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Introduction

Some references for the course:

• Commutative Algebra:

– Attiyah and McDonlad,Introduction to Commutative Algebra

– Matsumura, Commutative Rings

• Algebraic Number Theory:

– Cohen, Advanced Number Theory

– Cassels and Frohlich,Algebraic Number Theory

– Marcus, Number Fields

• Algebraic Geometry:

– Shafarevich, Basic Algebraic Geometry

– Hartshorne,Algebraic Geometry

Note that Szpiro has a course at CUNY that is similar to ours but more specialized in
Dedekind Domains.

Explain the title of the course

Arithmetic: This is the study of constants in which the size of the constants is of importance.
Primarily we want to study:

• N: the natural numbers which are closed under addition and multiplication.

• Z: the integers which are closed under addition, subtraction, and multiplication.

• Q: the rational numbers which are closed under addition, subtraction, multiplication
and division.
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Algebra: Here we study polynomials in Q[T] with variable T. We also want to study these
polynomials as a function of T which produce constants.

Geometry: The study of shapes

Algebraic Geometry: This is the study of solution sets defined by polynomials.

Let f(x) =
∑n

i=1 aix
i. The solution set is

{x ∈ C | f(x) = 0 } = { p1, p2, ..., pr }

with multiplicities. By the fundamental theorem of algebra,

n∑
i=1

(multiplicities of pi) = n.

Consider a polynomial function of two variables:

f(x, y) =
n∑
i=1

m∑
j=1

aijx
iyj.

We want to study all solutions of f(x,y) = 0. That is we want to study the set

{ (x, y) ∈ C2 | f(x,y) = 0 }.

This set is generally an infinite set with some sort of shape. Topologically it is a surface
which may have some points missing.
Arithmetic Algebraic Geometry: We want to study the properties of the solutions to the
polynomial equation f = 0 where f is some polynomial defined over Z or Q.

We have a hierarchy: Arithmetic Algebraic Geometry is built up through a combination
of Algebraic Geometry and Arithmetic. These two areas have commutative algebra, which
is the study of commutative rings, as their foundation.
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Chapter 1

Rings

1.1 Rings and homomorphisms

Let R be a ring. We have an object (R,+,-,·). This object contains a set with 3 operations.
The operations are maps from RxR → R. The subset (R,+) is a commutative group, and
the subset (R,·) is a semi-group or monoid. In the ring there is an element 0 such that 0x
= x0 = 0 for all x in R. In the ring there is also an identity element 1, with the property
that 1x = x1 = x for all x in R. The ring R also satisfies a distribution law with respect to
the operations of addition and subtraction.

Examples of rings:

1. Z, Q, R, C (note Q, R, and C are fields);

2. Z[x], Q[x], R[x], C[x]

Definition 1.1.1. If R is a commutative ring, then R[x] is the ring of polynomials over R:

R[x] = {
n∑
i=1

aix
i | ai ∈ R, with operations +,−, and · }

Definition 1.1.2. Let R1, R2 be two rings. A homomorphism from R1 to R2 is a map

φ : R1 → R2

which preserves the operations:

φ(x+ y) = φ(x) + φ(y), φ(xy) = φ(x)φ(y)

Definition 1.1.3. The kernel of a homomorphism φ : R1 → R2 is defined to be the preimage
of 0 and its denoted by Ker(φ).

Ker(φ) = φ−1(0) = {x ∈ R | φ(x) = 0 }
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Note that Ker(φ) measures the injectivity of φ.

Lemma 1.1.4. The homomorphism φ is injective if and only if kerφ = 0.

Proof. The only if part is obvious. If φ(x1) = φ(x2) then φ(x1− x2) = 0 so x1− x2 = 0.

The homomorphism φ can be factorized as a compoisition of surjective map and an
injective map

R1
φ−−→

onto
φ(R1) ↪→ R2

The image φ(R1) is a subring of R2, while it is a quotient ring of R1.

Some notations

• Surjective map: �

• injective map: ↪→ or �

1.2 Ideals and quotients

Now we want to study the structure of kerφ. Let kerφ = I.

Property 1 If x ∈ I and y ∈ I then x + y ∈ I. Thus I is an Abelian subgroup of R
under addition.

Property 2 If x ∈ R and y ∈ I then xy ∈ I. Indeed

φ(xy) = φ(x)φ(y) = 0.

Note that if 1 ∈ I, then φ(1) = 0 which implies

φ(x) = φ(x1) = 0

for all x ∈ R. Thus for the most part, we assume

Property 3 1 is not in I

Definition 1.2.1. Let I ↪→ R be a subset. We say I is an ideal if I satisfies two properties:

1. x ∈ I, y ∈ I implies x+ y ∈ I

2. x ∈ I, y ∈ R implies xy ∈ I

Theorem 1.2.2. A subset I of R is the kernel of a homomorphism φ :R → R′, if and only
if I is an ideal.
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Here is some machinery to start: Let R′ denote the quotient R/ ∼ of R modulo the
relation ∼: where

x1 ∼ x2 if and only if x1 − x2 ∈ I.

Step 1. Show this is an equivalence: indeed,

x1 − x2 ∈ I, x2 − x3 ∈ I, then x1 − x3 ∈ I.

Notation: let x ∈ R. The class of x in R′ is denoted by x+ I or x (mod I).
Step 2. Define addition and multiplication on R′:

(x1 (mod I)) + (x2 (mod I)) = (x1 + x2) (mod I)

(x1 (mod I))(x2 (mod I)) = x1x2 (mod I)

Step 3. Show R′ is a ring.
Step 4. Define a map

φ : R → R′, φ(x) = x (mod I).

Show φ is a homomorphism and kerφ = I.

1.3 Special ideals and rings

We want to introduce some special ideals and rings through study of examples: Z, Q, R, C,
Z[x], Q[x], R[x], C[x].

Fields

Let I ↪→ Q be an ideal. If I is non-zero, then there is some non-zero element a ∈ I. If a ∈ I,
then a−1 ∈ I, so aa−1 = 1 ∈ I. Thus the only ideal in Q not containing 1, is the zero ideal.
This leads us to the following definition:

Definition 1.3.1. A Field is a ring whose only ideal is the zero ideal.

Another definition could be:

Definition 1.3.2. A Field is a ring in which every non-zero element is invertible. That is
for all x ∈ R there exists y ∈ R such that xy = 1.

The equivalence of these two definitions is easy to see. If there were some non-zero ele-
ment x ∈ R that was not invertible, then (x) will be non-zero and (x) 6= R. If every non-zero
element of R is invertible then clearly the only ideal of R is the zero ideal.

It is clear that R and C are also fields.
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PID

In Z, every ideal is generated by one element N .

I = (N) = {Nx | x ∈ Z }.

This is easy to see by considering the smallest non-negative element and applying the Eu-
clidean algorithm. Note these ideals are generated by one element. Such ideals are called
principle. Similarly, using division algorithm one can show that every ideal is principle in
the following rings Q[x], R[x], C[x].

Definition 1.3.3. A principle ideal is an ideal generated by one element.

Definition 1.3.4. A principal ideal domain (PID) is a ring in which every ideal is a principal
ideal.

The ring Z[x] is not a PID. For example the idea (p, x) = pZ[x] + fZ[x] is not generated
by one element. In fact, it can be proved that every idea of Z[x] is generated by at most two
elements.

Integral domains

Let R be a ring.

Definition 1.3.5. A zero divisor x ∈ R is called a zero divisor if there exists a non-zero
y ∈ R such that xy = 0.

Example 1.3.6. Let R = Z/x2. Notice that x is non-zero in R but x · x = 0. Thus this ring
has non-zero zero divisors.

Definition 1.3.7. We say that R is an integral domain if R which does not contain any
non-zero zero divisors. That is xy = 0 impiles x = 0 or y = 0.

Definition 1.3.8. Let R be an integral domain. The field of fractions Frac(R) is the field
of fractions a

b
(a, b ∈ R, b 6= 0) with usual equivalence (a

b
= c

d
iff ad = bc) and operations

(a
b

+ c
d

= ad+bc
bd

, a
b
· c
d

= ac
bd

).

Prime ideals

Definition 1.3.9. An ideal ℘ of R is called a prime ideal if R/℘ is an integral domain.

Definition 1.3.10. If ℘ is a prime ideal, then the residue field k(℘) of ℘ is defined to be
the fraction field Frac(R/℘).

Note that the previous definition is equivalent to the condition that x, y /∈ ℘ then xy /∈ ℘.

Definition 1.3.11. An ideal of R is called a maximal ideal if R/m is a field.

10



Lemma 1.3.12. The definition of Maximal Ideal is equivalent to the following condition: If
m is not R and there is no ideal a such that m ( a.

Proof. If I is maximal then R/I is a field. If this statement were not true then R/I has
a non-zero ideal J . We have a map φ from R to R/I. Now φ−1(J) is an ideal of R, but
φ−1(J) ! I, a contradiction. To prove the other direction, use the same idea as above.

Example 1.3.13. In the following we want to list all prime ideals of Z, C[x], R[x], and Q[x].
All these rings are PID. Thus every ideal has the form (f). This ideal is prime if and only
if f = 0 or f is irreducible.

1. Z: The only prime ideals are (0) and (p) where p is a prime. The quotient ring Z/pZ
is a fintie field. denoted Fp.

2. C[x]: The only prime ideals are (0), and ℘ = (f) where (x− a) ∈ C[x] for some a ∈ C.
The quotient ring C[x]/(x− a) is isomorphic to C via the map x → a.

3. R[x]: The prime ideals are: (0), (x− a) for some a ∈ R with quotient ring isomorphic
to R via the map x→ a, and (x2 +ax+ b) for some a, b ∈ R with a2− 4b < 0, with the
quotient ring isomorphic to C via via the map x → to one of the roots of x2 + ax+ b.
Their quotient rings have the following

4. Q[x]: The prime ideals are (0) and (f) where f is irreducible over Q with quotient ring
a subring embedded into C via x 7→ a root of f(x) = 0. The image of the map Q[a] a
number field.

Theorem 1.3.14. If k is a field and f(x) is irreducible in k[x] then the ideal (f(x)) is
maximal and k[x]/f(x) is a field

Exercise 1.3.15. Prove this Theorem.

Remark 1.3.16. Let k[x]/f(x) be denoted as K. Then K contains k and has dimension
n = degf(x) as a k-vector space. In the case k = Fp, K is the finite field of with q := pn-
elements. The structure of K is determined completely by the cardinality q.

Lets look at prime ideals of Z[x]. Recall that Z[x] is a unique factorization domain
(UFD). Thus 0 is a prime ideal, and so is principal ideal (f) with f irreducible. If f ∈ Z,
then f = p is a prime. We will prove later that all other prime ideals has the form ℘ = (p, f)
where p is a prime, and f is non-constant polynomial which is irreducible mod p.
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Chapter 2

Spectra

2.1 Spectra

We will introduce a topological realization of rings and ideals of a ring A:

Spec(A) =the spectrum of A

=some topological space in which A is

the ring of “continuous functions”.

Definition 2.1.1. Let A be a ring. The spectrum of Spec(A) is the set of all prime ideals
of A.

We also want to develop the notion of a valuation. Let f ∈ A and p ∈ Spec(A). The value
f(p) ∈ k(p) = Frac(A/p) is defined as the image of f in the composition A→ A/p→ k(p).

Exercise 2.1.2. Let X denote the interval (0, 1). Let C(X) be the space of real valued
continuous functions of X. Find all closed prime ideals of C(x). Show that

SpectopC(X) = X

where Spectop means take only the topologically closed prime ideals.

Exercise 2.1.3. Show that

SpecC[x] ∼= C ∪ (the zero prime ideal).

Here the isomorphism is viewed as an isomorphism of spaces, C corresponds to maximal
ideals, and (the zero prime ideal) corresponds to zero ideals.

2.2 The Zariski Topology

Now we want to develop the concept of topology for rings such that A becomes the space of
continuous functions. In particular, for an f ∈ A, the set Z(f) should be a closed subset.
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More generally for an ideal I, let Z(I) denote the zero subset of an ideal I in Spec(A),
then Z(I) should be a closed subset. This is because Z(I) is generated by Z(f) by taking
intersections:

Z(I) =
⋂
f∈I

Z(f).

Definition 2.2.1. The Zariski topology on SpecA is defined such that all closed subsets are
of form

Z(I) = {℘ | f(℘) = 0, ∀f ∈ I }
= {℘ | ℘ ⊃ I }

To show that the topology just defined makes sense we have to show the finite unions of
closet subsets are still subsets:

Lemma 2.2.2. Let I and J be two ideals in R, then

Z(I) ∪ Z(J) = Z(I · J).

Proof. As Z(I ·J) ⊃ Z(I) and Z(I ·J) ⊃ Z(J), so Z(I ·J) ⊃ Z(I)∪Z(J). Let ℘ ∈ Z(I ·J),
then ℘ ⊃ I · J . We want to show that either ℘ ⊃ I or ℘ ⊃ J . Suppose ℘ + I, then there
exists x ∈ I\℘, ℘ ⊃ x · J so ℘ ⊃ x · y for all y ∈ J . So y must be in ℘. Thus ℘ ⊃ J and we
are done.

We consider the closed subsets of our topology Z(I), where Z(I) is the zero set of an
ideal I ⊂ A. Note that if S is any subset of A, then Z(S) = Z(I) for some ideal I.

Questions

1. What functions are non-vanishing on all points in Spec(A)?

2. What functions are vanishing on every point in Spec(A)?

Proposition 2.2.3. Here are answers to these questions:

1. All the invertible elements in A denoted by A∗.

2. All the nilpotent elements in A denoted by

Nil(A) :=
√

0 = { f ∈ A | there exists n > 0 such that fn = 0 }.

Proof.
1: For f ∈ A, f is not invertible if and only if (f) 6= A. By Zorn’s lemma there exists m

such that (f) ⊂ m. Where m is a maximal ideal of A. m is prime because the quotient A/m
is field and a field is always an integral domain. If f ∈ m then f(m) = 0. Clearly if f ∈ any
ideal 6= A, then f is not invertible.
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2: Assume f is not nilpotent. The set

{ fn | n ∈ N } ∩ { 0 } = ∅

Let I be an ideal such that
{ fn | n ∈ N } ∩ I = ∅

and that I is maximal with respect to this property. Such as set exists because of Zorn’s
lemma. We need to show that I is a prime ideal. This will imply that f(I) 6= 0. This is
quite clear. Let x ∈ A\I, y ∈ A\I. We want to show xy /∈ I. I + (x) ) I, so there exists m
such that fm ∈ I + (x).

Likewise there exists n such that fn ∈ I + (y).
This implies fm+n ∈ I + (xy).
So I + (xy) ) I. Thus xy /∈ I, and we are done.

When does Z(I) = Z(J)?

Note that Z(0) = Spec(A), Z(f 2) = Z(f), and Z(nil(A)) = Spec(A). Thus we can’t conclude
that Z(I) = Z(J) implies I = J . Z(I) = Z(J) if and only if there exists f ∈ I, and n such
that fn ∈ J .

Definition 2.2.4. Let I be an ideal of A. We define the nilpotent root of I as

√
I = { f ∈ A | fn ∈ I for some n > 0 }.

Example 2.2.5. .

1.
√

0 = nil(A)

2.
√√

I =
√
I.

Proposition 2.2.6. Z(I) = Z(
√
I).

Now we are ready to answer the question previously asked: Z(I) = Z(J) when
√
I =
√
J .

Proof. One could use the method of proof of Proposition 2.2.3. An alternate method would
be to show that f ∈ A, f |Z(I) = 0 if and only if f ∈

√
I. Now examine the ring A/I and

finish the rest as an exercise.

2.3 Morphisms

Morphisms can be roughly described as special maps that preserve some structure under the
mapping. If A → B is a homomorphism, then there is a morphism Spec(B) → Spec(A).
Why is the arrow reversed? Recall that A and B are being viewed as spaces of functions on
their perspective spectra.
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Definition 2.3.1. For f : A→ B be a ring homomorphism, let f ∗ : Spec(B)→ Spec(A) be
a map so that f ∗(℘) = f−1(℘).

We need to show that f−1(℘) is prime otherwise the definition does not make sense. We
have the following diagram:

A → B
↓ ↓

A/f−1(℘) ↪→ B/℘

As B/℘ is integral, the subring A/f−1(℘) must be integral!

Lemma 2.3.2. f ∗ is continuous

Proof. We want to show that f ∗−1(Z(I)) is closed, that is it is Z(something) where we will
determine what that something is. In fact f ∗−1(Z(I)) = Z(f(I)).

℘ ∈ f ∗−1(Z(I))←→ f ∗(℘) ∈ Z(I)

←→ I ⊂ f ∗(℘) = f−1(℘)

←→ f(I) ⊂ ℘

←→ f(I) ·B ⊂ ℘

Here we use B to make the left hand side an ideal. Thus ℘ ∈ Z(f(I) ·B). So we have shown
that

f ∗−1(Z(I)) = Z(f(I) ·B) = Z(f(I)).

Questions:

We have a map A→ A/I, what can be said about the map Spec(A/I)→ Spec(A)?

Exercise 2.3.3. Show that the map is an injection and its image is Z(I).

Questions

If we have a map A ↪→ B what can be said about the map Spec(B)→ Spec(A)?

Here is an example:

R ↪→ C, and Spec(C) = Spec(R) = { point }.

Another example is to consider the map R[x] ↪→ C[x]. This induces

Spec(C[x])→ Spec(R[x]).
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Now

Spec(C[x]) = C ∪ { point }
= { (x− a) | a ∈ C } ∪ { 0 ideal }
= { (x− a) | a ∈ C } ∪ Spec(C(x)).

Now

Spec(R[x]) = {x− a, x2 + bx+ c } ∪ { 0 ideal }.

So

Spec(R[x]) = Spec(C[x])/conjugates.

Note that R[x] is the subring of C[x] of elements invariant under conjugation.

Definition 2.3.4. Suppose that we have a group G that acts on A (then G also acts on
SpecA). Then AG, called the G invariants in A, is the set of elements in A that are left
invariant by G. and SpecAG is called the categoric quotient of SpecA

2.4 Localization

Let S ↪→ Spec(A). What are the continuous functions on S? Let

T = { f ∈ A | f is non-vanishing everywhere on S }.

T is multiplicative (f, g ∈ T implies fg ∈ T ) and we should be able to invert {T }, f−1
should also be a function on S. This process of formally adding inverses to a set is called
localization.

Definition 2.4.1. The localization of A with respect to the multiplicative system T is a
homomorphism φ : A→ B satisfies the following two properties:

1. For t ∈ T , φ(t) is invertible in B.

2. For any map φ′ : A→ B′ which has property 1, then there is a unique map ψB → B′

such that

φ′ = ψ ◦ φ.

Exercise 2.4.2. Show the local lization of A with respect to T is unique up to isomorphism
if it does exist. This means that if φ1 : A→ B1 and φ2 : A :→ B2 both are localization of A
w.r.t. T , then there is a “unique” isomorphism α : B1 → B2 such that φ2 = α ◦ φ1.

Notation 2.4.3. We denote the localization of A w.r.t. by A[T−1], or T−1A.
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One construction

There are many ways to construct AT . Here is one way: Let C = A[xt : t ∈ T ] denote the
ring of polynomials of A with indetermines indexed by T . Let I = (xt · t− 1 : t ∈ T ) denote
the ideal of C generated by xt · t− 1. Then we define

A[T−1] = C/I.

Exercise 2.4.4. Show that the above construction really define a localization of A w.r.t. T
as in the above definition.

2.5 Neighborhoods

What are the local neighborhoods around ℘ ∈ Spec(A)? It is easy to see

Spec(A) \ Z(I) =
⋃
f∈I

Spec(A) \ Z(f).

Thus the basis for open sets on Spec(A) are given by

D(f) = Spec(A) \ Z(f).

= {℘ | f(℘) 6= 0 }

Notice that A[f−1] are functions on D(f).

Exercise 2.5.1. Show that D(f) is the image of the morphism

SpecA[f−1]→ SpecA

induced by the homomorphism A→ A[f−1].

Fix on ℘ ∈ Spec(A), ℘ has neighborhoods

{D(f) | f(℘) 6= 0 }

What are the functions locally defined at ℘? They are⋃
f∈D(f)(←→f /∈℘)

(functions of D(f)) = T−1A, T = A \ ℘.

Notation 2.5.2. Let ℘ be an ideal of A. Denote T−1A = A(℘). where T = A \ ℘.

Example 2.5.3. .

1. Let p ∈ Spec(Z). Functions defined out of p are

Z [1/n | n is invertible off p]

=Z [1/n | ` 6 |nfor all ` 6= p]

=Z
[
1/n | n = pk

]
=Z [1/p]
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2. What are functions defined locally at p? Answer: exactly the opposite. That is
Z(p) = { a

b
| p . b }.

3. Now look at⋃
f

functions on D(f) = functions defined on an open subset

=
⋃
n6=0

Z[1/n] = Q

We denote (o ideal) as η ∈ Spec(Z).

Exercise 2.5.4. Prove that

{ η } =
⋂

(all non-empty open sets),

and that the Zariski closure is the whole plane, and finally that

{ η } = image of Spec(Q) ∈ Spec(Z).

2.6 Reducibility

Recall also that
√

0 = nil(A) and Spec(A) = Spec(A/nil(A)). Look at the following example:
Z/pnZ has nontrivial nilpotent radical for all n fixed. However lim←−Z/pnZ = Zp which has
trivial nilpotent.

Definition 2.6.1. A ring A is called reduced if nil(A) = 0.

Questions:

1. When is Spec(A) = X connected? That is to say:

X 6= X1

∐
X2

where X1 and X2 are closed and non-empty

2. When is Spec(A) irreducible? That is to say:

X 6= X1 ∪X2

Example 2.6.2. X = SpecC[x] = C∪{ the 0 ideal }. Let η = { the 0 ideal }. Lets look at the
toplogy of toplogy of SpecC[x] The open subsets are

C− {X1, X2, ..., Xn } ∪ { η },

so this is irreducible.
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Replace A by A/nil(A) which does not change the space Spec(A) and its topology, we may
assume that A is reduced. Recall nil(A) =

⋂
P :primes P . Let Xi = Z(Ii) with Z(Ii) 6= SpecA.

Then above two conditions are equivalent to the following conditions for every prime P :

1. P ⊃ I1 or P ⊃ I2

2. But not both (P ) I1 + I2)

Condition 1 implies P ⊃ I1 · I2 for every P . Thus I1 · I2 ⊂ nil(A) = 0. Condition 2
implies P ) I1 + I2 for every P . Thus I1 + I2 = A. We have I1 · I2 = 0 and I1 + I2 = 0.

Exercise

1. Chinese Remainder Theorem: let A, I1, and I2 be as above, then the canonical projec-
tion gives an isomorphism

A ∼= A/I1 ⊕ A/I2

2. If A = A1 ⊕ A2, then

Spec(A) = Spec(A1)
∐

Spec(A2).

3. A has no two nonzero ideals I1 and I2 such that I1 ·I2 = 0 if and only if A is an integral.

Thus we have the following:

Proposition 2.6.3. Spec(A) is connected if and only if A is indecomposible. Spec(A) is
irreducible if and only if A is integral.
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Chapter 3

Affine Varieties

3.1 Affine varieties

Let k be a field. Then k is algebraicly closed if and only if Speck[x] ∼= k∪η where each a ∈ k
corresponds to the maximal ideal (x− a) and where η corresponding to the 0 ideal. We call
η a generic point.

Now we assume that k an algebraicly closed field, for example k = C. Consider the
n-dimensional affine space kn = An(k) which has coordinate ring A = k[x1, · · · , xn]. In an
affine space we can define the Zariski topology such that closed subsets are of form

V (I) = { (a1, a2, ..., an) ∈ kn | f(a1, a2, ..., an) = 0 for all f ∈ I }.

where I is an ideal of k[x1, x2, ..., xn].
We can talk about irreducibilty and connectivity for closed subsets. If k = C, the Zariski

topology is different than the usual archimedean topology.

Definition 3.1.1. Let V ⊂ kn be an algebraic set. We say V is a closed subvariety if V is
irreducible.

We can define a map An(k) ↪→ Spec(k[x1, x2, ..., xn]) via x ∈ (a1, a2, ..., an)→ a maximal
ideal, xx = (x1 − a1, x2 − a2, ..., xn − an). This map is a topological embedding.

Theorem 3.1.2 (Hilbert Nullstellensatz). The images of the previously defined map are the
set of maximal ideals.

More generally, let I be an ideal of k[1, · · · , xn] which defines an algebraic set X = V (I)
of zeros of all polynomials in I. Then have a map: i : X → Spec(A/I) by

(x1, x2, ..., xn)→ (x1 − a1, x2 − a2, ..., xn − an).

This leads us to two questions:

1) How does X determine I?
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Answer: There is a 1 to 1 correspondence between the algebraic sets X and set of the
radical ideals

√
I = I.

2) What is the image of i(X)?

Answer: i(X) is the set of the maximal ideals of Spec(A/I). The key fact for these
answers is that A is a finitely generated algebra over k. This would not be true if A were
not finitely generated over k.

We will prove these answers in next few classes.

3.2 Modules

Let M be an abelian group. Let End(M) denote the set of homomorphisms of M . Then
End(M) is a ring with operations

(φ1 + φ2)(x) = φ1(x) + φ2(x)

(φ1 · φ2)(x) = φ1(φ2(x)).

The ring End(M) is in general noncommutative.

Definition 3.2.1. Let R be a ring. By a R-module M we mean an abelian group M with
a homomorphism from R→ END(M). Equivalently there is a map

R×M →M via (a, x) 7→ a · x

that satisfies:

1. 1 · x = x

2. a(x+ y) = ax+ ay

3. (ab)x = a(bx)

Example 3.2.2. .

1. If R is a field then an R-module is a vector space over R.

2. Let I be an ideal. If I ↪→ R then I is an R-module. In particular R is an R-module.
The ideals are the R-submodules of R.

Definition 3.2.3. Let M be an R-module, N ⊂ M a subgroup. N is a R-submodule if
R ·N ⊆ N .

Example 3.2.4. If R→ R
′

is a homomorphism, then R
′

is a R-module.

Definition 3.2.5. Let R be a ring. By an algebra A over R we mean a ring homomorphism
from R to A.
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Definition 3.2.6. Let R be a ring. Then R[x1, x2, ..., xn] is called the polynomial algebra
of n-variables over R.

Example 3.2.7. Every ring R is an algebra over Z via natural morphism n 7→ n1R, e.g.,
Z→ Z[

√
−1] or Z→ Z/pZ.

Exercise 3.2.8. Construct a counter example to the Nullstallensatz when n = ∞. Let R =
C[xt | t ∈ C(y)]. Define a map φ : R� C(y) via xt → t. Show that Kerφ is a maximal ideal
not given by (..., xt − at, ...) for at ∈ C. Explain why this is a counter example.

Finitely generated Modules

Definition 3.2.9. Let S ⊂M be a subset of M . A submodule N generated by S is the set
of all elements of the type N = {

∑n
i=1 aixi | xi ∈ S }

Definition 3.2.10. We say M is finitely generated over R if there exists x1, x2, ..., xn ∈ M
such that M is generated by x1, x2, ..., xn. Equivalently M is a quotient of Rn.

Exercise 3.2.11. A module M is finitely generated if and only if there is a surjective homo-
morphism from a free module Rn of finite rank onto M .

3.3 Noetherian rings

Definition 3.3.1. Let R be a ring. We say R is Noetherian if the following is satisfied: Let
M be a R-module and N be a R-module of M with N ↪→M , then if M is finitely generated
then N is finitely generated.

Example 3.3.2. .

1. If R a field then R is Noetherian, this is obvious as finitely generated modules are finite
dimensional vector spaces.

2. If R = Z then R is Northerian, this is less obvious but follows easily from the next
lemma.

Theorem 3.3.3. R is Noetherian if and only if every ideal is finitely generated.

Proof. If R is Noetherian, R as an R-module is finitely generated. Every ideal of R is an
R-submodule so clearly the ideals are finitely generated. Now assume every ideal of R is
finitely generated. We want to show that every sub-module N of every finitely generated
module M is finitely generated.

Step 1: Reduce M to a free module Rn of finite rank.

Indeed, as M is finitely generated, there is a surjective homomorphism φ : Rn → M . Let
N ′ = φ−1(N). Then the restriction of φ on N ′ is surjective onto N . Thus if N ′ is finitely
generated then N is finitely generated. So we reduce to the case where M = Rn and N is a
submodule.
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Step 2: Induction on n

It is trivial if n = 1 as then N is an ideal of R. Now assume that n > 1 and that every
submodule of Rn−1 is finitely generated. Let φ : Rn → R be the projection onto the last
factor. Then we have the following

• ker(φ) = Rn−1, the first n− 1 factors.

• Let N ′ = N ∩Rn−1 then N ′ is the kernel of the homomorphism N → φ(N). As N ′ is a
submodule of Rn−1, by induction assumption, N ′ is finitely generated. Let x1, · · · , xm
be generaters of N ′.

• φ(N) is finitely generated, as φ(N) is an ideal of R. Let y1, · · · , yn be generators of
φ(N).

Lift y1, y2, ..., yn to y
′
1, y

′
2, ..., y

′
n ∈ N . Claim: x1, x2, ..., xm, y

′
1, y

′
2, ..., y

′
n generate N . Proof

of Claim: Let x ∈ N . Then φ(x) is a linear combination of yj’s: φ(x) =
∑
ajyj. This implies

φ(x−
∑
ajy

′
j) = 0. So the element x−

∑
aiy

′
i is in N ′ and therefore is a linear combination

of xi’s: x−
∑
ajy

′
j =

∑
bixi. Thus x is a linear combination of x′is and yj’s. So N is finitely

generated.

3.4 Hilbert Basis Theorem

Theorem 3.4.1. If R is Noetherian then R[x] is Noetherian.

Proof. Let I be an ideal of R[x]. We want to prove that I is finitely generated. Let J ↪→ R
be an ideal of leading coefficients of polynomials in I. Since R is Noetherian, J is finitely
generated. Let f1, f2, ..., fn ∈ I be elements whose leading coefficients generate J . We write
fi = cix

ni + ... with ni the degree of fi and ai the leading coefficient of fi.
Let f ∈ I. We can write f = anx

n + ... + a0 with an non-zero. As an ∈ J , we can
write an =

∑
bi · ci. If n = ni for every i we can write g = f −

∑
bifix

n−ni where the n-th
coefficient of g is zero. By induction on n, we have proved that every polynomial f ∈ I can
be written as f =

∑n
i=1 gifi + f

′
where deg(f

′
) 5 max(ni).

Let m = max(ni) and

I
′
= { f ∈ I where deg(f) 5 m }.

Then I
′

is not an R[x] but it is a R-submodule of
∑n

i=1Rix
i ∼= Rm. Since R is Noetherian,

I
′

is finitely generated. There are elements f
′
1, f

′
2, ..., f

′

` in I
′

generating I
′

as an R-module.
Thus f1, f2, ..., fl, f

′
1, f

′
2, ..., f

′

` generating I.

Exercise 3.4.2. An equivalent statement of the theorem is: If R is Noetherian then every
finitely generated R-algebra is Noetherian.

Exercise 3.4.3. Let T be a multiplicative system of R. Prove R[ 1
T

] is Noetherian if R is
Noetherian.
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3.5 Hillbert Nullstellensatz

Let k = k be algebraicly closed. Let An
k = kn be the affine space. We have a map An

k →
Speck[x1, . . . , xn] via

(a1, . . . , an) 7−→ mx = (x1 − a1, x2 − a2, . . . , xn − an)

a maximal ideal.

Theorem 3.5.1. The image of this map is the set of maximal ideals.

Equivalently:

Theorem 3.5.2. Let K be a field containing k such that K is finitely generated as a k-
algebra. Then k = K.

Proof of the equivalence. Theorem 3.5.1 implies Theorem 3.5.2: K = k[t1, . . . , tn] where
ti ∈ K. We have a map Q : k[x1, . . . , xn] � K via xi 7→ ti. Clearly, Q is a homomorphism
and kerQ is a maximal ideal of k[x1, . . . , xn]. By Theorem 3.5.1, kerQ is generated by x−ai,
ai ∈ k. Thus

K ∼=
k[x1, . . . , xn]

(x1 − a1, . . . , xn − an)
= k.

Theorem 3.5.2 implies Theorem 3.5.1: If m is a maximal ideal of k[x1, . . . , xn] then
K[x1, . . . , xn]/m is a field and it is finitel generated over k. Therefore, K = k by Theorem
3.5.2. We obtain k = k[x1, . . . , xn]/m, which implies xi ≡ ai (mod m), so xi− ai ∈ m. Thus
(x1 − a1, . . . , xn − an) ⊂ m. So since m is maximal, (x1 − a1, . . . , xn − an) = m.

Example 3.5.3. Let K = k(x) be the field of fractions in K[x]. Then K is not finitely
generated as a k-algebra.

Proof. Assume that K is finitely generated over k: K = k

[
f1
g1
, . . . ,

fn
gn

]
. This implies that

every fraction in K has a denominator of the form gt11 . . . g
tn
n . Thus there are only finitely

many irreducible polynomials, say, P1, . . . , Pr. Then (1 + P1 · . . . · Pn) will have a prime
factor Pi. But it is prime to P1, . . . , Pr so we have a contradiction.

Exercise 3.5.4. Q is not finitely generated over Z as an algebra.

Proof of Theorem 3.5.2. Suppose Theorem 2 is false. Suppose K = k[t1, . . . , tn] and there is
a ti /∈ k, so ti must be transcendental over k.

Definition 3.5.5. Let K1 ↪→ K2 be an extension of fields. Let x ∈ K2. We say x is algebraic
in K1 if x satisfies an equation anx

n + . . . + a0 = 0 with an 6= 0, a0, . . . , an ∈ K1, otherwise
we say x is transcendental over K1.

Back to the proof of Theorem 3.5.2. After rearranging the order of t1, . . . , tn we may
assume that
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• ti is transcendental over k[t1, . . . , ti−1] for 1 ≤ i ≤ r but

• ti is algebraic over k[t1, . . . , tr] if i > r.

We have
k ↪→ k(t1, . . . , tr) ↪→ k[t1, . . . , tn]

‖ ‖
L k(t1, . . . , tn) = K

1. L/k is not finitely generated as an algebra by Example 3.5.3.

2. K/k is finitely generated as an algebra.

3. K is a L-vector space of finite dimension by the following lemma.

Lemma 3.5.6. Let K1 ↪→ K2 be a field extension. Let x ∈ K2, then x is algebraic over K1

if and only if K1(x) is a K1 vector space of finite dimension.

Proof. The “⇐= ” part is obvious. To prove the “ =⇒ ” part note that K1[x] =
∞∑
n=0

K1x
n.

Since anx
n + . . .+ a0 = 0 and an 6= 0 it follows that K1[x] is finite dimensional.

So we have reduced the proof of Theorem 3.5.2 to the following lemma:

Lemma 3.5.7. Let A ⊂ B ⊂ C be extensions of rings with A noetherian such that

1) C is a finitely generated A algebra;

2) C is finitely generated as a B-module.

Then B is finitely generated as an A-algebra.

Proof. Strategy: let us construct B′ ⊂ B such that

1) B′ is finitely generated as an A-algebra.

2) C is finitely generated as a B′-module.

This will imply

3) B′ is Noetherian.

4) B is finitely generated as a B′-module (consider B as a B′ submodule of C).
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Then 1) and 4) imply B is finitely generated as an A-algebra.

Write C = A[x1, . . . , xn], C =
m∑
j=1

Byi with xi, yj in C. Let bijk’s be elements of B such

that

xiyj =
m∑
k=0

bijkyk.

where y0 = 1.
Claim: Let B′ = A[bijk]. Then B′ satisfies 1) and 2).
Obviously, B′ satisfies 1). For 2) we need only show that C is generated by yj’s as a

B′-module. Let C ′ denote this B′-module: C ′ =
∑m

k=0B
′yk. Then

xiC
′ =

m∑
k=0

B′xiyk ⊂ C ′.

In other words, C ′ is closed under multiplication by xi’s. As C is generated by xi’s, C
′ is

closed under multiplication by C. Since C contains y0 = 1, it follows that C ⊂ C ′. This
concludes the proof of Lemma 3.5.7.

Theorem 3.5.2 is proved.

What happens if k 6= k? For example, let A = k[x], and m a maximal ideal in A. Then

m = (f(x)) with f(x) irreducible and A/m = k[x]
/

(f(x)) may not be equal to k but is

algebraic over k. The above proof will give the following:

Theorem 3.5.8 (Hilbert Nullstellensatz). Let k be a field (not necessarily equal to k). Let
A/k be an algebra of finite type. Let m ⊂ A be a maximal ideal, then K ⊆ A/m is algebraic
over k.

Assume again that k = k̄. Let X ↪→ An
k be an algebraic closed set defined by an ideal a

of k[x1, . . . , xn]. Let I(x) = {functions that vanish on x}.

Theorem 3.5.9. I(x) =
√
a

Let A = k[x1, . . . , xn]/a. This is equivalent to

Theorem 3.5.10. Let f ∈ A be an element that vanishes at every closed point in SpecA,
then f ∈ Nil(A).

Proof of Theorem 2. We know Nil(A) =
⋂

p prime

p. We want Nil(A) =
⋂

m maximal

m. It is clear

that “⊂” holds. Let f ∈ A, and f /∈ Nil(A). Then there exists p prime such that f /∈ p. We
have the maps:

A −→ A/p = B −→ B

[
1

f

]
= C,
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where A 3 f 7−→ f ∈ B, f 6= 0. Let m be a maximal ideal of C, then C/m = k by Hilbert’s
Nullstellensatz. Let φ : C → k be the composition:

φ : A −→ C −→ C/m = k

Then φ : A→ k is surjective, φ(f) 6= 0, f /∈ kerφ but kerφ is maximal and we are done.

Example 3.5.11. Note the above theorem is only true when A is a k-algebra of finite type.
Consider the following:

Z(p) =
{m
n

∣∣∣ p - n} .
Then Z(p) has a single non-zero ideal p · Z(p), Z(p)/p · Z(p) = Fp and Nil(A) is not equal to
the intersection of maximal ideals m.

Exercise 3.5.12. Let f1, . . . , fm be polynomials in k[x1, . . . , xn]. Assume that the equations
f1 = 0, . . . , fm = 0 have no common solutions, then f1, . . . , fm generate k[x1, . . . , xn].

3.6 Dimension

We have our usual notion of dimension:

• a line is 1-dimensional

• a plane is 2-dimensional

• a space is 3-dimensional.

• dimAn
k = n.

The dimension measures how much freedom do you have, or equivalntly, how many constrains
you may have. If a space X has dimension n, then for generic n+1 functions f1, . . . , fn+1 the
system f1 = f2 = . . . = 0 should not have solutions, but any n of them will have solutions.
If an irreducible space X has dimension n then consider the chain of subvarieties

Y1 ) Y2 ) . . . ) Ym,

where Yi are integral (irreducible), Yi 6= X, the maximal length of chains is n.

Definition 3.6.1. Let X be a topological space. We say X is Noetherian if any descending
chain of closed subsets of X is finite. Equivalently for any chain

Y1 ⊇ Y2 ⊇ . . . ⊇ Yn ⊇ . . . ,

there is a N such that Ym = YN for m ≥ N .
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Exercise 3.6.2. SpecA is Noetherian if A is Noetherian.
Hint: Since Yi = Z(Ii) and Ii =

√
Ii, then Y1 ⊃ Y2 ⊃ . . . if and only if I1 ( I2 ( I3 . . .. But

one can find n <∞ such that
∞⋃
i=1

Ii =
n⋃
i=1

Ii.

Proposition 3.6.3. Let X be a Noetherian space. Let Y ⊂ X be a closed subset, then Y
is a finite union of irreducible closed subsets Yi, i = 1, . . . ,m. This union is unique if we
require Yi ( Yj for i 6= j.

Proof. Let S be the set of closed subsets of X which cannot be written as a finite union
of irreducible closed proper subsets. We want to show S = ∅. Assume S 6= ∅, then since
X is Noetherian, S will have a minimal element Y . If Y is irreducible we are done. If not
Y = Y1 ∪ Y2 where Y1 ( Y ) Y2, so either Y1 or Y2 must be in S, so either Y1 or Y2 gives an
element in S which is smaller than Y . This contradiction concludes the proof.

Definition 3.6.4. Let X be a space which is finite union of irreducible subspaces Xi (i =
1, ·, n) such that Xi ( Xj if i 6= j. Then we call Xi the irreducible components of X.

Definition 3.6.5. Let X be a Noetherian space. The dimension dimX of X is the maximal
length of chains of irreducible closed subsets which are not irreducible components of X.

Proposition 3.6.6. Let X = SpecA where A is Noetherian. Then dimX is equal to the
maximal length of chains p1 ⊇ p2 ⊇ . . . ⊇ pm, where pi is a non-maximal prime ideal of A.

Proof. The proof is left to the reader as an exercise.

Example 3.6.7. We have dim SpecZ = 1. If k is a field, we obtain dim Spec k = 0,
dim Spec k[x] = 1, dim Spec k[x1, . . . , xn] = n, and dim SpecZ[x1, . . . , xn−1] = n. The case
where n ≥ 2 is tricky and we will examine this in the next lecture.

Now let k be an algebraically closed field and let A be an integral domain of finite type
over k. Let

K = the fractions of A = k

[
1

A− {0}

]
,

then K/k is a field extension of finite type.

Definition 3.6.8. The transcendental dimension of X = Spec(A) relative to k is the tran-
scendental degree trA of (K/k) which is the cardinality r of any subset {x1, · · · , xr} of K
with the following properties:

1. x1, . . . , xr are algebraically independent.

2. every element x ∈ K is algebraic over k(x1, · · · , xr).

This definition makes sense because r does not depend on the choice of x1, . . . , xr.
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Theorem 3.6.9. dimX = trK dimX.

Proof. Step 0: If one side equals 0 then the other side also equals 0.

a) If dimX = 0, 0 is the only ideal of A, so A is a field. Thus from the Hilbert Nullstel-
lensatz A is an algebraic extension of k, so A = k. Therefore trk degK = trk deg k = 0.

b) If trk dimX = 0 (K/k is algebraic) then K = k, k ⊂ A ⊂ k = k, so A = k.

Step 1: dimX ≤ tr dimX

X = SpecA, 0 ⊆ p0 ( p1 ( p2 ( . . . ( pn

. We have A � A/p0 � A/p1 � . . .. Thus tr degAi ≥ tr degAi+1, where Ai = A/pi. We
need only to show that tr degAi 6= tr degAi+1. So the first step is reduced to the following

Lemma 3.6.10. Let A be an integral k-algebra of finite type. Let p ⊆ A be a non-zero prime
ideal. Then tr degA 6= tr degA/p.

Proof. Assume tr degA = tr degA/p = r. Write A = k[x1, . . . , xn] with x1, . . . , xr alge-
braically independent over k. Let S = k[x1, . . . , xr]− (0). The assumption implies S∩p = ∅.
Therefore

S−1A
6=
� S−1

(
A/p

)
, S−1A = k(x1, . . . , xr)[xr+1, . . . , xn].

Claim: S−1A is a field.

Lemma 3.6.11. Let L be a field with A/L an integral algebra which is finite dimensional
as an L-vector space. Then A is a field

Proof. Let X ∈ A − {0}. The set {1, x, x2, . . . , xn, . . .} must be linearly dependent so
m∑
n=0

anx
n = 0 for some m > 0 and an ∈ L which are not all 0. By eliminating x’s we

may assume a0 6= 0. We have

a0 + x(a1 + a2x+ . . .) = 0 or
x(a1 + a2x+ . . .)

−a0
= 1.

Therefore x is invertible so A is a field. Now since S−1A is a field, the homomorphism to
S−1(A/p) must be injective as it is nonzero, so must be bijective as it is already surjective.
This is a contradiction!

Exercise 3.6.12. Let S be a multiplicative system of R. Let p be a prime ideal of R such
that S ∩ p = 0. Prove that

1) S−1p is a prime in S−1A;

2) S−1(A/p) = S−1A/S−1p;
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3) S−1p ∩ A = p.

Step 2: dimX ≥ tr dimX. We will do this by induction on tr dimX. If dimX = 0
then we are done from Step 0. Assume tr dimX = n > 0 and tr dimX ≤ dimX is true for
varieties with dimension less than n. A = k[x1, . . . , xm]. Assume x1 is transcendental over
k. S = k[x1]− (0). Let k′ = k(x1), let

B = S−1A = k′[x2, . . . , xm],

then
trk′ dimB = trk′ dimB − 1 = n− 1.

By the induction hypothesis there is a chain of primes in B of length n− 1

0 ( Q1 ( Q2 ( . . . ( Qn−1

Intersect this chain with A:

0 ( P1 ( P2 ( . . . ( Pn−1, Pi = Qi ∩ A.

Exercise 3.6.13. Show that Pi 6= Pi+1, S
−1Pi = Qi, Pi ∩ S = ∅.

Claim: Pn−1 is not maximal (This will imply dimX ≥ n). Otherwise, A/Pn−1 is a field
then by the Hilbert Nullstellensatz A/Pn−1 = k. By the above exercise, Pn−1 ∩ S = ∅, thus
the composition map

k[x1] −→ A −→ A/p = k

is injective. This is impossible as x1 is transendental over k. The second step is proved.

The Theorem is proved.

Exercise 3.6.14. dimAn
k = n. Moreover any maximal chain of non-zero ideals in A will have

length n. Proved this fact as an exercise. (Hint : Look the proof of Theorem 3.6.9)

Example 3.6.15. Non-zero prime ideals in k[x1, x2] are of two types:

1. (f(x1, x2)), where f(x1, x2) 6= 0 ireeducible;

2. (x1 − a1, x2 − a2).

Remark 3.6.16. If k 6= k Theorem 1 is still true by the same proof.

Remark 3.6.17. Let A be an integral algebra over Z of finite type

Z i−→ A, where i(Z) =

{
Z, case 1

Z/pZ = Fp case 2

If k is the fractions of A then either Q ⊆ k or Fp ⊆ k.
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Exercise 3.6.18. If i(Z) = Z then dimX = 1 + trQ dim k. (Hint: First try to prove the
identity when one side equals 1. You will need the following exercise)

Exercise 3.6.19. Let B be Noetherian and integral domain. Let A be an integral algebra
over B which is of finite type as an A-module. Then B is a field if and only if A is a field.

Exercise 3.6.20. Let A be an integral algebra of finite type over a field or over Z. Let f ∈ A
an non invertible element. Then

dimA/fA = dimA− 1.
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Chapter 4

Projective Varieties

4.1 Projective spaces

1. We know that C is not compact and it can be compactified by adding a point ∞ to the
plane C to obtain the Riemann sphere Ĉ. One good thing about Riemann sphere is the

“summation formula” and “degree formula”: if ψ(z) =
f(z)

g(z)
then

∑
P

ordPψ = 0, degψ = −ord∞ψ.

Riemann sphere is the projective line over complex numbers. It is can be considered as the
set of lines in C2 passing through the origin. Let x0, x1 be the coordinates of C2 then a point
z ∈ C corresponds to the line zx0− x1 = 0 while ∞ corresponds to the line x0 = 0. We may
replace C by any algebraically closed field k to define projective line P1

k over k.
2. Let k be an algebraically closed field k. The projective plane P2

k is a sort of compact-
ification of affine plane (there are more than one way to compactify affine plane, unlike the
case of affine line):

A2
k ↪→ P2

k, P2
k = A2

k ∪ P1
k = A2

k ∪ A1
k ∪ A0

k.

More precisely, the projective plane P2
k is defined to be the set of lines in A3

k passing
through the origin. Let P = (x0, x1, x2) be a nonzero point in A3

k then it defines a line [P ] in
P2
k passing through both P and origin. We call (x0, x1, x2) the homogenuous coordinate of

[P ]. Of course the homogenuous coordinates for a point in projective line is not unique but
they are propotional by elements by nonzero elements in k. In the above decomposition,

• A2
k corresponds to x0 6= 0,

• A1
k coresponds to x0 = 0 but x1 6= 0,

• A0
k corresponds to x0 = x1 = 0 but x3 6= 0,

• P1
k corresponds to x0 = 0.
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One advantage for projective plane than affine plane is to solve system of equations. Let
f(x, y) and g(x, y) are two polynomials over a field k. Then the system of equations{

f(x, y) = 0,

g(x, y) = 0

has the number of common solutions ≤ deg f · deg g in affine plane A2
k.

If you introduce homogeneous coordinates x = x1/x0, y = x2/x0. We have homohenuous
polynomials

F (x0, x1, x2) = f

(
x1
x0
,
x2
x0

)
· xdeg f0 , G(x0, x1, x2) = g

(
x1
x0
,
x2
x0

)
· xdeg g0 .

and new system of equations

F (x0, x1, x2) = 0 and G(x0, x1, x2) = 0.

This system has same set of solutions on A2
k as that of f = g = 0 but this new set of solutions

has cardinality exactly equal to deg f · deg g.

Definition 4.1.1. Let n be a nonnegative integer and let k be an algebraically closed field.
The n-dimensional projective space Pnk is defined to be the set of lines in An+1

k passing
through the orign.

The only good functions on P2
k are constants, but P2

k has a lot of homogeneous “func-
tions” F (x, y, z) which are polynomials whose nonzero monomilas have same degree. The
polynomial F (x, y, z) is not really a function unless is a constant, but F (x, y, z)/G(x, y, z) is
a meromorphic function if degF = degG. All homogeneous functions form a graded algebra

A = k[x, y, z] = k ⊕ (kx⊕ ky ⊕ kz)⊕ A2 ⊕ A3 ⊕ . . . ,

where An = homogeneous polynomials of degree n. There is a map P2
k −→ “ideals of A”,

[a0 : a1 : a2] −→ (a1x0 − a0x1, a2x0 − a0x2, a2x1 − a1x2).

4.2 Projective Spectra

Definition 4.2.1. By a graded algebra over R we mean an R-algebra with a decomposition

A =
⊕
n≥0

An, such that R ⊂ A0 = R and that Ai · Aj ↪→ Ai+j. We write A+ =
⊕
n≥1

An which

is an ideal of A.

Definition 4.2.2. Let A be a graded algebra over R. By a homogeneous ideal of A we mean

an ideal p of A which can be decomposed as p =
⊕
n≥0

Pn and Pn ⊆ An. Or equivalent p is an

ideal with the following property:{
f =

∑
n fn ∈ p,

fn ∈ An
=⇒ fn ∈ p
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Definition 4.2.3. Let A be a graded ring over R. The projective spectrum of A is defined
to be the set of homogeneous prime ideals in A which do not contain A+, and is denoted by
ProjA.

Example 4.2.4. A = R⊕ 0 then ProjA = ∅.
Example 4.2.5. Projk[T ] = {0−ideal}.
Example 4.2.6.

ProjC[T0, T1] = {0− ideal} ∪
{

(aT0 + bT1) : a, b ∈ C2, a, b 6= 0
}

= A1 ∪ {∞}

Indeed, every prime ideal in C[T0, T1] has the one of following three forms:

1. (0),

2. (f), where f is nonzero and irreducible,

3. (T0 − a, T1 − b), where a, b ∈ k.

The first one is of course homogeneous. The second one is homogeneous only if f = aT0−bT1.
The third one is homogeneous only if a, b = 0. But then it contains A+ so its not acceptable.

Since ProjA ⊂ SpecA we can define the Zariski Topology : let I be homogeneous

Z(I) = {p ∈ ProjA : p ⊇ I}
Z(I) = {the zeroes of functions in I}

Exercise 4.2.7. Prove that the above defined map from P2
k to the set of ideals of A =

k[x0, x1, x2] actually defined a map to ProjA. Show that the image of this map is the set of
closed point in ProjA. (Recall that a point p in a topological space X is called closed if the
subset {p} is closed.)

Proposition 4.2.8. If A is Noetherian then ProjA is Noetherian.

The proof is left to the reader as an exercise.

Proposition 4.2.9. Let A be a graded algebra over R (A0 = R) then A is Noetherian if and
only if the following two conditions are verified:

1. R is Noetherian;

2. A is finitely generated over R.

Proof. The if part is clear by the Hilbertbasis theorem. Now assume A is Noetherian. A+

is an ideal in A and is finitely generated as an A-module, so A/A+
∼= R must be Noetherian,

A+ =
n∑
i=1

Axi, where xi are homogeneous, deg xi ≥ 1.
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Claim: A = R[x1, . . . , xn]. It is suffice to show Am ⊂ R[x1, . . . , xn] for every m. One
then proceed by induction on m. It is clear if m = 0. Now assume that m > 0 and that
A` ⊂ R[x1, · · · , xn] for ` < m. Since A+ =

∑∞
i=1Axi, then

Am =
n∑
i=1

Am−deg xi xi ⊂
m∑
i=1

R[x1, . . . , xn]xi ⊂ R[x1, . . . , xn]

where An = 0 if n < 0.

Exercise 4.2.10. Let A be a graded algebra and m is a homogenous ideal not including A+.
Then m is maximal if and only if A/m ∼= k[t] where k is a field and k ∼= A0/(A0 ∩m).

Assume A0 = k = k, then we have a map Pn(k)→ Projk[x0, . . . , xn] via

(a0, . . . , an) −→ (ajxi − aixj, i, j = 0, . . . , n).

Exercise 4.2.11. Show this map is continuous with image the set of closed points.

Affine decomposition of ProjA

For f ∈ A, f homogeneous, define

D(f) = {p ∈ ProjA : f(p) 6= 0 where f(p) = the image of f in A/p }.

Then we have ProjA =
⋃
D(f) where f ∈ A+, f homogeneous. Now A[1/f ] is a homoge-

neous ring. Let A(f) be the degree 0 part of A[1/f ],

A(f) =

{
g

fn
, deg g = n deg f

}
.

Exercise 4.2.12. D(f) ∼= SpecA(f) .

Example 4.2.13. Let S = k[x0, · · · , xn]. Then S+ is generated by x0, · · · , xn.

ProjS =
n⋃
i=0

D(xi), where D(xi) = Speck

[
xj
xi
, 0 ≤ j ≤ n

]
.

We may also have the similar decomposition for the projective space of dimension n:

Pn(k) =
(
kn+1 − {0}

)
/ ∼ =

n⋃
i=0

D(xi),

where

D(xi) = {(a0, . . . , an) : ai 6= 0}/ ∼ = {(a0, . . . , an) : ai = 1}/ ∼ ' An
k .
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4.3 Hilbet Polynomial

Assume that A =
⊕
n≥0

An is Noetherian and that A0 = k is a field. Then A is generated by

homogeneous elements and each An is finite dimensional vector space over k. Consider the
following formal series

Q(T ) =
∑
m≥0

dimk AmT
m.

Theorem 4.3.1. Assume x1, . . . , xn has degree d0, . . . , dn where di = deg xi, then we have
the following identity of the formal power series

Q(T ) =
R(T )∏n

i=1(1− T di)

where R(T ) is a polynomial.

Example 4.3.2.
1) In the case n = 0 we have dimAn = 1 if n = 0 and dimAn = 0 if n > 0. Thus

A = k ⊕ 0⊕ 0⊕ 0⊕ . . . , Q(T ) = 1.

2) In the case n = 1, A =
∑
m≥0

kxm, assume that xm 6= 0 for all m, then

Q(T ) =
∞∑
n=0

T n =
1

1− T
.

3) If A = k[x1, . . . , xn] is a polynomial ring of variable of xi, then,

Q(T ) =
∑

dimAm · Tm =
∑
m

∑
i1i2...in=m

xi11 x
i2
2 . . . x

in
n · T n

∣∣∣∣∣
x1=x2=...=xn=1

=
∑
i1,...,in

(x1T )i1 . . . (xnT )in

∣∣∣∣∣
xi=1

=
n∏
j=1

1

1− xjT

∣∣∣∣∣
xj=1

=
1

(1− T )n
.

By looking at
1

1− T
=
∑
i≥0

T i and differentiating both sides n− 1-times we get

dimAm =

(
m+ n− 1
n− 1

)
.

Now we go back to the proof of Theorem 1. First let us generalize the Theorem to
modules:
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Theorem 4.3.3. Let M be a graded A-module of finite type. Write QM(T ) =
∑

dimMn ·T n.
Then

QM(T ) =
RM(T )∏n

i=1(1− T di)
where RM(T ) is a polynomial.

We are going to prove the theorem on the number n of generators of A. Write A =

k[x1, . . . , xn]. If n = 0 then A = k. As M =
∞⊕
i=0

Mi is finite dimensional space, Mi = 0

for i � 0. It follows that QM(T ) is a polynomial. Assume n > 0 and the above theorem
is true for modules over a graded ring with less than n homogeneous elements. We have a
map which gives the exact sequence:

0 −→ kerx0 −→M
x0−→M −→M/x0M −→ 0. (4.3.1)

What do we mean by exact sequence?

Definition 4.3.4. A sequence is chain of modules and homomorphisms:

M0
d0−→M1

d1−→ . . .
dn−→Mn+1,

which is called exact if ker(di) = im(di−1) for every i ≥ 1.

Example 4.3.5. If 0→M1 →M2 →M3 → 0 is exact if and only if the following are satisfied:

1. M1 →M2 is injective, thus we may consider M1 as a submodule;

2. M2 →M3 is surjective, thus we may consider M3 as a quotient module of M2;

3. M2/M1 = M3.

This sequence is called a short exact sequence. Assume now that Mi are k-vector spaces,
show that dimM2 = dimM1 + dimM3.

Exercise 4.3.6. For a long exact sequence

0 −→M1 −→M2 −→ . . . −→Mn −→ 0

prove that
∑
i

(−1)i dimMi = 0.

Back to the proof of the above theorem. Taking homogeneous components of formula
(1) and applying the inclusion Am ·Mn ⊂ Mn+m, we obtain for each n the following exact
sequence

0 −→ ker(x1)n −→Mn −→Mn+d1 −→
(
M
/
x1M

)
n+d1

−→ 0,

dim(ker(x1))n − dimMn + dimMn+d1 − dim
(
M
/
x1M

)
n+d1

= 0.
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By multiplying this by T n+d1 and summong over n we get

T d1Qkerx1(T ) − T d1QM(T ) + QM(T ) − QM/x1M(T ) − R1(T ) = 0,

where

R1(T ) =

d1−1∑
i=1

(dimMi − dim(M/x1M)i) · T i.

Solving QM(T ), we obtain

QM(T ) = (1− T d1)−1
[
−Qkerx1(T ) +QM/x1M(T ) +R1(T )

]
. (4.3.2)

Now ker(x1) is a module of k[x1, . . . , xn]/(x1) = k[x2, . . . , xn]. So is M/x1M . Thus by
induction Qker(x1)(T ) and QM/x1M(T ) are both of the form

Polynomial∏n
i=2(1− T

di
i )

.

Thus formula (2) implies that QM(T ) has the form

Polynomial∏n
i=1(1− T

di
i )

.

This completes the proof of the above theorem.

Theorem 4.3.7. If we assume d1 = . . . = dn = 1 then there is a polynomial PM(T ) with
rational coefficients such that

dimMm = P (m)

for m sufficientely large.

Proof. By Theorem 2, QA(T ) = RA(T )/(1− T )n. Write

1

(1− T )n
=

∞∑
m=0

(
m+ n− 1

m

)
Tm, PA(T ) =

∑̀
i=0

aiT
i.

Assume an = 0 for n < 0 then

dimAm =
∑̀
i=0

am−i

(
n+ i− 1

i

)
.

This is of course a polynomial of n when m ≥ `.

Definition 4.3.8. The polynomial PM(T ) is called the Hilbert polynomial of M .
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4.4 Dimensions

Let S be a Noetherian graded ring with S0 = k a field. S =
⊕
n≥0

Sn, S+ =
⊕
n>0

Sn. Assume

S is Noetherian then dimSn < ∞. QS(T ) =
∑
n≥0

dimSn · TN . If S is generated over K by

homogeneous elements x0, . . . , xn with degrees d0, . . . , dn then

QS(T ) =
RS(T )∏n

i=0(1− T di)
.

We thus have the formula to compute dimSn. Let PS(n) = dimSn. If d0 = d1 = . . . = dn = 1
then PS(n) is a polynomial for n� 0.

Theorem 4.4.1. degPS(T ) = dim ProjS

Notice that dim ProjS is the maximal length of chains of non-maximal homogeneous
prime ideals. The proof uses two kinds of techniques. One is using inductions. Thus it is
more convenient to work with language of modules. So we want to generalize the theorem
to modules. Let M be a finitely generated and graded S-module. Let Ann(M) denote the
annihilater of M , i. e.

Ann(M) = {x ∈ S : x ·M = 0}.

M can be thought of as an S/Ann(M)-module. We have a diagramm

M M
↓ ↓

Proj
(
S/Ann(M)

)
↪→ Proj(S)

||
Supp(M)

where Supp(M) is the support of M .

Definition 4.4.2. dim(M) = dim Supp(M) = dim
(
S/Ann(M)

)
.

Exercise 4.4.3.

Supp(M) =
{
℘ ∈ ProjS : M℘ = (S − ℘)−1M 6= 0.

}
.

Theorem 4.4.4. dim(M) = degPM(T ).

(Recall M =
⊕

Mn, dimMn = PM(n).)

Lemma 4.4.5. If M fits in an exact sequence

0→M1 →M →M2 → 0

and the Theorem is true for both M1 and M2 then the Theorem is true for M .
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This follows from the following idenities:

dimM = max
(

dimM1, dimM2

)
(4.4.1)

degPM = max
(

degPM1 , degPM2

)
. (4.4.2)

These idenities follows from the following facts:

dimM = dimM1 + dimM2 PM = PM1 + PM2

Ann(M) = Ann(M1) ∩ Ann(M2).

The second technique is to decompose modules back to rings as dimension of a module
is really defined through some ring.

Proposition 4.4.6. Let R be a Northerian ring and let M be a R-module of fnite type.
Then N has a filtration: 0 (M1 (M2 ( . . . (M` = M such that Mi/Mi−1 ∼= (R/p) where
p is a prime ideal of S.

Proof. We starts with the following:

Lemma 4.4.7. If M is not zero, then there is an element m ∈ M , m 6= 0, such that
Ann(m) = {x ∈ R : x ·m = 0} is a prime ideal.

Proof. Consider the set of ideals T = {Ann(m),m 6= 0,m ∈M}. Let Ann(m) be a maximal
element in in T . Then we claim Ann(m) is prime. Assume ab ∈ Ann(m) and a /∈ Ann(m).
Then abm = 0 but am 6= 0. It follows that

Ann(am) ∈ T, Ann(m) ⊆ Ann(am).

Since Ann(m) is maximal, Ann(m) = Ann(am). Thus b ∈ Ann(m) so we are done.

Now we go back to proof of the Proposition. If M = 0 we are done. Otherwise by the
above lemma, M contans a submodule M1 := Rx isomorphic to R/℘1. Again we are done if
M = M1. Otherwise we applying the above lemma to M/M1 to obtain a submodule M2 such
that M2/M1 (as a submodule of M/M1) is isomorphic R/℘2. Continueing this procedure, we
have that either the proposition is true, or there is an infinite sequence of distinct submodules
0 ⊂M1 ⊂ · · · ⊂Mi ⊂. But this is impossible as R is Noetherian.

Lemma 4.4.8. Assume that S is generated by S1. Then

dim ProjS = dim SpecS − 1.

Proof. First we need to reduce to the integral domain. In fact since S is Noetherian, it
has finitely many minimal prime ideals ℘i. It is easy to show that these are homogenous
since the subset ℘′i of homogenous elements in each ℘i is also a prime ideal. Thus we have
ProjS = ∪iProj(S/℘i) and SpecS = ∪iSpecS/℘i.
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Assume now that S is integral. To see this last identity, we notice that dim SpecS is the
transcendental degree of S over k. Denote this number by r. But ProjS is the covering of
SpecAi (i = 0, 1, · · · , n), where Ai = k[xi/xj, i = 0, · · · , n]. Thus dim ProjS is the maximal
dimension of Ai’s or equivalently, the transcendental degree of Ai’s. We claim that the
transcendental degree of each Ai over k is equal to r − 1. We may assume that i = 0. As
x0 /∈ k, x0 is transcendental over k. Thus S has a base consisting of elements of xi’s including
x0. We may assume this base is {x0, · · · , xr}. Then it is easy to show that {x1/x0, · · · , xr/x0}
forms a transcendental base for A0 over k.

We also want to define a third invariant δ(S).

Definition 4.4.9. δ(S) is the minimal number of elements y1, . . . , yl ∈ S1 such that S/
∑
yiS

is a finite dimensional k-vector space.

Theorem 4.4.10. dimS = degP + 1 = δ(S).

A generalization: Let M/S be a module of finite type with M graded, we define SM to
be S/Ann(M) where Ann(M) = {x ∈ S : xM = 0}, and δ(M) to be the minimal number of
x1, . . . , xm ∈ S such that M/

∑
xiM is of finite length.

Theorem 4.4.11. dimSM = degPM + 1 = δ(M).

Proof. We’ll do the proof in three steps:
Step 1: degPM + 1 ≥ dimSM .
Step 2: δ(M) ≥ degPM + 1.
Step 3: dimSM ≥ δ(M).

Step 1 : degPM + 1 ≥ dimSM

First let us consider the case M = S. We use induction on dimS. If dimS = 0 we are
done. Assume dimS > 0. Let p1 ( p2 ( . . . ( pr be a chain of prime ideals in S1,
r − 1 = dimS > 0. Let x ∈ p2 − p1,

0 −→ S/p1
x−→ S/p1 −→ S/(xS + p1) −→ 0.

Because r − 1 = dimS,

dimS/(p1 + xS) = dimS − 1 = dimS/p1 − 1.

From the exact sequence,

dim
(
S/p1

)
n

= dim
(
S/p1

)
n−deg x + dim

(
S/(xS + p1)

)
n
.

Thus
PS/p1(T ) = PS/p1(T − deg x) + PS/(xS+p1(T ).
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So
degPS/(p1+xS) ≤ degPS/p1 − 1 ≤ degPS − 1.

Now by induction degS/(p1 + xS) ≥ dimS/(p1 + xS). So now

dimS = 1 + dimS/(p1 + xS) ≤ 2 + PS/(p1+xS) ≤ 1 + degPS.

So step 1 works for the case M = S. For general M we use the exact sequence

0→M1 →M →M2 → 0.

If Step 1 works for M1, M2, then it works for M as well. dimSM = max(dimSM1 , dimSM2)
and degPM = max(degPM1 , degPM2). (Recall that SM = S/Ann(M)). This will reduce to
the case M = S/p.

Step 2: δ(M) ≥ degPM + 1.

We use induction on δ(M). If δ(M) = 0, M is of finite length so Mn = 0 for n large enough,
so PM = 0 and degPM = −1. We are done. Now assume δ(M) > 0. There are elements
x1, . . . , xδ(M) ∈ S+ such that M/

∑
xiM has finite length. Consider the exact sequence:

M
x1−→M −→

(
M/xM

)
−→ 0

We have δ(M/x1M) = δ(M)− 1 and

dim
(
M/x1M

)
n
≥ dimMn − dimMn−deg x.

It follows that degPM/xM ≥ degPM − 1. From induction δ(M/x1) ≥ degPM/x1 + 1, we have

δ(M) = δ(M/x1M) + 1 ≥ degPM/x1 + 2 ≥ degPM + 1.

Step 3: dimSM ≥ δ(M)

Again we use induction on dimSM . If dimSM = 0 then SM,+ is the only maximal ideal.
So it is own nill radical. Thus some power of SM,+ is zero, as SM,+ is finitely generated.
Thus SM,n = 0 for n sufficiently large. So SM , therefore M , has finite length. It follows that
δ(M) = 0.

So now assume dimSM > 0. Let pi (i = 1, · · · , n) all minimal ideals of SM .

Exercise 4.4.12.

1. Show that there is an x ∈ SM,+ −
⋃n
i=1 pi.

2. For such x, dimSM ≥ dimSM/xM + 1 and δ(M/xM) ≥ δ(M)− 1.

Now the inequality follows from the exercise and the induction dimSM/xM ≥ δ(M/xM).
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Definition 4.4.13. The degree of X is a number such that the leading coefficient of P (T )

has the form
deg(X)

d!
T d.

Exercise 4.4.14. Compare the degree and leading coefficient of the Hilbert polynomial for
k[x0, . . . , xn]/(F ) = S, where F is a homogeneous polynomial of degree d, dimSn = P (n).
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Chapter 5

Regularity

5.1 Derivatives, tangent spaces, cotangent spaces

We know a curve C in R2 is smooth at a point p if we can define the tangent line at this
point. Similarly, a surface S in R3 is smooth at a point p if we can define tangent plane.
Thus a geometric object X of dimension d is smooth at a point p if one can define tangent
space Tp at this point and dimension of Tp is exactly n. How to define tangent space for an
affine spectrum? Tangent space should consist of tangent vectors. What is a tangent vector?
Since we can’t draw the tangent vector for spectrum. Maybe the we need to know what kind
of property we need for tangent vector.

The essential property of tangent vector is to allow us to find directional derivative of
functions. More precisely, if v is a nonzero tangent vector of a surface X in R3 at p, then we
can find a sequence of points qi of points on X such that

1. limi→∞ qi = p, but qi 6= p;

2. limi→∞
pqi
‖pqi‖ = v

‖v‖ .

then we can define the derivative Dv in direction v of a function f on X by

Dv(f)(x) = ‖v‖ lim
i→∞

f(qi)− f(p)

‖pqi‖
.

This derivative has usual properties of derivatives:{
Dv(f + g) = Dv(f) +Dv(g),

Dv(f · g) = Dv(f) · g + fDv(g).

Definition 5.1.1. A (directional) derivative at a point p in a geometric object X is a map
D : (functions) −→ (valuation at p) satisfying

D(f + g) = Df +Dg,

D(f · g) = Df g(p) + f(p)Dg.

D(a) = 0, if a is a constant function
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One can show that v → Dv defines a bijection between the space of tangent vectors on
X and the space of derivatives.

Let A denote the space functions on X which is differentiable for every derivative D at p.
Let Dp(A) denote the space of all derivatives of A at p. Let m be the space of real functions
which vanishes at p. Then the evaluation of A at p defines an isomorphism A/m ' R. Let D
be a derivative of X at p then D(m2) = 0. Thus D is factored through A/m2. The restriction
of D on m induces a linear map φD from m/m2 to R. Let HomR(m/m2,R) denote the space
of all R-linear maps from m/m2 to R.

Proposition 5.1.2. The correspondence D → φD defines an isomorphism

φ : Dp(A)
∼−→ HomR(m/m2,R).

Proof. Any function can be written as a sum of a constant function and a function vanishes
at p. Thus

A = R⊕m.

If φD = 0, then D vanishes on m. As D always vanishes at R, the space of constant functions,
D vanishes on whole A. This shows that φ is injective.

Now let ` be any linear map from m/m2 to R, then we define a map D` : A → R by
composition ` with the map A → m defined by the above decomposition, and the map
m→ m/m2. It is easy to show that D` is a derivative. Thus φ is surjective.

In Summary, we have shown that an usual geometric object in Rn:

1. Smoothness means the dimension of the tangent space equals dimension of X itself.

2. Tangent space can be identified with the space of derivatives Dp(A) at p.

3. The space Dp(A) can be identified with Hom(m/m2,R).

Definition 5.1.3. Let A be a ring, and m a maximal ideal of A (m ∈ SpecA is a closed
point). The cotangent space of A is defined as m/m2, and the tangent space of A at m is
defined to be the space of

Tm = HomA/m

(
m/m2, A/m

)
.

Theorem 5.1.4.

dimA/m Tm ≥ dim SpecA(m),

where A(m) = (A\m)−1A.

Definition 5.1.5. We say m is a regular point if

dimk(m) Tm = dimk(m)m/m
2 = dimA(m)

where k(m) = A/m.
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Example 5.1.6. Consider the curve y2 = x2(1 − x) at the point (0, 0). It corresponding to
the ring

A =
k[x, y]

y2 − x2 + x3
.

and the maximal ideal m generated by x and y. Then m2 is generated by x2, xy, y2. It
follows that

m/m2 =
xk[x, y] + yk[x, y]

{x2, y2, xy, y2 − x2 + x3}
∼= kx+ ky.

dimm/m2 = 2, dimA = 1. So this curve is not regular at (0, 0).

Example 5.1.7. Consider the ring

A = Z[2
√

5] =
Z[x]

x2 − 20
.

It has an maximal ideal m = (x, 2) with quotient A/m = Z/2Z. The cotangent space is
given by

m/m2 =
(x, 2)

(x2, 2x, 4)
=

(x, 2)

(2x, 4)

It is clear that this quotient has dimension 2 generated by 2 and x. So A so its not regular
at m, since dimA = 1. (Prove dimA = 1 as an exercise.)

Now we going to prove Theorem 5.1.4. Since dimTm = dimm/m2 and A(m) is local,
Theorem 5.1.4 is equivalent to the following:

Theorem 5.1.8. Let A be a Noetherian local ring with maximal ideal m, then dimkm/m
2 ≥

dim(A), where k = A/m.

If A is graded with A0 = k and the maximal ideal A+ is generated by A1, then this has
been done in the last lecture. Actually the theorem of the last lecture can be generalized
to arbitrary local Noetherian rings. Indeed, we define dimA as usual, and δ(A) as minimal
number of elements xi’s in m such that A/(x1, · · · , x`) has finite length, and PA to be a
polynomial such that PA(n) equal to the length of A/mn for n sufficiently large. Then the
exact same proof gives the following:

Theorem 5.1.9.
dimA = degPA = δ(A).

Now Theorem 5.1.8 follows from Theorem 5.1.9 by the facts that if x1, · · · , x` be elements
of m generating m/m2, then x1, · · · , x` generate m. This a typical application of Nakayama’s
lemma. Indeed, let N denote the quotient m/(x1, · · · , x`) then mN = 0. But this implies
that N = 0.

Theorem 5.1.10 (Nakayama’s lemma). Let A be a local ring with maximal ideal m. Let M
be a finitely generated A-module such that mM = 0. Then M = 0.
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Proof. Let xi (i = 1, · · · , n) be some generators of M over A. Since mM = M , each xi can
be written as a linear combination of xj’s with coefficients in m: thus there are ai,j ∈ m such
that xi =

∑
j aijxj. Let A denote the matrix of (aij). Then

(I − A)

x1...
xn

 = 0.

Multiplying both sides by the adjoint matrix of (I − A), we obtain

det(I − A)xi = 0, i = 1, · · · , n.

Now det(I − A) is of form 1 − a with a ∈ m. As m is maximal, 1 −m is invertible, then
xi = 0 for every i. It means that M = 0.

Example 5.1.11 (Regular ring of dimension 0). An Noetherian ring of dimension 0 is also
called an Artinian ring. For an Artinian ring A, every prime ideal is maximal and Spec(A)
is finite. Moreover, A/Nil(A) ∼=

⊕
ki, ki are fields.

When is an Artin local ring regular? The condition of A to be regular at m ⊆ A is
dimm/m2 = dim Spec(A) = 0, so m/m2 = 0, so m = m2 which implies m = 0. This uses
Nakayama’s lemma. Thus a local Artinian ring is regular if and only if it is a field.

5.2 Regular ring of dimension 1

Now let A be a local Noetherian ring of dimension 1. When is A regular?

Proposition 5.2.1. Let A be a local ring of dimension 1. Then A is regular if and only if
the maximal ideal m is principle.

Proof. The condition A is regular is equivalent to dimm/m2 = 1, k = A/m. By Nakayama
lemma, this is equivalent to that m is generated by one element.

Theorem 5.2.2. Let R be a local regular ring of dimension 1. Let m be its maximal ideal.
Then

1) m is principle, is generated by π (is called the uniformizer).

2) Every element x ∈ A \ {0} can be written uniquely in the form x = u · πn where u is
an invertible element, n = 0, 1, 2, . . .

3) xn 6= 0 for all n.

We need first prove the following:

Lemma 5.2.3.
∞⋂
n=0

mn = 0 if A is a Noetherian local ring.
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Proof. Set N =
∞⋂
n=0

mn. Then N is an ideal of A and thus finitely generated. The equality

mN = N implies N = 0 by Nakayama lemma.

Remark 5.2.4. Notice that
∞⋂
n=0

mn = functions that vanish with infinite order at a closed

point. If A is Noetherian,
∞⋂
n=0

mn = 0. Thus the functions which vanish in infinite order are

only zero function.

Proof of Theorem 5.2.2. The first part is implies by previous proposition. For other part,
we notice that mn for a strict decreasing sequence with intersection 0. Otherwise there is
some n, mn = 0 which contract to the fact that A has dimension 1. Let x 6= 0, x ∈ A, then
there is a unique n such that x ∈ mn, x 6= mn+1. Since mn = (π)n, x = u ·πn =⇒ u /∈ m so
u is invertible and we are done. Thus every element x ∈ A can be written down in the form
of u · πn where b is invertible. Any equation uxn = vx` (for invertible u, v /∈ m, n, ` ∈ N)
implies that mn = m`. Thus ` = n, and (u− v)xn = 0. If u− v 6= 0, then u− v = wπt for w
invertible and t ∈ N. This implies that mt+n = 0: a contraction. Thus every non-zero x ∈ A
can be written uniquely as x = uπn.

The defines a map v : A \ {0} → N+ (non negative integers) defined by x = uπn 7→ n.
This map has the following properties

1) v(xy) = v(x) + v(y);

2) v(x+ y) ≥ min(v(x), v(y));

3) v is surjective.

The first property implies that A is an integral domain. Let K be the field of fractions
of A. We can extend v to K \ {0} multiplicatively:

v(a/b) = v(a)− v(b), a, b ∈ A \ {0}.

Then v on K satisfies the same properties as above.

Definition 5.2.5. Let K be a field. A map from K∗ = K − {0} to Z is called a discrete
valuation if the above three properties are satisfied.

Lemma 5.2.6. If v : K → Z is a discrete valuation then
1) R = {x ∈ K : v(x) ≥ 0} is a local ring;
2) m = {x ∈ K : v(x) > 0} is a maximal ideal.
We call R the discrete valuation ring.

Example 5.2.7. Z(p) =
{a
b

: p - b
}

.
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Example 5.2.8. k[x](x) =

{
f(x)

g(x)
: g(0) 6= 0

}
.

Thus we just proved that a local ring of dimension 1 is regular if and only if it is a discrete
valuation ring. In the following we will give another equivalent condition which is very useful
when we compare different regular rings.

Definition 5.2.9. Let A be an integral ring, R a subring. We say X is integrally dependent
on R if every x ∈ X satisfies a monic polynomial equation xn+a1x

n−1+a2x
n−2+. . .+an = 0,

ai ∈ R.

Lemma 5.2.10. The set of elements in A which is integral over R is a subring of A.

Lemma 5.2.11. The element x is integral over R if and only if R[x] is a R-module of finite
type.

The proof is left to the reader as an exercise.

Definition 5.2.12. The subring of A of elements integral over R is called the integral closure
of R in A.

Definition 5.2.13. Let R be an integral ring. We say R is integrally closed (normal) if R
coincides with its integral closure in its field of fractions.

Theorem 5.2.14. Suppose R is integral with dimension 1. The following three are equiva-
lent:

1. R is regular;

2. R is a discrete valuation ring;

3. R is integrally closed.

Recall that R is integrally closed if for x ∈ K satisfying xn + a1x
n−1 + . . .+ an = 0 with

ai ∈ R, then x ∈ R.

Proof. We already have shown (1) is equivalent to (2).
We now show (2) =⇒ (3). Let x ∈ K, where K is the fraction field of R, which satisfies

an equation xd + a1x
d−1 + . . . + ad = 0 with ai ∈ R. We want to show that x ∈ R, or

equivalently, if we write x = uπn, n ∈ Z, u ∈ Rx, we need to show that n ≥ 0.
Assume that n < 0.

x =
u

π|n|
, so

( u

π|n|

)d
+ a1

( u

π|n|

)n−1
+ . . .+ ad = 0.

Multiply both sides by π|n|d so ud + π|n| · A = 0 where A ∈ R. Now u is a unit, therefore
π|n| · A is a unit which is impossible.

Now show (3) =⇒ (1). We need only show that m is principal. Let a ∈ R \ {0}, a ∈ m,
then we know that
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Lemma 5.2.15. R/(a) is dimension 0.

Proof. This is clear as m/(a) is the only prime ideal.

Lemma 5.2.16. m/(a) as an ideal in R/(a) is nilpotent.

Proof. This is clear as the nilpotent radical of A/(a) is m/(a).

So we know
(
m/(a)

)n
= 0 for some n or mn ⊂ (a). Take n minimal with this property,

mn ⊂ (a) + mn−1. Let b ∈ mn−1 \ (a). Let x = a/b. We want to show x generates m, that is
(x) = m, or x−1m = R as an identity of subsets in K. Notice that

x−1m =
b

a
m ⊂ mn−1m/a = mn/a ⊂ R.

Thus we have two choices:
1) x−1m = R which implies =⇒ m = xR and we are done.
2) x−1m ⊆ m.
We want to show that 2) implies that x−1 is integral over R thus x−1 ∈ R which is a

contradiction since b/a ∈ R implies b ∈ Ra which contradicts our choice of a, b.
Now we need the following

Lemma 5.2.17. Let Q be an endomorphism of a module over a ring R which is finitely
generated. Then Q satisfies an equation of the form

Qn + a1Q
n−1 + . . .+ an = 0, ai ∈ R.

The proof is left to the reader as an exercise.
Lemma 3 completes our proof.

Exercise 5.2.18. 1. Find all discrete valuations on Q.

2. Find all discrete valuations on k(T ) where k is a field.

5.3 Dedekind domain

Definition 5.3.1. A ring R is called a Dedekind ring if R is integral of dimension 1 and
satisfies one of the following equivalent conditions:

1) SpecR is regular.
2) Rp is a discrete valuation ring for maximal ideal p.
3) R is integrally closed.

First two conditions are local while the third is global. We need to check the third.

Theorem 5.3.2. Let R be an integral Noetherian ring. Then R is integrally closed if and
only if Rp is integrally closed for every prime ideal p.
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Proof. Suppose R is integrally closed. Let p be a prime ideal, x ∈ K is the fraction field of
R which is integrally closed over Rp.

xn + a1x
n−1 + . . .+ an = 0, ai ∈ Rp =

{
α

β
∈ K, β /∈ p

}
.

ai =
αi
βi

=
αi
∏

j 6=i βj∏
j βj

.

So assume βi = βj = β without a loss of generality. So multiply through by βn,

βnxn + βn−1α1x
n−1 + . . .+ αn = 0.

Equivalently
(βx)n + α1(βx)n−1 + . . .+ αn = 0,

so βx is integral overR. By assumption βx ∈ R sinceR is integrally closed, x = (1/β)R ∈ Rp.
Now in the other direction: Let x ∈ K, integral over R. Thus x is integral over Rp for

every p so x ∈ Rp for every p. Equivalently for any p there is an y /∈ p such that xy ∈ R.
Let I = {y ∈ R : yx ∈ R}. Then I 6⊂ p for every p. This last condition implies that I = R,
and thus x ∈ R.

Theorem 5.3.3 (Unique Factorization Theorem for Dedekind Domains). Every ideal I in
a Dedekind domain can be decomposed in a unique way into a product of prime ideals.

Proposition 5.3.4. Let R be a Noetherian ring.

1. Let M be an R-module of finite type, then M = 0 if and only if Mp = 0 for every
prime ideal p.

2. Let φ : M1 →M2 be a homomorphism between R-modules of finite type, then φ is bijec-
tive (respectively injective or surjective) if and only if φp : (M1)p → (M2)p is bijective
(respectively injective or surjective) for every p.

3. Let N1, N2 be submodules of M of finite type, then N1 = N2 ⇐⇒ (N1)p = (N2)p for
every p.

Proof. For the first part, Mp = 0 for all prime p, then Ann(M) 6⊂ p for every p, so 1 ∈
Ann(M). It follows that M = 0.

For the second part we apply the first part to kerφ and coker(φ) and use the fact

ker(φ)p = ker(φp), coker(φ)p = coker(φp).

For the last part, we apply the second part to the inclusion

φ1 : N1 ∩N2 ⊂ N1, φ2 : N1 ∩N2 ⊂ N2

and use the fact
(N1 ∩N2)p = N1p ∩N2p.
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Now for a proof of the unique factorization theorem for Dedekind domains. For every
prime ideal p, Ip is a non-zero ideal of Rp. Thus there is np ∈ N such that Ip = p

np
p . If np > 0

then Ip ⊂ pp which implies I ⊂ p since p = A ∩ p(p). Since dim(A/I) = 0, A/I is Artinian.
Thus A/I has only finitely many prime ideals containing I. In summary we have proven:

1) for every p: Ip = p
np
p , np ≥ 0.

2) np 6= 0 for only finitely many p.

Let J =
∏

pnp . We want to prove I = J . By the proposition, we need only prove that

Ip = Jp for all prime p which is given by the following lemma:

Lemma 5.3.5. Let R be a Dedekind domain.

1. Let I1, I2 two ideals of R then

(I1I2)p = (I1)p · (I2)p.

2. If p1, p2 are two nontrivial prime ideals and p1 6= p2 (p1 6⊂ p2, p2 6⊂ p1). Then
p1p2 = p2p1 = K, where K is the fractional field of R.

We have proved the exitance part of the theorem. The uniqueness is left as an exercise.

Fractional ideals of Dedekind domain

Definition 5.3.6. Let R be a Dedekind domain. Let K denote the fraction field of R. By
a fractional ideal we mean a R-submodule I of K which is finitely generated over R. Thus
a fractional ideal can be written as

I =
∑
i

aiR, ai ∈ R, ai =
αi
βi
, αi, βi ∈ R.

By taking a denominator I = 1
β

∑
αiR (

∑
αiR is a real ideal) so equivalently a fractional

ideal of R is an R-submodule I of K with the form I = 1
β
J where a is a nonzero element of

R and J is an ideal of R.

Properties of fractional ideals. We can add two fractional ideals I1 + I2. Also the
operation I1 · I2 makes the set of non-zero fractional ideals a free group over prime ideals
with unit R. We need only show the inverse does exist. In other words: for every ideal I
there is a fraction ideal J such that I · J = R.

Proof of statement : Let J be a fractional ideal defined by J = {x ∈ K : xI ⊂ R}, so
I · J ⊂ R. We want to show I · J = R.

Now to finish the proof of the statement: We need only show that Ip · Jp = Rp for every
prime ideal p.

Jp =
{a
b
, a ∈ J, b /∈ p

}
= {x ∈ K, xIp ⊂ Rp}
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Now Rp is a discrete valuation ring. If π is a uniformizer of Rp then Ip = (πn) for some
integer n. It follows that Jp = {x ∈ K, xIp ⊂ Rp} but x = uπm, m ∈ Z, uπm+1 ⊂ Rp,
m+ n ≥ 0, take m = −n so Jp = (π−n). Thus Ip · Jp = Rp and we are done.

Let I(k) denote the group of all fractional ideals. When are two fractional ideals iso-
morphic? For any isomorphism φ : I1

∼−→ I2, we can localize with respect to 0-ideal of
R.

(I1)(0)
φ(0)−−−→ (I2)(0)y y

K −−−→ K

This is K-linear, K = R(0). So φ(0) is given by multiplication of a = φ(1). Thus φ is also
given by multiplication. Notice that aI1 = (a)I1 for some a ∈ K. So

1 −→ {principal ideals} −→ I −→ {isomorphic class of ideals} −→ 1.

The set of isomorphic classes of ideals of R is denoted by Cl(R), and is called the ideal class
group of R. The group of nonzero principal fractional ideals is denoted by P . So we have
the exact sequence:

1 −→ P −→ I −→ Cl(R) −→ 1.

Historic remarks: Studying ideals was started from trying to solve Fermat’s Last Theo-
rem: x` + y` = z`, ` prime, ` ≥ 3, x, y, z relative prime positive integers. Let e2πi/` = ξ then
we have decomposition

`−1∏
i=0

(x+ ξiy) = z`.

If R := Z[e2πi/`] is a UFD then one can show that the factors in the left hand side are
almost relatively coprime each other. Thus each of them is an `-th power. From this one
can easily obtain a contradiction. So Fermat’s theorem is true. If R is not a UFD, then one
can decompose both sides as product of prime ideals. One can show that Cl(R) is finite and
the above argument still works if l - |Cl(R)|.

Some properties of fractional ideals

1) Moving lemma
2) Projectivity
3) I ⊕ J ∼= R⊕ IJ

1) Moving Lemma.

Lemma 5.3.7. Let p1, . . . , ps be a finite set of prime ideals. Then every ideal I is isomorphic
an ideal J which is not divided by the pi’s.

Proof. Write I =
∏

p p
np . By Chinese remainder theorem, there is an a ∈ Kx, such that

a ∈ I−1, a /∈ I−1 ·pi. Now it is easy to see that aI satisfies the requirement of the lemma.
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2) Projectivity.

Lemma 5.3.8. Let Q : M → I be a surjective map, where M is a finitely generated R-
module and I is a R-ideal. Then Q has a section: this means that there is a homomorphism
s : I →M such that Q ◦ s is the identity map.

Example 5.3.9. If I is the trivial ideal this lemma is easy. Indeed, let m ∈ M such that
Q(m) = 1, then we can define s by s(x) = xm.

Notation: Let M , N be two R-modules. HomR(M,N) is the set of R-homeomorphisms
from M to N . Then this set has a natural R-module structure: (Q1+Q2)(x) = Q1(x)+Q2(x),
if a ∈ R, aQ1(x) = a(Q1(x)).

Exercise 5.3.10. If M , N are of finite type then Hom(M,N) is of finite type.

Now it is easy to see that the Lemma is equivalent the surjectivity of the following
homomorphism of R-modules:

HomR(I,M) −→ HomR(I, I)

but this is true, as it is true locally. Indeed, locally R is a principal ideal domain.

3) Let I and J be two fractional ideals, then I ⊕ J ' R⊕ IJ .

Proof. Using the moving lemma, we may assume I is an ideal, I =
∏

pni
i , ni > 0, J is an

ideal, pi - J for every i.
Now I + J = R because of localization. Now we have a surjection φ : I ⊕ J � R given

by (x, y) 7→ x + y. Since this map is surjective, there is a section. To finish the proof, we
need discuss the wedge product.

The wedge product. Let V be an R-module of rank 2. (Vp ' R2
p for every p, i.e. locally

it is a 2-dimensional space.) Define det(V ) = V ∧ V , the quotient of the free R-module
generated by V × V modulo the following relations:

(ax, y) = (x, ay) = a(x, y)

(x, y) = −(y, x)

In practice: det(V ) is an R-module characterized by the following property:

1) V × V φ−→ V ∧ V = det(V ) such that

φ(ax, y) = φ(x, ay) = φ(x, y),

φ(x, y) = −φ(y, x).

2) det(V ) is universal wih respect to property (1): If ψ : V × V → W satisfies 1) then
there exists unique f : det(V )→ W such that ψ = f ◦ φ.

We use this to show I1⊕ I2 = R⊕ I1I2. We have already shown I1⊕ I2 = R⊕J for some
J . Left: (i) J is an ideal (easy), (ii) det(I1 ⊕ I2) = I1 · I2, (iii) det(I1 ⊕ I2) = det(R⊕ J).

Prove (i)–(iii) as an exercise.

Corollary 5.3.11. Every ideal I of R is generated by two elements.

Proof. I ⊕ I−1 ' R⊕ II−1 = R⊕R. Therefore ∃ R2 � I.
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5.4 Modules over Dedekind domain

Let M be a finitely generated module over a Dedekind domain R. The torsion submodule
of M is defined to be:

Mtor = {x ∈M : ∃ r ∈ R, r 6= 0, rx = 0} .

Equivalently, the Mtor is the kernel of the natural homomorphism from M to the localization
M(0) at the 0-ideal of R:

0 −→Mtor −→M
π−→M(0).

Write K = R(0) and M(0) = MK . Then MK is a K-vector space of finite dimension, say n.
Let M ′ be the image of π, then

0 −→Mtor −→M −→M ′ −→ 0, M ′ ↪→ Kn,

and M ′ has no torsion. If M is not torsion, then n 6= 0, then we have the projection Kn � K
onto the first factor. Let N be the image of M ′ of this projection. Then N is a nonzero
fractional ideal of R. We thus have

Lemma 5.4.1. If M(0) 6= 0 (i.e. M 6= Mtor) then there is a surjective map M � N with N
a fractional ideal of R.

Since N is projective, M � N has a section, whence M ∼= M1 ⊕N .
Continuing this argument for M1, if M1 is not torsion. . . Eventually, after n steps (n =

dimKM(0)) we have
M 'Mtor ⊕ I1 ⊕ I2 ⊕ . . .⊕ In.

Now apply the fact I1 ⊕ I2 = R ⊕ I1I2 then we may assume M ' Mtor ⊕ Rn−1 ⊕ I where
I is an ideal of R (if M is not torsion). What remains is to study the structure of Mtor.
Since Mtor is finitely generated, there exists x ∈ R, x 6= 0 such that xMtor = 0. Therefore
(Mtor)p = 0 if x /∈ p (equivalently, p - (x)). It follows that (Mtor)p = 0 for all but finitely
many p ((x) =

∏
pnp). Now by localization principal, the natural homomorphism

Mtor −→
⊕
p

(Mtor)p

is actually an isomorphism. This is because p1 6= p2 implies p1+p2 = R whence ((Mtor)p1)p2 =
M(0) = 0.

It remains to study the structure of (Mtor)p. It is an Rp-module, Rp=DVR.

Lemma 5.4.2. Let R be a discrete valuation ring. Let N be a finitely generated torsion
R-module, then

N '
k⊕
i=0

R/πni , ni ≥ 0.
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Proof. Let k = R/π, (π) = maximal ideal of R, then N/πN is a finite dimensional k-vector
space. Let x1, . . . , xt be elements of N such that their images in N/πN generate N/πN
over k. By Nakayama’s lemma x1, . . . , xt generate N . Thus we have a surjective map

Rt
φ
� N → 0, kerφ is an R-module without torsion.

By what we have proved for non-torsion modules over Dedekind domain: kerφ ' Rm+1⊕
I, I an R-ideal but R is PID, hence I ' R. Thus we have an exact sequence

0 −→ Rm α−→ Rt −→ N −→ 0.

Claim 5.4.3. m = t.

Proof. Localize at (0)-ideal. Since N is torsion, N(0) = 0, Rm
(0) = Rt

(0) and R(0) = k (vector

spaces). Thus m = t.

Putting Rt =
t∑
i=1

Rei, α is given by a t×t matrix A with entries aij in R: α(ei) =
∑
aijej.

Now, for two automorphism u and v of Rt, one has commutative diagram:

0 −−−→ Rt α−−−→ Rt −−−→ N −−−→ 0

o
yu o

yv yo
0 −−−→ Rt vαu−1

−−−→ Rt −−−→ N ′ −−−→ 0

(change of basis). If u, v are given by invertible t × t matrices B and C in R, then uαv is
given by BAC.

In summary,

1) The structure of N is determined by A (it is the cokernel).

2) The abstract structure of N doesn’t change if A is replaced by BAC where B, C are
invertible t× t matrices over R.

Three operations for rows (and columns) are thus allowed to determined the structure of
N : (i) Switch row. (ii) Multiply one row by an element in R∗. (iii) Add R-multiple of one
row to another row.

Lemma 5.4.4. There exist matrices B, C such that

BAC =


πn1 0 . . . 0
0 πn2 . . . 0
...

...
. . .

...
0 0 . . . πnt

 , n1 ≤ n2 ≤ . . . ≤ nt.

Moreover, {n1, . . . , nt} are uniquely determined.
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Proof.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


(Remark: A may not be invertible in R but it is invertible in K, where A has a non-zero
entry.)

Let n1 = min v(aij) = v(ai0j0). After switching rows and columns, we may assume that
i0 = 1, j0 = 1. Thus every aij is a multiple of a11 (in R!), a11 = u · πn1 , multiply row 1 by
u−1, then may assume a11 = πn1 . Performing operation (iii) on rows and columns, we may
assume that a1k = 0 = ak1 for every k. So A is transformed to

πn1 0 . . . 0
0 a22 . . . a2n
...

...
. . .

...
0 an2 . . . ann


aij ∈ R, πn1 | aij. Continue this argument.

Exercise 5.4.5. Prove the uniqueness of n1 ≤ n2 ≤ . . . ≤ nt.

Apply to find the structure of N

0 −→ Rt A−→ Rt −→ N −→ 0

with A = diag(πn1 , . . . , πnt), i.e. Aei = πniei.
We obtain

N =
R

πn1R
⊕ . . .⊕ R

πntR

and we are done.
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Chapter 6

Curves

6.1 Number fields

Definition 6.1.1. A field K is called a number field, if it is a finite extension of Q.

Definition 6.1.2. The integral closure of Z in K is called the ring of integers of K and is
denoted by OK .

OK = {x ∈ K : ∃ a monic p(T ) ∈ Z[T ] such that p(x) = 0}.

Theorem 6.1.3. Let K be a number field (K ⊇ Q, [K : Q] < ∞). Let OK be the ring of
integers in K. Then:

1. OK is Noetherian (OK is a free Z module of rank n = [K : Q]).

2. OK is a Dedekind domain (dimension 1 and integrally closed).

3. The set |SpecOK | of closed points are in 1 – 1 correspondence to discrete valuations of
K.

4. OK is the unique subring of K that satisfies 1), 2) and 3).

Recall x ∈ K is integral over Z if and only if Z[x] is a Z-module of finite type.

Part 1

The idea of the proof. (a) The theorem is true for K = Q. (b) We want to include OK in a
finite Z-submodule of K. This will imply OK is Noetherian. It is easy to find a submodule
M of OK such that M over Z is free of rank [K : Q]. Say [K : Q] = n. K =

∑n
i=1 Qxi,

xi ∈ K, xi may not be integral over Z but nixi will be integral over Z for some ni ∈ N. So
we may take M =

∑
i Zxi.

We need to define some pairing then we can find the dual M∨ of M such that M ⊆ OK ⊆
M∨, where M∨ is also free over Z of rank n.
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We have Q ↪→ K =
∑n

i=1Qxi. For x ∈ K, xxi =
∑
aij(x)xj, aij ∈ Q. x 7→ A(x) = (aij)

is an n× n matrix.

Px(T ) = det(T − A(x)) ∈ Q[T ], Px(x) = 0

tr(x) = tr(A(x)) ∈ Q,
ν(x) = det(A(x)) ∈ Q.

We can define a pairing K ×K → Q via (x, y) 7→ tr(xy). Now
1) (αx, y) = (x, αy) = α(x, y) if α ∈ Q,
2) the pairing is non-degenerate, that is if (x, y) = 0 for every y then x = 0. (Proof: if

x 6= 0 let y = 1/x, then tr(xy) = tr(1) = n 6= 0.)
3) (x+ y, z) = (x, z) + (y, z).

Definition 6.1.4. If M ↪→ K is a submodule then we define the dual of M by M∨ = {x ∈
K : (x, y) ∈ Z ∀ y ∈M}.

Lemma 6.1.5. 1) O∨K ⊃ OK or, equivalently, tr(x, y) ∈ Z for all x, y ∈ Ok.
2) If M ⊃ N then M∨ ⊂ N∨.
3) If M/Z is free of rank [K : Q] then M∨/Z is also free of rank [K : Q].

(Note that x ∈ K is integral over Z if and only if Px(T ) is monic. Show this as an
exercise.)

Write M =
∑n

i=0 Zxi, =⇒ K =
∑n

i=0Qxi. The pairing is non-degenerate. This means
(x, y) = 0 for every y implies x = 0. We have K → HomQ(K,Q) via x 7−→ (y 7→ (y, x)).
This non-degeneracy implies a perfect pairing, i.e. K ' HomQ(K,Q). If K =

∑n
i=0Qxi,

HomQ(K,Q) =
∑

iQ li, where

li : K → Q, li(xj) = δij =

{
1, if i = j,

0, if i 6= j.

There are x∗i ∈ K such that x∗i 7→ li, or in other words (x∗i , xj) = δij.

Claim 6.1.6. M∨ =
n∑
i=0

Zx∗i .

Proof. If α ∈M∨ then α =
∑
aix
∗
i , ai ∈ Q, tr(ai) ∈ Z if and only if tr(αxi) ∈ Z if and only

if
∑
aitr(x

∗
j , xi) ∈ Z, if and only if ai ∈ Z for all i.

Now we will go back to the proof of the first part of Theorem 6.1.3. We have proved that
OK contains an M , free over Z of rank [M : Z]. Take the dual O∨K ↪→M∨ also OK ↪→ O∨K ↪→
M∨ so OK ↪→ M∨, thus OK is a submodule of a module over Z which is finitely generated
as a Z-module. As Z is Noetherian, OK is finitely generated over Z so OK is Noetherian by
the Hilbert basis theorem. Actually we showed that OK as a finite Z-module.
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Part 2

Lemma 6.1.7. The ring OK is integrally closed.

Proof. Let x ∈ K, x is integral over OK . Show x is integral over Z. x is integral over OK if
and only if OK [x] is finite over OK which implies OK [x] is finite over Z as OK/Z is finite so
Z[x] is finite over Z because Z[x] ⊂ OK .

Lemma 6.1.8. OK is a Dedekind domain.

Proof. We need only show that OK is of dimension 1. Z ↪→ OK , OK/Z is finitely generated.
Let p be a non-zero prime ideal of OK . We want to show p is maximal.

Lemma 6.1.9. p ∩ Z 6= ∅.

Proof. x ∈ p, thus x/Z is integral so xn+a1x
n−1 + . . .+an = 0 where an ∈ Z, an ∈ p because

everything else is in p.

Now we have Z −→ OK −→ OK/p, Z/(p ∩ Z) ↪→ OK/p — integral ring (we want
this to be a field). Thus p ∩ Z is a non-zero prime ideal (p). Write F = OK/p, and
Z/(p ∩ Z) = Fp ∼= Z/pZ. We have the embedding of integral rings Fp ↪→ F , F/Fp is finite
=⇒ F is a field (since Fp is a field if and only if F is a field when F/Fp is finite). Thus p

is maximal.

Exercise 6.1.10. Show that Z[e2πi/n] is regular.

Hint: Use the local integral condition, and consider the case n = p, p is a prime.

Part 3

Proof (continuation). Let v : K× → Z be one discrete valuation. Let R be the correspondent
discrete valuation ring. We want to show that R = OK,p (localization of OK at a prime ideal
p). Let m be the maximal ideal of R.

Recall that R is integraly closed, thus it include OK which is integrally closed over Z.
We have the following commutative diagram:

OK −−−→ Ry y
OK/(OK ∩m) −−−→ R/m

Thus m ∩ OK is a prime ideal. Claim: m ∩ OK 6= (0). If m ∩ OK = (0) then if x ∈ OK ,
x 6= 0, x /∈ m then (1/x) ∈ R, thus K ↪→ R ↪→ K. This is impossible since the valuation is
assumed to be non-trivial. So p := m ∩ OK is a prime ideal of OK . Since every element in
OK \ p is invertible in R, R includes the localoization OK,p of OK . Notice that OK,p its self
is integrally local ring, thus is a discrete valuation ring. We then must have R = OK,p by
the following lemma.

61



Lemma 6.1.11. Let R1, R2 be two discrete valuation rings with the same fraction field K.
Assume R1 ⊆ R2, then R1 = R2.

The proof is left to the reader as an exercise.

Exercise 6.1.12. Prove part 4).

Quadratic fields

Let K be a quadratic extension of Q, namely an extension of Q with degree [K : Q] = 2. We
can to describe OK explicitly.

Let α ∈ K − Q, then Q(α) 6= Q and Q(α) ↪→ K. It follows that K = Q(α) and α will
satisfy the equation

x2 + ax+ b = 0, a, b ∈ Q.

Replacing α by α − (a/2) (α − (a/2) /∈ Q), we may assume a = 0. In other words K

has the form Q(
√
α). If d =

a

b
=

ab

b2
, then Q(

√
d) = Q(

√
ab). It follows that K can be

written as Q(
√
d) with a unique square free d ∈ Z. Every α ∈ K can be written uniquely as

α = x+ y
√
d, x, y ∈ Q.

If α /∈ Q then the minimal equation of α over Q is

T 2 + 2xT + (x2 +Dy2) = 0.

Thus α is integral over Z if and only if 2x ∈ Z and x2 + Dy2 ∈ Z. Modulo Z, x = 0 or
x = 1/2. Thus Dy2 ∈ Z or (1/4) −Dy2 ∈ Z. If Dy2 ∈ Z then y ∈ Z. If (1/4) −Dy2 ∈ Z,
then let y = a/b with b > 1, (a, b) = 1,

1

4
− a2D

b2
∈ Z, thus

4a2D

b2
∈ Z.

Thus one must has b = 2, and then

1− a2D
4

∈ Z.

Now 2 - a, If a = 2N + 1, a2 ≡ 1 (mod 4). So D ≡ 1 (mod 4).
We have shown

Theorem 6.1.13.

OK =


Z + Z

√
D, D 6≡ 1 (mod 4)

Z + Z

(
1−
√
D

2

)
, D ≡ 1 (mod 4)
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6.2 Function fields

Let k be a field. Let K be an extension of k. Assume that K/k is finitely generated and
tr degK/k = 1, and that k is algebraically closed in K. If p := chark > 0, we assume that
k is perfect: kp = k.

Theorem 6.2.1. There is a curve X such that

1. Function field of X is K.

2. X is regular.

3. |X|= set of closed points is in 1 – 1 correspondence with the discrete valuations of K.

4. X is maximal with properties 1, 2 and is unique with respect to 1 – 3.

Preliminary Field Theory

Let L/K be a finite extension of fields, [L : K] < ∞. We can define tr : L → K, and a
pairing ( , ) : L× L→ K where (x, y) 7→ tr(xy).

Definition 6.2.2. We say L/K is separable if the pairing ( , ) is non-degenerate. That is
(x, y) = 0 for all y implies x = 0.

Theorem 6.2.3. Let K/k be as before. Then there is a T ∈ K transcendental over k such
that K/k(T ) is separable.

Exercise 6.2.4. If L/K is inseparable then

1. char(K) = p > 0 (p prime, p = 0 in K).

2. p | [L : K].

Example 6.2.5. Here is a typical xxample of inseparable extension:

Fp(T ) ↪→ Fp
(
T 1/p

)
.

Main construction

Before we considered
K ←− OK
↑ ↑
Q ←− Z

where OK is a ring of integers and is the integral closure of Z in K.
In the function field case, we take K is a separable extension of a subfield k(T ). Theorem

6.2.1 is true for k(T ) with X = P1 = Projk[x0, x1] and x1/x0 = T .
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Now consider the diagram

K[x0, x1] ←− S
↑ ↑

k(T )[x0, x1] ←− k[x0, x1]

where S is the integral closure of k[x0, x1] in K[x0, x1].

Some properties of S

1. S is Noetherian, because K/k(T ) is separable, by the same proof for OK in the number
field case.

2. Define a grading on K[x0, x1] where deg a = 0 if a ∈ K, deg x0 = deg x1 = 1. Then S
is a graded ring.

Now X := ProjS will satisfy the requirements of the theorem. More precisely, we may
reduced the arguments to affine case as follows: let f : ProjS = X −→ Projk[x0, x1] = P1

be the natural projection and cover P1 by open affines U = Speck[1/T ] and Speck[T ] = V ,
then X is covered by f−1(U) = Y , f−1(V ) = Z.

Y ⊆ X ⊇ Z
↓ ↓ f ↓
U ⊆ P1 ⊇ V

From the construction, one can show that

Y = Spec(integral closure of k[T ] in K) = SpecS[1/x0]
deg 0

Z = Spec(integral closure of k[1/T ] in K) = SpecS[1/x1]
deg 0.

Proof of Theorem 6.2.3

The theorem is trivial if the characteristic of K is 0. Now we assume char(K) = p > 0. We
want to prove the theorem. First a few preparations:

1) We can extend the definition of separability. Let K be a field. Let A be a finite
K-algebra, we can define trace A× A −→ K via (x, y) 7→ tr(xy). We say A/K is separable
if and only if the pairing ( , ) is non-degenerate.

Example 6.2.6. K = Fp(T p), L = Fp(T ) — this is not separable. This is because L has a
basis 1, T, T 2, . . . , T p−1 and T i satisfies the minimal equation xp − (T p)i = 0.

Let {x1, . . . , xn} be a base of A over K. Then A/K is separable if and only if det(tr(xi ·
xj)) 6= 0. This follows from the formula:(∑

i

cixi,
∑
j

djxj

)
=
∑
i,j

cidjtr(xixj).
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2) Separability is unchanged after base change. Let M,N be A-modules, we can define
another A-module M ⊗A N . If B is an A-algebra and M is an A-module then M ⊗A B is a
B-module. Let A be a K-algebra and let L be a field containing K. Then A ⊗K L will be
an L-algebra. A =

∑
Kxi. Since its an algebra xixj =

∑
aijkxk. A⊗K L =

∑
Lxi.

Lemma 6.2.7. A/K is separable if and only if (A⊗ L)/L is separable.

Proof. Both are equivalent to the fact that det(tr(xixj)) 6= 0.

3) Criterion of separability when K is algebraically closed:

Lemma 6.2.8. If A is a finite K-algebra then A = ⊕Ai, where Ai are local K-algebras and
Ai = K ⊕Mi and Mi is a nilpotent Ai-ideal.

Lemma 6.2.9. Let A, B, be two K-algebras. Then (A ⊕ B)/K is separable if and only if
A/K, B/K are separable.

Lemma 6.2.10. Let A be a local finite K-algebra with K = K. Then A/K is separable if
and only if A = K.

Proof. Write A = K +m. Let x ∈ m, then for any a ∈ A, ax ∈ m thus ax is nilpotent. Thus
(ax)n = 0 so tr(ax) = 0 =⇒ (a, x) = 0 for all a. So A/K is separable implies A = K. (Note
that if matrix is nilpotent its trace is 0.)

Exercise 6.2.11. Let A be a n × n matrix over a field K. Then if Am = 0 for some m then
tr(A) = 0.

Combine all above, we have the following:

Theorem 6.2.12. Let A be a finite K-algebra. Then A/K is separable if and only if A⊗K
is reduced, i.e., it has no nonzero nilpotent element.

We have the following corollaries:

Corollary 6.2.13. Let L ⊃ F ⊃ K be a finite field extensions. Then L/K is separable iff
L/F is separable and F/K is separable.

Corollary 6.2.14. Let L/K be a finite field extension which is generated by two subfield
extensions F1, F2 (K ⊂ Fi ⊂ L, L is generated by F1, F2). Then L/K is separable if and
only if F1/K, F2/K are both separable.

Corollary 6.2.15. Let L be a finite field extension of K which is generated by a single x ∈ L
(L = K(x)). Then L/K is separable if and only if the minimal equation of x over K is not
of the form F (T p), p = char(K).
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Proof. Write L = K[T ]/G(T ) where G is the minimal polynomial of x. Take a decomposi-
tion,

G(T ) =
l∏

i=0

(x− αi)ni , αi ∈ K.

Then

L⊗K = K[T ]/G(T ) =
K[T ](∏l

i=0(x− αi)ni

) = ⊕ K[T ]

(x− αi)ni
.

Here in the last step, we have used the Chinese Remainder Theorem: Let p1, p2 be two ideals
in a ring R, such that p1 + p2 = R and p1 · p2 = 0. Then A = (R/p1)⊕ (R/p2).

Thus (L⊗K)/Kis reduced if and only if ni = 1. So L/K is separable if and only if G(T )
has no multiple zeros. This is equivalent to G(T ) and G′(T ) have no common zeros ⇐⇒
G(T ) - G′(T ) ⇐⇒ G′(T ) 6= 0. Now suppose G(T ) =

∑
aiT

i, G′(T ) =
∑
iaiT

i−1, iai = 0 (in
K) ⇐⇒ i = 0 if ai 6= 0 ⇐⇒ p | i if ai 6= 0 ⇐⇒ G(T ) = F (T p) for some F .

As a consequence, for a finite extension L/K there is a maximal subfield L′ of L such
that L′/K is separable. We call L′ the separable closure of K in L.

If x ∈ L, x /∈ L′ then x is not separable, so the minimal equation of x on K has the form
P (tp

c
) where c ≥ 1 and P (X) is not of the form Q(tp) (i. e. c maximal). Thus tp

c
is separable

over K, so tp
c ∈ L′.

Definition 6.2.16. [L : L′] is called the degree of inseparability of [L : K] (some power of
p).

Proof of Theorem 6.2.3. Choose t ∈ K such that the degree of inseparability of K/k(t) is
minimal. Want to show K/k(t) is already separable. Let L be the separable closure of k(t)
in K.

Assume K/k(t) is not separable. Then we have an u ∈ K \L such that up ∈ L. Then we
have that u/k is transcendental, and that the minimal equation of u over k(t) has the form
F (xp) = 0 with F (x) =

∑
i ai(t)x

i ∈ k(t)[x]. Clean the denominators and take a non-trivial
factor to obtain an irreducible F (x) = G(x, t) ∈ k[t, x]. Thus we have G(t, up) = 0.

Claim 6.2.17. This equation is not an equation of tp.

Indeed, otherwise, every monomial is of power of p, so G(t, up) = [G∗(t, u)]p (char p).
Therefore G∗(t, u) = 0, so G(t, u) is not minimal. This proves the claim. Hence t is separable
over k(u).

If L′ is the separable closure of k(u) then t ∈ L′ which implies L ⊂ L′. We now have:
Inseparability degree of K/k(u) is [K : L′] < [K : L], which contradicts with minimality of
inseparability degree of K/k(t). Thus K/k(t) is separable.

Exercise 6.2.18. Let F (X, Y ) ∈ k[X, Y ] be an irreducible polynomial. Then F (X, Y ) is
irreducible in k(X)[Y ].
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6.3 Algebraic curves

Definition 6.3.1. Let k = k be an algebraic closed field.

1. By a projective curve over k we mean X = ProjS, where S is an integral, graded,
finitely generated k-algebra with dimX = 1.

2. By the function field of X we mean

K(X) =

{
f

g
| f, g homogenoeus of same degree

}
K(X)/k is finitely generated, tr degK(X)/k = 1.

3. Assume S is generated by x1, . . . , xn homogeneous. Then X is covered by SpecS0
(xi)

,
where

S0
(xi)

=

{
f(X)

xni
| f homogeneous, deg f = n deg xi

}
⊆ K(X).

4. For every x ∈ X we may define the local ring Ox ⊂ K(X) as follows: Let x ∈ SpecS0
(xi)

.

Then x corresponds to a prime ideal p of S0
(xi)

. Then put

Ox =
(
S0
(xi)

)
(p)
.

Alternatively, x corresponds to a homogeneous prime ideal q in S, Ox = S0
(q).

5. We may say that X is regular if Ox is regular for every x ∈ X. Equivalently, Ox is a
discrete valuation ring in K (if x 6= (0)).

Theorem 6.3.2. There is a 1 – 1 correspondence between the set of closed points |X| and
the set of discrete valuations of K(X).

The correspondence X −→ K(X) gives a bijection between the “set” of regular projective
curves over k and the set of extensions of k which are finitely generated of transcendental
degree 1.

Example 6.3.3. k(t)←→ P1.

k
(
t,
√
t(t− 1)(t− 2)(t− 3)

)
←→ s3y2 = t(t− s)(t− 2s)(t− 3s)

in P2, s — homogenizer. Exercise: show that this curve is regular.

Moreover, if K(X1) ↪→ K(X2) we can define φ : X2 → X1. Moreover each point x ∈ X2

gives a discrete valuation ring Rx ⊂ K(X2). The intersection Rx ∩ K(X1) is a discrete
valuation ring in K(X1), so it is equal to Ry for some y ∈ X1. Define y = φ(x). For y ∈ X1

φ−1(y) =
∣∣∣Spec

(
int. closure of Ry in K(X2)

)∣∣∣.
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Zeros and poles of functions on curves

Let X be a regular projective curve. Let f ∈ K(X). Let x ∈ X with local ring Ox (i. e. Ox is
a discrete valuation ring in K(X)). Let π be a uniformizer of Ox (we call π a uniformizer for
x as well). We can write f = uπn, u ∈ O∗x (K(X) = Frac(Ox)). Then we put ordx(f) = n
(the order of f at x).

If ordx(f) = n > 0, we say x is a zero of f of order n.
If ordx(f) = −n > 0, we say x is a pole of f of order n.
If ordx(f) = n ≥ 0, we say f is regular at x.
If ordx(f) = 0, we say f is invertible at x (regular and nonzero).

Example 6.3.4. X = P1, K(X) = k(t). Let a ∈ P1 = C ∪ {∞}. Then

Oa =


k[t](t−a), if a 6=∞,

k

[
1

t

]
(0)

, if a =∞.

Let f ∈ k(t), then

f(t) =
G(t)

F (t)
=

n∏
i=0

(t− ai)αi , αi ∈ Z.

orda(f) =


αi, if a = ai,

−
∑

αi, if a =∞,

0 otherwise.

Two facts for P1.

1. If f ∈ K(P1) = k(t) is invertible everywhere, then f is a constant.

2. ∑
x∈P1

ordx(f) = 0.

We will prove these facts hold for any projective curve.

Theorem 6.3.5. Let X be a projective regular curve over an algebraically closed field k. Let
f ∈ K(x) be a non-zero rational function. Then

1. ordx(f) = 0 for almost all x ∈ |X|.

2.
∑

x ordx(f) = 0.

3. If ordx(f) = 0 for all x then f is constant, i. e. f ∈ k.
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Proof. 1) We can cover X by finitely many affine schemes Ui = SpecAi with Ai a Dedekind
domain. Then K(X) is also the function field of Ai. Write (f) =

∏n
i=1 p

ni
i , ni ∈ Z, pi prime

ideals in Ai. If pi corresponds to a point xi in X, then ni = ordxi(f). Thus on each Ui, f
has only finitely many zeroes or poles.

2) and 3) If f /∈ k then f is transcendental over k. Let L = k(f) ↪→ K(X). This induces a

map X
Q−→ P1 such that f = Q∗(T ) := T ◦Q. Thus Q is surjective. Moreover for each point

y in P1, Q−1(y) is the set of x such that the valuations corresponding to x in K = K(X)
induce the valuation corresponding to y in L. The theorem follows from the following claim:

[K : L]ordy(T ) =
∑
x→y

ordx(f).

It is clear that both all terms are zero (resp. positive, resp. negative) when y 6= 0,∞ (resp.
y = 0, resp. y = ∞). Thus we need only work on when y = 0 and y = ∞. Change
coordinates T −→ 1/T , we may switch 0 and ∞. Thus need only work on y = 0.

Let R be the valuation ring in L corresponding to y = 0. Then T = f is a uniformizer,
and ordy(T ) = 1. Let A be the integral closure of R in K. Then A is a free k-module of
rank [K : L] and Q−1(y) equals the set of all primes in A. Then A is a free R-module of
rank n := [L : K]. Thus we have A ' Rn and A/fA ' (R/fR)n. Write

fA =
∏

pordp(f),

Then by Chinese remainder theorem,

A
/∏

pordp(f)A '
⊕
p

A
/
pordp(f)

Thus we have shown that

n = dim(R/fR)n = dimA
/∏

pordp(f)A =
∑
p

dimA
/
pordp(f) =

∑
p

ordp(f).

Recall that if R is a Dedekind domain we have

0→ {principal ideals} → {fractional ideals} → {ideal class group} → 0.

0 −→ RX −→ KX −→ {principal ideals} −→ 0, f 7−→ (f).

Analogue for curve X

The group of divisors on X is a free Abelian group generated by points in X,

Div(X) =

{
D =

∑
i

nixi, ni ∈ Z, xi ∈ |X|

}
.
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For a divisor D =
∑
nixi we denote ni = ordxi(D).

A divisor D is called principal if D =
∑

x ordx(f)x for some function f in K(X). We
denote by Pr(X) the subgroup of principal divisors in Div(X). The factor group

Div(X)
/

Pr(X)

is known as the Picard group of X.

0 −→ Pr(X) −→ Div(X) −→ Pic(X) −→ 0.

The degree of a divisor D =
∑
nixi is defined by degD =

∑
i ni. We denote by Div0(X)

the subgroup of the divisors of zero degree. We have the following exact sequences:

0 −→ Div0(X) −→ Div(X)
deg−→ Z −→ 0,

0 −→ Pr(X) −→ Div0(X) −→ Pic0(X) −→ 0.

Pic0(X) is known as the Jacobian variety of X.

0 −→ Pic0(X) −→ Pic(X) −→ Z −→ 0

0 −→ k∗ −→ K∗ −→ Pr(X) −→ 0, f 7−→
∑

ordx(f)[x].

Theorem 6.3.6. Pic0(X) has a natural variety structure which is connected of dimension
2g, where g is the genus of X.

The Jacobian variety Pic0(X) = Cg/Λ, where Λ is a Z-lattice of rank 2g in Cg.

Example 6.3.7. X = P1,

Pic0(X) = Div0(X)
/

Pr(X) = 0.

Proof. Let D =
∑
niαi be a zero degree divisor. Define f =

∏
(x− αi) taking product over

all αi 6=∞. Thus D is the principal divisor corresponding to f .

6.4 Differentials

Let A ↪→ B be rings. The set of differentials ΩB/A is a free B-module generated by “dB”
modulo Leibniz relations:

dab = a db+ b da, d(a+ b) = da+ db, da = 0 if a ∈ A.

There is a map d : B → ΩB/A, satisfies Leibniz rule.

Universal Property of the map B
d−→ ΩB/A: Let M be a B-module, let δ : B → M be

a homomorphism of A-modules, such that δ(ab) = aδ(b) + bδ(a). Then there is a unique
B-module homomorphism Q : ΩB/A →M such that δ = Q ◦ d.
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Proposition 6.4.1. Let K be a function field of an algebraic curve over an algebraically
closed field k, then ΩK/k is a free K-module of rank 1.

Proof. There is a T ∈ k such that T is transcendental over k and K/k(T ) is algebraic and
separable.

Claim 6.4.2. K · dT = ΩK/k.

Construct a differential map K → K dT . Let x ∈ K, let p(T, S) ∈ k(T, S) be the
irreducible minimal polynomial for x in k(T ). Since p(T, x) = 0, dp(T, x) = 0, so

∂p

∂T
dT +

∂p

∂x
dx = 0

in ΩK/k. Since K/k(T ) is separable then ∂p/∂x 6= 0. So

dx =
∂p
∂T
∂p
∂x

dT.

Define d : K → K dT by the formula above. Then d really satisfies Leibniz rule and the
universal property of ΩK/k. Therefore K · dT = ΩK/k.

We have:

0 −→ Div0(X) −→ Div(X)
deg−→ Z −→ 0,

0 −→ Pr(X) −→ Div(X) −→ Pic(X) −→ 0,

0 −→ Pr(X) −→ Div0(X) −→ Pic0(X) −→ 0.

Let dT ∈ ΩK/k be a generator. Let x ∈ X be a point with a local parameter π. T =∑
anπ

n, an ∈ K the Taylor expansion,

dT =

(∑
n

nanπ
n−1

)
dπ,

dT

dπ
∈ KX ,

so dπ 6= 0.
Let α ∈ ΩK/k be a nonzero differential, then we define formally

Div(α) =
∑
x

ordx

(
α

dπx

)
· x,

where πx is a local parameter at x. We will show that the right hand side has only finitely
many nonzero terms and this defines a divisor. The divisor of this class does not depend on
the choice of α:

div(fα) = div(f) + div(α).

divisor class is called the canonical divisor class, and is denoted by KX .
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For example when X = P1 with affine coordinate T , dT is a differential with no-zero or
pole in the finite point, at the infinite point, it has local parameter π = 1/T . Thus

dT = d(π−1) = −π−2dπ.

Thus div(dT ) = −2∞.
Let Q : X → Y be a morphism of curves, we define formally

Div(ΩX/Y ) =
∑
x

ordx(ΩOx/OQ(x)
)[x]

We want to show that this is a finite sum and this defines a divisor. Cover X =
⋃
i SpecBi,

ΩBi/Ai
=

⊕
x∈SpecBi

Ox
/
πnx
x

is a torsion Bi-module. Here nxi = ordxΩBi/A, nx = 0 for almost all x. Thus ΩX/Y is a
divisor. The divisor div(ΩX/Y ) is called the ramification divisor for the map Q : X → Y and
is denoted by RX/Y .

Let Q : X → Y be a morphism of curves and let y ∈ Y , we define Q∗ : Div(Y )→ Div(X)
such that

Q∗(y) =
∑
x→y

ordx(πy)[x]

For each y ∈ Y , write Q−1(y) = x1, . . . , xr. π = uniformizer of Oy, πi = uniformizer of xi,
π =

∏
πeii (units), ei − 1 is called the ramification index. One has

∑
ei = n.

We say Q : X → Y is tamely ramified if for any x ∈ X p - e(x).
Formula: if Q is tamely ramified then

RX/Y =
∑
x

(e(x)− 1)x.

Proof. Let y be an image of x, Oy ↪→ Ox with the local coordinates πy and πx respectively.
The Taylor expansion πy = πexα = πex + a1π

e+1
x + . . . leads to

dπy =
(
eπe+1

x + . . .
)
dπx = πe−1x

(
e+ πx + . . .

)
dπx.

Therefore ordx(dπy) = e− 1 but ordy(dπy) = 0, so ordxRX/Y = ordx(dπy).

Theorem 6.4.3. Let Q : X → Y be a separable morphism, let α be a non-zero differential
on Y , then

div(Q∗α) = Q∗
(

div(α)
)

+ div
(
ΩX/Y

)
.

and every item in the equality is finite.

Proof. The first part can be proved locally. For the finiteness of div(α) for any α ∈ ΩX

follows from the equation in the theorem as we may apply it to X → P1.
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Definition 6.4.4. The genus g(X) of X is an integer defined by

2g(X)− 2 = deg(div(α)) = degKX .

Corollary 6.4.5 (Hurwitz formula).

2g(X)− 2 = degQ ·
(
2g(Y )− 2

)
+ degRX/Y .

Example 6.4.6. P1 = k ∪ {∞}. If x ∈ k then d(T − x) = dT , so ordx(dT ) = 0 if x ∈ k. If
x =∞ we have a local coordinate π∞ = 1/T , so T = 1/π∞ and

dT = d

(
1

π∞

)
= − 1

π2
∞
dπ∞.

Thus ord∞(dT ) = −2, div(dT ) = −2(∞) and 2g − 2 = −2. Therefore the genus g = 0.

Example 6.4.7. y2 = x(x− 1)(x− 2)(x− 3). Show Q : X → P1 is smooth everywhere except
x = 0, 1, 2, 3 where e = 2. Note degQ = 2. Assume Q is tamely ramified. Then for the
genus we have

2g(X)− 2 = degQ
(
2g(P1)− 2

)
+
∑
x

(ex − 1) = 2(−2) + 4 = 0,

so g(X) = 1.

Final exam problems

1. Show that R = Z[e2πi/p] is regular for p prime by the following steps:

Step 1 Let K = Q(e2πi/p), we want to show R = OK . We have a pairing K ×K → Q.
For M ⊂ K a Z-module of rank [K : Q], define the discriminant dis(M) ∈ Q×.
Show that dis(M) ∈ Z if M is a subalgebra.

Step 2 If M1 ⊂ M2 then dis(M2) | dis(M1), and p - dis(M1)/ dis(M2) then M1,p = M2,p.
This implies that if p - dis(R) then Rp = OK,p.

Step 3 Show that Rp is a discrete valuation ring if p | dis(R) then we are done.

2. Let f(x, y, z) be a homogeneous polynomial of degree d. Compute the Hilbert polyno-
mial of S = C[x, y, z]/(f).

3. Let A be a ring, m,n ∈ N and let Q : Am → An be an injective homomorphism of
A-modules. Prove m ≤ n in the following steps:

Step 1 Express Q by a matrix A = (aij):a11 . . . a1m
...

. . .
...

an1 . . . anm


There exists p prime, ∃ aij such that aij /∈ p. By localization principle, we may
replace A by Ap and then assume that A is local and that aij is invertible.
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Step 2 Assume that A is local and aij is invertible. By doing row-column operations so
we get the following m× n matrix

1 0 . . . 0
0 b22 . . . b2m
...

. . .
...

0 bn2 . . . bnm


This step reduces claim for an injective morphism Am → An to an injective
morphism Am−1 → An−1.
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