
MAT 449 : Problem Set 2

Due Thursday, September 27

More examples of Haar measures

1. Let G be a locally compact group, and let H be a closed subgroup of G. We write π for
the quotient map from G to G/H. We denote by ∆G (resp. ∆H) the modular function
of G (resp. H), and we assume that ∆G|H = ∆H . We fix left Haar measures µG and µH
on G and H.

a) (1) Show that, for every compact subset K ′ of G/H, there exists a compact subset
K of G such π(K) = K ′.

b) (1) Let f ∈ L1(G). Show that the function G→ C, x 7→
∫
H f(xh)dµH(h) is invariant

by right translations by elements of H. Hence it defines a function G/H → C, that
we will denote by fH .

c) (2) If f ∈ Cc(G), show that fH ∈ Cc(G/H).

d) (2) Show that the map Cc(G) → Cc(G/H), f 7→ fH is surjective. (Hint : You may
use the fact that, for every compact subset K of G, there exists a function ϕ ∈ C+

c (G)
such that ϕ(x) > 0 for every x ∈ K.)

e) (2) If f ∈ Cc(G) is such that fH = 0, show that
∫
G f(x)dµG(x) = 0. (Hint : use a

function in Cc(G/H) that is equal to 1 on π(supp(f)), and proposition 2.12 of the
notes. (Sorry.))

f) (2) Show that there exists a unique regular Borel measure µG/H on G/H that is
invariant by left translations by elements of G and such that, for every f ∈ Cc(G),
we have

∫
G f(x)dµG(x) =

∫
G/H f

H(y)dµG/H(y).

g) (1) If P is a closed subgroup of G such that π induces a homeomorphism P
∼→ G/H,

show that the inverse image of µG/H by this homeomorphism is a left Haar measure
on P .

h) (2) If P is a closed subgroup of G such that the map P × H → G, (p, h) 7→ ph is
a homeomorphism, and if dµP is a left Haar measure on P , show that the linear
functional Cc(G) → C, f 7→

∫
H

∫
P f(ph)dµP (p)dµH(h) defines a left Haar measure

on G.

Solution.

a) Let V be a compact neighborhood of 1 in G/H. Then π(V ) is a compact neighbor-
hood of π(1) in G/H. We have K ′ ⊂

⋃
x∈π−1(K′) π(xV ). As K ′ is compact, we can

find x1, . . . , xn such that K ′ ⊂
⋃n
i=1 π(xiV ). Let K = π−1(K ′) ∩ (

⋃n
i=1 xiV ). Then

K is a closed subset of the compact set
⋃n
i=1 xiV , hence it is compact, and we have

π(K) = K ′.
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b) Let x ∈ H. Then, for every g ∈ G, we have∫
H
f(gxh)dµH(h) =

∫
H
f(gh)dµH(h)

by the left invariance of µH .

c) We need to show that fH is continuous and that it has compact support.

Fix a symmetric compact neighborhood V0 of 1, and note that A := supp f ∪
V0(supp f) is compact. Let ε > 0. As f is left uniformly continuous, there ex-
ists a neighborhood V ⊂ V0 of 1 such that, for every x ∈ G and every y ∈ V , we
have |f(yx)− f(x)| ≤ ε. Then, for every x ∈ G and every y ∈ V , we have

|fH(π(yx))− fH(x)| = |
∫
H

(f(yxh)− f(xh))dµH(h)| ≤ εµH(x−1A ∩H),

because f(yxh) = f(xh) = 0 unless y ∈ (x−1 supp f) ∪ (x−1y−1 supp f) ⊂ x−1A. As
x−1A ∩H is compact, it has finite measure, and the calculation above implies that
fH is continuous at the point π(x).

Now we show that fH has compact support. By definition of fH , we have fH(π(x)) =
0 if x 6∈ KH. So the support of fH is contained in π(KH) = π(K), hence it is
compact.

d) Let g ∈ Cc(G/H), and let K ′ be its support. By question (a), there exists a compact
subset K of G such that π(K) = K ′. Let ϕ ∈ C+

c (G) be such that ϕ(x) > 0 for every
x ∈ K. We show that ϕH(y) > 0 for every y ∈ K ′. Let y ∈ K ′, write y = π(x) with
x ∈ K. As ϕ(x) > 0 and ϕ is continuous, we can find an open neighborhood V of 1
in G and a c ∈ R>0 such that ϕ(x′) ≥ c for every x′ ∈ xV . In particular,

ϕH(y) =

∫
H
ϕ(xh)dµH(h) ≥

∫
H∩V

ϕ(xh)dµH(h) ≥ c · µH(U ∩H) > 0

(as U ∩H is a nonempty open subset of H, we have µH(U ∩H) > 0).

We define a function F : G→ C in the following way :

F (x) =

{
g(π(x))
ϕH(π(x))

if ϕH(π(x)) > 0

0 otherwise.

Note that F is continuous on the open subsets U1 = {x ∈ G|ϕH(π(x)) > 0} and
U2 = G− supp(g ◦ π) (on the second subset, it is identically zero). As U1 ⊃ π−1(K ′)
and π−1(K ′) = supp(g ◦π), we have U1∪U2 = G, the function F is continuous on G.
Finally, we take f = Fϕ. Then f ∈ Cc(G), and we just need to show that fH = g.

Let x ∈ G. If ϕH(π(x)) = 0, then f(xh) = 0 for every h ∈ H, so fH(π(x)) = 0. We
have seen that ϕH takes positive values on K ′ = supp(g), so we also have x 6∈ supp(g),
i.e., g(x) = 0 = fH(x). Now assume that ϕH(π(x)) > 0. Note that the function
H → C, h 7→ F (xh) is constant. So

fH(π(x)) = F (x)

∫
H
ϕ(xh)dµH(h) = g(π(x))

ϕH(π(x))
ϕH(π(x)) = g(π(x)).

Finally, note that f ∈ C+
c (G) if g ∈ C+

c (G/H), and that we also proved along the
way that fH ∈ C+

c (G/H) if f ∈ C+
c (G) (we proved this for ϕ).
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e) Let ψ ∈ Cc(G/H) be such that ψ(y) = 1 for every y ∈ π(supp f). By question (d),
there exists ϕ ∈ Cc(G) such that ϕH = ψ. We have∫
G
f(x)dµG(x) =

∫
G
f(x)ϕH(π(x))dµG(x)

=

∫
G×H

f(x)ϕ(xh)dµG(x)dµH(h)

=

∫
H

(

∫
G
f(x)ϕ(xh)dµG(x))dµH(h)

=

∫
H

(∆G(h)−1

∫
G
f(xh−1)ϕ(x)dµG(x))dµH(h)

=

∫
G
ϕ(x)(

∫
H

∆H(h)−1f(xh−1)dµH(h))dµG(x)

=

∫
G
ϕ(x)(

∫
H
f(xh)dµH(h))dµG(x) (by proposition 2.12 of the notes)

= 0 (because fH = 0).

f) By question (e), the positive linear function Cc(G)→ C, f 7→
∫
G fdµG factors through

the linear map Cc(G)→ Cc(G/H), f 7→ fH . By question (d) (and the remark at the
end of its solution), it defines a positive linear functional Cc(G/H) → C. By the
Riesz representation theorem, this comes from a regular Borel measure µG/H on
G/H. Unravelling the definition, we get, for every f ∈ Cc(G),∫

G
fdµG =

∫
G/H

fHdµG/H .

By the left invariance of µG and question (d), we have, if f ∈ Cc(G/H) and x ∈ G,∫
G/H

f(xy)dµG/H(y) =

∫
G/H

f(y)dµG/H .

Using the uniqueness part of the Riesz representation theorem (as we did in class),
we see that µG/H(xE) = µG/H(E) for every Borel subset E of G/H.

g) Let ν be the inverse image of µG/H by the homeomorphism α : P
∼→ G/H. It is a

regular Borel measure because α is a homeomorphism. Also, note that α(xy) = xα(y)
for every x ∈ P (this is obvious on the definition of α). As µG/H is invariant by left
translations by elements of P , so is ν.

h) The hypothesis implies that π induces a homeomorphism P
∼→ G/H, hence we get a

left Haar measure ν on P as in question (g). By the uniqueness of left Haar measures,
we have µP = cν for some c ∈ R>0. Hence, for every f ∈ Cc(G),∫

H

∫
P
f(ph)dµP (p)dµH(h) = c

∫
P

(

∫
H
f(ph)dµH(h))dν(p) =

c

∫
G/H

fH(y)dµG/H(y) = c

∫
G
f(x)dµG(x).

So the functional f 7→
∫
H

∫
P f(ph)dµP (p)dµH(h) is positive and corresponds to the

left Haar measure cµG on G.

�
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2. Let G be a locally compact group. Let A and N be two closed subgroups of G such that
A × N → G, (a, n) 7→ an is a homeomorphism and that A normalizes N (i.e. for every
a ∈ A and n ∈ N , we have ana−1 ∈ N).

a) (2) If µA and µN are left Haar measures on A and N , show that the linear functional
Cc(G)→ C, f 7→

∫
A

∫
N f(an)dµA(a)dµN (n) defines a left Haar measure on G.

b) (1) Let a ∈ A. Show that there exists α(a) ∈ R>0 such that, for every f ∈ Cc(N),
we have ∫

N
f(ana−1)dµN (n) = α(a)

∫
N
f(n)dµN (n).

c) (1) If ∆G, ∆A and ∆N are the modular functions of G, A and N respectively, show
that ∆G(an) = α(a)∆A(a)∆N (n) if a ∈ A and n ∈ N .

Solution.

a) The setup is very similar to that of problem 1 (with for example N playing the
role of H), with the difference that we don’t make any assumption on the modular
functions. Still, the results questions (a)-(d) of problem 1 still stay true, since their
proof doesn’t use the assumption on the modular functions. In particular, we get
a surjective linear transformation f 7→ fN from Cc(G) to Cc(G/N) ' Cc(A), and it
sends C+

c (G) onto C+
c (A). The linear functions of the statement sends f ∈ Cc(G)

to
∫
A f

N (a)dµA(a), so it is positive, and the Riesz representation theorem says that
there is a unique regular Borel measure µG on G such that, for every f ∈ Cc(G), we
have ∫

G
fdµG =

∫
A

∫
N
f(an)dµA(a)dµN (n).

As µA is a left Haar measure on A, the formula above implies that
∫
G LafdµG =∫

G fdµG for every f ∈ Cc(G) and every a ∈ A. We show that µG is left invariant by
N . Let x ∈ N and f ∈ Cc(G). Then we have∫
G
LxfdµG =

∫
A

∫
N
f(xan)dµA(a)dµN (n) =

∫
A

(

∫
N
f(a(a−1xa)n)dµN (n))dµA(a)

=

∫
A

(

∫
N
f(an)dµN (n))dµA(a) because a−1xa ∈ N and µN is left invariant

=

∫
G
fdµG.

As G = AN , this implies that
∫
G LxgdµG =

∫
G fdµG for every x ∈ G and every

f ∈ Cc(G). By proposition 2.6 of the notes, µG is a left Haar measure on G.

b) Note that the map N → N , n 7→ a−1na is a homeomorphism. Hence the formula
E 7→ µN (a−1Ea) defines a regular Borel measure on N , which we denote by ν. If E
is a Borel subset and n ∈ N , then

ν(nE) = µ(a−1nEa) = µ((a−1na)a−1Ea) = µ(a−1Ea) = ν(E).

Hence ν is a left Haar measure on N , and so there exists α(a) ∈ R>0 such that
ν = α(a)µN . Now, if E is Borel subset of N and f = 11E , the function n 7→ f(ana−1)
is the characteristic function of a−1Ea, so∫

N
f(ana−1)dµN (n) = µ(a−1Ea) = α(a)µ(E) = α(a)

∫
N
fdµN .

This extends in the usual way to all the functions f ∈ L1(N), and in particular to
f ∈ Cc(N).
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c) Let a ∈ A and n ∈ N , and fix f ∈ C+
c (G). Then we have

∆G(an)−1

∫
G
fdµG =

∫
G
Ran(f)dµG =

∫
A

∫
N
f(bman)dµA(b)dµN (m)

=

∫
A

(

∫
N
f(ba(a−1ma)n)dµN (m))dµA(b)

= α(a)−1

∫
A

(

∫
N
f(bamn)dµN (m))dµA(b) by question (b)

= α(a)−1∆N (n)−1

∫
A

(

∫
N
f(bam)dµN (m))dµA(b) by definition of ∆N

= α(a)−1∆(n)−1

∫
N

(

∫
A
f(bam)dµA(b))dµN (m)

= α(a)−1∆N (n)−1∆A(a)−1

∫
N

(

∫
A
f(bm)dµA(b))dµN (m) by definition of ∆A

α(a)−1∆N (n)−1∆A(a)−1

∫
G
fdµG.

As
∫
G fdµG > 0, this implies that ∆G(an) = α(a)∆A(a)∆N (n).

�

3. Let G = SLn(R), H = SO(n), and let P ⊂ G be the subgroup of upper triangular
matrices with positive entries on the diagonal (and determinant 1).

a) (4) Show that the map P × H → G, (p, h) 7→ ph is a homeomorphism. (Hint :
Gram-Schmidt.)

b) (3) Give a formula for a left Haar measure on P similar to the formula in problem
6(d) of problem set 1.

c) (4) Calculate the modular function of P .

d) (2) Show that G is unimodular. (There are several ways to do this.)

e) (2) If n = 2, show that SO(n) ' S1 (the circle group), and give a left Haar measure
on G.

Solution.

a) In this problem, we denote the usual Euclidian inner product on Rn by 〈., .〉, and the
associated norm by ‖.‖.
We denote the map P × H → G of the statement by α. This map is continuous
because SLn(R) is a topological group. We first show that it is injective. Suppose
that we have p, p′ ∈ P and h, h′ ∈ H such that ph = p′h′. Then p−1p′ = h(h′)−1 ∈
P ∩ H is a special orthogonal matrix that is upper triangular with positive entries
on the diagonal. Such a matrix has to be the identity. Indeed, let (v1, . . . , vn) be its
columns, and let (e1, . . . , en) be the canonical basis of Rn. We want to show that
(v1, . . . , vn) = (e1, . . . , en). As v1 is a norm 1 vector and a positive multiple of e1, we
must have v1 = e1. As the vectors v2, . . . , vn are orthogonal to v1, their first entries
are all 0. So v2 is a positive multiple of e2; as v2 is norm 1, we must have v2 = e2.
Now the vectors v3, . . . , vn are orthogonal to v2, so their second entries are zero, so
v3 is a positive multiple of e3 etc.

Now remember the Gram-Schmidt orthonormalization process. If (v1, . . . , vn) is a
basis of Rn, it produces an orthogonal basis (w1, . . . , wn) and an orthonormal basis
(u1, . . . , un) in the following way :
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• w1 = v1 and u1 = 1
‖w1‖w1;

• For 1 ≤ k ≤ n− 1, uk+1 = 1
‖wk+1‖wk+1, where wk+1 = vk+1 −

∑k
i=1

〈wi,vk+1〉
〈wi,wi〉 wi.

In particular, if A (resp. B, resp. C) is the matrix with columns (v1, . . . , vn) (resp.
(w1, . . . , wn), resp. (u1, . . . , un)), then we have B = AN and C = AND, where N is
an upper triangular matrix with ones on the diagonal and D is the diagonal matrix
with diagonal entries (‖w1‖−1, . . . , ‖wn‖−1). Note also that the entries of N and of
D are continuous functions of v1, . . . , vn, hence also the entries of B and C, and that
C is an orthogonal matrix. If x ∈ SLn(R), applying this process to the columns of
x, we get an orthogonal matrix h and a matrix p ∈ P , both depending continuously
on x, such that h = xp, i.e. x = hp−1. Also, det(h) = det(xp) = det(p) > 0, so h
is actually in SO(n). As g 7→ g−1 is a continuous function on GLn(R) (hence on
its subgroup P ), we have constructed a continuous map β : G → P ×H such that
α ◦β = idG. In particular, the map α is surjective, so it si bijective. Then its inverse
must be β, and we know that β is continuous. So α is a homeomorphism.

b) Note that P is an open subset of the R-vector space V of upper triangular matrices
in Mn(R). Moreover, for every p ∈ P , left translation by p on P is the restriction
of the linear endomorphism Tp : V → V , x 7→ px. So we can apply problem 5
of problem set 1 to define a Haar measure on P as |det(Tp)|−1dV (p), where dV is
Lebesgue measure on V .

We still need to calculate det(Tp) for p ∈ P . Let p ∈ P , and let a1, . . . , an be its
diagonal entries. Let (e1, . . . , en) be the canonical basis of Rn as before, and let
Vi = Span(e1, . . . , ei) ⊂ Rn for 1 ≤ i ≤ n. Note that the action of p ∈ GLn(R)
preserves the subspace V1, . . . , Vn, and that ther determinant of the endormophism
of Vi induced by p is a1 . . . ai. By decomposing V using the columns of the matrices
(as in the solution of problem 6(c) of problem set 1), we get an isomorphism V '
V1 ⊕ V2 ⊕ . . .⊕ Vn such that the endomorphism Tp corresponds to the action of p on
each Vi. So we get

det(Tp) =
n∏
i=1

i∏
r=1

ar = an1a
n−2
2 . . . a2

n−1an =
n∏
i=1

an+1−i
i .

c) Daniel : I’m not even sure of my own signs here, so don’t take points off for a sign
mistakes.

We will use problem 2, with G = P , N the group of unipotent upper triangular
matrices (i.e. of upper triangular matrices with ones on the diagonal) and A the
group of diagonal matrices with positive diagonal entries. Let α : A × N → P be
the map defined by α(a, n) = an. Let’s show that α is a homeomorphism. The
map α is obviously continuous, and it is injective because N ∩ A = {1}. Let x ∈ P ,
and let a ∈ A be the matrix with the same diagonal entries as x. Then n := a−1x
is in N , and α(a, n) = x. Hence α is bijective. Moreover, the matrix a depends
continuously on x, hence so does n, so the inverse of α is continuous, and finally α
is a homeomorphism.

We want to apply question 2(c). For this, we need to calculate the modular functions
of A and N and the function α : A→ R>0.

First, as A is commutative, we have ∆A = 1.

For N , there are several ways to proceed. For example, you may notice that N is
obviously homeomorphic (as a topological space only) to the R-vector space W of
upper triangular matrices in Mn(R) with zeroes on the diagonal. (Just forget the
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diagonal terms of the matrices.) Moreover, for n ∈ N , left translation by n on N
corresponds to the linear endomorphism Un of W given by Un(X) = nX, for X ∈W .
Note that W is a subspace of the space V of the previous question, and that Un is
the restriction of Tn. So we can use the same method as in the previous question to
calculate det(Un), and we get det(Un) = 1. Hence Lebesgue measure on W is a left
Haar measure on N . We can redo everything using right translations instead of left
translations, and we get that Lebesgue measure on W is also a right Haar measure
on N . This means that N is unimodular, so ∆N = 1.

Finally, we need to calculate the function α. Remember that it is defined by∫
N
f(ana−1)dn = α(a)

∫
N
f(n)dn

for every f ∈ Cc(N), where dn is Lebesgue measure on W (which we have just seen
is a Haar measure on N). Note that ca : X 7→ aXa−1 is a linear endomrophism of
W , so we can calculate

∫
N f(ana−1)dn using the change of variables formula once we

know det(ca). We get det(ca)
∫
N f(ana−1)dn =

∫
N f(n)dn, hence α(a) = det(ca)

−1.
But is is easy to see that, if the diagonal entries of a are (a1, . . . , an), then

det(ca) = an−1
1 an−3

2 . . . a1−n
n =

n∏
i=1

an−2i+1
i .

Hence finally, for p ∈ P ,

∆P (p) = a1−n
1 a3−n

2 . . . an−1
n =

n∏
i=1

a2i−n−1
i ,

where a1, . . . , an are the diagonal entries of p.

d) If you know (or know how to prove) that SLn(R) is equal to its commutator subgroup,
then this isn easy. Here is another way : Let GLn(R)+ be the group of n×n matrices
with positive determinant. This is an open subgroup of GLn(R) (it’s the inverse
image of R>0 by the continuous group morphism det : GLn(R) → R×), so, if µ is a
Haar measure on GLn(R) (remember that GLn(R) is unimodular by problem 6(c) of
problem set 1), its restriction to GLn(R)+ is a nonzero regular Borel measure, and it
is obviously a left and right Haar measure on GLn(R)+. Now note that we have an
isomorphism of topological groups R>0 × SLn(R)→ GLn(R)+, (λ, x) 7→ λx (whose
inverse is given by x 7→ (det(x)1/n, det(x)−1/nx)), so we can apply problem 2 with
G = GLn(R)+, A = R>0In and N = SLn(R). As A and N commute, we have α = 1.
We know that A is unimodular because it is commutative, and we have just seen that
GLn(R)+ is unimodular, hence 2(c) implies that SLn(R) is also unimodular.

e) It is well-known that the group of rotations in R2 (i.e. SO(2)) is isomorphic to the

circle group S1. The isomorphism sends e2iπθ ∈ S1 to the matrix

(
cos θ sin θ
− sin θ cos θ

)
.

Also, we have seen in class that we can define a Haar measure on S1 by the linear
functional sending f ∈ Cc(S1) to

∫ 1
0 f(e2iπθ)dθ, where dθ is Lebesgue measure on R.

The point of this, of course, is that problem 1 now allows you to define a Haar measure
on SL2(R). To treat the case of SLn(R), we need a Haar measure on SO(n). An
example of such a measure is given in problem 6.

�
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4. (Remember problems 4, 5,6,8 of problem set 1.) We denote by dx a Haar measure on the
additive group Qp. We also denote by dx (resp. dA) the product measure on Qn

p (resp.

Mn(Qp) ' Qn2

p ); note that it is a Haar measure for the corresponding additive group.

a) (2) Show that, for every f ∈ L1(Qp) and every a ∈ Q×p , b ∈ Qp, we have∫
Qp

f(x)dx = |a|p
∫
Qp

f(ax+ b)dx.

b) (3) Let n ≥ 1. Show that, if f ∈ L1(Qn
p ), A ∈ GLn(Qp) and b ∈ Qn

p , we have∫
Qn

p

f(x)dx = | det(A)|p
∫
Qn

p

f(Ax+ b)dx.

c) (2) Show that |det(A)|−np dA is a left and right Haar measure on GLn(Qp).

d) (3) Let B be the group of upper triangular matrices in GLn(Qp). Find a left Haar
measure on B and calculate the modular function of B.

Solution.

a) First, using the invariance by translation of dx, we see that∫
Qp

f(ax+ b)dx =

∫
Qp

f(ax)dx

for every f ∈ L1(Qp) and a, b ∈ Qp.

Let a ∈ Q×p . We use the notation of problem 8 of problem set 1. If x ∈ Qp and
m ∈ Z, then

aB(x, pm) = {ay with |x−y|p ≤ pm} = {y ∈ Qp||ax−y|p ≤ |a|ppm} = B(ax, |a|ppm),

and so, by 8(a) of problem set 1, vol(aB(x, pm)) = |a|p vol(B(x, pm)). Using question
(b) of the same problem, we get vol(aE) = |a|p vol(E) for every Borel subset E of
Qp. Suppose that f = 11E , with E a Borel subset of Qp. Then∫

Qp

f(ax)dx = vol(a−1E) = |a|−1
p

∫
Qp

f(x)dx,

so we get the desired result for this function f . The result now follows for every
f ∈ L1(Qp) by linearity and continuity of the integral.

b) Using the translation invariance of dx as in question (a), we see that it suffices to
prove the result in the case b = 0. Let A ∈ GLn(QP ). First note that A = A1A2

and if we know the result for A1 and A2, then we know it for A; indeed, for every
f ∈ L1(Qn

p ), we’ll have∫
Qn

p

f(x)dx = | det(A1)|p
∫
Qn

p

f(A1x)dx =

|det(A1)|p| det(A2)|p
∫
Qn

p

f(A1(A2x))dx = |det(A)|p
∫
Qn

p

f(Ax)dx.

The Gauss algorithm (for solving systems of linear equations) says that we can make
A upper triangular by elementary row operations (with correspond to multiplying
on the left by a lower triangular matrix) and permutations of rows (with correspond
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to multiplying on the left by a permutation matrix). So, by the observation above,
it suffices to prove the result for upper and lower triangular matrices and for permu-
tation matrices.

Suppose first that A is a permutation matrix. So there exists a permutation σ ∈
Sn such that, for every x = (x1 . . . , xn) ∈ Qn

p , Ax = (xσ(1), . . . , xσ(n)). As dx is
the product of identical measures on the n factors Qp of Qn

p , we have, for every
f ∈ L1(Qp),

∫
Qn

p
f(Ax)dx =

∫
Qn

p
f(x)dx. The result now follows from the fact that

det(A) = ±+ 1.

Suppose that A is upper triangular, and write A = (aij)1,≤i,j≤n. Let f ∈ L1(Qp).
Then ∫

Qn
p

f(A(x1, . . . , xn)) =

∫
Qp

. . .

∫
Qp

f(a11x1+. . .+a1nxn, . . . , an−1,n−1xn−1+an−1,nxn, annxn)dxndxn−1 . . . dx1.

Using question (a), we see that this last integral is equal to

|a11|−1
p . . . |an−1,n−1|−1

p |ann|−1
p

∫
Qn

p

f(x)dx = | det(A)|−1
p

∫
Qn

p

f(x)dx.

The case of lower triangular matrices is similar (just put the dxi reverse order).

c) Once we have the change of variables formula of question (b), we can replace R by Qp

in problems 5 and 6 of problem set 1 and all the results will stay true, with exactly
the same proofs. (Except 6(b), which doesn’t make sense for Qp.) In particular, we
get that | det(A)|−np dA is a left and right Haar measure on GLn(Qp).

d) Again, we can just apply the proofs of questions (b) and (c) of problem 3 (and the
analogue for Qp of problem 5 of problem set 1) to get the result. Assuming that there
is no sign mistake in problem 3, a left Haar measure on B is

∏n
i=1 |aii|i−n−1

p dA, where

dA is the product measure on the Qp-vector space V ' Qn(n+1)/2
p of upper triangular

matrices and the aij are the entries of the matrix. And the modular function of B is
given by

∆(A) =
n∏
i=1

|aii|2i−n−1
p .

�

5. (extra credit) The goal of this problem is to give a formula for a Haar measure on SO(n).
(We could do something similar for the unitary group U(n).)

a) (1) For X ∈ Mn(R), we set Φ(X) = (In − X)(In + X)−1. Show that this is well-
defined if −1 is not an eigenvalue of X, and that we have Φ(Φ(X)) = X whenever
this makes sense.

b) (2) We denote by An the R-vector space of n × n antisymmetric matrices (i.e. of
X ∈Mn(R) such that XT = −X) and by U the set of elements of SO(n) that don’t
have −1 as an eigenvalue. Show that U is an open dense subset of SO(n), and that
Φ induces a homeomorphism An

∼→ U .

c) (2) Let X ∈ An. Show that there exist open dense subsets V and W of An such that
the formula Φ(LXY ) = Φ(X)Φ(Y ) defines a diffeomorphism LX : V

∼→W , and that
0 ∈ V .
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d) Let dX be Lebesgue measure on An. For every X ∈ An and every Y ∈ An on
which LX is defined, we denote by L′X(Y ) the differential at Y of LX . It is a linear
transformation from An to An such that, for every H ∈ An,

LX(Y + tH) = LX(Y ) + tL′X(Y )(H) + o(t).

Fix X ∈ An. We want to compute det(L′X(0)). Remember that L′X(0) is a linear
endomorphism of An, and note that An⊗R C is the space of antisymmetric matrices
in Mn(C).

i. (1) Show that det(L′X(0)) is well-defined and nonzero.

ii. (1) Show that we have

L′X(0)(H) = (In −X)H(In +X),

for every H ∈ An.

iii. (1) Show that X has a basis of (complex) eigenvectors (v1, . . . , vn) such that the
corresponding eigenvalues are of the form iλ1, . . . , iλn, with λ1, . . . , λn ∈ R.

iv. (1) For j, k ∈ {1, . . . , n}, we set Yjk = vjv
T
k −vkvTj . Show that Yjk ∈ An⊗RC, and

that it is an eigenvector for L′X(0), with corresponding eigenvalue (1− iλj)(1−
iλk).

v. (1) Show that (Yjk)1≤j<k≤n is a basis of An ⊗R C.

vi. (1) Show that det(L′X(0)) = det(In − iX)n−1.

e) (3) Show that the linear functional sending f ∈ Cc(SO(n)) to∫
An

f(Φ(X))
1

|detL′X(0)|
dX

defines a left Haar measure on SO(n). (Hint : Note that (LX ◦ LY )(0) = LX(Y ),
and use the chain rule.)

Solution.

a) If X ∈Mn(R), then −1 is not an eigenvalue of X if and only if In +X is invertible,
i.e. if and only if the formula defining Φ(X) makes sense. So the set of definition of
Φ is the open set defined by the equation det(In + X) 6= 0. Note also that In −X
and In +X commute, so In−X and (In +X)−1 commute (if the second is defined),
so we also have Φ(X) = (In +X)−1(In −X).

Let X ∈Mn(R) such that Φ(X) is defined. Then we have

In + Φ(X) = ((In +X) + (In −X))(In +X)−1 = 2(In +X)−1

and
In − Φ(X) = ((In +X)− (In −X))(In +X)−1 = 2X(In +X)−1.

In particular, In + Φ(X) is invertible, so Φ(Φ(X)) makes sense, and we have

Φ(Φ(X)) = (In − Φ(X))(In + Φ(X))−1 = 2X(In +X)−1(2(In +X)−1)−1 = X.

b) Let g ∈ SO(n). Then we can find P ∈ GLn(R) such that

PgP−1 =


r1 0 . . . 0
0 r2 0 0
... 0

. . . 0
0 . . . 0 rm

 ,

where :
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• if n is even, then m = n/2 and r1, . . . , rm are 2 × 2 matrices of the form(
cos θi sin θi
− sin θi cos θi

)
, with θi ∈ [0, 2π);

• if n is odd, then m = (n + 1)/2, the matrix rm is the 1 × 1 matrix 1 and

r1, . . . , rm−1 are 2× 2 matrices of the form

(
cos θi sin θi
− sin θi cos θi

)
, with θi ∈ [0, 2π).

In both cases, −1 is an eigenvalue of g if and only if one at least one of the θi is
equal to π. So, by varying the θi, we can find a sequence of elements of SO(n) that
converge to g and don’t have −1 as an eigenvalue. This proves that U is dense in
SO(n).

Next, as antisymmetric matrices have only imaginary eigenvalues, the function Φ is
defined on An. Note also that it is clear on the definition of Φ that Φ is continuous
on its open set of definition. By the second part of question (a), Φ is injective and, to
show that Φ is a homeomorphism from An to U , it suffices to show that is a bijection
from An to U (because then its inverse will be Φ). So we just need to show that
Φ(An) = U . Using again the fact that Φ(Φ(X)) = X whenever this makes sense, we
see that it suffices to prove that Φ(An) ⊂ U and Φ(U) ⊂ An.

Let X ∈ An. Then XT = −X, so Φ(X)T = (In + XT )−1(In − XT ) = (In −
X)−1(In +X), and hence Φ(X)TΦ(X) = In, which means that Φ(X) ∈ O(n). As Φ
is continuous and An is connected, Φ(An) is connected. But In = Φ(0) ∈ Φ(An), so
Φ(An) is contained in SO(n).

Let X ∈ SO(n) such that −1 is not an eigenvalue of X. Then XT = X−1, so

Φ(X)T = (In−XT )(In+XT )−1 = (In−X−1)(In+X−1)−1 = (X−In)(X+In)−1 = −Φ(X).

So we have Φ(U) ⊂ An.

c) Fix X ∈ An. Note that the formula Φ(LXY ) = Φ(X)Φ(Y ) can also be written
LXY = Φ(Φ(X)Φ(Y )), by (a).

For Y ∈ An, Φ(X)Φ(Y ) has animage by Φ (which will automatically be in An by
(b)) if and only if Φ(Y ) ∈ Φ(X)−1U . So we can take V = Φ(U ∩ (Φ(X)−1U)); this
is dense in An because U ∩ (Φ(X)−1U) is dense in SO(n) by (b). Then the image of
V by the map LX : Y 7→ Φ(Φ(X)Φ(Y )) is W := Φ((Φ(X)U) ∩ U).

The map LX : V → W is continuous and surjective. In fact, as Φ is infinitely
differentiable (it is given by rational functions in the entries of its arguments, by the
formula saying that A−1 is det(A)−1 times the transpose of its cofactor matrix, for
every A ∈ GLn(R)), the map LX is also infinitely differentiable.

Let X ′ = Φ(Φ(X)−1) ∈ An. Then we get as above a continuous and surjective map
LX′ : W → V , defined by the formula LX′(Y ) = Φ(Φ(X)−1Φ(Y )). The maps LX
and LX′ are inverses of each other, and in particular they are both diffeomorphisms.

Finally, if Y = 0, then Φ(Y ) = In. So Φ(Y ) ∈ U , and we also have Φ(Y ) ∈ Φ(X)−1U ,
because Φ(X)Φ(Y ) = Φ(X) ∈ U . This shows that 0 ∈ V .

d) i. Let X ∈ An. As LX is defined at the point 0, the differential L′X(0) makes sense;
also, as LX is a diffeomorphism, det(L′X(0)) 6= 0.

ii. Note that, for Y ∈ An,

(In+X+Y )−1 = (In+X)−1(In+(In+X)−1Y ) = (In+X)−1(In−Y (In+X)−1+o(Y )),
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hence

Φ(X + Y ) = (In −X − Y )(In +X + Y )−1

= ((In −X)− Y )(In +X)−1(In − Y (In +X)−1 + o(Y ))

= Φ(X)− Φ(X)Y (In +X)−1 − Y (In +X)−1 + o(Y ).

In particular (taking X = 0), we have

Φ(Y ) = In − 2Y + o(Y ).

So
Φ(X)Φ(Y ) = Φ(X)− 2Φ(X)Y + o(Y ),

and
LX(Y ) = Φ(Φ(X)Φ(Y )) = Φ(Φ(X)− 2Φ(X)Y + o(Y )) =

Φ(Φ(X))−Φ(Φ(X))(−2Φ(X)Y )(In+Φ(X))−1−(−2Φ(X)Y )(In+Φ(X))−1+o(Y ).

Using Φ(Φ(X)) = X and In + Φ(X) = 2(In + X)−1 (see (a)), we can simplify
this last expression to

X +XΦ(X)Y (In +X)−1 + Φ(X)Y (In +X) + o(Y ) = X + (In +X)Φ(X)Y (In + Y ) + o(Y )

= X + (In −X)Y (In +X) + o(Y ).

But then the conclusion that L′X(0)(Y ) = (In−X)Y (In+X) follows immediately
from the definition of the differential.

iii. As X is antisymmetric and has real entries, it is normal, so the spectral theorem
says that X is diagonalizable in an orthonormal basis of Cn; in other words,
there exists a unita matrix P such that PXP−1 is diagonal. We have already
used the fact that the eigenvalues of X are imaginary, but it is easy to recheck it
quickly : we have X∗ = −X and P ∗ = P−1, and (PXP−1)∗ = (P ∗)−1X∗P ∗ =
−PXP−1. As PXP−1 is diagonal, this means that its diagonal entries (which
are the eigenvalues of X) are all imaginary.

iv. It follows directly from the definition of Yjk that Y T
jk = −Yjk, so Yjk ∈ An ⊗R C.

Furthermore, by (ii), we have

L′X(0)(Yij) = (In −X)Yij(In +X)

= (In −X)(vjv
T
k )(In −XT )− (In −X)(vkv

T
j )(In −XT )

= (1− iλj)(vjvTk )(1− iλk)− (1− iλk)(vkvTj )(1− iλj
= (1− iλj)(1− iλk)Yij .

v. As (v1, . . . , vn) is a basis of Cn, the matrices vjv
T
k , for 1 ≤ j, k ≤ n, form a basis

of Mn(C). So the matrices Yjk = (vjv
T
k ) − (vjv

T
k )T , for 1 ≤ j, k ≤ n, generate

An⊗R C. Note that Yjj = 0 and Ykj = −Yjk, so An⊗R C is actually spanned by
the matrices Yjk, for 1 ≤ j < k ≤ n. As there are n(n− 1)/2 such matrices and
dimC(An ⊗R C) = dimR(An) = n(n− 1)/2, they form a basis of An ⊗R C.

vi. By (iv) and (v), we have

det(L′X(0)) =
∏

1≤j<k≤n
(1− iλj)(1− iλk) =

n∏
r=1

(1− iλr)n−1

(because each 1− iλr appears n− 1 times in the first big product : (n− r) times
as the first factor (1 − iλj), and (r − 1) times as the second factor (1 − iλk)).
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To get the result, we just need to note that the eigenvalues of In − iX are
1− iλ1, . . . , 1− iλn, so that

det(In −X) =
n∏
r=1

(1− iλr).

e) Let us denote this functional by Λ. First, by question (e), the function X 7→
1

| det(L′X(0))| is defined everywhere on An and continuous, so the integral defining

Λ makes sense.

We need to check that Λ is positive and invariant by left translations. We first check
the positivity. Let f ∈ C+

c (SO(n)). Then we can find ε > 0 and a nonempty open
subset Ω of SO(n) such that f|Ω ≥ ε. As U is open dense in SO(n), its intersection
with Ω is open and nonempty, so Φ(U ∩Ω) is open and nonempty in An, and we have

Λ(f) ≥ ε
∫

Φ(U∩Ω)

1

|det(L′X(0))|
dX > 0

(because the function X 7→ 1
| det(L′X(0))| is continuous and positive on Φ(U ∩ Ω)).

Now we check the left invariance. Fix f ∈ Cc(SO(n)). Let g ∈ U . Then Λ(Lgf) =∫
An
f(g−1Φ(Y )) 1

| det(L′Y (0))|dY . Choose X,X ′ ∈ An such that Φ(X) = g−1 and

Φ(X ′) = g. Then

Λ(Lgf) =

∫
An

f(Φ(X)Φ(Y ))
1

| det(L′Y (0))|
dY

=

∫
V
f(Φ(X)Φ(Y ))

1

| det(L′Y (0))|
dY (because vol(An − V ) = 0)

=

∫
V
f(Φ(LXY ))

1

|det(L′Y (0))|
dY.

Now note that, if Y ∈ V , then so does LY (0) = Y , so LX(Y ) = LX◦LY (0) = LLXY (0)
makes sense, and we have by the chain rule

L′LXY
(0) = L′X(Y ) ◦ L′Y (0),

hence in particular
1

| det(L′Y (0))|
=
| det(L′X(Y ))|
|det(L′LXY

(0))|
.

This implies that

Λg(f) =

∫
V
f(Φ(LXY ))

|det(L′X(Y ))|
| det(L′LXY

(0))|
dY.

Using the substitution Z = LXY , we see that this is equal to∫
W
f(Φ(Z))

1

| det(L′Z(0))|
dZ.

As vol(AN −W ) = 0, the last integral is equal to
∫
An
f(Φ(Z)) 1

| det(L′Z(0))|dZ, i.e. to

Λ(f).

So we have shown that the function SO(n) → C, g 7→ Λ(Lgf) is constant on the
open dense subset U . As this function is continuous (it is the composition of the
continuous function SO(n) → Cc(SO(n)), g 7→ Lgf and of the continuous linear
function Λ : Cc(SO(n))→ C), it is constant on the whole SO(n), which means that
Λ(Lgf) = Λ(f) for every g ∈ SO(n).

�
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