
MAT 449 : Problem Set 8

Due Sunday, November 18

Let (X,µ) be a measure space. and let E be a closed linear subspace of L∞(X) containing
the constant functions and closed under the map ϕ 7→ ϕ. A mean on E is a linear functional
M : E → C such that :

(i) M(11X) = 1;

(ii) if f ≥ 0 (locally) almost everywhere, then M(f) ≥ 0.

If X = G is a locally compact group, we say that a mean M on E is G-invariant if for every
f ∈ E and every x ∈ G, we have Lxf ∈ E and M(Lxf) = M(f).

The group G is called amenable is there exists a G-invariant mean on L∞(G).
Let V be a locally convex topological vector space (see definition B.3.5 of the notes), let K

be a convex subset of V . We say that a map f : K → K is affine if, for all v, w ∈ K and every
t ∈ [0, 1], we have f(tv + (1− t)w) = tf(v) + (1− t)f(w). Let G×K → K, (x, v) 7→ x · v be a
continuous left action of G on X. We say that this action is an affine action if, for every x ∈ G,
the map K → K, v 7→ x · v is affine.

We say that the group G has the fixed point property if every affine action of G on a nonempty
compact convex subset of a locally convex topological vector space has a fixed point.

Note : The Hahn-Banach theorem is your friend in this problem set. Also the fact that, if V
is a topological vector space, then any weak* continuous linear functional on Hom(V,C) is of
the form Λ 7→ Λ(v), for some v ∈ V . (See theorem 3.10 of Rudin’s Functional analysis.)

1. (Some basic properties.)

a) (2) If (X,µ) is a measure space and E is a subspace of L∞(X) containing the constant
functions, show that any mean M on E is automatically continuous (for the topology
given by the norm ‖.‖∞) and that ‖M‖op = 1.

We now suppose that G is a locally compact group.

b) (1) If G is compact, show that left invariant means on C(G) are in natural bijection
with normalized Haar measures on G.

c) (3) Let L1(G)1,+ be the convex subset of f ∈ L1(G) such that f ≥ 0 almost every-
where and ‖f‖1 = 1. We identify L1(G) to a subspace of the continuous dual of
L∞(G) in the usual way (i.e. a function f ∈ L1(G) corresponds to the continuous
linear functional ϕ 7→

∫
G fϕdµ on L∞(G)). Show that L1

1,+(G) is weak* dense in
the set of means on L∞(G).

d) (2) Let UCB(G) be the subspace of L∞(G) composed of the left uniformly continuous
bounded functions on G. For every x ∈ G, we write δx for the linear functional
C(G) → C, f 7→ f(x). Show that the set of convex combinations of functionals δx
(that is, the set of sums

∑n
i=1 aiδxi , with x1, . . . , xn ∈ G and a1, . . . , an ∈ [0, 1] such

that a1 + . . .+ an = 1) is weak* dense in the set of means on UCB(G).
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Solution.

a) Let M be a mean on E. Let ϕ ∈ E, and suppose that ϕ(x) ∈ R for almost every x.
We have ‖ϕ‖∞11X ∈ E, because it is a multiple of the constant function 11X , and the
functions ‖ϕ‖∞11X − ϕ and ‖ϕ‖∞11X + ϕ are ≥ 0 almost everywhere, so their image
by M is ≥ 0, that is, M(ϕ) ∈ R and

−‖ϕ‖∞ ≤M(ϕ) ≤ ‖ϕ‖∞,

i.e. |M(ϕ)| ≤ ‖ϕ‖∞.

Now let ϕ be any element of E. Choose c ∈ C such that |c| = 1 and M(cϕ) ∈ R.
Let ϕ1 = 1

2(cϕ + cϕ) and ϕ2 = 1
2i(cϕ − cϕ). Then ϕ1, ϕ2 have real values and

cϕ = ϕ1 + iϕ2. We have

|ϕ(x)| =
√
ϕ1(x)2 + ϕ2(x)2 ≥ max(|ϕ1(x)|, |ϕ2(x)|)

for every x ∈ X, so ‖ϕ‖∞ ≥ max(‖ϕ1‖∞, ‖ϕ2‖∞). On the other hand, M(cϕ) =
M(ϕ1) + iM(ϕ2) and M(ϕ1),M(ϕ2) ∈ R, so M(ϕ2) = 0, and

|M(ϕ)| = |M(cϕ)| = |M(ϕ1)| ≤ ‖ϕ1‖∞ ≤ ‖ϕ‖∞.

This shows that M is continuous and that ‖M‖op ≤ 1. As M(11X) = 1 = ‖11X‖∞,
we have ‖M‖op = 1.

b) This is just the Riesz representation theorem and proposition I.2.6 of the notes.

c) LetM be the set of means on L∞(G). It is clearly a convex subset of Hom(L∞(G),C).
By question (a), the set M is contained in the closed unit ball of Hom(L∞(G),C).
Also, as the conditions characterizing a mean are all closed for the weak* topology,
the set M is weak* closed in Hom(L∞(G),C). So M is weak* compact.

By definition of L1(G)1,+, for every f ∈ L1(G)1,+, the corresponding linear form on
L∞(G) is an element of M. Note also that L1(G)1,+ is a convex subset of L1(G),
so its image in Hom(L∞(G),C) is also convex. Let M′ be the weak* closure of this
image. We have M′ ⊂ M, so M′ is convex and weak* compact. Suppose that
M′ 6=M. Then, by the Hahn-Banach theorem (second geometric form), there exists
M ∈ M and a weak* continuous R-linear operator Λ : Hom(L∞(G),C) → R such
that Λ(M) > supM ′∈M′ Λ(M ′). Note that the linear operator Λ′ : M ′ 7→ Λ(M) +
1
iΛ(iM ′) is weak* continuous and C-linear, so there exists ϕ ∈ L∞(G) such that
Λ′(M ′) = M ′(ϕ) for every M ′ ∈ Hom(L∞(G),C), which gives Λ(M ′) = Re(M ′(ϕ)).
Then we have

ReM(ϕ) > sup
f∈L1(G)1,+

(
Re

∫
G
fϕdµ

)
.

Write ϕ = ϕ1 + iϕ2, with ϕ1 = Reϕ and ϕ2 = Imϕ. Then

M(ϕ1) > sup
f∈L1(G)1,+

∫
G
fϕ1dµ

(because M(ϕ1),M(ϕ2) ∈ R by the solution of question (a)). Let

c = inf{d ∈ R|ϕ1 ≤ d11G locally almost everywhere}.

If ϕ1 ≤ d11G locally almost everywhere, then M(ϕ1) ≤M(d11G) = d. So M(ϕ1) ≤ c.
Let δ > 0 such that M(ϕ1) − δ > supf∈L1(G)1,+

∫
G fϕ1dµ. By definition of c, there

exists a measurable subset A of G such that µ(A) > 0 and ϕ1|A ≥ (c + δ)11A.
Let f = µ(A)−111A. Then f ∈ L1(G)1,+ and

∫
G ϕ1fdµ ≥ c + δ ≥ M(ϕ1) + δ, a

contradiction.
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d) Let M be the set of means on UCB(G). We see as in the solution of (c) that M
is a convex and weak* compact subset of Hom(UCB(G),C). Let M′ be the weak*
closure of the convex hull of the δx, x ∈ G; thenM′ ⊂M because each δx is inM. If
M′ 6=M, then, by the Hahn-Banach theorem (second geometric version), there exists
an element M ofM and a continuous R-linear functional Λ : Hom(UCB(G),C)→ R
such that

Λ(M) > sup
M ′∈M′

Λ(M ′).

As in the solution of (c), we see that we can find a function ϕ ∈ UCB(G) having
real values and such that Λ(M ′) = M ′(ϕ) for every M ′ ∈M. So we have

M(ϕ) > sup
M ′∈M′

M ′(ϕ) ≥ sup
x∈G

δx(ϕ) = sup
x∈G

ϕ(x).

Let δ > 0 be such that M(ϕ) − δ ≥ supx∈G ϕ(x). Then ϕ ≤ (M(ϕ) − δ)11G, and so
M(ϕ) ≤M(ϕ)− δ, a contradiction.

�

2. Let G be an amenable locally compact group. The goal of this problem is to prove that
G has the fixed point property.

So let V be a locally convex topological vector space, let K be a nonempty compact convex
subset of V , and let G×K → K, (x, v) 7→ x · v be a continuous affine action.

a) (1) Show that there exists a left invariant mean on UCB(G).

b) (3) Fix a point v0 ∈ K and define t : G → K by t(x) = x · v0. If M is a mean on
UCB(G), show that there exists a unique regular Borel measure µM on K such that,
for every f ∈ C(K), we have ∫

K
fdµM = M(f ◦ t).

c) (2) Show that the integral bM =
∫
K vdµM (v) exists and that bM ∈ K.

d) (1) Let M be the set of all means on UCB(G), equipped with the weak* topology
(where the topology on UCB(G) is given by ‖.‖∞). Show that, for every continuous
linear functional Λ : V → C, the map M→ K, M 7→ Λ(bM ) is continuous.

e) (1) If M = δx for some x ∈ G, calculate bM .

f) (3) Show that, for every M ∈M and every x ∈ G, we have bM◦Lx−1 = x · bM .

g) (1) Show that the action of G on K has a fixed point.

Solution.

a) Just take the restriction of a left invariant mean on L∞(G).

b) We first show that f ◦ t ∈ UCB(G) for every f ∈ C(K), and that the linear operator
C(K)→ UCB(G), f 7→ f ◦ t is continuous. So let f ∈ C(K). Note that the function
t : G→ K is continuous by assumption, so f ◦ t is continuous. Also, we clearly have
‖f ◦ t‖∞ ≤ ‖f‖∞. It remains to show that f ◦ t is left uniformly continuous. We
denote by a : G × K → K the action map. Let ε > 0. For every v ∈ K, there
exists an open neighborhood Ω of a−1(v) such that |f(x · w) − f(v)| < ε for every
(x,w) ∈ Ω; as (1, v) ∈ a−1(v), we may assume that Ω = Uv × Vv, with Uv an open
neighborhood of 1 in G and Vv an open neighborhood of v in K. As K is compact,
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we can find v1, . . . , vn ∈ K such that K =
⋃n
i=1 Vvi . Let U =

⋂n
i=1 Uvi . Let x ∈ U

and v ∈ K. Then there exists i ∈ {1, . . . , n} such that v ∈ Vvi , and we have

|f(x · v)− f(v)| ≤ |f(x · v)− f(vi)|+ |f(vi)− f(1 · v)| < 2ε.

So, for every x ∈ U and every y ∈ G, we have

|f ◦ t(xy)− f ◦ t(y)| = |f(x · t(y))− f(t(y))| < 2ε.

This shows that f ◦ t is uniformly continuous.

Let M be a mean on UCB(G). Composing M with the continuous linear operator
C(K) → UCB(G), f 7→ f ◦ t, we get a mean on C(K). By the Riesz representation
theorem, there is a unique regular Borel measure µM on K such that M(f ◦ t) =∫
K fdµM for every f ∈ C(K).

c) Note that µ(K) =
∫
K 1dµK = M(11G) = 1. The function idK is a continuous function

with compact on K, so, by problem 2 of problem set 4, its integral bM =
∫
K vdµM

with respect to µM exists, and µ(K)−1bM = bM is in closure of the convex hull of
K, i.e. in K.

d) By definition of the integral, for every Λ ∈ Hom(V,C) and every mean M on
UCB(G), we have

Λ(bM ) =

∫
G

Λ(v)dµM = M(Λ ◦ t).

This is continuous in M for the weak* topology by the very definition of the weak*
topology.

e) Let x ∈ G, and let M = δx. Then, for every f ∈ Cf(K), we have∫
K
fdµM = M(f ◦ t) = f(x · v0).

Taking f = idK , we get

bM =

∫
K
vdµM = x · v0.

f) Let M be the set of means on UCB(G). Fix M ∈ M. Let x ∈ G, and let Λ ∈
Hom(V,C). The map Lx−1 sends UCB(G) to itself, so M ◦ Lx−1 makes sense. For
every M ∈ M, using the fact that the map K → K, x 7→ x · v is continuous and
affine, we get

Λ(x · bM ) = Λ

(∫
K
x · vdµM

)
=

∫
K

Λ(x · v)dµM = M(Λ(x · t))

= M(Lx−1(Λ ◦ t))
= Λ(bM◦Lx−1 ).

As continuous linear functionals separate points (by the Hahn-Banach theorem), this
implies that x · bM = bM◦Lx−1 .

g) Let M be an invariant mean on UCB(G) (this exists by question (a)). Then, by
question (f), the point bM ∈ K is a fixed point for the action of G.

�

3. (extra credit) Let G be a locally compact group, and let dx be a left Haar measure on G.
Let f ∈ L1(G) and ϕ ∈ L∞(G).
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a) (2) Show that f ∗ ϕ exists and is left uniformly continuous and bounded.

b) (2) If ϕ ∈ UCB(G), show that the integral
∫
G f(y)Lyϕdy exists and is equal to f ∗ϕ.

Solution.

a) Let x ∈ G. Then the integral defining f ∗ ϕ(x) is∫
G
f(y)ϕ(y−1x)dµ(y),

which converges because |f(y)ϕ(y−1x)| ≤ ‖ϕ‖∞|f(y)| for every y ∈ G. This also
shows that

|f ∗ ϕ(x)| ≤ ‖ϕ‖∞‖f‖1
for every x ∈ G, so f ∗ ϕ is bounded and

‖f ∗ ϕ‖∞ ≤ ‖ϕ‖∞‖f‖1,

Now we show that f ∗ ϕ is left uniformly continuous. Let x ∈ G. By proposition
I.4.1.3 of the notes, we have Lx(f ∗ ϕ) = (Lxf) ∗ ϕ, so

‖Lx(f ∗ ϕ)− f ∗ ϕ‖∞ = ‖(Lxf − f) ∗ ϕ‖∞ ≤ ‖Lxf − f‖1‖ϕ‖∞.

By proposition I.3.1.13 of the notes, this tends to 0 as x tends to 1 in G, which
exactly means that f ∗ ϕ is left uniformly continuous.

b) Suppose that ϕ ∈ UCB(G). Then the map G → UCB(G), y 7→ Lyϕ is continuous
(see remark I.1.13 of the notes), so the integral

∫
G f(y)Lyϕdµ(y) exists in UCB(G)

by problem 3 of problem set 4. Let h =
∫
G f(y)Lyϕdµ(y).

For every g ∈ L1(G), the map ψ 7→
∫
G gψdµ is a continuous linear functional on

UCB(G). So, by definition of the integral, we have∫
G
ghdµ =

∫
G×G

h(x)f(y)ϕ(y−1x)dµ(x)dµ(y) =

∫
G
g(f ∗ ϕ)dµ.

As the linear functionals defined by the elements of L1(G) separate points on L∞(G),
this implies that h = f ∗ ϕ.

�

4. Let G be a locally compact group, and suppose that G has the fixed point property. The
goal of this problem is to show that G is amenable. (You will need problem 3, so at least
read it.)

a) (3) LetM be the set of all means on UCB(G). Show that this is a nonempty weak*
compact convex subset of the continuous dual of UCB(G), and that the action of
G on M given by x ·M(f) = M(Lx−1f) for x ∈ G, M ∈ M and f ∈ UCB(G), is
continuous and affine. (For the weak* topology on M.)

b) (1) Show that there exists a left invariant mean m on UCB(G). 1

c) (1) Show that, if f ∈ L1(G)1,+ and ϕ ∈ UCB(G), then m(f ∗ ϕ) = m(ϕ).

d) (2) Show that, if f, f ′ ∈ L1(G)1,+ and ϕ ∈ L∞(G), then m(f ∗ ϕ) = m(f ′ ∗ ϕ).

1If G is a general topological group, it is called amenable if such a mean exists. One of the things we prove in
this problem is that, for G locally compact, this is equivalent to the other definition.
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e) (2) Let f0 ∈ L1(G)1,+. Show that the formula ϕ 7→ m(f0 ∗ ϕ) defines a mean m̃
on L∞(G), and that we have m̃(f ∗ ϕ) = m̃(ϕ) for every f ∈ L1(G)1,+ and every
ϕ ∈ L∞(G).

Let E =
∏
f∈L1(G)1,+

L1(G). We consider two topologies on E :

- The product of the weak* topology on L1(G) (that we get by seeing L1(G) as a
subspace of the continuous dual of L∞(G)). We will call this the weak topology on
E.

- The product of the topology on L1(G) defined by the norm ‖.‖1. We will call this
the strong topology on E.

f) (2) Let
Σ = {(f ∗ g − g)f∈L1(G)1,+ , g ∈ L

1(G)1,+} ⊂ E.

Show that the closure of Σ in the weak topology contains 0.

g) (3) Show that the closure of Σ in the strong topology contains 0. (Hint : Any
strongly continuous linear functional Λ on E can be written as Λ((gf )f∈L1(G)1,+) =∑

f∈L1(G)1,+

∫
G gfϕfdµ, with the ϕf in L∞(G) and ϕf = 0 for all but a finite number

of f .)

h) (2) Let Q 3 1 be a compact subset of G, ε > 0 and f ∈ L1(G)1,+. Show that there
exists g ∈ L1(G)1,+ such that

sup
x∈Q
‖(Lxf) ∗ g − g‖1 ≤ ε.

i) (1) Find a function h ∈ L1(G)1,+ such that

sup
x∈Q
‖Lxh− h‖1 ≤ 2ε.

j) (2) Show that there exists a left invariant mean on L∞(G). (If you are uncomfortable
with nets, you may assume that G is σ-compact, i.e. a countable union of compact
subsets.)

Solution.

a) We already saw that M is a weak* compact convex subset of Hom(UCB(G),C) in
the solution of 1(d), andM is not empty because it contains all the linear functionals
δx, x ∈ G.

If x ∈ G, the morphism Λ 7→ Λ ◦Lx−1 from Hom(UCB(G),C) to itself is linear, and
it clearly preserves M, so its restriction to M is affine.

It remains to show that the map G ×M → M, (x,M) 7→ M ◦ Lx−1 is continuous.
As we are using the weak* topology onM, this means that, for every ϕ ∈ UCB(G),
the map G ×M → C, (x,M) 7→ M(Lx−1ϕ) is continuous. Fix ϕ ∈ UCB(G), and
let ε > 0. As ϕ is left uniformly continuous, there exists an open neighborhood U of
1 in G such that, for every y ∈ U , we have ‖Ly−1ϕ− ϕ‖∞ < ε. Note that, for every
y ∈ U and every x ∈ G, we have

‖Lx−1y−1ϕ− Lx−1ϕ‖∞ = ‖Ly−1ϕ− ϕ‖∞ < ε.

Let (x,M) ∈ G ×M. Let V = {M ′ ∈ M||M(Lx−1ϕ) −M ′(Lx−1ϕ)| < ε}. This is
weak* neighborhood of M , so Ux × V is a neighborhood of (x,M) in G ×M. If
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y ∈ U and M ′ ∈ V , we have

|M(Lx−1ϕ)−M ′(L(yx)−1ϕ)| ≤ |M(Lx−1ϕ)−M ′(Lx−1ϕ)|+ |M ′(Lx−1ϕ)−M ′(Lx−1y−1ϕ)|
< ε+ ‖M ′‖op‖Lx−1ϕ− Lx−1y−1ϕ‖∞
< 2ε

(using 1(a) to see that ‖M ′‖op = 1). This shows the desired result.

b) A left invariant mean on UCB(G) is exactly a fixed point of the action of G on M
defined by x ·M = M ◦ Lx−1 . So the existence of such a mean follows from (a) and
from the fact that G has the fixed point property.

c) By problem 3, we have f ∗ ϕ =
∫
G f(y)Lyϕdy. By problem 1, the linear functional

m on UCB(G) is continuous. Applying the definition of the integral and the left
invariance of m, we get

m(f ∗ ϕ) =

∫
G
f(y)m(Lyϕ)dy =

∫
G
f(y)m(ϕ)dy = m(ϕ)

∫
G
fdµ = m(ϕ).

d) Let (ψU )U∈U be an approximate identity on G. Note that ψU ∈ L1(G)1,+ for every
U ∈ U . Let ϕ ∈ L∞(G) and f, f ′ ∈ L1(G)1,+. By question 3(a), we have ψU ∗ ϕ ∈
UCB(G) for every U ∈ U , so, by question (c), we get

m(f ∗ ψU ∗ ϕ) = m(ψU ∗ ϕ) = m(f ′ ∗ ψU ∗ ϕ).

Also, by proposition I.4.1.9 of the notes, we have limU→{1} f∗ψU = f and limU→{1} f
′∗

ψU = f ′. Taking the limit as U → {1} in the equality above (forgetting the mid-
dle term) and using the fact that the convolution product from L1(G) × L∞(G) to
UCB(G) is continuous in both variables (by the solution of 3(a)) and that m is
continuous, we get that m(f ∗ ϕ) = m(f ′ ∗ ϕ).

e) The map m̃ is well-defined by 3(a), and it is clearly C-linear. If ϕ = 11G, then, for
every x ∈ G,

f0 ∗ ϕ(x) =

∫
G
f0(y)dµ(y) = 1,

so m̃(ϕ) = m(11G) = 1. If ϕ ≥ 0 locally almost everywhere, then f0 ∗ ϕ ≥ 0 almost
everywhere, so m̃(ϕ) ≥ 0. This shows that m̃ is a mean on L∞(G).

Let f ∈ L1(G)1,+ and ϕ ∈ L∞(G). Then

m̃(f ∗ ϕ) = m(f ∗ f0 ∗ ϕ) and m̃(ϕ) = m(f0 ∗ ϕ).

By (d), to show that these are equal, it suffices to show that f ∗ f0 ∈ L1(G)1,+. We
already know that f ∗ f0 ∈ L1(G) by proposition I.4.1.2 of the notes, and the fact
that f ∗ f0 ≥ 0 almost everywhere is clear from the formula defining f ∗ f0. Finally,
we have∫

G
f ∗ f0(x)dx =

∫
G×G

f(y)f0(y−1x)dxdy =

∫
G
f(y)

(∫
G
f0(y−1x)dx

)
dy

=

∫
G
f(y)dy = 1.

f) A piece of useful notation : for every f ∈ L1(G), we will denote by Mf the linear
functional ϕ 7→

∫
G fϕdµ on L∞(G).
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We want to show the following statement : For every n ≥ 1, for all f1, . . . , fn ∈
L1(G)1,+, if U1, . . . , Un are weak* neighborhoods of 0 in Hom(L∞(G),C), then there
exists g ∈ L1(G)1,+ such that Mfi∗g −Mg is in Ui for i ∈ {1, . . . , n}.
If f ∈ L1(G)1,+, the map cf : Λ 7→ Λ(f ∗ (.)) from Hom(L∞(G),C) to itself is weak*
continuous (because ϕ 7→ f∗ϕ is continuous on L∞(G) by 3(a)). Moreover, if Λ = Mg

with g ∈ L1(G), then, for every ϕ ∈ L∞(G), we have

(cf ′Λ)(ϕ) =

∫
G
g(y)(f ′ ∗ ϕ)(y)dy

=

∫
G×G

g(y)∆(x)−1f(x−1)ϕ(x−1y)dxdy

=

∫
G×G

∆(x)−1f(x−1)g(xz)ϕ(z)dxdz

=

∫
G

(f ∗ g)ϕdµ (see proposition I.4.1.3 of the notes),

where f ′ ∈ L1(G) is defined by f ′(x) = ∆(x)−1f(x−1). In other words, cf ′Mg =
Mf∗g.

Fix n, f1, . . . , fn and U1, . . . , Un as above. Then U := U1 ∩ . . . ∩ Un is a weak*
neighborhood of 0 in Hom(L∞(G),C). Choose another weak* neighborhood V of 0
such that V = −V and V + V ⊂ U .

Then m̃+ V is a weak* neighborhood of m̃, so, by 1(c) and the previous paragraph,
there exists g ∈ L1(G)1,+ such that Mg − m̃ and all the Mfi∗g − cf ′im̃, 1 ≤ i ≤ n, are
in V . Note that cf ′im̃ = m̃ by (e), so, for 1 ≤ i ≤ n, we have

Mfi∗g −Mg = (Mfi∗g − m̃) + (m̃−Mg) ∈ V − V ⊂ Ui.

g) Note that Σ is a convex subset of E. Let Σ be the closure of Σ for the strong topology.
If 0 6∈ Σ, then, by the Hahn-Banach theorem (second geometric version), there
exists a strongly continuous R-linear functional Λ′ : E → R such that 0 = Λ′(0) >
supx∈Σ Λ′(x). As in the solution of 1(c) and 1(d), we can write Λ′ = Re Λ, for Λ :
E → C a strongly continuous C-linear functional (defined by Λ(x) = Λ′(x)+ 1

iΛ
′(ix)).

Now an important remark is that, as we are using the product topology on E, the
direct sum

⊕
f∈L1(G)1,+

L1(G) is dense in E.

For every f0 ∈ L1(G)1,+, consider the linear functional Λf0 : L1(G) → C that is the
composition of Λ and of the inclusion of the factor indexed by f0 in

∏
f∈L1(G)1,+

L1(G) =

E. This is a continuous linear functional on L1(G), so there exists a unique ϕf0 ∈
L∞(G) such that Λf0 is integration against ϕf0 .

Now consider an increasing family (Xn)n≥0 of subsets of L1(G)1,+ such that L1(G)1,+ =⋃
n≥0Xn. For every x = (gf )f∈L1(G)1,+ ∈ E, the sequence ((gf )f∈Xn)n≥0 converges

to x in the strong topology, so

Λ(x) = lim
n→+∞

Λ((gf )f∈Xn) = lim
n→+∞

∑
f∈Xn

∫
G
gfϕfdµ =

∑
f∈L1(G)1,+

∫
G
gfϕfdµ.

As the sum converges for any (gf ) ∈ E, we must have ϕf = 0 for all but a finite
number of f ∈ L1(G)1,+.

But then, if we consider any real number c such that 0 > c > supx∈Σ Re(Λ(x)), the
set {x ∈ E|Re(Λ(x)) ≤ c} is weakly closed in E, hence contains the weak closure of
Σ, hence contains 0 by (f), contradiction.
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h) For every x ∈ Q, let Ux be a neighborhood of x in G such that, for y ∈ Ux, we
have ‖Lyf − Lxf‖1 ≤ ε/2. (See proposition I.3.1.13 of the notes.) As Q is compact,
we can find x1, . . . , xn ∈ Q such that Q ⊂

⋃n
i=1 Uxi . By question (f), there exists

g ∈ L1(G)1,+ such that, for every i ∈ {1, . . . , n}, we have ‖(Lxif) ∗ g − g‖1 ≤ ε/2.

Let’s show that this g works. Let x ∈ Q. Then there exists i ∈ {1, . . . , n} such that
x ∈ Uxi , and we have

‖(Lxf) ∗ g − g‖1 ≤ ‖(Lxf) ∗ g − (Lxif) ∗ g‖1 + ‖(Lxif) ∗ g − g‖1
≤ ‖Lxf − Lxif‖1‖g‖1 + ‖(Lxif) ∗ g − g‖1
≤ ε.

(The second equality uses proposition I.4.1.2 of the notes.)

i) Let h = f ∗g. We have h ∈ L1(G)1,+ (see the solution of question (e)), and, as 1 ∈ Q,
for every x ∈ Q,

‖Lxh− h‖1 ≤ ‖Lxh− g‖1 + ‖g − h‖1 ≤ ‖(Lxf) ∗ g − g‖1 + ‖(L1f) ∗ g − g‖1 ≤ 2ε.

j) Suppose that G is σ-compact, and write G =⊂n≥0, where each Qn is a compact subset
of G containing 1. For every n ∈ Z≥0, we can find by (h) a function hn ∈ L1(G)1,+

such that supx∈Qn
‖Lxhn − hn‖1 ≤ 2−n. The sequence (Mhn)n≥0 of elements of the

weak* compact subset of means on L∞(G) (we have seen in 1(c) that this set is weak*
compact) has a convergent subsequence, so we may assume that it is convergent. Let
M = limn≥0Mhn . We show that M is left invariant. Let x ∈ G. Then x−1 ∈ Qn for
n >> 0, so, for every ϕ ∈ L∞(G),

M(Lxϕ) = lim
n→+∞

Mhn(Lxϕ)

= lim
n→+∞

∫
G
hn(y)ϕ(x−1y)dy

= lim
n→+∞

∫
G
hn(xy)ϕ(y)dy

= lim
n→+∞

∫
G
Lx−1hnϕdµ,

and

|M(Lxϕ)−M(ϕ)| = lim
n→+∞

∣∣∣∣∫
G

(Lx−1hn − hn)ϕdµ

∣∣∣∣
≤ lim

n→+∞
‖Lx−1hn − hn‖1‖ϕ‖∞

= 0,

that is, M(Lxϕ) = M(ϕ).

Assume that G is not σ-compact. Then we write G =
⋃
Q∈Q{Q, where Q is a family

of compact subsets of G such that, if Q1, Q2 ∈ Q, then Q1 ∪Q2 ∈ Q. That is, Q is a
directed set for the order relation given by inclusion. For every Q ∈ Q, we can find
by (i) a function hQ ∈ L1(G)1,+ such that supx∈Q ‖LxhQ − hQ‖1 ≤ (1 + µ(Q))−1. If
G is not compact, then µ(G) = +∞, so limQ∈Q(1 +µ(Q))−1 = 0. Let M be a weak*
limit point of (MhQ)Q∈Q, which exists because the set of means on L∞(G) is weak*
compact. Then we see exactly as above that M is left invariant.

�
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5. Let G be a locally compact group. Remember problem 6 of problem set 7.

a) (3) If G is amenable, show that the trivial representation is weakly contained in the
left regular representation of G. (Hint : For all a, b ∈ R≥0, we have |a−b|2 ≤ |a2−b2|.)

b) (3) If the trivial representation is weakly contained in the left regular representation
of G, show that G is amenable. (Hint : For all a, b ∈ C, prove that ||a|2 − |b|2| ≤
|a+ b||a− b|.)

Solution.

a) Let’s first prove the inequality in the hint. Let a, b ∈ R≥0. We may assume that
a ≥ b. Then

|a− b|2 = (a− b)2 = a2 + b2 − 2ab ≤ a2 + b2 − 2b2 = a2 − b2 = |a2 − b2|.

Suppose that G is amenable. Let K be a compact subset of G and let c > 0. By 4(i),
there exists h ∈ L1(G)1,+ such that supx∈K ‖Lxh− h‖1 < c2. Let f =

√
h. Then, by

the inequality above, for every x ∈ K, we have

‖Lxf − f‖22 =

∫
G
|f(x−1y)− f(y)|2dy

≤
∫
G
|h(x−1y)− h(y)|dy

= ‖Lxh− h‖1
< c2,

so ‖Lxf − f‖2 < c.

By 6(d) of problem set 7, this implies that the trivial representation of G is weakly
contained in the regular representation.

b) We check that the result of 4(i) holds, i.e. that, for every compact subset Q of G and
every ε > 0, there exists h ∈ L1(G)1,+ such that supx∈Q ‖Lxh− h‖1 ≤ ε. Indeed, we
have seen in 4(j) that this implies the existence of a left invariant mean on L∞(G).

Let Q be a compact subset of G and ε > 0. By 6(c) of problem set 7, there exists
f ∈ L2(G) such that ‖f‖2 = 1 and supx∈Q ‖Lxf − f‖2 ≤ ε/2. Let h = |f |2.
Then ‖h‖1 = ‖f‖22 = 1, so h ∈ L1(G)1,+. Note that, for all a, b ∈ C, we have
|a2 − b2| ≥ ||a|2 − |b|2| by the triangle inequality, so

|a+ b|2|a− b|2 = (a2 − b2)(a2 − b2) = |a2 − b2|2 ≥ ||a|2 − |b|2|2.

Now, if x ∈ Q, we get

‖Lxh− h‖1 =

∫
G
||Lxf(y)|2 − |f(y)|2|dy

≤
∫
G

(|Lxf(y) + f(y)|)|Lxf(y)− f(y)|dy

≤ ‖Lxf − f‖2‖Lx + f‖2 (Cauchy-Schwarz)

≤ ε

(because ‖Lxf + f‖2 ≤ ‖Lxf‖2 + ‖f‖2 = 2‖f‖2 = 2).

�
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6. Let G be an abelian locally compact group. The goal of this problem is to show that G
has the fixed point property (hence is amenable).

Let V be a locally convex topological vector space, K be a nonempty compact convex
subset of V and G×K → K, (x, v) 7→ x · v be an affine action of G on K.

For every n ∈ Z≥0 and every x ∈ G, we define a continuous affine map An(x) : K → K
by

An(x)(v) =
1

n+ 1

n∑
i=0

xi · v.

Let G be the semigroup of continuous affine maps K → K generated by all the An(x),
for n ≥ 0 and x ∈ G. (That is, the semigroup whose elements are finite compositions of
morphisms An(x), where the semigroup operation is the composition of maps K → K.)

a) (2) Let v ∈
⋂
γ∈G γ(K). Show that v is a fixed point of the action of G. (Hint : For

every continuous linear functional Λ on V and every x ∈ G, show that Λ(v) = Λ(x·v).)

b) (2) For all γ1, . . . , γn ∈ G, show that
⋂n
i=1 γi(K) 6= ∅.

c) (1) Show that G has a fixed point in K.

Solution.

a) Let x ∈ G. Let Λ be a continuous linear functional on V . As K is compact,
C := supw∈K |Λ(w)| < +∞. If n ≥ 0, we have x ∈ An(x)(K), so there exists w ∈ K
such that v = An(x)(w). As the action of G is affine, this implies that

x · v =
1

n+ 1

n∑
i=0

xi+1 · w,

so v− x · v = 1
n+1(w− xn+1 ·w), so |Λ(v− x · v)| 2C

n+1 . As this is true for every n ≥ 0,
we have |Λ(v)− Λ(x · v)|, i.e. Λ(v) = Λ(x · v). As continuous linear functional on V
separate points, we finally get x · v = v.

b) Note that, if x, y ∈ G and n,m ∈ Z≥0, then, for every v ∈ K,

An(x) ◦Am(y)(v) =
1

n+ 1

n∑
i=1

xi ·Am(y)(v)

=
1

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

xi · (yj · v)

=
1

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

yj · (xi · v) (because G is commutative)

= Am(y) ◦An(x)(v).

This implies that the semigroup G is commutative.

Now let γ1, . . . , γn ∈ G. Then, for every i ∈ {1, . . . , n},

γi(K) ⊃ γi(γ1 ◦ . . . ◦ γi−1 ◦ . . . ◦ γn(K)) = γ1 ◦ . . . ◦ γn(K).

So
n⋂
i=1

γi(K) ⊃ γ1 ◦ . . . ◦ γn(K) 6= ∅.
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c) As K is compact and each γ ∈ G is continuous, the subset γ(K) of K is compact,
hence closed in K, for every γ ∈ G. By (b), the family (γ(K))γ∈G has the finite
intersection property. By compactness of K, we have

⋂
γ∈G γ(K) 6= ∅. By (a), any

point of this intersection is a fixed point of G on K.

�

7. (extra credit)

a) (3) Let G be a group acting on a set X. Suppose that we have subgroups G1, G2 of
G and subsets X1, X2 of X such that :

- The sets X1 and X2 are not empty, and X1 6= X2;

- For every x ∈ G1 − {1}, we have x ·X1 ⊂ X2;

- For every x ∈ G2 − {1}, we have x ·X2 ⊂ X1;

- The cardinality of G2 is at least 3.

Show that we cannot have an equality 1 = h1 . . . hn with hi in G1−{1} for i odd, hi
in G2 − {1} for i even and n ≥ 1.

b) (3) Let a1, a2 ∈ C such that |a1| ≥ 2 and |a2| ≥ 2. Define x, y ∈ SL2(C) by

x =

(
1 a1

0 1

)
and y =

(
1 0
a2 1

)
.

Show that the subgroup of SL2(C) generated by x and y is isomorphic to the free
group on two generators. (Hint : Let SL2(C) act on C2 in the usual way. Look at
the subsets {(z1, z2) ∈ C2||z1| > |z2|} and {(z1, z2) ∈ C2||z1| < |z2|}.)

c) (3) Let G = SL2(R) with the discrete topology. Show that G is not amenable.

Solution.

a) If G1 = {1}, the result if obvious. So we may assume G1 6= {1}.
Suppose that we have 1 = h1 . . . hn with hi in G1 − {1} for i odd, hi in G2 − {1} for
i even and n ≥ 1.

We first assume that n is even. As |G2| ≥ 3, we can find h ∈ G2 − {1} such that
h 6= hn. Note that 1 = hh−1 = hh1 . . . (hnh

−1), with hnh
−1 ∈ G2 − {1}. Let

g ∈ G1 − {1}. We also have 1 = gg−1 = ghh1 . . . (hnh
−1)g−1. So, for every x ∈ X2,

we have
x = hh1 . . . hn−1(hnh

−1)(x) ∈ X1,

hence X2 ⊂ X1. On the other hand, for every y ∈ X1, we get

y = ghh1 . . . (hnh
−1)g−1(y) ∈ X2,

so X1 ⊂ X2. This contradicts the fact that X1 6= X2.

Now suppose that n is odd. Let h ∈ G2 − {1}. Then 1 = hh−1 = hh1 . . . hnh
−1. So,

for every x ∈ X2, we have

x = hh−1 = hh1 . . . hnh
−1(x) ∈ X1,

hence X2 ⊂ X1. On the other hand, for every y ∈ X1, we have

y = h1 . . . hn(y) ∈ X2,

so X1 ⊂ X2. Again, this contradicts the fact that X1 6= X2.
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b) We want to apply question (a) with X = C2, X1 = {(z1, z2) ∈ C2||z1| < |z2|},
X2 = {(z1, z2) ∈ C2||z1| > |z2|}, G1 = 〈x〉 and G2 = 〈y〉. We have to check that
these subsets and subgroups satisfy the conditions of (a).

Let g ∈ G1 − {1} and (z1, z2) ∈ X1. We have g = xn, with n ∈ Z − {0}, so

g =

(
1 na1

0 1

)
, and g · (z1, z2) = (z1 + na1z2, z2). Hence

|z1 + na1z2| ≥ |n||a1||z2| − |z1| ≥ 2|z2| − |z1| > |z2|,

that is, g · (z1, z2) ∈ X2. (We have used the fact that |n| ≥ 1.) The proof that
g · (z1, z2) ∈ X1 for g ∈ G2 − {1} and (z1, z2) ∈ X2 is similar.

Let G be the subgroup of SL2(C) generated by x and y, and let F be the free group
on two generators a and b. We have a surjective morphisms of groups ϕ : F → G
sending an element an1bm1 . . . anrbmr of F (with r ≥ 0 and n1,m1, . . . , nr,mr ∈ Z)
to xn1ym1 . . . xnrymr ∈ G. We want to check that ϕ is injective. This means that its
kernel is trivial, i.e. that it sends reduced words in F to nontrivial elements of G.
But this property is exactly the conclusion of (a).

c) Suppose that G is amenable. Then, by problem 5, the trivial representation 11 of G
on C is contained in its regular representation πL. Let H be a subgroup of G. It
follows immediately from the definition of weak containment that the representation
11|H of H (which is just its trivial representation) is weakly contained in πL|H . Let
π be the regular representation of H, and let’s show that πL|H is weakly contained
in π. This will imply that the trivial representation of H is contained in its regular
representation.

Let (xi)i∈I be a system of representatives of the quotientH\G; we haveG =
∐
i∈I Hxi.

Let ϕ be a function of positive type associated to πL|H . This means that we have
f ∈ L2(G) such that, for every x ∈ H,

ϕ(x) = 〈Lxf, f〉L2(G).

For every i ∈ I, let fi = f|Hxi ∈ L2(G). Then the series
∑

i∈I fi converges to f in
L2(G), and, if i 6= j, then 〈Lxfi, fi〉L2(G) = 0 for every x ∈ H (because Lxfi and fj
have disjoint supports). In particular, ‖f‖22 =

∑
i∈I ‖fi‖22. So, for every x ∈ H,

ϕ(x) =
∑
i∈I
〈Lxfi, fi〉L2(G),

and this sums converges uniformly on x ∈ H (because |〈Lxfi, fi〉L2(G)| ≤ ‖fi‖22).
For every i ∈ I, we define gi ∈ L2(H) by gi(y) = fi(yxi). Then 〈Lxgi, gi〉L2(H) =
〈Lxfi, fi〉L2(G) for every x ∈ H. So we have written ϕ as a limit of finite sums of
functions of positive type associated to the regular representation of H, which is
what we wanted.

In summary, we have shown that, if G is amenable, then, for every subgroup H of
G, the trivial representation of H is contained in its regular representation (i.e. H
is also amenable). Note that we only used the fact that G is discrete so far.

Now if G = SL2(R), question (b) says that G has a subgroup H isomorphic to the
free group on two generators (just take a1, a2 ∈ R in (b)). Then the result above
contradicts problem 10 of problem set 7.

�
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