
MAT 449 : Problem Set 6

Due Sunday, October 28

If G is a group, we say that a representation (π, V ) of G is faithful if π : G → GL(V ) is
injective.

1. Let G = SU(2). The group G acts on C2 via the inclusion G ⊂ GL2(C), and we just
denote this action by (g, (z1, z2)) 7→ g(z1, z2). (This is called the standard representation
of G.)

For every integer n ≥ 1, let Vn be the space of polynomials P ∈ C[t1, t2] that are homo-
geneous of degree n (i.e. P (t1, t2) =

∑n
r=0 art

r
1t
n−r
2 , with a0, . . . , an ∈ C).

a) (3) If P ∈ Vn and g ∈ G, show that the function C2 → C, (z1, z2) 7→ P (g−1(z1, z2))
is still given by a polynomial in Vn, and that this defines a continuous representation
of G on Vn.

b) (3) Show that the representation Vn of G is irreducible for every n ≥ 0.

c) (2) For which values of n is the representation Vn faithful ?

Remark : We will see later that every irreducible unitary representation of SU(2) is
isomorphic to one of the Vn.

Solution.

a) First take P = tr1t
n−r
2 , with 0 ≤ r ≤ n. Let x =

(
a b
c d

)
∈ SU(2). As det(x) = 1,

we have x−1 =

(
d −b
−c a

)
. So

P (x−1(z1, z2)) = (dz1 − bz2)r(−cz1 + az2)n−r.

This is still a homogeneous polynomial of degree n in z1 and z2, let’s call it P ◦ x−1.
Also, it is clear on the formula above that the map G→ Vn, x 7→ P ◦x−1 is continuous
(which means that the coefficients of P ◦ x−1 are continuous functions of the entries
of the matrix x).

As the monomials tr1t
n−r
2 , 0 ≤ r ≤ n, generate Vn, the previous paragraph implies

that, for every P ∈ Vn and every x ∈ SU(2), the function C2 → C, (z1, z2) 7→
P (x−1(z1, z2)) is still given by an element of Vn, that we will denote by P ◦ x−1; it
also implies that the map G→ Vn, x 7→ P ◦ x−1 is continuous.

For every x ∈ G, the map Vn → Vn, P 7→ P ◦ x−1 is clearly C-linear in P . (In fact,
we have already used that fact.) We also have P ◦ (xy)−1 = (P ◦ y−1) ◦x−1 for every
P ∈ Vn and all x, y ∈ G. So it follows from proposition I.3.5.1 of the notes that
the map G × Vn → Vn, (x, P ) 7→ P ◦ x−1 is continuous, i.e. defines a continuous
representation of G on Vn.
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b) Let W be a G-invariant subspace of V . Let P =
∑n

r=0 crt
r
1t
n−r
2 ∈ W . We show

that, for every r ∈ {0, . . . , n} such that cr 6= 0, we have tr1t
n−r
2 ∈ W . We prove this

by induction on the number of nonzero coefficents of P . If P has 0 or 1 nonzero
coefficients, we are done. Suppose that P has at least 2 nonzero coefficients. Fix
r ∈ {0, . . . , n} such that cr 6= 0. It suffices to find another element Q of W such that
the coefficient of tr1t

n−r
2 is nonzero, and such that Q has fewer nonzero coefficients

than P ; then we can apply the induction hypothesis to Q. Pick s ∈ {0, . . . , n} − {r}

such that cs 6= 0. Consider xa =

(
a 0
0 a

)
, with a ∈ S1. Then xa ∈ SU(2), and

P ◦ x−1
a =

n∑
i=0

aian−icit
i
1t
n−i
2 =

n∑
i=0

an−2icit
i
1t
n−i
2 .

Choose a, a′ ∈ S1 such that an−2scs − (a′)n−2scs = 0 and an−2rcr − (a′)n−2rcr 6= 0.
Then Q := P ◦ x−1

a − P ◦ x−1
a′ ∈W − {0} has the desired properties.

Now suppose that W 6= 0. By the previous paragraph, we can find r ∈ {0, . . . , n}

such that P := tt1t
n−r
2 ∈ W . Let x =

(
a b

−b a

)
, with a, b ∈ C and |a|2 + |b|2 = 1.

Then x ∈ SU(2) and P ◦x−1 = (at1− bt2)r(bt1 +at2)n−r ∈W . If we write P ◦x−1 =∑n
i=0 cit

i
1t
n−i
2 , then

ci =

min(i,r)∑
j=max(0,i−n+r)

(−1)r−j
(
r

j

)(
n− r
i− j

)
ajan−r+j−ibr−jb

i−j
.

If we take a = 1√
1+t2

and b = t√
1+t2

with t ∈ [−1, 1], then each ci is the quotient of

a nonzero polynomial in t by (1 + t2)n/2, so there are only finitely many values of
t for which ci = 0. Hence we can choose x ∈ SU(2) such that P ◦ x−1 has all its
coefficients nonzero. By the first paragraph, this implies that every monomial ti1t

n−i
2 ,

0 ≤ i ≤ n, is in W . So W = Vn.

c) Let’s write πn for the map SU(2) → GL(Vn). If n = 0, then Vn is the trivial
representation of SU(2), so Ker(πn) = SU(2). Suppose that n ≥ 1, and let x =(
a b

−b a

)
∈ Ker(πn). In particular, if P = tn1 , we must have P ◦ x−1 = P . As

P ◦ x−1 =
∑n

i=0(−1)n−i
(
n
i

)
aibn−iti1t

n−i
2 , this implies that an = 1 and aibn−1 = 0 for

0 ≤ i ≤ n − 1. In particular, a 6= 0, so we must have b = 0. Then a ∈ S1, and, for
every r ∈ {0, . . . , n}, (tr1t

n−r
2 ) ◦ x−1 = an−2rtr1t

n−r
2 , hence an−2r = 1. If n is odd, this

implies that a = 1, so x = I2 is the only element of Ker(πn). If n is even, this only
implies that a = ±1, so x = ±I2. In fact, if n is even and nonzero, it is easy to check
that −I2 acts trivially on Vn, so Ker(πn) = {±I2}.
So to answer the question, the representation Vn is faithful if and only if n is odd.

�

2. Let (π, V ) be a finite-dimensional unitary representation of G := SL2(R). We want to
show that V is trivial (i.e. π(x) = idV for every x ∈ G).

a) (2) Consider the morphism of groups α : R→ G sending t ∈ R to the matrix

(
1 t
0 1

)
.

Show that there exist a basis B of V and y1, . . . , yn ∈ R, where n = dimV , such that,
for every t ∈ R, the endormophism π(α(t)) is diagonal in B with diagonal entries
eity1 , . . . , eityn .
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b) (3) Show that π(α(t)) = idV for every t ∈ R. (Hint : If u ∈ R× and x =

(
u 0
0 u−1

)
,

consider the action of xα(t)x−1 on V .)

c) (2) Show that π(x) = idV for every x ∈ G.

d) (2, extra credit) If n ≥ 3, show that every finite-dimensional unitary representation
of SLn(R) is trivial.

Solution.

a) The subgroup π(α(R)) of GL(V ) is commutative, and all its elements are diagonal-
izable (because they are all unitary), so we can find a basis B = (v1, . . . , vn) of V in
which all the elements of π(α(R)) are diagonal, and even an orthonormal basis if we
want. (If you don’t like simultaneously diagonalizing an infinite subset of GL(V ),
just choose A1, . . . , Am ∈ π(α(R)) that generate Span(π(α(R))) and simultanesouly
diagonalize them.)

For every j ∈ {1, . . . , n}, the subspace Cvj is stable by the action of α(R) ⊂ G (by
the choice of the basis), so we get a 1-dimensional representation of R on Cvj , and we
know by 5(b) of problem set 3 that such a representation is of the form t 7→ eityjvj ,
for a yj ∈ C.

b) We have xα(t)x−1 = α(u2t), so π(xα(t)x−1) is diagonal in the basis B with di-
agonal entries eiu

2ty1 , . . . , eiu
2tyn . On the other hand, we have Tr(π(xα(t)x−1)) =

Tr(π(x)π(α(t))π(x)−1) = Tr(π(α(t)), hence, for every t ∈ R and every u ∈ R×,

n∑
j=1

eityj =
n∑
j=1

eiu
2tyj .

Suppose that we know that the subset R̂ of L∞(R) is linearly independent. Then the
equality tells us that, for every u ∈ R×, the sets {y1, . . . , yn} and {u2y1, . . . , u

2yn}
are equal. This is only possible if y1 = . . . = yn = 0, which in turn implies that α(t)
acts trivially on V for every t ∈ R.

Now let’s show the statement about R̂. Let y1, . . . , ym ∈ R be pairwise distinct and
c1, . . . , cm ∈ C be such that

∑m
j=1 cje

ityj = 0 for every t ∈ R. We want to show that
c1 = . . . = cm = 0. Let r ∈ R. Taking t = 0, r, . . . , r(m−1), and using the calculation
of the Vandermonde determinant, we see that we must have eiry1 = . . . = eirym . As
this is true for every r ∈ R, it implies that y1 = . . . = ym (for example by taking the
derivative with respect to r of the previous equalities and then evaluating at r = 0).
So m = 1, and then the fact that c1e

ity1 = 0 for every t ∈ R implies that c1 = 0.

c) If x ∈ SL2(R) is a transvection (aka shear) matrix, then we have x = yα(t)y−1 for
some t ∈ R and some y ∈ SL2(R), so π(x) = π(y)π(α(t))π(y)1 = π(y)π(y)−1 = idV
by (b). As SL2(R) is generated by transvection matrices, this implies that π(x) = idV
for every x ∈ SL2(R).

d) Let π : SLn(R) → GL(V ) be a finite-dimensional unitary representation. Let
x ∈ SLn(R) be a transvection matrix. We could imitate (a) and (b) to prove that
π(x) = idV , but we can also do the following thing : Choose a basis (v1, . . . , vn)
of Rn in which the matrix of the linear endomrophism of Rn corresponding to x is

1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

0 . . . 0
. . . 0

0 . . . 1

. Consider the subset G of SLn(R) composed of the elements
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whose matrix in (v1, . . . , vn) is of the form


a b 0 . . . 0
c d 0 . . . 0
0 0 1 . . . 0

0 . . . 0
. . . 0

0 . . . 1

, with a, b, c, d ∈ R

and ad − bc = 1. Then G is a subgroup, and it is isomorphic to SL2(R). As π|G
is a unitary representation of G on V , we have G ⊂ Ker(π) by (c). In particular,
π(x) = idV .

Now we use the fact that SLn(R) is generated by transvections matrices to conclude
that π(x) = idV for every x ∈ SLn(R).

�

The preceding problem shows that SL2(R) has no faithful finite-dimensional unitary repre-
sentation. But at least SL2(R) has faithful continuous finite-dimensional representations, for
example the one given by the inclusion SL2(R) ⊂ GL2(C).

We can also ask if there exist locally compact groups that don’t have faithful irreducible
unitary representations at all. The answer is “yes”.

3. (3) Show that, if (π, V ) is an irreducible unitary representation of GLn(Zp), then there
exists m ≥ 1 such that π(In + pmMn(Zp)) = {1}.

Solution. By 4(m) of problem set 1, the group GLn(Zp) is compact. Hence, by problem
6 of problem set 5, the space V is finite-dimensional. Now the proof of the statement is
exactly as in 3(c) of problem set 3.

�

4. (extra credit, 3) More generally, show that, if G is a profinite group (i.e. a projective limit
of finite discrete groups, see problem 3 of problem set 1), then G has a faithful irreducible
unitary representation only if G is finite.

Solution. We know that G is compact Hausdorff by problem 3 of problem set 1 (note that finite
discrete groups are comact Hausdorff). So, by problem 6 of problem set 5, every irreducible
unitary representation of G is finite-dimensional.

Suppose that we know that G is totally disconnected. Let (π, V ) be a continuous finite-
dimensional representation of G. By 2(c) of problem set 3, the compact open subgroups of G
form a basis of neighborhoods of 1. By 3(b) of the same problem set, we can find a neighborhood
U of idv in GL(V ) such that the only subgroup of GL(V ) contained in U is {idV }. So, if we
choose a compact open subgroup K of G such that π(K) ⊂ U , we must have K ⊂ Ker(π). Hence
Ker(π) =

⋃
x∈Ker(π) xK is an open subgroup of G, and so the group G/Ker(π) is discrete. As

it is also compact, it is a finite group. This shows that G cannot have a faithful irreducible
unitary representation unless it is finite.

So it remains to show that G is totally disconnected, i.e. that the only nonempty connected
subsets of G are the singletons. Take a projective system ((Gi)i∈I , (uij : Gi → Gj)i≥j) of finite
groups such that G = lim←−i∈I Gi. Let C ⊂ G be a nonempty connected subset. Then the image of

G in each Gi is connected nonempty, hence a singleton {gi}. This implies that the only element
of C is the family (gi)i∈I ∈

∏
i∈I Gi (this family is automatically in the projective limit).
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Remark : It is not true that a finite group always has a faithful irreducible unitary repre-
sentation. For example, if G is a finite abelian group, then every irreducible unitary represen-
tation of G is 1-dimensional by Schur’s lemma. Take G = Z/2Z × Z/2Z, and let π : G → C
be a 1-dimensional representation. As (1.0) and (0, 1) are of order 2 in G, we must have
π(1, 0), π(0, 1) ∈ {±1}. If we want π to be faithful, we need to have π(1, 0) = π(0, 1) = −1,
but then π(1, 1) = (−1)2 = 1, so π cannot be faithful. (More generally, a finite abelian has a
faithful 1-dimensional representation if and only if it is cyclic.)

�

We will now see how to find discrete groups that have no faithful finite-dimensional represen-
tations at all, over any field.

Let Γ be a (discrete) group. We say that Γ is residually finite if, for every x ∈ Γ−{1}, there
exists a normal subgroup ∆ of Γ such that Γ/∆ is finite (we say that ∆ is of finite index in Γ)
and that the image of x in Γ/∆ is not trivial.

The goal of the following two problems is to prove that, if k is a field and Γ ⊂ GLn(k) is a
finitely generated subgroup, then Γ is residually finite. 1

5. Let R be a finitely generated Z-algebra that is also a domain. We fix an integer n ≥ 1.
For every ideal I of R, we set

Γ(I) = Ker(GLn(R)→ GLn(R/I)).

a) (3) Show that R is a field if and only if R is finite.

b) (2) If m is a maximal ideal of R, show that Γ(m) is a normal subgroup of finite index
in GLn(R).

c) (3) Show that the intersection of all the maximal ideals of R is 0. (Hint : We may
assume that R is not a field. If a ∈ R−{0}, show that the localization R[1/a] is not
a field, take a maximal ideal in R[1/a], and intersect it with R.)

d) (1) Show that GLn(R) is residually finite.

Solution.

a) It’s a classical fact that a finite integral domain has to be a field. Here is the proof.
Suppose that R is finite, and let a ∈ R−{0}. Then multiplication by a is an additive
map from R to itself, and its kernel is {0} (because R is an integral domain), so it
is injective; as R is finite, it is also surjective, which means that there exists b ∈ R
such that ab = 1, i.e. that a ∈ R×.

The converse follows from two classical results of commutative algebra (see for ex-
ample exercises 4.30 and 4.32 of Eisenbud’s Commutative algebra) :

- If K ⊂ L is a field extension such that L is finitely generated as a K-algebra,
then L is a finite-dimensional K-vector space (Zariski’s lemma).

- If R is a Noetherian ring, S is a finitely generated R-algebra and T ⊂ S is
a R-subalgebra such that S is a finite T -algebra (i.e. finitely generated as a
T -module), then T is a finitely generated R-algebra (Artin-Tate).

Indeed, if R is a field, consider its prime field k. Then R is a finitely generated
k-algebra, hence a finite dimension k-vector space by Zariski’s lemma, which implies
that k is a finitely generated Z-algebra by the second result. Note that k is either

1In fact, we can use similar ideas to show that, if char(k) = 0, such a Γ has to be virtually residually p-finite
(i.e. it has a finite index subgroup Γ′ such that, for every x ∈ Γ′ − {1}, there exists a finite index normal
subgroup ∆ 63 x of Γ′ such that Γ′/∆ is a p-group) for almost every prime number p, but the only proof I
know uses the Noether normalization theorem.
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Q or one of the finite fields Fp. But Q is not a finitely generated Z-algebra (if
x1, . . . , xn ∈ Q − {0}, and if P is the (finite) set of prime numbers that divide the
denominator of one of the xi, then the prime numbers dividing the denominator
of a nonzero element of the Z-subalgebra generated by x1, . . . , xn has to also be in
P, so this Z-subalgebra cannot be equal to Q). So k is a finite field; as R is a
finite-dimensional k-vector space, it is also a finite field.

For completeness, let’s give a proof of the part of the commutative algebra results
that we actually need. Suppose that we know the following :
(*) Let L/K be a field extension such that :

- there exists u ∈ L such that L = K(u) (i.e. L is generated by u as a field);

- L is a finitely generated Z-algebra,

the extension is finite and K is also a finitely generated Z-algebra.

Then we can prove in the same way that, if R is a field, it has to be finite. (Just
choose elements x1, . . . , xn ∈ R generating R over its prime field k and apply (*) to
the extensions k(x1, . . . , xi−1) ⊂ k(x1, . . . , xi) to show that k is a finitely generated
Z-algebra. The end of the proof is as before.)

We now prove (*). Let x1, . . . , xn ∈ L× generating L as a Z-algebra. Assume that
u is transcendental over K; then L is isomorphic to the field of rational fractions of
K. Write xi = Pi

Qi
, with Pi, Qi ∈ K[u]. As (1 +u

∏n
i=1Qi)

−1 = L = Z[a1, . . . , an], we
can write

(1 + u

n∏
i=1

Qi)
−1 =

R

Qd11 . . . Qdnn
,

with R ∈ K[u] coprime to all the Qi and d1, . . . , dn ∈ Z≥0. We get Qd11 . . . Qdnn =
R(1 + u

∏n
i=1Qi), which contradicts the fact that R is coprime to all the Qi. So u is

algebraic over K. Let Xd+a1X
d−1 + . . .+ad ∈ K[X] be the minimal polynomial of u

over K. For every i ∈ {1, . . . , n}, write xi =
∑d−1

j=0 biju
j , with bij ∈ K. Let A be the

Z-algebra of K generated by a1, . . . , ad and by the bij , and let’s show that A = K.
Let y ∈ K. Then y can be written as a polynomial in x1, . . . , xd with coefficients in
Z, so it is also a polynomial in u with coefficients in A, which can be taken of degree
≤ d − 1 (we can use the relation ud = −a1u

d−1 − . . . − ad to replace any terms of
degree ≥ d with terms of lower degree). In other words, we can write y =

∑d−1
i=0 ciu

i,
with c0, . . . , cd−1 ∈ A. As the family (1, u, . . . , ud−1) is linearly independent over K,
we must have c1 = . . . = cd−1 = 0 and y = c0 ∈ A.

b) First, the group Γ(I) is a normal subgroup of GLn(R) for any ideal, because it is
the kernel of a morphism of groups. Suppose that m is a maximal ideal. Then R/m
is a finite field by (a). As GLn(R)/Γ(m) injects into GLn(R/m), this implies that
Γ(m) has finite index in GLn(R).

c) If R is a field, then (0) is a maximal ideal of R and we are done. Suppose that R is
not a field; in particular, by (a), it is not finite. Let a ∈ R − {0}. The localization
R[1/a] := R[X]/(aX − 1) is a finitely generated Z-algebra because R is, so it can
only be a field if it is finite, by (a). But the obvious map R → R[1/a] is injective
because a is not a divisor of 0 (remember that R is an integral domain), and R is
infinite, so R[1/a] is also infinite, hence it is not a field. Let m′ be a maximal ideal
of R[1/a], and let m be its inverse image in R. Then the map R/m → R[1/a]/m′ is
injective (because R → R[1/a] is), and R[1/a]/m′ is finite because it is a field (by
(a)), so R/m is finite and an integral domain, so it is a field (by (a) again !), and m
is a maximal ideal of R. Note also that, as a is invertible in R[1/a], it cannot be in
m′, and so it cannot be in m. So we have found a maximal ideal of R that doesn’t
contain a.
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d) Let x = (xij)1≤i,j≤n ∈ GLn(R) such that x 6= In. Choose i, j ∈ {1, . . . , n} such that
xij 6= 0 and i 6= j, or such that xij 6= 1 and i = j. By (c), we can find a maximal
ideal m of R such that xij 6∈ m if i 6= j, and such that xij − 1 6∈ m if i = j. In other
words, the image of x in GLn(R)/Γ(m) is not the unit element. As Γ(m) is a normal
subgroup of GLn(R) of finite index by (b), we are done.

�

6. Let k be a field, and let Γ be a finitely generated subgroup of GLn(k).

a) (2) Show that there exists a finitely generated Z-subalgebra R of k such that Γ ⊂
GLn(R).

b) (1) Show that Γ is residually finite.

Solution.

a) Let γ1, . . . , γn be generators of Γ, and let R be the Z-subalgebra of k generated
by the entries of the γi and of their inverses; this is a finitely generated Z-algebra
by definition. As each element of Γ is a product of the elements γ±1

i , we have
Γ ⊂ GLn(R).

b) This follows immediately from 5(d) : If γ ∈ Γ − {1}, choose a normal subgroup of
finite index ∆ of GLn(R) such that the image of γ in GLn(R)/∆ is not trivial. Then
Γ ∩∆ is a normal subgroup of Γ, and Γ/(Γ ∩∆) injects into GLn(R)/∆, so Γ ∩∆
is of finite index in Γ and the image of γ in Γ/(Γ ∩∆) is not trivial.

�

Of course, the result of the previous problem would not be very interesting if we could not
give any example of a finitely generated non residually finite group. So let’s do that.

7. Let Γ be the quotient of the free group on the generators a and b by the relation a−1b2a =
b3. In this problem, we will assume that b1 := a−1ba and b do not commute in Γ, and
deduce that Γ is not residually finite.

Let u : Γ→ Γ′ be a morphism of groups, with Γ′ finite.

a) (2) Let n be the order of u(a) in Γ′. Show that the order of u(b) divides 3n − 2n.

b) (2) Show that there exists an integer N ≥ 0 such that u(b1) = u(b21)N . (Note that
the order of u(b) is prime to both 2 and 3.)

c) (1) Show that u(b1) and u(b) commute.

d) (1) Show that Γ is not residually finite.

Solution.

a) We first prove that, for every r ∈ Z≥0, we have b2
r

= arb3
r
a−r. The case r = 0 is

obvious, and the case r = 1 is the relation defining Γ. Let r ≥ 1, suppose the result
know for r, and let’s prove it for r + 1. We have

b2
r+1

= (b2)2r = (ab3a−1)2r = (ab2
r
a−1)3 = (ar+1b3

r
a−(r+1))3 = ar+1b3

r+1
a−(r+1).

Applying to r = n gives b2
n

= anb3
n
a−n, hence u(b)3n−2n = 1, so the order of u(b)

divides 3n − 2n.
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b) Note that the order of u(b) is odd, because it divides the odd number 3n − 2n. So
there exists N ≥ 1 such that u(b)2N = u(b). As b1 = a−1ba, we have br1 = a−1bra for
every r ≥ 0, so u(b1)2N = u(b1), as desired.

c) We have b21 = b3 by the relation defining, so u(b1) = u(b)3N by (b). This implies that
u(b) and u(b1) commute.

d) Let c = b−1
1 b−1b1b ∈ Γ. Then we have assumed that c 6= 1, but question (c) shows

that, for every normal subgroup of finite index ∆ of Γ, the image of c in Γ/∆ is
trivial. So Γ is not residually finite.

�

8. (extra credit) Let Γ be the quotient of the free group on the generators a and b by the
relation a−1b2a = b3. The goal of this problem is to show that b1 := a−1ba and b do not
commute in Γ, i.e. that b1bb

−1
1 b−1 is not trivial in Γ. 2

Let F be the free group on the generators a and b. Remember that elements of F are
reduced words in the letters a, a−1, b, b−1. (A reduced words is a word that contains no
redundant pair aa−1, a−1a, bb−1 or b−1b.) We write an element of F as an1bm1 . . . anrbmr ,
with n1,m1, . . . , nr,mr ∈ Z and m1, n2,m2, . . . , nr−1,mr−1, nr 6= 0.

Let Ω be the set of reduced words of the form br1as1 . . . brmasmbr, with :

(i) m ∈ Z≥0 and ri, si, r ∈ Z;

(ii) si 6= 0 for every i ∈ {1, . . . ,m};
(iii) ri 6= 0 for every i ∈ {2, . . . ,m};
(iv) for every i ∈ {1, . . . ,m}, if si > 0, then 0 ≤ ri ≤ 1;

(v) for every i ∈ {1, . . . ,m}, if si < 0, then 0 ≤ ri ≤ 2.

By definition of Γ, we have a surjective group morphism F → Γ, that we will denote by
ϕ.

a) (2) Show that ϕ(Ω) = Γ.

b) (1) For every w ∈ Ω and every s ∈ {a, a−1, b, b−1}, find a word w′ ∈ Ω such that
ϕ(w′) = ϕ(ws). We will denote this w′ by w · s in what follows.

c) (1) For every w ∈ Ω and every s ∈ {a, a−1, b, b−1}, show that (w · s) · s−1 = w.

d) (1) Show that (w, s) 7→ w · s extends to a right action of Γ on Ω.

e) (1) Show that ϕ induces a bijection Ω
∼→ Γ.

f) (1) Show that b1bb
−1
1 b−1 6= 1 in Γ.

Solution.

a) By definition of the free group, we can write every element w of F as a reduced
word br1as1 . . . brmasmbr satisfying conditions (i), (ii) and (iii). We define N(w) to
be the max of all si > 0 such that ri 6∈ {0, 1}; so if w satisfies condition (iv), we
have N(w) = 0. We define M(w) to be the max of all |si|, for si < 0 such that
ri 6∈ {0, 1, 2}; so if w satisfies condition (v), we have M(w) = 0. We prove by
induction on N(w) + M(w) that there exists w0 ∈ Ω such that ϕ(w) = ϕ(w0). If
N(w) + M(w) = 0, then w satisfies conditions (iv) and (v), so it is in Ω and the
conclusion is obvious.

2The easiest way to show this would to find a finite-dimensional representation of Γ on which b1bb
−1
1 b acts

non-trivially, but we can’t. Still, some variant of this idea will work.
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Suppose that N(w) + M(w) > 0. If N(w) > 0, choose i ∈ {1, . . . ,m} such that
si > 0 and ri 6∈ {0, 1}. Note that the relation defining Γ says that ϕ(b2a) = ϕ(ab3),
hence also that ϕ(b−2a) = ϕ(ab−3), which implies that ϕ(b2ka) = ϕ(ab3k) for every
k ∈ Z. Write ri = 2k + l with k ∈ Z and l ∈ {0, 1}, and let

w′ = br1as1 . . . bri−1asi−1blab3kasi−1bri+1asi+1 . . . brmasmbr.

Then ϕ(w) = ϕ(w′) by the observation above, and N(w′) < N(w), M(w′) = M(w).
Similarly, if M(w) > 0, choose i ∈ {1, . . . ,m} such that si < 0 and ri 6∈ {0, 1, 2}. For
k ∈ Z, the equality ϕ(b2ka) = ϕ(ab3k) can also be written ϕ(a−1b2k) = ϕ(b3ka−1).
Write ri = 3k + l with k ∈ Z and l ∈ {0, 1, 2}, and let

w′ = br1as1 . . . bri−1asi−1bla−1b2kasi+1bri+1asi+1 . . . brmasmbr.

Then ϕ(w) = ϕ(w′) by the observation above, and N(w′) = N(w), M(w′) < M(w).
As one of N(w) or M(w) has to be > 0, we can always find w′ ∈ F such that ϕ(w′) =
ϕ(w) and N(w′) +M(w′) < N(w) +M(w). Applying the induction hypothesis to w′

gives the result.

b) Let w = br1as1 . . . brmasmbr ∈ Ω; we assume that conditions (i)-(v) are satisfied. If
s = b (resp. s = b−1), then w′ = br1as1 . . . brmasmbr+1 (resp. w′ = br1as1 . . . brmasmbr−1)
works. If s = a, write r = 2k + l with k ∈ Z and l ∈ {0, 1} and take w′ =
br1as1 . . . brmasmblab3k. If s = a−1, write r = 3k + l with k ∈ Z and l ∈ {0, 1, 2} and
take w′ = br1as1 . . . brmasmbla−1b2k.

c) The conclusion is obvious if s ∈ {b, b−1}. Suppose that s = a and write r = 2k + l
with k ∈ Z and l ∈ {0, 1}. Then w · a = br1as1 . . . brmasmblab3k, so

(w · a) · a−1 = br1as1 . . . brmasmblaa−1b2k = w.

If s = a−1, write r = 3k + l with k ∈ Z and l ∈ {0, 1, 2}. Then w · a =
br1as1 . . . brmasmbla−1b2k, so

(w · a−1) · a = br1as1 . . . brmasmbla−1ab3k = w.

d) By (c), (w, s) 7→ w · s extends to a right action of F on Ω. To prove that this factors
through a right action of Γ on Ω, it suffices to show that b−3a−1b2a acts trivially. Let
w = br1as1 . . . brmasmbr ∈ Ω; we assume that conditions (i)-(v) are satisfied. Write
r = 3k + l, with k ∈ Z and l ∈ {0, 1, 2}. Then

w · b−3 = br1as1 . . . brmasmbr−3 = br1as1 . . . brmasmbl+3(k−1),

so
w · (b−3a−1) = br1as1 . . . brmasmbla−1b2(k−1),

hence
w · (b−3a−1b2) = br1as1 . . . brmasmbla−1b2k,

and finally

w · (b−3a−1b2a) = br1as1 . . . brmasmbla−1ab3k = br1as1 . . . brmasmbl+3k = w.

e) We already know that ϕ(Ω) = Γ by (a), so we just need to show that ϕ|Ω is injective.
By the explicit formulas for the action given in the proof of (b), if w ∈ Ω, then we
have 1·w = w. As 1·w only depends on ϕ(w) by (d), this shows that ϕ(w) determines
w.
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f) By (e), we just need to show that the unique preimage of ϕ(b1bb
−1
1 b−1) in Ω is not

trivial. We have seen in the proof of (a) an algorithm to transform a reduced word
into an element of Ω having the same image by ϕ. Applying it to b1bb

−1
1 b−1 =

a−1baba−1b−1ab−1, we get a−1baba−1bab−4 6= 1 (modulo easy-to-make mistakes), so
we are done.

�
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