G × G-equivariant. If V and W are
finite-dimensional, it is an equivalence of continuous representations.

(ii) The map V ∗ ⊗C V → C (G) sending Λ⊗ v (with Λ ∈ V ∗, v ∈ V ) to the function G→ C,
x 7−→ Λ(π(x)(v)) is well-defined and G × G-equivariant, and its image is EV if V is
unitary.

In particular, if V is finite-dimensional and unitary, we get a surjective G×G-equivariant map
End(V )→ EV .
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Remark IV.3.7. Point (ii) suggests a way to generalize the definition of a matrix coefficients to
the non-unitary case : just define a matrix coefficient as the image of a pure tensor by the map
V ∗ ⊗C V → C (G).

Proof. In this proof, we will denote all the actions of G and G×G by a · (this should not cause
confusion, as each space has at most one action).

(i) The map is well-defined, because the map V ∗ ⊗C W → Hom(V,W ) sending (Λ, w) to
(v 7−→ Λ(v)w) is bilinear. Let’s denote it by ϕ. To check that it is G × G-equivariant,
it suffices to check it on pure tensors (because they generate V ∗ ⊗C W ). So let Λ ∈ V ∗,
w ∈ W , x, y ∈ G. For every v ∈ V , we have

ϕ((x, y) · (Λ⊗ w))(v) = ϕ((y · Λ)⊗ (x · w))(v) = Λ(y−1 · v)(x · w)

and

((x, y) · ϕ(Λ⊗ w))(v) = x · (ϕ(Λ⊗ w)(y−1 · v)) = x · (Λ(y−1·)w) = Λ(y−1 · v)(x · w).

So
ϕ(x · (Λ⊗ w)) = x · ϕ(Λ⊗ w).

Suppose that V is finite-dimensional, let (e1, . . . , en) be a basis of V , and let (e∗1, . . . , e
∗
n)

be the dual basis. Define ψ : Hom(V,W )→ V ∗ ⊗C W by sending T to
∑n

i=1 e
∗
i ⊗ T (ei).

Let’s show that ψ is the inverse of ϕ.

If j ∈ {1, . . . ,m} and w ∈ W , then

ψ(ϕ(e∗j ⊗ w)) =
n∑
i=1

e∗i ⊗ (ϕ(e∗j ⊗ w)(ei)) = e∗j ⊗ w.

As the elements e∗j ⊗ w, for j ∈ {1, . . . , n} and w ∈ W , generate V ∗ ⊗C W , this shows
that ψ ◦ ϕ = id.

Conversely, if T ∈ Hom(V,W ), then, for every v ∈ V ,

ϕ(ψ(T )) =
n∑
i=1

ϕ(e∗i ⊗ T (ei))(v) =
n∑
i=1

e∗i (v)T (ei) = T (v),

because v =
∑n

i=1 e
∗
i (v)v. So ϕ(ψ(T )) = T .

This shows that, if V is finite-dimensional, the map V ∗ ⊗C W → Hom(V,W ) is an iso-
morphism. The last statement follows immediately.

(ii) The map is well-defined because the map V ∗ × V → C (G) sending (Λ, v) to the function
x 7−→ Λ(π(x)(v)) is bilinear. Let’s denote it by α. We show that α is G×G-equivariant.
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As before, it suffices to check it on pure tensors. So let Λ ∈ V ∗, v ∈ V and x, y ∈ G. For
every z ∈ G, we have

α((x, y) ·(Λ⊗v))(z) = Λ(x−1 ·(z ·(y ·v))) = Λ((x−1zy) ·v) = ((Lx ◦Ry)(α(Λ⊗v)))(z),

hence α((x, y) · (Λ⊗ v)) = (Lx ◦Ry)(α(Λ⊗ v)).

Finally, we show that the image of α is EV if V is unitary. Let Λ ∈ V ∗. As V is a Hilbert
space, there exists a unique v ∈ V such that Λ = 〈., v〉. So, for every w ∈ V and every
x ∈ G, we have

α(Λ⊗ w)(v) = 〈π(x)(w), v〉.

This shows that α(Λ ⊗ w) is a matrix coefficient of π, and also that we get all the matrix
coefficients of π in this way.

Now we prove stronger results that are only true for compact groups. If G is a compact group,
we fix a normalized Haar measure on G, and we denote by Lp(G) the Lp space for this measure.
Note that we have C (G) ⊂ Lp(G) for every p.

Theorem IV.3.8. Let G be a compact group, and let (π, V ) be an irreducible unitary represen-
tation of G. Remember that V is finite-dimensional (by problem 6 of problem set 5).

(i) (Schur orthogonality) If (π′, V ′) is another irreducible unitary representation of G that is
not equivalent to (π, V ), then Eπ and Eπ′ are orthogonal as subspaces of L2(G).

(ii) We have dim(Eπ) = (dimV )2. More precisely, if (e1, . . . , ed) is an orthonormal ba-
sis of V and if we denote by ϕij the function G → C, x 7−→ 〈π(x)(ej), ei〉, then
{
√
dϕij, 1 ≤ i, j ≤ d} is an orthonormal basis of Eπ for the L2 inner product.

(iii) The G×G-equivariant map End(V )→ Eπ defined above is an isomorphism.

Proof. Note that (iii) follows immediately from (ii), because End(V )→ Eπ is surjective and (ii)
says that dim(Eπ) = (dimV )2 = dim(End(V )).

We prove (i) and (ii). Let (π′, V ′) be an irreducible unitary representation of G, that could be
equal to (π, V ). If A ∈ Hom(V, V ′), we define Ã ∈ Hom(V, V ′) by

Ã =

∫
G

π′(x)−1 ◦ A ◦ π(x)dx

(note that there is no problem with the integral, because the representations are finite-
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dimensional). Then, for every y ∈ G, we have

Ã ◦ π(y) =

∫
G

π′(x)−1 ◦ A ◦ π(xy)dx

=

∫
G

π′(xy−1)−1 ◦ A ◦ π(x)dx (right invariance of dx)

= π′(y) ◦ Ã.

In other words, Ã is G-equivariant.

Let v ∈ V and v′ ∈ V ′, and define A ∈ Hom(V, V ′) by A(u) = 〈u, v〉v′. Then, for all u ∈ V
and u′ ∈ V , we have

〈Ã(u), u′〉 =

∫
G

〈(π′(x)−1 ◦ A ◦ π(x))(u), u′〉dx

=

∫
G

〈〈π(x)(u), v〉π′(x)−1(v′), u′〉dx

=

∫
G

〈π(x)(u), v〉〈π′(x)(u′), v′〉dx.

Suppose that π and π′ are not equivalent. Then, by Schur’s lemma, we have Ã = 0 for every
A ∈ Hom(V, V ′), and so, by the calculation above, for all u, v ∈ V and u′, v′ ∈ V ′,∫

G

〈π(x)(u), v〉〈π′(x)(u′), v′〉dx = 0.

This proves (i).

Suppose that π = π′, and use the notation of (ii). Take v = ei and v′ = ei′ with
i, i′ ∈ {1, . . . , d}, and define A as above. By Schur’s lemma again, there exists c ∈ C such
that Ã = cidV . So, taking u = ej and u′ = ej′ , we get from the calculation above that

〈ϕi,j, ϕi′,j′〉L2(G) = 〈cej, ej′〉 =

{
c if j = j′

0 otherwise.

On the other hand, we have

cd = Tr(Ã) =

∫
G

Tr(π(x)−1 ◦ A ◦ π(x))dx =

∫
G

Tr(A)dx = Tr(A).

As A is defined by A(w) = 〈w, ei〉ei′ , we have Tr(A) = 0 if i 6= i′, and Tr(A) = 1 if i = i′.
This finishes the proof that {

√
dϕij, 1 ≤ i, j ≤ d} is an orthonormal basis of Eπ.
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IV.4 The Peter-Weyl theorem

LetG be a compact group. We see L2(G) as a representation ofG×G by making (x, y) ∈ G×G
act by Lx ◦Ry = Ry ◦Lx. The restriction of this to the first (resp. second) factor is the left (resp.
rigth) regular representation of G.

Theorem IV.4.1. If G is compact, then E :=
⊕

π∈Ĝ Eπ is a dense subalgebra of C (G). (For the
usual pointwise multiplication and the norm ‖.‖∞.)

Proof. Let’s prove that E is stable by multiplication. Note that, by (iii) of proposition IV.3.2 and
theorem IV.2.1, for every finite-dimensional unitary representation π of G, we have Eπ ⊂ E . Let
(π, V ) and (π′, V ′) be irreducible unitary representations of G, and let v, w ∈ V and v′, w′ ∈ V ′.
Remember that we have defined an action π ⊗ π′ of G on V ⊗C V

′3 and an inner product on
V ⊗C V

′ in problem 1 of problem set 7. 4 By definition of these, for every x ∈ G, we have

〈(π ⊗ π′)(x)(v ⊗ w), v′ ⊗ w′〉 = 〈π(x)(v), w〉〈π′(x)(v′), w〉.

This proves that the product of a matrix coefficient of π and a matrix coefficient of π′ is a matrix
coefficient of π ⊗ π′. By the observation above, every matrix coefficient of π ⊗ π′ is in E , and
we are done.

Now we prove that E is dense in C (G). We have shown that E is a subalgebra, it contains
the constants (they are the matrix coefficients of the trivial representation of G on C) and it sep-
arates points on G by the Gelfand-Raikov theorem. So it is dense in E by the Stone-Weierstrass
theorem.

Corollary IV.4.2. For every p ∈ [1,+∞), the subspace E of Lp(G) is dense for the Lp norm.

In particular, we have a canonical G×G-equivariant isomorphism

L2(G) =
⊕

(π,V )∈Ĝ

End(V ).

The last statement is what is usually called the Peter-Weyl theorem. It implies that the left and
right regular representations of G are both isomorphic to the completion of

⊕
π∈Ĝ π

⊕ dim(π).

Remark IV.4.3. The Peter-Weyl theorem actually predates the Gelfand-Raikov theorem, and the
original proof uses the fact that the operators f ∗ . are compact on L2(G), for f ∈ L2(G).

3This is just the restriction to the diagonal of G×G of the action defined above.
4We don’t need to complete the tensor product here, because V and V ′ are finite-dimensional.
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IV.5 Characters

Definition IV.5.1. Let (π, V ) be a continuous finite-dimensional representation of a topological
group G. The character of π is the continuous map χV = χπ : G→ C, x 7−→ Tr(π(x)).

Remark IV.5.2. If (π, V ) is a finite-dimensional representation of G and (e1, . . . , en) is an or-
thonormal basis of V , then, for every x ∈ G, we have

χπ(x) =
n∑
i=1

〈π(x)(ei), ei〉.

So χπ ∈ Eπ.

Definition IV.5.3. We say that a function f : G → C is a central function or a class function if
f(xyx−1) = f(y) for all x, y ∈ G.

These functions are called central because they are central for the convolution product, as we
will see in section IV.7.

Proposition IV.5.4. Let G be a topological group, and let (π, V ) and (π′, V ′) be continuous
finite-dimensional representations of G. Then :

(i) χπ is a central function, and it only depends on the equivalence class of π.

(ii) χV⊕V ′ = χV + χV ′ .

(iii) For every x ∈ G, χV ∗(x) = χ(x−1).

(iv) For all x, y ∈ G, we have

χV⊗CV ′(x, y) = χV (x)χV ′(y) and χHom(V,V ′)(x, y) = χV (x−1)χV ′(y).

(v) If (π, V ) is unitarizable (for example if G is compact), then χV (x−1) = χV (x) for every
x ∈ G.

Proof. Point (i) just follows from the properties of the trace, i.e. the fact that Tr(AB) = Tr(BA)
for all A,B ∈Mn(C).

Put arbitrary Hermitian inner products on V and V ′. Let (e1, . . . , en) (resp. (e′1, . . . , e
′
m)) be

an orthonormal basis of V (resp. V ′). Then (e1, . . . , en, e
′
1, . . . , e

′
m) is an orthonormal basis of

V ⊕ V ′, so, for every x ∈ G,

χV⊕V ′(x) =
n∑
i=1

〈π(x)(ei), ei〉+
m∑
j=1

〈π′(x)(e′j), e
′
j〉 = χV (x) + χV ′(x).

This proves (ii).
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Let (e∗1, . . . , e
∗
n) be the dual basis of (e1, . . . , en). Let x ∈ G. Then, if A is the matrix of

π(x−1) in the basis (e1, . . . , en), the matrix of the endomorphism Λ 7−→ Λ ◦ π(x−1) in the basis
(e∗1, . . . , e

∗
n) is AT , and we have

χV ∗(x) = Tr(AT ) = Tr(A) = χV (x−1).

This proves (iii).

We prove the formula for χV⊗CV ′ . We have seen in problem 1 of problem set 7 how to put an
inner product on V ⊗C V

′ for which (ei ⊗ e′j)1≤i≤n,1≤j≤m is an orthonormal basis. So, for all
x, y ∈ G, we have

χV⊗CV ′(x, y) =
n∑
i=1

m∑
j=1

〈π(x)(ei)⊗ π′(y)(e′j), ei ⊗ e′j〉

=
n∑
i=1

m∑
j=1

〈π(x)(ei), ei〉〈π′(y)(e′j), e
′
j〉

= χV (x)χV ′(y).

Now the formula for χHom(V,V ′) follows from this, from (iii) and from proposition IV.3.6(i).

Finally, we prove (v). If V is unitarizable, we can choose the Hermitian inner form on V to be
invariant by G. Then, for every x ∈ G, we have

χV (x−1) =
n∑
i=1

〈π(x)−1(ei), ei〉 =
n∑
i=1

〈ei, π(x)(ei)〉 =
n∑
i=1

〈π(x)(ei), ei〉 = χV (x).

Notation IV.5.5. If (π, V ) is a representation of a topological group G (continuous or not), we
write

V G = {v ∈ V |∀x ∈ G, π(x)(v) = v}.

This is a closed G-invariant subspace of V .

Example IV.5.6. If V and W are two representations of G, then

Hom(V,W )G = HomG(V,W ).

Theorem IV.5.7. Let G be a compact group and (π, V ) be a finite-dimensional continuous rep-
resentation of G. Then ∫

G

χV (x)dx = dim(V G).

88



IV.5 Characters

Proof. As V is finite-dimensional, we can find a finite family (Vi)i∈I of irreducible subrepre-
sentations of V such that V =

⊕
i∈I Vi. (Cf. corollary I.3.2.9.) We have χV =

∑
i∈I χVi by

proposition IV.5.4, and V G =
⊕

i∈I V
G
i . So it suffices to prove the theorem for V irreducible.

Suppose that V is an irreducible representation of V . As V G is a G-invariant subspace of
V , we have V G = V or V G = {0}. If V G = V , then G acts trivially on V , so every linear
subspace of V is invariant by G, so we must have dimV = 1. On the other hand, we have
χV (x) = Tr(1) = 1 for every x ∈ G, so

∫
G
χV (x)dx = 1. Suppose that V is irreducible and

that V G = {0}. Let π0 be the trivial representation of G on C. Then, by theorem IV.3.8(i), the
subspaces Eπ and Eπ0 of L2(G) are orthogonal. But Eπ0 is the subspace of constant functions,
and we saw above (remark IV.5.2) that χV ∈ Eπ. So χV is orthogonal to the constant function 1,
which means exactly that

∫
G
χV (x)dx = 0.

Corollary IV.5.8. Let G be a compact group, and let (π, V ) and (σ,W ) be two continuous
finite-dimensional representations of G.

(i) We have 〈χW , χV 〉L2(G) = dimC(HomG(V,W )).

(ii) If V and W are irreducible and not equivalent, then 〈χV , χW 〉L2(G) = 0.

(iii) The representation V is irreducible if and only ‖χ‖L2(G) = 1.

Proof. (i) MakeG act on Hom(V,W ) by x ·T = ρ(x)◦T ◦π(x)−1. We know (cf. proposition
IV.3.4) that HomG(V,W ) = Hom(V,W )G. Applying the theorem to the representation
Hom(V,W ) and using points (iv) and (v) of proposition IV.5.4 to calculate the character
of this representation, we get :

dimC(HomG(V,W )) = dimC(Hom(V,W )G)

=

∫
G

χHom(V,W )(x)dx

=

∫
G

χV (x)χW (x)dx

= 〈χW , χV 〉L2(G).

(ii) This follows from (i) and from Schur’s lemma (theorem I.3.4.1), or from the fact that
χV ∈ EV , χW ∈ EW and EV and EW are orthogonal in L2(G) (see theorem IV.3.8).

(iii) If V is irreducible, then Schur’s lemma implies that EndG(V ) is 1-dimensional, so we have
‖χV ‖L2(G) = 1 by (i). Conversely, suppose that ‖χV ‖L2(G) = 1. We write V =

⊕
i∈I Vi,

where I is finite and the Vi are irreducible subrepresentations of V . By (ii), the characters
of non-isomorphic irreducible representations of G are orthogonal in L2(G), so we have

‖χV ‖2
L2(G) =

∑
W∈Ĝ

nW‖χW‖2
L2(G) =

∑
W∈Ĝ

nW ,
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where, for every W ∈ Ĝ,

nW = card({i ∈ I|Vi ' W}).

As ‖χV ‖L2(G) = 1, there is a uniqueW ∈ Ĝ such that nW 6= 0, and we must have nW = 1.
By the definition of the integers nW , this means that V ' W , so V is irreducible.

Corollary IV.5.9. Let G be a compact group. Then the family (χV )V ∈Ĝ of elements of L2(G) (or
C (G)) is linearly independent.

Proof. This follows from (ii) of the previous corollary.

Corollary IV.5.10. Let π and π′ be two continuous finite-dimensional representations of a com-
pact group G. Then π and π′ are equivalent if and only if χπ = χπ′ .

Proof. If π and π′ are equivalent, we already know that χπ = χπ′ . Conversely, suppose that
χπ = χπ′ . We decompose π and π′ as direct sums of irreducible representations :

π '
⊕
ρ∈Ĝ

ρnρ

and
π′ '

⊕
ρ∈Ĝ

ρmρ ,

with nρ,mρ ∈ Z≥0 and nρ = mρ = 0 for all but a finite number of ρ ∈ Ĝ. By corollary IV.5.8,
we have χπ =

∑
ρ∈Ĝ nρχρ and χπ′ =

∑
ρ∈Ĝmρχρ (and these are finite sums). By the linear

independence of the χρ, the equality χπ = χπ′ implies that nρ = mρ for every ρ ∈ Ĝ, which in
turn implies that π and π′ are equivalent.

IV.6 The Fourier transform

We still assume that G is a compact group.

By propositions I.4.3.4 and I.4.1.3, the space L2(G) is actually a Banach algebra for the con-
volution product. This section answers the question “how can we see the algebra structure in the
decomposition given by the Peter-Weyl theorem ?”.
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Definition IV.6.1. Let f ∈ L2(G). For every (π, V ) ∈ Ĝ, the Fourier transform of f at π is the
endomorphism

f̂(π) =

∫
G

f(x)π(x−1)dx =

∫
G

f(x)π(x)∗dx

of V .

This is clearly a C-linear endomorphism of V .

Example IV.6.2. Suppose that G = S1. Then we have seen in problem 5 of problem set 3 that
Ĝ ' Z, where n ∈ Z corresponds to the representation G → C×, e2iπt 7−→ e2iπnt (with t ∈ R).
So, if f ∈ L1(G), its Fourier transform is the function f̂ : Z→ C sending n to

f̂(n) =

∫ 1

0

f(e2iπt)e−2iπntdt.

Theorem IV.6.3. (i) For every π ∈ Ĝ, the map L2(G) → End(π), f 7−→ f̂(π) is a G × G-
equivariant ∗-homomorphism from L2(G) to the opposite algebra of End(π). (Note that
L2(G) ⊂ L1(G), because G is compact. The involution of L1(G) defined in example
I.4.2.2 restricts to an involution of L2(G).)

In other words, we have, for f, g ∈ L2(G) and x ∈ G :

f̂ ∗ g(π) = ĝ(π) ◦ f̂(π),

f̂ ∗(π) = (f̂(π))∗,

L̂xf(π) = f̂(π) ◦ π(x)−1 and R̂xf(π) = π(x) ◦ f̂(π).

(Compare with (i) of theorem I.4.2.6.)

(ii) Let f ∈ L2(G). Then, for every π ∈ Ĝ, the function dim(π)Tr(f̂(π) ◦ π(.)) ∈ L2(G) is
the orthogonal projection of f on Eπ, and the series∑

π∈Ĝ

dim(π)Tr(f̂(π) ◦ π(.))

converges to f in L2(G) (Fourier inversion formula).

(iii) For every f ∈ L2(G), we have

‖f‖2
2 =

∑
π∈Ĝ

dim(π)Tr(f̂(π)∗ ◦ f̂(π))

(Parseval formula).

Example IV.6.4. Take G = S1. Then (ii) and (iii) say that, for every f ∈ L2(S1), the series∑
n∈Z f̂(n)e2iπnt converges to f in L1(S1) and that∫ 1

0

|f(e2iπt)|2dy =
∑
n∈Z

|f̂(n)|2.

91



IV The Peter-Weyl theorem

Proof. (i) We have

f̂ ∗ g(π) =

∫
G

(f ∗ g)(x)π(x−1)dx

=

∫
G×G

f(y)g(y−1x)π(x−1)dxdy

=

∫
G×G

f(y)g(x)π(x−1y−1)dxdy (change of variable x′ = y−1x)

= ĝ(π) ◦ f̂(π).

Remember that f ∗(x) = f(x−1), because ∆ = 1. So

f̂ ∗(π) =

∫
G

f(x−1)π(x)∗dx

=

∫
G

f(x)π(x−1)∗dx

= (f̂(π))∗.

Finally,

L̂xf(π) =

∫
G

f(x−1y)π(y−1)dy

=

∫
G

f(y)π(y−1x−1)dy

= f̂(π) ◦ π(x−1)

and

R̂xf(π) =

∫
G

f(yx)π(y−1)dy

=

∫
G

f(y)π(xy−1)dy

= π(x) ◦ f̂(π).

(ii) It is enough to prove the first statement (the second will follow by the Peter-Weyl theorem).
Let (π, V ) ∈ Ĝ. As in theorem IV.3.8, fix an orthonormal basis (e1, . . . , ed) of V and
denote by ϕij the function G → C, x 7−→ 〈π(x)(ej), ei〉. Then we have seen (in (ii) of
theorem IV.3.8) that {

√
dϕij, 1 ≤ i, j ≤ d} is an orthonormal basis of Eπ for the L2 inner

product. So the orthogonal projection of f on Eπ is

d
d∑

i,j=1

〈f, ϕij〉L2(G)ϕij.
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For all i, j ∈ {1, . . . , d}, we have

〈f, ϕi,j〉L2(G) =

∫
G

f(x)〈ei, π(x)(ej)〉dx

=

∫
G

f(x)〈π(x)∗(ei), ej〉dx

= 〈f̂(π)(ei), ej〉.

Let y ∈ G, and let (π̂(f)i,j) and (π(y)i,j) be the matrices of f̂(π) and π(y) in the basis
(e1, . . . , ed). Then

f̂(π)i,j = 〈f̂(π)(ej), ei〉 = 〈f, ϕj,i〉L2(G)

and
π(y)i,j = 〈π(y)(ej), ei〉 = ϕij(y),

so

Tr(f̂(π) ◦ π(y)) =
d∑

i,j=1

f̂(π)j,iπ(y)i,j =
d∑

i,j=1

〈f̂(π), ϕi,j〉L2(G)ϕi,j(y).

This gives the desired formula for the orthogonal projection of f on Eπ.

(iii) Let π ∈ Ĝ, and use the notation of the proof of (ii). Let g = dTr(f̂(π)∗ ◦ f̂(π)). It
suffices to show that ‖g‖2

2 = dTr(f̂(π)∗ ◦ f̂(π)) (because the Eπ for non-isomorphic π are
orthogonal, by theorem IV.3.8). We have

Tr(f̂(π)∗ ◦ f̂(π)) =
d∑

i,j=1

|f̂(π)i,j|2 =
d∑

i,j=1

|〈f, ϕi,j〉L2(G)|2.

On the other hand, as g = d
∑d

i,j=1〈f, ϕij〉L2(G)ϕij , we get

‖g‖2
L2(G) = d2

d∑
i,j=1

|〈f, ϕi,j〉L2(G)|2 = d · dTr(f̂(π)∗ ◦ f̂(π)).

IV.7 Characters and Fourier transforms

To finish this chapter, we relate characters and the Fourier transform, and give an explanation of
the name “central function”.

Proposition IV.7.1. Let f ∈ L2(G). Then, for every x ∈ G, we have

Tr(f̂(π) ◦ π(x)) = f ∗ χπ(x).
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IV The Peter-Weyl theorem

By theorem IV.6.3, this says that the orthogonal projection of f in Eπ is dim(π)f ∗ χπ, so we
have

f =
∑
π∈Ĝ

dim(π)f ∗ χπ

in L2(G).

Proof. We have

Tr(f̂(π) ◦ π(x)) =

∫
G

f(y)Tr(π(y)−1π(x))dy

=

∫
G

f(y)χπ(y−1x)

= f ∗ χπ(x).

Corollary IV.7.2. For all π, π′ ∈ Ĝ, we have

χπ ∗ χπ′ =

{
dim(π)−1χπ if π ' π′

0 otherwise.

Proof. We know that χπ ∈ Eπ for every π ∈ Ĝ, that Eπ and Eπ′ are orthogonal for π 6' π′,
and the proposition says that dim(π)χπ ∗ χπ′ is the orthogonal projection of χπ on Eπ′ . This
immediately implies the formula of the corollary.

Definition IV.7.3. For 1 ≤ p < +∞, we denote by ZLp(G) the subspace of central functions in
Lp(G). We also denote by ZC (G) the subspace of central functions in C (G).

Proposition IV.7.4. The space Lp(G), 1 ≤ p < +∞ (resp. C (G)) is a Banach algebra for the
convolution product, and ZLp(G) (resp. ZC (G)) is its center.

Proof. Let p ∈ [1,+∞), and let q ∈ [1,+∞) be such that p−1 + q−1 = 1. As G is compact, the
constant function 1 is in Lq(G) and has Lq norm equal to 1, so, by Hölder’s inequality, f = f · 1
is in L1(G), and ‖f‖1 ≤ ‖f‖p. Now corollary I.4.3.2 says that, for every g ∈ Lp(G), the function
f ∗ g exists and is in Lp(G), and that we have ‖f ∗ g‖p ≤ ‖f‖1‖g‖p ≤ ‖f‖p‖g‖p. This shows
that Lp(G) is a Banach algebra for ∗.

We show that C (G) is also a Banach algebra for ∗. If f, g ∈ C (G), then f ∗ g clearly exists,
and, for every x ∈ G,

|f ∗ g(x)| ≤
∫
G

|f(y)|g(y−1)|dy ≤ ‖f‖∞‖g‖∞
∫
G

1dy = ‖f‖∞‖g‖∞.
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So ‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖∞.

Finally, we show the statement about the centers. Let f ∈ Lp(G), and suppose that f∗g = g∗f
for every g ∈ Lp(G). Then, for every x ∈ G and every g ∈ Lp(G), we have∫

G

f(xy)g(y−1)dy =

∫
G

g(y)f(y−1x)dy =

∫
G

f(yx)g(y−1)dy.

This holds if and only if f(xy) = f(yx) almost everywhere on G×G. The proof for f ∈ C (G)
is the same.

Corollary IV.7.5. The family (χπ)π∈Ĝ is an orthonormal basis of ZL2(G).

Proof. We already know that the χπ are in ZL2(G) and that they are pairwise orthogonal, so it
just remains to show that a central function orthogonal to all the χπ has to 0. Let f ∈ ZL2(G).
By the lemma below, we have (dimπ)f ∗ χπ = 〈f, χπ〉L2(G)χπ for every π ∈ Ĝ, so, if f is
orthogonal to every χπ, then its projection on all the spaces Eπ is 0 by proposition IV.7.1, hence
f = 0 by theorem IV.4.1.

Lemma IV.7.6. If f ∈ ZL1(G) and π ∈ Ĝ, then (dimπ)f ∗ χπ = 〈f, χπ〉L2(G)χπ.

Proof. We know that f ∗ χπ = Tr(f̂(π) ◦ π(.)) by proposition IV.7.1. For every x ∈ G, we have

f̂(π) ◦ π(x) =

∫
G

f(y)π(y−1x)dy

=

∫
G

f(xy−1)π(y)dy

=

∫
G

f(y−1x)π(y)dy (because f is central)

=

∫
G

f(y)π(xy−1)dy

= π(x) ◦ f̂(π).

So f̂(π) ∈ End(π) is G-equivariant. By Schur’s lemma, this implies that f̂(π) = cid, with
c ∈ C. Taking the trace gives

c(dimπ) = Tr(f̂(π)) =

∫
G

f(y)Tr(π(y−1))dy = 〈f, χπ〉L2(G).

So
〈f, χπ〉L2(G)χπ = (dimπ)Tr(f̂(π) ◦ π(.)) = (dim π)f ∗ χπ.
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IV The Peter-Weyl theorem

Remark IV.7.7. In fact, we can even show that the family (χπ)π∈Ĝ spans a dense subspace in
ZLp(G) for every p ∈ [1,+∞) and in ZC (G). (See proposition 5.25 of [8].)

Remark IV.7.8. IfG is finite, then L2(G) is the space of all functions fromG to C, and ZL2(G) is
the space of functions that are constant on the conjugacy classes of G. So the proposition above
says that |Ĝ| is equal to the number of conjugacy classes in G, and the Peter-Weyl theorem says
that |G| =

∑
π∈Ĝ(dimπ)2.

Remark IV.7.9. We have shown in particular that the Banach algebras (ZLp(G), ∗) (for
1 ≤ p < +∞) and (ZC (G), ∗) are commutative. We could ask what their spectrum is. In
fact, the answer is very simple (see theorem 5.26 of [8]) : For every π ∈ Ĝ, the formula
f 7−→ (dimπ)

∫
G
fχπdµ defines a multiplicative functional on ZLp(G) (resp. ZC (G)), and this

induces a homeomorphism from the discrete set Ĝ to the spectrum of ZLp(G) (resp. ZC (G)).
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V Gelfand pairs

In this chapter, G will always be a locally compact group, and K a compact subgroup of G. We
fix a left Haar measure µ = µG on G and a normalized Haar measure µK on K.

V.1 Invariant and bi-invariant functions

Definition V.1.1. A function f on G is called left invariant (resp. right invariant, resp. bi-
invariant) by K if, for every x ∈ K, we have Lxf = f (resp. Rxf = f , resp. Lxf = Rxf = f ).

If F (G) is a space of functions on G (for example Cc(G)), we denote by F (K \G) (resp.
F (G/K), resp. F (K \G/K)) its subspace of left invariant (resp. right invariant, resp. bi-
invariant) functions.

Let ∆G be the modular function of G. As K is compact, we have ∆G|K = 1, so we can use
the results of problem 1 of problem set 2. In particular :

Proposition V.1.2. Let f ∈ C (G), and define two functions fK : G → C and Kf : G → C by
setting

fK(x) =

∫
K

f(xk)dk

and
Kf(x) =

∫
K

f(kx)dk.

Then fK is right invariant and Kf is left invariant.

Proposition V.1.3. There exists a unique regular Borel measure µG/K (resp. µK\G) on G/K
(resp. K\G) such that, for every f ∈ Cc(G), we have∫

G

f(x)dx =

∫
G/K

fK(x)dµG/K(x)

(resp.
∫
G

f(x)dx =

∫
K\G

Kf(x)dµK\G(x)).
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V Gelfand pairs

Definition V.1.4. If f is a continuous function on G, we write

KfK = K(fK) = (Kf)K .

In other words, this is the continuous function on G defined by :

KfK(x) =

∫
K×K

f(kxk′)dkdk′.

Note that KfK is obviously a bi-invariant function.

Proposition V.1.5. Let f ∈ C (G). Then f is left invariant (resp. right invariant, resp. bi-
invariant) if and only if f = Kf (resp. f = fK , resp. f = KfK).

Proof. This follows immediately from proposition V.1.2 and from the fact that the measure on
K is normalized.

Lemma V.1.6. For every f ∈ Cc(G), we have∫
G

f(x)dx =

∫
G

KfK(x)dx.

Proof. We have ∫
G

KfK(x)dx =

∫
G×K2

f(kxk′)dxdkdk′ =

∫
G

f(x)dx,

because, for all k, k′ ∈ K,∫
G

f(kxk′)dx = ∆(k′)−1

∫
G

f(x)dx =

∫
G

f(x)dx

(by proposition I.2.8).

Proposition V.1.7. Let (π, V ) be a unitary representation of G, and let PK : V → V be the
orthogonal projection on V K . Then we have, for every v ∈ V ,

PK(v) =

∫
K

π(k)(v)dk.

Moreover, if f ∈ Cc(G) and v ∈ V , then π(f)(PK(v)) = π(fK)(v) and
PK(π(f)(v)) = π(Kf)(v). In particular :
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(i) If f ∈ Cc(G) and v ∈ V K , we have π(f)(v) = π(fK)(v).

(ii) If f ∈ Cc(K\G) and v ∈ V , then π(f)(v) ∈ V K .

(Remember that π : L1(G)→ End(V ) is defined in theorem I.4.2.6.)

Proof. Let v ∈ V . The existence of the integral w :=
∫
K
π(k)(v)dk follows from problem 2 of

problem set 4. If x ∈ K, then we have

π(x)(w) =

∫
K

π(xk)(v)dk =

∫
K

π(k)(v)dk = w,

so w ∈ V K . Also, if w′ ∈ V K , then

〈w,w′〉 =

∫
K

〈π(k)(v), w′〉dk =

∫
K

〈v, π(k−1)(w′)〉dk =

∫
K

〈v, w′〉dk = 〈v, w′〉.

So w is the orthogonal projection of v on V K .

Now we prove the last statement. Let f ∈ Cc(G) and v ∈ V . Then :

π(fK)(v) =

∫
G

fK(x)π(x)(v)dx =

∫
G

∫
K

f(xk)π(x)(v)dxdk

=

∫
G

∫
K

f(x)π(x)π(k)−1(v)dxdk

=

∫
G

∫
K

f(x)π(x)π(k)(v)dxdk (K is unimodular)

= π(f)(PK(v)).

On the other hand :

PK(π(f)(v)) =

∫
K

∫
G

f(x)π(kx)(v)dkdx

=

∫
K

∫
G

f(k−1x)π(x)(v)dkdx

=

∫
K

∫
G

f(kx)π(x)(v)dkdx

= π(Kf)(v).

The same proof gives :

Proposition V.1.8. Let f, g ∈ Cc(G). Then
K(f ∗ g) = (Kf) ∗ g and (f ∗ g)K = f ∗ (gK).

In particular, if f and g are bi-invariant, then f ∗ g is also bi-invariant, so Cc(K\G/K) is a
subalgebra of Cc(G) for the convolution product.
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Remark V.1.9. Let Lp(K \G/K) be the subspace of bi-invariant functions in Lp(G). Then, if
1 ≤ p < +∞, if f ∈ L1(K\G/K) and g ∈ Lp(K\G/K), then their convolution product f ∗ g
is in Lp(K\G/K). This is clear on the formulas defining f ∗ g (see proposition I.4.1.3); indeed,
we have

f ∗ g(x) =

∫
G

f(y)g(y−1x)dx =

∫
G

f(xy−1)g(y)dy

(the first formula shows that f ∗ g is right invariant, and the second that f ∗ g is left invariant).

In particular, the subspace L1(K\G/K) of L1(G) is a subalgebra, and we have a similar result
for the L2 spaces if G is compact.

Remark V.1.10. All this is easier to remember if we extend the convolution product and the repre-
sentation π to the space M (G) of Radon measures on G. (See remark I.4.1.6.) We can see µK as
an element of M (G) by identifying it to the Radon measure Cc(G)→ C, f 7−→

∫
K
f(x)dµK(x).

Then we have µK ∗ µK = µK , fK = f ∗ µK , Kf = µK ∗ f and PK = π(µK), so, for example,
the last part of proposition V.1.7 just follows from the fact that π is a ∗-homomorphism.

V.2 Definition of a Gelfand pair

Definition V.2.1. We say that (G,K) is a Gelfand pair if the algebra Cc(K\G/K) is commutative
for the convolution product.

Remark V.2.2. If p ∈ [1,+∞), f ∈ Lp(K\G/K) and g ∈ Cc(G), then

‖f − KgK‖pp =

∫
G

∣∣∣∣f(x)−
∫
K×K

g(kxk′)dkdk′
∣∣∣∣p dx

=

∫
G

∣∣∣∣∫
K×K

(f(kxk′)− g(kxk′))dkdk′
∣∣∣∣p dx.

So, by Minkowski’s formula (see problem 7 of PS 4), we have

‖f − KgK‖p ≤
∫
K×K

‖LkRk′f − LkRk′f‖pdkdk′ = ‖f − g‖p.

As Cc(G) is dense in Lp(G), every function of Lp(K\G/K) can be approximated by elements
of Cc(G), hence, by the calculation above, by elements of Cc(K \G/K). In other words, the
space Cc(K \G/K) is dense in Lp(K \G/K). So, in the definition of a Gelfand pair, we could
have replaced the condition “Cc(K \G/K) is commutative for the convolution product” by the
condition “L1(K\G/K) is commutative for the convolution product” (or, for G, we could have
used “L2(K\G/K) is commutative for the convolution product”).

Example V.2.3. If G is abelian, then (G, {1}) is a Gelfand pair.

Here are other examples (but we will not prove yet that they are Gelfand pairs) :
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- (SO(n + 1), SO(n)), where SO(n) is identified to a subgroup of SO(n + 1) by sending

x ∈ SO(n) to the (n+ 1)× (n+ 1) matrix
(
x 0
0 1

)
;

- (Sn+m,Sn×Sm);

- (GLn(Qp),GLn(Zp)).

Proposition V.2.4. Let (G,K) be a Gelfand pair. Then G is unimodular.

Proof. By proposition I.2.12, we have, for every f ∈ Cc(G),∫
G

f(x)dx =

∫
G

∆(x)−1f(x−1)dx.

So it suffices to prove that
∫
G
f(x)dx =

∫
G
f(x−1)dx for every f ∈ Cc(G). First note that∫

G

KfK(x)dx =

∫
G

f(x)dx

and ∫
G

KfK(x−1)dx =

∫
G

f(x−1)dx,

by lemma V.1.6. So it suffices to show that
∫
G
f(x)dx =

∫
G
f(x−1)dx for every

f ∈ Cc(K \G/K). Fix f ∈ Cc(K \G/K). We can find g ∈ Cc(K \G/K) such that g is
equal to 1 on (supp f) ∪ (supp f)−1 (because supp f = K(supp f)K). Then

f ∗ g(1) =

∫
G

f(y)g(y−1)dy =

∫
supp f

f(y)dy =

∫
G

f(y)dy

and

g ∗ f(1) =

∫
G

g(y)f(y−1)dy =

∫
(supp f)−1

f(y−1)dy =

∫
G

f(y−1)dy.

But f ∗ g = g ∗ f because (G,K) is a Gelfand pair, so this implies the desired result.

The following criterion will allow us to find more Gelfand pairs.

Proposition V.2.5. Suppose that there exists a continuous automorphism θ : G→ G such that :

(a) θ2 = idG (i.e. θ is an involution);

(b) for every x ∈ G, we have θ(x) ∈ Kx−1K.

Then (G,K) is Gelfand pair.
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Proof. Consider the linear functional Cc(G) → C, f 7−→
∫
G
f(θ(x))dx. This is a left-invariant

positive linear functional on Cc(G), so, by the uniqueness statement in theorem I.2.7, there exists
c ∈ R>0 such that, for every f ∈ Cc(G), we have∫

G

f(θ(x))dx = c

∫
G

f(x)dx.

As θ2 = idG, we must have c2 = 1, so c = 1.

Let f, g ∈ Cc(G). On the one hand, we have, for every x ∈ G,

(f ◦ θ) ∗ (g ◦ θ)(x) =

∫
G

f(θ(y))g(θ(y)−1θ(x))dy

=

∫
G

f(y)g(y−1θ(x))dy

= (f ∗ g) ◦ θ(x)

(the second equality follows from the first paragraph of this proof). On the other hand, for every
x ∈ G, we have

(g ∗ f)(x−1) =

∫
G

g(x−1y)f(y)dy =

∫
G

f ′(y−1)g′(yx)dy = (f ′ ∗ g′)(x),

where f ′(z) = f(z−1) and g′(z) = g(z−1). (We used the fact that G is unimodular to do the
change of variables y 7−→ y−1.)

Suppose that f and g are bi-invariant. Then we have f(θ(x)) = f(x−1) and g(θ(x)) = g(x−1)
by condition (b), and a similar equality for g ∗ f because g ∗ f is also bi-invariant, so, for every
x ∈ G,

(f ∗ g)(θ(x)) = ((f ◦ θ) ∗ (g ◦ θ))(x) = (f ′ ∗ g′)(x) = (g ∗ f)(x−1) = (g ∗ f)(θ(x)).

As θ is an automorphism, this implies that f ∗ g = g ∗ f .

Example V.2.6. (1) If G is abelian, then we can take θ : x 7−→ x−1, so (G,K) is a Gelfand
pair for any compact subgroup K, and in particular for K = {1}.

(2) If G is compact, then (G × G, {(x, x), x ∈ G}) is a Gelfand pair. Indeed, it suffices to
apply the proposition above with θ(x, y) = (y, x). Indeed, for every (x, y) ∈ G × G, we
have θ(x, y) = (x, x)(x−1, y−1)(y, y).

V.3 Gelfand pairs and representations

In this section, we will give two representation-theoretic criteria for (G,K) to be a Gelfand pair,
one valid in general and one for G compact.
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V.3 Gelfand pairs and representations

V.3.1 Gelfand pairs and vectors fixed by K

Theorem V.3.1.1. The couple (G,K) is a Gelfand pair if and only if, for every irreducible
unitary representation (π, V ) of G, we have dim(V K) ≤ 1.

We will need the following variant of the Gelfand-Raikov theorem.

Lemma V.3.1.2. Let f ∈ Cc(G). If f 6= 0, then there exists ϕ ∈ E (P1) (see section III.3) such
that

∫
G
f(x)ϕ(x)dx 6= 0.

Proof. Suppose that
∫
G
fϕdµ = 0 for every ϕ ∈ E (P1). By theorem III.4.1, we have∫

G
fϕdµ = 0 for every function of positive type ϕ. By theorem III.2.5, for every unitary rep-

resentation (π, V ) of G and any v ∈ V , we have 〈π(f)(v), v〉 = 0. Applying this to the left
regular representation of G, we get that, for every g ∈ L2(G), we have 〈f ∗ g, g〉L2(G) = 0.
As in the proof of theorem III.5.1, we see that this implies that 〈f ∗ g1, g2〉L2(G) = 0 for all
g1, g2 ∈ L2(G). Again as in the proof of that theorem, we see that, for all g1, g2 ∈ L2(G), we
have 〈f ∗g1, g2〉L2(G) = 〈f, g2 ∗ g̃1〉L2(G), where g̃1(x) = g1(x−1). So we get 〈f, g1 ∗g2〉L2(G) = 0
for all g1, g2 ∈ L2(G). Applying this to g1 = f and to g2 = ψU , where (ψU)U∈U is an approxi-
mate identity, we finally get 〈f, f〉L2(G) = 0, hence f = 0.

We also need the following variant of Schur’s lemma.

Lemma V.3.1.3. Let A be a commutative Banach ∗-algebra, and let u : A → End(V ) be a
representation of A on a nonzero Hilbert space V . Suppose that the only closed subspaces of V
that are fixed by all the u(x), x ∈ A are {0} and V . Then dimV = 1.

Proof. By assumption, the subset u(A) satisfies the hypothesis of corollary II.4.4, so its cen-
tralizer in End(V ) is equal to CidV . But as A is commutative, even element of u(A) is in the
centralizer in u(A), so this implies that Im(u) ⊂ CidV . In particular, every subspace of V is
invariant by all the elements of u(A), so V has no nontrivial closed subspaces, which is only
possible if dimV ≤ 1.

Lemma V.3.1.4. Let (π, V ) be a unitary representation of G. Then π(f) sends V K to itself for
every f ∈ L1(K \G/K). If moreover π is irreducible, then the only closed subspaces of V K

stable by all the π(f), f ∈ L1(K\G/K), are {0} and V K .

Proof. By proposition V.1.7, for every f ∈ Cc(K \G/K) and every v ∈ V K , we have
π(f)(v) ∈ V K . The first statement follows from the fact that Cc(K \G/K) is dense in
L1(K\G/K).
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To prove the second statement, it suffices to show that, for every v ∈ V K − {0}, the space
{π(f)(v), f ∈ Cc(K\G/K)} is dense in V K . Letw ∈ V K , and let ε > 0. As V is irreducible, the
space {π(f)(v), f ∈ L1(G)} is dense in V . As Cc(G) is dense in L1(G), there exists f ∈ Cc(G)
such that ‖π(f)(v)−w‖ ≤ ε. By proposition V.1.7 again, we have π(f)(v) = π(fK)(v), and so
π(KfK)(v) = PK(π(f)(v)), where PK is the orthogonal projection of V on V K . As w ∈ V K ,
we get ‖π(KfK)(v)− w‖ = ‖Pk(π(f)(v))− w‖ ≤ ‖π(f)(v)− w‖ ≤ ε.

Proof of theorem V.3.1.1. Suppose that (G,K) is a Gelfand pair. Let (π, V ) be an irreducible
unitary representation of G. By lemma V.3.1.4, π defines a ∗-homomorphism from L1(K\G/K)
to End(V K), and the only closed subspaces of V K stable by all the elements of L1(K \G/K)
are {0} and V K . As L1(K\G/K) is commutative, lemma V.3.1.3 implies that dim(V K) ≤ 1.

We prove the converse. Suppose that dim(V K) ≤ 1 for every irreducible unitary representa-
tion (π, V ) of G. Let f ∈ Cc(K\G/K) be nonzero. By lemma V.3.1.2, there exists ϕ ∈ E (P1)
such that

∫
G
fϕdµ 6= 0. Let (π, V ) be a cyclic unitary representation of G and v ∈ V be a cyclic

vector such that ϕ(x) = 〈π(x)(v), v〉 for every x ∈ G (see theorem III.2.5). Then we have∫
G

f(x)ϕ(x)dx =

∫
G

f(x)〈π(x)(v), v〉dx = 〈π(f)(v), v〉,

so π(f)(v) 6= 0. By theorem III.3.2, the representation (π, V ) is irreducible. By lemma V.3.1.4,
the endomorphism π(f) of V preserves V K and, by proposition V.1.7, if w is the orthogonal
projection of v on V K , then π(f)(w) = π(f)(v) 6= 0. In particular, the subspace V K of V is
nonzero, so dim(V K) = 1 by assumption. Hence End(V K) = C, which means that we have
found a ∗-homomorphism u : Cc(K\G/K)→ C (sending g to π(g)|V k) such that u(f) 6= 0.

Now let f1, f2 ∈ Cc(K \ G/K). As C is commutative, we have
u(f1 ∗ f2 − f2 ∗ f1) = u(f1)u(f2) − u(f2)u(f1) = 0 for every morphism of algebras
u : Cc(K\G/K)→ C. By the preceding paragraph, this implies that f1 ∗ f2 − f2 ∗ f1 = 0, and
we are done.

V.3.2 Gelfand pairs and multiplicity-free representations

Definition V.3.2.1. Let (π, V ) be a unitary representation of G, and suppose that we can write
V =

⊕
i∈I Vi, with the Vi closed G-invariant subspaces of V that are irreducible as representa-

tions of V .1 Then we say that (π, V ) is multiplicity-free if, for every irreducible unitary repre-
sentation W of G, the set of i ∈ I such that Vi and W are equivalent has cardinality ≤ 1.

Note that the group G acts by left translations on the homogenous space G/K, so, if x ∈ G
and f is a function on G/K, we can define Lxf by Lxf(y) = f(x−1y).

1This is always the case if G is compact, see theorem IV.2.1.
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Definition V.3.2.2. The quasiregular representation of G on L2(G/K) is the representation de-
fined by x · f = Lxf , for every x ∈ G and every f ∈ L2(G/K).

Proposition V.3.2.3. The definition above makes sense, and gives a unitary representation of G.

Proof. By definition of the measure on G/K, we have
∫
G/K

fdµG/K =
∫
G/K

LxfdµG/K for
every f ∈ Cc(G/K) and every x ∈ G. As Cc(G/K) is dense in L2(G/K), this implies that the
operators Lx preserve L2(G/K) and are isometries. By proposition I.3.1.10, it suffices to prove
that, for every f ∈ L2(G/K), the map G → L2(G/K), x 7−→ Lxf is continuous. As in the
proof of proposition I.3.1.13, it suffices to prove this for f ∈ Cc(G/K), in which case it follows
from proposition I.1.12.

Remark V.3.1. If we make G act on L2(G) by the right regular representation, then L2(G/K) is
the space of K-invariant vectors in L2(G). The quasi-regular regular representation is then the
restriction of the left regular representation to L2(G/K)

We could also define a quasiregular representation on L2(K \G) (this is the space of K-
invariant vectors in L2(G) if K acts via the left regular representation, and it gets an action of
G via the right regular representation). The representation we get is unitarily equivalent to the
quasiregular representation on L2(G/K).

Theorem V.3.2.4. Assume that G is compact. Then (G,K) is a Gelfand pair if and only if the
quasiregular representation of G on L2(G/K) is multiplicity-free.

Also, if (G,K) is a Gelfand pair, then we have a G-equivariant isomorphism

L2(G/K) '
⊕̂

(π,V )∈Ĝ
V K 6=0

V .

Proof. First observe that L2(G/K) is the space of vectors of L2(G) that are K-invariant if
K acts by the right regular representation. The Peter-Weyl theorem (corollary IV.4.2) says
that, as a representation of G × G, the space L2(G) is isomorphic to the completion of⊕

(π,V )∈Ĝ End(V ) =
⊕

(π,V )∈Ĝ V
∗ ⊗C V . So L2(G/K) is isomorphic as a representation of

G to the completion of ⊕
(π,V )∈Ĝ
V K 6=0

(V ∗)dim(V K).

Note that, for every (π, V ) ∈ Ĝ, the representation V ∗ is also irreducible; this follows for exam-
ple from (iii) of corollary IV.5.8, because χV ∗ = χV , so ‖χV ∗‖2 = ‖χV ‖2. So the representation
L2(G/K) is multiplicity-free if and only if, for every irreducible unitary representation (π, V )
of G, we have either V K = 0 or dim(V K) = 1. Hence the first statement of the theorem follows
from theorem V.3.1.1.
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V Gelfand pairs

We now prove the second statement. We have already seen that

L2(G/K) '
⊕̂

(π,V )∈Ĝ
V K 6=0

V ∗,

so we just need to show that, if (π, V ) is a finite-dimensional representation of G, then V K 6= 0
if and only if (V ∗)K 6= 0. Applying theorem IV.5.7 to the restrictions of the representations V
and V ∗ to K, we get

dim(V K) =

∫
K

χV (k)dk

and
dim((V ∗)K) =

∫
K

χV ∗(k)dk =

∫
K

χV (k)dk = dim(V K) = dim(V K).

V.4 Spherical functions

In this section, we assume that (G,K) is a Gelfand pair.

Definition V.4.1. Let ϕ ∈ C (K \G/K). We say that ϕ is a spherical function if the linear
functional χϕ : Cc(K \G/K) → C, f 7−→ f ∗ ϕ(1) =

∫
G
f(x)ϕ(x−1)dx is a multiplicative

functional, where the multiplication on Cc(K\G/K) is the convolution product.

In other words, the function ϕ is spherical if ϕ 6= 0 and if, for all f, g ∈ Cc(K \G/K), we
have χϕ(f ∗ g) = χϕ(f)χϕ(g).

Example V.4.2. If G is commutative and K = {1}, then every continuous morphism of groups
ϕ : G→ C× is a spherical function. Indeed, let f, g ∈ Cc(G). Then :∫

G

(f ∗ g)(x)ϕ(x−1)dx =

∫
G×G

f(y)g(y−1x)ϕ(x−1)dx

=

∫
G×G

f(y)g(z)ϕ(z−1y−1)dydz

=

(∫
G

f(y)ϕ(y−1)dy

)(∫
G

g(z)ϕ(z−1)dz

)
.

These are actually the only spherical functions in this case. (This follows immediately from
the next proposition.)

Proposition V.4.3. Let ϕ ∈ C (K\G/K). The following conditions are equivalent :

(i) The function ϕ is spherical.
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(ii) The function ϕ is nonzero and, for all x, y ∈ G, we have∫
K

ϕ(xky)dk = ϕ(x)ϕ(y).

(iii) We have :

(a) ϕ(1) = 1;

(b) for every f ∈ Cc(K\G/K), there exists χ(f) ∈ C such that f ∗ ϕ = χ(f)ϕ.

Proof. We can extend χϕ to Cc(G) by using the same formula, i.e., χϕ(f) =
∫
G
f(x)ϕ(x−1)dx.

Note that, for all f, g ∈ Cc(G), we have

χϕ(f ∗ g) =

∫
G×G

f(y)g(y−1x)ϕ(x−1)dx

=

∫
G×G

f(y)g(z)ϕ(z−1y−1)dydz,

hence

χϕ(f ∗ g)− χϕ(f)χϕ(g) =

∫
G×G

f(y)g(z)(ϕ(z−1y−1)− ϕ(z−1)ϕ(y−1))dydz.

Let f, g ∈ Cc(G). Applying the calculation above to f ′ := KfK and g′ := KgK and us-
ing the bi-invariance of ϕ (and the fact that the measure on K is normalized), we get that
χϕ(f ′ ∗ g′)− χϕ(f ′)χϕ(g′) is equal to∫

G2×K4

f(k1xk2)g(k3yk4)(ϕ(y−1x−1)− ϕ(y−1)ϕ(x−1))dxdydk1dk2dk3dk4

=

∫
G2×K2

f(x)g(y)(ϕ(y−1k3k2x
−1)− ϕ(x−1)ϕ(y−1))dxdydk2dk3

=

∫
G2

f(x)g(y)

(∫
K

ϕ(y−1kx−1)dk − ϕ(x−1)ϕ(y−1)

)
dxdy.

This shows that χϕ is multiplicative if and only
∫
G
ϕ(y−1kx−1)dk = ϕ(y−1)ϕ(x−1) for all

x, y ∈ G. As χϕ 6= 0 if and only if ϕ 6= 0, this proves that (i) and (ii) are equivalent.

Suppose that ϕ satisfies conditions (a) and (b) of (iii). Then, for every f ∈ Cc(K\G/K), we
have

χϕ(f) = f ∗ ϕ(1) = χ(f).

As f 7−→ χ(f) is multiplicative (by the associativity of the convolution product), this implies
that ϕ is spherical.
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V Gelfand pairs

Finally, suppose that ϕ is spherical. We want to prove that conditions (a) and (b) of (iii) are
satisfied. Let f ∈ Cc(K\G/K). Then we have, for every x ∈ G,

f ∗ ϕ(x) =

∫
G

f(y)ϕ(y−1x)dy

=

∫
G×K

f(y)ϕ(y−1kx)dydk (by left invariance of f )

=

∫
G

f(y)ϕ(y)−1ϕ(x)dy (by (ii))

= χϕ(f)ϕ(x).

This shows condition (b). Choosing f ∈ Cc(K \G/K) such that χϕ(f) 6= 0, and applying the
equality above to x = 1, we get χϕ(f) = χϕ(f)ϕ(1), hence ϕ(1) = 1.

Remember that L1(G) is a Banach ∗-algebra, for the convolution product and the involution
given by f ∗(x) = f(x−1). 2 We have seen that L1(K\G/K) is a commutative Banach subalgebra
of L1(G), and it is clear that it is also preserved by the involution. So it is natural to ask what the
spectrum of L1(K\G/K) is.

If ϕ ∈ Cb(K \G/K) (note the boundedness condition), then the integral
∫
G
f(x)ϕ(x−1)dx

converges for every f ∈ L1(G), so we can extend the linear functional χϕ on Cc(K\G/K) to a
bounded linear functional on L1(K\G/K), that we will still denote by χϕ.

Theorem V.4.4. The map ϕ 7−→ χϕ identifies the set of bounded spherical functions to
σ(L1(K\G/K)).

Example V.4.5. If G is commutative and K = {1}, a bounded spherical function is a bounded
continuous morphism of groups G → C×, that is, a continuous morphism of groups G → S1,
i.e. an irreducible unitary representation of G. So we get a canonical bijection Ĝ ∼→ σ(L1(G)).
In particular, every multiplicative functional on L1(G) is a ∗-homomorphism in this case, that is,
the Banach ∗-algebra L1(G) is symmetric. This recovers the result of question 4(c) of problem
set 5.

If G is compact, we will see (in theorem V.7.1) that it is still true that every spherical function
defines a ∗-homomorphism of L1(K \G/K), i.e. that L1(K \G/K). But in general, this is not
true.

Proof of theorem V.4.4. If ϕ is a bounded spherical function, then χϕ is multiplicative on
Cc(K\G/K), hence also on L1(K\G/K) because Cc(K\G/K) is dense in L1(K\G/K).

Conversely, let χ : L1(K\G/K) → C be a multiplicative functional. By corollary II.2.6, the
linear functional χ is continuous and has norm ≤ 1.

2As (G,K) is a Gelfand pair, the group G is automatically unimodular by proposition V.2.4, so we don’t need the
factor ∆(x)−1.
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By remark V.2.2, the linear operator Cc(G) → Cc(K \G/K), f 7−→ KfK decreases the L1

norm, so it extends to a continuous linear operator L1(G) → L1(K \G/K), that we will still
denote by f 7−→ KfK . Then f 7−→ χ(KfK) is a continuous linear functional on L1(G), and its
norm is equal to that of χ, so there exists a unique ϕ ∈ L∞(G) such that ‖ϕ‖∞ = ‖χ‖op and
that, for every f ∈ L1(G), we have∫

G

f(x)ϕ(x−1)dx = χ(KfK).

In particular, for all k, k′ ∈ K and every f ∈ L1(G), we have∫
G

f(x)ϕ(kx−1k′)dx =

∫
G

f((k′)−1xk−1)ϕ(x−1)dx

= χ(K(Lk′Rk−1f)K)

= χ(KfK)

=

∫
G

f(x)ϕ(x−1)dx.

So ϕ is bi-invariant.

Let f, g ∈ L1(K\G/K). We have

χ(f ∗ g) =

∫
G

(f ∗ g)(x)ϕ(x−1)dx

=

∫
G×G

f(y)g(y−1x)ϕ(x−1)dxdy

=

∫
G×G

f(y)ϕ(y−1z)g(z−1)dydz

=

∫
G

(f ∗ ϕ)(z)g(z−1)dz.

As χ(f ∗ g) = χ(f)χ(g) = χ(f)
∫
G
ϕ(z)g(z−1)dz, this implies that∫

G

((f ∗ ϕ)− χ(f)ϕ)(z)g(z−1)dz = 0.

Hence, for every f ∈ L1(K \G/K), we have f ∗ ϕ = χ(f)ϕ. Choose f ∈ Cc(K \G/K)
such that χ(f) 6= 0. Then χ(f) = f ∗ ϕ(1) = χ(f)ϕ(1), so ϕ(1) = 1. Also, the function
f ∗ ϕ is continuous, because it is left uniformly continuous (note that, for every x ∈ G, we have
‖Lx(f ∗ϕ)−f ∗ϕ‖∞ = ‖(Lxf −f)∗ϕ‖∞ ≤ ‖Lxf −f‖1‖ϕ‖∞ and apply proposition I.3.1.13).
So ϕ is locally almost everywhere equal to a bi-invariant continuous bounded function, and this
continuous bounded function is spherical by proposition V.4.3.

Finally, let ϕ′ be another bounded spherical function such that, for every f ∈ L1(K \G/K),
we have ∫

G

f(x)ϕ′(x−1)dx =

∫
G

f(x)ϕ(x−1)dx.
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We have seen above that, for every f ∈ L1(G), we have∫
G

f(x)ϕ(x−1)dx = χ(KfK) =

∫
G

KfK(x)ϕ(x−1)dx,

and we have a similar equality for ϕ′. So∫
G

f(x)ϕ′(x−1)dx =

∫
G

f(x)ϕ(x−1)dx

for every f ∈ L1(G), and this implies that ϕ′ = ϕ.

V.5 Spherical functions of positive type

For the first result, we don’t need to assume that (G,K) is a Gelfand pair.

Proposition V.5.1. Let ϕ be a function of positive type on G, and let (πϕ, Vϕ) and vϕ ∈ Vϕ be
the unitary representation of G and the cyclic vector associated to ϕ. (See section III.2.)

Then vϕ ∈ V K
ϕ if and only if ϕ is bi-invariant.

Proof. For all k, k′ ∈ K and x ∈ G, we have

ϕ(kxk′) = 〈πϕ(kxk′)(vϕ), vϕ〉 = 〈πϕ(x)(πϕ(k′)(vϕ)), πϕ(k−1)(vϕ)〉.

So, if vϕ ∈ V K
ϕ , we get ϕ(kxk′) = ϕ(x). Conversely, suppose that ϕ is bi-invariant. Taking

k′ = 1 in the equation above, we see that, for every k ∈ K and every x ∈ G,

ϕ(x) = 〈πϕ(x)(vϕ), vϕ〉 = ϕ(k−1x) = 〈πϕ(x)(vϕ), πϕ(k)(vϕ)〉.

As vϕ is a cyclic vector, the span of {πϕ(x)(vϕ), x ∈ G} is dense in Vϕ, and so this implies that
πϕ(k)(vϕ) = vϕ, for every k ∈ K.

Theorem V.5.2. Assume again that (G,K) is a Gelfand pair. Let ϕ be a continuous bi-invariant
function on G.

If ϕ is a normalized function of positive type (i.e. ϕ ∈ P1), then ϕ is spherical if and only
ϕ ∈ E (P1), that is, if and only if the representation (πϕ, Vϕ) is irreducible.

Proof. We write (π, V ) and v for (πϕ, Vϕ) and vϕ. As ϕ is bi-invariant, we know that v ∈ V K by
proposition V.5.1. Suppose first that ϕ ∈ E (P1), i.e., that π is irreducible. By theorem V.3.1.1,
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we have dim(V K) = 1. Let f ∈ Cc(K\G/K). Then we have, for every x ∈ G,

f ∗ ϕ(x) =

∫
G

f(y)〈π(y−1x)(v), v〉dy

=

∫
G

f(y)〈π(x)(v), π(y)v〉dy

= 〈π(x)(v), π(f)(v)〉.

As π(f)(v) ∈ V K , we can write π(f)(v) = χ(f)v, with χ(f) ∈ C, and we get, for every x ∈ G,

f ∗ ϕ(x) = χ(f)〈π(x)(v), v〉 = χ(f)ϕ(x).

By proposition V.4.3, this implies that ϕ is spherical.

Conversely, assume that ϕ is spherical. Then, by proposition V.4.3 again, there exists a map
χ : Cc(K\G/K)→ C such that, for every f ∈ Cc(K\G/K), we have f ∗ ϕ = χ(f)ϕ. In other
words, for every f ∈ Cc(K\G/K) and every x ∈ G, we have

f ∗ ϕ(x) =

∫
G

f(y)〈π(y−1x)(v), v〉dy = 〈π(x)(v), π(f)(v)〉

= χ(f)ϕ(x)

= χ(f)〈π(x)(v), v〉.

As v is a cyclic vector, this implies that π(f)(v) = χ(f)v ∈ V K . But we have seen in the proof
of lemma V.3.1.4 that the space {π(f)(v), f ∈ Cc(K\G/K)} is dense in V K (if v is cyclic), so
dim(V K) = 1. By lemma V.5.3, this implies that (π, V ) is irreducible.

Lemma V.5.3. We don’t assume that (G,K) is a Gelfand pair. Let (π, V ) be a unitary repre-
sentation of G, and suppose that there is a cyclic vector in V K . If dim(V K) ≤ 1, then (π, V ) is
irreducible.

Proof. It suffices to prove that EndG(V ) = CidV . Indeed, if V has a closedG-invariant subspace
W such thatW 6= {0}, V , then the orthogonal projection onW is aG-equivariant endomorphism
of V (by lemma I.3.4.3) that is not a multiple of idV .

So let T ∈ EndG(V ). Then, by proposition V.1.7, the operator T commutes with the orthog-
onal projection on V K , so it preserves V K . Choose a cyclic vector v ∈ V K . As dim(V K) = 1,
we have T (v) = λv, with λ ∈ C. As T is G-equivariant, we get that T (π(x)(v)) = λπ(x)(v) for
every x ∈ G. As v is cyclic, this implies that T = λidV .

Corollary V.5.4. Assume that (G,K) is a Gelfand pair. Then ϕ 7−→ (πϕ, Vϕ) induces a bijec-
tion from the set of spherical functions in E (P1) to the set of unitary equivalence classes of
irreducible unitary representations (π, V ) of G such that V K 6= {0}.
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V Gelfand pairs

Proof. The only statement that doesn’t follows immediately from proposition V.5.1 and theo-
rem V.5.2 is the fact that, if two spherical functions in E (P1) give rise to unitarily equivalent
representations, then they must be equal. Let ϕ1, ϕ2 ∈ E (P1) be spherical, and suppose that
there is an isometric G-equivariant isomorphism T : Vϕ1 → Vϕ2 . By proposition V.5.1, the vec-
tors vϕ1 and vϕ2 are K-invariant. Also, as (G,K) is a Gelfand pair, the spaces V K

ϕ1
and V K

ϕ2
are

both of dimension ≤ 1, hence of dimension 1 because they contain nonzero vectors. But T is
G-equivariant, so we have T (V K

ϕ1
) ⊂ V K

ϕ2
, which implies that T (vϕ1) = λvϕ2 for some λ ∈ C.

As ‖vϕ1‖ = ‖vϕ2‖ = 1, we must have |λ| = 1. So, for every x ∈ G, we get

ϕ2(x) = 〈πϕ2(x)(vϕ2), vϕ2〉
= 〈πϕ2(x)(λ−1T (vϕ1)), λ

−1T (vϕ1)〉
= 〈T (πϕ1(x)(vϕ1)), T (vϕ1)〉
= 〈πϕ1(x)(vϕ1), vϕ1〉.

V.6 The dual space and the spherical Fourier transform

In this section, we suppose that (G,K) is a Gelfand pair. We will state a few results on the
(spherical) Fourier transform without proof. In the next section, we will give proofs of some
version of these results if G is compact.

Definition V.6.1. The dual space of (G,K) is the set Z of spherical functions in E (P1), with
the weak* topology coming from the embedding E (P1) ⊂ L∞(G) ' Hom(L1(G),C).

Example V.6.2. If G is commutative and K = {1}, then Z = Ĝ, the dual group of G. (See
problem set 3.)

Proposition V.6.3. The space Z is locally compact, and its topology coincides with the topology
of convergence on compact subsets of G.

Proof. For the first statement, note first that P0 = {ψ of positive type|ψ(1) ≤ 1} is weak*
compact, because it is weak* closed in the closed unit ball of L∞(G). By the proof of
theorem V.4.4, the subset P0 ∩ C (K \ G/K) is the set of ϕ ∈ P0 such that, for ev-
ery f ∈ L1(G), we have

∫
G
f(x)ϕ(x−1)dx =

∫
G
KfK(x)ϕ(x−1)dx. These are weak*

closed conditions, so P0 ∩ C (K \G/K) is weak* closed in P0, hence weak* compact. Fi-
nally, by theorem V.5.2, the set Z ∪ {0} is the set of ϕ ∈ P0 ∩ C (K \G/K) such that∫
G

(f ∗ g)(x)ϕ(x−1)dx =
(∫

G
f(x)ϕ(x−1)dx

) (∫
G
g(x)ϕ(x−1)dx

)
for all f, g ∈ L1(K \G/K).

This is a weak* closed condition, so Z ∪ {0} is weak* compact, and Z is locally compact. Note
that this also proves that Z ∪ {0} is the Alexandroff compactification of Z.

The second statement follows immediately from Raikov’s theorem (theorem III.4.3).
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Definition V.6.4. Let f ∈ L1(K\G/K). The (spherical) Fourier transform of f is the function
f̂ : Z → C defined by

f̂(ϕ) =

∫
G

f(x)ϕ(x−1)dx = χϕ(f).

Proposition V.6.5. The Fourier transform has the following properties :

(i) For every f ∈ L1(K\G/K), the function f̂ is in C0(Z), and we have ‖f̂‖∞ ≤ ‖f‖1.

(ii) The map L1(K\G/K)→ C0(Z), f 7−→ f̂ is C-linear and it has dense image.

(iii) For all f, g ∈ L1(K\G/K), we have f̂ ∗ g = f̂ ĝ.

(iv) For every f ∈ L1(K\G/K), we have f̂ ∗ = f̂ .

Proof. (i) The continuity f̂ follows immediately from the definition of the weak* topology.
In fact, we can extend f̂ (by the same formula) to a continuous linear functional on the
whole space L∞(G). But have seen in the proof of proposition V.6.3 that Z ∪ {0} is the
Alexandroff compactification of Z, so this implies that f̂ ∈ C (Z) vanishes at ∞. The
inequality ‖f̂‖∞ ≤ ‖f‖1 just follows from the fact that ‖ϕ‖∞ = 1 for every ϕ ∈ Z.

(iii) and (iv) This is just expressing the fact that χϕ is a ∗-homomorphism from L1(K\G/K) to C, for
every ϕ ∈ Z.

(ii) The linearity is clear. The second statement follows from the Stone-Weierstrass theorem :
indeed, the image of the spherical Fourier transform is a C-subalgebra of C0(Z) by (iii),
it is stable by complex conjugation by (iv), it separates points (because, by theorem V.4.4,
the map Z → σ(L1(K\G/K)), ϕ 7−→ (f 7−→ f̂(ϕ)) is injective), and it vanishes nowhere
(for every ϕ ∈ Z, the map f 7−→ f̂(ϕ) is a multiplicative functional on L1(K\G/K), so
it is nonzero).

Theorem V.6.6. (Fourier inversion) 3 Let V 1(K \G/K) be the space of L1 functions that are
complex linear combinations of bi-invariant functions of positive type on G.

Then there exists a unique measure ν on Z, called the Plancherel measure, such that, for every
f ∈ V 1(K\G/K), we have f̂ ∈ L1(Z, ν) and, for every x ∈ G,

f(x) =

∫
Z

ϕ(x)f̂(ϕ)dν.

Theorem V.6.7. (Plancherel formula) 4 For every f ∈ Cc(K\G/K), we have f̂ ∈ L2(Z, ν), and∫
G

|f(x)|2dx =

∫
Z

|f̂(ϕ)|2dν(ϕ).

3See [18] Theorem 6.4.5.
4See [18] Theorem 6.4.6.
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In particular, the map f 7−→ f̂ extends to an isometry L2(K\G/K)→ L2(Z, ν), and this is an
isomorphism.

Remark V.6.8. If G is commutative and K = {1}, then Z = Ĝ is a locally compact group, the
measure ν is a Haar measure on Ĝ, and the Pontrjagin duality theorem says that the canonical

map G → ̂̂
G, x 7−→ (ϕ 7−→ ϕ(x)) is an isomorphism of topological groups. (See for example

[8] Theorems 4.22 and 4.32, or [18] Theorems 5.5.1 and 5.7.1.)

But in general, the Plancherel measure ν could be supported on a strict subset of Z.

V.7 The case of compact groups

In this section, we assume that (G,K) is a Gelfand pair, and that G is compact. We also assume
that the Haar measure on G is normalized.

Theorem V.7.1. (i) The dual space Z of (G,K) is discrete, and it is an orthogonal subset of
L2(G).

(ii) Every spherical function on G is of positive type (hence in E (P1) by theorem V.5.2).
In other words, the set Z is in canonical bijection (via ϕ 7−→ (πϕ, Vϕ)) with the set of
equivalence classes of irreducible unitary representations of G such that dim(V K

ϕ ) = 1.

(iii) For every ϕ ∈ Z, we have

ϕ(x) =

∫
K

χπϕ(xk)dk

for x ∈ G, and ∫
G

|ϕ(x)|2 =
1

dimVϕ
.

(iv) If f ∈ L2(K\G/K) and (π, V ) ∈ Ĝ, then f ∗ χπ = 0 if V K = {0}, and otherwise f ∗ χπ
is a multiple of the element ϕπ of Z corresponding to π by corollary V.5.4.

Proof. Let ϕ, ϕ′ ∈ Z such that ϕ 6= ϕ′. We know by corollary V.5.4 (and proposition IV.2.6) that
the representations Vϕ and Vϕ′ are unitary and not equivalent. We also know (by construction of
the representation) that ϕ and ϕ′ are matrix coefficients of Vϕ and Vϕ′ , respectively. By Schur
orthogonality (theorem IV.3.8), this implies that 〈ϕ, ϕ′〉L2(G) = 0.

We prove that Z is discrete. Let ϕ ∈ Z, and consider U = {ϕ′ ∈ Z|‖ϕ−ϕ′‖∞ < ‖ϕ‖2}. This
is open in the topology of convergence on compact subsets of G (because G is compact), hence
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is an open subset of Z by Raikov’s theorem (theorem III.4.3). Also, if ϕ′ ∈ U , then we have

|〈ϕ, ϕ′〉L2(G)| = |〈ϕ, ϕ〉L2(G) − 〈ϕ, ϕ′ − ϕ〉L2(G)|
≥ ‖ϕ‖2

2 − ‖ϕ‖2‖ϕ− ϕ′‖2

≥ ‖ϕ‖2
2 − ‖ϕ‖2‖ϕ− ϕ′‖∞

> 0,

hence, by the first paragraph, ϕ′ = ϕ. This means that U = {ϕ}, i.e., that ϕ is an isolated point
of Z.

Let (π, V ) be an irreducible unitary representation of G and let f ∈ L2(K\G/K). We want
to calculate f ∗ χπ. Let (v1, . . . , vd) be an orthonomal basis; then, for every x ∈ G, we have
χπ(x) =

∑d
i=1〈π(x)(ei), ei〉. Hence, for every x ∈ G,

f ∗ χπ(x) =

∫
G

f(y)
d∑
i=1

〈π(y−1x)(ei), ei〉 =
d∑
i=1

〈π(x)(ei), π(f)(ei)〉.

Let PK ∈ End(V ) be the orthogonal projection on V K . As f is bi-invariant, we have
π(f) = PK ◦ π(f) ◦ PK by proposition V.1.7. Suppose first that V K = {0}. Then the for-
mula above gives f ∗ χπ = 0. Now suppose that V K 6= {0}. Then, by corollary V.5.4, there is
a unique spherical function of positive type ϕπ whose associated representation is (π, V ), and a
unitary cyclic vector v ∈ V K such that ϕπ(x) = 〈π(x)(v), v〉. We may choose the orthonormal
basis such that v1 = v. Then PK(vi) = 0 for i ≥ 2 and PK(v1) = v1, for every x ∈ G, we have

f ∗ χπ(x) =
d∑
i=1

〈π(x)(vi), PK(π(f)(PK(vi)))〉 = 〈π(x)(v1), PK(π(f)(v1))〉.

As V K is 1-dimensional, the vector PK(π(f)(v1)) is a multiple of v1, and so f ∗ χπ is a multiple
of ϕπ. This proves (iv). Note also that, for every x ∈ G, we have∫

K

χπ(kx)dk =

∫
K

d∑
i=1

〈π(kx)(vi), vi〉dk

=
d∑
i=1

〈
π(x)(vi),

∫
K

π(k−1)(vi)dk

〉

=
d∑
i=1

〈π(x)(vi), PK(vi)〉 (by proposition V.1.7)

= 〈π(x)(v1), v1〉
= ϕπ(x),

which gives the first part of (iii). The second part of (iii) is contained in point (ii) of proposition
IV.3.8.
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Now consider a spherical function ϕ on G. By proposition IV.7.1 (i.e. the Fourier inversion
formula), we have an equality (in L2(G))

ϕ =
∑
π∈Ĝ

dim(π)ϕ ∗ χπ.

By the calculations above, only the π ∈ Ĝ with nonzero K-invariant vectors appear in the sum
above, and then ϕ ∗ χπ is a multiple of the function that was denoted by ϕπ in the previous
paragraph. In other words, using corollary V.5.4 again, we get

ϕ =
∑
ψ∈Z

cψψ,

for some cψ ∈ C. If we denote by χϕ (resp. χψ) the linear functional f 7−→ f ∗ ϕ(1) (resp.
f 7−→ f ∗ ψ(1)) on L1(K \G/K), we know that it is multiplicative (for χψ, this uses theorem
V.5.2). Also, as ϕ =

∑
ψ∈Z cψψ, we have χϕ =

∑
ψ∈Z cψχψ. Let ψ, ψ′ ∈ Z such that ψ 6= ψ′.

Then ψ ∗ ψ′ = ψ′ ∗ ψ is a multiple of both ψ and ψ′ (by proposition V.4.3), so ψ ∗ ψ′ = 0. In
particular, we have χψ(ψ′) = χψ′(ψ) = 0. This implies that χϕ(ψ) = cψχψ(ψ) for every ψ ∈ Z;
note also that

χψ(ψ) =

∫
G

ψ(x)ψ(x−1)dx =

∫
G

ψ(x)ψ(x)dx > 0.

Hence, if ψ, ψ′ ∈ Z and ψ 6= ψ′, then

0 = χϕ(ψ ∗ ψ′) = χϕ(ψ)χϕ(ψ′) = cψc
′
ψχψ(ψ)χψ′(ψ

′),

so cψcψ′ = 0. So at most of one the cψ can be nonzero, i.e., there exists ψ ∈ Z such that ϕ = cψψ.
As ϕ(1) = 1 = ψ(1), we must also have cψ = 1, so finally we see that ϕ = ψ is of positive type.
This finishes the proof of (ii).

Corollary V.7.2. (i) We have a G-equivariant isomorphism

L2(G/K) '
⊕̂
ϕ∈Z

Vϕ.

(ii) The family ((dimVϕ)1/2ϕ)ϕ∈Z is a Hilbert basis of L2(K\G/K).

(iii) For every f ∈ L2(K\G/K), we have

f =
∑
ϕ∈Z

dim(Vϕ)f̂(ϕ)ϕ

(Fourier inversion formula) and

‖f‖2
L2(G) =

∑
ϕ∈Z

dim(Vϕ)|f̂(ϕ)|2

(Parseval formula).
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Proof. Point (i) is just a reformulation of the last statement of theorem V.3.2.4.

For (ii), we already know that the family (
√

dim(Vϕ)ϕ)ϕ∈Z is orthonormal in L2(G). Also, if
f ∈ L2(K\G/K), we have

f =
∑

(π,V )∈Ĝ

dim(V )f ∗ χπ

by proposition IV.7.1, so f is in the closure of Span(Z) by point (iv) of the theorem, which
means that Span(Z) is dense in L2(K\G/K).

The second formula of (iii) follows from the first formula and from (ii). To prove the first
formula, it only remains to show that, for every f ∈ L2(K \G/K) and every ϕ ∈ Z, we have
f ∗ χπϕ = f̂(ϕ)ϕ. As we already know that f ∗ χπϕ is a multiple of ϕ, we just need to check
that f ∗ χπϕ(1) = f̂(ϕ). By point (iii) of the theorem, we have ϕ(x) =

∫
K
χπϕ(kx)dk for every

x ∈ G. So :

f ∗ χπϕ(1) =

∫
G

f(x)χπϕ(x−1)dx

=

∫
G×K

f(k−1x)χπϕ(x)dxdk (f is left invariant and vol(K) = 1)

=

∫
G×K

f(x)χπϕ(kx)dxdk

=

∫
G

f(x)ϕ(x)dx

=

∫
G

f(x)ϕ(x−1)dx

= f̂(ϕ).

Remark V.7.3. The corollary says in particular that the Plancherel measure ν on Z is given by
|ν({ϕ})| = dim(Vϕ).
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VI Application of Fourier analysis to
random walks on groups

We will mostly be interested in the case of finite groups in this chapter, but we will give some
results for more general groups in the last section.

VI.1 Finite Markov chains

We fix once and for all a probability space Ω (i.e. a measure space with total volume one).

Definition VI.1.1. Let X be a measurable space (i.e. a space with a σ-algebra). A random
variable with values in X is a measurable function X : Ω→ X .

For every measurable subset A of X , we write P(X ∈ A) for the measure of X−1(A). (We
think of this as the probability thatX is inA.) The distribution ofX is the probability distribution
µ on X defined by µ(A) = P(X ∈ A).

We think of random variables as representing the outcome of some experiment or observation.
The probability space Ω is usually not specified (you can think of it as something like “all the
possible universes”). For example, we could think of the outcome of flipping a coin as a random
variable with values in the finite set {heads, tails}. If the coin is unbiased, the distribution of that
random variable is given by µ({heads}) = µ({tails}) = 1

2
.

In this notes, we will only be concerned with the case where X is finite and its σ-algebra is the
set of all subsets of X . We can (and will) think of measures on X as functions µ : X → R≥0.

From now on, we assume that X is finite.

Definition VI.1.2. A matrix P = (Pi,j) ∈ Mn(R) is called stochastic if Pi,j ≥ 0 for all
i, j ∈ {1, . . . , n} and

∑n
j=1 Pi,j = 1 for every i ∈ {1, . . . , n}.

If P : X × X → R is a function, we think of it as a matrix of size |X| × |X| and we call is
stochastic if P (x, y) ≥ 0 for all x, y ∈ X and

∑
y∈X P (x, y) = 1 for every x ∈ X .

Definition VI.1.3. Let P : X2 → R be a stochastic function and ν be a probability distribution
on X A (discrete-time homogeneous) Markov chain with state space X , initial distribution ν
and transition matrix P is a sequence (Xn)n≥0 of random variables with values in X such that :
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(a) The distribution of X0 is ν.

(b) For every n ≥ 0 and all x0, . . . , xn+1 ∈ X , if P(Xn = xn, . . . , X0 = x0) > 0, then

P(Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = P (xn, xn+1).

Let P,Q : X2 → R be two functions. We write PQ for the function X2 → R defined by

PQ(x, y) =
∑
z∈X

P (x, z)Q(z, y).

(If we see functions on X2 as matrices, this is the usual matrix product.)

In particular, we write P n for the product PP . . . P (n times); by convention, P 0 is the char-
acteristic function of the diagonal.

Lemma VI.1.4. Let (Xn)n≥0 be a Markov chain on X with initial distribution ν and transition
matrix P . Then, for every x ∈ X , we have

P(Xn = x) =
∑
y∈X

ν(y)P n(y, x).

In other words, if we see P as a matrix and ν as a row vector, then the distribution of Xn is
νP n.

Proof. We prove the result by induction on n. It is obvious for n = 0. Suppose that we know it
for some n, and let’s prove it for n+ 1. Let x ∈ X . Then

P(Xn+1 = x) =
∑

y∈X, P(Xn=y) 6=0

P(Xn+1 = x|Xn = y)

=
∑
y∈X

P(Xn = y)P(Xn+1 = x|Xn = y)

=
∑
y∈X

P(Xn = y)P (y, x).

Using the induction hypothesis, we get

P(Xn+1 = x) =
∑
y∈X

P (y, x)
∑
z∈X

ν(z)P n(z, y) =
∑
z∈X

ν(z)P n+1(z, x).
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Example VI.1.5. (1) Random walk on the discrete circle : We take X = Z/rZ, ν = δ0 and
P defined by

P (x, y) =

{
1
2

if x− y ∈ {±1}
0 otherwise.

The Markov chain is modeling a random walk on the “discrete circle” Z/nZ where we
start at 0 with probability 1, and then, at each time n, we have a 50% chance to go to the
preceding point on the discrete circle and a 50% chance to go to the next point of the circle.

(2) Mixing a deck of cards using random transpositions : We are trying to understand the fol-
lowing situation : We have a deck of N cards. At each time n, we randomly (uniformly
and independently) choose two cards and switch their positions in the deck. How long will
it take to mix the deck ?

This problem is modeled by a Markov chain with state space SN (representing all the
possible orderings of the deck), initial distribution the Dirac measure supported at our
starting position, and transition matrix P given by

P (τσ, σ) =


1
N

if τ = 1
2
N2 if τ is a transposition
0 otherwise.

(3) The Bernoulli-Laplace diffusion model : We have two urns labeled by 0 and 1. At the start,
urn 0 contains r red balls and urn 1 contains b blue balls. At each time n, we choose a ball
in each urn (uniformly and independently) and switch them. How long will it take to mix
the balls ?

We model this problem using a Markov chain with state space SN /Sr×Sb,
where N = r + b, and Sr×Sb is embedded in SN via the obvious bijection
{1, . . . , r} × {1, . . . , b} ' {1, . . . , N}. Indeed, we can think of the N balls as the set
{1, . . . , N}, where the first r balls are red and the last b balls are blue. A state of the pro-
cess described above is a subset A of {1, . . . , N} such that |A| = r (the content of urn 0);
note that switching two balls between the urns does not change the number of balls in each
urn. The group SN acts transitively on the set Ωr of cardinality r subsets of {1, . . . , N},
and its subgroup Sr×Sb is the stabilizer of {1, . . . , r}, so the state set is indeed in bi-
jection with SN /Sr×Sb. The initial distribution is the Dirac measure concentrated at
{1, . . . , r} The transition matrix P is given by

P (A′, A) =

{
(r−1)!(b−1)!

(r+b)!
if r − |A ∩ A′| = 1

0 otherwise.

Indeed, we need the calculate the number of pairs (A,A′) of subsets of cardinality r of
{1, . . . , N} such that r − |A ∩ A′| = 1; note that the condition means that A′ − A and
A − A′ both have exactly one element. There are (r+b)!

r!b!
choices for A, b choicse for the

element of A′ − A and r choices for the element of A− A′.
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We have been asking if the chains described in the examples converge, but the first question
should be : to what distribution(s) can they converge ?

Definition VI.1.6. Consider a stochastic function P : X2 → R. A stationary distribution for P
is a probability distribution µ on X such that, for every y ∈ X , we have

µ(y) =
∑
x∈X

µ(x)P (x, y).

If we think of P as a |X| × |X| matrix and of µ as a row vector of size |X|, then the condition
becomes µP = µ.

If a Markov chain with transition matrix P converges in any reasonable sense, then the distri-
bution of its limit should be a stationary distribution of P .

Finally, we define the distance that we will use on random variables. Note that this definition
makes just as much sense if X is a general measure space, and the lemma following it stays true
with essentially the same proof.

Definition VI.1.7. Let µ and ν be two probability distributions on X . Their total variation
distance is

‖X − Y ‖TV = max
A⊂X
|µ(A)− ν(A)|.

This is clearly a metric on the set of probability distributions, and in fact it is closely related
to the L1 metric.

Lemma VI.1.8. Let µ and ν be two probability distributions on X . Then we have

‖µ− ν‖TV =
1

2

∑
x∈X

|µ(x)− ν(x)|.

Proof. Let B = {x ∈ X|µ(x) ≥ ν(x)}. For every A ⊂ X , we have

µ(A)− ν(A) = µ(A ∩B)− ν(A ∩B) +
∑

x∈A−A∩B

(µ(x)− ν(x))

≤ µ(A ∩B)− ν(A ∩B)

= µ(B)− ν(B)−
∑

x∈B−A∩B

(µ(x)− ν(x))

≤ µ(B)− ν(B).

Similarly, we have

ν(A)− µ(A) ≤ ν(X −B)− µ(X −B) = µ(B)− ν(B).
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Hence |µ(A)− ν(A)| ≤ µ(B)− ν(B), with equality if A = B or A = X −B, and we get

‖µ− ν‖TV = µ(B)− ν(B) =
1

2
(µ(B)− ν(B) + ν(X −B)− µ(X −B))

=
1

2

∑
x∈B

|µ(x)− ν(x)|+ 1

2

∑
x∈X−B

|µ(x)− ν(x)|

=
1

2
‖µ− ν‖1.

VI.2 The Perron-Frobenius theorem and convergence of
Markov chains

Notation VI.2.1. Let A,B ∈ Mnm(R). We say that A ≥ B (resp. A > B) if Aij ≥ Bij (resp.
Aij > Bij) for every (i, j) ∈ {1, . . . , n} × {1, . . . ,m}. We also denote by |A| the n×m matrix
(|Aij|).

Definition VI.2.2. We say that a matrix P = (Pij) ∈Mn(R) is positive if P > 0.

Definition VI.2.3. We say that a stochastic matric P ∈Mn(R) is ergodic if there exists a positive
integer r such that P r is positive.

Remember the following classical theorem from linear algebra :

Theorem VI.2.4 (Perron-Frobenius theorem). Let P = (Pij) ∈Mn(R) be an ergodic stochastic
matrix. Then :

(i) The matrix P has 1 as a simple eigenvalue, and every complex eigenvalue λ of P satisfies
|λ| < 1.

(ii) The space of row vectors w ∈ M1n(R) such that wP = w is 1-dimensional, and it has a
generator v = (v1, . . . , vn) such that vi > 0 for every i and v1 + . . .+ vn = 1.

(iii) Let P∞ be the n × n matrix all of whose rows are equal to the vector v of (ii). Then
P r → P∞ as r → +∞. More precisely, let ρ = max{|λ|, λ 6= 1 eigenvalue of P}; by (i),
we know that ρ < 1. Fix any norm ‖.‖ on Mn(R). Then there exists a polynomial f ∈ Z[t]
such that

‖P k − P∞‖ ≤ f(k)ρk.

Lemma VI.2.5. Let A = (Aij) ∈Mn(R) be a positive matrix, let

Z = {x = (x1, . . . , xn) ∈ Rn|x ≥ 0 and x1 + . . .+ xn = 1},

123



VI Application of Fourier analysis to random walks on groups

and let
Λ = {λ ∈ R|∃x ∈ Z, Ax ≥ λx}.

Then the real number λ0 = sup Λ is positive and a simple root of the characteristic polynomial
of A, and it has an eigenvector all of whose entries are positive. Moreover, for any complex
eigenvalue λ 6= λ0 of A, we have |λ| < λ0.

Proof. Note that Λ 6= ∅ because 0 ∈ Λ, and Λ is bounded above by the sum of all the entries of
A. So λ0 is well-defined and nonnegative. Let (µn)n≥0 be a sequence of elements of Λ converging
to λ0; for every n ≥ 0, choose x(n) ∈ Z such that Ax(n) ≥ µnx

(n). As Z is compact, we may
assume that the sequence (x(n))n≥0 converges to some x ∈ Z, and then we have Ax ≥ λ0x.
Suppose that Ax 6= λ0x, then, as A > 0, we get A(Ax) > λ0Ax. As Ax ≥ 0 and Ax 6= 0, we
can multiply Ax by a positive scalar to get a vector y ∈ Z such that Ay > λ0y, which contradicts
the definition of λ0. So Ax = λ0x. Also, as x has at least one positive entry and A > 0, the
vector λ0x = Ax has all its entries positive, which implies that λ0 > 0 and x > 0.

Next we show that every complex eigenvalue λ 6= λ0 of A satisfies |λ| < λ0. Let λ be a
complex eigenvalue of A. Then there exists a nonzero vector y = (y1, . . . , yn) ∈ Cn such that
Ay = λy. For every i ∈ {1, . . . , n}, we have

|λ||yi| =

∣∣∣∣∣
n∑
j=1

Ai,jyj

∣∣∣∣∣ ≤∑
j=1

Ai,j|yj|.

In other words, we have A|y| ≥ |λ||y|. As we can normalize |y| to get an element of Z, this
shows that |λ| ≤ λ0. Suppose that |λ| = λ0. As A > 0, there exists a positive real number δ
such that A′ := A− δIn > 0. Then µ 7−→ µ− δ induces a bijection between the eigenvalues and
those of A′, and in particular λ0− δ is the biggest real eigenvalue of A′ (and it is positive because
A′ > 0). By applying the beginning of the paragraph to A′, we see that |λ − δ| ≤ λ0 − δ. But
then

λ0 = |λ| = |λ− δ + δ| ≤ |λ− δ|+ δ ≤ λ0,

so |λ− δ|+ δ = |λ|, so λ ∈ R≥δ, and we must have λ = λ0.

Let’s show that the eigenspace Eλ0 := Ker(A − λ0In) has dimension 1. Suppose that there
exists y = (y1, . . . , yn) ∈ Eλ0 (with real entries) such that the family {x, y} is linearly inde-
pendent. We may assume that y has at least one positive entry. Write x = (x1, . . . , xn), and let
µ = sup{ν ∈ R|∀i ∈ {1, . . . , n}, xi ≥ νyi}. Then x − νy ≥ 0 and x − νy 6> 0. The vector
x−νy is nonzero because x and y are linearly independent, and we haveA(x−νy) = λ0(x−νy).
As A > 0, x− νy ≥ 0 and λ0, this implies x− νy > 0, contradicting the choice of ν.

Now we show that λ0 is a simple root of the characteristic polynomial χA(t) of A. We can

find g ∈ GLn(R) such that g−1Ag is of the form
(
λ0 ∗
0 B

)
, with B ∈ Mn−1(R). We have

χA(t) = (t − λ0)χB(t). Suppose that the multiplicity of λ0 as a root of χA(t) is ≥ 2. Then λ0
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is a root of χB(t), so there exists z ∈ Rn−1 such that Bz = λ0z. Let y = g

(
0
z

)
∈ Rn, then

Ay = λ0y + αx for some α ∈ R. As dim(Eλ0) 6= 0, the vector y cannot be an eigenvector of
A, so α 6= 0. An easy induction (using the fact that Ax = λ0x) shows that, for every positive
integer r, we have Ary = λr0y + rαλr−1

0 x. As Ar > 0, this implies that

Ar|y| ≥ |Ary| = |λr0y + rαλr−1
0 x| ≥ |rαλr−1

0 x| − λr0|y| = λr−1
0 (r|αx| − λ0|y|).

As α 6= 0 and x > 0, there exists a positive integer r such that r|αx| − λ0|y| > λ0|y|, and then
we have Ar|y| > λr0|y|. As Ar > 0, applying the beginning of the proof to Ar, we see that this
implies that Ar has a real eigenvalue > λr0. But this impossible, because the eigenvalues of Ar

are the rth powers of the eigenvalues of A, so they all absolute value ≤ λr0.

Proof of the theorem. We prove (i). Let v0 = (1, . . . , 1) ∈ Rn. Then the fact that P is stochastic
is equivalent to the fact P ≥ 0 and Pv0 = v0. As all the matrices P r for r ≥ 1 have nonnegative
entries and satisfy P rv0 = v0, they are all stochastic. Also, if x = (x1, . . . , xn) ∈ (R≥0)n and
Q = (Qij) ∈Mn(R) is stochastic, then, for every i ∈ {1, . . . , n}, we have

(Qx)i =
n∑
j=1

Qijxj ≤ sup
1≤j≤n

xj.

Fix an integer r ≥ 1 such that P r > 0. By the lemma, the matrix P r has a simple real
positive eigenvalue λ0 such that every complex eigenvalue λ 6= λ0 of P r satisfies |λ| < λ0. By
the definition of λ0 in the lemma and the observation above about stochastic matrices, we have
λ0 ≤ 1. On the other hand, we have Pv0 = v0, so 1 is an eigenvalue of P , hence also of P r, and
so λ0 = 1. Let λ ∈ C be an eigenvalue of P , and y ∈ Cn be an eigenvector for this eigenvalue.
Then P ry = λry, so λr is an eigenvalue of P r. If λr 6= 1, then |λr| < 1 by the lemma, hence
|λ| < 1. If λr = 1, then the eigenvector y must be in Ker(P r − In), and we know (again by the
lemma) that this space is 1-dimensional. As v0 ∈ Ker(P r − In), the vector y must be a multiple
of v0, and then λ = 1.

Finally, if the characteristic polynomial of P is χP (t) = (t− λ1) . . . (t− λn), then that of P r

is χP r(t) = (t − λr1) . . . (t − λrn). So the multiplicity of 1 in χP (t) is at most its mutliplicity in
χP r(t), which we know is 1 by the lemma. This finishes the proof of (i).

Let’s prove (ii). As P and P T have the same characteristic polynomial, we know that 1 is a
simple eigenvalue of P T by (i), so the space of row vectors w such that wP = w has dimension
1. Let w = (w1, . . . , wn) be a nonzero vector in this space. Then we also have |w|P = |w|.
Indeed, for every j ∈ {1, . . . , n}, we have

|wj| =

∣∣∣∣∣
n∑
i=1

wiPij

∣∣∣∣∣ ≤
n∑
i=1

|wi|Pi,j
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(because all the Pij are nonnegative). Suppose that |w| 6= |w|P . Then there exists
j0 ∈ {1, . . . , n} such that |wj0 | <

∑n
i=1 |wi|Pij0 , and this implies that

n∑
i=1

|wi| =
n∑

i,j=1

|wi|Pij >
n∑
j=1

|wj|,

a contradiction. As w 6= 0, at least one of the |wi| is positive. If we choose as before
r ≥ 1 such that P r > 0, then |w| = P r|w|, so, for every j ∈ {1, . . . , n}, we have
|wj| =

∑n
i=1(P r)i,j|wi| > 0. This finishes the proof of (ii).

We finally prove (iii). As all the norms on Mn(R) are equivalent, it suffices to prove the state-
ment for a particular norm. By the existence of the Jordan normal form (actually by the Jordan-

Chevalley decomposition), there exists a matrix g ∈ GLn(R) with g−1Pg = A =

(
1 0
0 B

)
,

with B ∈ Mn−1(R) such that B = D + N , with D a diagonal matrix, N a nilpotent matrix and
DN = ND. Choose the operator norm ‖.‖ on Mn(R) coming from the usual Euclidian norm
on Rn. The entries of D are the eigenvalues of P different from 1, so ‖D‖ = ρ. As D and N
commute, we have, for every k ∈ Z≥0,

Bk = (D +N)k =
k∑
j=0

(
k

j

)
Dk−jN j.

If k ≥ n (in fact, k ≥ n− 1 suffices), then this simplifies to
∑n

j=0

(
k
j

)
Dk−jN j , because N j = 0

for j ≥ n. Hence, if k ≥ n,

‖Bk‖ ≤
n∑
j=0

(
k

j

)
‖D‖k−j‖N‖j ≤ ρk−n

n∑
j=0

kj‖N‖j.

Let A∞ =

(
1 0
0 B∞

)
, with B∞ = 0 ∈Mn−1(R). Then ‖Ak−A∞‖ = ‖Bk‖ for every k ≥ 0, so

Ak → A∞ as k → +∞ (because ρ < 1). This implies that P k → P ′ := gA∞g
−1 as k → +∞.

Also,
‖P k − P ′‖ = ‖g−1(Ak − A∞)g‖ ≤ ‖g‖‖g−1‖‖Bk‖,

which is bounded by the product of ρk and of a polynomial in k. So it only remains to show that
P ′ = P∞. As P ′ = limk→+∞ P

k, we have P ′P = PP ′ = P ′. Remember that 1 is a simple
eigenvalue of P and of P T . So all the rows of P ′ are multiples of the corresponding eigenvector
of P T , i.e. of v. Also, as P k is stochastic for every k ≥ 0, its limit P ′ is stochastic. So all the
rows of P ′ have nonnegative entries whose sum is 1, which means that they are all equal to v,
and that P ′ = P∞.

Definition VI.2.6. A Markov chain with transition matrix P is called ergodic if P is ergodic.
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In example VI.1.5, all the chains are ergodic, except the Markov chain of (1) when r is even.

Corollary VI.2.7. Let (Xn)n≥0 be an ergodic Markov chain with transition matrix P . Then P
has a unique stationary distribution µ, and, if µn is the distribution of Xn, we have

‖µn − µ‖TV ≤ f(n)ρn,

where f is a polynomial and ρ = max{|λ|, λ 6= 1 eigenvalue of P} < 1.

Proof. Let ν be the initial distribution of the Markov chain. By lemma VI.1.4, we have
µn = νP n. Let P∞ be the limit of the sequence (P n)n≥0. All the rows of P∞ are equal to
µ, so νP∞ = µ. If we use the L1 norm on the space of functions from X to R (for the counting
measure on X) to define the operator norm ‖.‖ on the space of matrices, then we have

‖µn − µ‖TV =
1

2
‖µn − µ‖1 =

1

2
‖νP n − νP∞‖1 ≤

1

2
‖ν‖1‖P n − P∞‖,

so the bound on ‖µn − µ‖TV follows immediately from (iii) of the theorem.

Remark VI.2.8. Although the bound on ‖µn − µ‖TV looks quite good (it is exponential), it is
useless if we want to know when exactly µn becomes close to the stationary distribution. We
need to analyse the problem more closely to answer that kind of question. This is what we will
now try to do in some particular cases.

Example VI.2.9. The chain of example VI.1.5(2) is ergodic. Indeed, let T ⊂ Sn be the union
of {1} and of the set of transpositions. Then, for r ≥ 1 and σ, σ′ ∈ Sn, we have P r(σ′, σ) > 0
if and only if σ′σ−1 can be written as a product of exactly r elements of T ; as 1 ∈ T , this is
equivalent to the condition that σ′σ−1 can be written as a product of s transpositions, for some
s ≤ r. So if r ≥ n(n−1)

2
(the length of the longest element of Sn), then P r(σ′, σ) > 0 for all

σ, σ′ ∈ Sn.

VI.3 A criterion for ergodicity

The definitions and results ot this sectiona are not used in the next sections.

Remember the following definitions :

Definition VI.3.1. A (finite unoriented) graph is a pair G = (X,E), where X is a finite set and
E is a set of unordered pairs {x, y} of distinct elements of X . We say that X is the set of vertices
of G and that E is the set of edges.

Let x, y ∈ X . A path connecting x and y in the graph G is a sequence p = (e0, . . . , en) of
edges of G such that we can write ei = {xi, yi} with x0 = x, yn = y and yi = xi+1 for every
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VI Application of Fourier analysis to random walks on groups

i ∈ {0, . . . , n − 1}. We call the integer n + 1 the length of the path p and denoted by |p|. If
x = y, we say that the path if a closed path or a loop based at x.

We say that the graph G is connected if for every x, y ∈ X , there exists a path connected x
and y. We say that G is bipartite if there exists a surjective function φ : X → {−1, 1} such that,
for every edge e = {x, y} of G, we gave φ(x) 6= φ(y). (In other parts, we can partition X into
two nonempty subsets X0 and X1 such that every edge connects an element of X0 to an element
of X1.)

For every x, y ∈ X , the distance d(x, y) between x and y is the length of the shortest path
connecting x and y; if there is no such path, then we set d(x, y) = +∞. Note that this defines a
metric on X if G is connected.

The following result is classical.

Proposition VI.3.2. Let G = (X,E) be a connected graph such that |X| ≥ 2. Then the follow-
ing conditions are equivalent :

(i) G is bipartite;

(ii) every loop in G has even length;

(iii) there exists x0 such that every loop based at x0 has even length.

Proof. We show that (i) implies (ii). Suppose that G is bipartite, and let φ : X → {−1, 1} be as
in the definition above. Let (e0, . . . , en) be a loop in G. We write ei = {xi, yi} with xi = yi+1

for 0 ≤ i ≤ n − 1 and yn = x0. Then an easy induction on i shows that, if i is even, we have
φ(xi) = φ(x0) and φ(yi) 6= φ(x0), and, if i is odd, we have φ(xi) 6= φ(x0) and φ(yi) = φ(x0).
But yn = x0, so φ(yn) = φ(x0), so n is odd, and the loop has even length.

It is obvious that (ii) implies (iii). Now assume (iii) and let’s show (i). Pick x0 ∈ X such
that every loop based at x0 has even length. We want to define a function φ : X → {0, 1}. Let
y ∈ X . As G is connected, there exists a path p = (e0, . . . , en) connecting x0 and x, and we set
φ(x) = (−1)|p|. We need to show that this does not depend on the path. Let q = (f0, . . . , fm) be
another path connecting x0 and x. Then (e0, . . . , en, fm, . . . , f0) is a loop based at x0, so it has
even length by assumption, so |p| + |q| and even, and (−1)|p| = (−1)|q|. Note that φ(x0) = 1
and that φ(x) = −1 if {x0, x} is an edge (such an edge must exist because G is connected and
|X| ≥ 2). So φ is surjective. Let e = {x, y} be an edge of G. Let p = (e0, . . . , en) be a path
connecting x0 and x. Then p′ := (e0, . . . .en, e) is a path connecting x0 and y, and |p′| = |p|+ 1,
so φ(x) 6= φ(y). This shows that G is bipartite.

We now come to the connection with Markov chains.

Proposition VI.3.3. Let X be a finite set and P : X × X → R be a stochastic function. We
define a graph G = (X,E) in the following way : a pair {x, y} of distinct elements of X is an
edge of G if and only if P (x, y) > 0.
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Suppose that G is connected and that it is not bipartite. Then the function P is ergodic.

Proof. Note that, for every x, y ∈ X and every n ≥ 1, we have P n(x, y) > 0 if and only if there
exists a path of length n connecting x and y.

By proposition VI.3.2, for every x ∈ X , there exists a loop px of odd length based at x. Write
2m + 1 = maxx∈X |px|, with m ∈ Z≥0. Let x ∈ X . Let’s show that, for every n ≥ 2m, there
is a loop of length n based at x. Let {x, z} be an edge. For every r ≥ 0, write q2r for the loop
of length 2r given by q2r = ({x, z}, {z, x}, . . . , {x, z}, {z, x}). Let n ≥ 2m. If n is even, then
qn is a loop of length n based at x. If n is odd, then r := n−|px|

2
is a nonnegative integer, and the

loop obtained by concatening px and q2r has length n and contains x.

Let δ = maxx,y∈X d(x, y). (This is called the diameter of the graph G.) Let x, y ∈ X and
n ≥ 2m + δ, and let’s show that there is a path of length connecting x and y (this will finish the
proof). Let p be any path connecting x and y. Then |p| ≤ δ, so, by the previous paragraph, there
exists a loop q of length n− |p| based at x. The concatenation of p and q is the desired path.

Corollary VI.3.4. (i) The chain of example VI.1.5(1) is ergodic if and only if r is odd.

(ii) The chain of example VI.1.5(3) is ergodic if r ≤ n− 1.

We will reprove (ii) by a different method in section VI.5.

Proof. (i) The graph corresponding to the chain has Z/rZ as set of vertices, and there is an
edge between a, b ∈ Z/rZ if and only if a−b ∈ {±1}. This graph is obviously connected,
and ti is easy to see that it is bipartite if and only if r is even. In particular, if r is odd, then
the proposition implies that the chain is ergodic.

Now assume that r is even. An easy induction on n shows that, for every n ≥ 1 and all
a, b ∈ Z/rZ, we have P n(a, b) = 0 if the image of n+ a+ b in Z/2Z is nonzero. Indeed,
this follows from the definition of P if n = 1. Suppose the result known up to some
n ≥ 1, and let’s prove it for n + 1. Let a, b ∈ Z/rZ be such that P n+1(a, b) 6= 0. As
P n+1(a, b) =

∑
c∈Z/rZ P (a, c)P n(c, b), there exists c ∈ Z/rZ such that P (a, c) 6= 0 and

P n(c, b) 6= 0. By the induction hypothesis and the case n = 1, this implies that a + c 6= 0
mod 2 and n+ c+ b 6= 0 mod 2, and then n+ a+ b+ 2c = n+ a+ b = 0 mod 2.

(ii) The graph corresponding to the Markov chain has the set Ωr of cardinality r subsets of
{1, . . . , n} as its set of vertices, and there is an edge linking A,A′ ∈ Ωr if and only if
|A ∩ A′| = r − 1. Let A0 = {1, . . . , r}. We first show that the graph is connected. Let
A ∈ Ωr. We writeA = {n1, . . . , nr}, and we choose the ordering of the elements such that
A ∩ A0 = {1, . . . , ns}, with s = |A ∩ A0|. Let m1, . . . ,mr−s be the elements of A0 − A.
For 0 ≤ i ≤ r − s, let Bi = {n1, . . . , ns+i,mi+1, . . . ,mr−s}. Then B0 = A0, Br−s = A,
and there is an edge between Bi and Bi+1 for every i ∈ {0, . . . , r − s − 1}. So the graph
is connected.
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VI Application of Fourier analysis to random walks on groups

Now we show that the graph is not bipartite, by finding a loop of odd length. Let
A = {1, . . . , r− 1, r+ 1} and B = {2, . . . , r, r+ 1}. Then {A0, A}, {A,B} and {B,A0}
are edges, so we have found a loop of length 3.

VI.4 Random walks on homogeneous spaces

Now suppose that we have a finite group G acting transitively (on the left) on the finite set X .
Fix x0 ∈ X , and let K be the stabilizer of x0 in G, so that we have a bijection G/K ' X ,
g 7−→ g · x0.

Warning : We will be using the counting measure on G to define convolution products and
Lp norms in this section. Beware constants ! (The reason for this choice is that we want the
convolution of two probability distributions to be a probability distribution.)

Definition VI.4.1. If π is a probability distribution on G, we denote by Pπ : X × X → R the
function defined by

Pπ(xK, yK) = π(yKx−1),

for all x, y ∈ G.

Definition VI.4.2. A left-invariant random walk on X driven by π and with initial distribution ν
is a Markov chain with state space X , initial distribution ν and transition matrix Pπ.

Here is the description of this Markov chain (Xn)n≥0 in words : We choosing a starting point
on X according to the probability distribution ν. At time n, we choose an element of G using
the probability distribution π and act on our position by this element to get to the position at time
n+ 1.

Remark VI.4.3. The matrix Pπ is actually bistochastic, i.e. both Pπ and its transpose are stochas-
tic. Indeed, for every y ∈ G, we have∑

x∈G/K

Pπ(xK, yK) =
∑

x∈G/K

π(yKx−1)

=
∑
x∈G

π(yx−1)

= 1.

In particular, the uniform probability distribution on X is an invariant distribution for Pπ. If
Pπ is ergodic, it is the only invariant distribution.

If the homogeneous space isG itself, we can give a simple criterino for ergodicity. (See lemma
16.20 and proposition 16.21 of [1].)
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Proposition VI.4.4. Suppose thatX = G, and let S = supp(π). WriteGS for the set of elements
of G that can be written as g1 . . . g2r for some r ≥ 0, with exactly r of the gi in S and r of the gi
in S−1.

Then GS is a subgroup of G, and the function Pπ is ergodic if and only if G = GS .

In particular, if π(1) 6= 0, then Pπ is ergodic if and only S generates G. More generally, if S
generates G and is not contained in a coset of a strict subgroup of G, then Pπ is ergodic. (Note
that we have S ⊂ gGS for every g ∈ S.)

Proposition VI.4.5. For every n ≥ 1, we have P n
π = Pπ∗n , where π∗n is the n-fold convolution

product of π.

Proof. We prove the result by induction on n. It is just the definition of Pπ if n = 1. Suppose
the equality known for some n ≥ 1, and let’s prove it for n+ 1. Let x, y ∈ X . Then

P n+1
π (xK, yK) =

∑
z∈G/K

Pπ(xK, zK)P n
π (zK, yK)

=
∑

z∈G/K

π(zKx−1)π∗n(yKz−1)

=
∑

z∈G, h∈K

π(zx−1)π∗n(yhz−1)

=
∑
h∈K

π∗(n+1)(yhx−1)

= π∗(n+1)(x, y).

Corollary VI.4.6. Let π a probability measure on G, and suppose that π is right invariant by
K. Consider a left-invariant random walk (Xn)n≥0 driven by π and with initial distribution
the Dirac measure concentrated at x0 ∈ X . Let µn be the distribution of Xn, and let µ be the
uniform probability distribution on X .

Then, for every n ≥ 0, we have

‖µn − µ‖2
TV ≤

1

4

∑
(ρ,V )∈Ĝ|V K 6=0 and ρ 6'11

dim(V )Tr((π̂(ρ)∗)n ◦ π̂(ρ)n),

where we denote by 11 the trivial representation of G.

Remember that, if (ρ, V ) ∈ Ĝ is an irreducible unitary representation of G and f : G→ C is
a function, then f̂(ρ) is then endomorphism of V defined by

f̂(ρ) =
∑
x∈G

f(x)ρ(x−1).
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Proof. Fix n ≥ 0. For every x ∈ G, we have

µn(x) = P n
π (x0, x) = π∗n(xK)

by lemma VI.1.4 and proposition VI.4.5. Let π0 be the uniform probability distribution on G.
By lemma VI.1.8, we have

‖µn − µ‖2
TV =

1

4

 ∑
x∈G/K

|µn(x)− µ(x)|

2

=
1

4

(∑
x∈G

|π∗n(x)− π0(x)|

)2

=
1

4
‖π∗n − π0‖2

1

≤ |G|
4
‖π∗n − π0‖2

2,

where the last inequality is the Cauchy-Schwarz inequality. (Note that we are using the counting
measure on G to define the Lp norms.) Let f = π∗n − π0 ∈ L2(G). By the Parseval formula
(theorem IV.6.3(iii), note the factor 1

|G| coming from the unnormalized Haar measure), we have

‖f‖2 =
1

|G|
∑

(ρ,V )∈Ĝ

dim(V )Tr(f̂(ρ)∗ ◦ f̂(ρ)).

So we need to calculate the f̂(ρ). Note that we have

f̂(ρ) = π̂(ρ)n − µ̂(ρ)

for every ρ ∈ Ĝ.

Suppose first that ρ = 11. Then π̂(ρ) = µ̂(ρ) = 1, so f̂(ρ) = 0.

Let (ρ, V ) ∈ Ĝ, and suppose that ρ 6' 11. Then µ̂(ρ) =
∑

x∈G ρ(x−1) is an element of
End(V ) that is G-equivariant, hence a multiple of idV by Schur’s lemma, and has trace equal
to 1
|G|
∑

x∈G χ(x) = 0 (by corollary IV.5.8). So µ̂(ρ) = 0, and f̂(ρ) = π̂(ρ)n. To finish the
proof, we just need to show that π̂(ρ) = 0 if V K = 0. Let T = π̂(ρ) =

∑
x∈G π(x)ρ(x−1) and

PK =
∑

x∈K ρ(x). As π is right invariant by K, we have ρ(x) ◦ T = T for every x ∈ K,
so PK ◦ T = |K|T . But PK is the orthogonal projection on V K by proposition V.1.7, so
Im(T ) ⊂ V K , and so T = 0 if V K = 0.

Corollary VI.4.7. With the notation of the previous corollary, suppose that (G,K) is a Gelfand
pair and that π is bi-K-invariant. As in section V.6, let Z be the dual space of (G,K) (i.e. the
set of spherical functions by theorem V.7.1).
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Then, for every n ≥ 0, we have

‖|µn − µ‖2
TV ≤

1

4

∑
ϕ∈Z, ϕ6=1

dim(Vϕ)|π̂(ϕ)|2n,

where now, if f ∈ C (K \G/K) and ϕ ∈ Z, the scalar f̂(ϕ) ∈ C is the spherical Fourier
transform, defined by

f̂(ϕ) =
∑
x∈G

f(x)ϕ(x−1).

Proof. The proof is almost the same as for the previous corollary, except that we use the Parseval
formula of corollary V.7.2 to calculate ‖π∗n − π0‖2

2. By this formula, we have

‖π∗n − π0‖2
2 =

1

|G|
∑
ϕ∈Z

dim(Vϕ)|f̂(ϕ)|2,

where f = π∗n−π0. If ϕ = 1 is the spherical function corresponding to the trivial representation,
then π̂(ϕ) = π̂0(ϕ) = 1, so f̂(ϕ) = 0. If ϕ 6= 1, then

π̂0(ϕ) =
∑
x∈G

ϕ(x−1) = 〈1, ϕ〉L2(G) = 0

(by (i) of theorem V.7.1 for example). So f̂(ϕ) = π̂(ϕ)n, which finishes the proof.

VI.5 Application to the Bernoulli-Laplace diffusion
model

Remember that the Bernoulli-Laplace diffusion model was described in example VI.1.5(3). We
have two positive integers r and b. This model is a Markov chain (Xn)n≥0 on the set Ωr of subsets
of cardinality r of {1, . . . , r + b} with initial distribution the Dirac distribution concentrated at
{1, . . . , r}. The group G := Sr+b acts transitively on Ωr, and the stabilizer of A0 := {1, . . . , r}
is K := Sr×Sb. The transition matrix P of the chain is given by

P (A′, A) =

{
(r−1)!(b−1)!

(r+b)!
if r − |A ∩ A′| = 1

0 otherwise.

Remember that we have defined in 1(e) of problem set 11 a metric d on Ωr by
d(A,A′) = r − |A ∩ A′|, and that we have proved in 1(d) (and 1(f)) of the same problem
set that the orbits of K on G/K ' Ωr are the spheres with center A0 for this metric. Bi-invariant
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VI Application of Fourier analysis to random walks on groups

probability distributions π on G correspond bijectively to probability distributions on the set
K \G/K of K-orbits on G/K, and the description of P implies easily that P = Pπ, where π
is the bi-invariant probability distribution that corresponding to the uniform distribution on the
sphere with center A0 and radius 1.

If µn is the distribution ofXn and µ is the uniform distribution of Ωr, then, by corollary VI.4.7,
we have

‖µn − µ‖2
TV ≤

1

4

∑
ϕ∈Z−{1}

dim(Vϕ)|π̂(ϕ)|2n.

We calculated all these terms in problem set 11. Suppose for example that r ≤ b (if not, we
can just switch r and b and we get an equivalent problem). Then we saw how to decompose
the quasi-regular representation of G on L2(Ωr) into irreducible subrepresentations in problem
3 of problem set 11 (see 3(j) and 3(k)), and we have exactly r + 1 of them. We denote the
corresponding spherical functions by ϕ0, . . . , ϕr, as in problem 4. In particular, the function
ϕ0 is just the constant function 1. We calculated these functions in 3(f), but actually we only
need 3(g). Indeed, we only care about π̂(ϕs), for 1 ≤ s ≤ r. As π corresponds to the uniform
distribution on the sphere or radius 1 centered at A0, the number π̂(ϕs) is just the coefficient of
σ1,r−1(A0) in ϕs (with the notation of problem 3), that is,

π̂(ϕs) = 1− s(r + b− s+ 1)

rb
.

Also, 3(f) says that

dim(Vϕs) =

(
r + b

s

)
−
(
r + b

s− 1

)
if 1 ≤ s ≤ r.

So corollary VI.4.7 gives

‖µn − µ‖TV ≤
1

4

r∑
s=1

((
r + b

s

)
−
(
r + b

s− 1

))(
1− s(r + b− s+ 1)

rb

)2n

.

With some more effort, we can get the following result.

Theorem VI.5.1. (See theorem 10 of chapter 3F of [7].) There exists a universal constant
a ∈ R>0 such that, if n = r+b

4
(log(2(r + b)) + c) with c ≥ 0, then we have

‖µn − µ‖TV ≤ ae−c/2.

A different calculation (still using spherical functions) gives the following theorem :

Theorem VI.5.2. (See theorem 6.3.2 of [6].) If r = b is large enough, then, for
n = r+b

4
(log(2(r + b))− c) with 0 < c < log(2(r + b)), we have

‖µn − µ‖TV ≥ 1− 32e−c.
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VI.6 Random walks on locally compact groups

VI.6 Random walks on locally compact groups

In this section, we will see a few results (mostly without proofs) about random walks on more
general groups. A good reference for many questions that we did not touch on here is Breuillard’s
survey [5].

We fix a locally compact group G and a left Haar measure on G.

VI.6.1 Setup

Definition VI.6.1.1. (See remark I.4.1.6.) A (complex) Radon measure on G is a bounded linear
functional on C0(G) (with the norm ‖.‖∞). We denote by M (G) the space of Radon measures
and by ‖.‖ its norm (which is the operator norm); this is a Banach space. If µ is a Radon measure,
we write f 7−→

∫
G
f(x)dµ(x) for the corresponding linear functional on C0(G).

Example VI.6.1.2. (1) Any regular Borel measure is a Radon measure on G (such measure
are called “positive” when we want to distinguish them from general Radon measures).

(2) If ϕ ∈ L1(G), then the linear functional f 7−→
∫
G
f(x)ϕ(x)dx is a Radon measure on G,

often denoted by ϕ(x)dx or ϕdx.

(3) For every x ∈ G, the linear functional C0(G)→ C, f 7−→ f(x) is a Radon measure on G,
called the Dirac measure at x.

We define the convolution product µ ∗ ν of two Radon measures µ and ν to be the linear
functional

f 7−→
∫
G×G

f(xy)dµ(x)dν(y).

Then it is not very hard to check that ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖ and that the convolution product is
associative on M (G). This makes M (G) into a Banach algebra, and the Dirac measure at 1 is a
unit element of M (G).

If µ = ϕdx and µ′ = ϕ′dx, then it is easy to check that µ ∗ µ′ = (ϕ ∗ ϕ′)dx, where ϕ ∗ ϕ′ is
the usual convolution in L1(G).

We denote by Ĝ the set of unitary equivalence classes of irreducible unitary representations of
G. We can extend the Fourier transform (both the ordinary and the spherical versions) to M (G)
:

(1) If µ ∈M (G) and (π, V ) ∈ Ĝ, define µ̂(π) ∈ End(V ) by

µ̂(π)(v) =

∫
G

π(x−1)(v)dµ(x).
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VI Application of Fourier analysis to random walks on groups

(2) Suppose thatG is the first entry of a Gelfand pair (G,K), and that ϕ is a spherical function
of positive type on G. Then, for every µ ∈M (G), we define µ̂(f) ∈ C by :

µ̂(f) =

∫
G

ϕ(x−1)dµ(x).

For both versions of the Fourier transform, the equality

µ̂ ∗ µ′ = µ̂µ̂′

for all µ, µ′ ∈ M (G) (where the product on the right is composition of endomorphisms in the
first case and multiplication in the second case).

The following theorem is a generalization of Lévy’s convergence criterion. We say that a
sequence (µn)n≥0 of Radon measures converges weakly if it converges in the weak* topology of
M (G).

Theorem VI.6.1.3. (See [9], section 5.2, theorem 5.2.)

(i) If µ, µ′ ∈M (G) are such that µ̂(π)µ̂′(π) for every π ∈ Ĝ, then µ = µ′.

(ii) Let (µn)n≥0 be a sequence of (positive) probability measures on G and µ be another prob-
ability measure on G. If (µn)n≥0 converges weakly to µ, then, for every (π, V ) ∈ Ĝ and
every v ∈ V , we have limn→+∞ µ̂n(π)(v) = µ̂(π)(v). Conversely, if, for every (π, V ) ∈ Ĝ
and all v, w ∈ V , we have limn→+∞〈µ̂n(π)(v), w〉 = 〈µ̂(π)(v), w〉, then (µn)n≥0 con-
verges weakly to µ.

VI.6.2 Random walks

We fix a regular Borel probability measure µ on G, and we want to understand the behavior of
µ∗n as n→ +∞.

The connection with random walks is that µ∗n is the distribution of the nth step of a Markov
chain with state spaceG, initial distribution δ1 and “transition matrix” µ(yx−1). (We are choosing
δ1 as initial distribution to simplify the notation, but this is not really necessary for most results.)
In other words, we consider a sequence (gn)n≥1 of independent random variables with values
in G and distribution µ. The Markov chain (Xn)n≥0 is defined by Xn = g1n . . . g1 (so X0 is
the constant function 1). We could also consider random walks on a space G/K, where K is a
subgroup of G : take (gn)n≥1 as before, fix some initial random variable X0 with values in G/K
(for example a constant function) and set Xn = gn . . . g1X0.

VI.6.3 Compact groups

In this section, we suppose that G is compact. We start with a general convergence result, due to
Ito and Kawada ([11], see also theorem 2.3 of [5]).
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Remember that the support of µ is by definition the set of x ∈ G such that, for every neigh-
borhood U of x, we have µ(U) > 0.

Theorem VI.6.3.1. Suppose that the support of µ generates a dense subgroup of G and is not
contained in any (left or right) coset of a proper closed subgroup of G. Then the sequence
(µ∗n)n≥0 converges weakly to the normalized Haar measure on G.

The proof is based on the convergence criterion of theorem VI.6.1.3(ii). We must show that, for
every (π, V ) ∈ Ĝ nontrivial, the sequence µ̂∗n(π) = µ̂(π)n converges to 0 in End(V ). Note that
V is finite-dimensional (because G is compact), so all the notions of convergence in End(V ) are
equivalent, and we just need to prove that all the eigenvalues of µ̂(π) are < 1 in absolute value.
Suppose that this not the case, then there exists a unit vector v ∈ V such that∫

G

π(x−1)(v)dµ(x) = λv,

with |λ| = 1. It is not hard to see that this forces π(x−1)(v) to be equal to λv µ-almost everywhere
and contradicts the hypothesis of the theorem.

Note that this result is much weaker that proposition VI.4.4 (and the Perron-Frobenius the-
orem), because it only guarantees the weak convergence of (µ∗n)n≥0 and says nothing about
convergence for other topologies (such as the one induced by the total variation distance) or
about the speed of convergence. If G is finite, all the notions of convergence on the set of prob-
ability measures on G coincide (it’s just a convex subset of the space of functions on G, which
is finite-dimensional); also, it follows from the upper bound lemma (corollary VI.4.6) that the
speed is convergence is exponential and controlled by the biggest eigenvalue of a µ̂(π) that is
6= 1. But if G is infinite, then Ĝ is also infinite, so, also µ̂(π) has all its eigenvalues < 1 (in
absolute value), we can get eigenvalues that are arbitrarily close to 1. In fact, there is a special
name for when this doesn’t happen :

Definition VI.6.3.2. We say that the probability measure µ on G has a spectral gap if there
exists ε > 0 such that, for every π ∈ Ĝ nontrivial and for every eigenvalue λ of µ̂(π), we have
|λ| < 1− ε.

Let’s first look at some examples.

Example VI.6.3.3. If µ = ϕdx with ϕ ∈ L2(G), then µ has a spectral gap. In fact, the upper
bound lemma (corollary VI.4.6) holds with essentially the same proof : for every n ≥ 0, we have

‖µ∗n − µG‖2
TV ≤

1

4

∑
(ρ,V )∈Ĝ|ρ 6'11

dim(V )Tr((π̂(ρ)∗)n ◦ π̂(ρ)n),

where we denote by 11 the trivial representation of G and by µG the normalized Haar measure on
G. (We could also prove a version for random walks on spaces G/K.) So we have convergence
in total variation distance and with exponential speed in this case.
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At the other extreme, we have measures with finite support.

Example VI.6.3.4. Take G = S1. Let λ1, . . . , λr ∈ R, and consider the measure

µ =
1

2r

r∑
s=1

(δe2iπλs + δe−2iπλs )

on G. Remember that Ĝ = Z (where n ∈ Z corresponds to the representation z 7−→ zn of G).
For every n ∈ Z, we have

µ̂(n) =
1

2r

r∑
s=1

(e2iπnλs + e−2iπnλs).

Suppose that the family (1, λ1, . . . , λr) is Q-linearly independent. Then Kronecker’s theorem
(see for example chapter XXIII of [10]) says that the set {(e2iπnλ1 , . . . , e2iπnλr), n ∈ Z} is dense
in (S1)r. So we can find n 6= 0 such that µ̂(n) is arbitrarily close to 1. In other words, the
measure µ has no spectral gap.

The question of which measures on nice groups like SU(d) have a spectral gap is a very
difficult and an active area of research. We’ll give some (difficult) recent results, due to Bourgain
and Gamburd (cf. [4] and [3]) for G = SU(d) and to Benoist and de Saxcé (cf. [2]) for a general
simple compact Lie group.

Theorem VI.6.3.5. Let G be a simple compact Lie group (for example G = SU(d) for d ≥ 2
or G = SO(d) for d = 3 or d ≥ 5), and let µ be a probability measure on G. We say that µ is
almost Diophantine if there exists c1, c2 > 0 such that for every proper closed subgroup H of G
and for every n ∈ Z≥0 big enough, we have µ∗n({x ∈ G|d(x,H) ≤ e−c1n}) ≤ e−c2n (where d is
any metric on G).

Then µ has a spectral gap if and only if it is amost Diophantine.

Although the next version has a generalization to any simple compact Lie group, we’ll just
state it for SU(d) for simplicity.

Theorem VI.6.3.6. Let G = SU(d), and let µ be a probability measure on G such that the
support of µ generates a dense subgroup of G (such a measure is sometimes called “adapted”).

If every element of the support of µ has algebraic entries, then µ has a spectral gap.

In fact, Benoist and de Saxcé conjecture that the algebraicity condition is not necessary (so
every adapted measure should have a spectral gap), see the introduction of [2].

Remark VI.6.3.7. The spectral gap question is also connected to the Banach-Ruziewicz problem
(see chapter 2 of Sarnak’s book [17] for the connection; another good reference on the Banach-
Ruziewicz problem is Lubotzky’s book [12]). This problem asks whether Lebesgue measure is
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the only (up to a constant) finitely additive SO(n+1)-invariant measure on Lebesgue measurable
subsets of the sphere Sn ⊂ Rn. The answer is known to be “no” for n = 1 and “yes” for n ≥ 2.
For n ≥ 4, it is due to Margulis and Sullivan and uses the fact that SO(n + 1) has a finitely
generated dense subgroup that satisfies Kazhdan’s property (T) for n ≥ 4 (in fact, the same
methods will show that Haar measure is the only left-invariant mean on any simple compact Lie
group that is not SO(n) with n ≥ 4). For n = 2, 3, the solution is originally due to Drinfeld and
uses the Jacquet-Langlands correspondence and the Ramanujan-Petersson conjecture. (All this
and more is explained in [12].)

VI.6.4 Convergence of random walks with Fourier analysis

We now present some example of random walks on compact groups (or homogeneous spaces)
that can be analyzed using Fourier analysis, in the spirit of section VI.5.

As we noted before (in example VI.6.3.3), the upper bound lemma (corollary VI.4.6) still
holds for general compact groups.

As for finite groups, Fourier analysis works best if the measure µ is conjugation or if µ is
bi-K-invariant and (G,K) is a Gelfand pair.

Random reflections in SO(n)

The reference for this result is Rosenthal’s paper [13]. Fix n ≥ 2 and θ ∈ (0, 2π). Let

Rθ =


cos θ sin θ 0
− sin θ cos θ

1
. . .

0 1

 ∈ SO(n),

and let µθ be the unique conjugation-invariant probability measure concentrated on the conjugacy
class ofRθ (in other words, the measure µθ is the image of the normalized Haar measure of SO(n)
by the map SO(n)→ SO(n), x 7−→ xRθx

−1).

Theorem VI.6.4.1. (i) There exist Γ,∆ > 0 (with ∆ independent of θ) such that, for every
n ≥ 1 and every c > 0, if k = 1

2(1−cos θ)
(n log n− cn), then

‖µ∗kθ − dx‖TV ≥ 1− Γe−2c −∆
log n

n
.

(ii) Suppose that θ = π. Then there exist Λ, γ > 0 such that, for every n ≥ 3 and every c > 0,
if k = 1

4
n log n+ cn, then

‖µ∗kθ − dx‖TV ≤ Λe−γc.
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The Gelfand pair case

The reference for this result is Su’s paper [?].

Fix θ ∈ (0, π) and consider the following random process on S2 ' SO(3)/SO(2) :

- X0 is constant with value the North pole;

- to go from Xn to Xn+1, choose a direction (independently and uniformly) and move a
distance of θ following the geodesic (= big circle) in that direction.

This random walk is not driven by a measure on SO(3), but it is equivalent to one that is (see
section 3 of [?]). Let µn be the distribution ofXn and λ be the unique SO(3)-invariant probability
measure on §2. Then we have the following result :

Theorem VI.6.4.2. If n = c
sin2 θ

with c ≥ 0, then

0.433e−c/2 ≤ ‖µl − λ‖DD ≤ 4.442e−c/8.

In this theorem, ‖.‖DD is the discrepancy distance : If X is a metric space and µ, µ′ are two
(Borel) probability measures on X , then

‖µ− µ′‖DD = sup
B⊂X ball

|µ(B)− µ′(B)|.

It is bounded above by the total variation distance, but it can see some phenomena that the total
variation distance misses (see the next subsection).

Remark about the different types of convergence

The reference for this subsection is Su’s paper [?].

Consider a random walk (Xn)n≥0 on the circle S1 driven by the masure µ = 1
2
(δe2iπα+δe−2iπα),

for some α ∈ R irrational, and let µn be the distribution of Xn. Then :

- The general convergence result of Ito-Kawada (theorem VI.6.3.1) says that (µn)n≥0 con-
verges weakly to the normalized Haar measure dx on S1.

- On the other hand, we have seen in example VI.6.3.4 that µ has no spectral gap, so the
convergence cannot be too good. In fact, (µn)n≥0 does not converge to dx in total variation
distance.

- On the third hand, (µn)n≥0 does converge to dx (but not exponentially fast) in discrepancy
distance in many cases. More precisely, we have :

Theorem VI.6.4.3. Let η be the type of α, i.e.

η = sup{γ > 0| lim inf
m→+∞

mγ{mα} = 0}
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(where {.} is the fractional part). Then we have, for every ε > 0,

‖µn − dx‖DD = O(n−1/2η+ε)

and
‖µn − dx‖DD = Ω(n−1/2η−ε).

If α is irrational quadratic, we can do better : there exist constants c1, c2 > 0 such that, for
every n ≥ 1, we have

c1√
n
≤ ‖µn − dx‖DD ≤

c2√
n
.

It is known that η = 1 if α is algebraic, and also that the subset of type 1 elements of [0, 1] has
Lebesgue measure 1.

VI.6.5 Random walks on noncompact groups

We don’t assume that G is compact anymore. We fix a probability measure µ on G. One of the
many questions we can ask is whether a random walk on G driven by µ goes to infinity, and if
so, how fast.

The results of this section are proved in the third problem of the final problem set, so a refer-
ence will be added after this problem set is due.

First, we define a continuous linear operator Pµ : L2(G)→ L2(G) by setting

Pµ(f)(x) =

∫
G

f(yx)dµ(y)

if f ∈ Cc(G) and x ∈ G; this extends to L2(G) by continuity. (If µ = ϕdx with ϕ ∈ L1(G), this
is just the construction of theorem I.4.2.6(i) applied to the right regular representation of G.)

We denote by ρ(Pµ) the spectral radius of Pµ, seen as an element of the Banach algebra
End(L2(G)). We always have ρ(Pµ) ≤ 1 (because µ is a probability measure).

Theorem VI.6.5.1. (i) If G is amenable, then ρ(Pµ) = 1.

(ii) Let H be the closure of the subgroup of G generated by the support of µ. If ρ(Pµ) = 1,
then H is amenable.

Definition VI.6.5.2. We say that G is compactly generated if there exists a compact subset K of
G that generates G.

If G is discrete, this just means that G is finitely generated.
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Definition VI.6.5.3. Suppose that G is compactly generated, and let K be a symmetric compact
subset generating G. We define jK : G→ Z by

jK(x) = min{n ∈ Z≥0|x ∈ Kn}

(with the convention that K0 = {1}).
Lemma VI.6.5.4. IfK and L are two symmetric compact subsets generatingG, then there exists
a > 0 such that jL ≤ ajK .

Corollary VI.6.5.5. Suppose that G is compactly generated, and let K be a symmetric compact
subset generating G. Let µ be a probability measure on G, and let (gn)n≥1 be a sequence of
idenpendent random variables valued on G with distribution µ.

LetH be the closure of the subgroup ofG generated by the support of µ. IfH is not amenable,
then there exist α, ε > 0 such that, for every n ≥ 1, we have

P(jK(gn . . . g1) ≤ εn) = o(e−αn).

In particular, by the Borel-Cantelli lemma (see section 17.1 of [14]), if n is large enough, we
have jK(gn . . . g1) ≥ εn almost surely.

We finish with an example. We say that a subgroup H of SL2(R) is non-elementary if no
conjugate of H is contained in SO(2), in{(

a b
0 a−1

)
, a ∈ R×, b ∈ R

}
or in {(

a 0
0 a−1

)
, a ∈ R×

}
∪
{(

0 a
a−1 0

)
, a ∈ R×

}
.

(An equivalent condition is that H is not compact and does not fix a line in R2 or the union of
two lines in R2. Here the action of SL2(R) in R2 is the standard one, given by the inclusion
SL2(R) ⊂ GL2(R).)

Proposition VI.6.5.6. A closed subgroup of SL2(R) is non-amenable if and only if it is non-
elementary.

Example VI.6.5.7. If t ∈ R×, we set

at =

(
t 0
t−1 0

)
.

If θ ∈ R, we set

rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

Then, if s, t > 1 and 0 < θ < π/2, the subgroup of SL2(R) spanned by as and rθatr
−1
θ

is non-elementary, and so corollary VI.6.5.5 applies to a random walk driven by the measure
µ = 1

2
(δat + δrθatr−1

θ
).
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A Urysohn’s lemma and some
consequences

A.1 Urysohn’s lemma

Definition A.1.1. A topological space X is called normal if whenever we have two disjoint
closed subsets A and B of X , there exist open subsets U and V of X such that A ⊂ U and
B ⊂ V .

Proposition A.1.2. Any topological space that is compact Hausdorff or metrizable is normal.

Theorem A.1.3 (Urysohn’s lemma). Let X be a normal topological space, and let A, B be two
disjoint closed subsets of X . Then there exists a continuous functions f : X → [0, 1] such that
f(x) = 0 for every x ∈ A and f(x) = 1 for every x ∈ B.

A.2 The Tietze extension theorem

Corollary A.2.1 (Tietze extension theorem). LetX be a normal topological space,A be a closed
subset of X and f : A → C be a continuous function. Then there exists a continuous function
F : X → R such that F|A = f and that supx∈X |F (x)| = supx∈A |f(x)|.

A.3 Applications

Corollary A.3.1. Let X be a locally compact Hausdorff topological space, and let K ⊂ U be
two subsets of X such that K is compact and U is open. Then there exists a continuous function
with compact support f : X → [0, 1] such that f|K = 1 and supp f ⊂ U .

Proof. As X is locally, for every x ∈ K, we can find an open neighborhood Vx of x such that
V x is compact and contained in U . We have K ⊂

⋃
x∈K Vx; as K is compact, we can find

x1, . . . , xn ∈ K such that K ⊂
⋃n
i=1 Vxi . Set K ′ =

⋃n
i=1 V xi . Then K ′ is a compact subset of

X , it is contained in U and its interior contains K. Applying the same procedure to K ′subsetU ,
we can find a compact subset K ′′ ⊂ U of X whose interiot contains K ′.
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The spaceK ′′ is compact, hence normal, and its subsetsK andK ′′−K̊ ′ are closed and disjoint,
so, by Urysohn’s lemma, we have a continuous function f : K ′′ → [0, 1] such that f|K = 1 and
f|K′′−K̊′ = 0. We extend f to X by setting f(x) = 0 if x ∈ X −K ′′. Then f is equal to 0 (hence
comtinuous) on X −K ′, and it is also continuous on K̊ ′′. As X −K ′ and K̊ ′′ are open subset
whose union is X , the function f is continuous on X . It is clear from the construction of f that
it satisfies all the desired properties.

Corollary A.3.2. Let X be a locally compact Hausdorff topological space, and let K ⊂ U be
two subsets of X such that K is compact and U is open. Then, for every continuous function
f : K → C, there exists a continuous function with compact F : X → C such that :

(a) supp(F ) ⊂ U ;

(b) F|K = f ;

(c) supx∈X |F (x)| = suppx∈K |f(x)|.

Proof. By corollary A.3.1, we can find a continuous function with compact support
ψ : X → [0, 1] such that ψ|K = 1 and supp(ψ) ⊂ U . On the other hand, we can find, as
in the proof of corollary A.3.1, a compact set K ′ ⊂ U whose interior contains suppψ. Applying
the Tietze extension to the normal space K ′, we get a continuous function f ′ : K ′ → C such
that f ′|K = f and suppx∈K′ |f ′(x)| = suppx∈K |f(x)|. We define a function F : X → C by
F (x) = f ′(x)ψ(x) if x ∈ K ′, and F (x) = 0 if x ∈ X −K ′. This functuion F clearly satisfies
conditions (a)-(c), so we just need to check that it is continuous. But this follows from the fact
that F is continuous on the open sets X − supp(ψ) (because it is zero on that set) and K̊ ′, and
that the union of these open sets is X .
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B.1 The quotient norm

Cf. [15] 18.15 or [16] 1.40, 1.41.

Definition B.1.1. Let V be a normed vector space and W ⊂ V be a subspace. Then the quotient
seminorm on V/W is defined by

‖x+W‖ = inf
w∈W
‖v + w‖.

If W is closed, this is called the quotient norm.

Proposition B.1.2. (i) The formula of the preceding definition gives a seminorm on V/W ,
which is a norm if and only if W is closed in V .

(ii) If V is a Banach space andW is closed in V , then V/W is a Banach space for the quotient
norm.

Proof. (i) Let v, v′ ∈ V and λ ∈ C. Then we have

‖v+v′+W‖ = inf
x∈W
‖v+v′+w‖ ≤ inf

w∈W
‖v+w‖+ inf

w∈W
‖v′+w‖ = ‖v+W‖+‖v′+W‖.

If λ = 0, then λv ∈ W , so ‖λv +W‖ = 0; otherwise,

‖λv +W‖ = inf
w∈W
‖λv + w‖ = inf

w∈W
‖λ(v + w)‖ = |λ| inf

w∈W
‖v + w‖ = |λ|‖v +W‖.

This shows that the quotient seminorm is indeed a seminorm on V/W . Now let’s prove
that ‖v + W‖ = 0 if and only v ∈ W , which will imply the last statement. By definition
of ‖v + W‖ (and the fact that W is a subspace), we have ‖v + W‖ = 0 and and only if,
for every ε > 0, there exists w ∈ W such that ‖v − w‖ < ε. This is equivalent to v ∈ W .

(ii) Let (vn)n≥0 be a sequence in V such that (vn +W )n≥0 is a Cauchy sequence in V/W . Up
to replacing (vn)n≥0 by a subsequence, we may assume that ‖vn+1 − vn + W‖ < 2−n for
every n ≥ 0. We define another sequence (v′n)n≥0 such that v′n ∈ vn + W for n ≥ 0 and
‖v′n − v′n−1‖ < 2−n+1 for n ≥ 1, in the following way :
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• Take v′0 = v0.

• Suppose that we have v′0, . . . , v
′
n satisfying the two required conditions, with n ≥ 0.

Then we have ‖vn+1 − v′n + W‖ = ‖vn+1 − vn + W‖ < 2−n, so, by definition of
the quotient norm, we can find w ∈ W such that ‖vn+1 − v′n + w‖ < 2−n. Take
v′n+1 = vn+1 + w.

By the second condition, (v′n)n≥0 is a Cauchy sequence, so it has a limit v in V . By the
first condition, v′n + W = vn + W for every n ≥ 0, so v + W is the limit of the sequence
(vn +W )n≥0 in V/W .

B.2 The open mapping theorem

This is also known as the Banach-Schauder theorem. See for example theorem 5.10 of [15].

Theorem B.2.1. Let V and W be Banach spaces, and let T : V → W be a bounded linear
transformation that is bijective. Then T−1 : W → V is also bounded.

B.3 The Hahn-Banach theorem

See [15] Theorem 5.16 or [16] Theorems 3.2-3.7.

Theorem B.3.1 (Hahn-Banach theorem, analytic version, real case). Let V be a vector space
over R, let p : V → R such that :

(a) p(v + v′) ≤ p(v) + p(v′) for all v, v′ ∈ V (i.e. p is subadditive);

(b) p(λv) = λp(v) for every v ∈ V and ever λ ∈ R>0.

Let E ⊂ V be a K-subspace and let f : E → K be a linear functional such that, for every
x ∈ E, we have f(x) ≤ p(x).

Then there exists a linear function F : V → K such that F|W = f and F (x) ≤ p(x) for every
x ∈ V .

Note that, in this version, there is no norm or topology or V and no continuity condition on
the linear functionals.

Proof. Consider the set X of pairs (W, g), where W ⊃ E is a subspace of V and g : W → R
is a linear functional such that g|E = f and g(x) ≤ p(x) for every x ∈ W . We order this set by
saying that (W, g) ≤ (W ′, g′) if W ⊂ W ′ and g = g′|W . Suppose that (Wi, gi)i∈I is a nonempty
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totally ordered family in X , and let’s show that it has an upper bound. We set W =
⋃
i∈IWi;

this is a subspace of V because (Wi)i∈I is totally ordered (so, for all i, j ∈ I , we have Wi ⊂ Wj

or Wj ⊂ Wi). We define g : W → R in the following way : If v ∈ W , then there exists i ∈ I
such that v ∈ Wi, and we set g(v) = gi(v). We obviously have g(v) ≤ p(v). Also, if j ∈ I is
another element such that v ∈ Wj , then we have (Wi, fi) ≤ (Wj, fj) or (Wj, fj) ≤ (Wi, fi), and
in both cases this forces gi(v) = gj(v), so the definition makes sense. It is also easy to see that g
is R-linear, so that (W, g) ∈ X . This is an upper bound for the family.

So we can apply Zorn’s lemma to the set X . Let (W, g) be a maximal element of X , and
let’s show that W = V . Suppose that W 6= V , and choose v ∈ V −W . We want to extend g
to a linear functional h on on W ⊕ Rv such that h ≤ p, which will contradict the maximality
of (W, g). This just means that we have to choose the value of h(v), say h(v) = α ∈ R. The
condition h ≤ p means that we want, for every w ∈ W and every t ∈ R :

h(w + tv) = g(w) + tα ≤ p(w + tv).

If the inequality above is true for a t ∈ R and all w ∈ W , it is also true for all ct, c ∈ R>0, and
for all w ∈ W (because W is a subspace and the values of both g and p are multiplied by c when
their argument is multiplied by c). So it suffices to check it for t = ±1, which means that we
want, for every w ∈ W :

g(w) + α ≤ p(w + v) and g(w)− α ≤ p(w − v).

In other words, we want to have :

sup
w∈W

(g(w)− p(w − v)) ≤ α ≤ inf
w∈W

(p(w + v)− g(w)).

We can find such a α because we have, for all w,w′ ∈ W ,

g(w) + g(w′) = g(w + w′) ≤ p(w + w′) ≤ p(w + v) + p(w′ − v),

i.e.
g(w′)− p(w′ − v) ≤ p(w + v)− g(w).

So we get our contradiction, we can conclude that W was equal to V after all, and we are done.

Theorem B.3.2 (Hahn-Banach theorem, analytic version, complex case). Let V be a vector
space over C, let p : V → R≥0 be a semi-norm, 1 let E ⊂ V be a C-subspace and let f : E → C
be a linear functional such that, for every x ∈ E, we have |f(x)| ≤ p(x).

Then there exists a linear function F : V → C such that F|W = f and |F (x)| ≤ p(x) for
every x ∈ V .

1This means that, for all x, y ∈ V and all λ ∈ C, we have p(x+ y) ≤ p(x) + p(y) and p(λx) = |λ|p(x).
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Proof. We see V and E as R-vector spaces, and define a R-linear functional h : E → R by

h(v) = 1
2
(f(v) + f(v)).

Then we have, for every v ∈ E,

h(v) ≤ 1
2
(|f(v)|+ ||f(v)|) ≤ p(v).

Note that satisfies conditions (a) and (b) of theorem B.3.1. By that theorem, we can find a R-
linear functional H : V → R such that H|E = h and that H(v) ≤ p(v) for every v ∈ V . Define
F : V → C by

F (v) = H(v) +
1

i
H(iv),

and let’s show that it has all the desired properties.

(i) F is R-linear by construction, and, for everey v ∈ V , we have

F (iv) = H(iv) +
1

i
H(i(iv)) = iF (v).

So F is C-linear.

(ii) If v ∈ E, then

F (v) = h(v) +
1

i
h(iv) =

1

2
(f(v) + f(v)− if(iv)− if(iv)) = f(v)

(because f is C-linear), so F|E = E.

(iii) Let v ∈ V and choose θ ∈ R such that eiθF (v) ∈ R≥0. Then we have

|F (v)| = eiθF (v) = F (eiθv) = H(eiθv)− iH(ieiθv) ∈ R.

As H(eiθv) ∈ R and iH(eiθv) ∈ iR, we must have iH(ieiθv) = 0. So

|F (v)| = H(eiθv) ≤ p(eiθv) = p(v).

Corollary B.3.3. Let V be a normed vector space (over R or C), let W be a subspace of V , and
let TW be a bounded linear functional on W . Then there exists a bounded linear functional T on
V such that T|W = TW and ‖T‖op = ‖TW |op.

Proof. LetC = ‖TW‖op. Apply the Hahn-Banach with p(v) = C‖V ‖. We get a linear functional
T : V → C extending TW and such that |T (v)| ≤ C‖v‖ for every v ∈ V , which means that T is
bounded and ‖T‖op ≤ ‖TW‖op. As the inequality ‖TW‖op ≤ ‖T‖ is obvious, we are done.
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Corollary B.3.4. (See Theorem 5.20 and Remark 5.21 of [15].) Let V be a normed vector space
over K = R or C. We write V ∗ = Hom(V,K). Then the map V → V ∗∗ sending v ∈ V to the
linear functional v̂ : V ∗ → C, T 7−→ T (v) is an isometry.

In particular, this map is injective, which means that bounded linear functionals on V separate
points.

We can now deduce the geometric versions of the Hahn-Banach theorem. (In finite dimension,
these are sometimes called “the hyperplane separation theorem”).

Definition B.3.5. Let V be a vector space over the field K, with K = R or C. We say that V is
a topological vector space over K if it has a topology such that :

- (V,+) is a topological group;

- the map K × V → V , (a, v) 7−→ av is continuous.

We say that a topological vector space is locally convex if every point has a basis of convex
neighborhoods.

Example B.3.6. (a) Any normed vector is a locally convex topological vector, as is its dual
for the weak* topology.

(b) Let (X,µ) be a measure space, let p ∈ (0, 1), and consider the space Lp(X,µ), with the
metric given by

d(f, g) =

∫
X

|f(x)− g(x)|pdµ(x).

This makes Lp(X,µ) into a topological vector space, which is not locally convex if µ is
atomless and finite (for example if µ is Lebesgue measure on a bounded subset of Rn, or
the Haar measure on a compact group).

Theorem B.3.7 (Hahn-Banach theorem, first geometric version). Let V be a topological R-
vector space, and let A and B be two nonempty convex subsets of V . Suppose that A is open and
that A ∩B = ∅.

Then there exists a continuous linear functional f : V → R and c ∈ R such that, for every
x ∈ A and every y ∈ B, we have

f(x) ≤ c ≤ f(y).

We are going to use as our function p what is called the gauge of an open convex set C 3 0.

Lemma B.3.8. Let C be a nonempty open convex subset of V , and suppose that 0 ∈ C. We
define the gauge p : V → R≥0 of C by

p(v) = inf{α > 0|v ∈ αC}.

Then p satisfies conditions (a) and (b) of theorem B.3.1, and moreover :
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B Useful things about normed vector spaces

(c) If V is a normed vector space, then there exists M ∈ R≥0 such that, for every v ∈ V ,

0 ≤ p(v) ≤M‖v‖.

(d) C = {v ∈ V |p(v) < 1}.

Proof. The fact that p(λv) = λp(v) for every λ ∈ R>0 and every v ∈ V follows immediately
from the definition (and doesn’t use the convexity or openness of C).

Let’s prove (c). As C is open and 0 ∈ C, there exists r > 0 such that C ⊃ {v ∈ V |‖v‖ < r}.
Then, for every v ∈ V − {0}, we have r

‖v‖v ∈ C, so p(v) ≤ 1
r
‖v‖.

Let’s prove (d). Let v ∈ C. As C is open, there exists ε > 0 such that (1 + ε)v ∈ C. So
p(v) ≤ 1

1+ε
< 1. Conversely, let v ∈ V such that p(v) < 1. Then there exists α ∈ (0, 1) such

that x ∈ αC, i.e. 1
α
v ∈ C, and then we have v = α( 1

α
v) + (1− α)0 ∈ C, because C is convex.

Finally, we prove that p is subadditive, i.e. condition (b). Let v, w ∈ V . Let ε > 0. By (b)
(and the first property we proved), we have 1

p(v)+ε
v ∈ C and 1

p(w)+ε
w ∈ C. As C is convex, this

implies that, for every t ∈ [0, 1], we have

t
p(v)+ε

v + 1−t
p(w)+ε

w ∈ C.

Taking t = p(v)+ε
p(v)+p(w)+2ε

, we get that

1

p(v) + p(w) + 2ε
(v + w) ∈ C,

i.e. that p(v + w) ≤ p(v) + p(w) + 2ε. As ε > 0 was arbitrary, this implies that
p(v + w) ≤ p(v) + p(w).

Lemma B.3.9. Let C ⊂ V be a nonempty open convex subset, and let v0 ∈ V − C.

Then there exists a continuous linear functional F on V such that, for every v ∈ C, we have
F (v) < F (v0).

Proof. We may assume 0 ∈ C (by translating the situation). Let p : V → R≥0 be the gauge of
C, i.e. the function defined in the preceding lemma.

Let E = Rv0, and let f : E → R be the linear functional defined by f(λv0) = λ, for
every λ ∈ R. Let’s show that f ≤ p. If λ ≤ 0, then f(λv0) ≤ 0 ≤ p(λv0). If λ > 0, then
λ = g(λv0) ≤ p(λv0) because 1

λ
(λv0) = v0 6∈ C.

So we can apply the analytic form of the Hahn-Banach theorem to get a linear function
F : V → R such that F (v) ≤ p(v) for every v ∈ V . In particular, F (v0) = 1, and, if v ∈ C,
then F (v) ≤ p(v) < 1 (by (d) in the first lemma).
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Finally, we show that F is continuous. Note that, if v ∈ −C, we have −F (v) = F (−v) < 1.
So, for every v in the open neighborhood U := C ∩ (−C) of 0, we have |F (v)| < 1. If ε > 0,
then εU is an open neighborhood of 0 in V , and we have |F (v)| < ε for every v ∈ εU . So F
is continuous at 0. As F is linear and translations are continuous on V , this implies that F is
continous at every point of V .

Proof of the theorem. Let C = A− B = {x− y, x ∈ A, y ∈ B}. Then C is clearly convex, C
is open because it is equal to

⋃
y∈B(A − y), and 0 6∈ C because A ∩ B = ∅. So we can apply

the second lemma above to get a continuous linear functional f : V → R such that f(x) < 0 for
every x ∈ C. Then, for every x ∈ A and every y ∈ B, we have f(x) < f(y). So the conclusion
is true for f and for c = supx∈A f(x).

Theorem B.3.10 (Hahn-Banach theorem, second geometric version). Let V be a locally convex
topological R-vector space, and let A and B be two nonempty convex subsets of V . Suppose that
A is closed, that B is compact, and that A ∩B = ∅.

Then there exists a continuous linear functional f : V → R and c ∈ R such that, for every
x ∈ A and every y ∈ B, we have

f(x) < c < f(y).

Proof. We first find a convex open neighborhood U of 0 in V such that (A+U)∩ (B+U) = ∅.
(Note : this only uses that V is locally and that A is closed and B compact, but not the fact that
A and B are convex.)

For every x ∈ B, choose a symmetric convex open neighborhood Ux of 0 such that
(x + Ux + Ux + Ux) ∩ A = ∅; as Ux is symmetric, this is equivalent to saying that
(x + Ux + Ux) ∩ (A + Ux) = ∅. As B is compact, we can find x1, . . . , xn ∈ B such that
B ⊂

⋃n
i=1(xi + Uxi). Let U =

⋂n
i=1 Uxi . Then U is a convex open neighborhood of 0, and we

have B + U ⊂
⋃n
i=1(xi + Uxi + U) and A+ U ⊂

⋂n
i=1(A+ Uxi), so (B + U) ∩ (A+ U) = ∅.

The sets A + U and B + U are convex and open, so, by theorem B.3.7, there exists a con-
tinuous linear functional f : V → R and c′ ∈ R such that f(x) ≤ c′ ≤ f(y) for every
x ∈ A + U and every y ∈ B + U . As B is compact and f continuous, there exists y0 ∈ B
such that f(y0) = miny∈B f(y). In particular, c′ < miny∈B f(y). Choose c ∈ R such that
c′ < c < miny∈B f(y). Then we have f(x) < c < f(y) for every x ∈ A and every y ∈ B.
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B.4 The Banach-Alaoglu theorem

See section 15.1 of [14] or Theorem 3.15 of [16]. This theorem is also called “Alaoglu’s theo-
rem”.

Theorem B.4.1. Let V be a normed vector space. Then the closed unit ball in Hom(V,C) is
compact Hausdorff for the weak* topology.

Compare with the following results, usually called “Riesz’s lemma” or “Riesz’s theorem” (see
section 13.3 of [14] or Theorem 1.22 of [16]) :

Theorem B.4.2. Let V be normed vector space. Then the closed unit ball of V is compact if and
only if V is finite-dimensional.

B.5 The Krein-Milman theorem

See section 14.6 of [14] (or theorem 3.23 of [16]).

Definition B.5.1. Let V be a R-vector space and C be a convex subset of V . We say that x ∈ C
is extremal if, whenever x = ty+(1− t)z with t ∈ (0, 1) and y, z ∈ C, we must have y = z = x.

Theorem B.5.2. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V . ThenK is the closure of the convex hull of its set of extremal points.

Lemma B.5.3. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V . Then K has an extremal point.

Proof. We say that a subset S of K is extremal if for every x ∈ S, if we have x = ty + (1− t)z
with y, z ∈ K and t ∈ (0, 1), then we must have y, z ∈ S. (Note that a point x ∈ K is extremal
if and only if {x} is extremal.)

Let X be the set of nonempty closed extremal subsets of K, ordered by reverse inclusion. Let
Y a nonempty totally ordered subset of X , and let’s show that it has a maximal element. As
Y is totally ordered, for all T1, . . . , Tn ∈ Y , there exists i ∈ {1, . . . , n} such that Ti ⊂ Tj for
every j ∈ {1, . . . , n}, and then T1 ∩ . . . ∩ Tn ⊃ Ti 6= ∅. As K is compact, this implies that
S :=

⋂
T∈Y T is not empty. The set S is clearly closed, so if we can show that it is extremal, we

will be done. Let x ∈ S, and write x = ty + (1 − t)z, with y, z ∈ K and t ∈ (0, 1). For every
T ∈ Y , as T is extremal, we must have y, z ∈ T . So y, z ∈ S, and S is indeed extremal.

By Zorn’s lemma, the set X has a maximal element, let’s call it S. To finish the proof, we just
need to show that S is a singleton. If |S| ≥ 2, let x, y ∈ S such that x 6= y. By the geometric
version of the Hahn-Banach theorem (theorem B.3.10), there exists a continuous linear functional
f : V → R such that f(x) < f(y). As S is compact, the continuous function f reaches its
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minimum on S. Let m = minz∈S f(z), and let S ′ = {z ∈ S|f(z) ≤ m}. Then S ′ is closed, it
is nonempty by the observation we just made, and S ′ 6= S because y 6∈ S ′. Let’s show that S ′ is
extremal, which will give a contradiction (and imply that S had to be a singleton). Let z ∈ S ′,
and write z = tz′ + (1 − t)z′′, with z′, z′′ ∈ K and t ∈ (0, 1). As S, we have z′, z′′ ∈ S. By
definition of m, we have m = f(z) = tf(z′) + (1 − t)f(z′′) ≤ tm + (1 − t)m, which forces
m = f(z′) = f(z′′), i.e. z′, z′′ ∈ S ′.

Proof of the theorem. Let L be the closure of the convex hull of the set of extremal points of K.
Then L is convex, closed and contained in K; in particular, L is also compact. Suppose that
L 6= K, and let x ∈ K \L. By the geometric version of the Hahn-Banach theorem (theorem
B.3.10), there exists a continuous linear functional f : V → R such that maxy∈L f(y) < f(x).
Let M = maxz∈K f(z), and let K ′ = {z ∈ K|f(z) = M}. Then K ′ is a closed convex subset
of K (hence it is compact), and K ′ ∩ L = ∅. By the lemma, K ′ must have an extremal point z,
and it is easy to see (as in the proof of the lemma) that z is also an extremal point of K. But then
z should be in L, contradiction.

B.6 The Stone-Weierstrass theorem

See section 12.3 of [14] or Thorem 5.7 of [16] for the case of a compact space.

Theorem B.6.1. Let X be a locally compact Hausdorff topological space, and let A be a C-
subalgebra of C0(X) such that :

(a) for every f ∈ A, the function x 7−→ f(x) is also in A;

(b) for all x, y ∈ X such that x 6= y, there exists f ∈ A such that f(x) 6= f(y) (“A separates
the points of X”);

(c) for every x ∈ X , there exists f ∈ A such that f(x) 6= 0 (“A vanishes nowehere on X”).

Then A is dense in C0(X).
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stochastic matrix, 119
subrepresentation, 18
symmetric ∗-algebra, 53
symmetric subset, 6

topological group, 5
topological vector space, 149
total variation distance, 122
trivial representation, 18

uniformly continuous, 8
unimodular group, 15
unital (Banach algebra), 30
unitary dual, 80
unitary equivalence, 79
unitary representation, 21
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