
MAT 449 : Problem Set 1

Due Thursday, September 20

In this problem set, N is the set of nonnegative integers.

Examples of topological groups

1. Let V be a Banach space over C. (That is, V is a normed C-vector space which is
complete for the metric given by its norm.) We denote by L(V ) the space of bounded
linear operators from V to itself, equipped with the operator norm. Remember that, if
‖.‖ is the norm on V , then the operator norm ‖.‖op is defined by : for every f ∈ L(V ),

‖f‖op = inf{c ∈ R≥0|∀v ∈ V, ‖f(v)‖ ≤ c‖v‖} = sup
v∈V, ‖v‖=1

‖f(v)‖

Let GL(V ) be the group of invertible elements in L(V ), with the topology induced by
that of L(V ).

You can do this problem assuming that V is finite-dimensional. You’ll get one point
of extra credit for every question where you treat the general case (i.e. without any
assumption on the dimension of V ).

a) (1) Show that GL(V ) is an open subset of L(V ).

b) (2) Show that GL(V ) is a topological group.

c) (1) Show that GL(V ) is locally compact if and only if V is finite-dimensional.

Solution.

a) Note that, by definition of the operator norm, we have ‖xy‖op ≤ ‖x‖op‖y‖op for all
x, y ∈ L(V ). (This property is called “submultiplicativity”.) So, if x ∈ L(V ) is such
that ‖x‖op < 1, then the series

∑
n≥0 x

n converges (we take x0 = idV by convention),
and we have (idV − x)(

∑
n≥0 x

n) = (
∑

n≥0 x
n)(idV − x) = idV . Hence, if ‖x‖op < 1,

then idV − x ∈ GL(V ).

Now let x ∈ GL(V ). We want to show that GL(V ) contains a neighborhood of
x in L(V ). Let y ∈ L(V ) be such that ‖y‖op < ‖x−1‖op. Then ‖x−1y‖op < 1, so
idV − x−1y is invertible, hence so is x − y = x(idV − x−1y). So every element x′ of
L(V ) such that ‖x− x′‖op < ‖x−1‖op is in GL(V ), which proves the result.

If V is finite-dimensional, we can also use tha fact that the determinant is a contin-
uous map det : L(V )→ C, and that GL(V ) is the inverse image of the open subset
C× of C.

b) Let’s show that multiplication is a continuous map from L(V ) × L(V ) to L(V ).
(This implies immediately that multiplication is continuous on GL(V ).) This follows
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immediately from the submultiplicativity of the operator norm. Indeed, if x, x′, y, y′ ∈
L(V ), then we have

‖xy − x′y′‖op = ‖x(y − y′) + (x− x′)y′‖op ≤ ‖x‖op‖y − y′‖op + ‖x− x′‖op‖y′‖op.

Using the fact that

‖y′‖op = ‖y + (y′ − y)‖op ≤ ‖y‖op + ‖y − y′‖op,

we see that, if we fix x and y, then ‖xy−x′y′‖op tends to 0 as (‖x−x′‖op, ‖y− y′‖op)
tends to (0, 0).

Let’s show that inversion is continuous on GL(V ). Let x ∈ GL(V ). Let y ∈ L(V ),
and write h = x − y and c = ‖h‖op‖x−1‖op. Then y = x − h = x(idV − x−1h).
We have seen in the answer of (a) that, if c < 1, then y is invertible and y−1 =
(
∑

n≥0(x
−1h)n)x−1 = x−1 +

∑
n≥1(x

−1h)nx−1; in particular, we also have

‖y−1 − x−1‖op ≤
∑
n≥1
‖(x−1h)nx−1‖op = ‖x−1‖op

∑
n≥1

cn = c
1−c‖x

−1‖op.

This shows that, if x is fixed, then ‖x−1 − y−1‖op tends to 0 as ‖x− y‖op tends to 0,
which implies the result.

There is another way to prove the second point if V is finite-dimensional. Indeed, in
that case, we may assume that V = Cn for some n ∈ N, so GL(V ) = GLn(C). Then
we use the fact that, if x ∈ GLn(C), the inverse of x is equal to (detx)−1yT , where
y is the matrix of cofactors of x. As the coefficients of y are continuous functions of
x (because they are ±1 times determinants of submatrixes of x), this shows that the
coefficients of x−1 are continuous functions of x.

c) By (1)(a), a topological group is locally compact if and only its unit has a compact
neighborhood. As GL(V ) is open in L(V ) by question (a), this implies that GL(V )
is locally compact if and only if e has an open neighborhood in L(V ). As the topology
of L(V ) is defined by a norm, this is equivalent to the fact that closed balls in L(V )
are compact. By Riesz’s lemma, this is equivalent to the fact that L(V ) is finite-
dimensional. If V is finite-dimensional, then L(V ) is also finite-dimensional. If V
is infinite-dimensional, then it follows from the Hahn-Banach theorem that L(V ) is
also infinite-dimensional.

�

2. Let (Gi)i∈I be a family of topological groups.

a) (2) Show that
∏

i∈I Gi is a topological group (for the product topology).

b) (2, extra credit) If all the Gi are locally compact, is
∏

i∈I Gi always locally compact
? (Give a proof or a counterexample.)

Solution.

a) Let’s show that multiplication is continuous. Let (xi), (yi) ∈
∏

i∈I Gi. Let U be a
neighborhood of (xiyi) in

∏
i∈I Gi. By the definition of the product topology, there

exists a finite subset J of I and open neighborhoods Ui of xiyi in G, for i ∈ J , such
that U ⊃ (

∏
i∈J Ui) × (

∏
i∈I−J Gi). By continuity of multiplication on the Gi for

i ∈ J , we can find, for every i ∈ J , open neighborhoods Vi and Wi of xi and yi such
that ViWi ⊂ Ui. Let V = (

∏
i∈J Vi)×(

∏
i∈I−J Gi) and W = (

∏
i∈J Wi)×(

∏
i∈I−J Gi).
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Then V and W are open neighborhoods of (xi) and (yi) in
∏

i∈I Gi, and we have
VW ⊂ U .

Let’s show that inversion is continuous. (The proof is similar.) Let (xi) ∈
∏

i∈I Gi.
Let U be a neighborhood of (x−1i ) in

∏
i∈I Gi. By the definition of the product

topology, there exists a finite subset J of I and open neighborhoods Ui of xiyi in G,
for i ∈ J , such that U ⊃ (

∏
i∈J Ui)× (

∏
i∈I−J Gi). By continuity of inversion on the

Gi for i ∈ J , we can find, for every i ∈ J , an open neighborhood Vi of xi such that
V −1i ⊂ Ui. Let V = (

∏
i∈J Vi) × (

∏
i∈I−J Gi). Then V is an open neighborhood of

(xi) in
∏

i∈I Gi, and we have V −1 ⊂ U .

b) The answer is “no”, as soon as infinitely many of Gi are not compact. Indeed, let
us denote by pj :

∏
i∈I Gi → Gj the projection maps. These are continuous maps,

so they send compact sets to compact sets. Now suppose that the set of i ∈ I such
that Gi is not compact is infinite. If

∏
i∈I Gi is locally compact, then its unit has

a a compact neighborhood K. By the definition of the product topology, K must
contain a set U of the form (

∏
i∈J Ui) × (

∏
i∈I−J Gi), where J is a finite subset of

I and, for every i ∈ J , Ui is a neighborhood of e in Gi. By hypothesis, there exists
i ∈ I − J such that Gi is not compact. But we have Gi ⊃ pi(K) ⊃ pi(U) = Gi, so
Gi = pi(J) is compact, which is absurd.

Conversely, suppose that there exists a finite subset J of I such that Gi is compact
for every i ∈ I − J . Then

∏
i∈I Gi is locally compact. Indeed, we have

∏
i∈I Gi =

(
∏

i∈J Gi) × (
∏

i∈I−J Gi) and
∏

i∈I−J Gi is compact by Tychonoff’s theorem, so it
suffices to prove that

∏
i∈J Gi is locally compact. In other words, we may assume

that I is finite. But then, if (xi) ∈
∏

i∈I Gi and Ki is a compact neighborhood of xi
for every i ∈ I, the product

∏
i∈I Ki is a compact neighborhood of (xi).

�

3. Let (I,≤) be an ordered set. Consider a family (Xi)i∈I of sets and a family (uij : Xi →
Xj)i≥j of maps such that :

• For every i ∈ I, we have uii = idXi ;

• For all i ≥ j ≥ k, we have uik = uij ◦ ujk.

This is called a projctive system of sets indexed by the ordered set I. The projective limit
of this projective system is the subset lim←−i∈I Xi of

∏
i∈I Xi defined by :

lim←−
i∈I

Xi = {(xi)i∈I ∈
∏
i∈I

Xi|∀i, j ∈ I such that i ≥ j, uij(xi) = xj}.

a) (1) If all the Xi are Hausdorff topological spaces and all the uij are continuous maps,
show that lim←−i∈I Xi is a closed subset of

∏
i∈I Xi. From now on, we will always put

the induced topology on lim←−i∈I Xi.

b) (1) If all the Xi are compact Hausdorff topological spaces and all the uij are con-
tinuous maps, show that lim←−i∈I Xi is also compact Hausdorff. (Hint : Tychonoff’s

theorem.)

c) (2) If all the Xi are groups (resp. rings) and all the uij are morphisms of groups
(resp. of rings), show that lim←−i∈I Xi is a subgroup (resp. a subgroup) of

∏
i∈I Xi.

d) (2) If all theXi are topological groups and all the uij are continuous group morphisms,
show that lim←−i∈I Xi is a topological group.

e) (2) Let p be a prime number. Take I = N, with the usual order, Xn = Z/pnZ and
unm : Z/pnZ→ Z/pmZ be the reduction modulo pm map. Show that Zp := lim←−i∈I Xi

is a ring, and a compact topological group for the addition.
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Solution.

a) We write X =
∏

i∈I Xi and X ′ = lim←−i∈I Xi. For every i ∈ I, let pi : X → Xi be
the projection; this is a continuous map. Hence, if i, j ∈ I are such that i ≥ j, the
subset {x ∈ X|uij ◦ pi(x) = pj(x)} of X is closed (because it is the inverse image of
the diagonal by the continuous map (uij ◦ pi, pj) : X → Xj ×Xj , and the diagonal
of Xj ×Xj is closed as Xj is Hausdorff). But, by definition of the projective limit,
we have

X ′ =
⋂

i,j∈I, i≥j
{x ∈ X|uij ◦ pi(x) = pj(x)}.

So X ′ is also closed.

b) If all the Xi are compact Hausdorff topological spaces, then X is compact Hausdorff
by Tychonoff’s theorem. By (a), the projective limit is a closed subspace of X, so it
is also compact Hausdorff.

c) We keep the notation of (a). Then all the projections pi are morphisms of groups
(resp. rings), so, for all i, j ∈ I such that i ≥ j, the subset {x ∈ X|uij ◦pi(x) = pj(x)}
of X is a subgroup (resp. subring). By definition of the projective limit, we have

X ′ =
⋂

i,j∈I, i≥j
{x ∈ X|uij ◦ pi(x) = pj(x)}.

So X ′ is also a subgroup (resp. subring).

d) By (3)(a), the direct product is a topological group. By question (c), the projective
limit X ′ is a subgroup of X. Hence X ′ is a topological group.

e) The set Zp is a ring by question (c) and a topological group by question (d). It is
compact by question (b) (note that finite sets with the discrete topology are compact
Hausdorff).

�

4. Let p be a prime number. We define the p-adic norm |.|p on Q in the following way :

• |0|p = 0;

• if x is a nonzero rational number, we write x = pny with y a rational number whose
numerator and denominator are prime to p, and we set |x|p = p−n.

a) (2) Show that we have, for every x, y ∈ Q :

• |x+ y|p ≤ max(|x|p, |y|p), with equality if |x|p 6= |y|p;
• |xy|p = |x|p|y|p.

In particular, the p-adic distance function d(x, y) = |x− y|p is a metric on Q. We denote
by Qp the completion of Q for this metric.

b) (4) Show that the p-adic norm |.|p, the addition and the multiplication of Q extend
to Qp by continuity, that Qp is a field (called the field of p-adic numbers), and that
the statements of (a) extend to Qp.

c) (1) Show that the additive group of Qp is a topological group.

d) (1) Calculate the subset |Qp|p of R.

e) (1) Show that every open ball in Qp is also a closed ball, and that every closed ball
of positive radius in Qp is also an open ball.

f) (1) Show that Qp is totally disconnected (i.e. its only nonempty connected subsets
are the singletons) but not discrete.
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g) (1) Show that a series
∑

n≥0 xn is convergent if and only if limn→+∞ |xn|p = 0.

h) (1) If m ∈ Z and (cn)n≥m is a family of integers, show that the series
∑

n≥m cnp
n

converges in Qp, and that its p-adic absolute value is ≤ p−m, with equality if cm is
prime to p.

i) (2) Let x ∈ Qp − {0}. Show that there exists a unique m ∈ Z and a unique family
(cn)n≥m of elements of {0, 1, . . . , p− 1} such that xm 6= 0 and x =

∑
n≥m cnp

n, and
that |x|p = p−m.

j) (2) Let B = {x ∈ Qp|‖x‖p ≤ 1}. Show that this is a subring of Qp, and the closure
of Z in Qp.

k) (2) We define a map u from B to
∏

n≥0 Z/pnZ in the following way : If x ∈ B, then,
by question (e), we can find a Cauchy sequence (xn)n≥0 of elements of Z converging
to x. After replacing it by a subsequence, we may assume that |x − xn|p ≤ p−n for
every n. We set u(x) = (xn mod pnZ)n≥0.

Show that u is well-defined, a homeomorphism from B to Zp, and that it is also a
morphism of rings. We will use this to identify B and Zp.

l) (2) We identify Mn(Qp) with Qn2

p , we put the product topology on it, and we use the
induced topology on GLn(Qp). Show that GLn(Qp) is a locally compact topological
group.

m) (2) Show that GLn(Zp) is an open compact subgroup of GLn(Qp). (Hint : Show
that Z×p is closed in Zp.)

Solution.

Dan : I tried to be very thorough in the solution. If they are a bit sketchier but got the
idea, you don’t have to take points off.

a) We first note that, if x ∈ Z−{0}, then we can write x = pmx′ with m ≥ 0 and x′ ∈ Z
prime to p, so |x|p = pm ≤ 1. Of course, if x = 0, we also have |x|p ≤ 1.

We also note that it follows immediately from the definition of |.|p that, if x ∈ Q×,
we have |x−1|p = |x|−1p .

Let x, y ∈ Qp. If x = 0, then x + y = y and xy = 0, so both points are obvious;
the case y = 0 is similar. So we assume that both x and y are nonzero, and we
write x = pnx′ and y = pmy′, with x′ and y′ rational numbers whose numerator and
denominator are prime to p. Then the numerator and denominator of x′y′ are also
prime to p, and xy = pn+mx′y′, so

|xy|p = p−n−m = p−np−m = |x|p|y|p.

To prove the first identity, note that, as the identity is symmetric in x and y, we
may assume that n ≤ m. (Note that then we have p−n = |x|p = max(|x|p, |y|p).) We
write x′ = a

b and y′ = c
d , with a, b, c, d ∈ Z prime to p. Then

x+ y = pn(x′ + pm−ny) = pn ad+pm−ncb
bd ,

hence, by what we already proved,

|x+ y|p = |pn|p|ad+ pm−nbc|p|bd|−1p .

As bd is prime to p, we have |bd|p = 1 (by definition of |.|p). As ad+ pm−nbc ∈ Z, we
have |ad+ pm−ncb|p ≤ 1 by the remark at the beginning. Finally, we get

|x+ y|p ≤ |pn|p = p−n = max(|x|p, |y|p).
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Finally, if |x|p 6= |y|p, we have n < m, hence ad + pm−ncb is prime to p, and the
definition of |.|p gives |x+ y|p = p−n.

b) By definition, Qp is the set of Cauchy sequences (xn)n≥0 of elements of Q (for the
metric given by the p-adic distance), modulo the equivalence relation ∼ defined by :
(xn)n≥0 ∼ (yn)n≥0 if and only if |xn − yn|p → 0 as n→ +∞.

Note that the second identity of (a) imply the triangle inequality : for all x, y ∈ Q,
we have |x+ y|p ≤ |x|p + |y|p.
Let x ∈ Qp, and let (xn)n≥0 be a Cauchy sequence representing x. By the triangle
inequality, we have, for all n,m ∈ N, ||xn|p − |xm|p| ≤ |xn − xm|p. So (|xn|p)n≥0
is a Cauchy sequence in R, and, as R is complete, it has a limit. Let (yn)n≥0
be another Cauchy sequence representing x. By the triangle inequality, we have
||xn|p − |yn|p| ≤ |xn − yn|p for every n ≥ 0, so the limits of (|xn|p)n≥0 and (|yn|p)n≥0
are equal. Hence we can define |x|p by |x|p = limn→+∞ |xn|p.
Now let x, y ∈ Qp, and choose Cauchy sequences (xn)n≥0 and (yn)n≥0 representing
x and y. First note that the sequences (|xn|p)n≥0 and (|yn|p)n≥0 are bounded (for
example because they converge, as we have seen above). Now, using (a), we get for
all n,m ∈ N :

|(xn + yn)− (xm + ym)|p ≤ max(|xn − xm|p, |yn + ym|p)

and

|xnyn−xmym|p = |xn(yn−ym)+(xn−xm)ym|p ≤ max(|xn|p|yn−ym|p, |ym|p|xn−xm|p).

Hence the sequences (xn+yn)n≥0 and (xnyn)n≥0 are Cauchy sequences (for the second
one, we use the fact that (|xn|p)n≥0 and (|yn|p)n≥0 are bounded), so they represent
elements of Qp. We want to call these elements x + y and xy, but first we have to
check that they are independent of the choice of the Cauchy sequences representing
x and y. So let (x′n)n≥0 and (y′n)n≥0 be two other Cauchy sequences representing x
and y respectively. Then we have, for every n ≥ 0,

|(xn + yn)− (x′n + y′n)|p ≤ max(|xn − x′n|p, |yn, y′n|p)

and

|xnyn−x′ny′n|p = |xn(yn−y′n) + (xn−x′n)y′n|p ≤ max(|xn|p|yn−y′n|p, |y′n|p|xn−x′n|p).

So both sequences ((xn + yn) − (x′n + y′n))n≥0 and (xnyn − x′ny′n)n≥0 converge to 0,
which means that the sequences (xn +yn)n≥0 and (x′n +y′n)n≥0 (resp. (xnyn)n≥0 and
(x′ny

′
n)n≥0) have the same limit, and so the definition of x+ y and xy makes sense.

The ring axioms for Qp follow immediately from the definition of the operations. Let’s
check that Qp is a field. Let x ∈ Qp − {0}, and choose a Cauchy sequence (xn)n≥0
representing x. As x 6= 0, the sequence (|xn|p)n≥0 cannot converge to 0, so its limit
(which is |x|p) is nonzero. So we have |xn − xm|p ≤ |x|p/2 for n,m big enough, and,
up to replacing (xn)n≥0 by an equivalent Cauchy sequence, we can assume that it is
true for all n,m ≥ 0. Let n,m ≥ 0. By (a), we have |xn|p ≤ max(|xm|p, |xn − xm|p).
Going to the limit as m → +∞, we get |xn|p ≤ |x|p. Similarly, going to the limit
as n → +∞ and using the fact that |x|p > |x|p/2 ≥ limn→+∞ |xn − xm|p gives
|x|p ≤ |xm|p. This implies that |x|p = |xn|p for every n ≥ 0. Now, if we can show
that the sequence (x−1n )n≥0 is a Cauchy sequence, then the element of Qp that it
represents will clearly be an inverse of x. But we have, for all n,m ≥ 0,

|x−1n − x−1m |p = |x−1n x−1m |p|xm − xn|p = |x|−2p |xm − xn|p,
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so |x−1n − x−1m |p does converge to 0 as n,m→ +∞.

We finally prove that the identities of (a) stay true in Qp. If x, y ∈ Qp − {0}, then
we just saw that we can find Cauchy sequences (xn)n≥0 and (yn)n≥0 converging to
x and y such that, for every n ≥ 0, |x|p = |xn|p and |y| = |yn|p. Of course, this is
also true if x or y is 0. Then the identities follow immediately from (a) and from the
definition of the operations on Qp.

c) The addition on Qp is continuous by definition (it is defined as the extension by
continuity of a map). The inversion map x 7→ −x is continuous because |x|p = |−x|p.

d) We have seen that, if x ∈ Qp, then there is a Cauchy sequence of Q converging to x
and such that |x|p = |xn|p for every n ≥ 0. So |Qp|p = |Q|p = {0} ∪ pZ.

e) If x ∈ Qp and r ∈ R, we write B(x, r) and B(x, r) for the open and closed balls of
center x and radius r.

Let x ∈ Qp. Let r ∈ R. If r ≤ 0, then B(x, r) = ∅ = B(x,−1). Suppose that r > 0,
and let n be the unique integer such that pn < r ≤ pn+1. By the previous question,
if a ∈ Qp is such that |a|p < r, then |a|p ≤ pn, and obviously the converse is true.
So B(x, r) = B(x, pn). Now let m be the unique integer such that pm ≤ r < pm+1.
Then we see similarly that B(x, r) = B(x, pm+1).

f) Let x, y ∈ Qp such that x 6= y. Then |x− y|p > 0, so we can choose r > 0 such that
r < |x− y|p. Then B(x, r) is an open and closed subset of Qp containing x and not
y, so x and y cannot be in the same connected subset of Qp. This shows that Qp is
totally disconnected.

To show that Qp is not discrete, it suffices to show that its subset {0} is not open.
This follows from the fact that the sequence (pn)n≥0 converges to 0 in Qp, and that
pn 6= 0 for every n ∈ Z.

g) Define a sequence (Sn)n≥0 of rational numbers by Sn =
∑n

i=0 xn. Then the series∑
≥0 xn converges if and only if the sequence (Sn)n≥0. In particular, if the series

converges, then |xn|p = |Sn+1 − Sn|p tends to 0 as n→ +∞.

Conversely, suppose that limn→+∞ |xn|p = 0. For all n, n′ ∈ N, if n ≤ n′, then (using
(b)) :

|Sn′ − Sn|p = |
n′∑

i=n+1

xi|p ≤ max
n+1≤i≤n′

|xi|p ≤ sup
i≥n+1

|xi|p.

This tends to 0 as n→ +∞, so (Sn)n≥0 is a Cauchy sequence, hence it converges in
Qp, and so does the series

∑
n≥0 xn.

h) The convergence follows from the previous question and from the fact, noted in the
proof of (b), that |c|p ≤ 1 for every c ∈ Z. Let x =

∑
n≥m cmp

m. By definition, we
have

x = lim
n→+∞

n∑
i=m

cip
i.

For every n ≥ m, we have

|
n∑

i=m

cip
i|p ≤ max

m≤i≤n
|ci|p|pi|p = p−m,

so |x|p ≤ p−m. Suppose that cm is prime to p; then |cm|p = 1. Hence |cmpm|p =
p−m > |cipi|p for every i > m, so, using (b) again, for every n ≥ m,

|
n∑

i=m

cip
i|p = p−m.
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This gives |x|p = p−m.

i) Let’s show existence. We may assume x 6= 0 (otherwise the result is trivial). We know
that |x|p = p−m for some m ∈ Z. Choose a Cauchy sequence (xn)n≥0 converging to
x. After replacing (xn)n≥0 by a subsequence, we may assume that |x − xn|p < p−n

for every n ≥ 0.

Let n ≥ 0. We write xn in base p as xn =
∑bn

i=an
ci,np

i, with an, bn ∈ Z and
ci,n ∈ {0, 1, . . . , p− 1}. We may assume that can,n 6= 0. Then can,n is prime to p, so
|can,npan |p = p−an > |ci,npi| for every i > an, and so (b) gives

p−m = |xn|p = p−an ,

hence finally m = an.

Also, we can replace bn by +∞ in the expression for xn, by setting ci,n = 0 for i > bn.

Let n, n′ ∈ N, and suppose that n ≥ n′. Then |xn−xn′ |p ≤ max(|xn−x|p, |x−xn′ |p) <
p−n

′
. On the other hand, we have xn − xn′ =

∑
i≥m(ci,n − ci,n′)pi. Note that the

ci,n − ci,n′ are in {1 − p, . . . , p − 1}, so they are either 0 or prime to p. By (h), this
implies that |xn−xn′ |p = p−r, where r is the smallest integer such that cr,n−cr,n′ 6= 0.
This implies in turn that n′ < r, that is, that ci,n = ci,n′ for m ≤ i ≤ n′.
We now define integers ci, i ≥ m, by ci = c0,i if i ≤ 0 and ci = ci,i if i ≥ 0. By the
previous paragraph, ci = ci,n if 0 ≤ i ≤ n. For every n ≥ 0, let yn =

∑n
i=m cip

i.
Then

xn − yn =
∑
i≥m

(ci,n − ci)pi =
∑

i≥n+1

(ci,n − ci)pi,

so |xn − yn|p ≤ p−n−1 by (h). Hence the sequence (yn)n≥0 also converges to x, and
this shows that x =

∑
i≥m cip

i.

Let’s show uniqueness. Suppose that we have two sequences of integers (cn)n≥m,
(dn)n≥m such that x =

∑
n≥m cnp

n =
∑

n≥m dnp
n and cn, dn ∈ {0, . . . , p − 1} for

every n. Then 0 =
∑

n≥m(cn−dn)pn. Also, for every n, cn−dn is in {1−p, . . . , p−1},
so it is 0 or prime to p. If we had a n such that cn − dn 6= 0, then this would imply
|0|p 6= 0 by (h), and this is impossible. So cn = dn for every n.

j) The fact that B is a subring follows from (b) (and the fact that | − x|p = |x|p, which
is obvious on the definition), and we have seen in the proof of (b) that Z ⊂ B. Also,
B is a closed ball, so it is closed in Qp, and so it contains the closure of Z.

Let x ∈ B. By (i), we can write x =
∑

n≥0 cnp
n, with cn ∈ {0, . . . , p − 1}. This

means that x is the limit of the sequence of integers (
∑n

i=0 cip
i)n≥0, hence that x is

in the closure of Z in Qp.

k) We show that u is well-defined. Let x ∈ B, and let (xn)n≥0, (x′n)n≥0 be two sequences
as in the statement. Let n ≥ 0. Then |xn − x′n|p ≤ max(|xn − x|p, |x− x′n|p) ≤ p−n,
which means that pn divides xn − x′n, and so xn and x′n have the same image in
Z/pnZ. This proves that u(x) is well-defined.

The fact that u is a morphism of rings follows immediately from the definition of the
ring operations on Qp and the fact that reduction modulo pn is a morphism of rings
from Z to Z/pnZ for every n.

We show that u is injective. Let x, y ∈ B such that u(x) = u(y), and choose
sequences (xn)n≥0, (yn)n≥0 converging to x, y and satisfying the conditions of the
statement. Then, for every n ≥ 0, we have xn = yn mod pn, so pn divides xn − yn,
i.e., |xn − yn|p ≤ p−n. Going to the limit as n → +∞, we get |x − y|p = 0. But we
have seen in (b) that the only element of Qp with p-adic norm 0 is 0, so x = y.
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We show that u is surjective. Let (xn + pnZ)n≥0 be an element of Zp. For every
n ≥ 0, we choose a representative in {0, . . . , pn−1} for xn +pnZ, and we denote it by
xn. We also write xn in base p as xn =

∑n−1
i=0 ci,np

i, with 0 ≤ ci,n ≤ p−1. Let m ≥ n.
We know that xm = xn mod pn, so ci,m = ci,n for 0 ≤ i ≤ n. We define a sequence
(ci)i≥0 by ci = ci,0 = ci,1 = . . . = ci,i, and we set x =

∑
i≥0 cip

i ∈ Qp. Then x ∈ B by
(c), and it is easy to check that (xn)n≥0 is a Cauchy sequence of integers converging
to x and satisfying the conditions of the statement. Hence u(x) = (xn + pnZ)n≥0.

We show that u is continuous. Every open set in Zp is a union of open sets of
the form Zp ∩ ((

∏
n≥m+1 Z/pnZ) × {(xm, . . . , x0)}), with m ≥ 0 and xi ∈ Z/piZ

for 0 ≤ i ≤ m. So it suffices to show that the inverse image of a set of that form
is open in B. Write A = (

∏
n≥m+1 Z/pnZ) × {(xm, . . . , x0)}. Choose x ∈ Z such

that x = xm mod pm. Then we have x = xn mod pn for 0 ≤ n ≤ m (because
xn = xm mod pn). We will show that y ∈ B is in u−1(A) if and only if |x − y|p <
p−m+1, which shows that u−1(A) is open. First note that, as the values of |.|p are
always 0 or integer powers of p, the condition that |x− y|p < p−m+1 is equivalent to
|x − y|p ≤ p−m. 1 Let y ∈ B, and let (yn)n≥0 a Cauchy sequence converging to y
as in the definition of u. Suppose that |x − y|p ≤ p−m. Then, for n ∈ {0, . . . ,m},
we have |yn − x|p ≤ max(|yn − y|p, |y − x|p) ≤ p−n, hence yn = x = xn mod pn.
So u(y) ∈ A. Conversely, suppose that u(y) ∈ A. Then ym = xm = x mod pm, so
|ym − x|p ≤ p−m. As |y − ym|p ≤ p−m, this implies that |x− y|p ≤ p−m.

Finally, we show that u is open. As u is bijctive, it suffices to show that the image of
an open ball is open. We have more or less already done this : let x ∈ B, let r ∈ R>0,
and let A′ be the open ball of center x and radius r. If m is the smallest integer such
that p−m < r, then A′ is also the closed ball of center x and radius p−m (because
|.|p has values in {0} ∪ pZ). Let y be an integer such that |x− y|p < p−m. Then the
second identity of (a) implies that, for z ∈ Qp, we have |x − z|p ≤ p−m if and only
if |y − z|p ≤ p−m, which means that we can replace x by y in the definition of A′.
Then we have already seen above that u(A′) = (

∏
n≥m+1 Z/pnZ) × {(xm, . . . , x0)},

where xn = y + pnZ for 0 ≤ n ≤ m.

l) The proof that GLn(Qp) is a topological group is the same as in (2)(b) (the finite-
dimensional case). It is also open in Mn(Qp), because it is the inverse image by the
continuous function det of the open subset Q×p of Qp. So to show that GLn(Qp)
is locally compact, it suffices to show that Mn(Qp) is locally compact, which will
follow if we know that Qp is locally compact. But for every x ∈ Qp, the closed ball
of radius 1 centered at x, which is x + Zp, is a compact neighborhood of x : it is
compact because Zp is compact and translation by x is continuous (by definition of
the metric), and it is open because it is equal to the open ball of center x and radius
p.

m) First, GLn(Zp) is open in GLn(Qp) because it is the intersection of GLn(Qp) with
the open subset Mn(Zp) of Mn(Qp) (we have seen in the previous question that Zp

is open in Qp). As Mn(Zp) is compact (because Zp) is, to show that GLn(Zp) is
compact, it suffices to show that it is closed in Mn(Zp). As it is the inverse image of
Z×p by the continuous map det;Mn(Zp) → Zp, it suffices to show that Z×p is closed
in Zp. But Z×p = {x ∈ Zp||x|p = 1} (which implies that it is closed). Indeed, let
x ∈ Zp. If x has an inverse in Zp, then |x−1|p = |x|−1p ≤ 1, so |x|p ≥ 1, hence |x|p = 1.
Conversely, if |x|p = 1, then |x−1|p = 1, so x−1 ∈ Zp.

�

1So, in Qp, every open ball is a closed ball and vice versa.
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Examples of Haar measures

5. (6) Let G be a topological group. Suppose that we have a homeomorphism of G with an
open subset of some RN (not necessarily compatible with any groups structures), such
that left translations on G are given by affine maps. That is, if we identify G with its
image in RN (as a topological space only !), then, for every x ∈ G, there is a N × N
matrix A(x) ∈ MN (R) and an element b(x) ∈ RN such that, for every y ∈ G, we have
xy = A(x)y + b(x).

Show that | detA(x)|−1dx is a left Haar measure on G, where dx denotes the Lebesgue
measure on RN . (Hint : The change-of-variable formula. Also, start by proving that x
uniquely determines A(x) and b(x), and that x 7→ A(x) is a morphism of groups from G
to GLN (R).)

Solution. Let x ∈ G. Suppose that we have A,A′ ∈MN (R) and b, b′ ∈ RN such that, for
every y ∈ G, xy = Ay+ b = A′y+ b′. Then (A−A′)y = b′− b for every y ∈ G. But the set
of solutions the equation (A − A′)y = b′ − b is an affine subspace of RN (i.e. a translate
of a linear subspace), so it has empty interior unless it is equal to RN . As G is open in
RN , this means that we must have (A − A′)y = b′ − b for every y ∈ RN . The only way
this is possible is if Ker(A−A′) = RN , hence A = A′, and then we also have b = b′. So x
determines A(x) and b(x).

We prove that A(x) is invertible for every x ∈ G. Indeed, if A(x) is not invertible, then
the image of the map G → G, y 7→ xy is contained in b(x) + Im(A(x)), which is the
translate by b(x) of a proper linear subspace of RN , and hence it has empty interior. But
this image must be equal to G, hence be an open subset of RN , so we get a contradiction,
and so A(x) must be invertible.

We prove that x 7→ A(x) is a morphism of groups. Let x1, x2 ∈ G. For every y ∈ G, we
have

A(x1x2)y + b(x1x2) = x1x2y = A(x1)A(x2)y +A(x1)b(x2) + b(x1).

By the first paragraph, this implies thatA(x1x2) = A(x1)A(x2) and b(x1x2) = A(x1)b(x2)+
b(x1).

Now remember that the change of variable formula implies that, if U is a measurable subset
of RN , if A ∈ GLN (R) and b ∈ RN , and if V is the image of U by the transformation
y 7→ Ay + b, then we have, for every f ∈ L1(V ),∫

V
f(v)dv = |detA|

∫
U
f(Ay + b)dy.

Applying this to U = V = G, A = A(y) and b = b(y) for some y ∈ G, we get, for every
f ∈ L1(G), ∫

G
f(x)dx = |detA(y)|

∫
G
f(yx)dx.

Let f ∈ Cc(G). Then the function x 7→ |detA(x)|−1f(x) is also in Cc(G), so we can apply
the previous paragraph to it. We get, for every y ∈ G,∫

G
f(yx)| detA(yx)|−1dx = | detA(y)|−1

∫
G
f(x)|detA(x)|−1dx.

Using the fact that det(A(xy)) = det(A(x)) det(A(y)), we can divide both sides by
| det(A(y))|−1, and we get∫

G
f(yx)| detA(x)|−1dx =

∫
G
f(x)|detA(x)|−1dx,
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which is the desired result.

�

6. In this problem, dx will always be the Lebesgue measure on R.

a) (1) Show that dx
|x| is a Haar measure on the multiplicative group R×.

b) (1) Show that dxdy
x2+y2

is a Haar measure on the multiplicative group C×, with coordi-
nates z = x+ iy.

c) (3) Let dT be the Lebesgue measure on Mn(R). Show that |detT |−ndT is a left and
right Haar measure on GLn(R).

d) (2) Let G = {
(
x y
0 z

)
|x, z ∈ R×, y ∈ R}. Show that dxdydz

x2|z| is a left Haar measure

on G. Is it a right Haar measure ?

Solution. Of course, we will use the previous problem to solve every question.

a) The obvious inclusion R× ⊂ R makes R× an open subset of R. Let x ∈ R×. Then,
for every y ∈ R×, we have xy = A(x)y+b(x) with A(x) = x ∈ GL1(R) and b(x) = 0.
So the result follows from the fact that det(A(x)) = x.

b) We embed C× into R2 by the map z 7→ (Re(z), Im(z)). This makes C× into an open
subset of R2. Let z = x+ iy ∈ C×, with x, y ∈ R. Then left translation by z on C×

is given by left multiplication by the 2× 2 matrix A(z) =

(
x −y
y x

)
(this is just the

formula (x+ iy)(a+ ib) = (xa− yb) + i(ya+xb)). So the result follows from the fact
that det(A(z)) = x2 + y2.

c) The group GLn(R) is an open subset of Mn(R) ' Rn2
(because it is given by the

equation det(x) 6= 0). Let x ∈ GLn(R). Then left translation by x on Mn(R)
is a linear transformation, and we need to calculate its determinant. Note that
Mn(R) = Rn⊕ . . .⊕Rn, where we have n summands, correponding to the n columns
of a n × n matrix. Left multiplication by x preserves this decomposition, and the
determinant of its action on each summand is the determinant of the usual action of
x on Rn,i.e., det(x). So the determinant of left translation by x on Mn(R) is det(x)n.

To see that |det(T )|−ndT is also a right Haar measure, we use the obvious analogue
of the previous problem with left translations replaced by right translations, and we
see as above that the determinant of the action of x ∈ GLn(R) by right translation
on Mn(R) is det(x)n.

d) We embed G as a open subset of R3 by sending

(
x y
0 z

)
to (x, y, z). Let g =(

x y
0 z

)
∈ G. Using the fact that

(
x y
0 z

)(
a b
0 c

)
=

(
xa xb+ yc
0 zc

)
,

we see that we are in the situation of the previous problem, with

A(g) =

x 0 0
0 x y
0 0 z


and b(g) = 0. So det(A(g)) = x2z, and we get the result.
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As in (c), using the analogue previous problem for right translations, we see that the
action of g on G by right translation is linear and given by the matrixx 0 0

y z 0
0 0 z

 ,

whose determinant is xz2. So dxdydz
|x|z2 is a right Haar measure on G. It is not of the

form cdxdydz
x2|z| with c a constant, hence dxdydz

x2|z| cannot be a right Haar measure.

�

7. (extra credit) Consider the group G = (Z/2Z)N.

a) (1) Show that there exists a Haar measure µ on G such that µ(G) = 1.

b) (2) Show that every open subset of G is a countable union of set of the form U =

V ×(Z/2Z)N≥n+1 , with n ∈ N and V ⊂ (Z/2Z){0,...,n}, and that we have µ(U) = |V |
2n+1 .

c) (4) Consider the map u : G → [0, 1] sending (xn)n∈N ∈ G to
∑

n≥0 xn2−n−1. (We
identify Z/2Z with {0, 1} in the defintion of u.) Show that u is measurable and maps
µ to Lebesgue measure λ on [0, 1]. That is, show that, if B ⊂ [0, 1] is a Borel set,
then u−1(B) is a Borel set and λ(B) = µ(u−1(B)). (Hint : Show that the half-open
intervals of the form [j2−k, (j + 1)2−k] generate the Borel σ-algebra on [0, 1], and
calculate their inverse images by u.)

Solution.

a) Let µ be a left Haar measure on G. As G is commutative, µ is also a right Haar
measure. Also, by problem 3(b), the group G is compact, so µ(G) < +∞, and, after
multiplying µ by µ(G)−1, we may assume that µ(G) = 1.

b) By definition of the product topology, every open subset of G is a union of sets U of
the form V ×(Z/2Z)N−I , with I ⊂ N finite and V ⊂ (Z/2Z)I . As every finite subset of
N is included in a set of the form {0, 1, . . . , n}, we may assume that I = {0, 1, . . . , n}
for some n ∈ N. We still need to show that we can the union to be countable. Suppose
that we have an open set Ω of G of the form

⋃
i∈I Ui, with Ui = Vi × (Z/2Z)N≥ni+1

and Vi ⊂ (Z/2Z){0,...,ni}. For every n ∈ N, let In = {i ∈ I|ni = n}. Then⋃
i∈In

Ui = Vn × (Z/2Z)N≥n+1 ,

with
Vn =

⋃
i∈In

Vi ⊂ (Z/2Z){0,...,n}.

Hence Ω =
⋃

n∈N Vn × (Z/2Z)N≥n+1 .

Now we calculate µ(U), for U = V ×(Z/2Z)N≥n+1 , with V ⊂ (Z/2Z){0,...,n}. We write
W = (Z/2Z)N≥n+1 . If v, v′ ∈ (Z/2Z){0,...,n}, then {v} ×W = (v′ − v) + {v′} ×W , so
µ({v} ×W ) = µ({v′} ×W ). As G =

∐
v∈(Z/2Z){0,...,n}{v} ×W , this implies that, for

every v ∈ (Z/2Z){0,...,n},

1 = µ(G) = |(Z/2Z){0,...,n}|µ({v} ×W ),

hence µ({v}) = 1
2n+1 . On the other hand, we have U =

∐
v∈V {v} ×W , so we get

µ(U) = |V |
2n+1 .
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c) Write Ij,k = [j2−k, (j + 1)2−k]. We first show that the Ij,k, for k ≥ 0 and 0 ≤ j ≤
2k−1, generate the Borel σ-algebra on [0, 1]. Every open subset of [0, 1] is a countable
union of open intervals (a, b) with 0 ≤ a < b ≤ 1, and optionally of one or both of
the half-open intervals [0, b), 0 < b ≤ 1, and (a, 1], 0 ≤ a < 1. So we just need to
check that any of these can be written as a countable union of Ij,k’s.

Suppose that 0 ≤ a < b ≤ 1. If b− a > 2−k, and if i = 1 + b2kac and i′ = −1 + d2kbe
(where b.c and d.e are the floor and ceiling functions), then 0 < i2−k − a ≤ 2−k and
0 < b− i′2−k ≤ 2−k. This implies that

(a, b) =
⋃

k>− log2(b−a)

−2+d2kbe⋃
j=1+b2kac

Ij,k

(where log2 is the base 2 logarithm). Similarly, if 0 < b ≤ 1 and 0 ≤ a < 1, then

[0, b) =
⋃

k>− log2(b)

−2+d2kbe⋃
j=0

Ij,k

and

(a, 1] =
⋃

k>− log2(1−a)

2k−1⋃
j=1+b2kac

Ij,k.

This proves the statement about the Borel σ-algebra of [0, 1]. To finish the problem,
we just need to prove that, for all k ≤ 0 and all j ∈ {0, . . . , 2k−1}, the inverse image
u−1(Ij,k) is a Borel set in G and µ(u−1(Ij,k)) = 2−k. So we calculate these inverse
images.

First note that, if x ∈ [0, 1], then u−1(x) is a singleton unless x is of the form j2−k

for 0 < j < 2k; in that last case, x as second expression in base 2, where all the
coefficients are 1 after a certain rank.

Now let k ≥ 0 and j ∈ {0, 1, . . . , 2k − 1}. If k = 0, then j = 0 and Ij,k = [0, 1], so
u−1(Ij,k) = G and µ(G) = λ([0, 1]) = 1 by the choice of µ. Suppose that k ≥ 1. As

0 ≤ j ≤ 2k − 1, we can write j in base 2 as j =
∑k−1

i=0 ak−1−i2
i, with the ai in {0, 1}.

If 0 < j, we also write j − 1 =
∑k−1

i=0 bk−1−i2
i, with the bi in {0, 1}. If j + 1 < 2k, we

also write j + 1 =
∑k−1

i=0 ck−1−i2
i, with the ci in {0, 1}. Then we have

j2−k =
k−1∑
i=0

ai2
−(i+1),

j2−k =

k−1∑
i=0

bi2
−(i+1) +

+∞∑
i=k

2−i if j > 0

and

(j + 1)2−k =

k−1∑
i=0

ci2
−(i+1) if j + 1 < 2k,

so u−1(Ij,k) = X ∪ Y , where

Y =
(
{(a0, . . . , ak−1)} × (Z/2Z)N≥k

)
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and

X =


{(b0, . . . , bk−1, 1, 1, . . .), (c0, . . . , ck−1)} if 0 < j < 2k − 1
{(b0, . . . , bk−1, 1, 1, . . .)} if j = 2k − 1
{(c0, . . . , ck−1)} if j = 0.

As X is closed and Y is open, this is a Borel subset of G. We also know by question
(b) that µ(Y ) = 2−k = λ(Ij,k), so it remains to show that µ(X) = 0. That is, we
want to show that singletons in have volume 0 in G. As all singletons are translates
of each others, it suffices to treat the case of {0}. This follows from the fact that

{0} ⊂ ({0}){0,1,...,n} × (Z/2Z)N≥n+1

for every n ≥ 0, because the right-hand side has volume 2−(n+1) by question (b).

�

8. For x ∈ Qp and r ∈ R, write B(x, r) = {y ∈ Qp||x− y|p ≤ r} (the closed ball of center x
and radius r). Let λ be the Haar measure on Qp such that λ(Zp) = 1.

a) (1) If x ∈ Qp and m ∈ Z, show that λ(B(x, pm)) = pm.

b) (2) For every Borel set X ⊂ Qp, show that

λ(X) = inf{
∑
i≥0

pmi |∃x0, x1, . . . ∈ Qp with X ⊂
⋃
i≥0

B(xi, p
mi)}.

Solution.

a) First we note that, if x, y ∈ Qp, we have B(x, pm) = B(y, pm)+x−y, so λ(B(x, pm)) =
λ(B(y, pm)). Note also that

B(0, pm) = {x ∈ Qp||x|p ≤ pm} = {x ∈ Qp||pmx|p ≤ 1} = p−mZp

for every m ∈ Z. So, for every x ∈ Qp and evey m ∈ Z, we have

B(x, pm) = x+ p−mZp.

Also, by question (i) of problem 4, we have

Zp =

p−1∐
i=0

(i+ pZp).

Multiplying by p−m gives

B(0, pm) =

p−1∐
i=0

B(p−mi, pm−1),

hence λ(B(0, pm)) = pλ(B(0, pm−1)). As λ(B(0, 1)) = λ(Zp) = 1 by hypothesis, the
result follows by an induction on |m|.

b) First, by question (f) of problem 4, the balls B(x, r) form a base of (open !) sets
for the topology of Qp, so every open subset of Qp is a union of balls B(x, r). As
Q is dense in Qp and countable, every open subset of Qp is a countable union of
balls B(x, r) (and we can take the x in Q, but it doesn’t matter). Also, note that,
by question (b) of problem 4, if y ∈ B(x, r), then B(y, r) = B(x, r). Hence, if two
closed balls of Qp intersect, then one of them must contain the other. This implies
that every open subset of Qp is a countable disjoint union of balls B(x, r). The result
now follows immediately from (a) and from outer regularity of λ.

�
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