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Abstract. We develop some techniques for distinguishing between dif-
ferent automorphic representations of a reductive group G and for lo-
cating all occurrences of a given irreducible admissible representation of
G(Af ) in the automorphic cohomology of G. We apply these methods
to a specific class of automorphic representations of the split exceptional
group G2 and locate every occurrence of their finite parts in Eisenstein
cohomology and, assuming Arthur’s conjectures, in cuspidal cohomology
as well.
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Introduction

This paper has been written primarily to serve two purposes. One is to
provide the automorphic background for another paper [Mun] which will
study the Bloch–Kato Selmer group attached to the symmetric cube of a
modular eigenform, and we will discuss this briefly below. The other is to
explain how explicit computations involving the decomposition of Franke–
Schwermer [FS98] of the space of automorphic forms on a reductive group
G, along with Arthur’s conjectures on the endoscopic classification of rep-
resentations occurring in the discrete spectrum of G, can give very refined

1



2 SAM MUNDY

information about the automorphic cohomology of G; even more, we will
show that, in certain cases, a study of the Franke–Schwermer decomposition
can lead to information about the cuspidality of nontempered representa-
tions in the discrete spectrum of G, where Arthur’s conjectures alone cannot
provide any such information.

In more detail, let G be a reductive group over Q. Let AG be the maximal
split torus in the center of G, so that G has a Langlands decomposition
G = G0AG. Let g be the complexified Lie algebra of G, and g0 that of G0,
and let K∞ be a maximal compact subgroup of the real group G(R). If
we denote by A(G) the space of automorphic forms on G which transform
trivially under the connected component AG(R)◦ of the identity in AG(R),
then A(G) is a G(Af )× (g0,K∞)-module; here Af denotes the ring of finite
adeles in the full ring A of adeles of Q.

Given a finite dimensional irreducible representation E of G(C), we can
consider the sub-G(Af ) × (g0,K∞)-module AE(G) of A(G); this is defined
to be the space of automorphic forms which are killed by a power of the
annihilator JE of the dual E∨ of E in the center of the universal enveloping
algebra of g, and which transform trivially under the connected component
AG(R)◦ of AG(R). Then we can define the automorphic cohomology of G
with coefficients in E as the (g0,K∞)-cohomology space

H∗(g0,K∞;E) = H∗(g0,K∞;AE(G)⊗ E).

(Often in the literature this space is denoted H∗(G,E), but we choose to
write it this way in this paper to emphasize that we are computing it using
(g0,K∞)-cohomology.) This is naturally a G(Af )-module, which is admis-
sible. In fact, it is naturally isomorphic to the inductive limit over all level
subgroups of the cohomology of the local system coming from E on the lo-
cally symmetric spaces attached to G; this was a conjecture of Borel which
was proven by Franke in [Fra98].

We would like to propose the following problem.

Problem. Given an irreducible admissible G(Af )-module σ, in exactly
which ways can σ be realized as a subquotient of H∗(g0,K∞;E), and in
which degrees?

We believe that this problem is interesting in its own right, but besides
this it does have applications to other questions, including some which are
arithmetic in nature; see below for a brief discussion of how the solution
to this problem can allow one to make p-adic deformations of the G(Af )-
module σ in certain cases.

One approach to this problem, which is the approach developed in this
paper, begins with splitting the automorphic cohomology into the direct sum
of two G(Af )-submodules called, respectively, the Eisenstein cohomology
and cuspidal cohomology :

H∗(g0,K∞;E) = H∗
Eis(g0,K∞;E)⊕H∗

cusp(g0,K∞;E).

The Eisenstein cohomology is just the (g0,K∞)-cohomology of the space,
tensored with E, of all Eisenstein series, their residues, and the derivatives
of such, in AE(G). Franke and Schwermer in [FS98] give an extremely
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refined direct sum decomposition of this subspace of AE(G) in terms of
certain classes φ of cuspidal representations of Levi factors.

Thus, to try to solve the problem above, one could try to first find all
pieces of this Franke–Schwermer decomposition which contain σ as the finite
part of a constituent, show that this list is exhaustive, and then compute the
(g0,K∞)-cohomology of all such pieces. To illustrate this technique, in this
paper we carry it out for a certain irreducible admissible G2(Af )-module,
where G2 denotes the split exceptional group of that type.

More precisely, let F be a cuspidal holomorphic eigenform with even
weight k ≥ 4 and trivial nebentypus, and let πF be the unitary cuspidal au-
tomorphic representation of GL2(A) attached to it. In the group G2, there
is a maximal parabolic subgroup, denoted Pα in this paper, whose Levi fac-
tor Mα contains the unipotent group attached to the long simple root α of
G2. Then Mα

∼= GL2, and we can consider the finite part Lα(πF , 1/10)f
of the unique irreducible quotient Lα(πF , 1/10) of the unitary induction

of πF ⊗ |det |1/2 to G2(A) along Pα(A). (The 1/10 present in this nota-
tion is to signify that the modulus character of Pα(A) to the power 1/10

coincides with the twisting factor |det |1/2.) We make an explicit study
of the Franke–Schwermer decomposition for G2 and solve the Eisenstein-
component of the problem above for G = G2 and σ = Lα(πF , 1/10)f , at
least when L(1/2, πF ,Sym

3) = 0; the theorem (see Theorem 2.3.9) is as
follows.

Theorem A. Let λ0 be the weight

λ0 =
k − 4

2
(2α+ 3β),

where α is the long simple root for G2 and β is the short one, and let Eλ0
be the representation of G2(C) of highest weight λ0. Assume

L(1/2, πF ,Sym
3) = 0.

Then there is a unique summand isomorphic to the unitary induction

ι
G2(Af )
Pα(Af )

(πF,f ⊗ | det |1/2)

in the Eisenstein cohomology of G2 with coefficients in Eλ0,

H∗
Eis(g2,K∞;Eλ0),

and all irreducible subquotients of this cohomology which are isomorphic to
Lα(πF , 1/10)f , except perhaps at finitely many finite places, appear in this
summand. Moreover, this summand appears in middle degree 4.

We note that if L(1/2, πF ,Sym
3) ̸= 0 then one can still say a lot, but

the story as of now is still incomplete; see Remark 3.5.5. We also re-
mark that there are many modular forms F as in the theorem such that
L(1/2, πF ,Sym

3) = 0, or even with ϵ(1/2, πF , Sym
3) = −1. For example,

a quick exercise with archimedean root numbers shows that any holomor-
phic modular eigenform of level 1 has ϵ(1/2, πF , Sym

3) = −1, hence also
L(1/2, πF ,Sym

3) = 0.
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The second part of our technique to try to solve the problem we posed
above must then study the occurrence of σ in cuspidal cohomology space
H∗

cusp(g0,K∞;E); this space is simply the (g0,K∞)-cohomology of the sub-
space of cusp forms inAE(G) tensored with E. Our approach to this involves
the endoscopic classification of representations occurring in the discrete spec-
trum of G, and thus we now assume Arthur’s conjectures.

Arthur’s conjectures give a classification of the representations occurring
in the discrete spectrum of G in terms of certain parameters ψ, often called
discrete Arthur parameters. One then has a strategy for locating σ in cus-
pidal cohomology, and it proceeds with the following five steps:

(1) Classify all local archimedean Arthur parameters ψ∞ whose associ-
ated packets Πψ∞ contain a cohomological representation.

(2) Find all discrete global Arthur parameters ψ whose archimedean
component ψ∞ is of the type described in Step (1) and whose as-
sociated packets Πψ contain a representation π with finite part πf
isomorphic to σ;

(3) Using Arthur’s multiplicity formula, for every π as in Step (2), com-
pute the multiplicity mdisc(π) of π in the discrete spectrum.

(4) For every π as in Step (3) with mdisc(π) > 0, compute the mul-
tiplicity mres(π) of π in the residual spectrum. Then mcusp(π) =
mdisc(π)−mres(π) is the multiplicity of π in the cuspidal spectrum.

(5) For every π as in Step (4) with mcusp(π) > 0, compute the (g0,K∞)-
cohomology of π∞ ⊗ E.

In the case of G = G2, σ = Lα(πF , 1/10)f , and E = Eλ0 with λ0 =
k−4
2 (2α + 3β) as above, we carry out these five steps. Step (1) is accom-

plished in Proposition 3.4.1. Following Gan and Gurevich [GG09], we define
a parameter ψF in Section 3.5 whose associated packet contains represen-
tations with finite part Lα(πF , 1/10)f . We then explain why no other co-
homological parameter besides ψF can contain a representation with finite
part Lα(πF , 1/10)f , thus accomplishing Step (2). Then Step (3) in this case
follows from [GG09] and implies there is a unique discrete automorphic rep-
resentation ΠF with finite part ΠF,f isomorphic to Lα(πF , 1/10)f , and that
in fact ΠF occurs in the discrete spectrum with multiplicity one.

For Step (4), we use the techniques developed in this paper around Eisen-
stein series to show that ΠF is cuspidal if and only if L(1/2, πF , Sym

3) =
0. This is done in Proposition 3.5.3, and involves showing that the only
piece of the Franke–Schwermer decomposition for G2 containing a residual
representation with finite part Lα(πF , 1/10)f is the one studied above if

L(1/2, πF ,Sym
3) ̸= 0.

Finally, Step (5) is accomplished by computing the representation ΠF,∞
in terms of Adams–Johnson packets [AJ87], and using well known results on
the cohomology of representations in such packets. We obtain the following
(see Theorem 3.5.4).

Theorem B. Notation as above, assume

L(1/2, πF ,Sym
3) = 0.
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Then under Arthur’s conjectures, we have

H i
cusp(g2,K∞;E)[ΠF,f ] =


ΠF,f if i = 4 and ϵ(1/2, πF ,Sym

3) = −1,

or if i = 3, 5 and ϵ(1/2, πF , Sym
3) = +1;

0 otherwise.

Here, ΠF,f = Lα(πF , 1/10)f and the brackets in the formula above denote
the ΠF,f -isotypic component.

The dependence of this result on the sign ϵ(1/2, πF ,Sym
3) of the symmet-

ric cube functional equation comes from Arthur’s multiplicity formula. In
fact, the local archimedean packet for ψF contains two representations, and
can be described in terms of the theory of Adams–Johnson [AJ87]. Only one
will occur as ΠF,∞, and which one occurs depends on this sign. Moreover,
we determine in this paper not just the cohomology of the representations
in this packet, but also the representations themselves. The result is the
following (see Theorem 3.3.3).

Theorem C. The local archimedean Arthur packet ΠψF,∞, computed as
an Adams–Johnson packet [AJ87], consists of the nontempered Langlands
quotient Lα(πF , 1/10)∞, and the quaternionic discrete series representation
of weight k/2 (in the terminology of Gan–Gross–Savin [GGS02]).

We remark that the above result has already found use in work of R. Dalal
on counting quaternionic G2-automorphic representations; see [Dal23].

We imagine that the methods of this paper may apply to a number of
other situations, especially to classical groups. For example, these methods
apply to give the existence, multiplicity, and even the cuspidality of the au-
tomorphic representations of PGSp4(A) generated by the Saito–Kurokawa
liftings constructed by Piatetski-Shapiro [Pia83], without constructing them
directly via theta correspondence; one can even reprove the description of
their infinite components using our method, and one can also locate their
finite parts in cohomology precisely. One can then use this cohomological
information to find them on the eigenvariety of Urban [Urb11] when they are
holomorphic at the infinite place, and to prove the main result of Skinner–
Urban [SU06a] on the nontriviality of the Bloch–Kato Selmer groups for the
p-adic Galois representations attached to certain modular forms, in the case
that those forms are not ordinary at p; the argument for this is sketched in
[Urb11, §5.5].

As for applications of the results of this paper themselves, in a sequel pa-
per [Mun], we will construct nontrivial elements in the Bloch–Kato Selmer
groups attached to (a suitable twist of) the Galois representation Sym3(ρF ),
where ρF is the p-adic Galois representation attached to F , under the hy-
pothesis that ϵ(1/2, πF ,Sym

3) = −1, at least assuming Arthur’s conjectures.
This application follows the method of Skinner and Urban [SU06a; SU06b].
As a preview, we describe the construction now.

First we must locate the G2(Af )-representation Lα(πF , 1/10)f as a point
on Urban’s eigenvariety, and the first step to this is to find the classical mul-
tiplicity of (a critical p-stabilization of) Lα(πF , 1/10)f as defined in [Urb11].
The results of this paper do just that.
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One can then compute from this the cuspidal overconvergent multiplic-
ity of this p-stabilization of Lα(πF , 1/10)f and show it is nonzero if the

sign ϵ(1/2, πF , Sym
3) = −1, meaning it lies on Urban’s eigenvariety. Then

passing to the Galois side one gets a p-adic family of G2-valued Galois rep-
resentations specializing to the reducible one attached to Lα(πF , 1/10)f .
Then one can construct the desired nontrivial symmetric cube Selmer class
as an extension occurring in the specialization at the point corresponding
to Lα(πF , 1/10)f of a suitably chosen lattice in this family.

We remark that there are a number of other papers on the automorphic
cohomology of G2; see, for example, [LS93; BG22].

This paper is organized as follows. We begin in Section 1 by reviewing the
various structural aspects of the group G2 which will be used in the sections
which follow.

Section 2 then studies Eisenstein cohomology. We begin that section
with a very general setup; Subsection 2.1 reviews the Franke–Schwermer
decomposition for a general group G, and then Subsection 2.2 studies the
cohomology of induced representations for G. These two subsections are
in no way original, but instead serve as a place to gather useful general
information about Eisenstein cohomology. We hope some readers will find
this to be a helpful reference. However, we switch back to the setting of G2

in Subsection 2.3 and apply the material of the preceding two subsections
to determine completely the occurrence of Lα(πF , 1/10)f in the Eisenstein
cohomology of G2 with coefficients in Eλ0 .

Section 3 then determines the location of Lα(πF , 1/10)f in the correspond-
ing cuspidal cohomology space under Arthur’s conjectures. In particular, we
explain how the combination of the methods of Section 2 along with Arthur’s
conjectures are enough to describe when Lα(πF , 1/10)f occurs as the finite
part of a cuspidal automorphic representation, rather than just a discrete
one.
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Notation and conventions

The following conventions will be used throughout this entire paper.

Groups and Lie algebras. In general, our convention is to use uppercase ro-
man letters to denote groups over Q, such as G, and to use the corresponding
lowercase fraktur letters to denote complex Lie algebras. So for example, g
will always denote the complexified Lie algebra of the Q-group G. The only
exceptions to this convention occur in Section 3.1; see that section for the
notation used there.

When working with a group G, we will often fix a parabolic subgroup P
of G along with a Levi decomposition P = MN . In this decomposition,
M will always denote the Levi factor and N the unipotent radical. If we
have another parabolic subgroup with fixed Levi decomposition, then we use
subscripts on the notation for its fixed Levi factor and its unipotent radical
to distinguish them from those of P ; so if Q is another parabolic subgroup,
we will write Q =MQNQ for its Levi decomposition.

For any parabolic subgroup P as above, the notation AP will denote the
maximal Q-split torus in the center of the Levi factor M of P . Then there
is a Langlands decomposition P = M0APN . This applies in particular to
P = G, and so G = G0AG.

Now we have the complexified Lie algebras g, g0, p, m, m0, n, aP of,
respectively, G, G0 P , M , M0, N , and AP . We also write p0 = p ∩ g0 and
aP,0 = aP ∩ g0. Then there are decompositions

p = m0 ⊕ aP ⊕ nP ,

and

p0 = m0 ⊕ aP,0 ⊕ nP .

We will always write ρP for the character ρP : aP → C given by

ρP (X) = Tr(ad(X)|nP ), X ∈ aP .

Most of the time we will be working with the groupG2, which we introduce
in Section 1.1. The objects associated with this group have various pieces
of notation attached to them as well, and we refer to that section for those
notations.

Points of groups. When v is a place of Q, we write Qv for the completion
of Q at v. Then R = Q∞. The group of Qv-points of any affine algebraic
group over Q is always given the usual topology induced from Qv.

We write A for the adeles of Q and Af for the finite adeles. If v is a fixed
finite place of Q, then Avf will denote the finite adeles away from v. The
groups of A-points, Af -points, or Avf -points of any affine algebraic group
over Q are given their standard topologies.

When a parabolic subgroup P =MN of a group G is fixed as above, we
will often consider the associated height function HP . This is a function

HP : G(A) → aP,0.

To define it, we must fix a maximal compact subgroup K ⊂ G(A). We
assume K = Kf,maxK∞ where K∞ is a fixed maximal compact subgroup
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of G(R), where Kf,max =
∏
v<∞Kv, and where the groups Kv are maximal

compact subgroups of G(Qv). We moreover assumeK to be in good position
with respect to a fixed minimal parabolic subgroupsinside P . In particular,
the Iwasawa decomposition holds for P (A) and K.

Write ⟨·, ·⟩ for the natural pairing

⟨·, ·⟩ : aP,0 × a∨P,0 → C

given by evaluation, where a∨P,0 = HomC(aP,0,C). Write X∗(M) for the
group of algebraic characters ofM . ThenHP is defined first on the subgroup
M(A) by requiring

e⟨HP (m),dΛ⟩ = |Λ(m)|, m ∈M(A), Λ ∈ X∗(M),

where dΛ denotes the restriction to aP,0 of the differential at the identity of
the restriction of Λ to AP (R), and |·| is the usual adelic absolute value. Then
HP is defined in general by declaring it to be left invariant with respect to
N(A) and right invariant with respect to K.

If R is one of the rings Qv, A, or Af , we use the notation δP (R) to denote
the modulus character of P (R), and similarly for other parabolic subgroups.

Automorphic representations. When G is a reductive Q-group, we take the
point of view that an “automorphic representation” of G(A) is (among
other things) an irreducible object in the category of admissible G(Af ) ×
(g,K∞)-modules, where K∞ is, like above, a maximal compact subgroup in
G(R). We often even view automorphic representations asG(Af )×(g0,K∞)-
modules by restriction. We let A(G) denote the space of all automorphic
forms on G(A) which transform trivially under the connected component
AG(R)◦ of the identity in AG(R).

If Π is an automorphic representation of G(A) and v is a place of Q, we
will denote by Πv the local component of Π at v. If v is finite, then this
is an irreducible admissible representation of G(Qv), and if v = ∞, then
this is an irreducible admissible (g,K∞)-module. We also let Πf denote the
associated representation of G(Af ), so that Π ∼= Πf ⊗Π∞.

If P =MN is a parabolic subgroup of G and π an automorphic represen-
tation of M(A), then we denote the nonunitary parabolic induction of π to

G along P by Ind
G(A)
P (A)(π), and the unitary parabolic induction by ι

G(A)
P (A)(π).

So

ι
G(A)
P (A)(π) = Ind

G(A)
P (A)(π ⊗ δ

1/2
P (A)).

More generally, if λ ∈ a∨P , we write

ι
G(A)
P (A)(π, λ) = ι

G(A)
P (A)(π ⊗ e⟨HP (·),λ⟩) = Ind

G(A)
P (A)(π ⊗ e⟨HP (·),λ+ρP ⟩)

We similarly write Ind
G(Af )
P (Af )

and ι
G(Af )
P (Af )

for the corresponding functors on

smooth admissible representations of M(Af ), and Ind
G(Qv)
P (Qv) and ι

G(Qv)
P (Qv) for

their local analogues.
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Duals. We use the symbol (·)∨ in various ways to denote duality. If a is an
abelian Lie algebra, we write a∨ = HomC(a,C). If R is a complex represen-
tation of a group, then R∨ is the usual dual (contragredient) representation
over C. If G is our reductive Q-group, then G∨(C) will denote the dual
group over the algebraically closed field C.

1. The group G2

We begin by collecting various facts about the group G2 itself and con-
solidating them here for the convenience of the reader. We explain various
structural aspects of G2 involving its root system, its parabolic subgroups,
and its real points.

1.1. Structure of the group G2. We define G2 to be the split simple
group over Q with Dynkin diagram as in Figure 1.1. Fixing a maximal Q-
split torus T in G2, we choose a long simple root α and a short simple root
β, as notated in the Dynkin diagram. The group G2 has trivial center.

Figure 1.1. The Dynkin diagram of G2

It is worth noting that G2 does not have a very nice matricial definition,
at least not one that is as nice as for, say, the group Sp4 of rank 2. Conse-
quently, we will study G2 from the point of view of its root system, which
we discuss now.

The root lattice. The root lattice of G2 looks as in Figure 1.2. There, the
positive Weyl chamber is shaded.

Figure 1.2. The root lattice of G2
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Write ∆ for the set of roots of T in G2, and write ∆+ for the subset of
positive roots. So we have

∆+ = {α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β}.
One nice feature of G2 is that the Z-span of the root lattice equals the

character group of T :
X∗(T ) = Zα⊕ Zβ.

Since the Cartan matrix of G2 has determinant 1, an analogous fact holds
for the cocharacter group.

Parabolic subgroups. Let B denote the standard Borel subgroup of G2, de-
fined with respect to ∆+. We write B = TU for its Levi decomposition.
Besides B, there are two other proper standard parabolic subgroups, and
they are maximal. Let Pα denote the standard parabolic subgroup whose
Levi contains α, and write Pα =MαNα for its Levi decomposition. Similarly
define Pβ =MβNβ.

For γ ∈ ∆ a root, write
xγ : Ga → G2

for the corresponding root group homomorphism, where Ga is the additive
group scheme. The Levi subgroupsMα andMβ are both isomorphic to GL2.
We write

iα : GL2 →Mα and iβ : GL2 →Mβ

for the isomorphisms which send the upper triangular matrix
(
1 a
0 1

)
in GL2

to the element xα(a) and xβ(a), respectively. We also often write(
a b
c d

)
γ

= iγ

((
a b
c d

))
, γ ∈ {α, β}

for elements in the image of these maps. We also write

detγ = det ◦i−1
γ , γ ∈ {α, β}.

The standard representation. The smallest fundamental weight of G2 is α+
2β, and the representation attached to it is seven dimensional. We denote it
by R7 and call it the standard representation of G2; it is the representation
one naturally gets when defining G2 through its action on traceless split
octonions.

Let V7 be the space of R7. This representation contains weight vectors for
the seven weights given by the six short roots together with the zero weight;
see Figure 1.3.

We then have the following representations of the standard maximal Levi
subgroups of G2:

(1.1.1) R7 ◦ iα = det−1⊕Std∨⊕1⊕ Std⊕det,

where Std is the standard representation of GL2, and

(1.1.2) R7 ◦ iβ = Std∨⊕Ad⊕Std,

where Ad = Sym2(Std)⊗ det−1 is the (three dimensional) adjoint represen-
tation of GL2. These can be seen by looking at strings in the directions of
α and β in the weight diagram as in Figure 1.4.
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Figure 1.3. The weights of R7

Figure 1.4. The standard maximal Levi subgroups of G2

under R7

Duality. The group G2 is self dual, and identifying G2 with its dual group
switches the long and short simple roots. More explicitly, fix identifications
GL∨

2
∼= GL2 and G2

∼= G∨
2 so that positive coroots correspond on the dual

side to positive roots. Identify Mα and Mβ with GL2 via the maps iα and
iβ introduced above. Then M∨

α and M∨
β are identified with GL∨

2 , and we
have commuting diagrams

GL∨
2

∼ //

∼
��

M∨
α
� � //

∼
��

G∨
2

∼
��

GL2

iβ
// Mβ

� � // G2,

and

GL∨
2

∼ //

∼
��

M∨
β
� � //

∼
��

G∨
2

∼
��

GL2
iα // Mα

� � // G2.

The Weyl group. Let W = W (T,G2) be the Weyl group of G2. The group
W is isomorphic to the dihedral group D6 with 12 elements acting naturally
on the root lattice.

For γ ∈ ∆, let wγ be the reflection about the line perpendicular to γ.
Then W is generated by the simple reflections wα and wβ. We use the
following notation for amalgamations of such elements: Write wαβ = wαwβ,
wαβα = wαwβwα, and so on. Then

W = {1, wα, wβ, wαβ, wβα, wαβα, wβαβ , wαβαβ , wβαβα, wαβαβα, wβαβαβ, w−1}.
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The elements above are written minimally in terms of products of the simple
reflections wα and wβ, except for the final element w−1. This is the element
that acts by negation on the root lattice, and it is of length 6, equal to both
wαβαβαβ and wβαβαβα.

For P =MN one of the standard parabolic subgroups of G2, we write as
usual

WP = {w ∈W | w−1γ > 0 for all positive roots γ in M}
for the set of representatives of minimal length for the quotient WM\W ,
where WM =W (T,M) is the Weyl group of T in M . Then

WPα = {1, wβ, wβα, wβαβ , wβαβα, wβαβαβ},
WPβ = {1, wα, wαβ, wαβα, wαβαβ , wαβαβα},

and WB =W .

The group G2(R). The real Lie group G2(R) is connected and has discrete
series. Fix a maximal compact torus Tc in G2(R). Then Tc is 2-dimensional
and lies in a maximal compact subgroup of G2(R), which we denote by K∞.
Then K∞ is connected and 6-dimensional. In fact

K∞ ∼= (SU(2)× SU(2))/µ2,

where µ2 = {±1} is diagonally embedded in SU(2)× SU(2).
Let tc be the complexified Lie algebra of Tc, and k that of K∞. We abuse

notation and write ∆ = ∆(tc, g2) for the roots of tc in g2. Let ∆c = ∆(tc, k)
denote the set of compact roots. There are four roots in ∆c consisting of a
pair of short roots and a pair of long roots. The short compact roots are
orthogonal to the long ones.

Again, abusing notation, choose two simple roots α, β of tc in g2 with α
long and β short, and choose them so that β is compact. Then

∆c = {±β,±(2α+ 3β)}.
The compact Weyl group Wc =W (tc, k) has four elements and is isomor-

phic to (Z/2Z)⊕ (Z/2Z). In fact, we have

Wc = {1, wβ, wαβαβα, w−1},
and wαβαβα equals the reflection across the line perpendicular to 2α + 3β.
It follows from the theory of Harish-Chandra parameters that the discrete
series representations of G2(R) are parameterized by integral weights in the
union of the three chambers between β and 2α + 3β which are far enough
from the walls of those chambers.

2. Eisenstein cohomology

We now introduce some general background on automorphic forms, Eisen-
stein series and cohomology, which will work for any reductive algebraic
group G. We will then specialize to G2, define the automorphic representa-
tion Lα(πF , 1/10) we will be interested in, and apply the general theory to
this representation. We will locate its finite part up to near equivalence in
cohomology.
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2.1. Background on the Franke–Schwermer decomposition. Through-
out this subsection we fix a reductive group G over Q. We start with a cus-
pidal automorphic representation π of M(A), where M is a Levi factor of a
parabolic subgroup P in G defined over Q. Let χ be the central character
of π, and assume χ is trivial on AG(R)◦, where AG is the maximal Q-split
torus in the center of G. So if

L2(M(Q)AG(R)◦\M(A), χ)

denotes the space of functions on M(Q)AG(R)◦\M(A) which are square
integrable modulo center and which transform under the center with respect
to χ, then π occurs in the cuspidal spectrum

L2
cusp(M(Q)AG(R)◦\M(A), χ) ⊂ L2(M(Q)AG(R)◦\M(A), χ).

Write dχ ∈ a∨P,0 for the differential of the restriction of χ toAP (R)◦/AG(R)◦.
Then we consider the unitary automorphic representation

π̃ = π ⊗ e−⟨HP (·),dχ⟩.

(See the section on notation and conventions in the introduction.) If π is
realized on a space of functions

Vπ ⊂ L2
cusp(M(Q)AG(R)◦\M(A), χ),

then π̃ is realized on the space

Vπ̃ = {e−⟨HP (·),dχπ⟩f | f ∈ Vπ},

which is a subspace of L2
cusp(M(Q)AP (R)◦\M(A)).

Let WP,π̃ be the space of smooth, K-finite, C-valued functions ϕ on

M(Q)N(A)AP (R)◦\G(A)

such that, for all g ∈ G(A), the function

m 7→ ϕ(mg), m ∈M(A),

lies in the π̃-isotypic subspace

L2
cusp(M(Q)AP (R)◦\M(A))[π̃].

The space WP,π̃ lets us build Eisenstein series. In fact, let ϕ ∈ WP,π̃. We
define, for λ ∈ a∨P,0 and g ∈ G(A), the Eisenstein series E(ϕ, λ) by

E(ϕ, λ)(g) =
∑

γ∈P (Q)\G(Q)

ϕ(γg)e⟨HP (g),λ+ρP ⟩.

This series only converges for λ sufficiently far inside the positive Weyl cham-
ber, but it defines a holomorphic function there in the variable λ which con-
tinues meromorphically to all of a∨P,0; see [Lan76], [MW95], or alternatively

[BL20], where a different and much simpler proof is given.
Now let E be a complex, irreducible, finite dimensional representation of

G(C). Then the annihilator of the dual E∨ of E in the center of the universal
enveloping algebra of g is an ideal, and we denote it by JE . Denote byAE(G)
the space of automorphic forms on G(A) which are annihilated by a power
of JE , and which transform trivially under AG(R)◦. The forms in AE(G)
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are the ones that can possibly contribute to the cohomology with respect to
E, as we will discuss later.

Given two parabolic subgroups of G defined over Q, we say that they are
associate if their Levi factors are conjugate by an element of G(Q). Let C
be the finite set of equivalence classes for this relation. We write [P ] for the
equivalence in C represented by a parabolic subgroup P .

Now given a parabolic subgroup Q of G defined over Q with Levi factor
MQ, we say a function f ∈ AE(G) is negligible along Q if for any g ∈ G(A),
the function given by

m 7→ f(mg), m ∈MQ(Q)AG(R)◦\MQ(A),

is orthogonal to the space of cuspidal functions on MQ(Q)AG(R)◦\MQ(A).
Let AE,[P ](G) be the subspace of all functions in AE(G) which are negligible
along any parabolic subgroup Q /∈ [P ]. It is a theorem of Langlands that

(2.1.1) AE(G) =
⊕
C∈C

AE,C(G)

as G(Af )× (g0,K∞)-modules. The summand AE,[G](G) is the space of cusp
forms in AE(G).

The Franke–Schwermer decomposition refines this even further using cus-
pidal automorphic representations of the Levi factors of the parabolic sub-
groups in each class C ∈ C. We briefly recall how.

Let φ be an associate class of cuspidal automorphic representations of M .
We do not recall here the exact definition of this notion, referring instead
to [FS98, §1.2] or [LS04, §1.3]. Each φ is a collection of automorphic repre-
sentations of the groups MP ′(A) for each P ′ ∈ [P ] with Levi decomposition
P ′ =MP ′NP ′ , finitely many for each such P ′, and each such representation
π′ must occur in L2

cusp(MP ′(Q)\MP ′(A), χ′), where χ′ is the central char-
acter of π′. Conversely, any automorphic representation π of M(A) with
central character χ occurring in L2

cusp(M(Q)\M(A), χ) determines a unique
φ. We let ΦE,[P ] denote the set of all associate classes of cuspidal automor-
phic representations of M .

Now given a φ ∈ ΦE,[P ], let π
′ be one of the representations comprising

φ; say π′ is an automorphic representation of MP ′(A), where MP ′ is a Levi
factor of a parabolic subgroup P ′ associate to P . Form the spaceWP ′,π̃′ and
let dχ′ be the differential of the central character χ′ of π′ at the archimedean
place. Then for any ϕ ∈ WP ′,π̃′ we can form the Eisenstein series E(ϕ, λ),
λ ∈ a∨P ′,0.

Depending on the choice of ϕ, the Eisenstein series E(ϕ, λ) may have
a pole at λ = dχ′. Nevertheless, one can still take residues of E(ϕ, λ) at
λ = dχ′ to obtain residual Eisenstein series. We let AE,[P ],φ(G) be the
collection of all possible Eisenstein series, residual Eisenstein series, and
partial derivatives of such with respect to λ, evaluated at λ = dχ′, built
from any ϕ ∈ WP ′,π̃′ for any π′ ∈ φ with central character χ′ such that
dχ′ is in the positive Weyl chamber defined by P ′. For a more precise
description of this space, see [FS98, §1.3] or [LS04, §1.4]. There is also a
more intrinsic definition of this space, defined without reference to Eisenstein



AUTOMORPHIC COHOMOLOGY AND G2 15

series, in [FS98, §1.2] or [LS04, §1.4], which is proved to be equivalent to
this description in [FS98].

We can now state the Franke–Schwermer decomposition of AE(G).

Theorem 2.1.1 (Franke–Schwermer [FS98]). There is a direct sum decom-
position of G(Af )× (g0,K∞)-modules

AE(G) =
⊕
C∈C

⊕
φ∈ΦE,C

AE,C,φ(G).

We now introduce certain explicit G(Af )× (g0,K∞)-modules and explain
how they can be related to the pieces of the Franke–Schwermer decomposi-
tion. Almost everything in the rest of this section is done in Franke’s paper
[Fra98, pp. 218, 234], but without taking into consideration the associate
classes φ.

With π as above, for brevity, let us write V [π̃] for the smooth, K-finite
vectors in the π̃-isotypic component of L2

cusp(M(A)AP (R)◦\M(A)). Then
V [π̃] is aM(Af )×(m0,K∞∩P (R))-module, and we extend this structure to
one of a P (Af )× (p0,K∞∩P (R))-module by letting aP,0 and n act trivially,
as well as AP (Af ) and N(Af ). Here N is the unipotent radical of P .

Fix for the rest of this subsection a point µ ∈ a∨P,0. Let Sym(a∨P,0)µ
be the symmetric algebra on the vector space a∨P,0; we view this space as

the space of differential operators on a∨P,0 at the point µ. So if H(λ) is a

holomorphic function on a∨P,0, then D ∈ Sym(a∨P,0)µ acts on H by taking
a sum of iterated partial derivatives of H and evaluating the result at the
point µ. In this way, every D ∈ Sym(a∨P,0)µ can be viewed as a distribution

on holomorphic functions on a∨P,0 supported at the point µ.
With this point of view, these distributions can be multiplied by holo-

morphic functions on a∨P,0; just multiply the test function by the given holo-
morphic function before evaluating the distribution. With this in mind, we
can define an action of aP,0 on Sym(a∨P,0)µ by

(XD)(f) = D(⟨X, ·⟩f), X ∈ aP,0, D ∈ Sym(a∨P,0)µ.

We also let m0 and n act trivially on Sym(a∨P,0)µ, which gives us an action of

p0 on Sym(a∨P,0)µ. In addition, let K∞ ∩ P (R) act trivially on Sym(a∨P,0)µ.

Since the Lie algebra of K∞ ∩ P (R) lies in m0, this is consistent with the
p0 action just defined and makes Sym(a∨P,0)µ a (p0,K∞ ∩ P (R))-module.

Finally, let P (Af ) act on Sym(a∨P,0)µ by the formula

(pD)(f) = D(e⟨HP (p),·⟩f), p ∈ P (Af ), D ∈ Sym(a∨P,0)µ.

Then with the actions just defined, Sym(a∨P,0)µ gets the structure of a

P (Af )× (p0,K∞ ∩ P (R))-module.
Now we form the tensor product V [π̃]⊗Sym(a∨P,0)µ, which carries a natural

P (Af ) × (p0,K∞ ∩ P (R))-module structure coming from those on the two
factors. We will consider in what follows the induced G(Af ) × (g0,K∞)-
module

Ind
G(A)
P (A)(V [π̃]⊗ Sym(a∨P,0)µ).
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This space turns out to be isomorphic to the tensor product

WP,π̃ ⊗ Sym(a∨P,0)µ.

While the first factor in this tensor product is a G(Af )× (g0,K∞)-module,
the second is only a P (Af ) × (p0,K∞ ∩ P (R))-module, and so we do not
immediately get a G(Af ) × (g0,K∞)-module structure on the tensor prod-
uct. However, one can endow this space with a G(Af ) × (g0,K∞)-module
structure by viewing it as a space of distributions as described in [Fra98, p.
218] and as follows.

Since WP,π̃ is a space of functions on G(A), the space WP,π̃ ⊗ Sym(a∨P,0)µ
may be viewed as a space of distributions on the space G(A) × a∨P,0. Then

for ϕ ∈ WP,π̃ and D ∈ Sym(a∨P,0)µ, we can make X ∈ g0 act on ϕ ⊗ D by
the formula

(X(ϕ⊗D))(f(g,A))

= ((Xϕ)⊗D)(f(g,A)) + (ϕ⊗D)(⟨(XH)(g), A+ ρP ⟩f(g,A)),

where f is a test function on G(A) × a∨P,0 which is smooth and compactly

supported in g ∈ G(A) and holomorphic in A ∈ a∨P,0 near µ. In the expres-

sion (XH)(g), we are letting X act through the archimedean component of
the variable g. The right hand side of the formula above defines a distribu-
tion which one checks is in WP,π̃ ⊗ Sym(a∨P,0)µ. We also let k ∈ K∞ act on
such ϕ⊗D by

k(ϕ⊗D) = (kϕ)⊗D.

Finally, we let h ∈ G(Af ) act on such ϕ⊗D by the formula

(h(ϕ⊗D))(f(g,A)) = (ϕ⊗D)(e⟨H(gh)−H(g),A+ρP ⟩f(gh,A)).

One checks that this makes WP,π̃⊗Sym(a∨P,0)µ a G(Af )× (g0,K∞)-module.
The point is the following proposition, whose proof is an exercise using

the definitions, and we omit it for sake of space.

Proposition 2.1.2. There is an isomorphism of G(Af )×(g0,K∞)-modules

WP,π̃ ⊗ Sym(a∨P,0)µ
∼= Ind

G(A)
P (A)(V [π̃]⊗ Sym(a∨P,0)µ).

More generally, if E is a finite dimensional representation of G(C), then we
also have an isomorphism

WP,π̃ ⊗ Sym(a∨P,0)µ ⊗ E ∼= Ind
G(A)
P (A)(V [π̃]⊗ Sym(a∨P,0)µ ⊗ E),

where on the left hand side, E is being viewed as a (g0,K∞)-module, and on
the right, it is viewed as a (p0,K∞ ∩ P (R))-module by restriction.

Now we come back to Eisenstein series. Assume π is such that there is an
irreducible finite dimensional representation E of G(C) such that the asso-
ciate class φ containing π is in ΦE,[P ]. Assume moreover that π is such that
its central character χ has the property that dχ is in the positive Weyl cham-
ber defined by P . Then we can construct elements of the piece AE,[P ],φ(G)
of the Franke–Schwermer decomposition from elements ofWP,π̃⊗Sym(a∨P,0)µ
using Eisenstein series as follows.
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Write

ι
G(A)
P (A)(V [π̃], λ) = Ind

G(A)
P (A)(V [π̃]⊗ eHP (·),λ+ρP ), λ ∈ a∨P,0,

for the unitary induction of V [π̃], so that we have

WP,π̃
∼= ι

G(A)
P (A)(V [π̃],−ρP ).

Elements ϕ ∈ ι
G(A)
P (A)(V [π̃],−ρP ) fit into flat sections ϕλ ∈ ι

G(A)
P (A)(V [π̃], λ)

where λ varies in a∨P,0. Then for such ϕ we have ϕ = ϕ−ρP . In what follows,

we will identify elements of WP,π̃ with elements of ι
G(A)
P (A)(V [π̃],−ρP ), and

then use this notation to vary them in flat sections.
With dχ as above, let h0 be a holomorphic function on a∨P,0 such that, for

any ϕ ∈ WP,π̃, the product h0(λ)E(ϕ, λ) is holomorphic near λ = dχ + ρP .
Then we define a map

Eh0 :WP,π̃ ⊗ Sym(a∨P,0)dχ+ρP → AE,[P ],φ(G)

by
ϕ⊗D 7→ D(h0(λ)E(ϕ, λ)).

The map Eh0 is surjective by our definition of AE,[P ],φ(G). If all the Eisen-
stein series E(ϕ, λ), for ϕ ∈WP,π̃, are holomorphic at λ = dχ, then we write
E = E1 for the map just defined with h0(λ) = 1.

Proposition 2.1.3. The map Eh0 : WP,π̃ ⊗ Sym(a∨P,0)dχ+ρP → AE,[P ],φ(G)

defined just above is a surjective map of G(Af ) × (g0,K∞)-modules. Fur-
thermore, if all the Eisenstein series E(ϕ, λ) arising from ϕ ∈ WP,π̃ are
holomorphic at λ = dχ+ ρP , then the map E is an isomorphism.

Proof. To check that Eh0 is a map of G(Af ) × (g0,K∞)-modules, one just
needs to use the formulas defining the G(Af ) × (g0,K∞)-module structure
on WP,π̃⊗Sym(a∨P,0)λ and show they are preserved when forming Eisenstein
series and taking derivatives; this can be checked when λ is in the region
of convergence for the Eisenstein series, and then this extends to all λ by
analytic continuation. We omit the precise details of this check.

For the second claim in the proposition, that E is an isomorphism, this
follows from [Fra98, Theorem 14]; this theorem implies that E injective,
since it equals the restriction of Franke’s mean value map MW to WP,π̃ ⊗
Sym(a∨P,0)dχ+ρP . Whence by surjectivity and the first part of the proposi-
tion, we are done. □

The space AE,[P ],φ(G) carries a filtration by G(Af ) × (g0,K∞)-modules
which is due to Grbac [Grb12], using an analogous filtration on AE(G)
Franke in [Fra98]. One might call the resulting filtration the Franke–Schwermer–
Grbac filtration on the Franke–Schwermer piece AE,[P ],φ(G). For our pur-
poses, we will not need the precise definition of this filtration, but just a
rough description of its graded pieces. This is described in the following
theorem.

Theorem 2.1.4. Let C ∈ C. There is a decreasing filtration

· · · ⊃ FiliAE,C,φ(G) ⊃ Fili+1AE,C,φ(G) ⊃ · · ·
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of G(Af )× (g0,K∞)-modules on AE,C,φ(G), for which we have

Fil0AE,C,φ(G) = AE,C,φ(G)

and
FilmAE,C,φ(G) = 0

for some m > 0 (depending on φ) and whose graded pieces have the property
described below.

Fix π in φ, and say π is an automorphic representation of M(A) with M
a Levi factor of a parabolic subgroup P in C. Let dχ be the differential of the
archimedean component of the central character χ of π, and assume dχ is
in the positive Weyl chamber defined by P . Let M be the set of quadruples
(Q, ν,Π, µ) where:

• Q is a parabolic subgroup of G which contains a parabolic subgroup
in the associate class [P ];

• ν is an element of (aP ∩mQ,0)
∨;

• Π is a unitary automorphic representation of MQ(A) occurring in

L2
disc(MQ(Q)AQ(R)◦\MQ(A))

and which is spanned by residues at the point ν of Eisenstein series
parabolically induced from (P ∩MQ)(A) to MQ(A) by representations
in φ; and

• µ is an element of a∨Q,0 whose real part in Lie(AG(R)\AMQ
(R))∨ is

in the closure of the positive Weyl chamber, and such that the fol-
lowing relation between µ, ν and π holds: Let λπ̃ be the infinitesimal
character of the archimedean component of π̃. Then

λπ̃ + ν + µ

may be viewed as a collection of weights of a Cartan subalgebra of g0,
and the condition we impose is that these weights are in the support
of the infinitesimal character of E.

For such a quadruple (Q, ν,Π, µ) ∈ M, let Vd[Π] denote the Π-isotypic com-
ponent of the space

L2
disc(MQ(Q)AQ(R)◦\MQ(A)) ∩ AE,[P∩MQ],φ|MQ

(MP ).

Then the property of the graded pieces of the filtration above is that, for
every i with 0 ≤ i < m, there is a subset Mi

φ ⊂ M and an isomorphism of
G(Af )× (g0,K∞)-modules

FiliAE,C,φ(G)/Fil
i+1AE,C,φ(G) ∼=

⊕
(Q,ν,Π,µ)∈Mi

φ

Ind
G(A)
Q(A)(Vd[Π]⊗Sym(a∨Q,0)µ+ρQ).

Proof. While this essentially follows again from the work of Franke [Fra98],
in this form, this theorem is a consequence of [Gro13, Theorem 4]; the latter
takes into account the presence of the class φ while the former does not. □

Remark 2.1.5. In the context of Proposition 2.1.3 and Theorem 2.1.4,
when all the Eisenstein series E(ϕ, λ) arising from ϕ ∈ WP,π̃ are holomor-
phic at λ = dχ, what happens is that the filtration of Theorem 2.1.4 col-
lapses to a single step. The nontrivial piece of this filtration is then given
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by Ind
G(A)
P (A)(V [π̃] ⊗ Sym(a∨P,0)dχ+ρP ) through the map E along with the iso-

morphism of Proposition 2.1.2.

When P is a maximal parabolic subgroup, the filtration of Theorem 2.1.4
becomes particularly simple. To describe it, we set some notation.

Assuming P is maximal, if π̃ is a unitary cuspidal automorphic represen-
tation of M(A) and s ∈ C with Re(s) > 0, let us write

LG(A)
P (A)(π̃, s)

for the Langlands quotient of

ι
G(A)
P (A)(π̃, 2sρP ).

Then we have

Theorem 2.1.6 (Grbac [Grb12]). In the setting above, with P maximal and
Re(s) > 0, assume π̃ defines an associate class φ ∈ ΦE,[P ]. If any of the
Eisenstein series E(ϕ, λ) coming from ϕ ∈ Wπ̃ have a pole at λ = 2sρP ,
then there is an exact sequence of G(Af )× (g0,K∞)-modules as follows:

0 → LG(A)
P (A)(π̃, s) → AE,[P ],φ(G) → Ind

G(A)
P (A)(V [π̃]⊗ Sym(a∨P,0)(2s+1)ρP ) → 0.

Proof. This follows from [Grb12, Theorem 3.1]. □

2.2. Cohomology of induced representations. We now calculate the
cohomology of representations of G that are parabolically induced from au-
tomorphic representations of Levi factors, and hence give a tool for comput-
ing the cohomology of the graded pieces of the Franke–Schwermer–Grbac
filtration described in Theorem 2.1.4. The computations done in this sec-
tion were essentially carried out by Franke in [Fra98, §7.4], but not in so
much detail. We fill in just a few of the details and give a version of Franke’s
result which focuses on one representation of a Levi factor at a time. The
method is essentially that of the proof of [BW00, Theorem III.3.3]. This
method also appears in the computations of Grbac–Grobner [GG13] and
Grbac–Schwermer [GS11].

Let the notation be as in the previous section. Then we have our group
G and P ⊂ G a parabolic subgroup defined over Q with Levi decomposition
P = MN . Fix a compact subgroup K ′

∞ of G(R) such that K◦
∞ ⊂ K ′

∞ ⊂
K∞, and fix also an irreducible finite dimensional representation E of G(C).
We first make the following definition.

Definition 2.2.1. Let the notation be as above. We define the automorphic
cohomology of G with coefficients in E by

H∗(g0,K
′
∞;E) = H∗(g0,K

′
∞;AE(G)⊗ E).

Then we define the cuspidal cohomology of G with coefficients in E by

H∗
cusp(g0,K

′
∞;E) = H∗(g0,K

′
∞;AE,[G](G)⊗ E),

and the Eisenstein cohomology of G with coefficients in E by

H∗
Eis(g0,K

′
∞;E) = H∗(g0,K

′
∞;

⊕
[P ]∈C
[P ] ̸=[G]

AE,[P ](G)⊗ E),
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where the notation in the sum is as in (2.1.1).

We note that

H∗(g0,K
′
∞;E) = H∗

cusp(g0,K
′
∞;E)⊕H∗

Eis(g0,K
′
∞;E),

and that

H∗
cusp(g0,K

′
∞;E) = H∗

cusp(g0,K
′
∞;L2

cusp(G(Q)AG(R)◦\G(A))⊗ E).

This latter identification is standard and follows from the fact that (g0,K
′
∞)-

cohomology is invariant under passage to smooth vectors.
Now fix an automorphic representation (not necessarily cuspidal) π of

M(A) with central character χ, occurring in the discrete spectrum

L2
disc(M(Q)\M(A), χ).

Then the unitarization π̃ occurs in

L2
disc(M(Q)AP (R)◦\M(A)).

Assume χ is trivial onAG(R)◦. Let dχ denote the differential of the archimedean
component of χ.

We will compute the (g0,K
′
∞)-cohomology space

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχ+ρP )⊗ E)

in terms of (m0,K
′
∞ ∩ P (R))-cohomology spaces attached to π. We will

require the following lemma.

Lemma 2.2.2. Let µ, µ′ ∈ a∨P,0. Let Cµ′ denote the one dimensional aP,0-

module on which X ∈ aP,0 acts through multiplication by ⟨X,µ′⟩. Then there
is an isomorphism of P (Af )-modules

H i(aP,0,Sym(a∨P,0)µ ⊗ Cµ′) ∼=

{
C(e⟨HP (·),µ⟩) if µ′ = −µ and i = 0;

0 if µ′ ̸= −µ or i > 0.

Here, C(e⟨HP (·),µ⟩) is just the one dimensional representation of P (Af ) on

which p ∈ P (Af ) acts via e⟨HP (p),µ⟩.

Proof. It will be convenient to work in coordinates. So let λ1, . . . , λr be a
basis of a∨P,0 and X1, . . . , Xr ∈ aP,0 the dual basis. Then the elements of

Sym(a∨P,0)µ may be viewed as polynomials in λ1, . . . , λr.

Let α = (α1, . . . , αr) be a multi-index. By definition, the monomial λα =
λα1
1 · · ·λαrr acts as a distribution on holomorphic functions f on a∨P,0 via the

formula

λαf =
∂α

∂λα
f(λ)|λ=µ.

Also by definition, if X ∈ aP,0, then Xλ
α acts as

(Xλα)f =
∂α

∂λα
(⟨X,λ⟩f(λ))|λ=µ.
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Let P (λ) ∈ Sym(a∨P,0)µ be a polynomial in λ. Then a quick induction

using the above formulas shows that X ∈ aP,0 acts on P (λ) as

X(P (λ)) = ⟨X,µ⟩P (λ) +
r∑
i=1

∂

∂λi
P (λ).

Hence X acts on the element P (λ)⊗ 1 in Sym(aP,0)µ ⊗ Cµ′ by

X(P (λ)⊗ 1) = ⟨X,µ+ µ′⟩(P (λ)⊗ 1) +
r∑
i=1

(
∂

∂λi
P (λ)⊗ 1

)
.

It follows from this that the decomposition

aP,0 = CX1 ⊕ · · · ⊕ CXr

realizes Sym(aP,0)µ⊗Cµ′ as an exterior tensor product of analogously defined
single-variable symmetric powers:

Sym(aP,0)µ ⊗ Cµ′ ∼= (Sym(Cλ1)µ1 ⊗ Cµ′1)⊗ · · · ⊗ (Sym(Cλr)µr ⊗ Cµ′r),

where µi, µ
′
i ∈ Cλ are the ith components of µ, µ′ in the basis λ1, . . . , λr.

By the Künneth formula, if we ignore for now the P (Af )-action, we then
reduce to checking the one-dimensional analog of the lemma, that

H i(CXi, Sym(Cλi)µi ⊗ Cµ′i)
∼=

{
C if µ′ = −µ and i = 0;

0 if µ′ ̸= −µ or i > 0.

This can be checked just by writing down the complex that computes this
cohomology. Furthermore, H0(aP,0,Sym(aP,0)µ ⊗ C−µ) can be identified
with subspace of Sym(aP,0)µ consisting of constants. By definition, this

space has an action of P (Af ) given by the character e⟨HP (·),µ⟩, which proves
our lemma. □

Let h ⊂ g be a Cartan subalgebra, and assume h ⊂ m. Fix an ordering
on the roots of h in g which makes p standard. If W (h, g) denotes the Weyl
group of h in g, then write

WP = {w ∈W (h, g) | w−1α > 0 for all positive roots α in m}.

Then WP is the set of representatives of minimal length for W (h, g) modulo
the Weyl group W (h ∩m0,m0) of h ∩m0 in m0. Write ρ for half the sum of
the positive roots of h in g.

If Λ ∈ h∨ is a dominant weight, write EΛ for the representation of g of
highest weight Λ. If ν ∈ h∨ is a weight which is dominant for m we denote by
Fν the representation of m of highest weight ν. Then we have the Kostant
decomposition [Kos61]:

H i(n, EΛ) ∼=
⊕
w∈WP

ℓ(w)=i

Fw(Λ+ρ)−ρ,

where ℓ(w) denotes the length of the Weyl group element w.
Now we are ready to state the main theorem of this subsection.
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Theorem 2.2.3. Notation as above, let Λ ∈ h∨ be a dominant weight such
that E = EΛ. Assume that the cohomology space

(2.2.1) H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(a∨P,0)dχ+ρP )⊗ E)

is nontrivial for some i. Then there is a unique w ∈WP such that

−w(Λ + ρ)|aP,0 = dχ

and such that the infinitesimal character of the archimedean component of
π̃ contains −w(Λ + ρ)|h∩m0. Furthermore, if ℓ(w) is the length of such an
element w, then for any i we have

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(a∨P,0)dχ+ρP )⊗ E)

∼= ι
G(Af )
P (Af )

(πf )⊗H i−ℓ(w)(m0,K
′
∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0),

where ι denotes a normalized parabolic induction functor, and Fw(Λ+ρ)−ρ,0
denotes the restriction to m0 of the representation of m of highest weight
w(Λ + ρ)− ρ.

Proof. The proof is almost exactly the same as the proof of [BW00, Theorem
III.3.3], but we give the details for the convenience of the interested reader.

Let us first prove the uniqueness of the element w in the theorem. Note
first that

h ∩ g0 = aP,0 ⊕ (h ∩m0).

Because Λ is dominant, we know (Λ+ρ) is regular, and the conditions in the
theorem therefore pin down the element w(Λ + ρ) uniquely up to the Weyl
group W (h∩m0,m0) of h∩m0 in m0. But it is well known that WP is a set
of representatives for W (h, g) modulo W (h ∩ m0,m0). Therefore w(Λ + ρ)
lies in a unique Weyl chamber, and so w is determined.

Let i be an integer. We now begin to compute the cohomology space

H i(g0,K∞; Ind
G(A)
P (A)(π̃ ⊗ Sym(a∨P,0)dχ+ρP )⊗ E).

First, Proposition 2.1.2 allows us to pull the tensor product with E inside
the induction, whence by Frobenius reciprocity, we have

(2.2.2) H i(g0,K∞; Ind
G(A)
P (A)(π̃ ⊗ Sym(a∨P,0)dχ+ρP )⊗ E)

∼= Ind
G(Af )
P (Af )

(H i(p0,K∞ ∩ P (R); π̃ ⊗ Sym(a∨P,0)dχ+ρP ⊗ E)).

It is our goal, therefore, to compute

H i(p0,K∞ ∩ P (R); π̃ ⊗ Sym(a∨P,0)dχ+ρP ⊗ E).

Now, as (p0,K∞ ∩ P (R))-modules, the space π̃ comes from a (m0,K∞ ∩
P (R))-module and Sym(a∨P,0)dχ+ρP comes from an aP,0-module. Thus, using

p0 = (m0 ⊕ aP,0)⊕ n,

we get a spectral sequence whose E2 page is

Ej,k2 = Hj(m0 ⊕ aP,0,K∞ ∩ P (R); π̃ ⊗ Sym(a∨P,0)dχ+ρP ⊗Hk(n;E))
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and which degenerates to the cohomology space above with i = j + k. We
will eventually be able to say that this spectral sequence degenerates on its
E2 page, but this will follow from the vanishing of enough of its terms. So
we compute this page now.

By the Kostant decomposition [BW00, Theorem III.3.1], the (j, k)-term
on this E2 page is⊕

w′∈WP

ℓ(w)=k

Hj(m0 ⊕ aP,0,K∞ ∩ P (R); π̃ ⊗ Sym(a∨P,0)dχ+ρP ⊗ Fw′(Λ+ρ)−ρ).

Write ν(w′) = (w′(Λ + ρ)− ρ)|aP.0 , As an (m0 ⊕ aP,0)-module, the represen-
tation Fw′(Λ+ρ)−ρ decomposes as

Fw′(Λ+ρ)−ρ = Fw′(Λ+ρ)−ρ,0 ⊗ Cν(w′),

as an exterior tensor product over the direct sum m0 ⊕ aP,0. Thus by the
Künneth formula, we get

H∗(m0 ⊕ aP,0,K∞ ∩ P (R); π̃ ⊗ Sym(a∨P,0)dχ+ρP ⊗ Fw′(Λ+ρ)−ρ) ∼=
H∗(m0,K∞∩P (R); π̃⊗Fw′(Λ+ρ)−ρ,0)⊗H∗(aP,0,Sym(a∨P,0)dχ+ρP ⊗Cν(w′)).

By Lemma 2.2.2, the second factor here is nonvanishing if and only if

dχπ + ρP = −ν(w′),

and the first factor is nonvanishing only if the infinitesimal character of
Fw′(Λ+ρ)−ρ,0 matches the negative of that of the archimedean component of
π̃. Since P is standard, we have ρP = ρ|aP,0 , which implies

ν(w′) = w′(Λ + ρ)|aP.0 − ρP

and so this first nonvanishing condition is equivalent to

= w′(Λ + ρ)|aP.0 = dχ;

the second of these nonvanishing conditions is just that −w′(Λ + ρ) occurs
in the infinitesimal character of the archimedean component of π̃. As shown
at the beginning of this proof, there is only one w′ satisfying these two
conditions, and we will denote it by w.

Thus, by Lemma 2.2.2, we get

H∗(m0,K∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗H∗(aP,0, Sym(a∨P,0)dχ+ρP ⊗Cν(w))
∼= H∗(m0,K∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e⟨HP (·),dχ+ρP ⟩),

where the factor C(e⟨HP (·),dχ+ρP ⟩) is concentrated in degree zero.
Retracing our steps, we have thus computed the E2 page of our spectral

sequence. The term Ej,k2 is{
Hj(m0,K∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e⟨HP (·),dχ+ρP ⟩) if k = ℓ(w);

0 if k ̸= ℓ(w).
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The E2 page therefore consists only of one row, and thus our spectral se-
quence degenerates. Hence we have shown

H i(p0,K∞ ∩ P (R); π̃ ⊗ Sym(a∨P,0)dχ+ρP ⊗ E)

∼= H i−ℓ(w)(m0,K∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e⟨HP (·),dχ+ρP ⟩)

Now we rewrite

H i−ℓ(w)(m0,K∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e⟨HP (·),dχ+ρP ⟩)
∼= π̃f ⊗ C(e⟨HP (·),dχ+ρP ⟩)⊗H i−ℓ(w)(m0,K∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0)

∼= πf ⊗ C(e⟨HP (·),ρP ⟩)⊗H i−ℓ(w)(m0,K∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0),

so that

H i(p0,K∞ ∩ P (R); π̃ ⊗ Sym(a∨P,0)dχ+ρP ⊗ E)

∼= πf ⊗ C(e⟨HP (·),ρP ⟩)⊗H i−ℓ(w)(m0,K∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0).

We therefore have, by (2.2.2),

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχπ+ρP )⊗ E)

∼= Ind
G(Af )
P (Af )

(πf⊗C(e⟨HP (·),ρP ⟩))⊗H i−ℓ(w)(m0,K
′
∞∩P (R); π̃∞⊗Fw(Λ+ρ)−ρ,0),

which is what we wanted to prove. □

2.3. Location of a Langlands quotient in Eisenstein cohomology.
We now return to the G2 setting. In this subsection we will apply the the-
ory above to study the occurrence of a particular Langlands quotient in the
Eisenstein cohomology of G2. This will be done in Theorem 2.3.9. As men-
tioned in the introduction, this Langlands quotient will be the automorphic
representation of G2 which we will p-adically deform in a sequel paper [Mun].
In order to precisely locate it in Eisenstein cohomology, we will need to be
able to distinguish between different representations in that cohomology.
When these representations are coming from different parabolic subgroups,
we can use L-functions to do this, as in the proposition below. To state it,
we require a little setup.

Recall that two automorphic representations π and π′ of a reductive group
G are nearly equivalent if for all but finitely many places v, the local com-
ponents πv and π′v are isomorphic.

Identify the long root Levi factorMα of Pα and the short root Levi factor
Mβ of Pβ with GL2 via the maps iα and iβ of Section 1.1. Then the modulus
characters are given by

δPα(A)(A) = | det(A)|5, δPβ(A)(A) = | det(A)|3,

for A ∈ GL2(A). We will consider in what follows the unitary parabolic

induction functors ι
G2(A)
P (A) for P ∈ {B,Pα, Pβ}; see the section on notation in

the introduction.
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Proposition 2.3.1. Let πα and πβ be unitary, cuspidal automorphic repre-
sentations of GL2(A), viewed respectively as representations of Mα(A) and
Mβ(A). Let ψ be a quasicharacter of T (Q)\T (A), and let sα, sβ ∈ C. Then
given any irreducible subquotients

Πα of ι
G2(A)
Pα(A)(πα, sα)

and

Πβ of ι
G2(A)
Pβ(A)

(πβ, sβ)

and

Π0 of ι
G2(A)
B(A) (ψ),

we have that no two of Πα, Πβ and Π0 are nearly equivalent.

Before proving this proposition, we first require some setup about L-
functions for automorphic representations of GL2(A). Let π be an auto-
morphic representation of GL2(A), and let S be a finite set of places of Q
containing the archimedean place and those places at which π is ramified.
For a place v /∈ S, let tv = diag(tv,1, tv,2) be the usual Satake parameter
for π at v, lying in the diagonal torus of GL2(C). Then given an algebraic,
finite dimensional representation r of GL2(C), we define the local L-factor
of π and r at v by

Lv(s, π, r) = det(1− q−sv r(tv)),

where s ∈ C and qv is the rational prime corresponding to v. Then the
global S-partial L-function is defined as

LS(s, π, r) =
∏
v/∈S

Lv(s, π, r),

for Re(s) sufficiently large, and by meromorphic continuation otherwise,
when possible.

We will be interested in nonvanishing properties of these L-functions for
a few specific representations r. Let Std denote the 2-dimensional standard
representation of GL2(C), and det the 1-dimensional determinant represen-
tation of GL2(C). Then we define

Ad = Sym2(Std)⊗ det−1, Ad3 = Sym3(Std)⊗ det−1,

which are, respectively, 3-dimensional and 4-dimensional representations of
GL2(C). Explicitly, the local L-factors for these representations at v /∈ S
are given by

Lv(s, π,Ad) = (1− q−sv t1,vt
−1
2,v)(1− q−sv )(1− q−sv t−1

1,vt2,v)

and

Lv(s, π,Ad
3) = (1− q−sv t21,vt

−1
2,v)(1− q−sv t1,v)(1− q−sv t2,v)(1− q−sv t−1

1,vt
2
2,v).

The L-function LS(s, π,det) is just the usual partial Hecke L-function as-
sociated with the central character of π, and the L-function L(s, π,Std) is
just the usual degree 2 L-function associated with π.
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We will also have occasion to consider twisted L-functions. If χ : Q×\A× →
C× is a Hecke character for Q and our set S also contains all the places where
χ is ramified, then we define

Lv(s, r(π)× χ) = det(1− χv(qv)q
−s
v r(tv)),

where χv is the local component of χ at v, and then

LS(s, r(π)× χ) =
∏
v/∈S

Lv(s, r(π)× χ).

Lemma 2.3.2. Let π be a unitary, cuspidal automorphic representation of
GL2(A) and let χ be a unitary Hecke character for Q. Let S be any finite
set of places of Q containing the archimedean place as well as those where
π is ramified. Then if r ∈ {det,Std,Ad,Ad3}, then the partial L-function
LS(s, r(π)×χ) has a meromorphic continuation to s ∈ C and is nonvanishing
when Re(s) ≥ 1.

Proof. When r = det this lemma is well known and classical, using that χ
and the central character of π are unitary.

Let Ad(π) denote the Gelbart–Jacquet lift of π to GL3 [GJ78]. Then the
S-partial L-function of Ad(π) coincides with the L-function LS(s, r(π)) for
r = Ad defined above. Assume first that Ad(π) is not cuspidal. Then (see
[GJ78, Remark 9.9]) π ∼= π ⊗ η where η is a nontrivial quadratic character
of A×. Let F be the quadratic extension cut out by η. Then there is a
unitary Hecke character ω of F such that π is the automorphic induction
from F to Q of ω. Therefore for r ∈ {det, Std,Ad,Ad3}, the L-function
LS(s, r(π) × χ) is a product of L-functions defined over Q or F of unitary
characters, so again they are meromorphic and do not vanish for Re(s) ≥ 1.

So assume that Ad(π) is cuspidal. We will show that the lemma is a
consequence of the Langlands–Shahidi method; there is, in each case, an
Eisenstein series for a group larger than GL2 whose constant term sees
the L-function in question. In more detail, let G ∈ {GL3, GL4, GL5} and,
correspondingly, let PG = MGNG ⊂ G be the standard maximal parabolic
subgroup with Levi factor MG = GL2 ×GL1 if G = GL3, that with MG =
GL3 ×GL1 if G = GL4, or that with MG = GL3 ×GL2 if G = GL5. Then,
in these respective situations, let π′χ be the automorphic representation of
MG(A) given by

π′χ = (π⊗χ)⊠1, or π′χ = (Ad(π)⊗χ)⊠1, or π′χ = (Ad(π)⊗χ)⊠π∨.
Now in any of these three cases, fix an element

ϕ̃ ∈ ι
G(A)
PG(A)(π

′
χ)

which is factorizable, so ϕ̃ = ⊗vϕ̃v, the tensor product being over all places
v, and

ϕ̃v ∈ ι
G(Qv)
PG(Qv)(π

′
χ,v).

Assume ϕ̃v is right-G(Zv)-invariant for all places v /∈ S. Then, viewing
π′χ ⊂ L2

cusp(MG(Q)\MG(A)), we can form the function ϕ : G(A) → C given
by

ϕ(g) = ϕ̃(g)(1),
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where the element 1 is the identity element of MG(A). Then ϕ ∈ WPG,π′
χ

as in the beginning of Section 2.1. (Strictly speaking, to fit into the setting
of Section 2.1, we should take the unitarization π̃′χ of π′χ. This would have
the effect of shifting our L-functions below by a purely imaginary complex
number, and hence this has no effect on the statement of the lemma. Oth-
erwise, we can just note that everything we say about Eisenstein series in
this proof works whether or not we have taken the unitarization of π′χ, as
π′χ is already unitary.)

Now for s ∈ C, we consider the Eisenstein series E(ϕ, s)(g) = E(ϕ, sρPG)(g).
For any place v, let

Mv(s) : ι
G(Qv)
PG(Qv)(π

′
χ,v, s) → ι

G(Qv)
PG(Qv)(π

′
χ,v,−s)

be the usual intertwining operator. Also, let ϕ̃s(g) = ϕ̃(g)e⟨HPG (g),sρPG ⟩,

and similarly for the local section ϕ̃v,s(g). Then by the Langlands–Shahidi
method, we have that the constant term E(ϕ, s)NG(g) of E(ϕ, s)(g) along
NG has

E(ϕ, s)NG(g) = ϕ̃s(g)(1) + CS(s)

(⊗
v/∈s

ϕv,s ⊗
⊗
v∈S

Mv(s)(ϕ̃v,s)

)
(1),

where CS(s) is the meromorphic function given by

CS(s) =


LS(3s,π⊗χ)
LS(1+3s,π⊗χ) if G = GL3;
LS(4s,Ad(π)×χ)
LS(1+4s,Ad(π)×χ) if G = GL4;
LS(5s,Ad3(π)×χ)LS(5s,π⊗χ)

LS(1+5s,Ad3(π)×χ)LS(1+5s,π⊗χ) if G = GL5.

See, for example, [Sha10, Chapter 6].
The meromorphy statement of the lemma follows immediately from the

meromorphy of E(ϕ, s). Moreover, the proof of [Sha81, Theorem 5.1] shows

that there is a choice of ϕ̃ such that the zeros of the L-functions
L(1 + 3s, π ⊗ χ) if G = GL3;

L(1 + 4s,Ad(π)× χ) if G = GL4;

L(1 + 5s,Ad3(π)× χ)L(1 + 5s, π ⊗ χ) if G = GL5,

are among the poles of E(ϕ, s) in these respective cases. Shahidi deduces
immediately in loc. cit. that these L-functions are nonvanishing for purely
imaginary values of s, so we are reduced to checking that the L-functions
above are nonvanishing at the poles of E(ϕ, s) for Re(s) > 0.

Now in all three cases we are considering, the possible poles of E(ϕ, s)

for any ϕ̃, and any s with Re(s) > 0, have been classified; since PG is a
maximal parabolic subgroup of G, the poles of E(ϕ, s) are simple and hence
give rise to residual Eisenstein series, and the residual spectra for GLn have
been fully described by Mœglin and Waldspurger in [MW89]. In all cases,
we have that E(ϕ, s) cannot have a pole for Re(s) > 0 because the blocks of
the Levi MG have different sizes. Thus there is nothing to check, and this
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proves the lemma fully for r = Std and r = Ad, as well as the analogue of
the lemma for the product of L-functions

LS(s,Ad3(π)× χ)LS(s, π ⊗ χ).

But then the nonvanishing statement for LS(s,Ad3(π)×χ) follows from this
and the holomorphy of LS(s, π ⊗ χ). □

Proof (of Proposition 2.3.1). We first note that we may assume Re(sα) ≥ 0
and Re(sβ) ≥ 0; indeed, if γ ∈ {α, β}, then πγ is unitary. So if Re(sγ) < 0,
and if v is finite place which is unramified for πγ , then there is a nonzero
intertwining operator

ι
G2(Qv)
Pγ(Qv)(π

∨
γ,v,−sγ) → ι

G2(Qv)
Pγ(Qv)(πγ,v, sγ),

whose image is isomorphic to the unique unramified quotient of the source
representation. It follows that any irreducible admissible subquotients of

ι
G2(Af )
Pγ(Af )

(π∨γ ,−sγ) and ι
G2(Af )
Pγ(Af )

(πγ , sγ)

are nearly equivalent.
Thus assume Re(sα) ≥ 0 and Re(sβ) ≥ 0. For Π an automorphic repre-

sentation of G2(A), χ a unitary character of Q×\A× and S a finite set of
places of Q including the archimedean place and the ramified places for Π
and χ, we will consider the partial L-function LS(s,R7(Π) × χ), where R7

is the standard 7-dimensional representation of G2 (see Section 1.1). The
definition of this L-function is as follows. If v /∈ S is a place, χv : Q×

v → C×

is the local component of χ at v, and tv ∈ G2(C) is the Satake parameter of
Πv, then the corresponding local L-factor is defined to be

Lv(s,R7(Π)× χ) = det(1− χv(qv)q
−s
v R7(tv)),

where qv is the prime corresponding to v. Then the global L-function is
defined as

LS(s,R7(Π)× χ) =
∏
v/∈S

Lv(s,R7(Π)× χ),

for Re(s) sufficiently large, and by meromorphic continuation otherwise,
when possible; this L-function will have a meromorphic continuation in all
cases considered below, because we will obtain factorizations for it and all
of the factors will have meromorphic continuations.

Now let Πα and Πβ be as in the statement of the proposition. Then it
follows from (1.1.2) that for S sufficiently large, we have a factorization into
partial L-functions

LS(s,R7(Πα)×χ) = LS(s+sα, πα⊗χ)LS(s−sα, π∨α ⊗χ)LS(s,Ad(πα)×χ),

all L-functions on the right hand side being defined as above Lemma 2.3.2.
If we write ωπβ for the central character of πβ, then we also have, by (1.1.1),
that

LS(s,R7(Πβ)× χ)

= LS(s+sβ, πβ⊗χ)LS(s−sβ, π∨β⊗χ)LS(s+sβ, ωπβχ)L
S(s−sβ, ω−1

πβ
χ)ζS(s),
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where ζS(s) is the usual Riemann zeta function with the Euler factors at
places in S removed.

Now we examine the poles of both expressions above. On the one hand,
since πα is assumed to be cuspidal and unitary, by the work of Gelbart–
Jacquet [GJ78, Theorem 9.3.1, Remark 9.9], the L-function LS(s,Ad2(πα)×
χ) has at worst a simple pole, and this pole can only occur at s = 1.
Therefore the same is true for LS(s,R7(Πα)× χ).

On the other hand, by Lemma 2.3.2,

• The L-function LS(s+ sβ, πβ ⊗χ) does not vanish when s = 1+ sβ;

• Similarly, the L-function LS(s − sβ, π
∨
β ⊗ χ) does not vanish when

s = 1 + sβ;

• The L-function LS(s+ sβ, ωπβχ) and the zeta function ζS(s) do not

vanish when s = 1 + sβ, and ζ
S(s) has a pole at s = 1;

• The L-function LS(s − sβ, ω
−1
πβ
χ) has a pole when χ = ωπβ and

s = 1 + sβ.

Therefore, the L-function LS(s,R7(Πβ) × ωπβ ) has a pole at s = 1 + sβ,
which is simple if sβ ̸= 0, and is at least double otherwise. Since we already

noted that LS(s,R7(Πα) × χ) does not have this property, we cannot have
that Πα and Πβ are nearly equivalent.

We now distinguish Πα from Π0. For Π again an automorphic represen-
tation of G2(A), π an automorphic representation of GL2(A), and S again
a set of places containing the archimedean place and the bad places for Π
and π, we consider the degree 14 partial L-function

LS(s,Π× π,R7 ⊗ Std),

defined in the obvious way. Then on the one hand, we have,

LS(s,Πα × πα, R7 ⊗ Std)

= LS(s+ sα, πα × πα)L
S(s− sα, π

∨
α × πα)L

S(s,Ad3(πα))L
S(s, πα),

where the first two factors are Rankin–Selberg L-functions; we have further
decompositions

LS(s+ sα, πα × πα) = LS(s+ sα,Ad(πα)× ωπα)L
S(s+ sα, ωπα),

where ωπα is the central character of πα, and

LS(s− sα, π
∨
α × πα) = LS(s− sα,Ad(πα))ζ

S(s− sα).

Now by Lemma 2.3.2, all of the L-functions in the expression for LS(s,Πα×
πα, R7 ⊗ Std) above are meromorphic and nonvanishing when Re(s) ≥
1+Re(sα). Moreover, the second one, LS(s, πα×π∨α), has a pole at s = 1+sα.
Thus LS(s,Πα×πα, R7⊗Std) has a pole at s = 1+ sα. On the other hand,
LS(s,Π0×πα, R7⊗Std) is a product of seven L-functions of various charac-
ter twists of πα. Since πα is cuspidal, these L-functions are entire, whence
Π0 cannot be nearly equivalent to Πα.

A completely analogous argument to this, using twists by πβ instead of
πα, distinguishes Πβ from Π0 as well; we omit the details. □
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Remark 2.3.3. An earlier version of this paper proved only a weaker version
of the above result, and used Galois representations to do it. We are grateful
to Sug Woo Shin for suggesting there should be a purely automorphic proof
of this result along these lines.

We will also need to distinguish between representations occurring in the
Eisenstein cohomology of G2 which come from the same maximal parabolic
subgroup of G2. To do this, we will appeal to strong multiplicity one for the
Levi factor, as in the following proposition.

Proposition 2.3.4. Let π, π′ be unitary, cuspidal automorphic representa-
tions of GL2(A), viewed as representations of Mα(A), and assume π and π′

are tempered at all but finitely many finite places. Let s, s′ > 0. If there are
irreducible subquotients

Π of ι
G2(A)
Pα(A)(π, s)

and

Π′ of ι
G2(A)
Pα(A)(π

′, s′)

such that Π and Π′ are nearly equivalent, then s = s′ and π ∼= π′.

Proof. Let v be a finite place which is unramified for both Π and Π′, where πv
and π′v are tempered and where Πv ∼= Π′

v. Then πv and π′v are unramified.
Since πv and π′v are tempered and unitary, there are unramified unitary
characters χv, χ

′
v of T (Qv) such that πv is the unique unramified subquotient

of

ι
Mα(Qv)
(B∩Mα)(Qv)(χ)

and π′v is the unique unramified subquotient of

ι
Mα(Qv)
(B∩Mα)(Qv)(χ

′)

By induction in stages and the fact that Πv ∼= Π′
v, we have that the unique

unramified subquotients of

ι
G2(Qv)
B(Qv) (χδ

s
Mα(Qv)) and ι

G2(Qv)
B(Qv) (χ

′δs
′

Mα(Qv))

coincide. By the theory of Satake parameters, this implies that there is an
element w in the Weyl group W (G2, T ) such that

w(χδsMα(Qv)) = χ′δs
′

Mα(Qv).

Now since χ and χ′ are unitary, taking absolute values gives

(wδMα(A))
s(t) = δs

′

Mα(A)(t)

for any t ∈ T (Qp). Let γ be a root and consider the equation above with
t = γ∨(q−1

v ) where qv is the prime corresponding to the place v; since

δMα(Qv)(γ
∨(q−1

v )) = q5⟨α+2β,γ∨⟩
v ,

this gives

q5s⟨w(α+2β),γ∨⟩
v = q5s

′⟨α+2β,γ∨⟩
v .
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Since γ was arbitrary, since s, s′ > 0, and since W (G2, T ) acts on the short
roots of G2 with the stabilizer of α + 2β being {1, wα}, this forces s = s′

and also w = 1 or w = wα. But the induced representations

ι
Mα(Qv)
(B∩Mα)(Qv)(χδ

s
Mα(Qv)) and ι

Mα(Qv)
(B∩Mα)(Qv)(wα(χδ

s
Mα(Qv)))

have the same unramified subquotients. Thus πv ∼= π′v. Since this holds for
almost all v, π ∼= π′ by strong multiplicity one for GL2. □

Remark 2.3.5. An analogous result as the above proposition holds with
Pβ or B in place of Pα, and the proof is also completely analogous in either
case. We only need this proposition for Pα in this paper, however.

We now begin to examine cohomology spaces for G2, starting with the
following proposition.

Proposition 2.3.6. Let E be an irreducible, finite dimensional representa-
tion of G2(C), and say that E has highest weight Λ. Write

Λ = c1(2α+ 3β) + c2(α+ 2β)

with c1, c2 ∈ Z≥0. Let F be a cuspidal eigenform of weight k and trivial
nebentypus and πF its associated automorphic representation, and let s ∈ C
with Re(s) ≥ 0. Assume

H i(g2,K∞; Ind
G2(A)
Pα(A)(πF ⊗ Sym(a∨Pα,0)(2s+1)ρPα

)⊗ E) ̸= 0,

where, as described in Section 2.1, the subscript on Sym(a∨Pα,0)(2s+1)ρPα
in-

dicates a twisted Pα(Af )× (pα,0,K∞ ∩ Pα(R))-module structure determined
by the weight (2s+ 1)ρPα. Then either:

(i) We have

i = 4, k = 2c1 + c2 + 4, s =
c2 + 1

10
,

and

H4(g2,K∞; Ind
G2(A)
Pα(A)(πF ⊗ Sym(a∨Pα,0)(2s+1)ρPα

)⊗ E) ∼= ι
G2(Af )
Pα(Af )

(πF,f ,
c2+1
10 ),

(ii) We have

i = 5, k = c1 + c2 + 3, s =
3c1 + c2 + 4

10
,

and

H5(g2,K∞; Ind
G2(A)
Pα(A)(πF⊗Sym(a∨Pα,0)(2s+1)ρPα

)⊗E) ∼= ι
G2(Af )
Pα(Af )

(πF,f ,
3c1+c2+4

10 ),

(iii) We have

i = 6, k = c1 + 2, s =
3c1 + 2c2 + 5

10
,

and

H6(g2,K∞; Ind
G2(A)
Pα(A)(πF⊗Sym(a∨Pα,0)(2s+1)ρPα

)⊗E) ∼= ι
G2(Af )
Pα(Af )

(πF,f ,
3c1+2c2+5

10 ).
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Proof. Note that we have a decomposition

t = (mα,0 ∩ t)⊕ aPα,0,

and (α + 2β) acts by zero on the first component while α acts by zero on
the second. By Theorem 2.2.3, in order for our cohomology space to be
nontrivial, there needs to be a w ∈WPα with

−w(Λ + ρ)|aPα,0 = 2sρPα = 10s
α+ 2β

2
,

and

−w(Λ + ρ)|mα,0 = ±(k − 1)
α

2
.

One computes that, since Re(s) ≥ 0, the first of these conditions is possible
only when w = wβαβ , wβαβα, wβαβαβ. In case w = wβαβ , we have

−wβαβ(Λ + ρ) = −(2c1 + c2 + 3)
α

2
+ (c2 + 1)

α+ 2β

2
.

Then Theorem 2.2.3 implies (i). The other two cases are similar. □

The following lemma is key; it is the place where we use the vanishing hy-
pothesis for the symmetric cube L-function in the course of proving Theorem
2.3.9.

Lemma 2.3.7. Let F be a cuspidal eigenform of weight k ≥ 2 and trivial
nebentypus, and πF its associated unitary automorphic representation. If

L(1/2, πF ,Sym
3) = 0,

then for any flat section ϕs ∈ ι
G2(A)
Pα(A)(πF , s), the Eisenstein series E(ϕ, 2sρPα)

is holomorphic at s = 1/10.

Proof. It follows from the Langlands–Shahidi method and the vanishing hy-
pothesis on the L-function that the constant term of such an Eisenstein
series as in the proposition is holomorphic at s = 1/10; see, for example,
[Sha89], [Kim96] or [Žam97]. □

Let F be a cuspidal eigenform of weight k ≥ 4 and trivial nebentypus,
and let πF be the automorphic representation attached to F . For s ∈ C
with Re(s) > 0, let us write

Lα(πF , s) = Unique irreducible quotient of ι
G2(A)
Pα(A)(πF , s),

where we view πF as an automorphic representation of Mα(A), as usual.
Then Lα(π, s) is isomorphic to the restricted tensor product over all places v

of the Langlands quotients of the induced representations ι
G2(Qv)
Pα(Qv)(πv, s). For

this reason, we will abusively call the global object Lα(π, s) the Langlands

quotient of ι
G2(A)
Pα(A)(π, s).

We will now study the appearance of Lα(πF , 1/10) in the Eisenstein co-
homology of G2 (Definition 2.2.1). In doing so, we will require the following
lemma.
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Lemma 2.3.8. Let γ ∈ {α, β}, and let π be a unitary, cuspidal automorphic
representation of Mγ(A). Let s ∈ C with Re(s) > 0. Let Π be an irreducible

subquotient of ι
G2(A)
Pα(A)(π, s). Assume that for some finite dimensional repre-

sentation E of G2(C), we have that

(2.3.1) H∗(g2,K∞; Π⊗ E)

is nontrivial and nearly equivalent to Lα(πF , 1/10)f . Then γ = α, s = 1/10,
and π = πF .

Proof. A priori, we could have that π∞ is in the complementary series. The
first thing to do is show that this is not the case, and the rest of the proof
will not be long from there.

By Proposition 2.3.1, we already have γ = α, and by the nonvanishing
hypothesis on (2.3.1), the infinitesimal character of Lγ(π, s) is integral and
regular, and s > 0. Thus the infinitesimal character of π∞ is also integral
and regular. Therefore π is cohomological, and since it is cuspidal, it is
generic, and hence tempered at infinity. But then since π∞ is cohomological
and tempered, it is discrete series, and thus π is tempered at all places (by
Deligne [Del71; Del74]). We may then apply Proposition 2.3.4 to conclude
that s = 1/10 and π = πF , as desired. □

Theorem 2.3.9. Let F be a cuspidal eigenform of weight k ≥ 4 and triv-
ial nebentypus, and let πF be the automorphic representation of GL2(A)
attached to it. Let

λ0 =
k − 4

2
(2α+ 3β)

and let Eλ0 be the representation of G2(C) of highest weight λ0. Assume

L(1/2, πF ,Sym
3) = 0.

Then there is a unique summand isomorphic to

ι
G2(Af )
Pα(Af )

(πF,f , 1/10)

in the Eisenstein cohomology

H∗
Eis(g2,K∞;Eλ0),

and all irreducible subquotients of this cohomology which are nearly equiv-
alent to Lα(πF , 1/10)f appear in this summand. Moreover, this summand
appears in middle degree 4.

Proof. Let φF be the associate class of automorphic representations ofMα(A)
containing πF⊗δ1/10Pα(A). Then by Proposition 2.1.3 and Lemma 2.3.7, we have

AEλ0 ,[Pα],φF
∼= ι

G2(A)
Pα(A)(πF ⊗ Sym(a∨Pα,0)(6/5)ρPα ).

By Proposition 2.3.6, we therefore have

H4(g2,K∞;AEλ0 ,[Pα],φF
(G2)⊗ Eλ0)

∼= ι
G2(Af )
Pα(Af )

(πF,f , 1/10),

and that this cohomology vanishes in all other degrees.
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By the Franke–Schwermer decomposition, Theorem 2.1.1, in order to
prove our theorem, it now suffices to show that

H∗(g2,K∞;AEλ0 ,[P ],φ(G2)⊗ Eλ0)

contains no irreducible subquotients nearly equivalent to Lα(πF , 1/10)f for
any proper parabolic subgroup P ⊂ G2 and any associate class φ, except
for P = Pα and φ = φF . We do this for the maximal parabolic subgroups
Pα and Pβ and for B separately; thus the following two lemmas complete
the proof of the theorem. □

Lemma 2.3.10. Let γ ∈ {α, β}, and let φ be an associate class for Pγ.
Assume that for some i,

H i(g2,K∞;AEλ0 ,[Pγ ],φ
(G2)⊗ Eλ0)

contains a subquotient nearly equivalent to Lα(πF , 1/10)f . Then γ = α and
φ = φF .

Proof. The class φ contains a cuspidal automorphic representation ofMγ(A) ∼=
GL2(A), and which therefore must be of the form

π ⊗ δsPγ(A),

where π is a unitary cuspidal automorphic representation of GL2(A) and
s ∈ C. After possibly conjugating by the longest element in the set WPγ ,
we may even assume Re(s) ≥ 0.

Next we note that the infinitesimal character of AEλ0 ,[Pγ ],φ
(G2) as a

(g2,K∞)-module must match that of Eλ0 , i.e.,

λπ + 2sρPγ = λ0 + ρ,

where λπ is the infinitesimal character of π. But λ0 + ρ is regular and real,
and so since λπ is a multiple of the root γ and ρPγ is a multiple of the
positive root orthogonal to γ, it follows that λπ and s are real and nonzero.
In particular, s > 0 since we assumed Re(s) ≥ 0.

Now we apply Theorem 2.1.6 and Proposition 2.1.3 to find that the co-
homology space

H∗(g2,K∞;AEλ0 ,[Pγ ],φ
(G2)⊗ Eλ0),

if nontrivial, is made up of subquotients of the cohomology spaces

(2.3.2) H∗(g2,K∞;Lγ(π, s)⊗ Eλ0)

and

(2.3.3) H∗(g2,K∞; Ind
G2(A)
Pγ(A)(π ⊗ Sym(a∨Pγ ,0)(2s+1)ρPγ

)⊗ Eλ0).

If (2.3.2) is nonzero, then we conclude by Lemma 2.3.8. Otherwise, if (2.3.3)
is nonzero, then π is cohomological; indeed, the cohomology in (2.3.3) is
computed in terms of that of π by Theorem 2.2.3. Thus π is tempered
by Deligne [Del71; Del74], and so by Proposition 2.3.1, γ = α, and then by
Proposition 2.3.4, π = πF and s = 1/10. Whence also φ = φ′, as desired. □
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Lemma 2.3.11. Let φ be an associate class for B. Then the cohomology

H∗(g2,K∞;AEλ0 ,[B],φ(G2)⊗ Eλ0)

does not contain any subquotient nearly equivalent to Lα(πF , 1/10)f .

Proof. Note that the class φ must contain a character of T (Q)\T (A) of the
form

ψe⟨HB(·),s1α+s2β⟩,

where ψ is of finite order and s1, s2 ∈ C. We will study the pieceAEλ0 ,[B],φ(G2)

of the Franke–Schwermer decomposition using the Franke–Schwermer–Grbac
filtration of Theorem 2.1.4. By that theorem, there is a filtration on the
spaceAEλ0 ,[B],φ(G2) whose graded pieces are parametrized by certain quadru-

ples (Q, ν,Π, µ). For the convenience of the reader, we recall what these
quadruples consist of now:

• Q is a standard parabolic subgroup of G2;
• ν is an element of (t ∩mQ,0)

∨;
• Π is an automorphic representation of MQ(A) occurring in

L2
disc(MQ(Q)AQ(R)◦\MQ(A))

and which is spanned by values at, or residues at, the point ν of
Eisenstein series parabolically induced from (B∩MQ)(A) to MQ(A)
by representations in φ; and

• µ is an element of a∨Q,0 whose real part in Lie(AMQ
(R)) is in the

closure of the positive Weyl chamber, and such that ν+µ lies in the
Weyl orbit of λ0 + ρ.

Then the graded pieces of AE,[B],φ(G2) are isomorphic to direct sums of
G2(Af )× (g2,K∞)-modules of the form

Ind
G2(A)
Q(A) (Π⊗ Sym(a∨Q,0)µ+ρQ)

for certain quadruples (Q, ν,Π, µ) of the form just described.
For each of the four possible parabolic subgroupsQ and any corresponding

quadruple (Q, ν,Π, µ) as above, we will show using Proposition 2.3.1 that
the cohomology

(2.3.4) H∗(g2,K∞; Ind
G2(A)
Q(A) (Π⊗ Sym(a∨Q,0)µ+ρQ))

cannot have Lα(πF,f , 1/10) as a subquotient, which will finish the proof.
So first assume we have a quadruple (Q, ν,Π, µ) as above where Q = B.

Then mQ,0 = 0, forcing ν = 0. The entry Π is the unitarization of a
representation in φ, and thus must be a character ψ′ of T (A) conjugate by
G2(A) to ψ. Finally, we have µ is Weyl conjugate to λ0 + ρ. Therefore
the cohomology (2.3.4) is isomorphic, by Theorem 2.2.3, to a finite sum of
copies of

ι
G2(Af )
B(Af )

(ψ′
f , µ).

By Proposition 2.3.1, Lα(πF , 1/10)f cannot be nearly equivalent to a sub-
quotient of this space, and we conclude in the case when Q = B.
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If now we have a quadruple (Q, ν,Π, µ) where Q = Pα, then we find that
Π is a representation generated by residual Eisenstein series at the point ν
and is therefore a subquotient of the normalized induction

ι
Mα(A)
(B∩Mα)(A)(ψ

′, ν),

where ψ′ is as above. Then by Theorem 2.2.3 and induction in stages, (2.3.4)
is isomorphic to a subquotient of a finite sum of copies of

ι
G2(Af )
B(Af )

(ψ′
f , ν + µ).

We then conclude in this case as well using Proposition 2.3.1.
The case when Q = Pβ is completely similar, and we omit the details.

When Q = G2, it is once again similar, but we do not need to use induction
in stages. So we are done. □

3. Consequences of Arthur’s conjectures and cuspidal
cohomology

This section is devoted to stating a conjecture, namely Conjecture 3.5.1,
and explaining how it follows from Arthur’s conjectures. Section 3.1 briefly
reviews the results of Adams–Johnson [AJ87] on certain Arthur packets for
real groups. In Section 3.2 we make a rough classification of Arthur parame-
ters for G2(R), and then we explicitly describe the Arthur packets for a par-
ticular family of archimedean parameters of Adams–Johnson type in Section
3.3; this latter result is important for describing the archimedean component
of the automorphic representations appearing in Conjecture 3.5.1. Then in
Section 3.4 we classify the cohomological Arthur parameters of G2(R). Fi-
nally, in Section 3.5, we state Conjecture 3.5.1, explain how it follows from
Arthur’s conjectures, and prove consequences of it for the cuspidal cohomol-
ogy of G2.

For precise statements of Arthur’s conjectures, we refer the reader to
[Art84] and [Art90, §4]; Section 8 of the latter contains a precise statement
of Arthur’s conjectural multiplicity formula. The appendix to the book
[BC09] contains a nice account of Arthur’s conjectures as well.

3.1. The construction of Adams and Johnson. We consider in this
section the real case of Arthur’s conjectures, and we warn the reader that
in this section some of the notation differs in meaning from its use in other
sections throughout the paper. So fix G a reductive algebraic group defined
over R with complex Lie algebra g. We identify G with its R-points. Fix a
Cartan involution θ for G and let K be the maximal compact subgroup of
G defined by θ. We will assume that G has discrete series, so that there is
a maximal torus T for G contained in K.

We will consider the L-group LG = G∨(C)⋊WR. Write j for the element
of the Weil group WR of R such that j2 = −1 and jzj−1 = z̄ for z ∈ C× ⊂
WR.

Recall that an Arthur parameter ψ for G is a homomorphism

ψ :WR × SL2(C) → LG.
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whose restriction to the WR factor defines a tempered L-parameter for G.
Given an Arthur parameter ψ, we define its associated L-parameter ϕψ
(which is, in general, different from the restriction of ψ to WR) by

ϕpsi(w) = ψ
(
w ×

(
|z|1/2 0

0 |z|−1/2

))
, w ∈WR,

where | · | : WR → R>0 is as usual the homomorphism that restricts to the
usual absolute value on C× ⊂WR, and such that |j| = 1.

Let q ⊂ g be a θ-stable parabolic subalgebra containing the complexified
Lie algebra t of T . The corresponding θ-stable Levi subgroup of G(R) is
defined to be the stabilizer of q under the adjoint action of G(R). Given such
a θ-stable Levi subgroup L ⊂ G(R) corresponding to a θ-stable parabolic
subalgebra q containing t, there is the following natural way to embed LL
into LG.

Fix an ordering on the roots of the complex Lie algebra t of T in g which
makes q standard. Then naturally T∨(C) ⊂ L∨(C) ⊂ G∨(C). Let nL be any
element of the derived group of L∨(C) which sends positive roots in L∨(C)
for T∨(C) to negative ones, and similarly define nG. Let ρL be the half-sum
of the positive roots of T (C) in L(C), and similarly for ρG. Then we define
the embedding ξL : LL ↪→ LG first on C× ⊂ WR as follows. For z ∈ C×, let
ξL(z) = χ(z)⋊ z where χ : C× → T∨(C) is the unique homomorphism such
that

(3.1.1) λ∨(χ(z)) = z⟨ρG−ρL,λ
∨⟩z̄−⟨ρG−ρL,λ∨⟩,

for any cocharacter λ∨ : C× → T∨(C). Then we define

(3.1.2) ξL(j) = nGn
−1
L ⋊ j.

We consider this embedding in the following definition.

Definition 3.1.1. An Arthur parameter ψ : WR × SL2(C) → LG is said
to be of Adams–Johnson type if there is a θ-stable Levi subgroup L of G
containing the compact maximal torus T such that the three points below
are satisfied.

• The restriction ψ|SL2(C) sends
(
1 1
0 1

)
to a principal unipotent element

of L∨(C).
• The image of ψ|C× lies in Z(L∨(C)) ⋊ WR, where Z denotes the
center, considered as a subgroup of LG via the embedding ξL defined
above.

These two points imply that ϕψ has image contained in LL and that it
defines a one dimensional representation πL of L. Let λ be the restriction
of this representation to T . Then we also require:

• L is the stabilizer of a θ-stable parabolic subalgebra q with radical
u such that, for all roots γ in u, we have Re⟨λ+ ρG, γ

∨⟩ ≥ 0.

Adams and Johnson in [AJ87] have constructed packets for any parameter
ψ of Adams–Johnson type. Fix such a parameter ψ. Let q be the θ-stable



38 SAM MUNDY

parabolic subalgebra of g such that q = l⊕ u where

l = t⊕
⊕

⟨λ,γ∨⟩=0

gγ , u =
⊕

⟨λ,γ∨⟩>0

gγ ,

where the sums are over roots γ of t in g and gγ denotes the one dimensional
subspace of g corresponding to the root γ.

Adams and Johnson then construct the packet attached to ψ by defining
certain Weyl twists of the one-dimensional representation πL from the sec-
ond point above, perhaps defined on other Levi subgroups which are inner
forms of L, and cohomologically inducing them to G. We now review this
construction.

Let W be the Weyl group of t in g. For w ∈ W , we can consider the
θ-stable parabolic subalgebra qw of g given as follows. Let ∆(q, t) be the set
of roots of t in q, so that

q =
⊕

γ∈∆(q,t)

gγ ⊕ t.

Then we define qw by

qw =
⊕

γ∈∆(q,t)

gwγ ⊕ t.

Let Lw be the θ-stable Levi subgroup corresponding to qw.
Adams and Johnson show that there is a one dimensional representation

of Lw whose restriction to T is wλ. Let πLw be any such representation.
For i ≥ 0, we consider the cohomological induction functors Ri

q from
(l, L ∩ K)-modules to (g,K)-modules as defined in [KV95, Section V.1].
These are normalized so that if Z is an (l, L∩K)-module with infinitesimal
character given by Λ ∈ t∨, then Ri

q(Z) has infinitesimal character given
by Λ + ρ(u), where ρ(u) is half the sum of the roots of t in u (see [KV95,
Corollary 5.25]).

For w ∈W , let

Sw =
1

2
(dim(K)− dim(Lw ∩K)).

Let

Aqw(wλ) = RSw
qw (πLw).

Let WL be the Weyl group of t in l, and Wc the Weyl group of t in the
complex Lie algebra of K. Adams and Johnson show that if w,w′ ∈ W
define the same double coset in

Wc\W/WL,

then Aqw(wλ)
∼= Aqw′ (w

′λ).

Definition 3.1.2. With ψ a parameter of Adams–Johnson type as above,
we define the corresponding Adams–Johnson packet to be

ΠAJ
ψ = {Aqw(wλ) | w ∈Wc\W/WL}.
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As mentioned before, these packets satisfy the conclusion of Arthur’s con-
jecture in the archimedean case. In the next two sections, we will study
the Arthur parameters for G2(R) whose restriction to SL2(C) is nontrivial.
Many of these will turn out to be of Adams–Johnson type, and we will be
able to compute the corresponding Adams–Johnson packets.

3.2. Arthur parameters for G2(R). We now study the Arthur parameters

for G2(R). Let ψ : WR × SL2(C) → L(G2(R)) be an Arthur parameter
which is nontrivial on the SL2(C). By the Jacobson–Morozov theorem,
the conjugacy class of the homomorphism ψ|SL2(C) is determined by the

conjugacy class of the unipotent element ψ(
(
1 1
0 1

)
). Such a class is called a

unipotent orbit, and there are five such orbits for G2, described as follows.
For a root γ of the split maximal torus T in G2, let Xγ be a root vector in
the Lie algebra g2 corresponding to γ. Then:

• There is the orbit of the identity element, for which we write O0.
• There is the long root orbit, which is that of exp(Xα). We write Ol

for this orbit.
• There is the short root orbit, which is that of exp(Xβ). We write Os

for this orbit.
• There is the subregular orbit, which is that of exp(Xα+Xα+3β). We
write Osr for this orbit.

• There is the regular orbit, which is that of exp(Xα+Xβ). We write
Or for this orbit.

The respective dimensions of these orbits are 0, 6, 8, 10, and 12. The closure
of each contains the previous one.

Let us write Ψ?(G2(R)), for ? ∈ {0, l, s, sr, r}, for the set of Arthur param-
eters ψ such that ψ|SL2(C) corresponds to the orbit O?. We aim to classify
the Arthur parameters ψ for which ψ|SL2(C) is nontrivial; that is, we will
describe Ψ?(G2(R)) for ? ̸= 0.

For γ a root of T , let us write SL2,γ(C) for the SL2-subgroup of G2(C)
corresponding to γ. Then if γ and γ′ are orthogonal roots, then SL2,γ(C)
and SL2,γ′(C) are mutual centralizers and their inclusions into G2(C) induce
a map,

ιγ,γ′ : SL2,γ(C)× SL2,γ′(C) → G2(C)

with kernel {±1} embedded diagonally.
Let us fix a compact maximal torus Tc ⊂ G2(R) contained in a maximal

compact subgroup K of G2(R), and let θ be a Cartan involution giving K.
Let tc be the complex Lie algebra of Tc. We identify the root system of tc in
g2 with that of T in G2 in such a way that β and 2α + 3β are the positive
compact roots.

Let q be the θ-stable parabolic subalgebra of g2 whose Levi factor l con-
tains the roots ±β, and whose radical u contains the positive roots different
from β. Let L be the θ-stable Levi subgroup corresponding to q. It is iso-
morphic to the unitary group U(2) since the roots ±β are compact. On the
dual side, we identify L∨(C) with GL2(C).
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Given an even integer k ≥ 2, we let ψL,k : WR × SL2(C) → LL be the
homomorphism given by

ψL,k(z) =

(
(z/|z|)k−4 0

0 (z/|z|)k−4

)
× z ∈ L∨(C)⋊WR, z ∈ C×,

ψL,k(j) = 1× j ∈ L∨(C)⋊WR,

ψL,k(A) = A× 1 ∈ SL2(C)⋊WR ⊂ L∨(C)⋊WR, A ∈ SL2(C).

Note that this is indeed a homomorphism because k is even, so that ψL,k(j)
2 =

ψL,k(−1). Let ξL : LL → L(G2(R)) be the embedding considered in (3.1.1)
and (3.1.2), and define

ψk = ξL ◦ ψL,k.

Then ψk is an Arthur parameter of Adams–Johnson type. As in Definition
3.1.1, the Langlands parameter ϕψL,k , when viewed as having target LL,
defines a one dimensional representation of L and hence a character λk of
Tc. One checks that λk =

k−4
2 (2α+ 3β).

Given an Arthur parameter ψ for G2(R), we let Cψ be the centralizer

in G2(C) of the image of ψ in LG2(C), and Cψ the group of connected
components of Cψ. (We do not need to quotient by the center because the
center of G2 is trivial.) The group Cψ is called the component group of ψ.

Proposition 3.2.1. Let ψ ∈ Ψl(G2(R)). Then ψ factors as

ψ :WR × SL2(C)
ϕ×idSL2(C)−−−−−−−→WR × SL2,β(C)× SL2,2α+3β(C)
idWR×ιβ,2α+3β−−−−−−−−−→WR ×G2(C) = L(G2(R)),

where ϕ : WR → WR × SL2(C) is a tempered Langlands parameter for

PGL2(R). If ψ is unipotent, then ϕ|C× is trivial and ϕ(j) ∈ {±1,
(
1 0
0 −1

)
}.

Otherwise, ψ = ψk for some k ≥ 2 even; in this case, ϕ is the Langlands
parameter of the discrete series of weight k for PGL2(R).

Finally, the component groups are given as follows. If ψ is unipotent,
then Cψ is trivial. Otherwise Cψ has two elements.

Proof. Since ψ ∈ Ψl(G2(R)), by conjugating we may assume ψ identi-
fies SL2(C) with SL2,2α+3β(C). Then since SL2,β(C) is the centralizer of
SL2,2α+3β(C) in G2(C), ψ|WR must factor through SL2,β(C) ×WR. Since
ψ|WR has bounded image, it therefore defines a tempered Langlands param-
eter, which we take to be our ϕ, of PGL2(R).

If ψ is unipotent, then ϕ(j) is of order 2, and must be either ±1 or a

conjugate of
(
1 0
0 −1

)
. Otherwise ϕ is a discrete series parameter of positive

even weight k. Assuming this, we will now show ψ = ψk.
Recall that the discrete series of weight k for PGL2(R) has Langlands

parameter given by

z 7→ z ×
(
(z/|z|)k−1 0

0 (z/|z|)1−k
)

∈WR × SL2(C), z ∈ C×,
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and

j 7→ j ×
(
0 −1
1 0

)
∈WR × SL2(C).

The two equations above therefore define ϕ = ψ|WR when identifying both
groups SL2(C) with SL2,β(C). Recall also that the Levi subgroup L used
to define ψk is a short root Levi subgroup, and therefore we may identify
L∨(C) with the long root Levi subgroup in G2(C) given by

Tβ × SL2,2α+3β(C)/{±1},
where Tβ is the maximal torus in SL2,β(C). That ψ = ψk then follows from
a straightforward computation using the definitions; one must use (3.1.1)
and (3.1.2), noting that ρG − ρL = 3

2(2α+ 3β) and that we may take

nGn
−1
L =

(
0 −1
1 0

)
× 1 ∈ SL2,β(C)× SL2,2α+3β(C).

Finally, for the component groups, we note that since ψ|SL2(C) has im-
age SL2,2α+3β(C), the centralizer Cψ is the subgroup of SL2,β(C) which
centralizes the image of ψ|WR . If ψ is unipotent and ψ(j) is central, then

Cψ = SL2,β(C); if ψ is unipotent and ψ(j) =
(
1 0
0 −1

)
, then Cψ = Tβ; if

ψ = ψk, then Cψ = {±1}. The result follows. □

We omit the details, but a completely analogous analysis can be made of
Ψs(G2(R)) by switching the roles of long and short roots.

Now we look at the subregular parameters.

Proposition 3.2.2. There are two parameters in Ψsr(G2(R)) and they are
both unipotent. One has component group S3, the symmetric group on three
elements, and the other has component group Z/2Z.

Proof. Since Osr has dimension 10, the centralizer of any of its representa-
tives is 4 dimensional. On the level of Lie algebras, Xα+Xα+3β is centralized
by the four independent nilpotent elements

Xα+β, Xα+2β, X2α+3β, Xα +Xα+3β,

which therefore span the centralizer of Xα + Xα+3β. The other nilpotent
element in the sl2-triple containing Xα + Xα+3β is (up to scalar) X−α +
X−α−3β, which is centralized by

X−α−β, X−α−2β, X−2α−3β, X−α +X−α−3β.

Thus the centralizer of the entire sl2-triple in g2 is trivial.
It follows that the centralizer of the image of the homomorphism SL2(C) →

G2(C) corresponding to Osr is discrete. Now it is a fact that the component
group of the centralizer of Xα + Xα+3β is S3. It is easy to check that the
Weyl group element wβ, along with β∨(ζ3) with ζ3 a third root of unity, cen-
tralize this SL2(C) and generate a group isomorphic to S3 which is therefore
the centralizer of this SL2(C) in G2(C).

Now let ψ ∈ Ψsr(G2(C)). Then ψ|WR must have image contained in this
subgroup isomorphic to S3, which implies ψ is unipotent and ψ(j) = 1 or
ψ(j) is an order two element of this S3 (all of which are conjugate, even
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in S3 itself). In the former case, Cψ = S3, and in the latter case, Cψ =
{1, ψ(j)}. □

Finally, we examine Ψr(G2(R)). The analysis is similar to the above
proposition.

Proposition 3.2.3. There is only one parameter in Ψr(G2(R)), and it is
trivial on WR. Its component group is trivial.

Proof. The component group of the centralizer of Xα + Xβ in G2(C) is
known to be trivial. The centralizer of this element in g2 is 2 dimensional
(because Or has dimension 12) and contains (and is thus spanned by) Xα+2β

and X2α+3β. Since X−α+X−β is centralized by X−α−2β and X−2α−3β, this
implies that the centralizer of the regular SL2(C) in G2(C) is discrete, hence
trivial.

Thus if ψ ∈ Ψr(G2(R)), then ψ|WR is trivial, and so is the centralizer of
the image of ψ. The proposition follows. □

3.3. Determination of the packet ΠAJ
ψk

. For an even integer k ≥ 2, let

ψk ∈ Ψl(G2(R)) be the parameter of Adams–Johnson type defined in the
previous section. It gives rise to the character λk = k−4

2 (2α + 3β), where
2α + 3β is viewed as a long compact root for a compact torus Tc. We also
let q and L be as in the construction of ψk. Then L ∼= U(2).

For the remainder of this section, we let w ∈W be the rotation counter-
clockwise by π/3 in the root system, so w(2α+ 3β) = α and wβ = α+ 2β.
It represents the nontrivial double coset in

Wc\W (G2, Tc)/WL.

By definition, the Adams–Johnson packet for ψk is

ΠAJ
ψk

= {Aq(λk), Aqw(wλk)}.
We determine these representations when k ≥ 4. Write ρ = ρG2 = 3α+ 5β.

Proposition 3.3.1. Let k ≥ 4. Then the representation Aq(λk) is the

discrete series representation with Harish-Chandra parameter k−4
2 (2α+3β)+

ρ. In the terminology of Gan–Gross–Savin [GGS02], this is the quaternionic
discrete series of weight k/2.

Proof. We will use the spectral sequence of [KV95, Theorem 11.77]. Let b
be the standard Borel subalgebra of g2 containing the complex Lie algebra
tc of Tc, and n its radical. Let u be the radical of q and l its Levi factor.
Then in our case, this spectral sequence reads

Ri(Rj(Z ⊗ C−2ρ(n∩l))⊗ C−2ρ(u)) ⇒ Ri+j(Z ⊗ C−2ρ(n)),

for (tc, Tc)-modules Z, where the R’s denote cohomological inductions, the
ρ’s denote the obvious half sums of roots, and the modules Cµ for weights
µ are the obvious 1 dimensional modules. (See also [KV95, (11.73)] for the
discrepancy that gives rise to these half sums.)

Let λ′k be the character of Tc given by

λ′k =
k − 4

2
(2α+ 3β) + (6α+ 10β).
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We apply the spectral sequence above with Z = λ′k. We note that

2ρ(n ∩ l) = β, 2ρ(u) = 6α+ 9β, 2ρ(n) = 6α+ 10β.

Now on the one hand, by the classification of discrete series via cohomo-
logical induction [KV95, Theorem 11.178(a)],

R2(λ′k ⊗ C−2ρ(n)) = R2(k−4
2 (2α+ 3β))

is the discrete series ofG2(R) sought, with Harish-Chandra parameter k−4
2 (2α+

3β) + ρ. On the other hand, by the same theorem,

R1(λ′k ⊗ C−2ρ(n∩l)) = R1(λ′k ⊗ C−β)

is the discrete series representation of L with Harish-Chandra parameter
λ′k − 1

2β; i.e., it is the character of L ∼= U(2) whose restriction to Tc is
k−4
2 + (6α+ 9β). Thus

R1(λ′k ⊗ C−2ρ(n∩l))⊗ C−2ρ(u)

is the character of L given by λk =
k−4
2 (2α+3β). Cohomologically inducing

again gives

R1(R1(λ′k ⊗ C−2ρ(n∩l))⊗ C−2ρ(u)) = Aq(λk)

by definition.
Now since all representations considered here have infinitesimal character

in the good range (this is where we use k ≥ 4) these cohomological inductions
are concentrated in one degree (see [KV95, Theorem 0.50]) and the spectral
sequence collapses. Thus,

R1(R1(λ′k ⊗ C−2ρ(n∩l))⊗ C−2ρ(u)) = R2(λ′k ⊗ C−2ρ(n)),

which, by the above computations, proves the proposition. □

Now we consider the other representation Aqw(wλk) in the packet. We
note that the θ-stable Levi subgroup Lw associated with qw is a U(1, 1)
because its complex Lie algebra lw contains the root wβ = α+ 2β, which is
noncompact. Also, we have wλk =

k−4
2 α.

Proposition 3.3.2. With the notation as above, we have

Aqw(wλk)
∼= Lα(πk, 1/10)

if k ≥ 4, where Lα(πk, 1/10) is the Langlands quotient of the induction of the
discrete series πk of weight k from the long root parabolic subgroup Pα(R).

Proof. It is easy to see by our description of the parameter ψk in Proposition
3.2.1 that the Langlands parameter ϕψk is that of Lα(πk, 1/10). Since the
Adams–Johnson packet of ψk contains the L-packet of ϕψk , we have that
this Langlands quotient is the remaining member of our packet, as desired.

One can also compute the representation Aqw(wλk) directly using [Vog81,
Theorem 6.6.15]; we omit the details, but explain the result of this compu-
tation.
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Let T0 be the center of Lw, and let A be the θ-stable maximal split torus
in the derived group of Lw. Then H = T0A is a maximal torus in Lw. Let
Bw ⊂ Lw be the standard Borel subgroup containing H. Write

µ = wλk|T0 =
k − 4

2
α|T0 ,

and
ν = δ

−1/2
Bw

|A.
Finally, let

µ′ = wλk|T0 + α|T0 =
k − 2

2
α|T0 .

Then [Vog81, Theorem 6.6.15] implies the isomorphism of standard modules

R2(IndLwBw((µ⊗ ν)⊗ δ
1/2
Bw

)) ∼= Ind
G2(R)
P (R) (R1(µ′ ⊗ ν)⊗ δ

1/2
P (R)).

The unique irreducible subrepresentation of the left hand side is Aqw(wλk),
and that of the right hand side is Lα(πk, 1/10). □

We summarize the above results as a theorem.

Theorem 3.3.3. The Adams–Johnson packet ΠAJ
ψk

consists of the quater-

nionic discrete series of weight k/2, of Harish-Chandra parameter k−4
2 (2α+

3β) + ρ, and the Langlands quotient Lα(πk, 1/10) of the discrete series of
weight k from the long root parabolic subgroup Pα(R) of G2(R).

3.4. Cohomological parameters. We would like to describe all Arthur
parameters for G2(R) whose associated Arthur packets contain a represen-
tation with cohomology. This will not be so difficult from what we have set
up. However, we need to specify what we mean by “Arthur packets” for
parameters which are not of Adams–Johnson type.

In [ABV92], Adams, Barbasch and Vogan define Arthur packets very
generally for parameters for real groups, and prove that their packets sat-
isfy the conclusion of Arthur’s conjecture [Art84, Conjecture 1.3.3]. These
packets are hard to compute in general, but in the case of unipotent param-
eters, they can be shown to give the unipotent representations constructed
by the methods of Barbasch–Vogan [BV85]; see [ABV92, Corollary 27.13].
They are also known to coincide with the packets constructed by Adams–
Johnson for parameters of Adams–Johnson type; see [Ara19]. We will write
Πψ = ΠABV

ψ for the Arthur packet for a real Arthur parameter ψ as con-
structed by Adams–Barbasch–Vogan.

Let ψ be an Arthur parameter for G2(R) which is nontrivial on SL2(C).
By the results of Section 3.2, any such parameter is either unipotent or of
Adams–Johnson type, and therefore we can compute the representations in
the packets Πψ via the methods of Adams–Johnson or those of Barbasch–
Vogan. If, on the other hand, ψ is trivial on SL2(C), then ψ|WR = ϕψ.
Therefore Πψ is just the L-packet attached to the tempered Langlands pa-
rameter ψ|WR .

Proposition 3.4.1. Let ψ be an Arthur parameter for G2(R). Assume Πψ
contains a representation with cohomology. Then exactly one of the following
holds.
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• We have ψ ∈ Ψ0(G2(R)). In this case ψ|WR is the Langlands param-
eter for a discrete series representation, and Πψ is the correspond-
ing discrete series L-packet. Its members are thus cohomological for
middle degree 4.

• We have ψ ∈ Ψl(G2(R)). In this case ψ = ψk for some even k ≥ 4 in
the notation of Proposition 3.2.1, and the representations in Πψ are
both cohomological for the irreducible representation of G2 of highest
weight k−4

2 (2α+3β); moreover, the L-packet element has cohomology
exactly in degrees 3 and 5, and the other has cohomology exactly in
degree 4.

• We have ψ ∈ Ψs(G2(R)) and ψ is obtained in the same way as
ψk with k ≥ 4 as in Proposition 3.2.1, except that SL2,β(C) and
SL2,2α+3β(C) are switched in the construction. There are two repre-
sentations in Πψ and they are both cohomological for the irreducible

representation of G2 of highest weight k−4
2 (α + 2β). Moreover, the

L-packet element has cohomology exactly in degrees 3 and 5, and the
other has cohomology exactly in degree 4.

• We have ψ ∈ Ψr(G2(R)). Then Πψ contains only the trivial repre-
sentation of G2(R). It is cohomological for degrees 0, 2, 4, 6, 8.

Proof. As in Section 3.2, we classify the Arthur parameters according to
their restriction to SL2(C). If Ψ|SL2(C) is trivial, then ϕψ = ψ|WR , which is
tempered by definition, and moreover Πψ = Πϕψ . Being cohomological and
tempered, ϕψ must correspond to a discrete series L-packet, which proves
the proposition in the case that ψ ∈ Ψ0(G2(R)).

Next, let ψ ∈ Ψl(G2(R)) be cohomological. We note that ψ cannot be
unipotent because the representations corresponding to unipotent parame-
ters were classified by Vogan in [Vog94, Theorem 18.3], and they all have
irregular infinitesimal character. (Note that Vogan’s list contains one ex-
tra unipotent representation because he is working with the double cover of
G2(R) and one of the representations he obtains does not factor through the
projection to G2(R).)

Thus ψ = ψk for some k ≥ 2 even, as in Proposition 3.2.1. But we
cannot have k = 2 because in this case the Adams–Johnson packets for
ψ2 contain only representations with irregular infinitesimal character; they
are Aq(λ)’s with λ = −(2α+ 3β) and therefore have infinitesimal character
ρ− (2α+ 3β) = α+ 2β.

Thus ψ = ψk for k ≥ 4, and it follows from Theorem 3.3.3 that the
L-packet element of Πψk is cohomological in degrees 3 and 5. See [BW00,
Theorem VI.1.7] for the the justification of this claim in the case of trivial
coefficients; the proof for twisted coefficients follows the same lines. The
other element of Πψk is cohomological in degree 4 because it is discrete
series. Alternatively, one can see both of these claims directly from the
presentation of these representations as Aq(λ)’s using [VZ84, Theorem 5.5].
This proves the proposition in case ψ ∈ ψl(G2(R)).

The case of ψ ∈ Ψs(G2(R)) is completely analogous; one uses instead
[Vog94, Theorem 18.4] to handle the unipotent representations.
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Next we note that ψ cannot be in Ψsr(G2(R)), for then by Proposition
3.2.2, ψ is unipotent and the unipotent representations for these parameters
were classified in [Vog94, Theorem 18.5]; they all have irregular infinitesimal
character.

Finally, by Proposition 3.2.3, there is only one parameter ψ in Ψr(G2(R))
and ψ|WR is trivial. Moreover, Πψ = Πϕψ because the component groups are
trivial. We have that the restriction of ψ to the maximal torus of SL2(C) is
(α+2β)∨+(2α+3β)∨ = 3β∨+5α∨, and therefore ϕψ is the parameter corre-
sponding to the Langlands quotient of the representation induced from the
Borel subgroup from the character ρ; that is, it is the trivial representation.
The claim about the cohomological degrees of the trivial representation is a
straightforward computation which we omit. □

3.5. Occurrence of Lα(πF , 1/10) in the cuspidal spectrum. We begin
by making the following conjecture.

Conjecture 3.5.1. Let F be a cuspidal holomorphic eigenform of weight
k ≥ 4 and trivial nebentypus, πF its associated automorphic representation,
and ΠF,f = Lα(πF , 1/10)f the finite part Langlands quotient of πF⊗|det |1/2
from the long root parabolic subgroup of G2. Moreover, let v be a finite place
at which πF is unramified, and let ΠvF,f be the component of ΠF,f away from
v. Then the ΠvF,f -isotypic component of the discrete spectrum is given by

L2
disc(G2(Q)\G2(A))[ΠvF,f ] = ΠF,f ⊗Π∞,

where:

(a) In the case that ϵ(1/2, πF , Sym
3) = 1, the representation Π∞ is the

archimedean component Lα(πF , 1/10)∞ of the same Langlands quo-
tient, or,

(b) In the case that ϵ(1/2, πF ,Sym
3) = −1, the representation Π∞ is the

(quaternionic) discrete series representation of G2(R) with Harish-
Chandra parameter k−4

2 (2α+ 3β) + ρ.

Remark 3.5.2. The finite place v in this conjecture is inserted for technical
reasons having to do with the p-adic deformation of ΠF,f , which will be the
subject of the paper [Mun] which follows this one. In that paper, the place
v will be the one corresponding to a prime p at which πF is unramified, and
because of a small technical issue involving p-stabilizations, we will need to
be precise about which discrete automorphic representations can have finite
part equivalent to ΠF,f away from p. The conjecture says then that there are
no others but the ones which are equivalent to ΠF,f at all finite places. But
for the purposes of this paper alone, the reader may ignore any occurrences
of this auxiliary place v.

We will show how the conjecture above follows from Arthur’s multiplic-
ity formula, along with the assertion that Adams–Johnson packets should
coincide with the packets at infinity for cohomological parameters for G2.
This will use the material from the previous four subsections. We will then
show how to use the results of Section 2 to upgrade the statement of this
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conjecture, which is about the discrete spectrum, to one about the cuspidal
spectrum.

Now there are two main assertions from which this conjecture would fol-
low:

(1) There is the assertion that the representation ΠF,f ⊗ Π∞ occurs in
the discrete spectrum, with Π∞ depending on the symmetric cube
root number as described, with multiplicity one.

(2) There is the assertion that ΠvF,f cannot occur in the discrete spec-
trum as the finite part away from v of any other representation beside
the one described above.

To justify assertion (1) using Arthur’s multiplicity formula, we first note
that πF factors through PGL2(A) and so should define a tempered Lang-
lands parameter ϕF : LQ → SL2(C), where LQ is the (conjectural) Lang-
lands group of Q. Following Gan and Gurevich [GG09], we define a global
Arthur parameter ψF : LQ × SL2(C) → LG2 as the composition

ψF : LQ × SL2(C)
ϕF×idSL2(C)−−−−−−−−→ LQ × SL2,β(C)× SL2,2α+3β(C)
idWR×ιβ,2α+3β−−−−−−−−−→ LQ ×G2(C) = LG2,

where the notation is as in Section 3.2. Note that the local component of
ψF at ∞ is the parameter ψk from Section 3.2 by Proposition 3.2.1. The
implications of Arthur’s multiplicity formula for this parameter ψF were
explained in [GG09, Section 13.4]. We briefly recall this now. The reader
may refer to [Art90, §4] for the definitions of the global component group
Cψ (called S+

ψ in loc. cit.), and the character εψ which we use below, as well

as a formulation of the multiplicity formula in terms of this data. The local
component groups Cψw are defined just as in the archimedean case; see the
remark above Proposition 3.2.1.

First, at places w where πF,w is discrete series, the component group C+
ψF,w

has two elements; otherwise it is trivial. Thus we expect the Arthur packets
ΠψF,w attached to ψF,w at places w where πF,w is discrete series to have

two elements, and we write ΠψF,w = {π+w , π−w}, where π+w is the L-packet

element. Otherwise we have ΠψF,w = {π+w}, the singleton containing the L-
packet element. The L-packet elements are visibly the Langlands quotients
Lα(πF,w, 1/10) from the long root parabolic subgroup. Note in particular
that for w = v, the packet ΠψF,v is the singleton containing Lα(πF,v, 1/10).

The global component group CψF has two elements and the character εψ
can be computed to be the character which sends the nontrivial element in
Cψ to the root number ϵ(1/2, πF ,Sym

3). Thus, if π is of the form

π =
⊗′

w

πw, πw ∈ Πψw ,

and if we let ϵπw = 1 or −1 according to whether πw is π+w or π−w , respec-
tively, then π occurs with multiplicity 1 in L2

disc(G2(Q)\G2(A)) if
∏
w ϵπw =

ϵ(1/2, πF , Sym
3); otherwise π occurs with multiplicity 0. Since the Arthur
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packet at ∞ coincides with the possibilities for Π∞ described in our conjec-
ture by Theorem 3.3.3, we have justified the assertion (1) above.

To understand why (2) should hold, we have to examine other global
Arthur parameters ψ. More precisely, let Π′

∞ be a representation of G2(R)
and Π′

v a representation of G2(Qv) such that ΠvF,f ⊗ Π′
v ⊗ Π′

∞ occurs in

L2
cusp(G2(Q)\G2(A)), and let ψ be the global Arthur parameter correspond-

ing to this representation. We must show that ψ = ψF .
To see this, we first break the set of global Arthur parameters for G2 into

five subsets, called Ψ?(G2/Q), ? ∈ {0, l, s, sr, r}, based on their restrictions
to SL2(C), just as in Section 3.2; the definitions of these subsets are just as
in that section. We note that the restriction of ψ to SL2(C) is the same as
the restriction of any of the local components ψw to SL2(C).

Now if w ̸= v is a finite place which is unramified for ΠF,f and such that
the local packet Πψw contains only one element, then the L-parameter ϕψw is
nontempered because it must coincide with the L-parameter ϕψF,w ; indeed,
if qw is the prime corresponding to w and tw is the Satake parameter of πF
at w, then

ϕψF,w(Frob
−1
w ) = tw ×

(
q
1/2
w 0

0 q
−1/2
w

)
∈ SL2,β(C)× SL2,2α+3β(C),

whose powers are unbounded. Thus we cannot have ψ|W ′
w
= ϕψF,w , which

implies ψ /∈ Ψ0(G2/Q).
Now assume for sake of contradiction that ψ ∈ Ψr(G2/Q). Then ψ|LQ is

trivial, because the centralizer of the image of the corresponding homomor-
phism from SL2(C) is trivial, as we saw in Proposition 3.2.3. Moreover,
at a finite place w at which ΠF,w is unramified and Πψw contains only one
element, we have

ψψw(Frob
−1
w ) = (3β∨ + 5α∨)(q1/2w ),

which does not coincide with our expression for ϕψF,w(Frob
−1
w ) above. Thus

ψ /∈ Ψr(G2/Q). A similar argument, applied with Frob−6
w , shows also that

ψ /∈ Ψsr(G2/Q), since the centralizer of the image of the subregular homo-
morphism SL2(C) → G2(C) is a group of order 6.

Now if ψ ∈ Ψs(G2/Q), then ψ|LQ must factor through a long root SL2(C).
Therefore ΠF,f would be nearly equivalent to a Langlands quotient of a
parabolic induction of a tempered representation from both the long root
and short root parabolic subgroups. By Proposition 2.3.1, this is impossible.

Thus ψ ∈ Ψl(G2/Q), and ψ|LQ factors through a short root SL2(C). More-
over, by strong multiplicity one for GL2, the parameter ψ|LQ corresponds to
πF , and thus ψ = ψF , as desired.

This completes our justification of Conjecture 3.5.1 using Arthur’s multi-
plicity formula. We would like to remark, however, that using theta corre-
spondence for PU(3)×G2, the work [BHLS24] completes the program pro-
posed in [GG09] and proves the multiplicity formula for long root CAP rep-
resentations of G2 that are induced from dihedral cuspidal representations
of PGL2. Moreover, by [HPS96, Theorem 5.2], this theta correspondence
is functorial at the archimedean place and gives the quaternionic discrete
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series representation that we obtained in Proposition 3.3.1. Unfortunately,
the paper [Mun] which is sequel to this one needs this conjecture in the
non-dihedral case. There is still hope that the relative trace formula ap-
proach to the endoscopy classification for classical groups can shed light on
the conjecture in this case.

We conclude by showing that Conjecture 3.5.1 implies a multiplicity for-
mula for ΠF,f in the cuspidal spectrum, in light of the material developed
in Section 2.

Proposition 3.5.3. In the notation of Conjecture 3.5.1, assuming that con-
jecture, we have that ΠvF,f is the finite component away from v of a unique
discrete automorphic representation, and this representation is cuspidal if
and only if L(1/2, πF , Sym

3) = 0.

Proof. If L(1/2, πF ,Sym
3) ̸= 0, then any section of ι

G2(A)
Pα(A)(πF , s) mapping

nontrivially to the Langlands quotient of this induction at s = 1/10 gives
rise to an Eisenstein series with a simple pole at s = 1/10, and the cor-
responding residual Eisenstein series generate a copy of Lα(πF , 1/10) in
L2
res(G2(Q)\G2(A)); see [Kim96] or [Žam97]. Conjecture 3.5.1 says that this

should be the only discrete automorphic representation with finite part away
from v given by ΠvF,f . Otherwise, if L(1/2, πF , Sym

3) = 0, no such section

can give rise to an Eisenstein series with a pole at s = 1/10 by Lemma
2.3.7. Thus to prove the proposition, it suffices to show that if AE,[P ],φ(G2)
is any Franke–Schwermer piece containing a residual Eisenstein represen-
tation Π′ which is nearly equivalent to Lα(πF , 1/10), then P = Pα and φ

contains πF⊗δ1/10Pα(A). Actually, in this case, Proposition 2.3.1 already implies

P = Pα, so it suffices to show that φ contains πF ⊗ δ
1/10
Pα(A).

Let π′ ∈ φ be a cuspidal representation of Mα(A) with central character
given by a the product of finite order character of A× with δsPα(A) with

Re(s) ≥ 0. By assumption, Conjecture 3.5.1 implies Π′
∞ = Π′, and therefore,

by looking at infinitesimal characters, s > 0. Moreover, we then have that
Π′ = Lα(π′, s), and that this is cohomological (since Π∞ is). Then Lemma
2.3.8 implies that π′ = π and s = 1/10, as desired. □

This proposition gives us information about the cuspidal cohomology of
G2 (see Definition 2.2.1).

Theorem 3.5.4. Let the notation be as in Conjecture 3.5.1, and assume
that conjecture. Let

λ0 =
k − 4

2
(2α+ 3β),

and let Eλ0 be the representation of G2(C) of highest weight λ0. Assume

L(1/2, πF ,Sym
3) = 0.

Then

H i
cusp(g2,K∞;E)[ΠvF,f ] =


ΠF,f if i = 4 and ϵ(1/2, πF ,Sym

3) = −1,

or if i = 3, 5 and ϵ(1/2, πF , Sym
3) = +1;

0 otherwise.
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Proof. This follows immediately from Conjecture 3.5.1 and Proposition 3.5.3.
□

Remark 3.5.5. Theorem 3.5.4 together with Theorem 2.3.9 give a complete
description of where ΠF,f appears in the automorphic cohomology ofG2 with

coefficients in Eλ0 when L(1/2, πF , Sym
3) = 0. When L(1/2, πF , Sym

3) ̸=
0, ΠF,f can only appear in Eisenstein cohomology by Proposition 3.5.3,
and moreover the proof of that proposition shows that the ΠF,f -isotypic
component is the space

H∗(g2,K∞)(AEλ0 ,[Pα],φF
(G2)⊗ Eλ0)

where φF is the associate class containing πF ⊗ δ
1/10
Pα(A).

By Grbac’s theorem ([Grb12], stated above as Theorem 2.1.6) there is an
exact sequence

0 → LG2(A)
Pα(A)(πF , 1/10) → AEλ0 ,[Pα],φF

(G2)

→ Ind
G2(A)
Pα(A)(πF ⊗ Sym(a∨Pα,0)(6/5)ρPα ) → 0.

The (g2,K∞)-cohomology of the first term tensored with Eλ0 is just isomor-

phic to ΠF,f in degrees 3 and 5; that of the last term is ι
G2(Af )
Pα(Af )

(πF,f , 1/10)

by Proposition 2.3.6. Thus the long exact sequence in (g2,K∞)-cohomology
obtained from this short exact sequence after tensoring it with Eλ0 shows
that

H3(g2,K∞;AEλ0 ,[Pα],φF
(G2)⊗ Eλ0)

∼= ΠF,f ,

and that, moreover, there is a boundary map from degrees 4 to 5. This
boundary map is a map

ι
G2(Af )
Pα(Af )

(πF,f , 1/10) → ΠF,f .

It would be very interesting to know whether this map is nontrivial, and
hence a cohomological realization of the intertwining operators at finite
places. If this is the case, then we would have

H5(g2,K∞;AEλ0 ,[Pα],φF
(G2)⊗ Eλ0) = 0,

and that in middle degree 4 the cohomology would be given by the kernel
of the intertwining operator.
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[BC09] Joël Belläıche and Gaëtan Chenevier. “Families of Galois repre-
sentations and Selmer groups”. In:Astérisque 324 (2009), pp. xii+314.
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Études Sci. Publ. Math. 43 (1974), pp. 273–307.
[Fra98] Jens Franke. “Harmonic analysis in weighted L2-spaces”. In:
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