MAT 449 : Problem Set 7

Due Thursday, November 8

Let G be a topological group and (7, V') be a unitary representation of G. A matriz coefficient
of 7 is a function G — C of the form z — (7 (z)(v), w), with v,w € V. Note that these functions
are all continuous. We say that the matrix coefficient is diagonal if v = w; a diagonal matrix
coefficient is a function of positive type by proposition I11.2.4, and we call it a function of
positive type associated to w. We say that a function of positive type is normalized if it is of
the form = — (m(x)(v),v) with ||v]| = 1. We denote by P(m) the set of functions of positive
type associated to 7.

Remember also that, if G is locally compact (and p is a left Haar measure on G), then
the left reqular representation w, is the representation of G on L?(G) := L?(G,u) given by
7(x)(f) = Lyf, for x € G and f € L?*(G). In this problem, we'll just call 7 the regular
representation of G.

1. Let (71, V1), (72, V) be unitary representations of G.

a) (3) Show that the algebraic tensor product Vi ®c V2 has a Hermitian inner product,
uniquely determined by (v; ® v9, w1 ® we) = (vy,w1)(ve, w3).

b) (2) We denote the completion of Vi ®¢ V4 for this inner form by V3&cVa. Show that
the formula (z,v; ® v2) — m1(2)(v1) @ m2(x)(v2) defines a unitary representation of
G on Vi&cVa. (This is called the tensor product representation and usually denoted
by m ® m3.)

c) (2) If V1 and V5 are finite-dimensional, show that, for every = € G, we have

Tr(m @ ma(x)) = Tr(mi(z)) Tr(me(x)).

Solution.

a) As pure tensors span V; ®c Vs, there is at most one sesquilinear form B on V; ®¢ V3
such that B(v1 ® ve, w1 ® wy) = (v1,w1){va, we). Let’s show that such a form exists.
Let wy € V4 and wy € V,. Then the map on Vi x Vo — C, (v1,v2) — (v1, w1){va, we) is
a bilinear form, hence it corresponds to a unique linear form on Vi ®c Va, say B, w,-
Next, the map on Vi x V5 sending (wq,ws) to the antilinear form v +— By, w, (v) is
bilinear, so it corresponds to a unique linear functional 7" on V; ®¢ Va. Finally, the
map B : (V1 ®c V) x (V1 @c V2) — C sending (v, w) to T'(w)(v) is linear in v and
antilinear in w, so it is a sesquilinear form, and it sends pure tensors where we want
by definition.

Now we show that B is Hermitian, i.e. that B(w,v) = B(v,w) for all v,w € V1 ®¢ Va.
As B is sesquilinear, it suffices to check this property for v and w pure tensors, but

then it follows immediately from the analogous property of the inner products of V;
and V5.



Finally, we show that B is definite positive. Let v € V] ®¢ Va2, and write v =
Yo v @uag, vy € Vioand va; € Voo Then v is in V] ®¢ V3, where V] =
Span(vi1,...,v1,) and Vy = Span(vg,...,v2,). So we may replace Vi and Vs
by V{ and V3, and so may assume that V; and V3 are finite-dimensional. If this
is the case, let (e1,...,e,) (resp. (€],...,€.)) be an orthonormal basis of V; (resp.
V3). Then (¢; ® €;~)1gigr,1§j§s is a basis of Vi ®c¢ Vo, and it is clear from the defi-
nition of the Hermitian form B on Vi ®¢ V5 that it is an orthonormal basis for B .
But the existence of an orthonomal basis forces the form to be positive definite (if
V=30 2o aijei @ €, then B(v,v) = 37, - lag|?).

First note that, if v; € V; and vy € V3, then we have ||[v1 ® va|| = ||v1]|||v2]].

Let # € G. Then the map Vi x Vo — Vi ®c V2 sending (v1, v2) to mi(x)(v1) @ma(x)(v2)
is bilinear, so it induces a C-linear map m ®@o(x) from Vi ®@cVa to itself. We show that
this map is an isometry (hence continuous). Let (e;)icr (resp. (fj);jcs) be a Hilbert
basis of Vi (resp. V2). If v1 € V1 and vy € Va, we can write v1 = ) ;.; a;e; and
Vg = ZjeJ b; f;, and then, by the remark above, the series ZZ] a;bie; ® fj converges
to v1 ®vg in Vi ®c Va. As every element of Vi ®¢ V5 is a finite sum of elements of the
form v; ® ve, this proves that every element v of V; ®¢ Vo can be written as the limit
of a convergent series > ;c; i ;abje; ® fj, with a;,b; € C. Then m ® mo(x)(v) =
> i jaibjmi(x)(e;) @ mo(w)(fj). As the families (e; ® f;) and (m1(x)(e;) @ ma(2)(f;))
are both orthogonal in V; ®c Va, we get ||v||? = > lail?[b;]? = ||m1 @ ma(z)(v)||*

As the map m ® m2(z) is continuous, it extends to a continuous endormophism of

Vi®cVa, which is also an isometry and will still be denoted by 7 ® 2 (z).

If y is another element of G, the endomorphisms m ® ma(zy) and (m ® ma(z)) o
(m1 @ ma(y)) of Vi®cVa are equal on pure tensors, hence they are equal because pure
tensors generate a dense subspace of Vi®cVa.

To check that this defines a unitary representation of G on Vi®¢Va, we still need
to check that, for every v € Vi®cVa, the map G — Vi®cVa, & — m1 ® mo(x)(v) is
continuous. This is true for v a pure tensor : if v = v; ® vo, then, for z,y € G, we
have

[(m1 @ m2(z) — m1 @ m2(y)) (V)| < [|m1(2)(v1) @ (m2(x) — m2(y)) (va) ||
+ l(m1(z) — m1(y)) (v1) @ m2(y) (v2) ||

= [[oal[l[(ma(x) = ma(y)) ()| + [I(m1(2) = 71(y)) (wi)l[|v2l],

which implies the result. So it is still true for a finite sum of pure tensors, and then
a standard shows that it is true for every element of V1<§>(CV2.

Let (e1,...,en) (vesp. (f1,...,f;)) be an orthonormal basis of Vi (resp. V2). Then

SO L) >

n

Tr(mi(x)) = Y (mi(x)(es), e:)

i=1
and

Tr(my(x)) = Y _(ma(@)(f)) £,

m
j=1



SO

n m

Tr(m @ mo(x)) = ZZ(M @ ma(z)(e; ® fj), e @ fj)
i=1 j=1
- < <771(x)(ei),6¢>> > (m2(@)(£), £)
i=1 j=1

2. Let G be a discrete group, and let ¢ = 1y1;.

a)
b)

c)

(1) Show that ¢ is a function of positive type on G.
ow tha 1s equivalent to the regular representation ot G.
2) Sh hat V,, i ival th 1 tati fG

2, extra credit) If G 1}, show that the representations V,, and V,&cV,, are not
( @ v v
equivalent. (You can use problem 12.)

Solution.

a)

b)

The counting measure u is a left Haar measure on G, so we use this measure. For
every f € L'(G), we have fG fedu = f(1). So

L« o= (7 p0) = ST € R

yel@

For all f,g € LY(G), we have

(f,9)p = /G(g* * f)edu
)

= (.92

So the kernel of (.,.),, is equal to {0}, and the Hilbert space V,, is the completion of
LY(@) for the norm ||.||2, that is, L?(G). The action of G on Vj, is the extension by
continuity of its action by left translations on L!(G), so we get the action of G by
left translations on L?(G).

I couldn’t solve this question in general. It is easy for dimension reasons if G is finite,
and not too hard if G is uncountable : By problem 12, the representation V¢®CV¢
is equivalent to W := @, V,,- Suppose that we have an isomorphism 7": V, — W.
Then we can write 7'(01) as a convergent infinite sum ), fi, with f; € V. As
d1 is a cyclic vector in V,,, we see easily that each f; must be a cyclic vector in V,,
hence nonzero. But the sum can only converge if at most countably many of the f;
are nonzero, so G must be countable.

O

3. Let G be a locally compact group.



2)
b)

c)

)

1) If f,g € C.(G), show that f g e C.(G).

(
(3) Show that every matrix coefficient of the regular representation of G vanishes at
00.

(2) Suppose that G is not compact. If (m, V) is a finite-dimensional unitary repre-
sentation of GG, show that it has a matrix coefficient that does not vanish at oo.

(1) If G is not compact, show that its regular representation has no finite-dimensional
subrepresentation.

Solution.

a)

First, we know that f * g exists, because f and g are in L'(G). If z,2’ € G, then

|f xg(x) — f*g(a)] = '/G FW) gy z) —g(y~'a"))dy
< Hf”l SUPPyesupp(f) ‘g(y_lx) - g(y_lx/)"

As g is right uniformly continuous (see proposition 1.1.12 of the notes), this tends to
0 as 2’ tends to z, so f * g is continuous.

Let « € G such that f * g(x) # 0. We have

fxg(z /f gy~ z)dy,

so there exists y € supp(f) such that y~'z € supp(g). In other words, z €

supp(f) supp(g). As both supp(f) and supp(g) are compact, their product supp(f) supp(g)
is also compact, so f * g has compact support.

Remember that, if f € L?(G), we define ]?: G — C by f(ac) = f(z=1).

Every matrix coefficient of the left regular representation of G is of the form

X — <Lx—1f, g>L2(G)7
with f,g € L?>(G). We have (see proposition II1.2.4(iii) of the notes)

(Lot f9)12(c) = /G Fay)a()dy

Moreover, if f’, ¢’ € L?(G), then we have (using the Cauchy-Schwarz inequality)

(Lo f.9)r2G) — (Lo ', 9) 12(0)] S/G!g(y)!\f(w_ly—f’(:v_ly)!dy
< gll2ll Ly (f = f)ll2

— lglallf = £11
and
(Lomt f29)12(6) — (Lo o0 12| < / 9(9) — ¢ W) I1f (& yldy
<\lg = d'll2l|Ly-1 |2
— 119 = g ll2 1 £l



Suppose that f,g € C.(G). Then 5,? € C.(G), so, by question (a), g * ? € Cc(G),
and in particular this function vanishes at oo.

In the general case, let ¢ > 0 and let f', ¢’ € C.(G) such that ||f — f/]2 < € and
lg — ¢'|l2 < e. Then, by the two inequality above, we have, for every = € G,

g% (@) — 7 * T @)] < (]2 + llgll2)-

—
But we have just seen that g’ * f has compact support, so there exists a compact

subset K of GG such that, for every x ¢ K| we have

9% F@)| < (Il fllz + llgll2).

This shows that the matrix coefficient g * fvanishes at oo.

c) Let (e1,...,e,) be an orthonormal basis of V. For every i € {1,...,n}, let f; be the
matrix coefficient x — (w(z)(e1), e;). Then we have, for every x € G,

Z |filx)* = Z [(m(@)(er), en)]* = [[m(@)(e)]? = 1.

This shows that at least one of the f; does not vanish at oc.
d) This follows directly from (c) and (d).
O

4. (extra credit, 3) Let V be a locally convex topological C-vector space, K be a compact
convex subset of V, and F' C K be such that K is the closure of the convex hull of F.
Show that every extremal point of K is in the closure of F. (This is known as Milman’s
theorem.)

Solution. If 0 € X is an open convex subset of V, then we have X C 2X. Indeed, if p :
V — R>q be the gauge of X (see lemma B.3.8 of the notes), then X = {v € V|p(v) < 1},
SO

X c{veVipl) <1} c{veVph) <2} =2X.

Let v be an extremal of K, and suppose that v &€ F. Then we can find a convex neigh-
borhood X of 0 in V such that X = —X and (v+ X) N F = &. Replacing X by %X, we
may assume that we have (v+ X)NF = @.

As F is compact (as a closed subset of K), we can find 1,...,z, € F such that F C
UiL,(z; + X). For every i € {1,...,n}, let K; be the closure of the convex hull of
F N (z; + X); this is a compact convex subset of V' (it is compact because it is closed
in K). As K is the closure of the convex hull of F, we have K D K; U...UK,, so K
contains the convex hull L of K1 U...UK,. Let’s show that K = L. As L D F and L is
convex, it suffices to show that L is compact. Let

S ={(x1,...,2n) € [0,1]"z1 4+ ...+ 2, =1},

and consider the function
f:9xKyx...xK,—L

sending ((@1,...,2n),V1,...,0n) to Y iv  2;v;. This map is continuous, so its image is
compact. If we show that this image is convex, then it will equal to L by definition of L,



and we will be done. Solet a = ((x1,...,2,),v1,...,0,) and @’ = ((2),...,2}),v],...,v))
be elements of S x Kj x ...... K, and t € [0,1]. Then

n

tf(a) + (1= )f(a') = Y (twiv; + (1 — t)afv)

i=1

Let : € {1,...,n}. If tw; + (1 — t)z; # 0, we set y; = to; + (1 — t)x; and w; = i(txwi +
(1 — t)x}v}). Otherwise, we set w; = v; and y; = 0. Then we have w; € K; for every i
because K; is convex, y; > 0 for every ¢, and

n

n n
Zyi :thH—(l—t)Zx; =1.
1=1 =1

i=1

So
tfla)+ 1 =t)f(a) = f((y1- - yn)swis. .., wn)

is in the image of f, and we are done.

Now we derive a contradiction. As K = L, we can write v = Y ;" | t;v;, with (¢1,...,t,) €
S and v; € K; for every i. As v is extremal in K, there exists ¢ € {1,...,n} such that
v =wv;. But then v € K; C (z; +Y) (because Kj; is contained in the closure of the convex
hull of z; + X, and this is x; + X because X is convex). As z; € F and X = —X, this
implies that x; € (v + V) N F, contradicting the choice of X.

O

We will see soon that, if G is compact, then the regular representation of G' contains all the
irreducible representations of G' (which are all finite-dimensional); in fact, it is the closure of the
direct sum of all its irreducible subrepresentations. On the other hand, if GG is abelian, then its
regular representation is the direct integral of all the irreducible representations of G' (which are
all 1-dimensional), even though it does not contain any of them if G is not compact. We will not
rigorously define direct integrals here, but we will introduce a weaker definition of containment,
for which irreducible representations of an abelian locally compact group are contained in the
regular representation, and start studying it.

Let (m, V) and (7', V') be unitary representations of G. We say that 7 is weakly contained in
7!, and write 7 < 7/, if P(m) is contained in the closure of the set of finite sums of elements of
P(7') for the topology of convergence on compact subsets of G. In other words, 7 < 7’ if, for
every v € V, for every K C G compact and every ¢ > 0, there exist v],...,v], € V' such that

n

sup |(m(a)(v),v) = Y (' (2)(v)), vi)| <.

zeK i—1

5. Let (m, V) and (7', V') be unitary representations of G. Let C' C V such that Span (7 (z)(v),
G, v € C) is dense in V.! Suppose that every function z +— (7 (x)(v),v), for v € C, is
in the closure of the set of finite sums of elements of P(7’) (still for the topology of con-
vergence on compact subsets of G). The goal of this problem is to show that this implies
T <.

Let X be the set of v € V such that x — (7(x)(v),v) is in the closure of the set of finite
sums of elements of P(7’) (for the same topology as above).

a) (1) Show that X is stable by all the m(x), x € G, and under scalar multiplication.

IFor example, if V is cyclic, C' could just contain a cyclic vector for V.

T <



b) (1) If v € X and 1,22 € G, show that 7w(x1)(v) + 7(z2)(v) € X.
c¢) (1) Show that X is closed in V.

d) (1) If v € X, show that the smallest closed G-invariant subspace of V' containing v
is contained in X.

e) Let v1,v9 € X, and let Wy (resp. Wh) be the smallest closed G-invariant subspace
of V' containing vy (resp. vy). Let W = Wy + W, and denote by T': W — Wf- the
orthogonal projection, where we take the orthogonal complement of Wj in W.

i. (1) Show that T is G-equivariant and that T'(W3) is dense in Wj-.
ii. (2) Show that Wi C X.
iii. (1) Show that v +v9 € X. (Hint : Use T'(v1 4+ v2) and (v1 + v2) — T'(v1 + v2).)
f) (1) Show that = < 7.

Solution.

a) Foreveryv € V (resp. v € V'), we write ¢, for the matrix coefficient z — (7(z)(v), v)
(resp. z — (7' (x)(v),v)). We also write > P(n’) for the set of finite sums of elements
of P(n).
Let v € X, let y € G and let A € C. We want to show that m(y)(v) and Av are in
X, that is, that ¢ () and @y, are in Y P(7’). If A = 0, the conclusion is obvious
for Av (note that 0 is a matrix coefficient of every representation of G), so we may
assume that A # 0. Let K be a compact subset of G ¢ > 0. Choose v}, ...,v], such
that sup,eguy-—1xy [0o(T) — 211 v (2)] < mine, |A|72¢). Then, for every x € K,
we have

| nyo(®) = D Cren (@) = [{T(@y) (v), T(y)(v)) = > (7 (2y) (), 7' () (1))
i=1 =1
= |(r(y zy)(v),v) = > (7' (v ay)(v]), V)|
=1
= lpu(y'ay) — Z«py y tay)|

<e

and

o (@ Z%v )| = APl (2 Zwv )| <e.

SO Pr(y)(v) and @y, are in the closure of P (7).
b) Let v € X and let x1,z2 € G. For every y € G, we have

Pr(z1)(v)+r(x2) v)( ) <7T(y)( ( )(U)—I—TF(.’L'Q)('I))),W(J}l)(U)+7T(Q?2)(U)>
= (m(x7 tya1) (v),0) + (w(g tyen) (), 0) + ( (a7 yae) (v), v)
+ (m(ay ywa) (v), 0).

In other words,

Pr(z1)(v)+m(z2)(v Z LmZRxJ Pu-
t,j=1



Let K be a compact subset of G and let £ > 0. Choose v],...,v], € V' such that

n

sup pu(@) = Y pu ()| <e

2 -1 ;
zel; jo1 77 Ka; i=1

Then, by the calculation above (and its analogue for the functions gpvg), we have, for
every ¢ € K,

|Pr(er) ) +m(a2) () () = D Pren)(w+m(an) () (@)] < €.
=1

This shows that ¢ ;) (v)4r(zs)(w) 18 in the closure of P(n'), that is, that 7(z1)(v) +
m(z2)(v) € X.

c¢) It suffices to show that the map V — P(m), v — ¢, is continuous if we use the
topology of compact convergence on P(w). Let v,v" € V. Then, for every = € G,

[ou(z) = pu ()] = [(m()(v), v) — (m(2)(v), )
< |(m(@)(v =), )] + [ (@) (v), v = )]

< o =l + 1l o = ol

So the map v — ¢, is continuous even for the topology on P(w) given by ||.||so-

d) Let v € X. By (a) and (b), for every n > 1 and all A\1,..., A\, € C and x1,..., 2y,
we have ", \im(x;)(v) € X. So the smallest G-invariant subspace of V' containing
v (ie. Y cqm(x)(Cv)) is contained in X. The conclusion now follows from (c).

e) i. As Wj is G-invariant, the operator T is G-equivariant by lemma 1.3.4.3 of the
notes. As W = Wj + Ws, the image of W + Wy by T is dense in Im(7") = Wf
As Ker(T) = Wy, we have T(W7 + W3) = T(W3), so T(Ws) is dense in Wit.
ii. As W =Wy @ Wi, we deduce that T(Wi- N W) = Wit N Wy is dense in Wi
As Wy C X, question (c) implies that Wi- C X.
iii. We set v = T'(v; + v2) and w = v; + vy —v. Then v € VVlL C X and w €
Ker(T) = W7 C X, so v,w € X. On other hand, for every z € G, we have

Poy+vg (l‘) = <7T($)(U1 + U2)7U1 + U2>
— (@) (v + )0 + )
= (@) + Pu().

As P(n’) is stable by sums, this implies that v; + ve € X.

f) By (a), (c) and (e), the set X is closed G-invariant subspace of V, so it is equal to
V by the hypothesis on C. This means that = < 7’.

O

6. Let (m,V) and (7', V') be two unitary representations of G such that 7 < n’. Let C be
the closure in the weak™ topology on L% (G) of the convex hull of the set of normalized
functions of positive type associated to 7’

a) (1) Show that every normalized function of positive type associated to 7 is in C.

b) (3) If m is irreducible, show that every normalized function of positive type associated
to 7 is a limit in the topology of convergence on compact subsets of G of normalized
functions of positive type associated to 7’. (Hint : problem 4.)



)

4)

(2) If 7 is the trivial representation of G, show that, for every compact subset K of
G and every ¢ > 0, there exists v’ € V' such that ||v'|| =1 and that

sup ||/ (x)(v') = '] < c.
zeK

(1) Conversely, suppose that, for every compact subset K of G and every ¢ > 0, there
exists v' € V'’ such that ||v'|| = 1 and that

sup |17/ (2)(v') = '] < c.
zeK

Show that the trivial representation is weakly contained in 7’

Solution.

a)

Let ¢ be a normalized function of positive type associated to 7. Let f € L'(G) and
e > 0. We want to find a convex combination 1 of normalized functions of positive
type associated to ' such that UG flo— Qﬁ)du‘ < e. Pick § > 0; we will see later how
small it needs to be. Let K > 1 be a compact subset of G such that [, . [f|du < 4.
As 7 < 7', we can find vy, ..., v, € V' such that sup,c [o(x) = D27 @u, ()] < 4. In
particular, evaluating at 1, we get [1—>_1 | |lv;]|?| < 4. Let ¢; = ||[v||?, ¢ = c1+. . .+cn,
PYi = c%.(pvz’ = P 1 Puy and ¢ = %Z?:l Po; = %Z?:l cipi- Then p1,..., ¢, are

flvsl
normalized functions of positive type associated to 7/, and 1) is a convex combination
of ¢1,...,¢p. In particular, [[¢[e <1 = [|¢]|cc-

For every z € K, we have

(@) — () }j%lw+u—dw<ﬂ
< 20.
J/,feo ¢fdu‘<isup|w( y/’Lﬂdﬂ-+ sup [ola) = v(@)| [ Fld
€K G-K
< 26| f|l + 26.

We can make this < € by taking § small enough.

Let F' be the set of normalized functions of positive type associated to 7/, and let K
be the weak™* closure of its convex hull. Then F is contained in the convex set P; of
all normalized functions of positive type on G, so K C P;. Let ¢ be a normalized
function of positive type associated to w. By question (a), we have ¢ € K. By
theorem II1.3.2 of the notes, the function ¢ is extremal in P;, hence also in K. By
problem 4, this implies that ¢ is in the closure of F' in the weak® topology. But
F and ¢ are in P;, and the weak™ topology on P; coincides with the topology of
convergence on compact subsets of G (by Raikov’s theorem, i.e. theorem I11.4.3 of
the notes), so ¢ is also in the closure of F' in the topology of convergence on compact
subsets of G.

As m is the trivial representation, the only normalized function of positive type
associated to 7 is the constant function 1. By question (c¢), there exists v’ € V/ such
that [['|| = 1 and

sup |1 — (7' (z)(v"),v)] < 02/3.
zeK



Let x € G. Then
17 () (o) =o' ||> = (|7 () (") |P+]|0 |2 =2 Re({x' (z) (v), ")) < 2[1—(x'(z)(v"), v)| < 2¢2/3,

SO
sup [|7'(z)(v') — o' <.
rzeK
d) Let 7 be the trivial representation of G. Then P () is the set of nonnegative constant
functions, so, to show that m < 7/, it suffices to show that the constant function 1 is a
limit of finite sums of functions of P(7’) (in the topology of convergence on compact
subsets of G). Let K be a compact subset of G and ¢ > 0. Choose v' € V' such that
|v'|| = 1 and sup,cg ||7'(z)(v") — /|| < ¢, and define ¢’ by ¢'(z) = (7'(x)(v), ).
Then, for every x € K, we have

1= ¢'(@)] = [{), ) = (7 (@) (v"), )] = [( = 7" (2) (v"), )] < [l = 7' (@) ()] < e

O

7. (3) Let G be a finitely generated discrete group, and let S be a finite set of generators for G.
Show that the trivial representation of G is weakly contained in the regular representation
of G if and only, for every € > 0, there exists f € L?(G) such that

sup || Lz f — fll2 <ellfll2-
€S

Solution. We use the criterion of 6(c) and 6(d), that says that the trivial representation
of G is weakly contained in the regular representation if and only if, for every compact
(i.e. finite) subset K of G and every € > 0, there exists f € L?(G) such that | f|l2 = 1
and

sup || Ly f — fll2 <e.
zeK

First, as S is finite, we see immediately that, if the trivial representation is contained in

the regular representation, then the condition of the statement is satisfied.

Conversely, suppose that the condition of the statement is satisfied. Let K be a finite
subset of G, and let ¢ > 0. Let = SU S~ U {1}. We have G = |J,,~, T™ because S
generates G, and this is an increasing union. As K is finite, there exists n > 1 such that
T™. By assumption, we can find f € L%(G) such that ||f]2 = 1 and

sup || Lo f — fll2 < Ze.
zeS
We want to show that

sup [|Lof — fll2 < .
rzeK

It suffices to show it for sup,cpn». Let x € T™, and write x = x1 ... 2y, with xy, ..., 2, € T.
We show by induction on i € {1,...,n} that ||Ly;. o, f — fll2 < +e. If i = 1, we want to
show that ||Lg, f — f|l2 < Ze. This is true by the choice of f if 21 € S, it is obvious if

x1 =1, and, if 1 € S, it follows from the fact that

Lo f = fllz = If = Lyo1 fll2-
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Now suppose the result known for i € {1,...,n— 1}, and let’s prove it for i + 1. We have

HL-'Eln-xH—lf - f”2 < ”Lxlmmi(LEz‘+1f - f)”2 + ”Lxlﬂﬂzf - fH2
i 1. i+l
< e+ e= "tk

O

8. (2) Let G = Z. Show that the trivial representation of G is weakly contained in the
regular representation of G.

Solution. We apply the result of problem 7, with S = {1}. So, for every ¢ > 0, we
must find f € L?(Z) such that ||f|2 = 1 and ||L1f — f|l2 < e. The first condition says
that 3,5 [f(n)]* = 1, and the second condition that Y, o [f(n — 1) — f(n)|* < €. Let
N € Zxp, and consider the function gy = 1o n) € L*(Z). Then [|gn|5 = N + 1, and

> ez lg(n—1)—g(n)|?> = 2. So, if fy = \/1\}7“, we have || f|l2 = 1 and ||L1f— f||2 = %

Taking N big enough, we see that fy has the desired properties.

O

9. Let G =R.
a) (2) Show that the trivial representation of G is weakly contained in the regular

representation of G.

b) (1) Show that every irreducible unitary representation of G is weakly contained in
the regular representation of G. 2

Solution.
a) If a,b € R are such that a < b, let f = (b — a)_1/2]l[a,b}. Then f € L?(R) and we
have || f|l2 = 1. Moreover, for every ¢t € R, we have L;f = (b — a)_1/2]l[a+t7b+t], SO

2|t
ILef —FB <

Let K be a compact subset of R, and let ¢ > 0. If we choose a,b € R such that
b—a > 2e 2 sup,cg |t|, then the construction above gives a f € L?*(R) such that
| fll2 = 1 and sup,ex || Lef — fll2 < e. By 6(d), the trivial representation of R is
contained in its regular representation.

b) As R is abelian, every irreducible unitary representation is 1-dimensional by Schur’s
lemma. Let x : R — S' be such a representation. Let K be a compact subset of R and
e > 0. By (a), there exists f € L?(R) such that ||f||2 = 1 and sup,c | Lef — fl2 < e.
Let g =X f. Then, for every t € R, we have

(Ltg, 9)r2(r) = /Rg(f’«“ —t)g(x)dx = x()(Lef, f)r2m),
hence

IX(t) = (Ltg, 9) 2wyl = 11— (Lefs Dzl = K — Lefs P rew)l < NLef — fll2-
So

sup |x(t) — (Ltg, 9) 2wyl < €.
tekK

This implies the desired result by 6(d).

?We will see later that this is true for every abelian locally compact group.

11



O

10. (extra credit, 4) Let G be the free (nonabelian) group on two generators, with the discrete
topology. Show that the trivial representation of G is not weakly contained in the regular
representation of G.

Solution. Let a,b € G be the two generators of G, and let S = {1,a,b,a™!,b~1}. We have
G = ,>1 5", and this is an increasing union. Suppose that the trivial representation of
G is weakly contained in the regular representation. Then, by 6(c), for every n > 1, there

exists f, € L?(G) such that || f,||2 = 1 and

sup ||fon - anZ < %

xGSn
Let g, = |fn|?. Then g, € LY(Q), ||gnll1 = 1, and, for every = € S, the Cauchy-Schwarz
inequality gives

2

For every n > 1, we define a continuous linear functional A,, on L®(G) by A,(p) =

Y wec In(x)p(x). Then ||Ayllop = ||gnll1 = 1, so, by the Banach-Alaoglu theorem, there is

a subsequence (Ay, x>0 of (Ay,)n>1 that converges for teh weak™ topology on Hom(L*(G), C).
Let A be its limit. Let ¢ € L>(G). We have

Let y € G. There exists n > 1 such that y~' € S,,. Then, if k is such that n; > n, we
have

A (Lyp) = A (@)l = 1D Ly 19m, (2)0(2) = Y gy (2) ()|

zeG zeG
< HLy—lgnk — 9ny, H1||90Hoo

2
< = lgllo:
k

Taking the limit as k& — 400, we see that A(Lyp) = A(p). As, note that A(1) =1, and
that A(¢) > 0 if ¢ takes nonnegative values.

Remember that every element of G can be written in a unique way as a reduced word in
a, b, a=! and b~!. Let A be the set of elements of G whose reduced expression begins
with a nonzero power of a. The, for every x € G, if € A, we have a 'z € A and then
x € aA. In other words, G = AUaA, so 14+ 1,4 — 15 takes nonnegative values, hence
1 1 1
ALa) = 5(A(L4) + A(Lan)) 2 5A(LG) = 5.
On the other hand, the group G is the disjoint union of the subset b A, n € Z, so we have
in particular

1= A(Lg) > A(La) + A(Lpa) + ALy 1) = 3A(La),

that is, A(14) < z. So we get a contradiction.

1
3
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11.

12.

(2) If 7y, mo, my, ™ are unitary representations of G such that m; < 7} and 75 < mg, show
that m @ mp < 7] ® 7).

Solution. We use the same notation ¢, for functions of positive type as in the solution of
problem 5. For ¢ = 1,2, we denote by V; (resp. V;) the space of m; (resp. ).

If v1 € V1 and vy € Vh, then, by definition of the inner product on Vi ®¢ V2, we have
Ooy@vs = PuyPuvy- There is similar result for pure tensors in V{ @c V. So @y g, s in
P(my @ 7h). As P(my @ 7h) is stable by finite sums, and as every element of V; ®¢ Va2 can
be written as a finite sum of an orthogonal family of pure tensors (see the proof of 1(a)),
this implies that ¢, € P(7] ® 7)) for every v € Vi ®c Va. Finally, we have proved in 5(c)
that the map v — ¢, is continuous, and Vi ®¢ V5 is dense in Vi&c Vs, so ¢, € P(m) @ mh)
for every v € V1<§>((:V2.

O

Suppose that G is discrete. For every z € G, we denote by 6, € L?(G) the characteristic
function of {x}.

Let (m,V) be a unitary representation of G, and let (mp, V') be the trivial representation
of GonV (i.e. mo(z) =idy for every z € G).
a) (3) Show that the formula v ® f — > . f(z)(m(z) 7 (v)) ® 8, gives a well-defined

and continuous C-linear transformation from V®cL?(G) to itself.

b) (2) Show that the representations 7 ® 7z, and w9 ® 77, are equivalent (remember that
7r, is the left regular representation of G).

Solution.

a) First, the map V x L*(G) — V ®@c¢ L*(G), (v, f) = Y peq [(@)(7(z) " H(v)) @ b, is
bilinear, so it defines a linear map o : V ®¢ L?(G) — V ®c L?(G). For every v,v' € V
and f, f' € L*(G), we have (observing that the family (v, ® 6;)zcq is orthogonal for
every family (v;)gzeq of elements of V)

(awe f),a( @ ) = f(x) m(2) " (v), w(2) 7 (V)
zeG

=" F@) F@)(v,0)

zeG

=W f,vef).

Using the fact that every element of V ®c L?(G) can be written as a finite sum or
pairwise orthogonal pure tensors (see the proof of 1(a)), this implies that ||a(v)| =
|v|| for every v € V ®c L*(G). In particular, a is continuous, so it extends to a
continuous endomorphism of V&cL?(G), which is still an isometry.

b) We still call o the endomorphism of V&cL?(G) constructed in (a). We show that it
is a G-equivariant map from 7 ® 7y, to my ® 7. As pure tensors generates a dense
subspace of V@)CL2(G), it suffices to check the G-equivariance on them. Solet v € V
and f € L*(G), and let x € G. We have

a(r@mp(z)(v® f) = a(@(@)(0) ® L f) = > flay)r(y " z)(v) @ b,

yelG
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On the other hand,

mo @ () (a(v® f)) =m @ mp(x) Z F)m(y) " (v) @6,

yeG

=Y fy)r(y) " (v) ® Lad,
yeG

=D fW)m(y) " (v) @ by
yeG

=Y fla )z ) (v) ® 6.
yeG

= a(mr@mr(z)(v® f)).

We still need to check that a is an isomorphism of vector spaces. This follows from the
fact that is has an inverse 3, given by the formula S(v® f) = Y .o f(2)7(2)(v) ® 0.
(We can check as in (a) that 5 is well-defined and continuous, and then we can check
on pure tensors that it is the inverse of a, which is an easy verification.)

Note that the isomorphism betweem 7 ® 77, and 7y ® 77, is an isometry, so these
representations have the same functions of positive type.

O

13. (extra credit, 5) Generalize the result of 12(b) to non-discrete locally compact groups.

Solution. Let (m,V') be a unitary representation of G. We write Vj for V' with the trivial
action of G.

First we define a Hilbert space L?(G, V) with a unitary action of G. (This is also often
denoted by Ind?l}Vo.) Consider the space C.(G, Vo) of continuous functions with compact
support from G to Vj, with the norm ||.|s defined by || f|lcoc = supeq || f(z)||. We make
G act on this space by (z, f) — L, f, for x € G and f € C.(G, Vp). Looking at proposition
1.1.12 of the notes, we see that its proof generalizes to functions from G to V and show
that every element of C.(G, V) is left and right uniformly continuous. In particular, for
every f € C.(G,Vp), the map G — C.(G, V), x — L, f is continuous.

Now we define a Hermitian sesquilinear form on C.(G, Vp) by

(fq) = /G (f(2), g(x)vodz.

It is easy to see that this is an inner form, and that the action of G on C.(G, Vp) preserves
this inner form and is continuous in the first variable € G for the topology on C.(G, V})
defined by the associated norm. We denote by L?*(G,V;) the completion of C.(G, Vp) for
(.,.). This is a Hilbert space, and we show as in the case V) = C that the action of G on
C.(G, Vp) extends to a unitary action of G on L?(G, Vj).

We now construct a G-equivariant isometry V&cL?(G) — L*(G,Vp). Consider the map
V x C(G) — L3*(G,Vp) sending (v, f) to the function z +— f(x)m(x~1)(v). This is a
bilinear map, so it induces a C-linear operator a : V ®@c C.(G) — L?(G,Vy). We check
that « is G-equivariant. It suffices to check it on pure tensors, because they generate
VoclC(G). If ye G,v eV and f € C.(G), then, for every = € G,

a(m(y)(v) ® Lyf)(y) = fly~ o)m(zy~ o)
= Ly(a(v® f))(z).
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We also check that « preserves the inner forms. As before, by bilinearity, it suffices to
check it on pure tensors. Let v,w € V and f,g € C.(G). Then

(a(v® f),a(w®g)) = / (f(@)m(2) ™" (v), g(a)m(z) "} (w))vyda

G

- / F(@)g(@) v, w)vyda
(o

G
79>L2(G) (v, W)vp-

This implies that « is an isometry, hence that it extends by continuity to an isometry
VecL?(G) — L*(G,Vp) (we use the fact that C.(G) is dense in L?(G)), which is still
G-equivariant.

We define a G-equivariant isometry o : Vo@cL?(G) — L*(G,Vp) in a way similar to a,
but, for v € V) and f € C.(G), we take o/ (v® f) to be the function x — f(x)v. The proof
that this does define the deisred G-equivariant isometry is the same as in the case of a.

Finally, we show that o and o’ are isomorphisms. We already know that they are injective
and have closed image because they are isometries, so we just need to show that they have
dense image.

Let (e;);es be a Hilbert basis of V. Consider the subspace W of L?(G, Vp) whose elements
are continuous functions with compact support f : G — V4 such that there exists J C [
finite with f(G) C Span(ej,j € J). Let’s show that W is dense in L*(G, Vp). It suffices
to show that W is dense in C.(G, Vp). Let f € C.(G,Vy). As f has compact support, the
subset f(G) of V, is compact. Let € > 0. For every x € K, there exists a finite subset
J of I such that the closed ball centered at x and of radius ¢ intersects Span(e;,j € J).
As K is compact, it can be covered by a finite number of these balls, so we can find
s finite subset J of I such that the distance between x and Span(e;,j € J) is < ¢ for
every x € K. In other words, if 7 is the orthogonal projection on Span(e;,j € J),
then ||7j(x) — z|| < e for every z € K. Then myo f € W, and ||f — 750 fllo < €, SO
|f —mjo fll2 < vol(supp f)e. This shows that W is dense in C.(G, Vp) for both topologies
on C.(G,Vp) (the one induced by ||.||oc and the one induced by ||.||2; only the second one
is relevant here). To finish, it suffices to show that W is contained in the images of a and
o. Let f € W. We can find a finite subset J of I such that f(G) C Span(ej,j € J),
and then we have f(z) =3 ;c; f;j(z)e;, with the f; in Co(G). (Just take coordinates in
the orthonormal basis (e;);es of Span(e;,j € J)). In particular, f = o/(3_,c;¢; ® fj), so
f € Im(c’). This shows that o/ is an isomorphism.

For «, we consider instead the subspace W’ of f € C.(G, Vp) such that there exists J C [
finite such that, for every x € G, the vector 7(z)(f(x)) is in Span(ej,j € J). We show
as before that W' is dense in C.(G,Vp) (for both ||.||s and ||.||2) : Let f € C.(G, V) and
e > 0. As f has compact support, the subset {7(z)(f(x)), x € G} of V} is compact, so we
can find a finite subset J of I such that, for every = € G, the distance between m(x)(f(z))
and Span(ej, j € J) is at most €. Let 7y be the orthogonal projection on Span(e;, j € J),
and define g € W’ by g(z) = m(z) "t omyow(x)(f(z)). For every x € G,

lg(x) = f(@)|| = [[7(2)(g(2) = f@)]| = llms(m(2)(f(2)) = 7(2)(f(2)] <e,

s0 [lg = flloo < € and ||lg — f|l2 < vol(supp f)e. Finally, we show that W’ is contained
in the image of a. Let f € W', and define g € C.(G, Vp) by g(z) = w(z)(f(z)). Choose
a finite subset J of I such that g(G) C Span(e;,j € J), and write g = >, ; gjej, with
gj € Cc(G). Then, for every z € G, we have

Fa) =" gj(@)m(@) " (ey)-

jedJ
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14.

In other words, we have f = a(ZjGJ ej @ gj).

(2) Show that the following are equivalent :
(i) The trivial representation of G is weakly contained in 7.

(ii) Every unitary representation of G is weakly contained in 7p,.

Solution.

The fact that (ii) implies (i) is obvious. So let’s show that (i) implies (ii). Let (7, V) be a
unitary representation of G, let my be the trivial representation of G on V, and let 1 be
the trivial representation of G on C. We know that 1 < 7, so, by problems 11 and 12,
wehave rT 71 < 7m® 7, ~ m9 Q 7.

As in the solution of problem 5, for every unitary representation 7’ of G, we denote by
> P(n') the set of finite sums of functions of positive type associated to w. Let’s show
that > P(wr) = > P(mo ® 71.), which will finish the proof, because we already know that
P(ﬂ') - ZP(T(Q ®7TL).

As 7, is a subrepresentation of 7o ® 7y, (for every v € V — {0}, the subspace Cv® L?(G) of
V®&cL?(G) is G-invariant and equivalent to the representation 77, by the map v® f — f),
we have P(nr) C P(mo® 7r), so > P(nr) C > P(mo ® mr,). Conversely, let (e;)icr be an
orthonormal basis of V, and let v € V®¢L?*(G). Then we can write v =Y, ; ¢;® f;, where
the sum converges in V®cL?(G) (i.e. Y, || fill* converges). Then, for every x € G, we
have

(mo @ mr(x)(v),v) = Z(foi, fidrzc)s
icl

so the function = +— (7 @ 7r(x)(v),v) is in Y P(7p).
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