
MAT 449 : Problem Set 5

Due Thursday, October 18

1. a) (2) Let V be a finite-dimensional C-vector space such that dimC(V ) ≥ 2. Show that
σ(End(V )) = ∅.

b) (2) Let V be an infinite-dimensional Hilbert space. Show that σ(End(V )) = ∅.

(Hint : Look at nilpotent endomorphisms.)

Solution.

a) We may assume that V = Cn, so that End(V ) = Mn(C). Let ϕ : Mn(C) → C be
a multiplicative linear functional. We want to prove that ϕ = 0. Let (Eij)1≤i,j≤n
be the canonical basis of Mn(C) (so Eij is the matrix with all entry 0, except for
a 1 at the (i, j)-entry). Then EijEkl is equal to 0 unless j = k, and EijEjl = Eil.
In particular, if i 6= j, then E2

ij = 0, hence 0 = ϕ(E2
ij) = ϕ(Eij)

2, and ϕ(Eij) = 0.
Also, for every i ∈ {1, . . . , n}, if we choose j such that j 6= i (this is possible because
n ≥ 2), then Eii = EijEji, so ϕ(Eii) = ϕ(Eij)ϕ)Eji) = 0. To sum up, we have shown
that ϕ is 0 on a basis of Mn(C), so ϕ = 0.

b) Let ϕ : End(V ) → C be a multiplicative linear functional. As in (a), as the key is
to note that, if T ∈ End(V ) is such that T 2 = 0, then we have ϕ(T )2 = 0, hence
ϕ(T ) = 0. Now choose two closed subspaces V1 and V2 such that V = V1⊕V2 and that
V1 and V2 are isomorphic. (This is possible because V is infinite-dimensional. For
example, choose a Hilbert basis (ei)i∈I of V . As I is infinite, we can find I1, I2 ⊂ I
such that I = I1 t I2 and that there exists a bijection between I1 and I2. Take
Vr =

⊕
i∈Ir Cei, for r = 1, 2.)

Choose isomorphisms U1 : V1
∼→ V2 and U2 : V2

∼→ V1. Let T1 ∈ End(V ) be defined
by T1(v + w) = U1(v) if v ∈ V1 and w ∈ V2, and T2 ∈ End(V ) be defined by
T2(v + w) = U2(w) if v ∈ V1 and w ∈ V2. Then T 2

1 = T 2
2 = 0, so ϕ(T1) = ϕ(T2) = 0,

and also ϕ(T1 + T2) = 0. But T := T1 + T2 is an automorphism of V , so, for every
T ′ ∈ End(V ), we have T ′ = T (T−1T ′), hence ϕ(T ′) = ϕ(T )ϕ(T−1T ′) = 0.

�

2. Let V be a finite-dimensional Hilbert space. The goal of this problem is to relate the
spectral theorem of the notes (theorem II.4.1) with the usual finite-dimensional spectral
theorem (which says that a normal endomorphism of V is diagonalizable in an orthonormal
basis).

Remember that, if R is a commutative ring, we say that x ∈ R is nilpotent if there exists
an integer n ≥ 1 such that xn = 0, and we say that R is reduced if the only nilpotent
element of R is 0.

a) (2) Show that the usual finite-dimensional spectral theorem (as stated above) implies
theorem II.4.1 for V .
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b) (2) Let T ∈ End(V ), and let A be the unital subalgebra of End(V ) generated by T
(i.e. the space of polynomials in T ). Show that T is diagonalizable if and only if A
is reduced.

c) (3) Let A be a commutative unital subalgebra of End(V ). If A is reduced, show that
there exist subspaces V1, . . . , Vr of V , uniquely determined up to ordering, such that
V =

⊕r
i=1 Vi and that

A = {T ∈ End(V )|∀i ∈ {1, . . . , r}, T (Vi) ⊂ Vi and T|Vi ∈ C · idVi}.

d) (2) Let A be as in question (c). Show that A is stable by the map T 7→ T ∗ if and
only the Vi are pairwise orthogonal.

e) (1) Show that theorem II.4.1 implies the usual finite-dimensional spectral theorem
(as stated above).

Solution.

a) Let T ∈ End(V ) be a normal endomorphism. By the finite-dimensional spectral
theorem, we can find an orthonormal basis (e1, . . . , en) of V and λ1, . . . , λn ∈ C such
that T (ei) = λiei for every i ∈ {1, . . . , n}. As the basis is orthonormal, we also
have T ∗(ei) = λiei for every i ∈ {1, . . . , n}. After rearranging the ei, we may also
assume that we have 1 ≤ n0 ≤ . . . ≤ nr = n + 1 such that λi = λj if there exists
s ∈ {0, . . . , r − 1} with ns ≤ i, j ≤ ns+1 − 1 and λi 6= λj otherwise.

In particular, we may assume that V = Cn and that T is the diagonal matrix with
diagonal entries λ1, . . . , λn, with the same conditions on the λi. I claim that AT is the
subalgebra of diagonal matrices in Mn(C) with diagonal entries x1, . . . , xn satisfying
: xi = xj if there exists s ∈ {0, . . . , r − 1} with ns ≤ i, j ≤ ns+1 − 1. First, this
does define a subalgebra of Mn(C). It is also clear that every matrix in AT is of this
form, because AT is generated (as an algebra) by In, T and T ∗, and all three of these
matrices satisfy the condition defining AT . Finally, let X ∈ AT , and let x1, . . . , xn be
its diagonal entries. By Lagrange interpolation, there exists a polynomial P ∈ C[t]
such that P (λns) = xns for s ∈ {0, . . . , r− 1}, and then P (T ) is the diagonal matrix
with entries x1, . . . , xn, i.e. X.

b) Let P ∈ C[t] be the minimal polynomial of T . Then C[t] → Mn(C), f(t) 7→ f(T )
is a morphism of C-algebra with image A and kernel the ideal generated by P ,
by definition of the minimal polynomial. So A ' C[t]/(P ). If we write P (t) =∏r
i=(t− ai)ni with a1, . . . , ar ∈ C pairwise distinct and n1, . . . , nr ≥ 1, then, by the

Chinese remainder theorem, A '
∏n
i=1C[t]/(t − ai)ni . So A is reduced if and only

if all the ni are equal to 1, i.e., if and only if P has only simple roots, which is
equivalent to the fact that T is diagonalizable.

c) if T ∈ A, then the unital subalgebra of End(V ) generated by T is contained in A, and
in particular it is reduced; by question (b), this implies that T is diagonalizable. As A
by a finite number of elements (because it is a finite-dimensional C-vector space), and
these are diagonalizable and commute with each other, we can find a basis (e1, . . . , en)
in which every element of A is diagonal. For i ∈ {1, . . . , n}, define ϕi : A → C by
T (ei) = ϕi(T )ei, for T ∈ A. Then ϕ1, . . . , ϕn are multiplicative functionals on A.
After reordering the ei, we may assume that we have 1 ≤ n0 ≤ . . . ≤ nr = n+ 1 such
that ϕi = ϕj if there exists s ∈ {0, . . . , r − 1} with ns ≤ i, j ≤ ns+1 − 1 and ϕi 6= ϕj
otherwise.

Note that all the ϕi are nonzero (because they send In to 1), so they are surjective.
I claim that ϕn0 , ϕn1 . . . , ϕnr−1 are linearly independent (as function A → C). This
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is a classical result, but let’s prove it quickly. Suppose that it is not true, and
choose a nontrivial relation of linear dependence

∑r−1
i=0 aiϕni = 0, with ai ∈ C,

such that the number of nonzero ai is minimal. There are at least two nonzero ai,
so, up to reordering, we may assume that a0, a1 6= 0. Choose x0 ∈ A such that
ϕn1(x0) 6= ϕn1(x0). Then, for every x ∈ A,

0 = ϕn0(x0)
r−1∑
i=0

aiϕni(x)−
r−1∑
i=0

aiϕni(x0x) =
r−1∑
i=1

ai(ϕn0(x0)− ϕni(x0))ϕni(x).

So
∑r−1

i=1 ai(ϕn0(x0)− ϕni(x0))ϕni = 0, with a1(ϕn1(x0)− ϕn1(x0)) 6= 0. So we have
another nontrivial relation of linear dependence among the ϕni , and it has fewer
nonzero coefficients than the first one, which is a contradiction.

Now that we know that ϕn0 , ϕn1 . . . , ϕnr−1 are linearly independent, we also know
that (ϕn0 , ϕn1 . . . , ϕnr−1) : A → Cr is surjective. For i ∈ {1, . . . , r}, let Vi =
Span(eni−1 , . . . , e−1+ni) ⊂ V . Then, if T is in A, T acts as a multiple of id on each
Vi, and the surjectivity of (ϕn0 , ϕn1 . . . , ϕnr−1) : A → Cr implies that the converse
is true. (If (a1, . . . , ar) ∈ Cr, choose T ∈ A such that ϕni = ai+1 for 0 ≤ i ≤ r − 1.
Then T acts on each Vi by multiplication by ϕni+1(T ) = ai).

Finally, let’s show that V1, . . . , Vr are uniquely determined. Let V = V ′1 ⊕ . . .⊕V ′s be
another decomposition satisfying the same property. Choose a1, . . . , ar ∈ C pairwise
distinct, and let T ∈ A such that T|Vi = aiidVi for every i. Then V1, . . . , Vr are the
eigenspaces of T , and T acts by a multiple of identity on each V ′j , so we must have
a partition I1, . . . , Is of {1, . . . , r} such that V ′j =

⊕
i∈Ij Vi for every j ∈ {1, . . . , s}.

But the roles of the Vi and the V ′j are symmetric, so we have a similar property
with Vi and V ′j exchanged. This implies that r = s and that V ′1 , . . . , V

′
r are equal to

V1, . . . , Vr up to reordering.

d) For i ∈ {1, . . . , r}, we define a linear endomorphism πi : V → V by πi(v1 . . .+vr) = vi
if vj ∈ Vj for j ∈ {1, . . . , r}. Then Im(πi) = Vi, Ker(πi) =

⊕
j 6=i Vj and π1+. . .+πr =

idV . Note that A is exactly the subalgebra {
∑r

i=1 λiπi, λ1, . . . , λr ∈ C} of End(T ).

If V1, . . . , Vr are pairwise orthogonal, then π1, . . . , πr are orthogonal projections, so
they are self-adjoint, and so A is stable by T 7→ T ∗.

Conversely, suppose that A is stable by T 7→ T ∗. If v ∈ V and w ∈ V ⊥1 , then

0 = 〈π1(v), w〉 = 〈v, π∗1(w)〉.

This implies that V ⊥1 ⊂ Ker(π∗1). As rank(π∗1) = rank(π1) = dim(V1), we actually
have Ker(π∗1) = V ⊥1 . But π∗1 ∈ A, so every eigenspace of π∗1 is a sum of Vi’s, so
there exists I ⊂ {1, . . . , r} such that Ker(π∗1) =

⊕
i∈I Vi. As V ⊥1 ∩ V1 = {0}, the

set I cannot contain 1. But then the only way that ker(π∗1) can have dimension
dim(V )− n1 is if I = {2, . . . , r}. Finally, we have shown that

V ⊥1 = Ker(π∗1) = V2 ⊕ . . .⊕ Vr.

Repeating this procedure with the other πi’s, we see that, for every i ∈ {a, . . . , r},

V ⊥i =
⊕
j 6=i

Vj .

e) Let T ∈ End(V ), and let Φ : C(σ(T ))
∼→ AT be as in theorem II.4.1. In particular,

AT is a commutative reduced subalgebra of End(V ) (because C(σ(T )) is reduced),
and it is stable by ∗ (by definition), so, by (c) and (d), we have a decomposition
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V = V1 ⊕ . . . ⊕ Vr of V into pairwise orthogonal subspaces such that every element
of AT preserves this decomposition and acts as a scalar on each Vi. If we choose an
orthonormal basis for each Vi and put these together, we’ll get an orthonormal basis
on V in which each element of AT is diagonal. Now just remember that T ∈ AT .

�

3. In this problem, you are not allowed to use any of the results from section II.3 and II.4.

Let X be a locally compact Hausdorff topological space. Let X be the Alexandroff com-
pactification of X. This means that X = X ∪ {∞}, and that the open sets of X are the
open subsets and the sets of the form (X −K)∪{∞}, where K is a compact subset of X.

a) (3) Show that X is a compact Hausdorff topological space, that X is open in X, and
that X is dense in X if and only if X is not compact.

b) (2) Show that C(X) is isomorphic to the Banach ∗-algebra that you get by adjoining
a unit to C0(X). (Don’t forget to compare the topologies.)

c) (2) If X is compact, show that every proper ideal of C(X) is contained in one of the
ideals mx = {f ∈ C(X)|f(x) = 0}, x ∈ X.

d) (3) In general, show that the map X → σ(C0(X)), x 7→ (ϕx : f 7→ f(x)) is a
homeomorphism.

Let A be a commutative Banach algebra. If I is an ideal of A, we set

V (I) = {x ∈ σ(A)|∀f ∈ A, f̂(x) = 0}.

If N is a subset of σ(A), we set

I(N) = {f ∈ A|∀x ∈ N, f̂(x) = 0}.

e) (extra credit, 3) Suppose that X is compact. Show that, for every closed ideal I of
C(X) and every closed subset N of σ(C(X)) ' X, we have

I(V (I)) = I and V (I(N)) = N.

(The result is still true without the assumption that X is compact (just use C0(X)
everywhere), I just didn’t want to type the proof.)

Solution.

a) First we show that the definition does give a topology on X. Let (Ui)i∈I be a family
of open subsets of X. Then we can write I = I ′ t I ′′, with Ui ⊂ X open and i ∈ I ′
and Ui = X −Ki with Ki compact if i ∈ I ′′. We have

⋃
i∈I

Ui =

(⋃
i∈I′

Ui

)
∪

(
X −

⋂
i∈I′′

Ki

)
.

If I ′′ is empty, this is an open subset of X, hence an open subset of X. Otherwise,
this is the complement on the compact subset

⋂
i∈I′′ Ki−

⋃
i∈I′ Ui of X, so it is again

an open subset of X. On the other hand, we have

⋂
i∈I

Ui =

(⋂
i∈I′

Ui

)
∩

(
X −

⋃
i∈I′′

Ki

)
.
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Suppose that I is finite. Then, if I ′′ = ∅, the set
⋂
i∈I Ui is the open subset

⋂
i∈I′ Ui

of X, hence it is an open subset of X. Otherwise, it is the complement of the compact
subset

⋃
i∈I′′ Ki −

⋂
i∈I′ Ui of X, hence it is again an open subset of X.

Let’s show that X is Hausdorff. Let x, y ∈ X such that x 6= y. We want to find
disjoint open neighborhoods of x and y. If x, y ∈ X, then there exists open subsets
U and V of X such that x ∈ U , y ∈ V and U ∩ V = ∅. These sets are still open
in X, so we are done. If one of x or y is ∞, we may assume that it is x. As X is
locally compact, we can find a compact subset K of X and an open subset V of X
such that y ∈ V ⊂ K. Then U := X −K is an open subset of X containing x =∞,
and we have U ∩ V = ∅.

Let’s show that X is compact. Let (Ui)i∈I be a family of open subsets of X such
that X =

⋃
i∈I Ui. Let i0 ∈ I be such that ∞ ∈ Ui0 , and write K = X − Ui0 . This

is a compact subset of X, and it is covered by the open subsets Ui ∩X, i ∈ I −{i0}.
So there exists a finite subset J of I−{i0} such that K ⊂

⋃
i∈J Ui, and then we have

X =
⋃
i∈J∪{i0} Ui.

The set X is open in X by definition of the topology of X.

Suppose that X is not compact. Then, if U is an open neighborhood of ∞ in X, the
compact subset X − U of X cannot be equal to X, which means that U ∩X 6= ∅.
So ∞ is in the closure of X in X. Conversely, suppose that X is compact. Then
{∞} = X −X is an open subset of X, so ∞ is an isolated point of X.

b) Let A be the Banach ∗-algebra that you get by adjoining a unit to C0(X). We have
A = C0(X)⊕Ce, with ‖f +λe‖ = ‖f‖∞+ |λ| and (f +λe)∗ = f +λe (for f ∈ C0(X)
and λ ∈ C).

Note that we can extend every f ∈ C0(X) to a continuous function f on X by setting
f(∞) = 0. (The condition that f is 0 at infinity exactly says that the extended
function is continuous, by definition of the topology on X.) This gives an injective
C-algebra map C0(X) → C(X). So we get a map α : A → C(X) sending f + λe to
f + λ, where the second “λ” is the constant function on X. This α is a morphism of
C-algebras by definition of the multiplication on A, and it is a ∗-homomorphism by
definition of ∗ on A. Also, α is bounded, because, if f ∈ C0(X) and λ ∈ C, we have

‖f + λ‖∞ ≤ ‖f‖∞ + |λ| = ‖f + λe‖.

Finally, note that α is surjective, because it has an inverse sending f ∈ C(X) to
(f|X − λ) + λe. By the open mapping theorem (also known as the Banach-Schauder
theorem), the inverse of α is also bounded, so α is a homeomorphism.

c) Let I be an ideal of C(X), and suppose that I is not contained in any mx. Then,
for every x ∈ X, we can find fx ∈ I such that fx(x) 6= 0; as fx is continuous, we
can also find an open neighborhood Ux of x such that fx(y) 6= 0 for every y ∈ Ux.
We have X =

⋃
x∈X Ux and X is compact, so there exist x1, . . . , xn ∈ X such that

X =
⋃n
i=1 Uxi . Let f =

∑n
i=1 |fxi |2 =

∑n
i=1 fxifxi . Then f ∈ I because I is an

ideal, and f doesn’t vanish on X; indeed, if x ∈ X, we can find i ∈ {1, . . . , x} such
that x ∈ Uxi , and then f(x) ≥ |fxi(x)|2 > 0. So the function g : x 7→ f(x)−1 exists
and is continuous on X, and we have gf = 1, which implies that 1 ∈ I, hence that
I = C(X).

d) Let’s call this map α. First we show that α is injective. If x, y ∈ X are such that
x 6= y, then there exists f ∈ C0(X) such that f(x) 6= f(y) (by Urysohn’s lemma), so
ϕx 6= ϕy.

Let’s show that α is surjective. Let ϕ : C0(X) → C be a multiplicative functional.
We can extend it to a multiplicative functional ϕ̃ on C0(X)e, and we have seen in
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(b) that C0(X)e is isomorphic to C(X). Let I = Ker(ϕ̃). This is a maximal ideal of
C(X), hence, by (c), there exists x ∈ X such that I ⊂ mx, and we must have I = mx

because I is maximal. Also, note that the isomorphism C0(X)e ' C(X) constructed
in (b) identities C0(X) to m∞. Hence, as ϕ is not 0 on C0(X),w e cannot have x =∞,
so x ∈ X, and we have Ker(ϕ) = {f ∈ C0(X)|f(x) = 0} = Ker(ϕx). As in the proof
of theorem II.2.10 of the notes, this easily implies that ϕ = ϕx.

The map α is continuous by definition of the topology on σ(C0(X)). If X is compact,
this implies that α is a homeomorphism. In general, the analogue of α for the
Alexandroff compactification X of X is a homeomorphism because X is compact,
and its restriction to X is α (if we identify C0(X) to a subalgebra of C(X) as in (b)),
so α is open, and we are done.

e) Note that, if N is a closed subset of X, then I(N) =
⋂
x∈N mx, so I(N) is an ideal

of C(X).

Let I be a closed ideal of C(X), and let N = N(I). For every x ∈ N and every f ∈ I,
we have f(x) = 0 by definition of N(I). So I ⊂

⋂
x∈N mx = I(N). Conversely, let

f ∈
⋂
x∈N mx; we want to show that f ∈ I. By assumption, f(x) = 0 for every x ∈ N ,

so supp(f) ∩N = ∅. For every y ∈ supp(f), choose fy ∈ I such that fy(y) 6= 0; as
fy is continuous, we can find an open subset Uy 3 y of X such that fy(z) 6= 0 for
every z ∈ Uy. We have supp(f) ⊂

⋃
y∈supp(f) Uy and supp(f) is compact, so we can

find y1, . . . , yn ∈ supp(f) such that supp(f) ⊂
⋃n
i=1 Uyi . Let g =

∑n
i=1 |fyi |2. Then

g ∈ I, and g(y) > 0 for every y ∈ supp(f). Define a function h : X → C by

h(x) =

{
f(x)g(x)−1 if x ∈ supp(f)
0 otherwise.

Let U = {x ∈ X|g(x) 6= 0} and V = X − supp(f). Then U and V are open subsets
of X and X = U ∪ V . On U , the function h is equal to fg−1, hence continuous; on
V , it is equal to 0, hence also continuous. So h ∈ C(X), and we have f = gh by
definition of h. As g ∈ I, this shows that f ∈ I, as desired.

Now let N be a closed subset of X, and let I = I(N). For every x ∈ N and every
f ∈ I, we have f(x) = 0 by definition of I(N), so N ⊂ V (I). Conversely, if x 6∈ N ,
then, by Urysohn’s lemma, we can find f ∈ C(X) such that f|N = 0 and f(x) 6= 0.
Then f ∈ I by definition of I(N), so x 6∈ V (I).

�

4. Consider the Banach ∗-algebra `1(Z) (i.e. L1(G) for the discrete group G = Z, with the
convolution product and the involution defined in class). We write elements of `1(Z) as
sequences a = (an)n∈Z in CZ.

a) (1) Show that `1(Z) is not a C∗-algebra.

b) (3) Show that there is a homeomorphism σ(`1(Z))
∼→ S1 such that the Gelfand

transform of a = (an)n∈Z is the function S1 → C, eiθ 7→
∑+∞

n=−∞ ane
inθ. 1

c) (extra credit, 3) More generally, if G is a commutative locally compact group,
show that the map Ĝ → σ(L1(G)) sending χ to the morphism L1(G) → C, f 7→∫
G f(x)χ(x)dx is a homeomorphism. (Hint : What is the dual of L1(G) ?)

Solution.

1This means that the Gelfand transform is a ∗-homomorphism, i.e. the Banach ∗-algebra L1(G) is symmetric,
even though it is not a C∗-algebra.
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a) Let a = (an)n∈Z. Then a∗ = (a−n)n∈Z (remember that Z is unimodular, because it
is commutative (or because it is discrete)). Let b = a∗ ∗ a. We have, for every n ∈ Z,

bn =
∑
m∈Z

a∗man−m =
∑
m∈Z

a−man−m.

Take a defined by a0 = i, a1 = 1, a2 = i and an = 0 for n ∈ Z − {0, 1, 2}. Then
a∗0 = −i, a∗−1 = 1, a∗2 = −i, and a∗n = 0 if n ∈ Z − {−2,−1, 0}. So bn = 0 if
n 6∈ {−2,−1, 0, 1, 2}, and we have

b−2 = a∗−2a0 = 1,

b−1 = a∗−1a0 + a∗−2a1 = i− i = 0,

b0 = a∗−2a2 + a∗−1a1 + a∗0a0 = 3,

b1 = a∗0a1 + a∗−1a2 = −i+ i = 0,

and
b2 = a∗0a2 = 1.

So |b|1 = 5 6= |a|21 = 9.

c) Let G be a commutative locally compact group. Let ϕ ∈ σ(L1(G)). We want to
show that ϕ comes from an element χ of Ĝ. As ϕ is a continuous linear functional on
L1(G), there exists χ ∈ L∞(G) such that ϕ(f) =

∫
G f(x)χ(x)dx for every f ∈ L1(G).

For every f, g ∈ L1(G), we have

ϕ(f)

∫
G
g(y)χ(y)dy = ϕ(f)ϕ(g)

= ϕ(g ∗ f)

=

∫
G×G

g(y)f(y−1x)χ(x)dxdy

=

∫
G
g(y)ϕ(Lyf)dy.

As this is true for every g ∈ L1(G), the functions ϕ(f)χ and y 7→ ϕ(Lyf) (both
in L∞(G) are equal almost everywhere. Hence, if we choose f ∈ L1(G) such that
ϕ(f) 6= 0, we can replace χ by y 7→ ϕ(f)−1ϕ(Lyf). As the functions ϕ : L1(G)→ C
and G → L1(G), y 7→ Lyf are continuous (the second by proposition I.3.1.13 in
the notes), this new χ is continuous. Also, we have ϕ(g)χ(y) = ϕ(Lyg) for every
g ∈ L1(G) and every y ∈ G.

Let x, y ∈ G. As Lxyf = Lx(Lyf), we have

ϕ(Lxyf) = χ(xy)ϕ(f)

= χ(x)ϕ(Lyf)

= χ(x)χ(y)ϕ(f),

so χ(xy) = χ(x)χ(y). So χ ∈ Ĝ, and we have shown that the map Ĝ→ σ(L1(G)) of
the problem is surjective. Note that this map is also injective, because a continuous
function on G is determined by the linear functional it defines on L1(G). Also, the
topology on σ(L1(G)) ⊂ L∞(G) is the weak* topology by definition, and we have seen
in problem 6(a) of problem set 3 that this coincides with the topology on compact
convergence on Ĝ, so the map Ĝ→ σ(L1(G)) is a homeomorphism.
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b) We know that Ẑ ' S1 by 5(d) of problem set 3, so we get a homeomorphism S1 =
Ẑ ∼→ σ(`1(Z)) by question c). Unpacking the formulas, we see that it sends z ∈ S1 to
the multiplicative functional a = (an)n∈Z 7→

∑
n∈Z anz

n on `1(Z), which is exactly
what we wanted.

�

5. (3) Let A be a unital C-algebra with an involutive anti-isomorphism ∗. Show that there
is at most one norm on A that makes A into a C∗-algebra.

Solution. Let ‖.‖ be a norm on A that makes A into a C∗-algebra. Let x ∈ A. Note that
(x∗x)∗ = x∗x, so x∗x is normal. By definition of a C∗-algebra and corollary II.3.9 of the
notes, we have

‖x‖ = ‖x∗x‖1/2 = ρ(x∗x)1/2.

But, by theorem II.1.1.13 of the notes,

ρ(x∗x) = max{|λ|, λ ∈ C, x∗x− λe 6∈ A×}.

This last quantity only depends on the algebra structure of A and on ∗, and it determines
‖x‖.

�

6. The goal of this problem it to prove I.3.2.13 of the notes, i.e. the fact that every irreducible
unitary representation of a compact group is finite-dimensional.

Let G be a compact group, let dx be the normalized Haar measure on G, and let (π, V )
be a nonzero unitary representation of G. Fix u ∈ V − {0}, and define T : V → V by

T (v) =

∫
G
〈v, π(x)(u)〉π(x)(u)dx.

a) (2) Show that T is well-defined and that T ∈ End(V ).

b) (1) Show that T is G-equivariant.

c) (1) Show that 〈T (v), v〉 ≥ 0 for every v ∈ V .

d) (1) Show that T 6= 0.

e) (2) Show that T is in the closure (for ‖.‖op) of {T ′ ∈ End(V )| dimC(Im(T ′)) < +∞};
in other words, T is in the closure of the space of endomorphisms of finite rank. (Hint
: G→ V , x 7→ π(x)(u) is uniformly continuous.)

f) (2) Let B be the closed unit ball in V . Show that T (B) is compact. (In other words,
the operator T is a compact operator. Problem 5 of PS4 can help shorten the proof.)

g) (1) If V is an irreducible representation of V , show that V is finite-dimensional.

Solution.

a) We must show that the integral defining T (v) converges for every v ∈ V . Let v ∈ V .
Then the function G → V , 〈v, π(x)(u)〉π(x)(u) is continuous (because x 7→ π(x)(u)
is continuous); as G is compact, the integral exists by problem 2 of problem set 4,
and moreover we have

‖T (v)‖ ≤
∫
G
|〈v, π(x)(u)〉|‖π(x)(u)‖dx ≤ ‖v‖‖u‖2.

The function T : V → V is C-linear (because addition and multiplication by a scalar
are continuous on V , so they commute with the integral by 1(b) of problem set 4),
and the inequality above shows that T is bounded and that ‖T‖op ≤ ‖u‖2.
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b) Let v ∈ V and x ∈ G.

T (π(x)(v)) =

∫
G
〈π(x)(v), π(y)(u)〉π(y)(u)dy

=

∫
G
〈v, π(x)∗π(y)(u)〉π(y)(u)dy

=

∫
G
〈v, π(x−1y)(u)〉π(y)(u)dy

=

∫
G
〈v, π(y)(u)〉π(x)π(y)(u)dy

(by left invariance of the Haar measure for the last equality). As π(x) : V → V is
continuous and linear, 1(b)1 of problem set 4 implies that the last line is equal to

π(x)

(∫
G
〈v, π(y)(u)〉π(y)(u)dy

)
= π(x)(T (v)),

which is what we wanted.

c) Let v ∈ V . As 〈v, .〉 is continuous and linear on V , we have

〈T (v), v〉 =

∫
G
〈π(x)(u), v〉〈v, π(x)(u)〉dx

=

∫
G
|〈v, π(x)(u)〉|2dx

≥ 0.

d) Take v = u. As 〈u, π(x)(u)〉 = ‖u‖2 > 0 and x 7→ 〈u, π(x)(u)〉 is a continuous
function from G to C, there exists ε > 0 and an open neighborhood U of 1 in G such
that |〈u, π(x)(u)〉|2 ≥ ε for x ∈ U . Then, by the calculation in the proof of (c), we
have

〈T (u), u〉 =

∫
G
|〈u, π(x)(u)〉|2dx ≥ εµ(U) > 0.

So T 6= 0.

e) Let ε > 0. As G is compact, the continuous function G → C, x 7→ π(x)(u) is
uniformly continuous, so there exists a neighborhood U of 1 such that, for x ∈ G
and y ∈ xU , we have ‖π(x)(u) − π(y)(u)‖ ≤ ε. As G is compact and the family
(xU)x∈G covers G, we can x1, . . . , xn ∈ G such that G =

⋃n
i=1 xiU . Choose Borel

subsets E1, . . . , En of X such that xi ∈ Ei ⊂ xiU for every i ∈ {1, . . . , n} and
X = E1 t . . . t En (as sets). If x ∈ Ei and v ∈ V , then we have

‖〈v, π(x)(u)〉π(x)(u)− 〈v, π(xi)(u)〉π(xi)(u)‖

≤ ‖〈v, (π(x)− π(xi))(u)〉π(x)(u)‖+ ‖〈v, π(xi)(u)〉(π(x)− π(xi)))(u)‖
≤ ‖v‖ε‖u‖+ ‖v‖‖u‖ε = 2ε‖v‖‖u‖.

Define U ∈ End(V ) by

T (v) =

n∑
i=1

µ(Ei)〈v, π(xi)(u)〉π(xi)(u) =

n∑
i=1

∫
Ei

〈v, π(xi)(u)〉π(xi)(u)dx.

This operator U has finite rank, because its image is contained Span(π(x1)(u), . . . , π(xn)(u)).
Also, by the calculation above (and problem 2 of problem set 4), for every v ∈ V , we
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have

‖T (v)− U(v)‖ ≤
n∑
i=1

∣∣∣∣∫
Ei

〈v, π(x)(u)〉π(x)(u)dx−
∫
Ei

〈v, π(xi)(u)〉π(xi)(u)dx

∣∣∣∣
≤

n∑
i=1

µ(Ei)2ε‖v‖‖u‖

= 2ε‖v‖‖u‖.

So ‖T − U‖op ≤ 2ε‖u‖. As ε > 0 was arbitrary, this shows that T is a limit of
operators of finite rank.

f) By 5(e) of problem set 4, it suffices to show that T (B) is totally bounded. Let U be
a neighborhoof of 0, which we may assume to be an open ball of radius ε > 0. We
must find x1, . . . , xn ∈ B such that every point of T (B) is at distance < ε from one
of the T (xi).

By (e), we know that T is a limit of operators of finite rank, so we can find U ∈
End(V ) of finite rank such that ‖T − U‖op ≤ ε/4. As U has finite rank, U(B) is
a closed bounded subset of the finite-dimensional space Im(U), so it is compact.
In particular, we can find x1, . . . , xn ∈ B such that, for every y ∈ B, there exists
i ∈ {1, . . . , n} such that ‖U(y)− U(xi)‖ < ε/2.

Now let y ∈ B, and choose i ∈ {1, . . . , n} such that ‖U(y)− U(xi)‖ < ε/2. Then

‖T (y)− T (xi)‖ ≤ ‖T (y)− U(y)‖+ ‖U(y)− U(xi)‖+ ‖U(xi)− T (xi)‖
< ‖y‖ε/4 + ε/2 + ‖xi‖ε/4
≤ ε.

(Remember that y, xi are in the closed unit ball of V .)

g) Now we put everything together. Suppose that V is an irreducible unitary represen-
tation of G. Then the operator T ∈ End(V ) that we constructed is G-equivariant,
so, by Schur’s lemma, there exists λ ∈ C such that T = λidV . As T 6= 0, λ 6= 0.
So T (λB) is the closed unit ball in V . Part (f) says that this is compact, which, by
Riesz’s lemma, implies that V is finite-dimensional.

�

7. (extra credit) Let A be a C∗-algebra. Then Ae is a Banach ∗-algebra, but it is not always
a C∗-algebra with the norm defined by ‖x + λe‖ = ‖x‖ + |λ. (See question 3(b) for an
example of this phenomenon.)

We define a new norm ‖.‖′ on Ae by :

‖x+ λe‖′ = sup{‖xy + λy‖, y ∈ A, ‖y‖ ≤ 1}.

We now suppose that A does not have a unit and that A 6= {0}.

a) (2) Show that ‖.‖′ is a submultiplicative norm on Ae.

b) (3) Show that ‖.‖′ agrees with ‖.‖ on A, that A is closed in Ae and that Ae is complete
for ‖.‖′.

c) (2) Show that Ae is a C∗-algebra for the norm ‖.‖′.

Solution.
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a) Let x1 = y1 + λ1e, x2 = y2 + λ2e be elements of Ae (y1, y2 ∈ A and λ1, λ2 ∈ C) and
c ∈ C. Then

‖x1 + x2‖′ = sup{‖y1y + λ1y + y2y + λ2y‖, y ∈ A, ‖y‖ = 1}
≤ sup{‖y1y + λ1y‖, y ∈ A, ‖y‖ ≤ 1}+ sup{‖y2y + λ2y‖, y ∈ A, ‖y‖ ≤ 1}
= ‖x1‖′ + ‖x2‖′,

‖cx1‖ = sup{‖cy1y + cλ1y‖, y ∈ A, ‖y‖ ≤ 1}
= |c| sup{‖y1y + λ1y‖, y ∈ A, ‖y‖ ≤ 1}
= |c|‖x1‖′,

and

‖x1x2‖′ = sup{‖(y1y2 + λ2y1 + λ1y2)y + λ1λ2y‖, y ∈ A, ‖y‖ = 1}
= sup{‖y1(y2y + λ2y) + λ1(y2y + λ2y)‖, y ∈ A, ‖y‖ = 1}
≤ sup{‖y1 + λ1e‖′‖y2y + λ2y‖, y ∈ A, ‖y‖ ≤ 1}
= ‖x1‖′‖x2‖′.

To show that ‖.‖′ is a norm on Ae, we still need to show that ‖x + λe‖′ 6= 0 if
x+ λe 6= 0. Suppose that ‖x+ λe‖′ = 0, then xy+ λy = 0 for every y ∈ A such that
‖y‖ = 1, hence for every y ∈ A. If x = 0, then λ = 0. If x 6= 0, then, taking y = x∗

(and noting that xx∗ 6= 0 because ‖xx∗‖ = ‖x∗‖2 6= 0), we see that λ 6= 0. Let, so
λ−1xy = y for every y ∈ A, i.e. λ−1x is a left unit for A. This implies that (λ−1y)∗

is a right unit for A, so A has a unit, contradicting our assumption. So x = 0.

b) If x ∈ A, then we have

‖x‖′ = sup{‖xy‖, y ∈ A, ‖y‖ = 1} ≤ ‖x‖.

If x = 0, then ‖x‖′ = ‖x‖ = 0. Otherwise, we also have x∗ 6= 0; taking y = 1
‖x∗‖x

∗,
we get

‖x‖′ ≥ 1

‖x∗‖
‖xx∗‖ = ‖x∗‖ = ‖x‖.

Hence A is complete for ‖.‖′, so it is closed in Ae. In particular, the quotient map
Ae → Ae/A ' C, x+ λe 7→ λ is continuous.

Now we show that Ae is complete for ‖.‖′. Let (xn + λne)n≥0 be a Cauchy sequence
in Ae, with xn ∈ A and λn ∈ C. By the previous paragraph, the sequence (λn)n≥0 is
Cauchy, so the sequence (xn)n≥0 in A is also Cauchy. As the two norms coincide on
A, the sequence (xn)n≥0 converges to some x ∈ A, and of course (λn)n≥0 converges
to some λ ∈ C. It is now clear (using the obvious fact that ‖z + µe‖′ ≤ ‖z‖+ |µ| for
z ∈ A and µ ∈ C) that the sequence (xn + λne)n≥0 converges to x+ λe in Ae.

c) Finally, we show that Ae is a C∗-algebra. Let x ∈ A and λ ∈ C. We want to show
that ‖(x+λe)∗(x+λe)‖′ = (‖x+λe‖′)2. We may assume that x+λe 6= 0. Let ε > 0.
Then we can find y ∈ A such that ‖y‖ = 1 and

‖xy + λy‖ ≥ ‖x+ λe‖′(1− ε).

Note that xy + λy = (x+ λe)y (in Ae). So

(1− ε)2(‖x+ λe‖′)2 ≤ ‖xy + λy‖2

= ‖(xy + λy)∗(xy + λy)‖
= ‖y∗(x+ λe)∗(x+ λe)y‖′

≤ ‖y‖2‖(x+ λe)∗(x+ λe)‖′

= ‖(x+ λe)∗(x+ λe)‖′.
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As this is true for every ε, we get

‖(x+ λe)∗(x+ λe)‖′ ≥ (‖x+ λe‖′)2.

Using the submultiplicativity of the norm, we deduce that

‖x+ λe‖′ ≤ ‖(x+ λe)∗‖′.

As ∗ is bijective on Ae, the last inequality is actually an equality, and so we also get

(‖x+ λe‖′)2 ≤ ‖(x+ λe)∗(x+ λe)‖′ ≤ (‖x+ λe‖′)2,

which finishes the proof.

�
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