
MAT 449 : Problem Set 11

Due Sunday, December 16

The goal of this problem set is to study the Gelfand pair (Sn,Sr ×Sn−r). We will embed
Sr ×Sn−r in Sn in the following way : If σ ∈ Sr and τSn−r, then σ × τ ∈ Sn is given by

(σ × τ)(i) =

{
σ(i) if 1 ≤ i ≤ r
τ(i− r) + r if r + 1 ≤ i ≤ n.

If E is a finite set, we will denote by L(E) the space of functions f : E → C, with the L2

inner product given by 〈f, f ′〉 =
∑

x∈E f(x)f ′(x).

1. In this problem, we fix a finite group G acting transitively (on the left) on a set E. Let
x0 ∈ E, and let K ⊂ G be the stabilizer of x0.

a) (2) Show that the following conditions are equivalent :

(i) For all x, y ∈ E, there exists g ∈ G such that g · (x, y) = (y, x).

(ii) For every g ∈ G, we have g−1 ∈ KgK.

b) (1) If the conditions of (a) are satisfied, show that (G,K) is a Gelfand pair.

We now assume that there is a metric d : E × E → R≥0, and that the group G acts
by isometries. Suppose that the action of G on E is distance-transitive, that is : for
all (x, y), (x′, y′) ∈ E × E such that d(x, y) = d(x′, y′), there exists g ∈ G such that
g · (x, y) = (x′, y′).

c) (1) Show that (G,K) is a Gelfand pair.

d) (1) Show that the orbits of K on E are the spheres {x ∈ E|d(x, x0) = j}, for j ∈ R≥0.

e) (1) Let Ωr be the set of cardinality r subsets of {1, . . . , n}. Show that the formula
d(A,B) = r − |A ∩B| defines a metric on Ωr.

f) (2) Show that (Sn,Sr ×Sn−r) is a Gelfand pair.

Solution.

a) Suppose that (i) holds. Let g ∈ G. By (i), there exists h ∈ G such that h · (K, gK) =
(gK,K). Then the equality of the first entries gives g−1h ∈ K, and the equality of
the second entries gives g−1hg ∈ g−1K, hence g ∈ (g−1h)−1g−1K ⊂ Kg−1K.

Suppose that (ii) holds. Let g, h ∈ G. By (i), we can find k1, k2 ∈ K such that
g−1h = k1h

−1gk2, and then

(gK, hK) = g · (K, g−1hK) = g · (K, k1h
−1gK) = gk−1

1 · (K,h
−1gK)

= gk−1
1 h−1 · (hK, gK).

b) This follows from proposition V.2.5 of the notes, taking θ = idG.

1



c) Let x, y ∈ X. Then d(y, x) = d(x, y), so there exists g ∈ G such that g ·(x, y) = (y, x).
In other words, condition (i) of (a) is satisfied, so condition (ii) is also satisfied. By
(b), this implies that (G,K) is a Gelfand pair.

d) Write Sj = {x ∈ X|d(x, x0) = j}, for j ∈ Z≥0. As G acts by isometries on X and K
fixes x0, the sets Sj are stable by K. To show that they are the orbits of K on X,
we need to show that K acts transitively on each nonempty Sj . So let j ≥ 0, and
suppose that we have x, y ∈ Sj . Then d(x0, x) = d(x0, y) = j, so, by the hypothesis,
there exists g ∈ G such that g · (x0, x) = (x0, y). The fact that g · x0 = x0 implies
that g ∈ K, so x and y are in the same K-orbit.

e) We clearly have d(A,B) = d(B,A) for all A,B ∈ Ωr. Let A,B,C ∈ Ωr. First, if
d(A,B) = 0, then |A ∩ B| = r = |A| = |B|, so A ∩ B = A and A ∩ B = B, and so
A = B. Let’s prove the triangle inequality. We have

|A∩B|+ |B ∩C| = |(A∩B)∪ (B ∩C)|+ |A∩B ∩C| ≤ |B|+ |A∩C| = r+ |A∩C|,

so
d(A,C) = r − |A ∩ C| ≤ 2r − |A ∩B| − |B ∩ C| = d(A,B) + d(B,C).

f) We make Sn act by Ωr by σ·A = σ(A). This action is transitive, and Sr×Sn−r is the
stabilizer of {1, . . . , r}. Also, it is clear that Sn acts by isometries on Ωr. So, by (c),
we just need to check that the action is distance-transitive. Let A,B,A′, B′ ∈ Ωr such
that d(A,B) = d(A′, B′), i.e. |A∩B| = |A′∩B′|. Choose a bijection ϕ : A

∼→ A′ that
sends the subset A∩B of A onto A′∩B′; this is possible because |A∩B| = |A′∩B′|.
Choose a bijection ψ : B − (A ∩ B)

∼→ B′ − (A′ ∩ B′); this is also possible, because
|B − (A ∩ B)| = r − |A ∩ B| = |B′ − (A′ ∩ B′)|. Putting ϕ and ψ together gives a
bijection A∪B ∼→ A′ ∪B′ that sends A to A′ and B to B′, and any extension of this
to an element σ of Sn will satisfy σ · (A,B) = (A′, B′).

�

2. Let (Ωr, d) be the finite metric space of problem 1(e). Let N be the diameter of Ωr, that
is,

N = max{d(A,B), A,B ∈ Ωr}.

For i ∈ {0, . . . , N}, we define a linear operator ∆i : L(Ωr)→ L(Ωr) by

∆if(A) =
∑

B∈Ωr, d(A,B)=i

f(B),

for every f ∈ L(Ωr). We also denote by A the subalgebra of End(L(Ωr)) generated by
∆0, . . . ,∆N .

a) (2) Show that N = min(r, n− r).
b) (2) Show that there exist integers b0, . . . , bN , c0, c1, . . . , cN such that, for every i and

all A,B ∈ Ωr such that d(A,B) = i, we have

|{C ∈ Ωr|d(A,C) = 1 and d(B,C) = i+ 1}| = bi

and
|{C ∈ Ωr|d(A,C) = 1 and d(B,C) = i− 1}| = ci.

(Of course, c0 = 0 and c1 = 1.)

c) (1) Show that c2, . . . , cN > 0.
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d) (3) If i ∈ {1, . . . , N}, show that

∆i∆1 = bi−1∆i−1 + (b0 − bi − ci)∆i + ci+1∆i+1,

with the convention that ∆N+1 = 0.

e) (1) Show that there exist polynomials p0, . . . , pN ∈ R[t] such that deg(pi) = i and
∆i = p(∆1).

f) (1) Show that A is the subalgebra of End(L(Ωr)) generated by ∆1.

g) (1) Show that A is spanned as a C-vector space by ∆0, . . . ,∆N .

h) (2) Show that dimCA = N + 1.

i) (1) Show that the endormorphism ∆1 of L(Ωr) is self-adjoint.

j) (2) Show that we have a decomposition into pairwise orthogonal subspaces L(Ωr) =⊕N
i=0 Vi, where V0, . . . , VN are the eigenspaces of ∆1. (Hint : problem 2 of problem

set 5.)

Solution.

a) Note that d(A,B) ≤ r for all A,B ∈ Ωr by definition of d, so N ≤ r. Also, for all
A,B ∈ Ωr, we have

d(A,B) = r − |A ∩B| = r − (|A|+ |B| − |A ∪B|) = |A ∪B| − r ≤ n− r,

so N ≤ n− r, and N ≤ min(r, n− r).
Now take A = {1, . . . , r} and B = {n−r+1, . . . , n}. Then A,B ∈ Ωr, and |A∩B| =
max(0, 2r − n). So N ≥ d(A,B) = r −max(0, 2r − n) = min(r, n− r).

b) Fix i ∈ {0, . . . , N}. For all A,B ∈ Ωr such that d(A,B) = i, let

Xi(A,B) = {C ∈ Ωr|d(A,C) = 1 and d(B,C) = i+ 1}

and
Yi(A,B) = {C ∈ Ωr|d(A,C) = 1 and d(B,C) = i− 1}.

If σ ∈ Sn is such that σ(A,B) = (A′, B′), then σ induces bijections Xi(A,B)
∼→

Xi(A
′, B′) and Yi(A,B)

∼→ Yi(A
′, B′), because Sn acts on Ωr by isometries. So the

statement follows from the fact that the action of Sn on Ωr is distance-transitive,
which we showed in the proof of 1(f).

c) Let i ∈ {2, . . . , N}. Take A = {1, . . . , r} and B = {i+ 1, i+ 2, . . . , i+ r}. (Note that
i+r ≤ N+r ≤ n by (a).) We need to show that there exists at least one C ∈ Ωr such
that d(A,C) = 1 (i.e. |A∩C| = r− 1) and d(B,C) = i− 1 (i.e. |B ∩C| = r− i+ 1).
This holds for C = {2, 3, . . . , r + 1}.

d) Let f ∈ L(Ωr) and A ∈ Ωr. Then we have

∆i∆1f(A) =
∑

B∈Ωr,d(A,B)=i

∑
C∈Ωr,d(B,C)=1

f(C).

Let C ∈ Ωr. If there exists B ∈ Ωr such that d(A,B) = i and d(B,C) = 1, then we
must have i− 1 ≤ d(A,C) ≤ i+ 1 by the triangle inequality.

Suppose that d(A,C) = i+ 1. Then

{B ∈ Ωr|d(A,B) = i and d(B,C) = 1} = Yi+1(C,A)
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(with the notation of the proof of (b)). Suppose that d(A,C) = i− 1. Then

{B ∈ Ωr|d(A,B) = i and d(B,C) = 1} = Xi−1(C,A).

Finally, suppose that d(A,C) = i. Consider the set

{B ∈ Ωr|d(A,B) = i and d(B,C) = 1} ∪ {B ∈ Ωr|d(A,B) = i+ 1 and d(B,C) = 1}
∪ {B ∈ Ωr|d(A,B) = i− 1 and d(B,C) = 1}.

The union is clearly disjoint. We are trying to calculate the cardinality of the first
set, the second set is Xi(C,A) and the third set is Yi(C,A). Also, by the triangle
inequality, the union is simply

{B ∈ Ωr|d(B,C) = 1} = X0(C,C).

So we get
|{B ∈ Ωr|d(A,B) = i and d(B,C) = 1}|+ bi + ci = b).

Finally, we see that

∆iδ1f(A) = ci+1

∑
C, d(A,C)=i+1

f(C)bi−1

∑
C, d(A,C)=i−1

f(C) + (b0 − bi − ci)
∑

C, d(A,C)=i

f(C)

= ci+1∆i+1f(A) + bi−1∆i−1f(A) + (b0 − bi − ci)∆if(A).

e) We prove the statement by induction on i. It is obvious i = 0 (note that ∆0 = id, so
we take p0 = 1) and for i = 1 (take p1(t) = t). Suppose the result known up to some
i ≥ 1, and let’s prove it for i+ 1. By (c) and (d), we have

∆i+1 = c−1
i+1(∆i∆1 − bi−1∆i−1 − (b0 − bi − ci)∆i),

so ∆i+1 = pi+1(∆1), with

pi+1(t) = c−1
i+1(tpi(t)− pi−1(t)− (b0 − bi − ci)pi(t)).

It is also clear that deg(pi+1(t)) = i+ 1.

f) Let A′ be the subalgebra of End(L(Ωr)) generated by ∆1. Then A′ ⊂ A by definition
of A. By (e), we have ∆0, . . . ,∆N ∈ A′, and so A ⊂ A′.

g) We show by induction on i ≥ 0 that ∆i
1 ∈ Span(∆0,∆1, . . . ,∆i). (The conclusion

will follow by (f).) The assertion is clear for i = 0 and i = 1. Suppose that holds
up to i ≥ 1, and let’s prove it for i + 1. By (e), there exist a nonnezero c ∈ R and
c0, . . . , ci ∈ R such that ∆i+1 = a∆i+1

1 +
∑i

j=0 aj∆
j
1. As ∆j

1 ∈ Span(∆0, . . . ,∆j) for

every j ∈ {0, . . . , i} by the induction, we deduce that ∆i+1
1 ∈ Span(∆0, . . . ,∆i+1).

h) We know that A = Span(∆0, . . . ,∆N ) by (g), so we must show that the family
(∆0, . . . .∆N ) is linearly independent. Let c0, . . . , cN ∈ C. If A,B ∈ Ωr, and if we
denote by δA the indicator function of {A}, then ∆iδA(B) 6= 0 only if d(A,B) = i,
and we have

N∑
i=0

ci∆iδA(B) = cd(A,B).

As there are couples (A,B) ∈ Ω2
r such that d(A,B) = i for every i ∈ {0, . . . , N}, we

conclude that, if
∑N

i=0 ci∆i = 0, then c0 = . . . = cN = 0.
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i) Let f, g ∈ L(Ωr). Then

〈f,∆1g〉 =
∑
A∈Ωr

f(A)(∆1g)(A)

=
∑
A∈Ωr

f(A)
∑

B∈Ωr, d(A,B)=1

g(B)

=
∑

A,B∈Ωr, d(A,B)=1

f(A)g(B)

=
∑
B∈Ωr

(∆1f)(B)g(B)

= 〈∆1f, g〉.

j) As ∆1 is self-adjoint, the spectral theorem says that it is diagonalizable and that
its eigenspaces are pairwise orthogonal. So the only thing we have to show is that
there are N + 1 eigenspaces. By 2(b) of problem set 5, we know that the subalgebra
of End(L(Ωr)) generated by ∆1, i.e. A (see (f)), is reduced. By 2(c) of the same
problem set, we know that the number of eigenspaces of A, i.e. of ∆1, is dim(A),
and by (h), we know that dim(A) = N + 1.

�

3. We use the notation of problem 2. Note that we have an action of G := Sn on Ωr, and
that the stabilizer of {1, . . . , r} is K := Sr × Sn−r. Let Mn−r,r = L(Ωr), seen as a
representation of Sn via the quasi-regular representation (that is, if g ∈ G, f ∈ Mn−r,n

and A ∈ Ωr, we have (g · f)(A) = f(g−1A)).

We define d : Mn−r,r →Mn−r+1,r−1 and d∗ : Mn−r+1,r−1 →Mn−r,r by

(df)(A) =
∑

B∈Ωr|A⊂B

f(B)

and
(d∗f)(B) =

∑
A∈Ωr|A⊂B

f(A).

(If r = 0, we take d = 0 and d∗ = 0.)

We also denote by ∆ the operator ∆1 of problem 2; that is, for every f ∈ Mn−r,r, the
function ∆f ∈Mn−r,r is defined by

(∆f)(A) =
∑

B∈Ωr|d(A,B)=1

f(B).

Note that the functions d, d∗ and ∆ are defined for every r; we will not indicate r in the
notation, it should be clear from the context.

Finally, if a ∈ C and i ∈ Z≥0, we write

(a)i = a(a+ 1) . . . (a+ i− 1).

For example, we have (1)n = n! and
(
n
k

)
= (n−k+1)k

k! .

a) (1) Show that A 7→ {1, . . . , n} − A induces a G-equivariant isomorphism M r,n−r ∼→
Mn−r,r.

b) (2) Show that d and ∆ are G-equivariant.
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c) (1) Show that d∗ is the adjoint of d.

d) (2) If f ∈Mn−r,r, show that

dd∗f = ∆f + (n− r)f and d∗df = ∆f + rf.

e) (2) Let f ∈Mn−r,r and 1 ≤ p ≤ q ≤ n− r. Show that

d(d∗)qf = (d∗)qdf + q(n− 2r − q + 1)(d∗)q−1f.

If moreover df = 0, show that

dp(d∗)qf = (q − p+ 1)p(n− 2r − q + 1)p(d
∗)q−pf.

Suppose that 0 ≤ r ≤ n/2. If r > 0, set Sn−r,r = Ker(d : Mn−r,r → Mn−r+1,r−1); if
r = 0, set Sn−r,r = Mn−r,r. This is a G-stable subspace of Mn−r,r.

f) (2) If 0 ≤ m ≤ n and 0 ≤ r ≤ min(m,n−m), show that (d∗)m−r : Sn−r,r →Mn−m,m

is injective. (Hint : calculate ‖(d∗)m−rf‖22).

g) (1) Under the hypothesis of (f), show that (d∗)m−r(Sn−r,r) is contained in the
eigenspace of ∆ for the eigenvalue m(n−m)− r(n− r + 1).

h) (1) Show that the orthogonal of Sn−m,m in Mn−m,m is d∗(Mn−m+1,m−1), if 1 ≤ m ≤
n/2.

i) (1) Show that Sn−r,r 6= 0 for every r such that 0 ≤ r ≤ n/2.

j) (3) If 0 ≤ m ≤ n, show that we have

Mn−m,m =

min(m,n−m)⊕
r=0

(d∗)m−r(Sn−r,r),

where the summands are pairwise orthogonal and are exactly the eigenspaces of ∆.

k) (1) Show that dimC(Sn−r,n) =
(
n
r

)
−
(
n
r−1

)
if r > 0.

l) (3) Show that the representations Sn−r,r, 0 ≤ r ≤ n/2, are irreducible and pairwise
inequivalent. (Hint : how many irreducible constituents does Mm,n−m have ?)

Solution.

a) The map A 7→ {1, . . . , n} −A is a bijection from Ωr to Ωn−r, and it commutes with
the action of G on these two sets. The conclusion follows immediately.

b) Let f ∈Mn−r,r and σ ∈ Sn. If A ∈ Ωr−1, then

(dLσf)(A) =
∑

B∈Ωr, B⊃A
f(σ−1(B))

=
∑

B′∈Ωr, B′⊃σ−1(A)

f(B′)

= (df)(σ−1(A))

= Lσ(df)(A).

If A ∈ Ωr, then

(∆Lσf)(A) =
∑

B∈Ωr, d(A,B)=1

f(σ−1(B))

=
∑

B′∈Ωr, d(σ−1(A),B′)=1

f(B′)

= ∆f(σ−1(A))

= Lσ(∆f)(A).
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c) Let f ∈Mn−r,r and g ∈Mn−r+1,r−1. Then

〈df, g〉 =
∑

A∈Ωr−1

df(A)g(A)

=
∑

A∈Ωr−1,B∈Ωr, A⊂B
f(B)g(A)

=
∑
B∈Ωr

f(B)d∗g(B).

d) Let f ∈Mn−r,r and A ∈ Ωr. Then

dd∗f(A) =
∑

B∈Ωr+1,B⊃A
d∗f(B)

=
∑

B∈Ωr+1, C∈Ωr C⊂B⊃A
f(C)

Let C ∈ Ωr. If there exists B ∈ Ωr+1 such that C ⊂ B ⊃ A, then d(A,C) ≤ 1. If
C = A, then

|{B ∈ Ωr+1|C ⊂ B ⊃ A}| = |{B ∈ Ωr+1|A ⊂ B}| = n− r}.

If d(A,C) = 1, then the only element of Ωr+1 that contains both A and C is A ∪C.
Finally, we get

dd∗f(A) = (n− r)f(A) +
∑

C∈Ωr, d(A,C)=1

f(C)

= (n− r)f(A) + ∆f(A).

Similarly, we have

d∗df(A) =
∑

B∈Ωr−1,B⊂A
df(B)

=
∑

C∈Ωr, B∈Ωr−1,C⊃B⊂A
f(C).

Let C ∈ Ωr. If there exists B ∈ Ωr−1 such that C ⊃ B ⊂ A, then d(A,C) ≤ 1. If
A = C, then

|{B ∈ Ωr−1|C ⊃ B ⊂ A}| = r.

If d(A,C) = 1, then the only B ∈ Ωr−1 that is contained in both A and C is
B = A ∩ C. So we get

d∗df(A) = rf(A) +
∑

C∈Ωr, d(A,C)=1

f(C)

= rf(A) + ∆f(A).

e) We show the first identity by induction on q. If q = 1, then, by (d), we have

dd∗f = ∆f + (n− r)f = ∆f + rf + (n− 2r)f = d∗df + q(n− 2r − q + 1)(d∗)q−1f

for every f ∈ Mn−r,r. Now suppose the identity known for q ∈ {1, . . . , n − r − 1},
every s and every element of Mn−s,s, and let’s show it for q + 1. If f ∈ Mn−r,r, we
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have

d(d∗)q+1f = d(d∗)q(d∗f)

= (d∗)qd(d∗f) + q(n− 2(r + 1)− q + 1)(d∗)q−1(d∗f)

(by the induction hypothesis for d∗f ∈Mn−r−1,r+1)

= (d∗)q(d∗df + (n− 2r)f) + q(n− 2r − q − 1)(d∗)qf

(by the case q = 1)

= (d∗)q+1df + (n− 2r + q(n− 2r − q − 1))(d∗)qf

= (d∗)q+1df + (q + 1)(n− 2r − (q + 1) + 1)(d∗)qf.

Now let’s prove the second identity by induction on p. If p = 1, it just reduce to
the first identity (using that df = 0). Suppose that we have proved it for some
p ∈ {1, . . . , q − 1} (and all s and all f ∈Mn−s,s such that df = 0), and let’s prove it
for p+ 1. Let f ∈Mn−r,r such that df = 0. Then we have

dp+1(d∗)qf = d(dp(d∗)qf)

= d((q − p+ 1)p(n− 2r − q + 1)p(d
∗)q−pf)

= (q − p+ 1)p(n− 2r − q + 1)p(q − p)(n− 2r − (q − p) + 1)(d∗)q−p−1f

(using the first identity and the fact that df = 0)

= (q − p)p+1(n− 2r − q + 1)p+1(d∗)q−p−1f.

f) Let f ∈ Sn−r,r, f 6= 0. Using (c) and then the second identity of (e), we see that

〈(d∗)m−rf, (d∗)m−rf〉 = 〈dm−r(d∗)m−rf, f〉
= (1)m−r(n− 2r − (m− r) + 1)m−r〈f, f〉
6= 0,

so (d∗)m−rf 6= 0.

g) Let f ∈ Sn−r,r. Using the second formula of (d) to calculate ∆ on Mn−m,m and the
second formula of (e) (with p = 1), we get

∆((d∗)m−rf) = d(d∗)m−r+1f − (n−m)(d∗)m−rf

= (m− r + 1)(n− 2r − (m− r + 1) + 1)(d∗)m−rf − (n−m)(d∗)m−rf

= (m(n−m)− r(n− r + 1))(d∗)m−rf.

h) This is an immediate consequence of the definition of Sn−m,m and of (c).

i) The space Sn−r,r is the kernel of d : Mn−r,r →Mn−r+1,r−1, and dim(Mn−r+1,r−1) =(
n
r−1

)
<
(
n
r

)
dim(Mn−r,r) because r ≤ n/2, so d cannot be injective.

j) The subspaces (d∗)m−r(Sn−r,r), for 0 ≤ r ≤ min(m,n − m), are contained in
eigenspaces of ∆ for different eigenvalues by (g). They are all nonzero by (f) and
(i). We know that ∆ is seld-adjoint by 2(i), so these spaces are pairwise orthogonal.
Also, we know that ∆ ∈ End(Mn−m,m) has exactly 1+min(m,n−m) eigenvalues by
2(a) and 2(j), so these eigenvalues have to be the numbers m(n−m)− r(n− r+ 1),
0 ≤ r ≤ min(m,n−m). It remains to show that

Mn−m,m =

min(m,n−m)⊕
r=0

(d∗)m−r(Sn−r,r).
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We prove this by induction on m. It’s obvious if m = 0. Suppose that we have the
result for m− 1, with n/2 ≥ m ≥ 1, and let’s prove it for m. By (h), we have

Mn−m,m = Sn−m,m ⊕ d∗(Mn−m+1,m−1).

By the induction hypothesis, we have

Mn−m+1,m−1 =
m−1⊕
r=0

(d∗)m−1−r(Sn−r,r).

The result for m follows immediately from these two facts.

Finally, we treat the case m ≥ n/2. Let m′ = n−m. We have seen that

Mn−m′,m′ =
m′⊕
r=0

(d∗)m
′−r(Sn−r,r).

By (f), this implies that dim(Mn−m′ ,m′) =
∑m′

r=0 dim(Sn−r,r). We have also seen
that

Mn−m,m ⊃
m′⊕
r=0

(d∗)m−r(Sn−r,r),

and, again by (f), this implies that dim(Mn−m,m) ≥
∑m′

r=0 dim(Sn−r,r) = dim(Mm′,n−m′).
But dim(Mn−m,m) = dim(Mn−m′,m′) (by (a)), so the inequality above is an equality,
and

Mn−m,m =
m′⊕
r=0

(d∗)m−r(Sn−r,r).

k) By (j) and (f), the map d∗ : Mn−r+1,r−1 → Mn−r,r is injective. By (h), this implies
that

dim(Sn−r,r) = dim(Mn−r,r)− dim(Mn−r+1,r−1) =

(
n

r

)
−
(

n

r − 1

)
.

l) Let m = bn/2c. As the maps d and d∗ are Sn-equivariant (see (b) for d, and d∗

is the adjoint of d by (c) so it also equivariant), the subspace Sn−r,r ⊂ Mn−r,r is
Sn-stable for every r ≤ n/2, and the decomposition of (j) is a decomposition into
Sn-subspaces. Next, we know that (Sn,Sm ×Sn−m) is a Gelfand pair by 1(f), so
the corresponding quasi-regular representation, which is Mn−m,r, decomposes into
a direct sum of distinct irreducible representations by theorem V.3.2.4 of the notes.
By corollary V.7.2 of the notes, the number of irreducible summands in Mn−m,m is
the number of spherical functions for the Gelfand pair, which is the dimension of
the space of bi-invariant functions on Sn (because spherical functions form a basis
for these bi-invariants functions by (iii) of the same corollary), i.e. the cardinality of
(Sm ×Sn−m) \Sn/(Sm ×Sn−m), and this is also equal to the number of orbits of
Sm ×Sn−m on Ωm. But we have seen in 1(d) that the orbits of Sm ×Sn−m on Ωm

are the spheres with center A0 := {1, . . . ,m}. The possible radii for these spheres
are 0, 1, . . . ,min(m,n −m) = m by 2(a), and it is easy to see that all the spheres
are nonempty (we already used this in the proof of 2(f)). Finally, we get that the
number of irreducible constituents of Mn−m,m is m + 1. As the decomposition of
(j) is a decomposition of Mn−m,m int m+ 1 nonzero subrepresentations, it must be
its decomposition into irreducible constituents, and so we get the conclusion. (Note
that (d∗)m−r(Sn−r,r) is equivalent to Sn−r,r as a representation of Sn by (f).)
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4. We keep the notation of problem 3. If m,h ∈ {0, . . . , n}, A ∈ Ωm, and max(0, h −m) ≤
` ≤ min(n−m,h), we denote by σ`,h−`(A) ∈ L(Ωh) the characteristic function of the set
{C ∈ Ωh||A ∩ C| = h− `}. We also write σ−1,h+1(A) = 0. We fix A ∈ Ωm.

a) (1) If h = m, show that, for every ` ∈ {0, . . . ,min(m,n−m)}, the function σ`,m−`(A)
is the characteristic function of the sphere {C ∈ Ωm|d(A,C) = `}.

b) (2) Show that

d(σ`,h−`(A)) = (n−m− `+ 1)σ`−1,h−`(A) + (m− h+ `+ 1)σ`,h−`−1(A).

c) (3, extra credit) If k ≤ h and max(0, k −m) ≤ i ≤ min(k, n−m), show that

1

(h− k)!
(d∗)h−kσi,k−i(A) =

min(h−k+i,n−m)∑
`=max(i,h−m)

(
`

i

)(
h− `
k − i

)
σ`,h−`(A).

From now on, we take A = {1, . . . ,m}.

d) (2) If 0 ≤ h ≤ min(m,n−m), show that the space of Sm ×Sn−m-invariant vectors
in Mn−h,h is spanned by the functions σ`,h−`(A), for 0 ≤ ` ≤ h.

e) (2, extra credit) If 0 ≤ h ≤ min(m,n − m), show that the space of Sm × Sn−m-
invariant vectors in Sn−h.h is spanned by the function

h∑
`=0

(n−m− h+ 1)h−`
(−m)h−`

σ`,h−`(A).

f) (3, extra credit) For 0 ≤ h ≤ min(m,n − m), let ϕh ∈ Mn−m,m be the unique
spherical function contained in the summand (d∗)m−h(Sn−h,h). Show that

ϕh =

min(m,n−m)∑
`=0

ϕ(n,m, h; `)σ`,m−`(A),

where

ϕ(n,m, h; `) = (−1)h
1(

n−m
h

) min(`,h)∑
i=max(0,`−m+h)

(
m− `
h− i

)(
`

i

)
(n−m− h+ 1)h−i

(−m)h−i
.

g) (3) Fix h such that 0 ≤ h ≤ min(m,n−m). Show that the coefficient of σ1,m−1(A) in

ϕh is 1− h(n− h+ 1)

m(n−m)
. (Remark : there is a way to solve this question with minimal

calculations and without using any of the extra credit questions.)

Solution.

a) The function σ`,m−`(A) is the characteristic function of the set {C ∈ Ωm||A ∩ C| =
m − `}. As d(A,C) = m − |A ∩ C|, this set is exactly the sphere of radius ` with
center A.
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b) Let B ∈ Ωh−1. We have

d(σ`,h−`(A))(B) =
∑

C∈Ωh, C⊃B
σ`,h−`(A)(C)

= |{C ∈ Ωh|C ⊃ B and |A ∩ C| = h− `}|.

If there exists at least one C ∈ Ωh such that C ⊃ B and |A∩C| = h−`, then A∩C ⊃
A∩B and these two sets differ by at most one element, so |A∩B| ∈ {h−`, h−`−1}.
Suppose that |A ∩ B| = h − `. Then, for every C ∈ Ωh such that C ⊃ B and
|A ∩ C| = h − `, we must have A ∩ C = A ∩ B. We get each such C by adding an
element of {1, . . . , n} − (A ∪B) to B, so the number of possibilities for C is

n− |A∪B| = n− (|A|+ |B| − |A∩B|) = n− (m+ h− 1− (h− `)) = n−m− `+ 1.

Suppose that |A ∩ B| = h − ` + 1. Then, for every C ∈ Ωh such that C ⊃ B and
|A∩C| = h− `, the unique element of C −B must be the element of A∩C −A∩B.
So the number of possibilities for C is

|A−A ∩B| = m− h+ `− 1.

Finally, we get

d(σ`,h−`(A))(B) = (n−m− `− 1)σ`−1,h−`(B) + (m− h+ `− 1)σ`,h−`−1(B),

as desired.

c) For every i and every D ∈ Ωi, denote by δD ∈ L(Ωi) the characteristic function of
{D}. Let S be the set {C ∈ Ωk||A∩C| = k− i}. Then σi,k−i(A) is the characteristic
function of S. If C ∈ S, then, for every D ∈ Ωh, we have

(d∗)h−kδC(D) =
∑

C⊂D1⊂...⊂Dh−k−1⊂Dh−k=D, Di∈Ωk+i

1.

If C 6⊂ D, the set {C ⊂ D1 ⊂ . . . ⊂ Dh−k−1 ⊂ Dh−k = D, Di ∈ Ωk+i} is empty; if
C ⊂ D, this set has (h− k)! elements. So we see that

(d∗)h−kδC = (h− k)!
∑

C⊂D∈Ωh

δD.

So, if D ∈ Ωh, the coefficient of δD in 1
(h−k)!(d

∗)h−kσi,k−i(A) is the cardinality of the

set {C ∈ S|C ⊂ D}. Write |A ∩D| = h− `, with 0 ≤ ` ≤ h; note that we have

h− ` = |A ∩D| = |A|+ |D| − |A ∪D| ≥ m+ h− |A ∪D|

and h ≤ |A ∪ D| ≤ n, so h − m ≤ ` ≤ n − m, and all the nonnegative ` in this
range can occur. We get a C ∈ S such that C ⊂ D by removing (h − `) − (k − i)
elements from A ∩D and ` − i elements from D − (A ∩D). This is only possible if
h − ` − (k − i) ≥ 0 and 0 ≤ ` − i, and we have

(
h−`

(h−`)−(k−i)
)(

`
`−i
)

different possible

choices. Putting all this together, we see that, if |A∩D| = h− `, then the coefficient
of δD in 1

(h−k)!(d
∗)h−kσi,k−i(A) is

(
h−`
k−i
)(
`
i

)
if max(h−m, i) ≤ ` ≤ min(n−m,h−k+i)

and 0 otherwise. This gives the result.
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d) The statement is equivalent to the fact that the orbits Sm × Sn−m in Ωh are the
S` := {C ∈ Ωh||A∩C| = h− `}, for 0 ≤ ` ≤ h. Let’s prove this fact. As Sm×Sn−m
fixes A, the sets S` are invariant by Sm × Sn−m, so we just need to show that
Sm ×Sn−m acts transitively on these sets. Fix ` ∈ {0, . . . , h} and take C,C ′ ∈ S`.
As |A ∩ C| = |A ∩ C ′|, we can find an element σ ∈ Sm that sends A ∩ C to A ∩ C ′.
Also, we have |{m + 1, . . . , n} ∩ C| = |{m + 1, . . . , n} ∩ C ′| = `, so we can find an
element τ ∈ Sn−m that sends {m + 1, . . . , n} ∩ C to {m + 1, . . . , n} ∩ C ′. Then
σ × τ ∈ Sm ×Sn−m sends C and C ′.

e) Let f ∈ Sn−h,h be a Sm×Sn−m-invariant vector. By (d), the invariance condition is
equivalent to the fact that we can write f =

∑h
`=0 a`σ`,h−`(A), with a0, . . . , ah ∈ C.

The fact that f ∈ Sn−h,h means that df = 0. Using (b), we can rewrite this condition
as

0 =

h∑
`=0

a`((n−m− `+ 1)σ`−1,h−`(A) + (m− h+ `+ 1)σ`,h−1−`(A))

=

h−1∑
`=0

a`+1(n−m− `)σ`,h−`+1(A) +

h∑
`=0

a`(m− h+ `+ 1)σ`,h−1−`(A).

As the functions σ`,h−1−`(A), 0 ≤ ` ≤ h− 1, are linearly independent (because they
have disjoint supports), this equality if equivalent to the fact that

a` = a`+1
n−m− `

−m+ h− `− 1
,

for every ` ∈ {0, . . . , h− 1}. A straightforward descending induction on ` shows that
this is equivalent to

a` =
(n−m− h+ 1)h−`

(−m)h−`
ah

for every ` ∈ {0, . . . , h}. This implies the desired result.

f) By (e) (and the Sn-equivariance of d∗), the function ϕh is a multiple of

ψ :=
1

(m− h)!
(d∗)m−h

(
h∑
i=0

(n−m− h+ 1)h−i
(−m)h−i

σi,h−i(A)

)
.

We calculate ψ using the formula of (c). We get

ψ =
h∑
i=0

(n−m− h+ 1)h−i
(−m)h−i

min(m−h+i,n−m)∑
`=i

(
`

i

)(
m− `
h− i

)
σ`,m−`(A)

=

min(m,n−m)∑
`=0

min(`,h)∑
i=max(0,`−m+h)

(
`

i

)(
m− `
h− i

)
(n−m− h+ 1)h−i

(−m)h−i
σ`,m−`(A).

This is almost the formula we want, except for the constant (−1)h 1

(n−m
h )

at the

beginning.

The spherical function ϕh is normalized by the fact that ϕh(A0) = 1, so we have
ϕh = 1

ψ(A0)ψ. So to finish the proof, we just need to show that ψ(A0) = (−1)h
(
n−m
h

)
.
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Note that σ`,m−`(A)(A0) = 0 unless ` = 0 and σ0,m(A)(A0) = 1, so

ψ(A0) =

(
m

h

)
(n−m− h+ 1)h

(−m)h

=
m!

h!(m− h)!

(n−m)!

(n−m− h)!

(−1)h(m− h)!

m!

= (−1)h
(
n−m
h

)
.

g) Let’s try and ignore questions (c), (d), (e) and (f).

The function ϕh is spherical, so it is constant on the Sm×Sn−m-orbits in Ωm, which
are the spheres with center A by 1(d). By (a) and 2(a), this means that ϕh is a
linear combination of the functions σ`,m−`(A), for 0 ≤ ` ≤ min(m,n−m). Also, by
3(g), the function ϕh is an eigenvector of ∆ with eigenvalue m(n−m)−h(n−h+1).
Let S = {B ∈ Ωm|d(A,B) = 1}. Then σ1,m−1(A) is the characteristic function of
S, and we have seen that ϕh is constant on S, the coefficient of σ1,m−1(A) in ϕh is
1
|S|
∑

B∈S ϕh(B). On the other hand,
∑

B∈S ϕh(B) is equal to ∆ϕh(A) by definition

of ∆, and this is equal to (m(n − m) − h(n − h + 1))ϕh(A). Moreover, as ϕh is
spherical, we must have ϕh(A) = 1. Finally, the coefficient of σ1,m−1(A) in ϕh is
1
|S|(m(n −m) − h(n − h − 1)). To finish the calculation, we just need to show that

|S| = m(n −m). This just follows from the fact that we get every element B of S
by removing one element of A (m choices) and adding an element of {1, . . . , n} − A
(n−m choices).

�
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