
MAT 449 : Problem Set 9

Due Thursday, November 29

In this problem set, we put the norm ‖.‖ on Mn(C) defined by ‖X‖2 = Tr(X∗X).

1. (2) Let P(Z) be the set of subsets of Z. Show that there exists a finitely additive left-
invariant probability measure on Z, that is, a function µ : P(Z)→ R≥0 such that :

(a) If A1, . . . , An ∈ P(Z) are such that Ai ∩ Aj = ∅ for i 6= j, then µ(A1 ∪ . . . ∪ An) =
µ(A1) + . . .+ µ(An).

(b) µ(Z) = 1.

(c) For every A ∈ P(Z) and n ∈ Z, we have µ(n+A) = µ(A).

Solution. As Z is an abelian locally compact group, it is amenable by problems 4 and 6
of problem set 8. This means that there exists a left-invariant mean M on L∞(Z). We
define µ by µ(A) = M(11A); this function does take its values in R≥0 by definition of a
mean. Then µ satisfies (a) because M is linear, it satisfies (b) because M(1) = 1 and it
satisfies (c) because M is left-invariant.

Conversely, note that the existence of a µ as in the statement implies the existence of an
invariant mean.

�

2. (2, extra credit) Is the measure of problem 1 unique ? (Hint : You need a somewhat
explicit way to construct invariant means on Z. You can for example try to exploit the
sequence of (non-invariant) means Mn : L∞(Z)→ C, (xk)k∈Z 7→ 1

2k+1

∑n
k=−n xk.)

Solution. No.

Let V = L∞(Z), and consider the family of linear functionals Mn : L∞(Z) → C defined
by

Mn((xk)k∈Z) =
1

2n+ 1

n∑
k=−n

xk,

for n ∈ N. We have |Mn(x)| ≤ ‖x‖∞ for every x ∈ V , so Mn is continuous. Also, it is
clear on the definition that Mn is a mean. If a ∈ Z, then, for every x ∈ V and every
n ∈ N, we have

|Mn(Lax)−Mn(x)| ≤ 2|a|
2n+ 1

‖x‖∞.

So, if we could make the sequence (Mn)n≥0 converge in the weak* topology of Hom(V,C),
then its limit would be an invariant mean, and it would define an invariant finitely additive
probability measure as in problem 1. We can always find a convergent subsequence of
(Mn)n≥0 converge in the weak* using the Banach-Alaoglu theorem, but we would also
like to show that we can get two different limits.
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Consider the element x = (xn)n∈Z of V defined by xn = 0 for n ≤ 0, and xn = (−1)k if
we have 2k ≤ n ≤ 2k+1 − 1 with k ∈ Z≥0. Then, if n = 2k − 1 with k ≥ 0, we have

n∑
r=−n

xn =

k−1∑
s=0

(−1)s2s =
1− (−2)k

3
,

so

Mn(x) =
1− (−2)k

3(2k+1 − 1)
.

In particular, the sequence (M22l−1(x))l≥0 converges to−1
6 , and the sequence (M22l+1−1(x))l≥0

converges to 1
6 .

By the Banach-Alaoglu, the sequences (M22l−1)l≥0 (M22l+1−1)l≥0 both have weak* limit
points, say M and M ′. Both M and M ′ are left invariant means on V , but we have
M(x) = −1

6 and M ′(x) = 1
6 by the calculation above, so M 6= M ′.

�

3. Let d be a positive integer.

a) (1) Let T be the intersection of U(d) with the set of diagonal matrices. Show that

T =


z1 . . . 0

. . .

0 . . . zd

 , z1, . . . , zd ∈ S1

 .

b) (1) Show that every element of U(d) is conjugated in U(d) to an element of T .

c) (1) Show that every element of SU(d) is conjugated in SU(d) to an element of
T0 := T ∩ SU(d).

d) (1) Show that a finite-dimensional representation V of SU(d) is uniquely determined
up to equivalence by χV |T0 .

We now take d = 2. Remember the irreducible representations Vn (n ≥ 0) of SU(2)
defined in problem 1 of problem set 6.

e) (1) Calculate the restriction of χVn to T0.

f) (2) Let (ρ, V ) be a finite-dimensional representation of SU(2). Show that there exists
m ≥ 1 and nonnegative integers a0, . . . , am such that, for every z ∈ S1, we have

χV

((
z 0
0 z

))
= a0 +

m∑
i=1

ai(z
i + z−i).

g) (2) Show that there exist integers cn ∈ Z, n ≥ 0, such that cn = 0 for n big enough
and χV =

∑
n≥0 cnχVn .

h) (1) Show that the integers cn of (f) are all nonnegative.

i) (1) If V is irreducible, show that there exists n ≥ 0 such that V ' Vn.

Solution.
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a) Let x =

z1 . . . 0
. . .

0 . . . zd

 ∈ Md(C), with z1, . . . , zd ∈ C. Then x is in T if and only if

xx∗ = Id. As x∗ =

z1 . . . 0
. . .

0 . . . zd

, this condition is equivalent to |z1| = . . . = |zd| =

1.

b) Let x ∈ U(d). Then x is normal, so, by the spectral theorem, it can be diagonalized
in an orthonormal basis of Cn. This means that there exists y ∈ U(d) such that
yxy−1 is diagonal, i.e., yxy−1 ∈.

c) Let x ∈ SU(d). By question (b), there exists y ∈ U(d) such that yxy−1 ∈ T . We
have det(yxy−1) = det(x) = 1, so yxy−1 is actually in T0. Let c = det(y) ∈ C×. We
choose c′ ∈ C such that (c′)d = c; as |c| = 1, we also have |c′| = 1. Then y′ := (c′)−1y
has determinant 1, hence is in SU(d), and y′x(y′)−1 = yxy−1.

d) Let V,W be two finite-dimensional representations of SU(d), and suppose that χV =
χW on T0. By question (c) and the fact that χV and χW are central functions, this
implies that χV = χW on all of SU(d). But then V and W are equivalent by corollary
IV.5.10 of the notes.

e) Let x =

(
x1 0
0 x2

)
∈ T0. Note that x1x2 = 1, so x2 = x−1

1 = x1. We calculate the

action of x on the basis (tk1t
n−k
2 )0≤k≤n of Vn. For 0 ≤ k ≤ n, we have

x · tl1tn−k2 = (x−1
1 t1)k(x−1

2 t2)n−k = xn−2k
1 tk1t

n−k
2 .

So

χVn(x) =
n∑
k=0

xn−2k
1 .

f) We embed S1 in SU(1) by the continuous group morphism z 7→
(
z 0
0 z

)
. Note

that this induces an isomorphism of topological groups S1 ∼→ T0. Then ρ|S1 is a
finite-dimensional representation of S1, so it is a finite direct sum of irreducible rep-
resentations. We know (from problem 5 of problem set 3) that every irreducible
representation of S1 is of the form ρm : z 7→ zm with m ∈ Z, so there exist nonneg-
ative integers am, m ∈ Z, that are 0 for all but a finite number of m, and such that
ρ|S1 '

⊕
m∈Z ρ

am
m . In particular, for every z ∈ S1,

χV

((
z 0
0 z−1

))
=
∑
m∈Z

amz
m.

Let y =

(
0 i
i 0

)
. Then y ∈ SU(2) and, for every z ∈ S1, we have y

(
z 0
0 z−1

)
y−1 =(

z−1 0
0 z

)
. As V is a representation of SU(2), the function χV is central on SU(2),

and so χV

((
z 0
0 z−1

))
= χV

((
z−1 0
0 z

))
. This implies that a−m = am for every

m ∈ Z, so we get the desired statement.

g) Let M be the Z-module of functions χ : S1 → Z that can be written χ(z) = a0 +∑
m≥1 am(zm+z−m), with a0, a1, . . . ∈ Z and am = 0 for m big enough. By question

(f), the restriction to S1 of χV is in M .
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A basis of M over Z is formed by the function (χ0 = 1, χ1 = z + z−1, χ2 = z2 +

z−2
2 , . . .). On the other hand, we have seen in question (e) that χVn =

∑
0≤k≤n

k=n mod n

χk.

So the (infinite) matrix representing (χVn)n≥0 in the basis (χn)n≥0 is upper triangular
with ones on the diagonal, which means that it can be inverted, i.e., that (χVn)n≥0 is
also a basis of M over Z. (If you don’t like that, it is also very easy from the formula
expressing χVn in the basis (χm)m≥0 to show by induction over n that (χV0 , . . . , χVn)
is linearly independent and spans the same Z-submodule as (χ0, . . . , χn).)

The conclusion of the question follows immediately from this.

h) We know that the functions χVn are pairwise orthogonal in L2(SU(2)) (by corollary
IV.5.8 of the notes). So, for every n ≥ 0,

cn = 〈χV , χVn〉L2(SU(2)).

By the same corollary, the right-hand side is also equal to dimC(HomSU(2)(V, Vn)),
which is a nonnegative integer.

i) If V is irreducible, then, by the last formula in the proof of (h) (and Schur’s lemma),
we have cn = 0 unless V ' Vn. So, if there were no n ≥ 0 such that V ' Vn, we
would have χV = 0, hence V = 0, which is impossible.

�

4. Let G be a compact group, and let (π, V ) be a faithful finite-dimensional continuous
representation of G. (Remember that this means that π : G→ GL(V ) is injective.) The
goal of this problem is to show that, if G is finite, then every irreducible representation of
G is a direct summand of a representation of the form V ⊗n⊗ (V ∗)⊗m (for some n,m ≥ 1),
where the notation V ⊗n means V ⊗ . . .⊗ V︸ ︷︷ ︸

n times

, and similarly for (V ∗)⊗m.

a) (3) Let 11 be the trivial representation of G on C. Show that it suffices to show that
every irreducible representation of G is a direct summand of a representation of the
form (V ⊕ V ∗ ⊕ 11)⊗N , for some N ≥ 1.

b) (2) Let W be an irreducible representation of G. Show that W is a direct summand
of (V ⊕ V ∗ ⊕ 11)⊗N if and only if

∫
G(1 + 2 ReχV (x))NχW (x)dx 6= 0.

From now on, we assume that G is finite, we fix a finite-dimensional representation W of
G, and we write, for every N ∈ Z≥0,

SN =
∑
x∈G

(1 + 2 ReχV (x))NχW (x).

Let d = dimV .

c) (2) If x 6= 1, show that (1 + 2 ReχV (x))NχW (x) = o((1 + 2d)N ) as N → +∞.

d) (2) If W 6= 0, show that SN 6= 0 for N big enough.

Solution.

a) Let’s show by induction on N that, for every N ∈ Z≥1, we have a G-equivariant
isomorphism

(11⊕ V ⊕ V ∗)⊗N '
⊕

k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!m!

.
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This clearly implies the result of (a).

For N = 1, it follows from the fact that 11 ⊗W ' W for every representation W of
G. Suppose the result know for N , and let’s prove it for N + 1. We have

(11⊕ V ⊕ V ∗)⊗N+1 ' (11⊕ V ⊕ V ∗)⊗N ⊗ (11⊕ V ⊕ V ∗)

' (11⊕ V ⊕ V ∗)⊗
⊕

k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!m!

'
⊕

k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!m! ⊕

⊕
k,l,m≥0

k+l+m=N

(
V ⊗k+1 ⊗ (V ∗)⊗l

) N !
k!l!m!

⊕
⊕

k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l+1

) N !
k!l!m!

'
⊕

k,l,m≥0
k+l+m=N+1

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!(m−1)! +

N !
(k−1)!l!m! +

N !
k!(l−1)!m!

'
⊕

k,l,m≥0
k+l+m=N+1

(
V ⊗k ⊗ (V ∗)⊗l

) (N+1)!
k!l!m!

.

b) By the semisimplicity of finite-dimensional representations of G (corollary I.3.2.9
of the notes) and Schur’s lemma, the representation W is a direct summand of
(11⊕V ⊕V ∗)⊗N if and only if HomG((11⊕V ⊕V ∗)⊗N ,W ) 6= 0. By corollary IV.5.8 of
the notes, this is the case if and only 〈χ(11⊕V⊕V ∗)⊗N , χW 〉L2(G) 6= 0. So the conclusion

follows from the fact that χ(11⊕V⊕V ∗)⊗N = (1 + χV + χV )N = (1 + 2 ReχV )N , which
is an immediate consequence of proposition IV.5.4 of the notes.

c) As G is compact, the representation (π, V ) is unitarizable, so we can choose an
isomorphism V ' Cd such that π(G) ⊂ U(d). Let z1, . . . , zd be the eigenvalues of
π(x). As π is faithful, we have π(x) 6= 1, so at least one the zi is not equal to 1 (we
are using the fact that π(x) is diagonalizable); so we may assume that z1 6= 1. As
|z1| = 1, this implies that −1 ≤ Re z1 < 1, so 1 − 2d ≤ 1 + 2

∑d
i=1 Re(zi) < 1 + 2d,

and
∣∣∣1 + 2

∑d
i=1 Re zi

∣∣∣ < 1 + 2d. Finally, we get

|(1 + 2 ReχV (x))NχW (x)| ≤ (dimW )

∣∣∣∣∣1 + 2

d∑
i=1

Re zi

∣∣∣∣∣
N

= o((1 + 2d)N ).

d) As G is finite, question (c) implies that∑
x∈G−{1}

(1 + 2 ReχV (x))NχW (x) = o((1 + 2d)N ).

On the other hand, (1+2 ReχV (1))χW (1) = (dimW )(1+2d)N . So Sn = (dimW )(1+
2d)N + o((1 + 2d)N ), which implies that Sn 6= 0 for N big enough.

�

5. Consider the function exp : Mn(C) → Mn(C) defined by exp(X) =
∑

n≥0
1
n!X

n; we

also write eX for exp(X). You may assume the basic properties of this function, i.e.
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that the series defining it converges absolutely, that it is infinitely derivable, and that
we can calculate its derivatives term by term in the sum. You may also assume that
exp(A + B) = exp(A) exp(B) for any A,B ∈ Mn(C) such that AB = BA; in particular,
exp(X) ∈ GLn(C) for every X ∈Mn(C), and exp(X)−1 = exp(−X).

We also fix a closed subgroup G of GLn(C).

a) (2) Calculate the differential of exp at the point 0 ∈Mn(C). (Remember that this is
a linear operator from Mn(C) to itself.)

b) (1) Show that exp induces a diffeomorphism from a neighborhood of 0 in Mn(C) to
a neighborhood of 1 in GLn(C).

c) (3) Let L = {X ∈ Mn(C)|∀t ∈ R, exp(tX) ∈ G}. Show that L is a R-linear
subspace of Mn(C). (Hint : For all X,Y ∈ Mn(C), show that exp(X + Y ) =
limk→+∞(exp( 1

kX) exp( 1
kY ))k.)

d) (2) If G = U(n), show that L = {X ∈Mn(C)|X∗ = −X}.
e) (2) If G = SO(n), show that L = {X ∈Mn(C)|XT = −X}.
f) Assume again that G is any closed subgroup of GLn(C). The goal of this question is

to show the following statement : (*) There exists a neighborhood U of 0 in L such
that exp(U) is a neighborhood of 1 in G and that exp induces a homeomorphism
U
∼→ exp(U).

i. (2) Let L′ be a R-linear subspace of Mn(C) such that Mn(C) = L ⊕ L′, and
consider the function ϕ : Mn(C) → GLn(C) defined by ϕ(A + B) = eAeB, for
every A ∈ L and every B ∈ L′. Show that there exist neighborhoods U0 of 0 in
L, V of 0 in L′ and W of 1 in GLn(C) such that ϕ induces a diffeomorphism
U0 × V

∼→W .

ii. (1) Suppose that (*) is not true. Show that there exists a decreasing sequence
U0 ⊃ U1 ⊃ . . . of neighborhoods of 0 in L, a sequence (Ak)k≥0 of elements of L
and a sequence (Bk)k≥0 of elements of L′ such that :

• for every k ≥ 0, we have Ak ∈ Uk;
• for every k ≥ 0, we have Bk 6= 0;

• for every k ≥ 0, we have ϕ(Ak +Bk) ∈ G;

• the limit of the sequence (Bk)k≥0 is 0;

• for every neighborhood U of 0 in L, we have Uk ⊂ U for k big enough.

iii. (1) Show that the sequence ( 1
‖Bk‖Bk)k≥0 has a convergent subsequence, and that

the limit B of this subsequence is not 0.

iv. (1) For every t ∈ R, show that b t
‖Bk‖c‖Bk‖ → t as k → +∞. (Where, for every

c ∈ R, we write bcc for the biggest integer that is ≤ c.)
v. (2) Show that B ∈ L.

g) (3, extra credit) Let (ρ, V ) be a continuous finite-dimensional representation of G.
For every X ∈ L, show that there exists a unique element u(X) ∈ End(V ) such that
ρ(etX) = etu(X) for every t ∈ R. Show also that the function u : L → End(V ) is
R-linear.

Solution.

a) Let d exp0 be the differential of exp at the point 0. By definition of the differential,
for every H ∈Mn(C), we have

d exp0(H) = lim
t→0

1

t
(etH − e0) = lim

t→0

1

t
(etH − In) =

d

dt
etH
∣∣∣
t=0

.
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But we have

d

dt
etH =

∑
n≥0

1

n!

d

dt
(tH)n = H exp(tH) = exp(tH)H,

so d exp0(H) = H. Finally, we get d exp0 = idMn(C).

b) As GLn(C) is open in Mn(C), neighborhoods of 1 in GLn(C) are the same as small
enough neighborhoods of 1 in Mn(C). So the result follows from the fact that d exp0

is invertible and from the inversion function theorem.

c) Let’s first prove the hint. Let U be a neighborhood of 0 in Mn(C) and V be a
neighborhood of 1 in GLn(C) such that exp is a diffeomorphism from U to V . We
write log : V → U for its inverse. As exp(H) = 1 + H + o(H) as H → 0, we have
log(1 +H) = H + o(H) as H → 0.

Let X,Y ∈ Mn(C). Then exp( 1
kX) = 1 + 1

kX + O( 1
k2

) and exp( 1
kX) = 1 + 1

kX +
O( 1

k2
), so exp( 1

kX) exp( 1
kY ) = 1 + 1

k (X + Y ) + O( 1
k2

). If k is big enough, we have
exp( 1

kX) exp( 1
kY ) ∈ V , and log(exp( 1

kX) exp( 1
kY )) = 1

k (X + Y ) + o( 1
k ). So finally

(exp( 1
kX) exp( 1

kY ))k = exp(k log(exp( 1
kX) exp( 1

kY ))) = exp(X+Y+o(1))→ exp(X+Y )

as k → +∞.

The set L is stable by scalar multiplication by definition. Let X,Y ∈ L. Then
c(t) := etXetY ∈ G for every t ∈ R. As G is closed in GLn(C), this implies that, for
every t ∈ R,

exp(t(X + Y )) = lim
k→+∞

(exp( tkX) exp( tkY ))k ∈ G.

So X + Y ∈ L.

d) Let X ∈ Mn(C) such that X = −X∗. Then, for every t ∈ R, we have tX = −(tX)∗

(in particular, tX and tX∗ commute), hence

etX(etX)∗ = etXetX
∗

= etX+tX∗ = e0 = In,

i.e., etX ∈ U(n). So X ∈ L.

Conversely, let X ∈ L. Then, for every t ∈ R, we have etXetX
∗

= In. Deriving this
expression (and using the expression for the derivative from the proof of (a)) gives

0 = XetXetX
∗

+ etXetX
∗
X∗ = X +X∗.

e) This is exactly the same proof as in (d), replacing “∗” by “T”.

f) i. By the inverse function theorem, it suffices to prove that the differential of ϕ at
0 ∈ Mn(C) is invertible. If A ∈ L and B ∈ L′, we have, by definition of the
differential

dϕ0(A+B) = lim
t→0

1

t
(ϕ(tA+ tB)− ϕ(0)) = lim

t→0

1

t
(etAetB − 1) = A+B

(by the calculation in (a)), so dϕ0 = idMn(C), and this is certainly invertible.

ii. Choose a sequence of neighborhoods U0 ⊃ U1 ⊃ . . . (resp. V = V0 ⊃ V1 ⊃ . . .) of
0 in L (resp. L′) such that every neighborhood U (resp. V ′) of 0 in L contains
Uk (resp. Vk) for k big enough. (For example, we could take balls with radii
tending to 0 in L and in L′.) For every k ≥ 0, the function ϕ is a diffeomorphism
from Uk ×Vk to ϕ(Uk ×Vk), and in particular ϕ(Uk ×Vk)∩G is a neighborhood
of 1 in G, containing exp(Uk). If (*) is not true, them ϕ(Uk × V ) ∩ G strictly
contains exp(Uk) for every k, so we can find Ak ∈ Uk and Bk ∈ Vk such that
ϕ(Ak +Bk) ∈ G and ϕ(Ak +Bk) 6∈ exp(Uk), i.e. Bk 6= 0. Also, we have Bk → 0
as k → +∞ because of the condition on the neighborhoods Vk.
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iii. The sequence ( 1
‖Bk‖Bk)k≥0 is a sequence of elements of the unit ball of L′, and

this unit ball is compact, so it has a convergent subsequence, whose limit is still
in the unit ball (and in particular nonzero).

iv. For every k ≥ 0, we have

0 ≤ t

‖Bk‖
− b t

‖Bk‖
c < 1,

hence

0 ≤ t− b t

‖Bk‖
c‖Bk‖ < ‖Bk‖.

As Bk → 0, we have ‖Bk‖ → 0, which implies that

b t

‖Bk‖
c‖Bk‖ → t.

v. After passing to a subsequence, we may assume that B = limk→+∞
1
‖Bk‖Bk. We

must show that etB ∈ G for every t ∈ R. Let t ∈ R. By question (iv) and the
definition of B, we have

etB = lim
k→+∞

exp
(
b t
‖Bk‖c‖Bk‖

1
‖Bk‖Bk

)
= exp

(
b t
‖Bk‖cBk

)
.

But, for every k ≥ 0, we have ϕ(Ak + Bk) = eAkeBk ∈ G and eAk ∈ G because
Ak ∈ L, so eBk ∈ G; as N := b t

‖Bk‖c is an integer, this implies that eNB =

(eB)N ∈ G. Finally, as G is closed in GLn(C), we deduce that etB ∈ G.

g) Let X ∈ L. Consider the map R→ GL(V ), t 7→ ρ(etX). This a continuous morphism
of groups, hence, by 5(b)(i) of problem set 3, there exists a unique u(X) ∈ End(V )
such that ρ(etX) = exp(tu(X)) for every t ∈ R.

Let X,Y ∈ L and a ∈ R. For every t ∈ R, we have

etu(aX) = ρ(etaX) = etau(X).

Taking derivatives at t = 0, we get u(aX) = au(X). Now consider c : R → GL(V ),
t 7→ ρ(etX)ρ(etY )ρ(e−t(X+Y )). We have c(t) = etu(X)etu(Y )e−tu(X+Y ), so c is C∞ and
c′(0) = u(X) + u(Y ) − u(X + Y ). On the other hand, using the fact that c is C∞,
we can prove as in (c) that, for every t ∈ R, we have

lim
k→+∞

c( tk )k = etc
′(0).

So we just need to prove that this limit is equal to idV for every t ∈ R. An easy
calculation with infinitesimals shows that (if t is fixed)

e
t
kXe

t
k Y e−

t
k (X+Y ) = In +O( 1

k2
),

so

(e
t
kXe

t
k Y e−

t
k (X+Y ))k = In +O( 1

k ),

and

c( tk ) = ρ((e
t
kXe

t
k Y e−

t
k (X+Y ))k) −−−−→

k→+∞
ρ(In) = idV .

�
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6. The goal of this problem is to generalize problem 4 to an arbitrary compact group G,
assuming something about the Haar measure. Let (ρ, V ) be a faithful finite-dimensional
continuous representation of G. We want to show that any irreducible representation of
G is a direct summand of some V ⊗N ⊗ (V ∗)⊗M . We fix a normalized Haar measure µ on
G.

a) (1) Show that there exists an isomorphism V ' Cn such that ρ induces an isomor-
phism (of topological groups) between G and a closed subgroup of U(n).

From now on, we assume that G is a closed subgroup of U(n), that V = Cn and that
ρ : G → GLn(C) is the inclusion. Let (π,W ) be a continuous nonzero finite-dimensional
representation of G. Define f : U(n) → C and g : G → C by f(x) = 1 + Tr(x) + Tr(x)
and g(x) = χW (x).

As in problem 5, we define

L0 = {X ∈Mn(C)|∀t ∈ R, etX ∈ U(n)}

and
L = {X ∈Mn(C)|∀t ∈ R, etX ∈ G}.

Remember that we proved in problem 5 that, if Ω is a small enough neighborhood of 0 in L,
then exp induces a homeomorphism between Ω and exp(Ω), and exp(Ω) is a neighborhood
of 1 in G. Choose an isomorphism L0 ' Rm, and let dX be the Lebesgue measure on
L0 given by this isomorphism. We assume the following : (**) For Ω small enough, there
exists c ∈ R>0 such that the inverse image by the homeomorphism exp : Ω

∼→ exp(Ω) of
the Haar measure µ is of the form h(X)dX, where h(X) = c+O(‖X‖) as X → 0. 1

b) (1) Show that, for every x ∈ U(n), we have f(x) = 1 + 2
∑n

i=1 cos θi, where
eiθ1 , . . . , eiθn are the eigenvalues of x.

c) (2) If Ω is a neighborhood of 0 in L0, show that there exists δ > 0 such that, for
every x 6∈ exp(Ω) and every N ≥ 1, we have

|f(x)N | ≤ (1 + 2n− δ)N .

d) (1) If Ω is a neighborhood of 0 in L and U = exp(Ω), show that there exists δ > 0
and C ∈ R>0 such that, for every N ≥ 1, we have∣∣∣∣∫

G−U
f(x)Ng(x)dµ(x)

∣∣∣∣ ≤ C(1 + 2n− δ)N .

e) (2) Show that

f(eX) = (2n+ 1)e−K(X)+O(‖X‖4)

as X → 0 in L0, where K(X) = 1
1+2n‖X‖

2 = 1
1+2n Tr(X∗X).

f) (3, extra credit) Show that, if Ω is a ball (of finite radius) centered at 0 in L, there
exists D ∈ R>0 such that∫

Ω
e−NK(X)g(eX)dX ∼ D ·N−

1
2 dimL

as N → +∞. (Hint : Show that we have g(eX) = dimW +O(‖X‖) as X → 0 in L.)

1This is always true, but we don’t have the tools to prove it.
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g) (2, extra credit) Show that there exists a neighborhood U of 1 in G and E ∈ R>0

such that ∫
U
f(x)Ng(x)dµ(x) ∼ E (2n+ 1)N

N
1
2 dimL

as N → +∞.

h) (1, extra credit) Show that
∫
G f(x)Ng(x)dµ(x) 6= 0 if N is big enough.

Solution.

a) As G is compact, the representation (ρ, V ) is unitarizable. This means that there
exists an isomorphism V ' Cn such that ρ(G) ⊂ U(n). As the representation (ρ, V )
is faithful, the morphism ρ is injective, so ρ : G→ U(n) is an injective and continuous
map. As G is compact, this map is a homeomorphism onto its image.

b) Let D be the diagonal matrix with diagonal entries eiθ1 , . . . , eiθn . As x commutes
with x∗ = x−1, the spectral theorem implies that there exists A ∈ U(n) such that
D = AxA−1. As f is clearly a central function on U(n) (and even on GLn(C)), we
have f(x) = f(D). But f(eD) = 1 +

∑n
j=1 Re(eiθj ) = 1 + 2

∑n
j=1 cos(θj).

c) By question (b), we have, for every x ∈ U(n), f(x) ∈ R and 1− 2n ≤ f(x) ≤ 1 + 2n.
Moreover, the equality f(x) = 1 + 2n is possible only if all te eigenvalues of x are
equal to 1, which in turn implies that x = 1, because x is diagonalizable.

By question 5(f), we know that exp(Ω) contains an open neighborhood V of 1 in
U(n). As U(n), the continuous function f attains its supremum on U(n)−V , and this
supremum is < 1+2n by the previous paragraph. So supx∈U(n)−exp(Ω) |f(x)| < 1+2n,
and this implies the desired result.

d) For every x ∈ G, we have |g(x)| ≤ dimW . So we can take C = vol(G− U)(dimW )
and apply question (c).

e) Let iθ1, . . . , iθn be the eigenvalues of X. As X commutes with X∗ = −X, there
exists A ∈ U(n) such that AXA−1 = D, where D is the diagonal matrix with
diagonal entries iθ1, . . . , iθn. Then AeXA−1 = eD is the diagonal matrix with di-
agonal entries eiθ1 , . . . , eiθn , so the eigenvalues of eX are eiθ1 , . . . , eiθn , and f(eX) =
1 + 2

∑n
j=1 cos(θj) = 1 + 2n−

∑n
j=1 θ

2
j +O(

∑n
j=1 θ

4
j ).

We have X = A−1DA, so X∗ = −X = −A−1DA, hence X∗X = −A−1D2A, and
finally Tr(X∗X) = −Tr(D2) =

∑n
j=1 θ

2
j . So f(eX) = 1 + 2n−

∑n
j=1 θ

2
j + O(‖X‖4).

On the other hand,

(2n+1)e−K(X)+O(‖X‖4) = (2n+1)(1− 1
2n+1‖X‖

2+O(‖X‖4)) = 2n+1−
n∑
j=1

θ2
j+O(‖X‖4).

f) We first prove the hint. By question 5(g), there exists a R-linear map u : L →
End(W ) such that, for every X ∈ L, we have π(eX) = etu(X). As u is R-linear, it is
C∞, and so the map U : L → C, X 7→ g(eX) = Tr(eu(X)) is also C∞. We also have
U(0) = Tr(idW ) = dimW . So we get U(X) = dimW +O(‖X‖).
Now we evaluate the integral. Doing the change of variable Y = N1/2X (and ob-
serving that NK(X) = K(Y )), we get∫

Ω
e−NK(X)U(X)dX = N−

1
2 dimL

∫
N1/2Ω

e−K(Y )U(N−1/2Y )dY.
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It remains to show that
∫
N1/2Ω e

−K(Y )U(N−1/2Y )dY converges to a positive real

number as N → +∞. First note that, as
∫
L e
−K(Y )dY converges and as the function

g is bounded by dimW , we have∣∣∣∣∫
N1/2Ω−N1/4Ω

e−K(Y )U(N−1/2Y )dY

∣∣∣∣ ≤ ∣∣∣∣∫
L−N1/4Ω

e−K(Y )U(N−1/2Y )dY

∣∣∣∣ −−−−−→N→+∞
0.

On the other hand, using the fact that U(N−1/2Y ) = dimW + O(N−1/4) for Y ∈
N1/4Ω, we get

lim
N→+∞

∫
N1/4Ω

e−K(Y )U(N−1/2Y )dY = lim
N→+∞

(dimW )

∫
N1/4Ω

e−K(Y )dY

= (dimW )

∫
L
e−K(Y )dY.

As the function Y 7→ e−K(Y ) takes positive real values on L, the last integral is
positive and real.

g) If there exists a neighborhood Ω of 0 in L such that exp is a diffeomorphism from Ω
to U (which we can always assume by making U small enough), then∫

U
f(x)Ng(x)dx = (2n+ 1)N

∫
Ω
e−NK(X)+NO(‖X‖4)g(eX)h(X)dX,

with h(X) = c+O(‖X‖), c ∈ R>0. This is equal to

(2n+ 1)N

(dimL)N/2

∫
N1/2Ω

e−K(Y )+O(N−1‖Y ‖4)U(N−1/2Y )h(N−1/2Y )dY.

We can prove as in question (f) that, if we choose Ω to be a ball centered at 0 (which
we can), then the integral converges to c(dimW )

∫
L e
−K(Y )dY as N → +∞, which

gives the conclusion.

h) By questions (d) and (f), we can decompose
∫
G f(x)Ng(x)dx as a sum of two terms,

one of which is equivalent to a positive multiple of (2n+1)N

(dimL)N/2 and one of which is

dominated by (1 + 2n − δ)N , for some δ > 0. As N tends to +∞, the second term
will become negligible with respect to the first, so the sum of the two terms cannot
be 0 for N big enough.

�

7. (extra credit, 3) Show that assumption (**) in problem 6 holds for G = SO(n).

You can forget this problem. I’ll try to write a better version in a future problem set.
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