MAT 449 : Problem Set 10

Due Sunday, December 9

1. Fix a positive integer n. For every $m \in \mathbb{Z}_{\geq 0}$, we denote by $V_m(\mathbb{R}^n)$ the vector space of complex-valued polynomial functions on \mathbb{R}^n that are homogenous of degree m. We define an action of $\mathbf{O}(n)$ on $V_m(\mathbb{R}^n)$ by $(x \cdot f)(v) = f(x^{-1}v)$ if $x \in \mathbf{O}(n)$, $f \in V_m(\mathbb{R}^n)$ and $v \in \mathbb{R}^n$ (in other words, $x \cdot f = L_x f$).

For $i \in \{1, \ldots, n\}$, we denote by ∂_{x_i} the endomorphism $f \mapsto \frac{\partial}{\partial x_i} f$ of $C^{\infty}(\mathbb{R}^n)$ (the space of smooth functions from \mathbb{R}^n to \mathbb{C}), and we set $\Delta = \sum_{i=1}^n (\partial_{x_i})^2$ (this is called the Laplacian operator).

The space of harmonic polynomials of degree m on \mathbb{R}^n is the space

$$\mathcal{H}_m(\mathbb{R}^n) = \{ f \in V_m(\mathbb{R}^n) | \Delta(f) = 0 \}$$

- a) (2 points) Calculate dim $(V_m(\mathbb{R}^n))$.
- b) (1 point) Show that the action of $\mathbf{O}(n)$ on $V_m(\mathbb{R}^n)$ is a continuous representation.
- c) (2 points) Show that, for every $x \in \mathbf{O}(n)$ and every $f \in C^{\infty}(\mathbb{R}^n)$, we have $\Delta(L_x f) = L_x(\Delta(f))$.
- d) (1 point) Show that the subspace $\mathcal{H}_m(\mathbb{R}^n)$ of $V_m(\mathbb{R}^n)$ is $\mathbf{O}(n)$ -invariant.

Solution.

a) For every $i \in \{1, \ldots, n\}$, denote by $x_i \in V_1(\mathbb{R}^n)$ the function $(z_1, \ldots, z_n) \mapsto z_i$. Then $\{x_1^{i_1} \ldots x_n^{i_n}, i_1, \ldots, i_n \in \mathbb{Z}_{\geq 0}, i_1 + \ldots + i_n = m\}$ is a basis of $V_m(\mathbb{R}^n)$. So

$$\dim(V_m(\mathbb{R}^n)) = |\{(i_1, \dots, i_n) \in (\mathbb{Z}_{\geq 0})^n | i_1 + \dots + i_n = m\}|.$$

This is also equal to

$$|\{(j_1,\ldots,j_n)\in(\mathbb{Z}_{>1})^n|j_1+\ldots+j_n=m+n\}|$$

(take $j_r = i_r + 1$). Choosing (j_1, \ldots, j_n) in the set above is equivalent to choosing the numbers $j_1, j_1 + j_2, \ldots, j_1 + \ldots + j_{n-1}$, which form a subset of $\{1, \ldots, n+m-1\}$ of cardinality n-1. So we get

$$\dim(V_m(\mathbb{R}^n)) = \binom{n+m-1}{n-1} = \binom{n+m-1}{m}.$$

b) If we use the basis of $V_m(\mathbb{R}^n)$ from (a), the action of $x \in \mathbf{O}(n)$ is given by a matrix with coefficients polynomial functions in the entries of x. So, for every $f \in V_m(\mathbb{R}^n)$, the map $\mathbf{O}(n) \to V_m(\mathbb{R}^n)$, $x \cdot f$ is continuous. As $V_m(\mathbb{R}^n)$ is finite-dimensional, this implies that the action is continuous. c) I don't want to do the calculation, so let's use 2(c). (Sorry.) Note that $\Delta = \partial_{x_1^2 + \ldots + x_n^2}$. So, by 2(c), for every $f \in C^{\infty}(\mathbb{R}^n)$ and every $x \in G$, we have

$$\Delta(x \cdot f) = x \cdot (\partial_g f),$$

where $g = L_{x^T}(x_1^2 + \ldots + x_n)$. So we just need to show that $x_1^2 + \ldots + x_n^2 \in V_2(\mathbb{R}^n)$ is invariant by all the elements of $\mathbf{O}(n)$, which follows directly from the definition of $\mathbf{O}(n)$.

d) Question (c) implies that $\Delta : V_m(\mathbb{R}^n) \to V_{m-2}(\mathbb{R}^n)$ is $\mathbf{O}(n)$ -equivariant, and $\mathcal{H}_m(\mathbb{R}^n)$ is its kernel.

- 2. We keep the notation of problem 1. For $i \in \{1, ..., n\}$, we denote by x_i the *o*th coordinate function on \mathbb{R}^n .
 - a) (1 point) Show that the map $x_i \to \partial_{x_i}$ extends to a unique morphism of \mathbb{C} -algebras from $\bigoplus_{m\geq 0} V_m(\mathbb{R}^n)$ (the algebra of complex-valued polynomial functions on \mathbb{R}^n) to $\operatorname{End}(\mathcal{C}^{\infty}(\mathbb{R}^n))$. We will denote this morphism by $f \mapsto \partial_f$.
 - If $f, g \in V_m(\mathbb{R}^n)$, we set $\langle f, g \rangle = \partial_{\overline{q}}(f)$. (Note that \overline{g} is still a polynomial function on \mathbb{R}^n .)
 - b) (3 points) Show that $\langle ., . \rangle$ is an inner form on $V_m(\mathbb{R}^n)$. (Hint : Can you find an orthogonal basis ?)
 - c) (2 points) Show that, for every $f \in V_m(\mathbb{R}^n)$ and every $y \in \mathbf{O}(n)$, we have $\partial_f \circ L_y = L_y \circ \partial_{L_x T} f$ in $\operatorname{End}(C^{\infty}(\mathbb{R}^n))$.
 - d) (1 point) Show that the continuous representation of $\mathbf{O}(n)$ on $V_m(\mathbb{R}^n)$ defined in problem 1 is unitary for the inner product $\langle ., . \rangle$.
 - e) (1 point) If $m \leq 1$, show that $V_m(\mathbb{R}^n) = \mathcal{H}_m(\mathbb{R}^n)$.
 - f) (2 points) If $m \ge 2$, show that $\mathcal{H}_m(\mathbb{R}^n)^{\perp} = |x|^2 V_{m-2}(\mathbb{R}^n)$, where $|x|^2$ is the function $\sum_{i=1}^n x_i^2 \in V_2(\mathbb{R}^n)$.
 - g) (2 points) Show that

$$V_m(\mathbb{R}^n) = \bigoplus_{k=0}^{\lfloor m/2 \rfloor} |x|^{2k} \mathcal{H}_{m-2k}(\mathbb{R}^n),$$

and that this induces a O(n)-equivariant isomorphism

$$V_m(\mathbb{R}^n) = \bigoplus_{k=0}^{\lfloor m/2 \rfloor} \mathcal{H}_{m-2k}(\mathbb{R}^n).$$

- h) (2 points) If $S \subset \mathbb{R}^n$ is the unit sphere, show that the map $\bigoplus_{m \ge 0} \mathcal{H}_m(\mathbb{R}^n) \to \mathcal{C}(S)$, $f \mapsto f_{|S|}$ is injective.
- i) (1 point) Show that, for every $f \in V_m(\mathbb{R}^n)$, there is a unique $g \in \bigoplus_{k=0}^{\lfloor m/2 \rfloor} \mathcal{H}_{m-2k}(\mathbb{R}^n)$ such that $f_{|S} = g_{|S}$.

Solution.

a) Note that $\bigoplus_{m\geq 0} V_m(\mathbb{R}^n)$ is isomorphic to the polynomial algebra $\mathbb{C}[x_1,\ldots,x_n]$. So we just need to check that ∂_{x_i} and ∂_{x_j} commute for all $i, j \in \{1,\ldots,n\}$. But this is a well-known property of partial derivatives of C^2 functions.

b) First, it is clear from the definition that $\langle ., . \rangle$ is linear in the first variable and antilinear in the second variable. We calculate the matrix of this form in the basis of 1(a).

Let $f = x_1^{i_1} \dots x_n^{i_n}$, with $i_1, \dots, i_n \in \mathbb{Z}_{\geq 0}$ and $i_1 + \dots + i_n = m$. If $r \in \{1, \dots, n\}$ and $a \in \mathbb{Z}_{>0}$, we have

$$\partial_{x_r^a} f = \begin{cases} 0 & \text{if } a > i_r \\ i_r (i_r - 1) \dots (i_r - a + 1) x_r^{i_r - a} \prod_{s \neq r} x_s^{i_s} & \text{if } a \le i_r. \end{cases}$$

Let $g = x_1^{j_1} \dots x_n^{j_n}$, with $j_1, \dots, j_n \in \mathbb{Z}_{\geq 0}$ and $j_1 + \dots + j_n = m$. As $i_1 + \dots + i_n = j_1 + \dots + j_n$, either there exists $r \in \{1, \dots, n\}$ such that $j_r > i_r$, or $i_r = j_r$ for every $r \in \{1, \dots, n\}$. In the first case, we have $\langle f, g \rangle = \partial_{\overline{g}} f = 0$. In the second case, we have

$$\langle f,g\rangle = \partial_{\overline{g}}f = i_1!i_2!\dots i_n!$$

So the matrix of $\langle ., . \rangle$ in the basis $\{x_1^{i_1} \dots x_n^{i_n}, i_1, \dots, i_n \in \mathbb{Z}_{\geq 0}, i_1 + \dots + i_n = m\}$ of $V_m(\mathbb{R}^n)$ is diagonal with real positive entries, and in particular Hermitian definite positive. This implies that $\langle ., . \rangle$ is an inner product.

c) The statement is actually true for every $y \in \mathbf{GL}_n(\mathbb{R})$, and we will prove this.

First note that the identity of the statement makes sense for f in the algebra $V(\mathbb{R}^n) := \bigoplus V_m(\mathbb{R}^n)$, and it is linear in f. Also, if it is true for $f, g \in V(\mathbb{R}^n)$, then we have, for $y \in \mathbf{GL}_n(\mathbb{R})$,

$$\begin{split} \partial_{fg} \circ L_y &= \partial_f \circ \partial_g \circ L_y \\ &= \partial_f \circ L_y \circ \partial_{L_y T g} \\ &= L_y \circ \partial_{L_y T f} \circ \partial_{L_y T g} \\ &= L_y \circ \partial_{L_y T f L_y T g} \\ &= L_y \circ \partial_{L_y T (fg)}, \end{split}$$

that is, the identity also holds for fg. In conclusion, we only need to prove it for the functions x_1, \ldots, x_n .

Let $i \in \{1, \ldots, n\}$, and, let $y \in \mathbf{GL}_n(\mathbb{R})$, and write $y^{-1} = a = (a_{ij}) \in \mathbf{GL}_n(\mathbb{R})$. Then for every $(z_1, \ldots, z_n) \in \mathbb{R}^n$, we have

$$(L_{y^T}x_i)(z_1,\ldots,z_n) = x_i(a^T(z_1,\ldots,z_n)) = \sum_{j=1}^n a_{ji}z_j.$$

In other words, we have

$$L_{y^T} x_i = \sum_{j=1}^n a_{ji} x_j,$$

 \mathbf{SO}

$$\partial_{L_{y^T} x_i} = \sum_{j=1}^n a_{ji} \partial_{x_j}.$$

Let $\varphi \in C^{\infty}(\mathbb{R}^n)$ and $z = (z_1, \ldots, z_n) \in \mathbb{R}^n$. We have

$$\partial_{L_{y^T} x_i} \varphi = \sum_{j=1}^n a_{ji} \frac{\partial \varphi}{\partial x_j},$$

$$\mathbf{SO}$$

$$L_y \partial_{L_{y^T} x_i} \varphi(z) = \sum_{j=1}^n a_{ji} \frac{\partial \varphi}{\partial x_j}(az).$$

On the other hand, $L_y\varphi(z) = \varphi(az)$, with

$$az = (\sum_{j=1}^n a_{rj} z_r)_{1 \le r \le n},$$

 \mathbf{SO}

$$(\partial_{x_i}L_y\varphi)(z) = \sum_{r=1}^n a_{ri}\partial_{x_r}\varphi(az).$$

We see that we do get the same result for $L_y \partial_{L_yTx_i} \varphi(z)$ and $(\partial_{x_i}L_y\varphi)(z)$. d) Let $f, g \in V_m(\mathbb{R}^n)$ and $y \in \mathbf{O}(n)$. By (c), we have

$$\langle L_y f, L_y g \rangle = \partial_{\overline{L_yg}} L_y f = L_y \partial_{L_y T} L_y \overline{g} f = L_y \partial_{\overline{g}} f.$$

As $\partial_{\overline{q}} f$ is a constant function, we have

$$L_y \partial_{\overline{g}} f = \partial_{\overline{g}} f = \langle f, g \rangle,$$

which is what we wanted.

- e) If $m \ge 1$, then $\Delta = 0$ on $V_m(\mathbb{R}^n)$, so $\mathcal{H}_m(\mathbb{R}^n) = \ker(\Delta) = V_m(\mathbb{R}^n)$.
- f) Note that $\Delta = \partial_{|x|^2}$. So, if $f \in V_m(\mathbb{R}^n)$ and $g \in V_{m-2}(\mathbb{R}^n)$, we have

$$\langle f, |x|^2 g \rangle = \partial_{|x|^2 \overline{g}} f = \partial_{\overline{g}} (\partial_{|x|^2} f) = \langle \Delta f, g \rangle.$$

In other words, the map $V_{m-2}(\mathbb{R}^n) \to V_m(\mathbb{R}^n)$, $g \mapsto |x|^2 g$ is the adjoint of $\Delta : V_m(\mathbb{R}^n) \to V_{m-2}(\mathbb{R}^n)$, and so its image is the orthogonal of Ker $\Delta = \mathcal{H}_m(\mathbb{R}^n)$.

- g) The first formula just follows from (f) by an easy induction. For the second formula, we note that, for every $k \in \{0, \ldots, \lfloor \frac{m}{2} \rfloor\}$, the injective linear transformation $V_{m-2}(\mathbb{R}^n) \to V_m(\mathbb{R}^n), g \mapsto |x|^{2k}g$ is $\mathbf{O}(n)$ -equivariant, because the function $|x|^{2k}$ is invariant by $\mathbf{O}(n)$.
- h) We will use polar coordinates on \mathbb{R}^n : a point z of \mathbb{R}^n can be written as z = rs, with $r \in \mathbb{R}_{\geq 0}$ and $s \in S$, and r and s are uniquely determined if $z \neq 0$.

Let $f \in \mathcal{H}_m(\mathbb{R}^n)$ and $g \in \mathcal{H}_p(\mathbb{R}^n)$. Then, if $r \geq \mathbb{R}_{\geq 0}$ and $s \in S$, we have $f(rs) = r^m f(s)$ and $g(rs) = r^p g(s)$. By Green's second formula, we have

$$\int_{B} (f\Delta g - g\Delta f) d\lambda = c \int_{S} (f \frac{\partial g}{\partial r} - g \frac{\partial f}{\partial r}) d\mu$$

where B is the closed unit ball, λ is Lebesgue measure on \mathbb{R}^n , c is a positive constant and and μ is the measure on S defined in 4(g). As f and g are in the kernel of Δ , this gives

$$0 = c(p-m) \int_{S} f(s)g(s)d\mu(s).$$

If $m \neq p$, we get $\int_S f(s)g(s)d\mu(s) = 0$. So, for $m \neq p$, the subspaces $\mathcal{H}_m(\mathbb{R}^n)_{|S|}$ and $\mathcal{H}_p(\mathbb{R}^n)_{|S|}$ are orthogonal for the inner product of $L^2(S,\mu)$. In particular, if $f \in \bigoplus_{m\geq 0} \mathcal{H}_m(\mathbb{R}^n)$ is such that $f_{|S|} = 0$, then, writing $f = \sum_{m\geq 0} f_m$ with $f_m \in \mathcal{H}_m(\mathbb{R}^n)$, we must have $f_{m|S|} = 0$ for every $m \geq 0$. But f_m is homogeneous of degree m, so $f_m(rs) = r^m f_m(s)$ for every $r \in \mathbb{R}_{\geq 0}$ and $s \in S$, so $f_{m|S|} = 0$ implies $f_m = 0$. i) The existence follows from the first identity of (g) (because $|x|^2 = 1$ on S), and the uniqueness from (h).

- 3. Let $n \ge 2$, and embed $\mathbf{O}(n-1)$ into $\mathbf{O}(n)$ by using the map $x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}$. Let $G = \mathbf{SO}(n)$, and let K be the image of $\mathbf{SO}(n-1)$ in G by the embedding we just defined.
 - a) (2 points) Let A be the subset of SO(n) consisting of matrices of the form

$$\begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & I_{n-2} & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix},\,$$

with $\theta \in \mathbb{R}$.

Show that A is a subgroup of G and that we have G = KAK.

b) (2 points) Show that (G, K) is a Gelfand pair. (You might want to use the involution θ of G defined by $\theta(x) = JxJ$, where J is the diagonal matrix with diagonal coefficients $-1, 1, \ldots, 1$.)

Solution.

a) For every $\theta \in \mathbb{R}$, we write $A_{\theta} = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & I_{n-2} & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$. We have $A = \{A_{\theta}, \ \theta \in \mathbb{R}\}$.

We check easily that $A_{\theta}A_{\theta'} = A_{\theta+\theta'}$, so A is a subgroup of G.

Let $v_0 = (1, 0, ..., 0) \in S$. Then the action of $\mathbf{O}(n)$ on \mathbb{R}^n preserves S (and $\mathbf{O}(n)$ acts transitively on S), and K is the stabilizer of v_0 in $\mathbf{O}(n)$. Let $x \in \mathbf{O}(n)$, and write $z = x \cdot v_0 = (z_1, ..., z_n)$. We can find $y \in K$ such that $y \cdot z = (z_1, 0, ..., 0, c)$, with $c^2 = z_2^2 + ... + z_n^2$, and then we can find $a \in A$ such that $a \cdot (y \cdot z) = (1, 0, ..., 0) = v_0$. Then we have $(ayx) \cdot v_0 = v_0$, so $ayx \in K$, and $x \in Ka^{-1}y^{-1} \subset KAK$.

- b) We want to apply proposition V.2.5 of the notes to θ , where θ sends $x \in G$ to JxJ, with $J = \begin{pmatrix} -1 & 0 \\ 0 & I_{n-1} \end{pmatrix}$. Note that $J^2 = I_n$, so $J = J^{-1}$, so θ is a morphism of groups and an involution. It is also clear that $\theta(K) = K$. We need to check that $\theta(x) \in Kx^{-1}K$ for every $x \in G$. Let $x \in G$, and write x = kak', with $k, k' \in K$ and $a \in A$. Then $\theta(x) = \theta(k)\theta(a)\theta(k')$ and $\theta(k), \theta(k') \in K$, and, if $a = A_{\theta}$, we have $\theta(a) = A_{-\theta} = a^{-1}$. So $\theta(x) = \theta(k)k'x^{-1}k\theta(k') \in Kx^{-1}K$.
- 4. We use the notation of problems 1 and 2, and the embedding $\mathbf{O}(n-1) \subset \mathbf{O}(n)$ defined in problem 3.
 - a) (1 point) Show that we have a O(n-1)-equivariant isomorphism

$$V_m(\mathbb{R}^n) \simeq \bigoplus_{k=0}^m V_{m-k}(\mathbb{R}^{n-1}).$$

b) (3 points) Show that we have a O(n-1)-equivariant isomorphism

$$\mathcal{H}_m(\mathbb{R}^n) \simeq \bigoplus_{k=0}^m \mathcal{H}_{m-k}(\mathbb{R}^{n-1}).$$

c) (3 points) If $m \ge 2$, show that $\mathcal{H}_m(\mathbb{R}^2)$ is an irreducible representation of $\mathbf{O}(2)$, but that it is not irreducible as a representation of $\mathbf{SO}(2)$.

From now on, we assume that $n \geq 3$.

- d) (2 points) If $m \ge 1$, show that $\mathcal{H}_m(\mathbb{R}^n)^{\mathbf{SO}(n)} = \{0\}.$
- e) (1 point) Show that, for every $m \ge 0$, the space $\mathcal{H}_m(\mathbb{R}^n)^{\mathbf{SO}(n-1)}$ is 1-dimensional.
- f) (2 points) Let $S \subset \mathbb{R}^n$ be the unit sphere, and let $v_0 = (1, 0, \dots, 0) \in S$. Show that the map $\mathbf{SO}(n) \to S$, $x \mapsto x \cdot v_0$ induces a homeomorphism $\mathbf{SO}(n)/\mathbf{SO}(n-1) \xrightarrow{\sim} S$.
- g) (2 points) Show that the measure μ on S defined in 1(f) of problem set 2 (using the normalized Haar measures on **SO**(n) and **SO**(n-1)) is given by $\mu(E) = c\lambda(\{tx, t \in [0,1], x \in E\})$ for every Borel subset E of S, where λ is Lebesgue measure on \mathbb{R}^n and c^{-1} is the volume of the unit ball (for λ).
- h) (2 points) By the previous question, we have the quasi-regular representation of $\mathbf{SO}(n)$ on $L^2(S)$, and it preserves the subspace of continuous functions. If $V \subset \mathcal{C}(S)$ is a nonzero finite-dimensional $\mathbf{SO}(n)$ -stable subspace, show that $V^{\mathbf{SO}(n-1)} \neq \{0\}$. (Hint : Start with a function $f \in V$ such that $f(v_0) \neq 0$.)
- i) (1 point) Show that the representation $\mathcal{H}_m(\mathbb{R}^n)$ of $\mathbf{SO}(n)$ is irreducible.
- j) (2 points) Show that the representations $\mathcal{H}_m(\mathbb{R}^n)$ and $\mathcal{H}_{m'}(\mathbb{R}^n)$ of $\mathbf{SO}(n)$ are not equivalent if $m \neq m'$. (Hint : Compare the dimensions.)
- k) (3 points, extra credit) If $m \geq 2$, show that $\mathcal{H}_m(\mathbb{R}^n)$ is spanned by the functions $(z_1, \ldots, z_n) \mapsto (a_1 z_1 + \ldots a_n z_n)^m$, with $a_1, \ldots, a_n \in \mathbb{C}$ such that $a_1^2 + \ldots + a_n^2 = 0$.

Solution.

- a) If $f \in V_m(\mathbb{R}^n)$, then we can write $f = \sum_{k=0}^m x_1^k f_k$, for uniquely determined $f_k \in V_{m-k}(\mathbb{R}^{n-1})$. As $\mathbf{O}(n-1) \subset \mathbf{O}(n)$ acts trivially on x_1 , this gives an $\mathbf{O}(n-1)$ -equivariant isomorphism $V_m(\mathbb{R}^n) \simeq \bigoplus_{k=0}^m V_{m-k}(\mathbb{R}^{n-1})$.
- b) In this proof, we will use the convention that $V_m(\mathbb{R}^n) = 0$ if m < 0. Fix n and m. By 2(f) and 2(g), we have an $\mathbf{O}(n)$ -equivariant isomorphism $V_m(\mathbb{R}^n) \simeq \mathcal{H}_m(\mathbb{R}^n) \oplus V_{m-2}(\mathbb{R}^n)$. Using (a), we deduce from this an $\mathbf{O}(m-1)$ -equivariant isomorphism

$$V_m(\mathbb{R}^n) \simeq \mathcal{H}_m(\mathbb{R}^n) \oplus \bigoplus_{k=0}^{m-2} V_{m-2-k}(\mathbb{R}^{n-1}).$$

On the other hand, applying (a) to $V_m(\mathbb{R}^n)$ gives an $\mathbf{O}(n-1)$ -equivariant isomorphism $V_m(\mathbb{R}^n) \simeq \bigoplus_{k=0}^m V_{m-k}(\mathbb{R}^{n-1})$. Using 2(f) or 2(g) on each summand, we get an $\mathbf{O}(n-1)$ -equivariant isomorphism

$$V_m(\mathbb{R}^n) \simeq \bigoplus_{k=0}^m (\mathcal{H}_{m-k}(\mathbb{R}^{n-1}) \oplus V_{m-2-k}(\mathbb{R}^{n-1}))$$
$$= \left(\bigoplus_{k=0}^m \mathcal{H}_{m-k}(\mathbb{R}^{n-1})\right) \oplus \left(\bigoplus_{k=0}^{m-2} V_{m-2-k}(\mathbb{R}^{n-1})\right)$$

Define representations V_1 , V_2 and V_3 of $\mathbf{O}(n-1)$ by $V_1 = \mathcal{H}_m(\mathbb{R}^n)$, $V_2 = \bigoplus_{k=0}^m \mathcal{H}_{m-k}(\mathbb{R}^{n-1})$ and $V_3 = \bigoplus_{k=0}^{m-2} V_{m-2-k}(\mathbb{R}^{n-1})$. We have just seen that $V_1 \oplus V_3 \simeq V_2 \oplus V_3$, so $\chi_{V_1} + \chi_{V_3} = \chi_{V_2} + \chi_{V_3}$, so $\chi_{V_1} = \chi_{V_2}$. By corollary IV.5.10 of the notes, this implies that V_1 and V_2 are equivalent. c) Note that SO(2) is a commutative group (it is isomorphic to S^1), so its irreducible representations are all 1-dimensional. On the other hand, by 2(f) and 1(a), we have

$$\dim \mathcal{H}_m(\mathbb{R}^2) = \dim V_m(\mathbb{R}^2) - \dim V_{m-2}(\mathbb{R}^2) = \binom{m+1}{m} - \binom{m-1}{m-2} = 2 > 1$$

if $m \geq 2$, so $\mathcal{H}_m(\mathbb{R}^n)$ cannot be an irreducible representation of $\mathbf{SO}(2)$.

If m = 2, then a basis of $\mathcal{H}_m(\mathbb{R}^2)$ is given by the functions $x_1^2 - x_2^2$ and x_1x_2 , and they both span lines that are stable by the action of $\mathbf{O}(2)$, so $\mathcal{H}_2(\mathbb{R}^2)$ is not an irreducible representation of $\mathbf{O}(2)$.

Suppose that $m \geq 3$. As $\dim \mathcal{H}_m(\mathbb{R}^2) = 2$, if $\mathcal{H}_m(\mathbb{R}^2)$ is not an irreducible representation of $\mathbf{O}(2)$, we must have a nonzero $f \in \mathcal{H}_m(\mathbb{R}^2)$ such that $L_x f \in \mathbb{C}f$ for every $x \in \mathbf{O}(2)$. We identify \mathbb{R}^2 with the complex plane \mathbb{C} in the usual way. Then f(z), for $z \in \mathbb{C}$, can be written as $f(z) = \sum_{r=0}^m a_r z^r \overline{z}^{m-r}$, with $a_0, \ldots, a_m \in \mathbb{C}$. The action of $\mathbf{SO}(2)$ becomes the action of S^1 on \mathbb{C} by multiplication, and the action of $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ corresponds to complex conjugation. By the assumption on f, for every" $u \in S^1$, the function $f(uz) = \sum_{r=0}^m a_r u^{2r-m} z^r \overline{z}^{m-r}$ is a multiple of f. This is only possible if there exists $r \in \{0, \ldots, m\}$ such that $a_s = 0$ for $s \neq r$. So we may assume that $f(z) = z^r \overline{z}^{m-r}$. The function $f(\overline{z}) = z^{m-r} \overline{z}^r$ is also a multiple of f, so we must have m = 2r and $f = |x|^m$. Then $\Delta f = m(m-1)|x|^{m-2}$, which contradicts the fact that $\Delta f = 0$.

- d) Let $f \in V_m(\mathbb{R}^n)^{\mathbf{SO}(n)}$. As f is invariant by $\mathbf{SO}(n)$, it is constant on the sphere with center 0, so $f(z) = f(||z||v_0)$ for every $z \in \mathbb{R}^n$. As f is homogeneous of degree m, we get that $f(z) = ||z||^m f(v_0)$, for every $z \in \mathbb{R}^n$. So f is a polynomial if and only if m is even. Also, we check easily that $\Delta f = m(m-1)|x|^{-2}f$, so $f \in \mathcal{H}_m(\mathbb{R}^n)$ if and only if f = 0 or m = 0.
- e) By (b), we have a $\mathbf{SO}(n-1)$ -equivariant isomorphism $\mathcal{H}_m(\mathbb{R}^n) \simeq \bigoplus_{k=0}^m Hf_{m-k}(\mathbb{R}^{n-1})$. So, by (d), we get

$$\mathcal{H}_m(\mathbb{R}^n)^{\mathbf{SO}(n-1)} \simeq \mathcal{H}_0(\mathbb{R}^{n-1})^{\mathbf{SO}(n-1)} \simeq \mathbb{C}.$$

f) Let us denote the map $\mathbf{SO}(n) \to S$, $x \mapsto x \cdot v_0$ by φ . First, this map is clearly continuous, and it is surjective because $\mathbf{SO}(n)$ acts transitively on S. (If we have $v_1, v'_1 \in S$, we want to find $x \in \mathbf{SO}(n)$ such that $x \cdot v_1 = v'_1$. We can complete v_1 and v'_1 to two orthonormal bases (v_1, \ldots, v_n) and (v'_1, \ldots, v'_n) of \mathbb{R}^n . The change of basis matrix between these two bases is in $\mathbf{O}(n)$. If it is in $\mathbf{SO}(n)$, we are done. Otherwise, the change of basis matrix between (v_1, \ldots, v_n) and $(v'_1, \ldots, v'_{n-1}, -v'_n)$ will be in $\mathbf{SO}(n)$.)

Also, the stabilizer of v_0 in $\mathbf{SO}(n)$ is the subgroup of $\mathbf{SO}(n)$ whose elements have $\begin{pmatrix} 1\\ 2 \end{pmatrix}$

 $\begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix}$ as their first column, and we see easily that this is $\mathbf{SO}(n-1)$. So φ induces a

continuous bijective map $\mathbf{SO}(n)/\mathbf{SO}(n-1) \xrightarrow{\sim} S$. As $\mathbf{SO}(n)/\mathbf{SO}(n-1)$ is compact, this map is a homeomorphism.

g) Define a regular Borel measure ν on S by

$$\nu(E) = c\lambda(\{tx, t \in [0,1], x \in E\}).$$

Define a linear functional $I : \mathcal{C}(\mathbf{SO}(n)) \to \mathbb{C}$ by

$$I(f) = \int_{S} f^{\mathbf{SO}(n-1)}(s) d\nu(s),$$

where

$$f^{\mathbf{SO}(n-1)}(x) = \int_{\mathbf{SO}(n-1)} f(xy) dy$$

(we are using the normalized Haar measure on $\mathbf{SO}(n-1)$) for every $s \in \mathbf{SO}(n)$; the function $f^{\mathbf{SO}(n-1)}$ is right invariant by $\mathbf{SO}(n-1)$, hence can be identified to a function on S by (f).

This is a positive functional on $C(\mathbf{SO}(n))$, so it comes from a regular Borel measure on $\mathbf{SO}(n)$, say ρ . We want to show that ρ is the normalized Haar measure on $\mathbf{SO}(n)$.

Note that, if f is the constant function 1, then I(f) = 1. So, to show that ρ is the normalized Haar measure on $\mathbf{SO}(n)$, it suffices to show that it is left invariant. Let $f \in \mathcal{C}(\mathbf{SO}(n))$ and $y \in \mathbf{SO}(n)$. Then it follows immediately from the definition that $(L_y f)^{\mathbf{SO}(n-1)} = L_y(f^{\mathbf{SO}(n-1)})$, so we only need to show that the measure ν on S is left invariant by the action of $\mathbf{SO}(n)$. But this follows immediately from the fact that Lebesgue measure λ is left invariant by the action of $\mathbf{SO}(n)$ (which we can see using the change of variables formula).

h) Let V be as in the question. As $\mathbf{SO}(n)$ acts transitively on S and V is stable by $\mathbf{SO}(n)$, we can find $f \in V$ such that $f(v_0) \neq 0$. Let (f_1, \ldots, f_r) be a basis of V. As V is stable by $\mathbf{SO}(n)$ and as the action of $\mathbf{SO}(n)$ on V is continuous, we can find continuous functions $c_1, \ldots, c_r : \mathbf{SO}(n) \to \mathbb{C}$ such that, for every $x \in \mathbf{SO}(n)$ and every $s \in S$, we have $f(x \cdot s) = \sum_{i=1}^r c_i(x)f_i(s)$. Define $\tilde{f}: S \to \mathbb{C}$ by

$$\widetilde{f}(s) = \int_{\mathbf{SO}(n-1)} f(x \cdot s) dx.$$

Then $\tilde{f} = \sum_{i=1}^{r} \left(\int_{\mathbf{SO}(n-1)} c_i(x) dx \right) f_i$, so $\tilde{f} \in V$. Also, \tilde{f} is $\mathbf{SO}(n-1)$ -invariant by construction. Finally, as $x \cdot v_0 = v_0$ for every $x \in \mathbf{SO}(n-1)$, we have $\tilde{f}(v_0) = f(v_0) \neq 0$, so $\tilde{f} \neq 0$.

- i) By 2(h), restriction from \mathbb{R}^n to S is injective on $\mathcal{H}_m(\mathbb{R}^n)$, so $\mathcal{H}_m(\mathbb{R}^n)$ is irreducible as a representation of $\mathbf{SO}(n)$ if and only $H_m = \mathcal{H}_m(\mathbb{R}^n)_{|S|} \subset \mathcal{C}(S)$ is irreducible as a representation of $\mathbf{SO}(n)$. As $\mathbf{SO}(n)$ is compact, if H_m is not irreducible, then we can write $H_m = V \oplus V'$ with V and V' nonzero $\mathbf{SO}(n)$ -invariant subspaces of H_m . By (h), this implies that $\dim(H_m^{\mathbf{SO}(n)}) \geq 2$ and contradicts (d). So H_m is irreducible.
- j) Let $d_m = \dim \mathcal{H}_m(\mathbb{R}^n)$. We will show that $d_{m+1} > d_m$ for every $m \in \mathbb{Z}_{\geq 0}$, which implies that $d_m \neq d_{m'}$ if $m \neq m'$, hence that $\mathcal{H}_m(\mathbb{R}^n)$ and $\mathcal{H}_{m'}(\mathbb{R}^n)$ are not equivalent. If $m \leq 1$, then, by 1(a) and 2(e), we have $d_m = \dim V_m(\mathbb{R}^n) = \binom{m+n-1}{m}$. If $m \geq 2$, then, by 1(a) and 2(f), we have

$$d_m = \dim V_m(\mathbb{R}^n) - \dim V_{m-2}(\mathbb{R}^n)$$

= $\binom{m+n-1}{m} - \binom{m+n-3}{m-2}$
= $\frac{(m+n-3)!}{(m-2)!(n-1)!} \left(\frac{(m+n-1)(m+n-2)}{m(m-1)} - 1\right)$
= $\frac{(2m+n-2)(m+n-3)!}{m!(n-2)!}.$

In particular, $d_0 = 1$, $d_1 = n$ and $d_2 = 2n - 1$, so $d_2 > d_1 > d_0$. Let $m \ge 2$. Then

$$d_{m+1} - d_m = \frac{(2(m+1)+n-2)(m+1+n-3)!}{(m+1)!(n-2)!} - \frac{(2m+n-2)(m+n-3)!}{m!(n-2)!}$$
$$= \frac{(m+n-3)!}{m!(n-2)!} \left(\frac{(2m+n)(m+n-2)}{m+1} - (2m+n-2)\right)$$
$$= \frac{(m+n-3)!}{m!(n-2)!} \frac{(2m+n)(m+n-2) - (2m+n-2)(m+1)}{m+1}$$
$$> 0$$

(because $m + n - 2 \ge m + 1$ and 2m + n > 2m + n - 2).

k) Let $a_1, \ldots, a_n \in \mathbb{C}$, and consider $f = (a_1x_1 + \ldots + a_nx_n)^m \in V_m(\mathbb{R}^n)$. Then $\Delta f = m(m-1)(a_1^2 + \ldots + a_n^2)(a_1x_1 + \ldots + a_nx_n)^{m-2}$, so $f \in \mathcal{H}_m(\mathbb{R}^n)$ if and only if $a_1^2 + \ldots + a_n^2 = 0$. Let

$$W = \text{Span}\{(a_1x_1 + \ldots + a_nx_n)^m, \ a_1, \ldots, a_n \in \mathbb{C}, a_1^2 + \ldots + a_n^2 = 0\} \subset \mathcal{H}_m(\mathbb{R}^n).$$

As $W \neq 0$ and $\mathcal{H}_m(\mathbb{R}^n)$ is irreducible as a representation of $\mathbf{SO}(n)$, to show that $W = \mathcal{H}_m(\mathbb{R}^n)$, it suffices to show that W is invariant by $\mathbf{SO}(m)$. Let $x \in \mathbf{SO}(n)$ and $a_1, \ldots, a_n \in \mathbb{C}$, and let $f = (a_1x_1 + \ldots + a_nx_n)^m$. Write $(b_1, \ldots, b_n) = (a_1, \ldots, a_n)x^T$ (we see (a_1, \ldots, a_n) as a row vector). Then $b_1^2 + \ldots + b_n^2 = 0$ because $x \in \mathbf{O}(n)$, and $L_x f = (b_1x_1 + \ldots + b_nx_n)^m$, so $L_x f \in W$.

- 5. We keep the notation of problems 1,2,3,4, and we assume that $n \ge 3$.
 - a) (2 points) Show that the space $\sum_{m\geq 0} \mathcal{H}_m(\mathbb{R}^n)_{|S|}$ is dense in $L^2(S)$ and that the sum is direct.
 - b) (1 point) Show that the subspaces $\mathcal{H}_m(\mathbb{R}^n)_{|S}$ and $\mathcal{H}_{m'}(\mathbb{R}^n)_{|S}$ of $L^2(S)$ are orthogonal (for the L^2 inner form) if $m \neq m'$.
 - c) (1 point) Show that every irreducible unitary representation of $\mathbf{SO}(n)$ having a nonzero $\mathbf{SO}(n-1)$ -invariant vector is isomorphic to one of the $\mathcal{H}_m(\mathbb{R}^n)$.

Solution.

a) By 2(i), we have

$$\sum_{m\geq 0} \mathcal{H}_m(\mathbb{R}^n)_{|S|} = \sum_{m\geq 0} V_m(\mathbb{R}^n)_{|S|},$$

an the right hand side is dense in $\mathcal{C}(S)$ (hence in $L^2(S)$) by the Stone-Weierstrass theorem. Also, we have seen in the proof of 2(h) that the spaces $\mathcal{H}_m(\mathbb{R}^n)_{|S|}$ are pairwise orthogonal in $L^2(S)$, so they are in direct sum.

- b) See (a).
- c) Let V be an irreducible unitary representation of $\mathbf{SO}(n)$ such that $V^{\mathbf{SO}(n-1)} \neq 0$. By theorem V.3.2.4 of the notes, V is a subrepresentation of $L^2(S)$. But we have seen that

$$L^{2}(S) = \overline{\bigoplus_{m \ge 0} \mathcal{H}_{m}(\mathbb{R}^{n})_{|S|}}$$

and that all these summands are irreducible, so V is isomorphic to one of them.

- 6. We keep the notation of problems 1,2,3,4,5. We say that a function $\varphi \in \mathcal{C}(S)$ is zonal if it is left invariant by $\mathbf{SO}(n-1)$. (As $S = \mathbf{SO}(n)/\mathbf{SO}(n-1)$, we can also see the function φ as a bi-invariant function on $\mathbf{SO}(n)$.) Suppose that $n \geq 3$.
 - a) (2 point) Show that $\varphi \in \mathcal{C}(S)$ is zonal if and only if there exists a continuous function $f: [-1,1] \to \mathbb{C}$ such that, for every $z = (z_1, \ldots, z_n) \in S$, we have $\varphi(z) = f(z_1)$.
 - b) (3 points, extra credit) Show that there exists $c \in \mathbb{R}_{>0}$ such that, for every zonal $\varphi \in \mathcal{C}(S)$, if we define $f : [-1, 1] \to \mathbb{C}$ as in (a), then

$$\int_{S} \varphi(z) d\mu(z) = c \int_{-1}^{1} f(t) (1 - t^2)^{(n-3)/2} dt.$$

(Hint : You can try using spherical coordinates, as in https://en.wikipedia.org/ wiki/N-sphere#Spherical_coordinates.)

c) (1 point) Let $m \ge 0$. If $t \in S$, let f_t be the unique element of $\mathcal{H}_m(\mathbb{R}^n)$ such that, for every $g \in \mathcal{H}_m(\mathbb{R}^n)$, we have $\langle g, f_t \rangle = g(t)$. (Note that we are using the inner form of problem 2.)

Show that the function $Z_m = f_{v_0|S}$ (where $v_0 = (1, 0, ..., 0)$) is a zonal function.

- d) (2 points) Let $f_m : [-1,1] \to \mathbb{C}$ be the continuous function corresponding to Z_m as in question (a). Show that f_m is a polynomial function of degree $\leq m$.
- e) (1 point) If $m \neq m'$, show that $\int_{-1}^{1} f_m(t) \overline{f_{m'}(t)} (1-t^2)^{(n-3)/2} dt = 0.$
- f) (2 points) Show that the degree of f_m is m.
- g) (2 points) Show that $x \mapsto \frac{1}{Z_m(v_0)} Z_m(x \cdot v_0)$ is a spherical function on **SO**(*n*), and that every spherical function is of this form.

The polynomials $\frac{1}{f_m(1)}f_m$ are called Gegenbauer polynomials (and also Legendre polynomials if n = 3).

We will now give a different formula for the spherical functions.

- h) (1 point, extra credit) Consider the function $f_m \in V_m(\mathbb{R}^n)$ defined by $f_m(z_1, \ldots, z_n) = (z_1 + iz_2)^m$. Show that $f_m \in \mathcal{H}_m(\mathbb{R}^n)$.
- i) (3 points, extra credit) Define a function $\psi_m : S \to \mathbb{C}$ by $\psi_m(z) = \int_{\mathbf{SO}(n-1)} f_m(k \cdot z) dk$. Show that ψ_m is left invariant by $\mathbf{SO}(n-1)$, that $\psi_m \in \mathcal{H}_m(\mathbb{R}^n)_{|S|}$ and that $\psi_m(v_0) = 1$.
- j) (1 point, extra credit) Show that every spherical function on $\mathbf{SO}(n)$ is of the form $x \mapsto \psi_m(x \cdot v_0)$, for a unique $m \ge 0$.

We can calculate the integral defining ψ_m , and we get

$$\psi_m(\cos\varphi, z_2, \dots, z_n) = \frac{\Gamma(\frac{n-1}{2})}{\sqrt{\pi}\Gamma(\frac{n-2}{2})} \int_0^\pi (\cos\varphi + i\sin\varphi\cos\theta)^m \sin^{n-3}\theta d\theta.$$

Solution.

a) If there exists a continuous function $f: [-1,1] \to \mathbb{C}$ such that $\varphi(z_1, \ldots, z_n) = f(z_1)$, then φ is clearly zonal.

Conversely, suppose that φ is zonal, and define $f: [-1,1] \to \mathbb{C}$ by

$$(z_1) = \varphi(z_1, 0, \dots, 0, \sqrt{1 - z_1^2}).$$

Then f is clearly continuous. Let $s = (z_1, \ldots, z_n) \in S$. Then there exists $x \in \mathbf{SO}(n-1)$ such that $x \cdot s = (z_1, 0, \ldots, 0, \sqrt{1-z_1^2})$ (we are using the fact that $\mathbf{SO}(n-1)$ acts transitively on any sphere in \mathbb{R}^{n-1}). As φ is zonal, we have $\varphi(s) = f(z_1)$.

b) We use spherical coordinates on \mathbb{R}^n . That is, given $(z_1, \ldots, z_n) \in \mathbb{R}^n$, we write

$$z_1 = r \cos \phi_1$$

$$z_2 = r \sin \phi_1 \cos \phi_2$$

...

$$z_{n-1} = r \sin \phi_1 \sin \phi_2 \dots \sin \phi_{n-2} \cos \phi_{n-1}$$

$$z_n = r \sin \phi_1 \sin \phi_2 \dots \sin \phi_{n-2} \sin \phi_{n-1},$$

with $r = \sqrt{z_1^2 + \ldots + z_n^2} \in \mathbb{R}_{\geq 0}, \phi_1, \ldots, \phi_{n-2} \in [0, \pi]$ and $\phi_{n-1} \in [0, 2\pi)$ $(\phi_1, \ldots, \phi_{n-1}$ are not uniquely determined in general, but they are if for example z_1, \ldots, z_n are all nonzero). If dz is Lebesgue measure on \mathbb{R}^n , then we have

$$dz = r^{n-1} \sin^{n-2} \phi_1 \sin^{n-3} \phi_2 \dots \sin \phi_{n-2} dr d\phi_1 \dots d\phi_{n-1}$$

Let $\varphi \in \mathcal{C}(S)$ be zonal. Up to a positive real constant, $\int_S \varphi(s) d\mu(s)$ is equal to $\int_{B-\{0\}} \psi(z) dz$, where B is the closed unit ball and $\psi(z) = \varphi(||z||^{-1}z)$ for $z \neq 0$. This is equal to the product of $\int_0^1 r^{n-1} dr$ (another positive real constant) and of

$$\int_0^{\pi} \dots \int_0^{\pi} \int_0^{2\pi} \varphi(\cos \phi_1, \sin \phi_1 \cos \phi_2, \dots, \sin \phi_1 \dots \sin \phi_{n-2} \sin \phi_{n-1})$$
$$\sin^{n-2} \phi_1 \sin^{n-3} \phi_2 \dots \sin \phi_{n-2} d\phi_1 \dots d\phi_{n-1}.$$

As φ is zonal, the big integral above is equal to

$$\int_0^{\pi} \dots \int_0^{\pi} \int_0^{2\pi} f(\cos \phi_1) \sin^{n-2} \phi_1 \sin^{n-3} \phi_2 \dots \sin \phi_{n-2} d\phi_1 \dots d\phi_{n-1}.$$

Up to the constant

$$\int_0^{\pi} \dots \int_0^{\pi} \int_0^{2\pi} \sin^{n-3} \phi_2 \dots \sin \phi_{n-2} d\phi_2 \dots d\phi_{n-1}$$

(which has to be positive because it calculates the integral of the constant function 1 up to a positive constant), this is equal to

$$\int_0^\pi f(\cos\phi_1)\sin^{n-2}\phi_1 d\phi_1$$

Finally, we use the change of variable $t = \cos \phi_1$. We have $dr = -\sin \phi_1 d\phi_1$, so

$$\int_0^{\pi} f(\cos\phi_1) \sin^{n-2}\phi_1 d\phi_1 = \int_1^{-1} f(t) (-\sqrt{1-t^2}^{n-3}) dt$$
$$= \int_{-1}^1 f(1) (1-t^2)^{(n-3)/2} dt.$$

c) Let $y \in \mathbf{SO}(n-1)$. By definition of f_{v_0} , we have, for every $g \in \mathcal{H}_m(\mathbb{R}^n)$,

$$\langle g, L_y f_{v_0} \rangle = \langle L_{y^{-1}} g, f_{v_0} \rangle = L_y g(v_0) = g(y^{-1}v_0) = g(v_0) = \langle g, f_{v_0} \rangle$$

(because $\mathbf{SO}(n-1)$ is the stabilizer of v_0 in $\mathbf{SO}(n)$). So $f_{v_0} - L_y f_{v_0}$ is orthogonal to every element of $\mathcal{H}_m(\mathbb{R}^n)$, which implies that $f_{v_0} - L_y f_{v_0} = 0$, i.e. that $f_{v_0} = L_y f_{v_0}$. So Z_m is zonal. d) The function Z_m is the restriction of f_{v_0} , which is an element of $\mathcal{H}_m(\mathbb{R}^n)$, and in particular a polynomial function of degree m. As f_m is defined by $f_m(t) = Z_m(t, 0, \ldots, 0, \sqrt{1-t^2})$, we can write

$$f_m(t) = \sum_{k=0}^m c_k t^k (1-t^2)^{(m-k)/2},$$

with $c_0, \ldots, c_m \in \mathbb{C}$. But we also have $f_m(t) = Z_m(t, 0, \ldots, 0, -\sqrt{1-t^2})$, so

$$\sum_{k=0}^{m} c_k t^k (1-t^2)^{(m-k)/2} = \sum_{k=0}^{m} (-1)^{m-k} c_k t^k (1-t^2)^{(m-k)/2}$$

This forces c_k to be 0 unless m-k is even, and so f(t) is indeed polynomial of degree $\leq m$ in t.

e) The function $s \mapsto Z_m(s)\overline{Z_{m'}(s)}$ is zonal, so we have

$$\int_{S} Z_m(s) \overline{Z_{m'}(s)} d\mu(s) = c \int_{-1}^{1} f_m(t) \overline{f_{m'}(t)} (1 - t^2)^{(n-3)/2} dt$$

by (b). By 5(b), the left hand side is 0.

- f) For every $m \ge 0$, the function Z_m is nonzero by definition (and because there exist functions $f \in \mathcal{H}_m(\mathbb{R}^n)$ such that $g(v_0) \ne 0$, see the proof of 4(h)), so $f_m \ne 0$ by 2(h). By (e), the functions $(f_m)_{m\ge 0}$ form an orthogonal family in $L^2([-1,1], (1-t^2)^{(n-3)/2}dt)$, so they also form a linearly independent family. Fix $m \ge 0$. The space P_m of polynomials of degree $\le m$ is of dimension m + 1 and contains the linearly independent family (f_0, \ldots, f_m) , so this family is a basis of P_m . But f_0, \ldots, f_{m-1} are of degree $\le m - 1$, so f_m has to be of degree m.
- g) By corollary V.7.2 of the notes, if Z is the set of spherical functions on SO(n), then we have

$$L^2(S) = \widehat{\bigoplus_{\varphi \in Z} V_{\varphi}}$$

and φ generates $V_{\varphi}^{\mathbf{SO}(n-1)}$. So, using problem 5, we see that the spherical functions are exactly the generators of the spaces $(\mathcal{H}_m(\mathbb{R}^n)_{|S})^{\mathbf{SO}(n-1)}$ that send v_0 to 1.

For every $m \geq 0$, the function $Z_m \in \mathcal{H}_m(\mathbb{R}^n)_{|S|}$ is invariant by $\mathbf{SO}(n-3)$, so it generates the space of $\mathbf{SO}(n-1)$ -invariant vectors in $\mathcal{H}_m(\mathbb{R}^n)_{|S|}$ and has a multiple which is a spherical functions. Because a spherical function must send v_0 to 1, this multiple is $x \mapsto \frac{1}{Z_m(v_0)} Z_m(x \cdot v_0)$.

- h) (Unintentional reuse of notation. Sorry.) This follows from 4(k). It is also easy to prove it directly.
- i) This is exactly the same construction as in the proof of 4(h) (with $V = \mathcal{H}_m(\mathbb{R}^n)_{|S}$). The same proof shows that $\psi_m \in \mathcal{H}_m(\mathbb{R}^n)_{|S}$, that ψ_m is left invariant by $\mathbf{SO}(n-1)$ and that $\psi_m(v_0) = f_m(v_0) = 1$.
- j) Same idea as in the proof of (g) : we have one spherical function in each $\mathcal{H}_m(\mathbb{R}^n)_{|S}$, and it is the unique $\mathbf{SO}(n-1)$ -invariant element of this space that sends v_0 to 1. By (i), the function ψ_m satisfies all the required properties.