
MAT 449 : Problem Set 7

Due Thursday, November 8

Let G be a topological group and (π, V ) be a unitary representation of G. A matrix coefficient
of π is a function G→ C of the form x 7→ 〈π(x)(v), w〉, with v, w ∈ V . Note that these functions
are all continuous. We say that the matrix coefficient is diagonal if v = w; a diagonal matrix
coefficient is a function of positive type by proposition III.2.4, and we call it a function of
positive type associated to π. We say that a function of positive type is normalized if it is of
the form x 7→ 〈π(x)(v), v〉 with ‖v‖ = 1. We denote by P(π) the set of functions of positive
type associated to π.

Remember also that, if G is locally compact (and µ is a left Haar measure on G), then
the left regular representation πL is the representation of G on L2(G) := L2(G,µ) given by
πL(x)(f) = Lxf , for x ∈ G and f ∈ L2(G). In this problem, we’ll just call πL the regular
representation of G.

1. Let (π1, V1), (π2, V2) be unitary representations of G.

a) (3) Show that the algebraic tensor product V1 ⊗C V2 has a Hermitian inner product,
uniquely determined by 〈v1 ⊗ v2, w1 ⊗ w2〉 = 〈v1, w1〉〈v2, w2〉.

b) (2) We denote the completion of V1⊗C V2 for this inner form by V1⊗̂CV2. Show that
the formula (x, v1 ⊗ v2) 7→ π1(x)(v1) ⊗ π2(x)(v2) defines a unitary representation of
G on V1⊗̂CV2. (This is called the tensor product representation and usually denoted
by π1 ⊗ π2.)

c) (2) If V1 and V2 are finite-dimensional, show that, for every x ∈ G, we have

Tr(π1 ⊗ π2(x)) = Tr(π1(x)) Tr(π2(x)).

Solution.

a) As pure tensors span V1⊗C V2, there is at most one sesquilinear form B on V1⊗C V2
such that B(v1 ⊗ v2, w1 ⊗w2) = 〈v1, w1〉〈v2, w2〉. Let’s show that such a form exists.
Let w1 ∈ V1 and w2 ∈ V2. Then the map on V1×V2 → C, (v1, v2) 7→ 〈v1, w1〉〈v2, w2〉 is
a bilinear form, hence it corresponds to a unique linear form on V1⊗CV2, say Bw1,w2 .

Next, the map on V1 × V2 sending (w1, w2) to the antilinear form v 7→ Bw1,w2(v) is
bilinear, so it corresponds to a unique linear functional T on V1 ⊗C V2. Finally, the
map B : (V1 ⊗C V2) × (V1 ⊗C V2) → C sending (v, w) to T (w)(v) is linear in v and
antilinear in w, so it is a sesquilinear form, and it sends pure tensors where we want
by definition.

Now we show that B is Hermitian, i.e. that B(w, v) = B(v, w) for all v, w ∈ V1⊗CV2.
As B is sesquilinear, it suffices to check this property for v and w pure tensors, but
then it follows immediately from the analogous property of the inner products of V1
and V2.
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Finally, we show that B is definite positive. Let v ∈ V1 ⊗C V2, and write v =∑n
i=1 v1,i ⊗ v2,i, v1,i ∈ V1 and v2,i ∈ V2. Then v is in V ′1 ⊗C V ′2 , where V ′1 =

Span(v1,1, . . . , v1,n) and V ′2 = Span(v2,1, . . . , v2,n). So we may replace V1 and V2
by V ′1 and V ′2 , and so may assume that V1 and V2 are finite-dimensional. If this
is the case, let (e1, . . . , er) (resp. (e′1, . . . , e

′
s)) be an orthonormal basis of V1 (resp.

V2). Then (ei ⊗ e′j)1≤i≤r,1≤j≤s is a basis of V1 ⊗C V2, and it is clear from the defi-
nition of the Hermitian form B on V1 ⊗C V2 that it is an orthonormal basis for B .
But the existence of an orthonomal basis forces the form to be positive definite (if
v =

∑r
i=1

∑s
j=1 aijei ⊗ e′j , then B(v, v) =

∑
i,j |aij |2).

b) First note that, if v1 ∈ V1 and v2 ∈ V2, then we have ‖v1 ⊗ v2‖ = ‖v1‖‖v2‖.
Let x ∈ G. Then the map V1×V2 → V1⊗CV2 sending (v1, v2) to π1(x)(v1)⊗π2(x)(v2)
is bilinear, so it induces a C-linear map π1⊗π2(x) from V1⊗CV2 to itself. We show that
this map is an isometry (hence continuous). Let (ei)i∈I (resp. (fj)j∈J) be a Hilbert
basis of V1 (resp. V2). If v1 ∈ V1 and v2 ∈ V2, we can write v1 =

∑
i∈I aiei and

v2 =
∑

j∈J bjfj , and then, by the remark above, the series
∑

i,j aibiei ⊗ fj converges
to v1⊗ v2 in V1⊗C V2. As every element of V1⊗C V2 is a finite sum of elements of the
form v1⊗ v2, this proves that every element v of V1⊗C V2 can be written as the limit
of a convergent series

∑
i∈I,j∈J aibjei ⊗ fj , with ai, bj ∈ C. Then π1 ⊗ π2(x)(v) =∑

i,j aibjπ1(x)(ei) ⊗ π2(x)(fj). As the families (ei ⊗ fj) and (π1(x)(ei) ⊗ π2(x)(fj))

are both orthogonal in V1 ⊗C V2, we get ‖v‖2 =
∑

i,j |ai|2|bj |2 = ‖π1 ⊗ π2(x)(v)‖2.
As the map π1 ⊗ π2(x) is continuous, it extends to a continuous endormophism of
V1⊗̂CV2, which is also an isometry and will still be denoted by π1 ⊗ π2(x).

If y is another element of G, the endomorphisms π1 ⊗ π2(xy) and (π1 ⊗ π2(x)) ◦
(π1⊗π2(y)) of V1⊗̂CV2 are equal on pure tensors, hence they are equal because pure
tensors generate a dense subspace of V1⊗̂CV2.

To check that this defines a unitary representation of G on V1⊗̂CV2, we still need
to check that, for every v ∈ V1⊗̂CV2, the map G → V1⊗̂CV2, x 7→ π1 ⊗ π2(x)(v) is
continuous. This is true for v a pure tensor : if v = v1 ⊗ v2, then, for x, y ∈ G, we
have

‖(π1 ⊗ π2(x)− π1 ⊗ π2(y))(v)‖ ≤ ‖π1(x)(v1)⊗ (π2(x)− π2(y))(v2)‖
+ ‖(π1(x)− π1(y))(v1)⊗ π2(y)(v2)‖
= ‖v1‖‖(π2(x)− π2(y))(v2)‖+ ‖(π1(x)− π1(y))(v1)‖‖v2‖,

which implies the result. So it is still true for a finite sum of pure tensors, and then
a standard shows that it is true for every element of V1⊗̂CV2.

c) Let (e1, . . . , en) (resp. (f1, . . . , fj)) be an orthonormal basis of V1 (resp. V2). Then
(ei ⊗ fj)1≤i≤n,1≤j≤m is an orthonormal basis of V1 ⊗C V2. Let x ∈ G. Then

Tr(π1(x)) =

n∑
i=1

〈π1(x)(ei), ei〉

and

Tr(π2(x)) =
m∑
j=1

〈π2(x)(fj), fj〉,
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so

Tr(π1 ⊗ π2(x)) =
n∑
i=1

m∑
j=1

〈π1 ⊗ π2(x)(ei ⊗ fj), ei ⊗ fj〉

=

(
n∑
i=1

〈π1(x)(ei), ei〉

) m∑
j=1

〈π2(x)(fj), fj〉


= Tr(π1(x)) Tr(π2(x)).

�

2. Let G be a discrete group, and let ϕ = 11{1}.

a) (1) Show that ϕ is a function of positive type on G.

b) (2) Show that Vϕ is equivalent to the regular representation of G.

c) (2, extra credit) If G 6= {1}, show that the representations Vϕ and Vϕ⊗̂CVϕ are not
equivalent. (You can use problem 12.)

Solution.

a) The counting measure µ is a left Haar measure on G, so we use this measure. For
every f ∈ L1(G), we have

∫
G fϕdµ = f(1). So∫

G
(f∗ ∗ f)ϕdµ = (f∗ ∗ f)(1) =

∑
y∈G

f(y−1)f(y−1) ∈ R≥0.

b) For all f, g ∈ L1(G), we have

〈f, g〉ϕ =

∫
G

(g∗ ∗ f)ϕdµ

= (g∗ ∗ f)(1)

=
∑
y∈G

g(y−1)f(y−1)

= 〈f, g〉L2(G).

So the kernel of 〈., .〉ϕ is equal to {0}, and the Hilbert space Vϕ is the completion of
L1(G) for the norm ‖.‖2, that is, L2(G). The action of G on Vϕ is the extension by
continuity of its action by left translations on L1(G), so we get the action of G by
left translations on L2(G).

c) I couldn’t solve this question in general. It is easy for dimension reasons if G is finite,
and not too hard if G is uncountable : By problem 12, the representation Vϕ⊗̂CVϕ
is equivalent to W :=

⊕
i∈G Vϕ. Suppose that we have an isomorphism T : Vϕ →W .

Then we can write T (δ1) as a convergent infinite sum
∑

i∈G fi, with fi ∈ Vϕ. As
δ1 is a cyclic vector in Vϕ, we see easily that each fi must be a cyclic vector in Vϕ,
hence nonzero. But the sum can only converge if at most countably many of the fi
are nonzero, so G must be countable.

�

3. Let G be a locally compact group.
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a) (1) If f, g ∈ Cc(G), show that f ∗ g ∈ Cc(G).

b) (3) Show that every matrix coefficient of the regular representation of G vanishes at
∞.

c) (2) Suppose that G is not compact. If (π, V ) is a finite-dimensional unitary repre-
sentation of G, show that it has a matrix coefficient that does not vanish at ∞.

d) (1) If G is not compact, show that its regular representation has no finite-dimensional
subrepresentation.

Solution.

a) First, we know that f ∗ g exists, because f and g are in L1(G). If x, x′ ∈ G, then

|f ∗ g(x)− f ∗ g(x′)| =
∣∣∣∣∫
G
f(y)(g(y−1x)− g(y−1x′))dy

∣∣∣∣
≤ ‖f‖1 suppy∈supp(f) |g(y−1x)− g(y−1x′)|.

As g is right uniformly continuous (see proposition I.1.12 of the notes), this tends to
0 as x′ tends to x, so f ∗ g is continuous.

Let x ∈ G such that f ∗ g(x) 6= 0. We have

f ∗ g(x) =

∫
G
f(y)g(y−1x)dy,

so there exists y ∈ supp(f) such that y−1x ∈ supp(g). In other words, x ∈
supp(f) supp(g). As both supp(f) and supp(g) are compact, their product supp(f) supp(g)
is also compact, so f ∗ g has compact support.

b) Remember that, if f ∈ L2(G), we define f̃ : G→ C by f̃(x) = f(x−1).

Every matrix coefficient of the left regular representation of G is of the form

x 7→ 〈Lx−1f, g〉L2(G),

with f, g ∈ L2(G). We have (see proposition III.2.4(iii) of the notes)

〈Lx−1f, g〉L2(G) =

∫
G
f(x−1y)g(y)dy

=

∫
G
f̃(y−1x)g(y)dy

= g ∗ f̃(x).

Moreover, if f ′, g′ ∈ L2(G), then we have (using the Cauchy-Schwarz inequality)

|〈Lx−1f, g〉L2(G) − 〈Lx−1f ′, g〉L2(G)| ≤
∫
G
|g(y)||f(x−1y − f ′(x−1y)|dy

≤ ‖g‖2‖Lx−1(f − f ′)‖2
= ‖g‖2‖f − f ′‖2

and

|〈Lx−1f, g〉L2(G) − 〈Lx−1f, g′〉L2(G)| ≤
∫
G
|g(y)− g′(y)||f(x−1y|dy

≤ ‖g − g′‖2‖Lx−1f‖2
= ‖g − g′‖2‖f ′‖2.
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Suppose that f, g ∈ Cc(G). Then g, f̃ ∈ Cc(G), so, by question (a), g ∗ f̃ ∈ Cc(G),
and in particular this function vanishes at ∞.

In the general case, let ε > 0 and let f ′, g′ ∈ Cc(G) such that ‖f − f ′‖2 ≤ ε and
‖g − g′‖2 ≤ ε. Then, by the two inequality above, we have, for every x ∈ G,

|g ∗ f̃(x)− g′ ∗ f̃
′
(x)| ≤ ε(‖f‖2 + ‖g‖2).

But we have just seen that g′ ∗ f̃
′

has compact support, so there exists a compact
subset K of G such that, for every x 6∈ K¡ we have

|g ∗ f̃(x)| ≤ ε(‖f‖2 + ‖g‖2).

This shows that the matrix coefficient g ∗ f̃ vanishes at ∞.

c) Let (e1, . . . , en) be an orthonormal basis of V . For every i ∈ {1, . . . , n}, let fi be the
matrix coefficient x 7→ 〈π(x)(e1), ei〉. Then we have, for every x ∈ G,

n∑
i=1

|fi(x)|2 =
n∑
i=1

|〈π(x)(e1), ei〉|2 = ‖π(x)(e1)‖2 = 1.

This shows that at least one of the fi does not vanish at ∞.

d) This follows directly from (c) and (d).

�

4. (extra credit, 3) Let V be a locally convex topological C-vector space, K be a compact
convex subset of V , and F ⊂ K be such that K is the closure of the convex hull of F .
Show that every extremal point of K is in the closure of F . (This is known as Milman’s
theorem.)

Solution. If 0 ∈ X is an open convex subset of V , then we have X ⊂ 2X. Indeed, if p :
V → R≥0 be the gauge of X (see lemma B.3.8 of the notes), then X = {v ∈ V |p(v) < 1},
so

X ⊂ {v ∈ V |p(v) ≤ 1} ⊂ {v ∈ V |p(v) < 2} = 2X.

Let v be an extremal of K, and suppose that v 6∈ F . Then we can find a convex neigh-
borhood X of 0 in V such that X = −X and (v +X) ∩ F = ∅. Replacing X by 1

2X, we
may assume that we have (v +X) ∩ F = ∅.

As F is compact (as a closed subset of K), we can find x1, . . . , xn ∈ F such that F ⊂⋃n
i=1(xi + X). For every i ∈ {1, . . . , n}, let Ki be the closure of the convex hull of

F ∩ (xi + X); this is a compact convex subset of V (it is compact because it is closed
in K). As K is the closure of the convex hull of F , we have K ⊃ K1 ∪ . . . ∪ Kn, so K
contains the convex hull L of K1 ∪ . . . ∪Kn. Let’s show that K = L. As L ⊃ F and L is
convex, it suffices to show that L is compact. Let

S = {(x1, . . . , xn) ∈ [0, 1]n|x1 + . . .+ xn = 1},

and consider the function
f : S ×K1 × . . .×Kn → L

sending ((x1, . . . , xn), v1, . . . , vn) to
∑m

i=1 xivi. This map is continuous, so its image is
compact. If we show that this image is convex, then it will equal to L by definition of L,
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and we will be done. So let a = ((x1, . . . , xn), v1, . . . , vn) and a′ = ((x′1, . . . , x
′
n), v′1, . . . , v

′
n)

be elements of S ×K1 × . . . . . .Kn and t ∈ [0, 1]. Then

tf(a) + (1− t)f(a′) =
n∑
i=1

(txivi + (1− t)x′iv′i)

Let i ∈ {1, . . . , n}. If txi + (1− t)xi 6= 0, we set yi = txi + (1− t)xi and wi = 1
yi

(txivi +

(1 − t)x′iv′i). Otherwise, we set wi = vi and yi = 0. Then we have wi ∈ Ki for every i
because Ki is convex, yi ≥ 0 for every i, and

n∑
i=1

yi = t
n∑
i=1

xi + (1− t)
n∑
i=1

x′i = 1.

So
tf(a) + (1− t)f(a′) = f((y1 . . . , yn), w1, . . . , wn)

is in the image of f , and we are done.

Now we derive a contradiction. As K = L, we can write v =
∑n

i=1 tivi, with (t1, . . . , tn) ∈
S and vi ∈ Ki for every i. As v is extremal in K, there exists i ∈ {1, . . . , n} such that
v = vi. But then v ∈ Ki ⊂ (xi +X) (because Ki is contained in the closure of the convex
hull of xi + X, and this is xi + X because X is convex). As xi ∈ F and X = −X, this
implies that xi ∈ (v + V ) ∩ F , contradicting the choice of X.

�

We will see soon that, if G is compact, then the regular representation of G contains all the
irreducible representations of G (which are all finite-dimensional); in fact, it is the closure of the
direct sum of all its irreducible subrepresentations. On the other hand, if G is abelian, then its
regular representation is the direct integral of all the irreducible representations of G (which are
all 1-dimensional), even though it does not contain any of them if G is not compact. We will not
rigorously define direct integrals here, but we will introduce a weaker definition of containment,
for which irreducible representations of an abelian locally compact group are contained in the
regular representation, and start studying it.

Let (π, V ) and (π′, V ′) be unitary representations of G. We say that π is weakly contained in
π′, and write π ≺ π′, if P(π) is contained in the closure of the set of finite sums of elements of
P(π′) for the topology of convergence on compact subsets of G. In other words, π ≺ π′ if, for
every v ∈ V , for every K ⊂ G compact and every c > 0, there exist v′1, . . . , v

′
n ∈ V ′ such that

sup
x∈K
|〈π(x)(v), v〉 −

n∑
i=1

〈π′(x)(v′i), v
′
i〉| < c.

5. Let (π, V ) and (π′, V ′) be unitary representations ofG. Let C ⊂ V such that Span(π(x)(v), x ∈
G, v ∈ C) is dense in V .1 Suppose that every function x 7→ 〈π(x)(v), v〉, for v ∈ C, is
in the closure of the set of finite sums of elements of P(π′) (still for the topology of con-
vergence on compact subsets of G). The goal of this problem is to show that this implies
π ≺ π′.
Let X be the set of v ∈ V such that x 7→ 〈π(x)(v), v〉 is in the closure of the set of finite
sums of elements of P(π′) (for the same topology as above).

a) (1) Show that X is stable by all the π(x), x ∈ G, and under scalar multiplication.

1For example, if V is cyclic, C could just contain a cyclic vector for V .

6



b) (1) If v ∈ X and x1, x2 ∈ G, show that π(x1)(v) + π(x2)(v) ∈ X.

c) (1) Show that X is closed in V .

d) (1) If v ∈ X, show that the smallest closed G-invariant subspace of V containing v
is contained in X.

e) Let v1, v2 ∈ X, and let W1 (resp. W2) be the smallest closed G-invariant subspace
of V containing v1 (resp. v2). Let W = W1 +W2, and denote by T : W → W⊥1 the
orthogonal projection, where we take the orthogonal complement of W1 in W .

i. (1) Show that T is G-equivariant and that T (W2) is dense in W⊥1 .

ii. (2) Show that W⊥1 ⊂ X.

iii. (1) Show that v1 + v2 ∈ X. (Hint : Use T (v1 + v2) and (v1 + v2)− T (v1 + v2).)

f) (1) Show that π ≺ π′.

Solution.

a) For every v ∈ V (resp. v ∈ V ′), we write ϕv for the matrix coefficient x 7→ 〈π(x)(v), v〉
(resp. x 7→ 〈π′(x)(v), v〉). We also write

∑
P(π′) for the set of finite sums of elements

of P(π′).

Let v ∈ X, let y ∈ G and let λ ∈ C. We want to show that π(y)(v) and λv are in
X, that is, that ϕπ(y)(v) and ϕλv are in

∑
P(π′). If λ = 0, the conclusion is obvious

for λv (note that 0 is a matrix coefficient of every representation of G), so we may
assume that λ 6= 0. Let K be a compact subset of G ε > 0. Choose v′1, . . . , v

′
n such

that supx∈K∪y−1Ky |ϕv(x) −
∑n

i=1 ϕv′i(x)| ≤ min(ε, |λ|−2ε). Then, for every x ∈ K,
we have

|ϕπ(y)v(x)−
n∑
i=1

ϕπ′(y)(v′i)(x)| = |〈π(xy)(v), π(y)(v)〉 −
n∑
i=1

〈π′(xy)(v′i), π
′(y)(v′i)〉|

= |〈π(y−1xy)(v), v〉 −
n∑
i=1

〈π′(y−1xy)(v′i), v
′
i〉|

= |ϕv(y−1xy)−
n∑
i=1

ϕv′i(y
−1xy)|

≤ ε

and

|ϕλv(x)−
n∑
i=1

ϕλv′i(x)| = |λ|2|ϕv(x)−
n∑
i=1

ϕv′i(x)| ≤ ε.

So ϕπ(y)(v) and ϕλv are in the closure of P(π′).

b) Let v ∈ X and let x1, x2 ∈ G. For every y ∈ G, we have

ϕπ(x1)(v)+π(x2)(v)(y) = 〈π(y)(π(x1)(v) + π(x2)(v)), π(x1)(v) + π(x2)(v)〉
= 〈π(x−11 yx1)(v), v〉+ 〈π(x−12 yx1)(v), v〉+ 〈π(x−11 yx2)(v), v〉

+ 〈π(x−12 yx2)(v), v〉.

In other words,

ϕπ(x1)(v)+π(x2)(v) =
2∑

i,j=1

LxiRxjϕv.
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Let K be a compact subset of G and let ε > 0. Choose v′1, . . . , v
′
n ∈ V ′ such that

sup
x∈

⋃2
i,j=1 x

−1
i Kxj

|ϕv(x)−
n∑
i=1

ϕv′i(x)| ≤ ε.

Then, by the calculation above (and its analogue for the functions ϕv′i), we have, for
every x ∈ K,

|ϕπ(x1)(v)+π(x2)(v)(x)−
n∑
i=1

ϕπ(x1)(vi)+π(x2)(vi)(x)| ≤ ε.

This shows that ϕπ(x1)(v)+π(x2)(v) is in the closure of P(π′), that is, that π(x1)(v) +
π(x2)(v) ∈ X.

c) It suffices to show that the map V → P(π), v 7→ ϕv is continuous if we use the
topology of compact convergence on P(π). Let v, v′ ∈ V . Then, for every x ∈ G,

|ϕv(x)− ϕv′(x)| = |〈π(x)(v), v〉 − 〈π(x)(v′), v′〉
≤ |〈π(x)(v − v′), v〉|+ |〈π(x)(v′), v − v′〉|
≤ ‖v − v′‖‖v‖+ ‖v′‖‖v − v′‖.

So the map v 7→ ϕv is continuous even for the topology on P(π) given by ‖.‖∞.

d) Let v ∈ X. By (a) and (b), for every n ≥ 1 and all λ1, . . . , λn ∈ C and x1, . . . , xn,
we have

∑n
i=1 λiπ(xi)(v) ∈ X. So the smallest G-invariant subspace of V containing

v (i.e.
∑

x∈G π(x)(Cv)) is contained in X. The conclusion now follows from (c).

e) i. As W1 is G-invariant, the operator T is G-equivariant by lemma I.3.4.3 of the
notes. As W = W1 +W2, the image of W1 +W2 by T is dense in Im(T ) = W⊥1 .
As Ker(T ) = W1, we have T (W1 +W2) = T (W2), so T (W2) is dense in W⊥1 .

ii. As W = W1 ⊕W⊥1 , we deduce that T (W⊥1 ∩W2) = W⊥1 ∩W2 is dense in W⊥1 .
As W2 ⊂ X, question (c) implies that W⊥1 ⊂ X.

iii. We set v = T (v1 + v2) and w = v1 + v2 − v. Then v ∈ W⊥1 ⊂ X and w ∈
Ker(T ) = W1 ⊂ X, so v, w ∈ X. On other hand, for every x ∈ G, we have

ϕv1+v2(x) = 〈π(x)(v1 + v2), v1 + v2〉
= π(x)(v + w), v + w〉
= ϕv(x) + ϕw(x).

As P(π′) is stable by sums, this implies that v1 + v2 ∈ X.

f) By (a), (c) and (e), the set X is closed G-invariant subspace of V , so it is equal to
V by the hypothesis on C. This means that π ≺ π′.

�

6. Let (π, V ) and (π′, V ′) be two unitary representations of G such that π ≺ π′. Let C be
the closure in the weak* topology on L∞(G) of the convex hull of the set of normalized
functions of positive type associated to π′.

a) (1) Show that every normalized function of positive type associated to π is in C.

b) (3) If π is irreducible, show that every normalized function of positive type associated
to π is a limit in the topology of convergence on compact subsets of G of normalized
functions of positive type associated to π′. (Hint : problem 4.)
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c) (2) If π is the trivial representation of G, show that, for every compact subset K of
G and every c > 0, there exists v′ ∈ V ′ such that ‖v′‖ = 1 and that

sup
x∈K
‖π′(x)(v′)− v′‖ < c.

d) (1) Conversely, suppose that, for every compact subset K of G and every c > 0, there
exists v′ ∈ V ′ such that ‖v′‖ = 1 and that

sup
x∈K
‖π′(x)(v′)− v′‖ < c.

Show that the trivial representation is weakly contained in π′.

Solution.

a) Let ϕ be a normalized function of positive type associated to π. Let f ∈ L1(G) and
ε > 0. We want to find a convex combination ψ of normalized functions of positive
type associated to π′ such that

∣∣∫
G f(ϕ− ψ)dµ

∣∣ ≤ ε. Pick δ > 0; we will see later how
small it needs to be. Let K 3 1 be a compact subset of G such that

∫
G−K |f |dµ ≤ δ.

As π ≺ π′, we can find v1, . . . , vn ∈ V ′ such that supx∈K |ϕ(x)−
∑n

i=1 ϕvi(x)| ≤ δ. In
particular, evaluating at 1, we get |1−

∑n
i=1 ‖vi‖2| ≤ δ. Let ci = ‖v‖2i , c = c1+. . .+cn,

ϕi = 1
ci
ϕvi = ϕ 1

‖vi‖
ϕvi and ψ = 1

c

∑n
i=1 ϕvi = 1

c

∑n
i=1 ciϕi. Then ϕ1, . . . , ϕn are

normalized functions of positive type associated to π′, and ψ is a convex combination
of ϕ1, . . . , ϕn. In particular, ‖ψ‖∞ ≤ 1 = ‖ϕ‖∞.

For every x ∈ K, we have

|ϕ(x)− ψ(x)| ≤ |ϕ(x)−
n∑
i=1

ϕvi(x)|+ |1− c||ψ(x)|

≤ 2δ.

So∣∣∣∣∫
G
f(ϕ− ψ)dµ

∣∣∣∣ ≤ sup
x∈K
|ϕ(x)− ψ(x)|

∫
K
|f |dµ+ sup

x∈G−K
|ϕ(x)− ψ(x)|

∫
G−K

|f |dµ

≤ 2δ‖f‖1 + 2δ.

We can make this ≤ ε by taking δ small enough.

b) Let F be the set of normalized functions of positive type associated to π′, and let K
be the weak* closure of its convex hull. Then F is contained in the convex set P1 of
all normalized functions of positive type on G, so K ⊂ P1. Let ϕ be a normalized
function of positive type associated to π. By question (a), we have ϕ ∈ K. By
theorem III.3.2 of the notes, the function ϕ is extremal in P1, hence also in K. By
problem 4, this implies that ϕ is in the closure of F in the weak* topology. But
F and ϕ are in P1, and the weak* topology on P1 coincides with the topology of
convergence on compact subsets of G (by Raikov’s theorem, i.e. theorem III.4.3 of
the notes), so ϕ is also in the closure of F in the topology of convergence on compact
subsets of G.

c) As π is the trivial representation, the only normalized function of positive type
associated to π is the constant function 1. By question (c), there exists v′ ∈ V ′ such
that ‖v′‖ = 1 and

sup
x∈K
|1− 〈π′(x)(v′), v′〉| ≤ c2/3.

9



Let x ∈ G. Then

‖π′(x)(v′)−v′‖2 = ‖π′(x)(v′)‖2+‖v′‖2−2 Re(〈π′(x)(v′), v′〉) ≤ 2|1−〈π′(x)(v′), v′〉| ≤ 2c2/3,

so
sup
x∈K
‖π′(x)(v′)− v′‖ < c.

d) Let π be the trivial representation of G. Then P(π) is the set of nonnegative constant
functions, so, to show that π ≺ π′, it suffices to show that the constant function 1 is a
limit of finite sums of functions of P(π′) (in the topology of convergence on compact
subsets of G). Let K be a compact subset of G and c > 0. Choose v′ ∈ V ′ such that
‖v′‖ = 1 and supx∈K ‖π′(x)(v′) − v′‖ < c, and define ϕ′ by ϕ′(x) = 〈π′(x)(v′), v′〉.
Then, for every x ∈ K, we have

|1− ϕ′(x)| = |〈v′, v′〉 − 〈π′(x)(v′), v′〉| = |〈v′ − π′(x)(v′), v′〉| ≤ ‖v′ − π′(x)(v′)‖ < c.

�

7. (3) Let G be a finitely generated discrete group, and let S be a finite set of generators for G.
Show that the trivial representation of G is weakly contained in the regular representation
of G if and only, for every ε > 0, there exists f ∈ L2(G) such that

sup
x∈S
‖Lxf − f‖2 < ε‖f‖2.

Solution. We use the criterion of 6(c) and 6(d), that says that the trivial representation
of G is weakly contained in the regular representation if and only if, for every compact
(i.e. finite) subset K of G and every ε > 0, there exists f ∈ L2(G) such that ‖f‖2 = 1
and

sup
x∈K
‖Lxf − f‖2 < ε.

First, as S is finite, we see immediately that, if the trivial representation is contained in
the regular representation, then the condition of the statement is satisfied.

Conversely, suppose that the condition of the statement is satisfied. Let K be a finite
subset of G, and let ε > 0. Let T = S ∪ S−1 ∪ {1}. We have G =

⋃
n≥1 T

n because S
generates G, and this is an increasing union. As K is finite, there exists n ≥ 1 such that
Tn. By assumption, we can find f ∈ L2(G) such that ‖f‖2 = 1 and

sup
x∈S
‖Lxf − f‖2 ≤ 1

nε.

We want to show that
sup
x∈K
‖Lxf − f‖2 ≤ ε.

It suffices to show it for supx∈Tn . Let x ∈ Tn, and write x = x1 . . . xn, with x1, . . . , xn ∈ T .
We show by induction on i ∈ {1, . . . , n} that ‖Lx1...xif − f‖2 ≤ i

nε. If i = 1, we want to
show that ‖Lx1f − f‖2 ≤ 1

nε. This is true by the choice of f if x1 ∈ S, it is obvious if
x1 = 1, and, if x1 ∈ S−1, it follows from the fact that

‖Lx1f − f‖2 = ‖f − Lx−1
1
f‖2.
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Now suppose the result known for i ∈ {1, . . . , n− 1}, and let’s prove it for i+ 1. We have

‖Lx1...xi+1f − f‖2 ≤ ‖Lx1...xi(Lxi+1f − f)‖2 + ‖Lx1...xif − f‖2
= ‖Lxi+1f − f‖2 + ‖Lx1...xif − f‖2
≤ i

nε+ 1
nε = i+1

n ε.

�

8. (2) Let G = Z. Show that the trivial representation of G is weakly contained in the
regular representation of G.

Solution. We apply the result of problem 7, with S = {1}. So, for every ε > 0, we
must find f ∈ L2(Z) such that ‖f‖2 = 1 and ‖L1f − f‖2 ≤ ε. The first condition says
that

∑
n∈Z |f(n)|2 = 1, and the second condition that

∑
n∈Z |f(n− 1)− f(n)|2 ≤ ε2. Let

N ∈ Z≥0, and consider the function gN = 11[0,N ] ∈ L2(Z). Then ‖gN‖22 = N + 1, and∑
n∈Z |g(n−1)−g(n)|2 = 2. So, if fN = 1√

N+1
, we have ‖f‖2 = 1 and ‖L1f−f‖2 =

√
2√

N+1
.

Taking N big enough, we see that fN has the desired properties.

�

9. Let G = R.

a) (2) Show that the trivial representation of G is weakly contained in the regular
representation of G.

b) (1) Show that every irreducible unitary representation of G is weakly contained in
the regular representation of G. 2

Solution.

a) If a, b ∈ R are such that a < b, let f = (b − a)−1/211[a,b]. Then f ∈ L2(R) and we

have ‖f‖2 = 1. Moreover, for every t ∈ R, we have Ltf = (b− a)−1/211[a+t,b+t], so

‖Ltf − f‖22 ≤
2|t|
b− a

.

Let K be a compact subset of R, and let ε > 0. If we choose a, b ∈ R such that
b − a ≥ 2ε−2 supt∈K |t|, then the construction above gives a f ∈ L2(R) such that
‖f‖2 = 1 and supx∈K ‖Ltf − f‖2 ≤ ε. By 6(d), the trivial representation of R is
contained in its regular representation.

b) As R is abelian, every irreducible unitary representation is 1-dimensional by Schur’s
lemma. Let χ : R→ S1 be such a representation. LetK be a compact subset of R and
ε > 0. By (a), there exists f ∈ L2(R) such that ‖f‖2 = 1 and supt∈K ‖Ltf −f‖2 ≤ ε.
Let g = χf . Then, for every t ∈ R, we have

〈Ltg, g〉L2(R) =

∫
R
g(x− t)g(x)dx = χ(t)〈Ltf, f〉L2(R),

hence

|χ(t)− 〈Ltg, g〉L2(R)| = |1− 〈Ltf, f〉L2(R)| = |〈f − Ltf, f〉L2(R)| ≤ ‖Ltf − f‖2.

So
sup
t∈K
|χ(t)− 〈Ltg, g〉L2(R)| ≤ ε.

This implies the desired result by 6(d).

2We will see later that this is true for every abelian locally compact group.
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�

10. (extra credit, 4) Let G be the free (nonabelian) group on two generators, with the discrete
topology. Show that the trivial representation of G is not weakly contained in the regular
representation of G.

Solution. Let a, b ∈ G be the two generators of G, and let S = {1, a, b, a−1, b−1}. We have
G =

⋃
n≥1 S

n, and this is an increasing union. Suppose that the trivial representation of
G is weakly contained in the regular representation. Then, by 6(c), for every n ≥ 1, there
exists fn ∈ L2(G) such that ‖fn‖2 = 1 and

sup
x∈Sn

‖Lxfn − fn‖2 ≤ 1
n .

Let gn = |fn|2. Then gn ∈ L1(G), ‖gn‖1 = 1, and, for every x ∈ Sn, the Cauchy-Schwarz
inequality gives

‖Lxgn − gn‖1 ≤ ‖Lxfn − fn‖2‖Lxfn + fn‖2 ≤
2

n
.

For every n ≥ 1, we define a continuous linear functional Λn on L∞(G) by Λn(ϕ) =∑
x∈G gn(x)ϕ(x). Then ‖Λn‖op = ‖gn‖1 = 1, so, by the Banach-Alaoglu theorem, there is

a subsequence (Λnk
)k≥0 of (Λn)n≥1 that converges for teh weak* topology on Hom(L∞(G),C).

Let Λ be its limit. Let ϕ ∈ L∞(G). We have

Λ(ϕ) = lim
k→+∞

Λnk
(ϕ).

Let y ∈ G. There exists n ≥ 1 such that y−1 ∈ Sn. Then, if k is such that nk ≥ n, we
have

|Λnk
(Lyϕ)− Λnk

(ϕ)| = |
∑
x∈G

Ly−1gnk
(x)ϕ(x)−

∑
x∈G

gnk
(x)ϕ(x)|

≤ ‖Ly−1gnk
− gnk

‖1‖ϕ‖∞

≤ 2

nk
‖ϕ‖∞.

Taking the limit as k → +∞, we see that Λ(Lyϕ) = Λ(ϕ). As, note that Λ(1) = 1, and
that Λ(ϕ) ≥ 0 if ϕ takes nonnegative values.

Remember that every element of G can be written in a unique way as a reduced word in
a, b, a−1 and b−1. Let A be the set of elements of G whose reduced expression begins
with a nonzero power of a. The, for every x ∈ G, if x 6∈ A, we have a−1x ∈ A and then
x ∈ aA. In other words, G = A ∪ aA, so 11A + 11aA − 11G takes nonnegative values, hence

Λ(11A) =
1

2
(Λ(11A) + Λ(11aA)) ≥ 1

2
Λ(11G) =

1

2
.

On the other hand, the group G is the disjoint union of the subset bnA, n ∈ Z, so we have
in particular

1 = Λ(11G) ≥ Λ(11A) + Λ(11bA) + Λ(11b2A) = 3Λ(11A),

that is, Λ(11A) ≤ 1
3 . So we get a contradiction.

�
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11. (2) If π1, π2, π
′
1, π
′
2 are unitary representations of G such that π1 ≺ π′1 and π′2 ≺ π2, show

that π1 ⊗ π2 ≺ π′1 ⊗ π′2.

Solution. We use the same notation ϕv for functions of positive type as in the solution of
problem 5. For i = 1, 2, we denote by Vi (resp. V ′i ) the space of πi (resp. π′i).

If v1 ∈ V1 and v2 ∈ V2, then, by definition of the inner product on V1 ⊗C V2, we have
ϕv1⊗v2 = ϕv1ϕv2 . There is similar result for pure tensors in V ′1 ⊗C V

′
2 . So ϕv1⊗v2 is in

P(π′1 ⊗ π′2). As P(π′1 ⊗ π′2) is stable by finite sums, and as every element of V1 ⊗C V2 can
be written as a finite sum of an orthogonal family of pure tensors (see the proof of 1(a)),
this implies that ϕv ∈ P(π′1 ⊗ π′2) for every v ∈ V1 ⊗C V2. Finally, we have proved in 5(c)
that the map v 7→ ϕv is continuous, and V1⊗C V2 is dense in V1⊗̂CV2, so ϕv ∈ P(π′1 ⊗ π′2)
for every v ∈ V1⊗̂CV2.

�

12. Suppose that G is discrete. For every x ∈ G, we denote by δx ∈ L2(G) the characteristic
function of {x}.
Let (π, V ) be a unitary representation of G, and let (π0, V ) be the trivial representation
of G on V (i.e. π0(x) = idV for every x ∈ G).

a) (3) Show that the formula v ⊗ f 7→
∑

x∈G f(x)(π(x)−1(v))⊗ δx gives a well-defined
and continuous C-linear transformation from V ⊗̂CL

2(G) to itself.

b) (2) Show that the representations π⊗πL and π0⊗πL are equivalent (remember that
πL is the left regular representation of G).

Solution.

a) First, the map V × L2(G) → V ⊗C L
2(G), (v, f) 7→

∑
x∈G f(x)(π(x)−1(v)) ⊗ δx is

bilinear, so it defines a linear map α : V ⊗CL
2(G)→ V ⊗CL

2(G). For every v, v′ ∈ V
and f, f ′ ∈ L2(G), we have (observing that the family (vx⊗ δx)x∈G is orthogonal for
every family (vx)x∈G of elements of V )

〈α(v ⊗ f), α(v′ ⊗ f ′)〉 =
∑
x∈G

f(x)f ′(x)〈π(x)−1(v), π(x)−1(v′)〉

=
∑
x∈G

f(x)f ′(x)〈v, v′〉

= 〈v ⊗ f, v′ ⊗ f ′〉.

Using the fact that every element of V ⊗C L
2(G) can be written as a finite sum or

pairwise orthogonal pure tensors (see the proof of 1(a)), this implies that ‖α(v)‖ =
‖v‖ for every v ∈ V ⊗C L

2(G). In particular, α is continuous, so it extends to a
continuous endomorphism of V ⊗̂CL

2(G), which is still an isometry.

b) We still call α the endomorphism of V ⊗̂CL
2(G) constructed in (a). We show that it

is a G-equivariant map from π ⊗ πL to π0 ⊗ πL. As pure tensors generates a dense
subspace of V ⊗̂CL

2(G), it suffices to check the G-equivariance on them. So let v ∈ V
and f ∈ L2(G), and let x ∈ G. We have

α(π ⊗ πL(x)(v ⊗ f)) = α(π(x)(v)⊗ Lxf) =
∑
y∈G

f(x−1y)π(y−1x)(v)⊗ δy.
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On the other hand,

π0 ⊗ πL(x)(α(v ⊗ f)) = π0 ⊗ πL(x)

∑
y∈G

f(y)π(y)−1(v)⊗ δy


=
∑
y∈G

f(y)π(y)−1(v)⊗ Lxδy

=
∑
y∈G

f(y)π(y)−1(v)⊗ δxy

=
∑
y∈G

f(x−1z)π(z−1x)(v)⊗ δz

= α(π ⊗ πL(x)(v ⊗ f)).

We still need to check that α is an isomorphism of vector spaces. This follows from the
fact that is has an inverse β, given by the formula β(v⊗f) =

∑
x∈G f(x)π(x)(v)⊗δx.

(We can check as in (a) that β is well-defined and continuous, and then we can check
on pure tensors that it is the inverse of α, which is an easy verification.)

Note that the isomorphism betweem π ⊗ πL and π0 ⊗ πL is an isometry, so these
representations have the same functions of positive type.

�

13. (extra credit, 5) Generalize the result of 12(b) to non-discrete locally compact groups.

Solution. Let (π, V ) be a unitary representation of G. We write V0 for V with the trivial
action of G.

First we define a Hilbert space L2(G,V0) with a unitary action of G. (This is also often
denoted by IndG{1}V0.) Consider the space Cc(G,V0) of continuous functions with compact
support from G to V0, with the norm ‖.‖∞ defined by ‖f‖∞ = supx∈G ‖f(x)‖. We make
G act on this space by (x, f) 7→ Lxf , for x ∈ G and f ∈ Cc(G,V0). Looking at proposition
I.1.12 of the notes, we see that its proof generalizes to functions from G to V0 and show
that every element of Cc(G,V0) is left and right uniformly continuous. In particular, for
every f ∈ Cc(G,V0), the map G→ Cc(G,V0), x 7→ Lxf is continuous.

Now we define a Hermitian sesquilinear form on Cc(G,V0) by

〈f, g〉 =

∫
G
〈f(x), g(x)〉V0dx.

It is easy to see that this is an inner form, and that the action of G on Cc(G,V0) preserves
this inner form and is continuous in the first variable x ∈ G for the topology on Cc(G,V0)
defined by the associated norm. We denote by L2(G,V0) the completion of Cc(G,V0) for
〈., .〉. This is a Hilbert space, and we show as in the case V0 = C that the action of G on
Cc(G,V0) extends to a unitary action of G on L2(G,V0).

We now construct a G-equivariant isometry V ⊗̂CL
2(G) → L2(G,V0). Consider the map

V × Cc(G) → L2(G,V0) sending (v, f) to the function x 7→ f(x)π(x−1)(v). This is a
bilinear map, so it induces a C-linear operator α : V ⊗C Cc(G) → L2(G,V0). We check
that α is G-equivariant. It suffices to check it on pure tensors, because they generate
V ⊗C Cc(G). If y ∈ G, v ∈ V and f ∈ Cc(G), then, for every x ∈ G,

α(π(y)(v)⊗ Lyf)(y) = f(y−1x)π(xy−1v)

= Ly(α(v ⊗ f))(x).
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We also check that α preserves the inner forms. As before, by bilinearity, it suffices to
check it on pure tensors. Let v, w ∈ V and f, g ∈ Cc(G). Then

〈α(v ⊗ f), α(w ⊗ g)〉 =

∫
G
〈f(x)π(x)−1(v), g(x)π(x)−1(w)〉V0dx

=

∫
G
f(x)g(x)〈v, w〉V0dx

= 〈f, g〉L2(G)〈v, w〉V0 .

This implies that α is an isometry, hence that it extends by continuity to an isometry
V ⊗̂CL

2(G) → L2(G,V0) (we use the fact that Cc(G) is dense in L2(G)), which is still
G-equivariant.

We define a G-equivariant isometry α′ : V0⊗̂CL
2(G) → L2(G,V0) in a way similar to α,

but, for v ∈ V0 and f ∈ Cc(G), we take α′(v⊗ f) to be the function x 7→ f(x)v. The proof
that this does define the deisred G-equivariant isometry is the same as in the case of α.

Finally, we show that α and α′ are isomorphisms. We already know that they are injective
and have closed image because they are isometries, so we just need to show that they have
dense image.

Let (ei)i∈I be a Hilbert basis of V0. Consider the subspace W of L2(G,V0) whose elements
are continuous functions with compact support f : G → V0 such that there exists J ⊂ I
finite with f(G) ⊂ Span(ej , j ∈ J). Let’s show that W is dense in L2(G,V0). It suffices
to show that W is dense in Cc(G,V0). Let f ∈ Cc(G,V0). As f has compact support, the
subset f(G) of V0 is compact. Let ε > 0. For every x ∈ K, there exists a finite subset
J of I such that the closed ball centered at x and of radius ε intersects Span(ej , j ∈ J).
As K is compact, it can be covered by a finite number of these balls, so we can find
s finite subset J of I such that the distance between x and Span(ej , j ∈ J) is ≤ ε for
every x ∈ K. In other words, if πJ is the orthogonal projection on Span(ej , j ∈ J),
then ‖πJ(x) − x‖ ≤ ε for every x ∈ K. Then πJ ◦ f ∈ W , and ‖f − πJ ◦ f‖∞ ≤ ε, so
‖f −πJ ◦ f‖2 ≤ vol(supp f)ε. This shows that W is dense in Cc(G,V0) for both topologies
on Cc(G,V0) (the one induced by ‖.‖∞ and the one induced by ‖.‖2; only the second one
is relevant here). To finish, it suffices to show that W is contained in the images of α and
α′. Let f ∈ W . We can find a finite subset J of I such that f(G) ⊂ Span(ej , j ∈ J),
and then we have f(x) =

∑
j∈J fj(x)ej , with the fj in Cc(G). (Just take coordinates in

the orthonormal basis (ej)j∈J of Span(ej , j ∈ J)). In particular, f = α′(
∑

j∈J ej ⊗ fj), so
f ∈ Im(α′). This shows that α′ is an isomorphism.

For α, we consider instead the subspace W ′ of f ∈ Cc(G,V0) such that there exists J ⊂ I
finite such that, for every x ∈ G, the vector π(x)(f(x)) is in Span(ej , j ∈ J). We show
as before that W ′ is dense in Cc(G,V0) (for both ‖.‖∞ and ‖.‖2) : Let f ∈ Cc(G,V0) and
ε > 0. As f has compact support, the subset {π(x)(f(x)), x ∈ G} of V0 is compact, so we
can find a finite subset J of I such that, for every x ∈ G, the distance between π(x)(f(x))
and Span(ej , j ∈ J) is at most ε. Let πJ be the orthogonal projection on Span(ej , j ∈ J),
and define g ∈W ′ by g(x) = π(x)−1 ◦ πJ ◦ π(x)(f(x)). For every x ∈ G,

‖g(x)− f(x)‖ = ‖π(x)(g(x)− f(x))‖ = ‖πJ(π(x)(f(x)))− π(x)(f(x))‖ ≤ ε,

so ‖g − f‖∞ ≤ ε and ‖g − f‖2 ≤ vol(supp f)ε. Finally, we show that W ′ is contained
in the image of α. Let f ∈ W ′, and define g ∈ Cc(G,V0) by g(x) = π(x)(f(x)). Choose
a finite subset J of I such that g(G) ⊂ Span(ej , j ∈ J), and write g =

∑
j∈J gjej , with

gj ∈ Cc(G). Then, for every x ∈ G, we have

f(x) =
∑
j∈J

gj(x)π(x)−1(ej).
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In other words, we have f = α(
∑

j∈J ej ⊗ gj).
�

14. (2) Show that the following are equivalent :

(i) The trivial representation of G is weakly contained in πL.

(ii) Every unitary representation of G is weakly contained in πL.

Solution.

The fact that (ii) implies (i) is obvious. So let’s show that (i) implies (ii). Let (π, V ) be a
unitary representation of G, let π0 be the trivial representation of G on V , and let 11 be
the trivial representation of G on C. We know that 11 ≺ πL, so, by problems 11 and 12,
we have π ' π ⊗ 11 ≺ π ⊗ πL ' π0 ⊗ πL.

As in the solution of problem 5, for every unitary representation π′ of G, we denote by∑
P(π′) the set of finite sums of functions of positive type associated to π. Let’s show

that
∑
P(πL) =

∑
P(π0 ⊗ πL), which will finish the proof, because we already know that

P(π) ⊂
∑
P(π0 ⊗ πL).

As πL is a subrepresentation of π0⊗πL (for every v ∈ V −{0}, the subspace Cv⊗L2(G) of
V ⊗̂CL

2(G) is G-invariant and equivalent to the representation πL by the map v⊗f 7→ f),
we have P(πL) ⊂ P(π0 ⊗ πL), so

∑
P(πL) ⊂

∑
P(π0 ⊗ πL). Conversely, let (ei)i∈I be an

orthonormal basis of V , and let v ∈ V ⊗̂CL
2(G). Then we can write v =

∑
i∈I ei⊗fi, where

the sum converges in V ⊗̂CL
2(G) (i.e.

∑
i∈I ‖fi‖2 converges). Then, for every x ∈ G, we

have
〈π0 ⊗ πL(x)(v), v〉 =

∑
i∈I
〈Lxfi, fi〉L2(G),

so the function x 7→ 〈π0 ⊗ πL(x)(v), v〉 is in
∑
P(πL).

�
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