
MAT 449 : Problem Set 10

Due Sunday, December 9

1. Fix a positive integer n. For every m ∈ Z≥0, we denote by Vm(Rn) the vector space of
complex-valued polynomial functions on Rn that are homogenous of degree m. We define
an action of O(n) on Vm(Rn) by (x ·f)(v) = f(x−1v) if x ∈ O(n), f ∈ Vm(Rn) and v ∈ Rn
(in other words, x · f = Lxf).

For i ∈ {1, . . . , n}, we denote by ∂xi the endomorphism f 7→ ∂
∂xi
f of C∞(Rn) (the space of

smooth functions from Rn to C), and we set ∆ =
∑n

i=1(∂xi)
2 (this is called the Laplacian

operator).

The space of harmonic polynomials of degree m on Rn is the space

Hm(Rn) = {f ∈ Vm(Rn)|∆(f) = 0}.

a) (2 points) Calculate dim(Vm(Rn)).

b) (1 point) Show that the action of O(n) on Vm(Rn) is a continuous representation.

c) (2 points) Show that, for every x ∈ O(n) and every f ∈ C∞(Rn), we have ∆(Lxf) =
Lx(∆(f)).

d) (1 point) Show that the subspace Hm(Rn) of Vm(Rn) is O(n)-invariant.

2. We keep the notation of problem 1. For i ∈ {1, . . . , n}, we denote by xi the oth coordinate
function on Rn.

a) (1 point) Show that the map xi → ∂xi extends to a unique morphism of C-algebras
from

⊕
m≥0 Vm(Rn) (the algebra of complex-valued polynomial functions on Rn) to

End(C∞(Rn)). We will denote this morphism by f 7→ ∂f .

If f, g ∈ Vm(Rn), we set 〈f, g〉 = ∂g(f). (Note that g is still a polynomial function on Rn.)

b) (3 points) Show that 〈., .〉 is an inner form on Vm(Rn). (Hint : Can you find an
orthogonal basis ?)

c) (2 points) Show that, for every f ∈ Vm(Rn) and every y ∈ O(n), we have ∂f ◦ Ly =
Ly ◦ ∂L

yT
f in End(C∞(Rn)).

d) (1 point) Show that the continuous representation of O(n) on Vm(Rn) defined in
problem 1 is unitary for the inner product 〈., .〉.

e) (1 point) If m ≤ 1, show that Vm(Rn) = Hm(Rn).

f) (2 points) If m ≥ 2, show that Hm(Rn)⊥ = |x|2Vm−2(Rn), where |x|2 is the function∑n
i=1 x

2
i ∈ V2(Rn).

g) (2 points) Show that

Vm(Rn) =

bm/2c⊕
k=0

|x|2kHm−2k(Rn),
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and that this induces a O(n)-equivariant isomorphism

Vm(Rn) =

bm/2c⊕
k=0

Hm−2k(Rn).

h) (2 points) If S ⊂ Rn is the unit sphere, show that the map
⊕

m≥0Hm(Rn)→ C(S),
f 7→ f|S is injective.

i) (1 point) Show that, for every f ∈ Vm(Rn), there is a unique g ∈
⊕bm/2c

k=0 Hm−2k(R
n)

such that f|S = g|S .

3. Let n ≥ 2, and embed O(n−1) into O(n) by using the map x 7→
(

1 0
0 x

)
. Let G = SO(n),

and let K be the image of SO(n− 1) in G by the embedding we just defined.

a) (2 points) Let A be the subset of SO(n) consisting of matrices of the form cos θ 0 sin θ
0 In−2 0

− sin θ 0 cos θ

 ,

with θ ∈ R.

Show that A is a subgroup of G and that we have G = KAK.

b) (2 points) Show that (G,K) is a Gelfand pair. (You might want to use the involution θ
of G defined by θ(x) = JxJ , where J is the diagonal matrix with diagonal coefficients
−1, 1, . . . , 1.)

4. We use the notation of problems 1 and 2, and the embedding O(n− 1) ⊂ O(n) defined in
problem 3.

a) (1 point) Show that we have a O(n− 1)-equivariant isomorphism

Vm(Rn) '
m⊕
k=0

Vm−k(Rn−1).

b) (3 points) Show that we have a O(n− 1)-equivariant isomorphism

Hm(Rn) '
m⊕
k=0

Hm−k(Rn−1).

c) (3 points) If m ≥ 2, show that Hm(R2) is an irreducible representation of O(2), but
that it is not irreducible as a representation of SO(2).

From now on, we assume that n ≥ 3.

d) (2 points) If m ≥ 1, show that Hm(Rn)SO(n) = {0}.
e) (1 point) Show that, for every m ≥ 0, the space Hm(Rn)SO(n−1) is 1-dimensional.

f) (2 points) Let S ⊂ Rn be the unit sphere, and let v0 = (1, 0, . . . , 0) ∈ S. Show that
the map SO(n)→ S, x 7→ x · v0 induces a homeomorphism SO(n)/SO(n− 1)

∼→ S.

g) (2 points) Show that the measure µ on S defined in 1(f) of problem set 2 (using the
normalized Haar measures on SO(n) and SO(n− 1)) is given by µ(E) = cλ({tx, t ∈
[0, 1], x ∈ E}) for every Borel subset E of S, where λ is Lebesgue measure on Rn
and c−1 is the volume of the unit ball (for λ).
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h) (2 points) By the previous question, we have the quasi-regular representation of
SO(n) on L2(S), and it preserves the subspace of continuous functions. If V ⊂ C(S)
is a nonzero finite-dimensional SO(n)-stable subspace, show that V SO(n−1) 6= {0}.
(Hint : Start with a function f ∈ V such that f(v0) 6= 0.)

i) (1 point) Show that the representation Hm(Rn) of SO(n) is irreducible.

j) (2 points) Show that the representations Hm(Rn) and Hm′(Rn) of SO(n) are not
equivalent if m 6= m′. (Hint : Compare the dimensions.)

k) (3 points, extra credit) If m ≥ 2, show that Hm(Rn) is spanned by the functions
(z1, . . . , zn) 7→ (a1z1 + . . . anzn)m, with a1, . . . , an ∈ C such that a21 + . . .+ a2n = 0.

5. We keep the notation of problems 1,2,3,4, and we assume that n ≥ 3.

a) (2 points) Show that the space
∑

m≥0Hm(Rn)|S is dense in L2(S) and that the sum
is direct.

b) (1 point) Show that the subspaces Hm(Rn)|S and Hm′(Rn)|S of L2(S) are orthogonal
(for the L2 inner form) if m 6= m′.

c) (1 point) Show that every irreducible unitary representation of SO(n) having a
nonzero SO(n− 1)-invariant vector is isomorphic to one of the Hm(Rn).

6. We keep the notation of problems 1,2,3,4,5. We say that a function ϕ ∈ C(S) is zonal if
it is left invariant by SO(n− 1). (As S = SO(n)/SO(n− 1), we can also see the function
ϕ as a bi-invariant function on SO(n).) Suppose that n ≥ 3.

a) (2 point) Show that ϕ ∈ C(S) is zonal if and only if there exists a continuous function
f : [−1, 1]→ C such that, for every z = (z1, . . . , zn) ∈ S, we have ϕ(z) = f(z1).

b) (3 points, extra credit) Show that there exists c ∈ R>0 such that, for every zonal
ϕ ∈ C(S), if we define f : [−1, 1]→ C as in (a), then∫

S
ϕ(z)dµ(z) = c

∫ 1

−1
f(t)(1− t2)(n−3)/2dt.

(Hint : You can try using spherical coordinates, as in https://en.wikipedia.org/

wiki/N-sphere#Spherical_coordinates.)

c) (1 point) Let m ≥ 0. If t ∈ S, let ft be the unique element of Hm(Rn) such that, for
every g ∈ Hm(Rn), we have 〈g, ft〉 = g(t). (Note that we are using the inner form of
problem 2.)

Show that the function Zm = fv0|S (where v0 = (1, 0, . . . , 0)) is a zonal function.

d) (2 points) Let fm : [−1, 1] → C be the continuous function corresponding to Zm as
in question (a). Show that fm is a polynomial function of degree ≤ m.

e) (1 point) If m 6= m′, show that
∫ 1
−1 fm(t)fm′(t)(1− t2)(n−3)/2dt = 0.

f) (2 points) Show that the degree of fm is m.

g) (2 points) Show that x 7→ 1
Zm(v0)

Zm(x · v0) is a spherical function on SO(n), and
that every spherical function is of this form.

The polynomials 1
fm(1)fm are called Gegenbauer polynomials (and also Legendre polyno-

mials if n = 3).

We will now give a different formula for the spherical functions.

h) (1 point, extra credit) Consider the function fm ∈ Vm(Rn) defined by fm(z1, . . . , zn) =
(z1 + iz2)

m. Show that fm ∈ Hm(Rn).
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i) (3 points, extra credit) Define a function ψm : S → C by ψm(z) =
∫
SO(n−1) fm(k ·

z)dk. Show that ψm is left invariant by SO(n − 1), that ψm ∈ Hm(Rn)|S and that
ψm(v0) = 1.

j) (1 point, extra credit) Show that every spherical function on SO(n) is of the form
x 7→ ψm(x · v0), for a unique m ≥ 0.

We can calculate the integral defining ψm, and we get

ψm(cosϕ, z2, . . . , zn) =
Γ(n−12 )
√
πΓ(n−22 )

∫ π

0
(cosϕ+ i sinϕ cos θ)m sinn−3 θdθ.
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