MAT 449 : Problem Set 5

Due Thursday, October 18

1. a) (2) Let V be a finite-dimensional C-vector space such that dimc (V') > 2. Show that
o(End(V)) = @.

b) (2) Let V be an infinite-dimensional Hilbert space. Show that o(End(V)) = @.

(Hint : Look at nilpotent endomorphisms.)

Solution.

a) We may assume that V = C", so that End(V) = M, (C). Let ¢ : M, (C) — C be
a multiplicative linear functional. We want to prove that ¢ = 0. Let (Ejj)i<ij<n
be the canonical basis of M, (C) (so E;; is the matrix with all entry 0, except for
a 1 at the (4,j)-entry). Then E;;jE}; is equal to 0 unless j = k, and Ej;Ej = Ej.
In particular, if ¢ # j, then Efj = 0, hence 0 = @(EZQJ) = ¢(Eij)?, and ¢(E;;) = 0.
Also, for every i € {1,...,n}, if we choose j such that j # i (this is possible because
n > 2), then Ey; = E;;Ej;, so p(Eii) = ¢(Eij)e)Ej;) = 0. To sum up, we have shown
that ¢ is 0 on a basis of M, (C), so ¢ = 0.

b) Let ¢ : End(V) — C be a multiplicative linear functional. As in (a), as the key is
to note that, if T € End(V) is such that T2 = 0, then we have ¢(T)? = 0, hence
©(T) = 0. Now choose two closed subspaces V; and V5 such that V' = V3@V, and that
Vi and V3 are isomorphic. (This is possible because V is infinite-dimensional. For
example, choose a Hilbert basis (e;);er of V. As [ is infinite, we can find I}, Iy C I
such that I = I U I, and that there exists a bijection between Iy and I». Take
Vi = @i, Cey, for r =1,2.)

Choose isomorphisms Uy : Vi = Vo and Us : Vo = V4. Let T} € End(V) be defined
by Ti(v + w) = Ui(v) if v € V; and w € Vi, and T € End(V) be defined by
To(v +w) = Us(w) if v € V] and w € Va. Then T2 = T = 0, so p(T1) = o(T3) = 0,
and also (17 + T3) = 0. But T := T} + T3 is an automorphism of V, so, for every
T’ € End(V), we have T' = T(T~*T"), hence o(T") = o(T)p(T'T") = 0.

O

2. Let V be a finite-dimensional Hilbert space. The goal of this problem is to relate the
spectral theorem of the notes (theorem I1.4.1) with the usual finite-dimensional spectral
theorem (which says that a normal endomorphism of V' is diagonalizable in an orthonormal
basis).

Remember that, if R is a commutative ring, we say that = € R is nilpotent if there exists
an integer n > 1 such that ™ = 0, and we say that R is reduced if the only nilpotent
element of R is 0.

a) (2) Show that the usual finite-dimensional spectral theorem (as stated above) implies
theorem I1.4.1 for V.



b)

)

d)

e)

(2) Let T' € End(V), and let A be the unital subalgebra of End(V') generated by T'
(i.e. the space of polynomials in T"). Show that T is diagonalizable if and only if A
is reduced.

(3) Let A be a commutative unital subalgebra of End(V'). If A is reduced, show that
there exist subspaces Vi,...,V, of V, uniquely determined up to ordering, such that
V =@;_, Vi and that

A={T e End(V)|Vi € {1,...,7}, T(V;) C V; and T}y, € C-idy;}.

(2) Let A be as in question (c). Show that A is stable by the map 7 +— T if and
only the V; are pairwise orthogonal.

(1) Show that theorem II.4.1 implies the usual finite-dimensional spectral theorem
(as stated above).

Solution.

a)

Let T' € End(V) be a normal endomorphism. By the finite-dimensional spectral
theorem, we can find an orthonormal basis (e1,...,e,) of V and Ay,..., )\, € C such
that T'(e;) = Aje; for every ¢ € {1,...,n}. As the basis is orthonormal, we also
have T*(e;) = \je; for every i € {1,...,n}. After rearranging the e;, we may also
assume that we have 1 < ng < ... < n, = n+ 1 such that \; = \; if there exists
s €{0,...,r =1} with ng <i,j <ngpp — 1 and \; # Aj otherwise.

In particular, we may assume that V = C™ and that T is the diagonal matrix with
diagonal entries Ay, ..., A,, with the same conditions on the A;. I claim that Ay is the
subalgebra of diagonal matrices in M,,(C) with diagonal entries x1, ..., z, satisfying
. x; = x; if there exists s € {0,...,r — 1} with ny < 4,j < ngpy1 — 1. First, this
does define a subalgebra of M, (C). It is also clear that every matrix in Az is of this
form, because A is generated (as an algebra) by I,,, T and 7%, and all three of these
matrices satisfy the condition defining Ap. Finally, let X € A7, and let x1,...,x, be
its diagonal entries. By Lagrange interpolation, there exists a polynomial P € C[t]
such that P(\,,) =z, for s € {0,...,r — 1}, and then P(T) is the diagonal matrix
with entries z1,...,z,, i.e. X.

Let P € CJt] be the minimal polynomial of T. Then C[t] — M,(C), f(t) — f(T)
is a morphism of C-algebra with image A and kernel the ideal generated by P,
by definition of the minimal polynomial. So A ~ CJt]/(P). If we write P(t) =
[T;_(t —a;)™ with ay,...,a, € C pairwise distinct and ny,...,n, > 1, then, by the
Chinese remainder theorem, A ~ [ | C[t]/(t — a;)™. So A is reduced if and only
if all the n; are equal to 1, i.e., if and only if P has only simple roots, which is

equivalent to the fact that 1" is diagonalizable.

if T € A, then the unital subalgebra of End(V") generated by T is contained in A, and
in particular it is reduced; by question (b), this implies that 7" is diagonalizable. As A
by a finite number of elements (because it is a finite-dimensional C-vector space), and
these are diagonalizable and commute with each other, we can find a basis (eq, ..., e,)
in which every element of A is diagonal. For i € {1,...,n}, define ¢; : A — C by
T(e;) = wi(T)ei, for T € A. Then ¢4, ..., p, are multiplicative functionals on A.
After reordering the e;, we may assume that we have 1 <ng <...<n, =n+1such
that ¢; = @; if there exists s € {0,...,r — 1} with ny <4,j <ng1 — 1 and ¢; # @;
otherwise.

Note that all the ¢; are nonzero (because they send I,, to 1), so they are surjective.
I claim that ¢n,, ©n, ..., @n,_, are linearly independent (as function A — C). This



is a classical result, but let’s prove it quickly. Suppose that it is not true, and
choose a nontrivial relation of linear dependence Z;:_& aion, = 0, with a; € C,
such that the number of nonzero a; is minimal. There are at least two nonzero a;,
so, up to reordering, we may assume that ag,a; # 0. Choose xg € A such that
©n, (20) # ©n,y(z0). Then, for every x € A,

r—1 r—1 r—1
0= Png (‘TO) Zaz@m (x) - Zai(pni (:on) = Zai(QOHU (xo) — Pny (xo))spni (x)
=0 =0 =1

So Z::_ll ai(cpno (330) — Pny (xo))gom =0, with al(@nl (1‘0) - Pny ($0)) 7& 0. So we have
another nontrivial relation of linear dependence among the ¢,,, and it has fewer
nonzero coefficients than the first one, which is a contradiction.

Now that we know that ¢n,,¢n, ..., ¥n,_, are linearly independent, we also know
that (©ng,s@ny ---s¢n,. ) : A — C" is surjective. For i € {1,...,7}, let V; =
Span(epn, ,,...,€—14n;) C V. Then, if T'is in A, T acts as a multiple of id on each

Vi, and the surjectivity of (¢ng, ¢n, --->¥n,_,) : A — C" implies that the converse
is true. (If (a1,...,a,) € C", choose T' € A such that ¢,, = a;+1 for 0 < i <r —1.
Then T acts on each V; by multiplication by ¢n,., (T) = a;).

Finally, let’s show that Vi, ..., V, are uniquely determined. Let V =V/®...® V! be
another decomposition satisfying the same property. Choose aq,...,a, € C pairwise
distinct, and let T" € A such that T}y, = a;idy; for every i. Then Vi,...,V, are the
eigenspaces of T', and T' acts by a multiple of identity on each Vj’ , so we must have
a partition I1,...,Is of {1,...,r} such that V; = EBiE]j V; for every j € {1,...,s}.
But the roles of the V; and the Vj’ are symmetric, so we have a similar property
with V; and V] exchanged. This implies that r = s and that V{, ...,V are equal to
Vi,...,V, up to reordering.

Fori € {1,...,7}, we define a linear endomorphism 7; : V.— V by m;(v1 ... +v,) = v;
ifv; € Vjforj e {l,...,r}. ThenIm(m) =V, Ker(m) = P, ,; V; and mi+...+m =
idy. Note that A is exactly the subalgebra {>". | A\imi, A1,..., A, € C} of End(T).
If Vi,...,V,. are pairwise orthogonal, then 71, ..., are orthogonal projections, so
they are self-adjoint, and so A is stable by T — T™.

Conversely, suppose that A is stable by T+ T*. If v € V and w € V-, then

0 = (m(v), w) = (v, 7 (w)).

This implies that Vi~ C Ker(n). As rank(n?) = rank(m) = dim(V;), we actually
have Ker(n¥) = Vi-. But 7} € A, so every eigenspace of 7} is a sum of V;’s, so
there exists I C {1,...,r} such that Ker(r}) = @,;c; Vi- As V- n Vi = {0}, the
set I cannot contain 1. But then the only way that ker(n]) can have dimension
dim(V) —nq is if I = {2,...,r}. Finally, we have shown that

Vii=Ker(n)) =Vad...aV,.

Repeating this procedure with the other 7;’s, we see that, for every i € {a,...,r},
Vi =
J#

Let T € End(V), and let ® : C(o(T)) = Ar be as in theorem I1.4.1. In particular,
Ar is a commutative reduced subalgebra of End(V') (because C(o(T')) is reduced),
and it is stable by * (by definition), so, by (c¢) and (d), we have a decomposition



V=Vi&...0V, of V into pairwise orthogonal subspaces such that every element
of Ar preserves this decomposition and acts as a scalar on each V;. If we choose an
orthonormal basis for each V; and put these together, we’ll get an orthonormal basis
on V in which each element of A is diagonal. Now just remember that T' € Ap.

0

3. In this problem, you are not allowed to use any of the results from section 11.3 and II.4.

Let X be a locally compact Hausdorﬂi topological space. Let X be the Alexanclloﬁ com-
pactification of X. This means that X = X U {oc}, and that the open sets of X are the
open subsets and the sets of the form (X — K) U{oco}, where K is a compact subset of X.

a) (3) Show that X is a compact Hausdorff topological space, that X is open in X, and
that X is dense in X if and only if X is not compact.

b) (2) Show that C(X) is isomorphic to the Banach x-algebra that you get by adjoining
a unit to Co(X). (Don’t forget to compare the topologies.)

c) (2) If X is compact, show that every proper ideal of C(X) is contained in one of the
ideals my = {f € C(X)|f(z) =0}, z € X.
d) (3) In general, show that the map X — o(Co(X)), v — (pz : f — f(z)) is a

homeomorphism.

Let A be a commutative Banach algebra. If I is an ideal of A, we set

~

V(I)={zeo(A)NSf €A f(x)=0}

If N is a subset of o(A), we set

~

I(N)={f € AVz € N, f(z) = 0}.

e) (extra credit, 3) Suppose that X is compact. Show that, for every closed ideal I of
C(X) and every closed subset N of 0(C(X)) ~ X, we have

I(V(I)) = I and V(I(N)) = N.

(The result is still true without the assumption that X is compact (just use Co(X)
everywhere), I just didn’t want to type the proof.)

Solution.

a) First we show that the definition does give a topology on X. Let (U;)ics be a family
of open subsets of X. Then we can write I = I' U I”, with U; C X open and i € I’
and U; = X — K; with K; compact if 7 € I”. We have

If I" is empty, this is an open subset of X, hence an open subset of X. Otherwise,
this is the complement on the compact subset (;c;» K; — ;e Us of X, so it is again
an open subset of X. On the other hand, we have

M- (mUi) " (X_ U K>

el iel’ el



Suppose that I is finite. Then, if I” = @, the set (,c; U; is the open subset ;. U;
of X, hence it is an open subset of X. Otherwise, it is the complement of the compact
subset ;e Ki — (;ep Ui of X, hence it is again an open subset of X.

Let’s show that X is Hausdorff. Let z, € X such that z # y. We want to find
disjoint open neighborhoods of z and y. If z,y € X, then there exists open subsets
U and V of X such that x € U, y € V and U NV = &. These sets are still open
in X, so we are done. If one of = or y is co, we may assume that it is . As X is
locally compact, we can find a compact subset K of X and an open subset V' of X
such that y € V C K. Then U := X — K is an open subset of X containing z = oo,
and we have U NV = @.

Let’s show that X is compact. Let (U;);e; be a family of open subsets of X such
that X = (J;c; Ui. Let ig € I be such that co € Us,y, and write K = X — U;,. This
is a compact subset of X, and it is covered by the open subsets U;N X, i € I — {ig}.

So there exists a finite subset J of I —{io} such that K C (J;c; Ui, and then we have
X = UiGJU{io} Ui.
The set X is open in X by definition of the topology of X.

Suppose that X is not compact. Then, if U is an open neighborhood of oo in X, the
compact subset X — U of X cannot be equal to X, which means that U N X # @.
So oo is in the closure of X in X. Conversely, suppose that X is compact. Then
{00} = X — X is an open subset of X, so 0o is an isolated point of X.

Let A be the Banach x-algebra that you get by adjoining a unit to. Co(X). We have
A =Co(X)®Ce, with ||f+ Xe|| = || flloo + |A| and (f + Ae)* = f+ Xe (for f € Co(X)
and \ € C).

Note that we can extend every f € Co(X) to a continuous function f on X by setting
f(00) = 0. (The condition that f is 0 at infinity exactly says that the extended
function is continuous, by definition of the topology on X.) This gives an injective
C-algebra map Co(X) — C(X). So we get a map a : A — C(X) sending f + e to
f 4 A, where the second “)\” is the constant function on X. This « is a morphism of
C-algebras by definition of the multiplication on A, and it is a *-homomorphism by
definition of * on A. Also, « is bounded, because, if f € Cyp(X) and A € C, we have

1f + Alloe < [[flloc 4 [Al = ILf + Ae]l.

Finally, note that « is surjective, because it has an inverse sending f € C(X) to
(fix —A) + Ae. By the open mapping theorem (also known as the Banach-Schauder
theorem), the inverse of « is also bounded, so « is a homeomorphism.

Let I be an ideal of C(X), and suppose that I is not contained in any m,. Then,
for every x € X, we can find f, € I such that f,(z) # 0; as f, is continuous, we
can also find an open neighborhood U, of x such that f;(y) # 0 for every y € U,.
We have X = (J,cy U, and X is compact, so there exist x1,...,2, € X such that
X =UL Uy Let f =50 |fol> =20 fo.fz;- Then f € I because I is an
ideal, and f doesn’t vanish on X; indeed, if x € X, we can find i € {1,...,2} such
that = € Uy,, and then f(z) > |fs, (z)]?> > 0. So the function g : x +— f(x)~! exists
and is continuous on X, and we have gf = 1, which implies that 1 € I, hence that
I=C(X).

Let’s call this map a. First we show that « is injective. If x,y € X are such that
x # y, then there exists f € Co(X) such that f(x) # f(y) (by Urysohn’s lemma), so

P 7 Py-
Let’s show that « is surjective. Let ¢ : Co(X) — C be a multiplicative functional.
We can extend it to a multiplicative functional ¢ on Cy(X)e, and we have seen in



(b) that Co(X)e is isomorphic to C(X). Let I = Ker(g). This is a maximal ideal of
C(X), hence, by (c), there exists z € X such that I C m,, and we must have I = m,,
because I is maximal. Also, note that the isomorphism Cy(X). ~ C(X) constructed
in (b) identities Cyp(X) to ms. Hence, as ¢ is not 0 on Co(X),w e cannot have x = oo,
so z € X, and we have Ker(p) = {f € Co(X)|f(z) = 0} = Ker(¢z). As in the proof

of theorem I1.2.10 of the notes, this easily implies that ¢ = ;.

The map « is continuous by definition of the topology on o(Cy(X)). If X is compact,
this implies that « is a homeomorphism. In general, the analogue of a for the
Alexandroff compactification X of X is a homeomorphism because X is compact,
and its restriction to X is a (if we identify Co(X) to a subalgebra of C(X) as in (b)),
so « is open, and we are done.

e) Note that, if IV is a closed subset of X, then I(N) = [,y Mz, so I(NN) is an ideal
of C(X).
Let I be a closed ideal of C(X), and let N = N (). For every x € N and every f € I,
we have f(x) = 0 by definition of N(I). So I C (\,cymz = I(N). Conversely, let
[ € Nyen Ma; we want to show that f € I. By assumption, f(z) = 0 for every x € N,
so supp(f) NN = @. For every y € supp(f), choose f, € I such that f,(y) # 0; as
fy is continuous, we can find an open subset U, > y of X such that f,(z) # 0 for
every z € U,. We have supp(f) C Uyesupp(f) U, and supp(f) is compact, so we can

find y1,...,yn € supp(f) such that supp(f) C U, Uy,. Let g = > | |fy:|?. Then
g € 1, and g(y) > 0 for every y € supp(f). Define a function h : X — C by

hx) :{ f(x)g(x)~" if z € supp(f)

0 otherwise.

Let U = {z € X|g(z) # 0} and V = X — supp(f). Then U and V are open subsets
of X and X = U UV. On U, the function h is equal to fg~!, hence continuous; on
V, it is equal to 0, hence also continuous. So h € C(X), and we have f = gh by
definition of h. As g € I, this shows that f € I, as desired.

Now let N be a closed subset of X, and let I = I(N). For every x € N and every
f € I, we have f(x) = 0 by definition of I(N), so N C V(I). Conversely, if x ¢ N,
then, by Urysohn’s lemma, we can find f € C(X) such that fjy = 0 and f(x) # 0.
Then f € I by definition of I(N), so = ¢ V(I).

0

4. Consider the Banach x-algebra ¢1(Z) (i.e. L'(G) for the discrete group G = Z, with the
convolution product and the involution defined in class). We write elements of ¢}(Z) as
sequences a = (ay)nez in CZ.

a) (1) Show that £*(Z) is not a C*-algebra.

b) (3) Show that there is a homeomorphism o(¢*(Z)) = S' such that the Gelfand

transform of a = (an)nez is the function S — C, e s 377 q,em0. 1

c) (extra credit, 3) More generally, if G' is a commutative locally compact group,
show that the map G — o(L'(G)) sending x to the morphism L'(G) — C, f
Jo f(@)x(z)dx is a homeomorphism. (Hint : What is the dual of L!(G) ?)

Solution.

!This means that the Gelfand transform is a *-homomorphism, i.e. the Banach *-algebra L*(G) is symmetric,
even though it is not a C*-algebra.



2)

Let a = (ap)nez. Then a* = (G_yp)nez (remember that Z is unimodular, because it
is commutative (or because it is discrete)). Let b = a* x a. We have, for every n € Z,

* —
b, = E ay,Cp—m = E A—On—mm.-

meZ mEZ

Take a defined by ap = i, a1 = 1, a2 = ¢ and a,, = 0 for n € Z — {0,1,2}. Then
ay = —i, a*; =1, a5 = —i,and a, = 0ifn € Z—- {-2,-1,0}. So b, = 0 if
n¢{-2,—1,0,1,2}, and we have

b_o =a’ya9 =1,

b_1=a"jap+a’sa1 =i —1=0,
by = a’ya2 + a’ a1 + agap = 3,
by =aga; +a’ja2 =—i+i=0,
and
by = agaz = 1.
So |bl1 =5 # |al? = 9.
Let G be a commutative locally compact group. Let ¢ € o(LY(G)). We want to

show that ¢ comes from an element x of G. As ¢ is a continuous linear functional on
LY(@G), there exists x € L>(G) such that ¢(f) = [, f(z)x(z)dx for every f € LY(G).

For every f,g € L'(G), we have

o(f) /G dXW)dy = o(Folg)
=(g*f)
- / o(0) f (v~ 2)x () dedy
GxG

= / 9(y)e(Lyf)dy.
G

As this is true for every g € LY(G), the functions o(f)x and y — ¢(Lyf) (both
in L>°(G) are equal almost everywhere. Hence, if we choose f € L'(G) such that
©(f) # 0, we can replace x by y — ¢(f)Lp(Lyf). As the functions ¢ : L}(G) — C
and G — LY(G), y — Ly,f are continuous (the second by proposition 1.3.1.13 in
the notes), this new x is continuous. Also, we have ¢(g)x(y) = ¢(Lyg) for every
g € LY(G) and every y € G.

Let z,y € G. As Lyyf = Ly(Lyf), we have

so x(zy) = x(2)x(y). So x € G, and we have shown that the map G — o(L(G)) of
the problem is surjective. Note that this map is also injective, because a continuous
function on G is determined by the linear functional it defines on L'(G). Also, the
topology on o(L!(G)) € L®(G) is the weak* topology by definition, and we have seen
in problem 6(a) of problem set 3 that this coincides with the topology on compact
convergence on G, so the map G — o(L!(@G)) is a homeomorphism.



b) We know that 7 ~ S by 5(d) of problem set 3, so we get a homeomorphism S* =
Z 5 o(¢1(Z)) by question c). Unpacking the formulas, we see that it sends z € S* to
the multiplicative functional a = (an)nez — Y. ez an2z" on £(Z), which is exactly
what we wanted.

0

5. (3) Let A be a unital C-algebra with an involutive anti-isomorphism *. Show that there
is at most one norm on A that makes A into a C*-algebra.

Solution. Let ||.|| be a norm on A that makes A into a C*-algebra. Let x € A. Note that
(z*z)* = x*x, so x*x is normal. By definition of a C*-algebra and corollary 11.3.9 of the

notes, we have

1/2 1/2

]l = [la"2]"/* = p(z")

But, by theorem II1.1.1.13 of the notes,
p(z*z) =max{|\|, A€ C, "z — e g A*}.
This last quantity only depends on the algebra structure of A and on *, and it determines
]|
O

6. The goal of this problem it to prove 1.3.2.13 of the notes, i.e. the fact that every irreducible
unitary representation of a compact group is finite-dimensional.

Let G be a compact group, let dz be the normalized Haar measure on G, and let (m, V)
be a nonzero unitary representation of G. Fix u € V' — {0}, and define T: V' — V by

T(v) = /G (0,7 () () () ().

a

b

) (2) Show that 7" is well-defined and that 7" € End(V').
) (1)
c¢) (1) Show that (T'(v),v) > 0 for every v € V.
) (1)
) (2)

1) Show that T is G-equivariant.

d) (1) Show that T" # 0.

e) (2) Show that 7' is in the closure (for ||.||op) of {7” € End (V)| dimc(Im(T")) < 4+o00};
in other words, T is in the closure of the space of endomorphisms of finite rank. (Hint
: G =V, z— m(x)(u) is uniformly continuous.)

f) (2) Let B be the closed unit ball in V. Show that T'(B) is compact. (In other words,
the operator 7' is a compact operator. Problem 5 of PS4 can help shorten the proof.)

g) (1) If V' is an irreducible representation of V', show that V is finite-dimensional.

Solution.

a) We must show that the integral defining T'(v) converges for every v € V. Let v € V.
Then the function G — V, (v, w(x)(u))7(z)(u) is continuous (because = +— m(x)(u)
is continuous); as G is compact, the integral exists by problem 2 of problem set 4,
and moreover we have

17 ()] S/G!<v,ﬂ(m)(u»!!!ﬂ(w)(U)de < Jlollflull®.

The function T': V' — V is C-linear (because addition and multiplication by a scalar
are continuous on V', so they commute with the integral by 1(b) of problem set 4),
and the inequality above shows that 7' is bounded and that || T, < ||ul|?.



b) Let ve V and z € G.

(by left invariance of the Haar measure for the last equality). As w(z) : V — V is
continuous and linear, 1(b)1 of problem set 4 implies that the last line is equal to

) [ om0y ) = 7T ),

which is what we wanted.

c) Let v € V. As (v,.) is continuous and linear on V', we have

(T'(v),v) = / ) (u), v) (v, w(x)(w))de

/|v7r ))|2dx

d) Take v = u. As (u,7(z)(u)) = [[u|> > 0 and = +— (u,n(z)(u)) is a continuous
function from G to C, there exists € > 0 and an open neighborhood U of 1 in G such
that |(u,7(x)(u))|?> > € for x € U. Then, by the calculation in the proof of (c), we
have

/\uﬂ NW[2dx > ep(U) > 0.

So T # 0.

e) Let ¢ > 0. As G is compact, the continuous function G — C, z — 7(z)(u) is
uniformly continuous, so there exists a neighborhood U of 1 such that, for z € G
and y € zU, we have ||7(z)(u) — w(y)(u)|| < e. As G is compact and the family
(U )zeq covers G, we can x1,...,2, € G such that G = |JI; 2;U. Choose Borel
subsets Fi,...,E, of X such that z; € E; C x;U for every i € {1,...,n} and
X=EU...UE, (as sets). If z € E; and v € V, then we have

[, 7 () (w)m (@) (u) = (v, 7 (i) (w))m () (v
< [, (m(@) = (@) (w)m (@) )| + [ {0, w (i) (u) (7 (2) =7 (x:))) (u)]]

< [lolleflull + l[ollllulle = 2e{jv]l{lu]l-
Define U € End (V') by

n

T(v) = 3 u(Eo) (v, m(as) () Z / v, () (u)) e () ()

i=1

This operator U has finite rank, because its image is contained Span(m(z1)(u), . .., 7(zy)(u)).
Also, by the calculation above (and problem 2 of problem set 4), for every v € V', we



have

IT(0) =U)| <
=1

/ (v, () () () (u)edz — / (0, () (W) () e
E;

E;

n

<> ul(Ei)2e]ollu|
i=1

= 2¢lfv[[[[ull

So ||T'— Ullop < 2¢||ul|. As € > 0 was arbitrary, this shows that 7' is a limit of
operators of finite rank.

f) By 5(e) of problem set 4, it suffices to show that T'(B) is totally bounded. Let U be

a neighborhoof of 0, which we may assume to be an open ball of radius € > 0. We
must find z1,...,x, € B such that every point of T'(B) is at distance < & from one
of the T'(x;).
By (e), we know that T is a limit of operators of finite rank, so we can find U €
End(V) of finite rank such that ||7"— Ul|,p < €/4. As U has finite rank, U(B) is
a closed bounded subset of the finite-dimensional space Im(U), so it is compact.
In particular, we can find z1,...,x, € B such that, for every y € B, there exists
i€ {l,...,n} such that |[U(y) — U(x;)| < e/2.

Now let y € B, and choose i € {1,...,n} such that |U(y) — U(x;)|| < /2. Then

1T (y) = T(za)|| < 1T(y) = U+ 1U(y) = Uzl + U (i) — T ()|l
<llylle/4+e/2+ [[zille/4
<e.

(Remember that y, z; are in the closed unit ball of V.)

g) Now we put everything together. Suppose that V' is an irreducible unitary represen-
tation of G. Then the operator 7" € End(V') that we constructed is G-equivariant,
so, by Schur’s lemma, there exists A € C such that T = Aidy. As T # 0, A # 0.
So T(AB) is the closed unit ball in V. Part (f) says that this is compact, which, by
Riesz’s lemma, implies that V is finite-dimensional.

0

7. (extra credit) Let A be a C*-algebra. Then A, is a Banach %-algebra, but it is not always
a C*-algebra with the norm defined by ||z + Ae|| = ||z|| + |A. (See question 3(b) for an
example of this phenomenon.)

We define a new norm ||| on A, by :
lz + Aell” = sup{lzy + Myll, y € A, [yl <1}.

We now suppose that A does not have a unit and that A # {0}.

a) (2) Show that ||.||" is a submultiplicative norm on A..

b) (3) Show that ||.||" agrees with ||.|| on A, that A is closed in A, and that A, is complete
for |.|".

¢) (2) Show that A, is a C*-algebra for the norm ||.||".

Solution.
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2)

Let 1 = y1 + A1e, 9 = y2 + A2e be elements of A, (y1,y2 € A and A\j, g € C) and
c € C. Then
21 + 22| = sup{lly1y + M1y + y2y + Aayll, y € A, [lyll = 1}
< sup{llyiy + Myll, y € A, |yl < 1} +sup{llyay + Aoy, y € A, [lyl| < 1}
= [z + (2|,

|cz1]| = sup{|leyay + chyll, y € 4, |yl < 1}
= [e|sup{|lyay + \yll, y € A, |ly|| <1}
= [ef[|lz1 ]I,

and

lz1z2|" = sup{||(y1y2 + Aov1 + My2)y + Mdayll, v € A, |ly|| = 1}
= sup{||y1(y2y + A2y) + M (y2y + y)ll, v € A, |lyl| = 1}
< sup{|ly1 + Arel'[lyay + Ayll, v € 4, |ly|| <1}

= flza|lllz2]l"

To show that [.]|" is a norm on A, we still need to show that ||z + Ae||’ # 0 if
x + Xe # 0. Suppose that ||z + Ae||’ = 0, then zy + Ay = 0 for every y € A such that
|lyl| = 1, hence for every y € A. If x = 0, then A = 0. If x # 0, then, taking y = x*
(and noting that za* # 0 because |zx*|| = ||z*||* # 0), we see that A\ # 0. Let, so
A loy =y for every y € A, i.e. A1z is a left unit for A. This implies that (A~1y)*
is a right unit for A, so A has a unit, contradicting our assumption. So x = 0.

If x € A, then we have
2" = sup{llzyll, y € A, [ly|l =1} < |-

If x = 0, then ||z]|" = ||z|| = 0. Otherwise, we also have x* # 0; taking y =
we get

1 *
Exlel

1
[ WHM*H = [l2"] = [l=I|-

Hence A is complete for ||.||’; so it is closed in A.. In particular, the quotient map
Ae = A /A~ C, z+ Xe — ) is continuous.

Now we show that A, is complete for ||.||". Let (z,, + Ane)n>0 be a Cauchy sequence
in A, with x,, € A and A, € C. By the previous paragraph, the sequence (A, )n>0 is
Cauchy, so the sequence (x,),>0 in A is also Cauchy. As the two norms coincide on
A, the sequence (zp,)n>0 converges to some x € A, and of course (\,),>0 converges
to some A € C. It is now clear (using the obvious fact that ||z + pel|” < ||z|| + |p| for
z € A and p € C) that the sequence (x,, + A\pe)n>0 converges to x + Ae in A..

Finally, we show that A, is a C*-algebra. Let x € A and A € C. We want to show
that ||(z+Xe)*(z+Xe)|| = (|lz+ Ael|')?. We may assume that z+ e # 0. Let & > 0.
Then we can find y € A such that ||y|| =1 and

lzy + Ayl > [lz + el (1 — ¢).
Note that zy + Ay = (z + Ae)y (in Ac). So
(1= )*(lz + Aell)? < [lay + Ay||?
= [I(zy + Ay)"(zy + Ayl
= [ly"(z + Ae)"(z + Ae)yll
< [lyl*ll(z + xe)* (z + Ae) |
= [l(z + Ae)"(z + Ae)|".
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As this is true for every ¢, we get
Iz +Ae)* (@ + Ae)ll = (| + Kel).
Using the submultiplicativity of the norm, we deduce that
[z + Aell" < [l(z + Ae)*||".
As x is bijective on A., the last inequality is actually an equality, and so we also get
(llz +Ael)? < [l + Ae)* (2 + Ae) " < (Il + Ael)?,

which finishes the proof.
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