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1 Introduction

his conjecture relates the height of the modified diagonal cycle on the
triple product of Shimura curves and the derivative of the triple product L-
series. In their original conjecture, we take three cusp forms f, g, h of weight 2
for To(N) with N square free, and consider the function F := f x g x h on J#3,
where 7 is the upper half plane. There are a triple product L-series L(s, F')
as stucﬁg%aby Garrett ﬁzin the classical setting and by Piatetski-Shapiro and
Rallis [Z9] in the adelic setting. This function is entire and has a functional
equation with a center at s = 2 and a decomposition of the global root number
into a product of local ones:

%_ laiusdnger aims to prove a special case of a generalized Gross—Kudla conjecture

e(F) = — pr(F)7 &(F) = —ap(flap(g)ap(h) = £1.
pIN

Assume that the global root number is —1. Then there is a canonically defined
Shimura curve X, associated with an indefinite quaternion algebra B, which is
nonsplit over a non-archimedean prime p if and only if €,(F) = —1. There is an
F-eigen component A(F) of the diagonal A of X3 as an elements in %1_% Chow

group of codimension 2 cycles in X3 as studied by Gross and Schoen [TT]. The
conjecture formulated by Gross and Kudla take shape.

L'(2, F) = QF)(A(F), A(F))zs,

where Q(F') is an explicit positive constant and (-, -)pp is the Beilinson—Bloch
height pairing. This formula jg an immediate higher dimensional generalization
of the Gross-Zagier formula F; -

In this paper, we will give a full generalization of the conjecture to totally
real fields and prove the conjecture in the spherical case.

We will consider cuspidal Hilbert modular forms of parallel weight 2 with
arbitrary level and Gross—Kudla—Schoen cycles on Sal%lilglclcl’ga curves over totally
real number fields. We will formulate a conjecture FIL.BTIngarding automorphic
representations. This conjecture is analogous to the central value formula of



Ichino % ]. In this paper, we can prove this conjecture when the representa-
tions are unramified; see Theorem [1.3.3. In the following, we will describe our
conjectures, theorems, and the main ideas of proofs.

1.1 Shimura curves and abelian varieties

First, let us recall the definition of Shimura curves defined by an incoherent
quaternion algebra %?_ck%he abelian varieties parameterized by these Shimura
varieties, following %ff

Shimura curves

Let F be a number field with adele ring A = Ap and let F= Ay be the ring of
finite adeles. Let X be a finite set of places of F'. Up to isomorphism, there is
a unique A-algebra B , free of rank 4 as an A-module, such that for each place
v, the localization B, := B ®, F), is isomorphic to My(F,) if v ¢ ¥ and to the
unique division quaternion algebra over Fy if v € . We call B the quaternion
algebra over A with ramification set L(B) := X.

If #3 is even then B = B ®p A for a quaternion algebra B over F' unique
up to F-isomorphisms. In this case, we call B a coherent quaternion algebra.
If #3 is odd, then B is not the base change of any quaternion algebra over F.
In this case, we call B an incoherent quaternion algebra. This terminology is
inspired by Kudla’s notion of incoherent collections of quadratic spaces k&g]

Now assume that F'is a totally real number field and that B is an incoherent
quaternion algebra over A, totally definite at infinity in the sense that B, is
the Hamiltonian algebra for every archimedean place 7 of F. Then we have a
projective system Xy of projective curves over F indexed by open subgroups
U of IB%;. The projective system X is endowed with an action T, of z € B*
given by “the right multiplication by xy.” The action T, is trivial if and only
ifxy e FX, the closure of F'* in IB%;. Each Xy is just the quotient of X by the
action of U.

The induced action of IB%? on the set mo(Xz) of geometrically connected

components of X factors through the norm map q : IB%? — A? and makes

7o(X%) a principal homogeneous space over Fif\A;

Abelian varieties parametrized by Shimura curves

Let A be a simple abelian variety defined over F'. We say that A is parametrized
by X if there is a non-constant morphism Xy — A over F for some U. By
the Eichler—-Shimura theory, if A is parametrized by X, then A is of strict
GL(2)-type in the sense that

M =End’(A) := Endp(A4) @7 Q

is a field and Lie(A) is a free module of rank one over M ®g F' by the induced
action.



Define
TA = Homg(X, A) = li_n)1HomgU(XU,A),
U
where HomgU (Xy, A) denotes the morphisms in Homp(Xy, A) ®7 Q using the
normalized Hodge bundle £y as a base point. Since any morphism Xy — A
factors through the Jacobian variety Jy of Xy, we also have
74 = Hom"(J, A) := h_n)lHomO(JU, A).
U
Here Hom®(Jy7, A) = Homp(Jy, A)gzQ. The direct limit of Hom(Jy, A) de-
fines an integral structure on 74 but we will not use this.

The space T4 admits a natural BX-module structure. It is an automorphic
representation of B* over Q. See [33,8§3.2]. We will see the natural identity
Endgx (m4) = M and that m4 has a decomposition 7 = ®,m, where m, is
an absolutely irreducible representation of B)S over M. Using the Jacquet—
Langlands correspondence, one can define the L-series

L(s,m) = HLU(S,TI'U) eEM®qC

as an entire function of s € C. Let
L(s, A, M) =[] Lu(s, A, M) € M ®¢C

be the L-series defined using /-adic representations with coefficients in M ®q
Qg, completed at archimedean places using the I'-function. Then L(s, A, M)
converges absolutely in M ® C for Re(s) > 3/2. The Eichler—-Shimura theory
asserts that, for almost all finite places v of F', the local L-function of A is given
by

Ly(s,A,M)=L(s— %,m,).

Conversely, by the Eichler—Shimura theory and the isogeny theorem of Falt-
ings, if A is of strict GL(2)-type, and if for some automorphic representation
of B* over Q, L,(s, A, M) is equal to L(s — 1/2,m,) for almost all finite places
v, then A is parametrized by the Shimura curve X.

If A is parametrized by X, then so is the dual abelian variety AY. Denote
by MY = End’(AY). There is a canonical isomorphism M — MV sending a
homomorphism m : A — A to its dual m" : AV — AY.

There is a perfect B*-invariant pairing

A X Ty — M
given by
(f1, f2) = vol(Xv) " (fru o fiw), fiu € Hom(Jy, A), for € Hom(Jy, AY),

where f2v v+ A — Jy is the dual of foy composed with the canonical isomor-
phism Jp ~ Jy. It follows that m4v is dual to w4 as representations of B* over

M.



1.2 Trilinear cycles on the triple product of abelian varieties

Let Ay, Ao, A3 be three abelian varieties over a number field F. Let A =
Aj x Ag x Ag be their product. We consider the space Ch;(A) of 1-dimensional
Chow cycles with Q-coefficients.

Using Mukai—Fourier transformation, we have a decomposition

Chy(A) = @ Chy (4, s),

where s = (s1, 2, $3) is a triple of non-negative integers, and Ch; (A4, (s1, s2, s3))
consists of cycles x such that under push-forward by multiplication by k& =
(kl, ko, kg) S (Z \ {0})3 on A:

[klix = k° - x, k® = k7 k52 ksR.
The cycles with s = (1,1, 1) are called trilinear cycles and denoted by
Ch#(A) := Chy (4, (1,1,1)).

The space ChM(A) is conjecturally the complement of the subspace generated
by cycles supported on the image of A; x A; x 0y, for some reordering (i, j, k)
of (1,2,3), where 0 denote the 0-point on Ay.

Let L(s, A1 K Ay X A3) denote the L-series attached the triple product of
¢-adic representation of Gal(F'/F) on

HY (A1, Q) ® H' (A2, Q) @ H' (A3, Q).

Then it is conjectured that L(s, A;XA3K A3) has a holomorphic continuation on
the complex plane. An extension of the Birch and Swinneron-Dyer conjecture
or Beilison—Bloch conjecture gives the following:

Conjecture 1.2.1. The space Ch(A) is finite-dimensional and
dimg Ch®(A) = ords—aL(s, A} X Ay X A3).

Like the Neron-Tate height pairing between points on A and AY = Pic®(A),
there is a canonical height pairing between Ch*(A) and Ch*(AY) given by the
Poincare bundles &; on A; x A} with trivializations on A; x 0 and 0 x A;:

(x,y) = (33‘ X y) /C\l(e@l) /0\1(@2) : /C\l(@g), x € Ch%(A), Y€ Ch%(Av),

where /0\1(971) is the first Chern class of the arithmetic cubic structure 42; of
;. The right hand of the formula makes sense for all elements z € Ch;(A)
and y € Chy(AY).



Refinement for abelian varieties of strictly GLo-type

Assume that each A; is of GLa-type with endomorphism field M; := End®(4;) =
End’(4Y). Then M = M; ® My ® Mg acts on Ch*(A4) and on Ch*(A4Y) by
pushing forward. As we will see in §3.1, these actions are additive and thus
make Ch%(A) and Ch*(AY) modules over M. As M is a direct sum of its
quotients fields L, Ch#(A) is the direct sum of Ch* (A, L) := Ch®(A) @ L.
We can also define the triple product L-series L(s, A1 K Ao X A3, L) € L® C

with coefficients in L using Galois representation on

HY(A1,Qp) ®1g0, ®H (A2, Q) @10, H (A3, Q)

where we choose ¢ inert in L.

Conjecture 1.2.2. The space Ch™(A)y, is finitely generated with
dimy, Ch%(A, L) = ords—s tL(s, A; K Ay K A3, L),
where v : L ® C — C is the surjection given by any embedding L — C.

Also, we have a unique height paring with values in L:
(—,=)p:  Ch*(A,L)®, Ch*(AY,L) — LoR
such that

Trrer/r(az,y)r = (az,y), a€L, xzeCh¥A L), yeChAY L)

1.3 Generalized Gross—Kudla conjecture

Now we assume that all A; are parametrized by a Shimura curve X as before
and take a quotient L of M = M; ® My ® Ms. For any f; € ma,, we have a
morphism

f::f1Xf2Xf3: X — A
We define f.(X) € Chy(A4) by

fo(X) := vol(Xp) ! frru(X) € Chy(A)

if f; is represented by f;iy on X;. This definition does not depend on the choice
of U. Define
Pr(f) = f(X)* ®1 € Ch*(4, L).

Let m; 1, = ma, @, L be the automorphic representation of B* with coefficients
in L. Let m;, = my,1, ® w1, ® 3,1, be their product representation of (B*)3.
Then by §2.1, f — P(f) defines a linear map:

Pr: m, — Ch¥ (A, L).



main-conj

This map is invariant under the action of the diagonal A(B*). Thus it defines
an element
PL S 9(71’A7L) XL Ch%(A7L)7
where
r@(ﬂ'A,L) = HOmA(BX)(ﬂ—A’L, L).
Therefore Pr(f) # 0 for some f only if, #(z4,1),# 0.
By a theorem of Prasad and Loke ([27], Z[E" , Hi’ ), P(ma,r) is at most one-

dimensional, and it is one-dimensional if and only if the following two conditions
both hold:

1. the central characters w; of m; satisfy

wl-wg-w:),:l,

2. and the ramification 3(B) of B is equal to

1
Y(A L) = {places vof F': e (2,7TA,L’H) = 1} .

The next problem is to find a non-zero element o of (w4 ) if it is non-
zero. It is more convenient to work with & (np) ® P (7)) where 71, is the
contragradient of 7, is given by the product AY of AY. Decompose 71, = ®,T,
then we have a decomposition P () = @ (m,) where the space P (m,) is
defined analogously. We construct an element o, in & (m,) ® #(7,) for each
place v of F' by

_ L(1,my,ad)
- G(2)2L(1/2,m)

alfo @ Fo) OIS AT T L LT

Conjecture 1.3.1 (Generalized Gross-Kudla conjecture). Assume wy-wo-w3 =
1. Then we have for any f € ma, and f € wav 1,

- 2 -
(L) PL)) = ML%l/z,m ol ])

as an identity in L & C.

ain-conj
Proposition 1.3.2. Under the condition of the conjecture %.3.2, fﬁere s a
constant L (m) such that for any f € ma 1 and f € mav 1,

(PL(f), Pr(f)) = Z(x) - alf, f)
as an identity in L ® C.

The main result of this paper is as follows.
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Theorem 1.3.3. With assumption as Conjecture [71.3.2 Let P be the set of

rational primes p such that 7 is ramified over a prime v | p. Then there are
algebraic numbers ¢, € Q C C such that for any f € mar, and f € mav 1,

16¢F(2)?

Z(m) = L(1,7p,ad)

L'(1/2,7p) + Z cplogp
peP

as an identity in L ® C, where Q(o) is the Peterson period of the Jacquet—
Langlands correspondence of w. In particular, the Conjecture [T-3.T holds when
m is unramified.

Remarks 1.3.1. 1. The theorem implies that L'(1/2,7) = 0 if and only if
it is zero for all conjugates of o.

2. Assume that o is unitary and take f = f. The Hodge index conjecture
implies L'(1/2,7) > 0. This positivity is a consequence of the Riemann
hypothesis.

By the Theorem of Prasad and Loke, we have the following weak form of
the conjecture:

An outline of the proof

%“Zhe basic strate Z}s_ @?alogous in spirit to the proof of the Gross-Zagier formula
2] in our book [33]. We want to compare the analytic kernel function and the
geometric one. S
By the work of Garrett Fﬁzand Piatetski-Shapiro—Rallis Hi’% the analytic
kernel function can be constructed from the central derivative of an incoher-
ent Siegel-Eisenstei 9§eries on Spg. Kudla first studied this derivative of the
Eisenstein series in %f] and is the analytic side of his conjectured “arithmetic
Siegel-WEeil formula”. The construction of the geometric kernel function dﬁ sim-
ilar to that in the proof of the Gross-Zagier formula in our book [33]. More
precisely, we can define some generating functions of Hecke operators. Such
generating functions have appeared in Gross—Zagier’s paper. Works of Kudla—
Millson and _rétbzerds relate them to the Weil representation. A little extension
of our result ([37]) shows that these generating functions are automorphic forms
on GLo. Then the geometric kernel function is given by a specific arithmetic
intersection of three such generating functions of Hecke operators.
We reduce the questions to local ones to compare the analytic kernel func-
tion with the geometric one. At a non-archimedean place where the Shimura
urve has a sound reduction, it is sufficient to use the result of Gross-Keating
hg’ . At an archimedean home, we can carry out the calculation explicitly. But
there are essential difficulties in carrying out the regional analysis explicitly at
finite places where the Shimura curve could have a better reduction. Under the
assumption of the main theorem, we can overcome these difficulties by choosing
some special test functions to define the generating function of Hecke operators.



1.4 Notations

In the following, k denotes a local field of a number field.

e Normalize the absolute value | - | on k as follows:
It is the usual one if k£ = R.
It is the square of the usual one if £ = C.

If k is non-archimedean, it maps the uniformizer to N~!. Here N is
the cardinality of the residue field.

e Normalize the additive character ¢ : k — C* as follows:
If k = R, then ¢ (z) = >,
If k = C, then t(z) = ¢*™Re@),

If k is non-archimedean, then it is a finite extension of QQ, for some
prime p. Take ¢ = tq, o try/g,. Here the additive character ¢g, of Qp
is defined by v, (x) = e ™) where ¢ : Qp/Z, < Q/Z is the natural
embedding.

e For a reductive algebraic group G defined over a number field F' we denote
by Z¢ its center and by [G] the quotient

[G] := Za(A)G(F)\G(A).

e We will use measures normalized as follows. We first fix a non-trivial
additive character ¥ = ®,1, of F\A. Then we will take the self-dual
measure dx, on F, with respect to 1, and take the product measure
on A. We will use this measure for the normal unipotent subgroup
N of SLy(F) and GLo(F). We will take the Haar measure on F
as d*x, = (g, (1)|zy|"tdz,. Similarly, the measure on B, and B, are
the self-dual measure dz, with respect to the character ¢, (tr(zy")) and
d*xzy, = (g, (1)|v(2y)|"2dx,. If B is coherent: B = By, then we have a de-
composition of the Haar measure on A*\B*: dx = [[ dx,. We will choose
the Tamagawa measure on SLy(Ag) defined by an invariant differential
form and denote the induced decomposition into a product dg =[], dg..
Then we choose a decomposition dg =[], dg, of the Tamagawa measure
on G(A) such that locally at every place, it is compatible with the chosen
measure on SLy(Ey).

e For the non-connected group O(V'), we will normalize the measure on
O(V')(A) such that
vol([O(V)]) = 1.



e For the quadratic space V' = (B,v) associated with a quaternion alge-
bra, we have three groups: SO(V), O(V), and GSpin(V). They can be
described as follows.

GSpin(V) = {z,y) € B* x B*|v(z) = v(y)}.

SO(V) = GSpin(V)/A(F).

Let po be the group of order two generated by the canonical involution
on B. Then we have a semi-direct product.

O(V) =80(V) % pa.
Moreover, by the description above, we have an isomorphism.
GSpin(V) = B* x B!,
Where B! is the kernel of the reduced norm:
1—B' - BX 5 F* 1.
And similarly, we have an isomorphism.
SO(V) = B*/F* x B'.

Then for a local field F, we will choose the measure on B!, B*/F*
induced from the action we have fixed on F* and B* via the exact
sequences. In this way, we also get a Haar measure on SO(V). We
normalize the measure on pg(F) = {£1} such that the total volume is 1.
The measure on O(V) is then the product measure.

o G=GL3  :={g € GLa(E)|det(g) € F*}.

o We will also identify Sym; with the unipotent radical of the Siegel parabolic
P of Spg:

n(b):<1 ?) b€ Symy(A).

And we denote [Symg] = Syms(F)\Symz(A). And we use the self-dual
measure on Symg(A) concerning the additive character yotr of Symg(A).
By Symgz(F')eq, we denote the subset of non-singular elements. For a non-
archimedean local field f, denote by Sym(&r)Y the dual of Syms(Or)
with respect to the pairing (z,y) — tr(zy). For X,Y € Syms(F'), we
write X ~ Y if there exists ¢ € GL3(OF) such that X = %Yg. For
F =R, we have a similar notation but with g € SO(3).
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2 Weil representations and Ichino’s formula

This section will review Weil’s representation and apply it to the triple product
L-series. We will follow the work of Garrett, Piateski-Shapiro—Rallis, Wald-
spurger, Harris—Kudla, Prasad, and Ichino. The first main result is Theorem
2.3.1 about the integral representation of the triple product L-series using the
Eisenstein series from the Weil representation on an adelic quaternion algebra.

When the sign of the functional equation is +1, the adelic quaternion alge-
bra is coherent because it comes from a quaternion algebra over a number field.
Then we have thc centﬁal \ialue formula of the triple product L-series due to
Ichino (Theorem Emﬁ'nement of Jacquet’s conjecture proved by Harris
and Kudla.

When the sign is —1, then the quaternion algebra is incoherent, and the
derivative of the Elbensteln S rlebkls t]ieEl,{ernel function for the result of the
triple product L-series . ext, we will study the T-th Fourier
coefficients for nonsmgular T We show that these coefficients are non- vagé;%,l}g
only if T is represented by elements in a nearby quaternion algebra (cf. (Z:5: =)T

2.1 Weil representation and theta liftings

In this subsection, we will review the Weil representation as its its extension
to similitudes by Harris and Kudla and normalized Shimuzu lifting by Wald-
spurger.

Extending Weil representation to similitudes
Let F be alocal filed, n a positive integer, and Sp,,, the symplectic group with

0 1n on F?". With the standard
-1, O

polarization F?" = F™ @ F™, we have two subgroups of Spy,,:

M—{m(a)—<g tao_1>
N:{n(b)=<é ;’) bESymn(F)}.

Note that M, N and J generate the symplectic group Spa,.

Let (V, (+,-)) be a non-degenerate quadratic space of even dimension m with
orthogonal group O(V). Associated to V, there is a character yy of F*/F*:?2
defined by

the standard alternating form J = <

a € GLn(F)}

and

xv(a) = (a,(=1)™*det(V))r
where (-, ) is the Hilbert symbol of F' and det(V) € F*/F>*? is the deter-

minant of the moment matrix Q({z;}) = 4((2;,2;)) of any basis 21, ...,z of

V.

11



Let (V™) be the space of Bruhat-Schwartz functions on V" = V ® F"
(for archimedean F', functions corresponding to polynomials in the Fock model).
Then the Weil representation r = 7y, of Spa, X O(V') can be realized on . (V")
by the following formulae:

d(za),

RIS

r(m(a))®(z) = xv(det(a))| det(a)]

r(n(b))®(z) = (Tr(bQ(x)))®

—

x)?

and R
r(J)2(z) = 72 (),

where v is an eighth root of unity and  is the Fourier transform of ®:
Ba) = [ @)0(3 i)y

for z = (x1,...,2n) € V* and y = (y1, ..., yn) € V™

Now we want to extend r to representations of groups of similitudes. Let
GSp,,, and GO(V) be groups of similitudes with similitude homomorphism
v (to save notations, v will be used for both groups). Consider a subgroup
R = GSp,,, Xg,, GO(V) of GSp,,, x GO(V)

R = {(g,h) € GSpy, x GO(V)|v(g) = v(h)}.

Then we can identify GO(V') (resp., Spy,) as a subgroup of R consisting of
(d(v(h)), h) where
1, 0
d(y)_< 0 v-1, >

(resp. (g,1)). We then have isomorphisms

where GSpj., is the subgroup of GSp,,, with similitudes in v(GO(V)).
We then extend r to a representation of R as follows: for (g,h) € R and
o c s (V"),

r((g,h)® = L(h)r(d(v(9)™")g)® = r(gd(v(9)~")) L(h)®

where .
L(h)®(x) = |v(h)|p * D(h~").

For F', a number field, we patch every local representation to obtain repre-
sentations of adelic groups. For ® € .(V}), we can define a theta series as an
automorphic form on R(A):

9(g7h7¢)) = Z T(Q? h)@(m), (g7h’) € R<A)
zeVn

12



loc shimizu

Theta lifting: local and global

Now we consider the case when n = 1 and V is the quadratic space attached
to a quaternion algebra B with its reduced norm. Note that Spy = SLg and
GSp, = GLa. And GLJ (F) = GLg(F) unless F = R and B is the Hamilton
quaternion in which case GLJ (R) is the subgroup of GL2(R) with positive
determinants.

We first consider the local theta lifting. For an infinite-dimensional repre-
sentation o of GLy(F'), let 7 be the representation of B* associated by Jacquet-
Langlands correspondence and let 7 be the contragredient of w. Note that we
set m >~ 0 when B = Moyyo.

We have natural isomorphisms between various groups:

1= Gy — B*xB*—=GSO(V)—1
where (b1,b2) € B* x B* acts on B via (by,bs)x = blxbgl,
GO(V) = GSO(V) x {1,¢}

where ¢ acts on B via the canonical involution ¢(z) = z* and acts on GSO(V)
via c(by, be) = (b4, 04) L. Let

R = GSO(V)g, GLy == {(h,g)) € GSO(V) x GLs|v(g) = v(h)}.

Proposition 2.1.1 (Shimizu liftings). There exists an GSO(V) ~ R'/SLg-
equivariant isomorphism

(2.1.1) (0 ®@7)sL, ~ TR T.

Proof. Note that this is stronger than Howe’s usual duality in the current set-
ting. The result essentially follows from the results on Jacquet-Langlands corre-
spondence. Here we explain why we can replace GO(V') by GSO(V'). Two ways
exist to extend an irreducible representation of GSO(V) to GO(V). But only
one can participate in the theta correspondence because the representation sign
of GO(V') does not occur in the theta correspondence unless dim V' < 2. O

Let #, = 7Y be the 1-Whittaker model of o and let W, be a Whittaker

function corresponding to ¢. Define

S:. S (V)@ Wy — C

¢(2)

W)= S(@,W)= /
( ) ( ) L(1,0,ad) N(F)\SLz2(F)

r(9)®(1)W(g)dg.

See the normalization of measure in “Notations”. By P{I , Lemma 5] the integral
is absolutely convergent and defines an element in

Homgp,, « px (r ® o,C)

13



theta—normalization|

prop theta decomp‘

subsec local Z‘

where B* is diagonally embedded into B* x B*, and S(®, W) =1 for unram-
ified data. Since

Homgy, « px (1 ® 0,C) ~ Hompgx ((r ® 0)sL,,C) ~ Hompx (r ® 7, C)

and the last space is of one dimensional spanned by the canonical B*-invariant
pairing between 7 and its (smooth) dual space 7, we may define a normalized
R/-equivariant map 6

(2.1.2) :00r >TT.
such that
S(@, W) = (f1, f2)

where f1 ® fo =0(® @ W).
Now in the global situation where B is a quaternion algebra defined over a
number field, we define the normalized global theta lifting by

¢(2)

(D) (h) = 2L(1, 0, ad) /sLQ(F)\SLQ(A)

©(519)0(919,h, ®)dg1,  (h,g) € R'(A).

Proposition 2.1.1. We have a decomposition 6 = @), 0, in
Homp(a)(r ® o,m @ 7).

Proof. 1t suffices to prove the identity after composing with the tautological
pairing m# x T — C. Assume that fi ® fo e @7, & = ®P, € (V) and
Y = R, € o satisty

fi® fa=0(2® ).

and decomposable. We need to prove

(f1, f2) = [ 9(®v, 00)-

This follows from }% , Prop. 3.1]. We_have different normalizations of § and

the map S (essentially the map B! in ).
O

2.2 Local zeta integrals

Let E be a semi-simple algebra over F' of dim 3. Consider the symplectic form
on the six-dimensional F-vector space E?:

oL S ARNY SR

(z,9) @ (2',y") = Trg p(zy’ — ya').

14
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Let GSpg be the group of similitudes relative to this symplectic form, and we
define
G = {g € GLy(E)|det(g) € F*}.

Then the above construction of symplectic form identifies G with a subgroup
of GSpg.

Let I(s) = Indgs%)\s be the degenerate principle series of GSpg. Here, P
is the Siegel parabolic subgroup:

a  *
P:{(O a1 ) € GSpg

and for s € C, A\ is the character of P defined by

a * —3s s
(6 e ) = Ml

We have a GSpg X¢

CLGGLF(E), I/EFX}

.. GO(Bp))-intertwining map
(2.2.1) i: (Bg)—I1(0)
sending ® to fe(-,0), where
fa(g.0) = |v(9)|7°r(d(v(9)"'9)®(0), g € GSps(F).

We extend it to a standard section fg s of I(s), calle ot(g gﬁigel— Weil section
associated to ®. Let II(B) be the image of the map (2.2.1).

Lemma 2.2.1. For non-archimedean F, let B, B’ be the two (isomorphism
classes of ) quaternion algebras. Then we have

(2.2.2) I(0) =1I(B) ® II(B').
Proof. See Harris—Kudla Hi ﬁ section. 4, (4.4)-(4.7) and KudlaﬁS ], IL1. O

Now we assume that F' is archimedean.

e If FF = C, then one has only one quaternion algebra B over F. In this
case, we have

(2.2.3) 1(0) = II(B).

This is proved in Lemma A.1 of Appendix of Harris—Kudla Hi:ﬁ

e If F = R, then one has two quaternion algebras, B.= Msyo and B’ the
Hamilton quaternion. The replacement of Lemma E‘E—l is the following
isomorphism (Haurris—KudlaLH?’I , (4.8))

(2.2.4) I1(0) =I(B) & II(B’)

where II(B’) = II(4,0) @ II(0,4) is the direct sum of the two spaces
associated with the two quadratic spaces obtained by changing signs of
the reduced norm on the Hamilton quaternion.

15



eqn local Z

non-van

egqn alpha

eqn local Z Phi|

Local zeta integral of triple product

For an irreducible admissible representation o of G, let W, W be the -
Whittaker mod f 0. The local zeta integral of Garrett Tﬁ% and Piatetski-
Shapiro—Rallis ( % is a (family of) linear functional on I(s) x W, defined
by

(225)  Z(s, f,W) = /F g AW (W) € T(6) W

See the normalization of measure in “Notations”. Here, Ny is a subgroup of G

defined as
1 0
{5 1)

and n € GSpg is a representative of the unique open orbit of G acting on
P\GSpg. The integral Z(s, f, W) is absolutely convergent for Re(s) > 0. When
the exponent A(c) < & (cf. HI , §2]) of the representation o (cf. if , §2]), the
integral Z(0, f, W) is absolutely convergent.

be E,TI‘E/F<b) = 0} ,

Proposition 2.2.2. For o with A(c) < %, the local zeta integral Z(0, f, W)

defines a non-vanishing linear functional on I(0) x W,.
S-R k
Proof. SeeHZ , Prop. 3.3] and% , Pp. 227]. O

Let m be an irreducible admissible representation of Bj; with trivial restric-
tion on F'*. We define the integration of matrix coefficients as follows:

(2.2.6)

a(dr @ ho) = L(1,0,ad)

((2)2L(1/2,0)

Let o be the Jacquet-Langlands correspondence of m to GLa(FE). Assume
that A(o) < 1/2. If f is the Siegel-Weil section fg associated to ¢ € ./(B),
we also write

(2.2.7) Z(s5,®,p) = Z(s, fo, W),

where ¢ — W, is a fixed homomorphism o — %#5,.

[ @son,  semeror
FX\BX

Pr0p051t1|81n 2.2.3 Ichmo% . Assume A(c) < 3. Under the normalization

ta-normalizatio
of 0 as in 2. 1.2, we have

2(0.8,) = sen(B) 2D a0 ),

where sgn(B) = 1 if B is split and —1 if B is division.
Proof. This is Proposition 5.1 of Ichino % ]. Notice that our choice of the local
Haar measure on F*\B* differs from that of [11] by ((2). O

16



eqn E_T=W_T

2.3 Integral representation of triple-product L-series

In this subsection, we review the integral representation of the triple product
L-series of Garrett, Piatetski-Shapiro, and Rallis and various improvements of
Harris—-Kudla. Let F' be a number field with adeles A, B a quaternion algebra
over A with ramification set ¥(B), E a cubic semisimple algebra. We write
Br := B ®p FE the base changed quaternion algebra over Ap := A Qp FE.

Siegel-Eisenstein series

For ® € . (Bg), analogous to (E(T)ZC%*SWWG define
fa(g,8) = r(9)2(0)As(9),
where the character A of P defined as
As(d(v)n(b)m(a)) = |v|7>| det(a)|**.

and it extends to a function on GSpg via Iwasawa decomposition GSpg = PK
such that A\s(g) is trivial on K. It satisfies

fo(d(v)n(b)m(a)g, s) = [v|~> 7| det(a)|**** fa(g, 5).

It thus defines a section, called a Siegel-Weil section, of I(s) = Inngp6 (As).
Then the Siegel-Eisenstein series is defined to be

(231) E(gvs7q)) = Z f@(/ygas)‘

YEP(F)\GSpg(F)

This is absolutely convergent when Re(s) > - It extends to a meromorphic
function of s € C and holomorphic at s = 0 ([T7, Thm. 2.2]).
For T' € Syms(F'), we define its T-th Fourier coefficients to be:

(2.3.2) Er(g,s,®) = /[S B (0)g, s DT

(cf. “Notations” and we have shorten ¢ (T") for ¢)(Tr(7T)) if no confusion arises.)
Suppose that ¢ = ®,®, is decomposable. When 7' is non-singular, we have
a decomposition into a product of local Whittaker functions

(2.3.3) Er(g,5,®) = [[Wrw(go: 5, ®0),
v
where the local Whittaker function is given by

(2.3.4) Wr.s(9v,0, @) = /S - fo(wn(b)g, s)yY(—=Tb)db,
ymgz{(Fv

17



where

oo, ).

97
By HSW, Prop. 1.4], for non-singular 7', the Whittaker function Wz (g, s, ®,)
has an entire analytic extension to s € C. Moreover, under the following
“unramified” conditions:

e v is non-archimedean, T is integral with det(7') € O, ,
e the maximal fractional ideal of &), on which 1, is trivial is OF,,
e d, is the characteristic function of a self-dual lattice A, of V,,
e g, € K, = GSpg(0,), the standard maximal compact subgroup of GSpg(F}),
97
we have HS , Prop. 4.1]:

Wr.0(gos 5, ®0) = Cr, (5 +2) " 1Cr, (25 +2) 71

Rankin triple product L-function

Let o be a cuspidal automorphic representation of GLy(Ag). Let m be associ-
ated with Jacquet-Langlands correspondence of o on B},. Let w, be the central
character of 0. We assume that

(2.3.5) Wolyx = 1.

Define a finite set of places of F

(2.3.6) Y(o) = {v

Define the global zeta integral as
(237 Zss0.9) = [ Bl s, 2)(0)dy
qugrb% ol ?éqg—}%zg}gpl\i@(l&). Recall that the local zeta integral is defined by

S_
Theorem 2.3.1 (Piatetski-Shapiro-Rallis PE’TB) Assume that ® = @@, is de-

composable. For a cusp form ¢ € o and Re(s) > 0 we have an Euler product

: _ _ L(s + 5,0)
(238> Z(Su(I)u(p) - rv[Z<37q)’U7SO7J) - CF(23+2)CF(48+2 Ha s @Uvgo’v)

where
Cr, (25 + 2)Cr, (45 + 2)

L(s+1,0,)

CM(S,(I)U,W@U) = Z(S,(I)U,va),

which equals one for almost all v.

18



cor kernel L’\

(2.3.9) E(g,0,®)p(g)dg =

Corollary 2.3.2. 1. The global zeta integral Z(0,®, ) # 0 only if X(B) =
(o) and both have even cardinality. In this case, we have an identity:

L(3,0)
© Cr(2)

[Ta6@..00).

2. If ¥(B) = X(0) is odd, then the global root number €(1/2,0) = —1 and
L(1/2,0) = 0. We have the following integral representation for the
central derivative:

eqn kernel E’ | (2.3.10) E'(g,0,®)p(g)dg = —

'(},0)

eqn theta

eqn I int

g op CUCEE

Proof. The condition A(c,) < % holds if o is a local com onent of a cuspidal

?}:Jﬁ)l{cr)lorphic representation by the work of Kim—Shahidi [75]. By Proposition
2.3, we have
(2.3.11) a0, ®,, p,) = sgn(By) (r(2) a((Py @ ¢y)).

The corollary follows that the integration of matrix coefficients « : m, ® w1, — C
is nonzero if and only if €(1/2,0,) = sgn(B,).
O

2.4 Ichino’s formula

In this subsection, we review a central value formula of Ichino. We assume that
Y (B) is even. Let B be a quaternion algebra over F' with ramification set X (B).
Then, we write V for the orthogonal space (B, q).

For our purpose, we first recall the Siegel-Weil formula for groups of simil-
itudes. The theta kernel is defined to be, for (g,h) € R(A),

(2.4.1) 0(g,h,®) = > r(g,h)®(x).

z€BE

It is R(F)-invariant. The theta integral is the theta lifting of the trivial auto-
morphic form, for g € GSp{ (A),

(2.4.2) o) = [ oot B)dn,
[O(BE)]

where h is any element in GO(Bg) such that v(h) = v(g). It does not depend
on the choice of h. When B = May»o the integral needs to be regularized. The
measure is normalized such that the volume of [O(Bg)] is one. The function
g+ I(g,®) is left invariant under GSpg (A) N GSpg(F) and under the center
ZGspg(A) of GSpg(A). X

The following Siegel-Weil formula can be found Hiﬂ, Thm. 4.2].
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Theorem 2.4.1 (Siegel-Weil). The Siegel-FEisenstein series E(g, s, ®) is holo-

morphic at s =0 and

(2.4.3) E(g,0,®) =2I(g,®), ge GSpg(A).

To eliminate the dependence on the choice of measure on O(V')(A), we shall
write it as
(2.4.4) E(g,0,®) = 2(vol([O(V)]))"'1(g, ®).

Now we deduce a formula for the T-th Fourier coefficient of the Siegel-Eisenstein
series.

Corollary 2.4.2. Assume that V is anisotropic and det(T') # 0. Then for
g € GSp¢ (A) we have

Er(g,0,®) = 2V01([O(V)a:0])/ (g, h)®(hy ' xo) dhy,
O(V)(A)/O(V)zy (A)

where h € GO(Vy) has the same similitude as g, xo € V(F) is a base point
with Q(z0) =T, and O(V )y, =~ O(xg) is the stabilizer of .

hm SW
Proof. Put g1 = d(v(g))~'g. We obtain by Theorem E.ZI. [:

Er(g,0,8) =2 /{S Ty, )

- - v(g)|32r(d(v(g) " Hn “15=12) dhydb.
‘2/[sym3]¢( ) /[O(V)] S ulg) ¥ r(dv9) In(b)g) @ (h iy ) dhdb

z€V(F)
Note that d(v(g)~)n(b)g = n(v(g)b)d(v(g)~!)g. We thus have
r(d(v(g) Mn(b)g)®(h hitz) = w(v(g)bQ(h ™ x))r(g1)®(h'hi ) = Y (0Q(2))r(g1)@(h hy tx).

Since [O(V)] is compact, we may interchange the order of integrations. Then
the integral over [Symgs] is zero unless T' = Q(x). Since T is non-singular,
by Witt theorem, the set of x € V(F)3 with Q(x) = T is either empty or a
single O(V')(F)-orbit. Fix a base point zg. Then the stabilizer O(V)4, of x¢ is
isomorphic to O(W) for the orthogonal complement W of the space spanned
by the components of xg. We now have

Er(g.0.9)=2 | ST (e by ao)dhy
O yeow)(F)/0(V)ag(F)
= 2vol([O(V)x0])/ r(91)®(h~ hizo)dhy.
O(V)(A)/O(V)ag (A)
This completes the proof. O
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eqn def I_T

|eqn I_T=local|

|eqn E_T=I_T 2|

’prop local SW‘

For non-singular T" we define

(245)  Ir(g,®) = 2v0l([O(V)s,]) r(g, h)®(hy o) dhs.

/O(V)(A)/O(V)zo (4)

We have O(V') = SO(V') x ugy (cf. Notations) where s C O(V) is generated by
the canonical involution on the quaternion algebra. When T is non-singular, it
is easy to see that SO(V) is surjective onto O(V)/O(V)z,. We then may choose
a measure on O(V)(A) such that it is the product measure of the Tamagawa
measure on SO(V)(A) and the measure on p2(A) such that

vol(ua(A)) = 1.

Since the Tamagawa number of SO(V) is 2, we have
vol([O(V)]) = Zvol(SO(V)(FN\O(V)(A)) = 5vol([SO(V)])vol (o) = 1,

vol(uz(A)) 1

vol(po(F)\p2(A)) = ——= = —.
(P o) = T LG = 5
Now we define (a certain orbital integral):
(24.6)  Iry(ge, ®,) = / 7(gos ho) P (h1z0) dh1,  v(gy) = v(hy).

SO(V)(Fv)

£IT
Then we may rewrite (Ze.E[n.Scei when ® = ®,P, is decomposable,
(2.4.7) Ir(g,® HITU 9o, ®
E_T=I_T

Moreover, Corollary IZC?ZII.Z can be rewritten as:

We also need a local Siegel-Weil formula for later use.

Proposition 2.4.3. Suppose that T' € Syms(F,) is non-singular. Then there
is a mon-zero constant k such that for all g, € GSpg(F,), ®, € S (V)

WT,v(gm 0, (I)U) = K- IT,U(gU7 (pv)'
In particular, the functional ®, — Wr,(1,0,®,) is non-zero if and only if T
1s represented by V.

Proof. 1t suffices to prove the statement for g, = 1. Consider the space of
linear functionals ¢ on .#(V,?) that satisfy

(r(n(b))®y) = Y(TH)L(Py).

Then by ﬁgg?} Prop. 1.2], this space is spanned by ®, +— Ir,(1,®,) (whose
definition depends on the normalization of the measure dur,). Since ®, —
Wr.(1,0,®,) also satisfies this relation, it defines a multiple of the li gor func-
tional I ,(1,-) above. The multiple can be chosen to be non-zero by% Prop

1.4 (ii)].
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central value ‘

We now state the central value formula due to Ichino % , Theorem 1.1].
Note that we will not use this formula in this paper. However, the proofs of
this and our main theorem are parallel. Considering the diagonal embedding
B* — By, we define the trilinear period:

Pﬂ'(f) :/ f(b)dbv fET('.
FX\BX (4)

Theorem 2.4.4. For f = ®,f, € 7, f: ®Uf~v € 7, we have

5o L@ Lo o
P (NP = 55 Tioag o D

Here the constant ¢ is 3,2, and 1 respectively if E=F @ FoF, E=F &K
for a quadratic K, and a cubic field extension E of F' respectively.

Remark 2.4.1. The formula is trivial if the global root number is —1. Therefore,
the primary purpose of this paper is to study the case where the global root
number is —1.

2.5 Derivatives of Eisenstein series

Now we fix an incoherent quaternion algebra B over A with ramification set
Y. We assume that B has definite B, at archimedean places. We consider the
Eisenstein series F(g, s, ®) for ® € .7(B?). We always take ®, to be standard
Gaussi In this case this Eisenstein series vanishes at s = 0 as observed by
Kudla [TJ, Thm. 2.2(ii)]. As we now discuss, vanishing a non-singular 7-th
Fourier coefficient is easier to see.

For T' € Symg(F')reg, let X(T') be the set of places over gyhich T'is anisotropic.
Then X(7') has even cardinality. By Prop. é.ZIE}, the vanishi g_/order of the
T-th Fourier coefficient Er(g, s, ®) at s = 0 is at least (also cf. [TU, Coro. 5.3])

ISUS(T)| - [N (1))

Since |3 is odd, we see that Er(g, s, ®) always vanishes at s = 0. Furthermore,
its derivative does not vanish only if ¥ and 3(7) is nearby: they differ by
precisely one place v. Thus we define

(2.5.1) S(v) = {Z \{v} ifveX

Y U{v} otherwise
When ¥(7T') = X(v), the derivative is given by
(2.5.2) E7(9,0,®) = Wi, (90,0, ®0) - [] Wrw(guw, 0, Bu).
w#v
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prop wk inter‘

We thus obtain a decomposition of E’(g, 0, ®) according to the difference of
¥(T) and X:

(2.5.3) E'(g,0,®) = }}E%o¢+am@@¢%

where

(2.5.4) E)(g,0,®):= Y  Er(g,0,9),
S(T)=%(v)

and

Eling(9:0,®) = > Er(g,0,%).

det(T)=0

A weak intertwining property

In the case where X is odd, the functional ® — E’(g,0,®) is not equivariant
under the action of Spg(A). Instead, we have a weak intertwining property:

Proposition 2.5.1. Let o be the image of I1(By) under the map f — E(g,0, f)
for all quaternion algebra B over F. Then for any h € Spg(A), f € 1(0), the
function

Spg(A) 3 g+ E'(gh,0, f) — E'(9,0,7(h) )
belongs to <.

Proof. Let a(s,h)(g9) = a(s,g,h) = (] e |5 —1),s # 0. Then it extends to
an entire function of s and is left PA-lnvarlant Now for Re(s) > 0, we have

E(.gh’ S, f) - E(Q? 5, T(h)f) = SE(g7 5, O[(S, h)T(h)f)

Now note that g — a(s, h)r(h)f(g)d(g)® defines a holomorphic section of I(s).
Hence the Eisenstein series E(g, s, a(s, h)r(h)f) is holomorphic at s = 0 since
any holomorphic section of I(s) is a finite linear combination of the standard

section with holomorphic coefficients. This implies the desired assertion.
O

3 'Trilinear cycles and generating series

In this section, we construct the geometric kernel function for ® € .7 (B?) where
B is an incoherent totally definite quaternion algebra over a totally real field F'.
We will first prove the spectral decomposition of 1-cycles and additivity under
the action of endomorphisms using the Fourier-Mukai transform. Then we

%Xie\rzlyoctihf generating series of Hecke srgtors and its modularity (Proposition
ETZ{'.EF)_BHOWing our previous paper %p J-- The main conjecture can then be
reformulated as a kernel identity between the derivative of the Eisenstein series
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S3.

1

ernel-identit
and the geometric kernel associated with ®, see Conjecture F.;'?._Fmﬂﬁzve
introduce arithmetic Hodge classes and arithmetic Hecke operators, which gives
a decomposition of the geometric kernel function to a sum of local heights and
singular pairings.

3.1 Trilinear 1-cyles

In this subsection, we would like to prove the essential facts in the introduction.
Let A = A1 x A x Ag be a product of three simple abelian varieties over a
field F. First, we want to decompose Ch;i(A) into eigenspaces under push
forwards. For k = (k1, ke, k3) € (Z\ {0})3, we have a multiplication [k] on A
by component-wise multiplication by k;.

Lemma 3.1.1. We have a decomposition

Chy(A) =) Ch(4,s),

where s = (s1, S2,83) 18 triple of non-negative integers, and Chy(A,s) is sub-
space of cycles x such that

[klix = k° - x, k® = k7 k52 ks?.

Proof. We prove the lemma for general cycles Ch*(A) using Fourier—Mukai
transform. Let AY = AY x AY x AY be the product of duals. Let £2; be the
Poincare bundle on A; x A}, and use the same notation for their pull and-back
on A. Then & = K is the Poincare bundle on A x AY. Define a Fourier

transform on Chow groups with rational coefficients by
Z: Ch*(A) — Ch*(AY), F(r) = q.(p*z - em(@))

FVi o) — O(A),  FV() =gy )

where p and ¢ are projections of A x AY onto A and AV respectively. Then
these two operators are almost inverse to each other:

FloF =[-1[-1]y,  FoF' =[-1)[-1]}

where g = dim A.
From these identities, it follows that any € Ch*(A) has an expansion

xr = Z Px (Cl(@ﬂtl : 01(92)t2 'Cl(@i’))tg : q*(ytl,tz,ts))

t1,t2,t320

with ¥, 5.4 € Ch*(AY). It is easy to see that each term on the right-hand side
is an eigenvector under pull-back [k]* with eigenvalue k{'t2¢5. Since [k].[k]* =
k39 kS92 k29 it follows that each term is also an eigenvector under [k], with

. 291—t17.292—t2 .23~
eigenvalue k7' ™" kTR, O
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Let Ch*(A) denote Chy (4, (1,1,1)) and call it the space of trilinear one-
cycles. We want to study the End(A;) action on this space.

Lemma 3.1.2. For each i, let ¢;,1; € End(4;) and let ¢ = (¢1, P2, ¢3) and
¥ = (1,12, 13) be the induced element in End(A). Then for any x € Ch?*(A),

(6 +)ux = [ [($is + voin)a.

)

Proof. We use functoriality of Mukai—Fourier transform: if ¢ : B — C' is a
morphism of abelian varieties, then for any z € Ch*(B),

F(puz) = 9" F (2),

where ¢V : CV — BY is the dual morphism.
Let y = Z(x) € Ch*(AY). Applying the above formula for ¢ : A — A,
the equality in the lemma is equivalent to

(0" + ")y =TJ(e/" + /).

i

By the same formula and the assumption, we have that x and y are trilinear
under pull-back morphism:

[k:]*y = k‘lkgk‘gy.
From the proof of the previous lemma, y has an expression as

y = a«(1(P1) - c1(P2) - er(P3) - p*(2))

for some z € Ch*(A). It follows that the following identity holds:
(@ +¢")"y = 4 (@Y +00) (D) - (85 + 85) e1(Pa) - (63 + 03) e () 'P*(Z))

where for each 1, @V and 1’/;ZV denote the endomorphism of A; x AY induced by
¢; and 1; on the second factor. Thus we are reduced to prove the following
identity for each i:

(&) +9)) el(P:) = (8" + by ")er(2)

This follows from the additivity of &?; in the second variable: Let u;, 8;, and ;
denote morphisms induced by addition and two projections in the second and
third variable:

Ax AV x AY — Ax AY,

then
pi P =0 P+ 2.
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Composing the above identity with ¢* where ¢ is the morphism defined by
P Ax AY — Ax AY x AV : (x,y) — (z, pi(x), Yi(x)),
Then we obtain the desired identity:
(&7 + ) er(Z) = (81" + & )er (2).
O]

By the second lemma, we see that the action of End(A4;) on Ch#(A) makes
Ch*(A) a module over

End#(A) := End(4;) ® End(A) ® End(43).
Recall that we have defined the height pairing of trilinear 1-cycles:

(=, =): Ch®(A)@gCh®#(AY) —C,  (z,y) = (z xy) Ha(@i).

Let ¢+ ¢V denote the anti-isomorphism induced by duality:
End#(4) — End#(AY).
By definition and projection formula, we have

Lemma 3.1.3. For ¢ € End%(A), z € Ch*(4), y € Ch?*(AY), we have

(pz,y) = (z,0"y).

Moreover, if ¢ = ¢1 ® ¢pa ® ¢3 is a pure tensor, then both terms in the above
are equal to

(@ x y) [[6:(2) = (@ x o) [[ &1 e (D).

3 K3

where ¢; and @/ are endomorphisms of A x AV induced by ¢; and ¢y .

Now we assume that each A; is of GL(2)-type with End®(4;) = M;. Then
M = ®;M; acts linearly on Ch#(A). We can define a height pairing

(= =)ar: Ch#*(A) @y Ch#(4Y) — M ®C
such that for any a € M, € Ch#(A), y € Ch(AY),
Tryec/clal{z, y)u) = (ar,y) = (v, ay).

We need the formula to express this pairing. For this we consider Pic™ (A; x
AY) of line bundles on A; x AY with trivializations at 0 x AY and A; x 0.
Then we have actions of M; on Pic™(A4; x AY)g by pulling back which makes
Pic™(A; x AY) a free vector space over M; of dimension one generated by
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lem ht formula ‘

Poincare bundle ;. This induces an action of M on [[, Pic™ (4; x AY). Using
the same formulation; we can define an intersection paring with coefficients in
M ® C:
@xy)-[[a@)eMecC
M,i

such that for each a € M,

Tracse { oll@ x y) [[e1(20) ¢ = (@ x ) o* [[a(20).

M,i
By the above lemma and projection formula, we have

Lemma 3.1.4. For z € Ch(A), y € Ch**(4Y),

(@, y)u = (x x y) [Te(2).
M

Remark 3.1.1. Let C be a curve over F'. Gross and Schoen have constructed
height pairings (—, —)gs on the space Ch{°(C?) of one-cycles homologous to 0.
Let ¢ : C' — J an embedding into its Jacobian defined by a divisor of degree
1 on C. Then one has to map into one cycle on J? homologous to 0:

b ChY(C3) — Ch{°(J3).

It can be shown that

<Cl',', y)GS = <¢*xﬂv ¢*y%>
The advantage of using Ch%(.J%) over Ch{°(.J3) is that the previous is a module
over End”(J3). How to prove this module structure on Ch%(.J3) needs to be
clarified. Conjecturally these two spaces are isomorphic to each other.

3.2 Gross—Kudla—Schoen cycles

Now go back to the setting in the introduction. Let X be a Shimura curve
over a totally real field associated with an incoherent quaternion algebra B.
Let A = Ay x Ay x A3 be a product of three simple abelian varieties over F
parametrized by X, and L a quotient field of @;End®(4;). Let f; € © A;,1 and
gi € mav 1, and define f =[], f; and g = [, g; are morphisms from X to A and
AY resﬁectively. Then we have Gross—Kudla—Schoen cycles

Pr(f) = (f:X)"®1 e Ch™(A, L),  Pr(g) = (9:X)" @1 € Ch"(AY,L).
Consider the height pairing:

(Pr(f), Pr(g))r € Lo C.

We want to express this height pairing as an intersection number on X x X.
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lem ht formula . .
By Lemma l3 4 and the projection formula we have

L

eqn triple pair| (3.2.1) (PL(f), Pr(9))m = (f+X x g« X) Hé\l(i@z) = H/C\l(j(fiagi))7
Li

lem triple pair

where

ZL(fi,9:) = (fi,9:)" P € Pic” (X x X)g

is endowed with the admissible metric. We must describe the bundle Z(f;, ¢;)
directly.

The space Pic™ (X x X)g is a subspace of correspondences on X with an
action by (B*)2. It is closed under convolution and thus has a ring structure.
This ring has an action T on representations wp for any simple abelian variety
B parametrized by X by obvious way: if £ € Pic™ (X x X) and f € Hom(X, B)
realized at some level U, then T(.%) - f will bring z € Xy to

fi(c1(Z)sxxy)) € B.

As a representation of (B*)2, we have
Pic™ (X x X)g = P 75 ®uj, 75v,
B

where the sum runs through the set of isogenous classes of simple abelian
varieties B parametrized by X, and Mp = End’(B). The main result of this
subsection is the following:

Lemma 3.2.1. Let B be a simple abelian variety parametrized by X with en-
domorphism field Mp. Then for a € g, B € wgv,

(o, )" Pp=a®p.

Proof. We need to check the identity by applying to the representations m¢ for
any abelian variety C parametrized by X. Let v € mo. Assume «, 5,y are all
realized on some Xy. Then for any = € Xy,

T((a, B)" Zp)v(x) = (@, B)" PBlaxxy) = 18" Pa(a)x V-

Notice that
t = VB Pixpv

defines a morphism B — C'. Thus this vanishes if C' and B are not isogenous.
Now we assume that B = (. By definition, this morphism is simply the
multiplication by (v, 8) € Mp. Thus we have shown that

T((e, 8)" ZB)y = (7, B)ex.

This completes the proof. O
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3.3 Generating series of Hecke correspondences

Let V denote the orthogonal space B with quadratic form ¢. Recall that .7 (V)
carries an extended Weil representation of

Z = {(b1,b2,9) € B* x B x GLa(A) : q(b1b; ") = detg}
by
r(h, 9)®(x) = |g(h)|"'r(d(det(g)) " g)@(h ™ ).
For a € FY\AY, let M, denote the union
Mo= J] XoxXea
acmo(X)

This is a Shimura subvariety of X x X stabilized by the subgroup GSpin(V) of
B* x B* of elements with the same norms. Define the group of cocycles:

Chl(Ma) = h_r>n Ch' (Ma,U1)’
Ui

where Uy runs through the open and compact subgroups of GSpin(V). For an
h € B* x B*, the pull-back morphism T(h) of right multiplication defines an
isomorphism

T(h): Ch'(Mg) — Ch' (Mg, n)-1)-
~Z-

-Z-Z
Using Kudla’s generating series and the modularity proved in % , for each
¢ e (V) and g € GLa(F)4+\GL2(A) 4, we will construct an element

Z(gv (I)) € Chl (Mdetg)
such that for any (¢’,h') € %,
Z(g,r(g',h)®) =T(h)Z(gg', ®).

Hecke correspondences

For any double coset UzU of U\IB%? /U, we have a Hecke correspondence
Z(z)k € ZH(Xu x Xv)
defined as the image of the morphism

. 2
(ﬂ—Uﬁ:vszl,UﬂrUﬂxfle,U OTI) : ZUﬂ;rUafl 7 XU'

In terms of complex points at a place of F' as above, the Hecke correspon-
dence Z(z)y takes
(2.9) — > (2, 92:)
i

for points on Xy -(C) represented by (z,g) € % x By where x; are represen-
tatives of UzU/U.
Notice that this cycle is supported on the component M, ;)-1 of X X X.
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Hodge class
On X x X, one has a Hodge bundle Lk € Pic(X x X) ® Q defined as

1
Zx = 5L + p2L).

Generating Function

Write M = M;, which has an action by GSpin(V). For any x € V and an
open and compact subgroup K of GSpin(V) of the form U x U, let us define a
cycle Z(x)kx on Mg as follows. This cycle is non-vanishing only if ¢(z) € F*
or x = 0. If g(x) € F*, then we define Z(z)x to be the Hecke operator
UzU defined in the last subsection. If z = 0, then we define Z(x)x to be the
push-forward of the Hodge class on the subvariety M, which is the union of
connected components X, x X, with a € mo(X). Let K = O(Fy) - K act on
V.
For ® € .7(V)X, we can form a generating series

Z(®) = Y o(x)Z(x)k.
zeK\V

It is easy to see that this definition is compatible with pull-back maps in Chow
groups in the projection My, — Mg, with K; C Ky. Thus it defines an
element in the direct limit Ch!(M)g := limg Ch'(My) if it is absolutely con-
vergent. We extend this definition to .#(V) by projection

S (V) — .7 (V)0 d— = / r(g)®dg,
O(Feo)
where dg is the Haar measure on O(F) with volume 1.
For g € SLa(A), define
Z(ga (I)) = Zr(g)q) € Chl(M)
-Z-Z
By our previous paper Pf"]»this series is absolutely convergent and is modular
for SLa(A):
(3.3.1) Z(vg,®) :=Z(g,®), v € SLa(F).
Moreover, for any h € H,
(3.3.2) Z(g,r(h)®) =T(h)Z(g,P).

where T(h) denotes the pull-back morphism on Ch'(M) by right translation of
hy.

Let GL2(A)* denote subgroup of GLy(A) with totally positive determinant
at archimedean places. For g € GLy(Ap)™, define

Z(.q’ Q)) = T(h>_lZ(7“(g,h>(I)) € Chl(Mdetg)a
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prop mod Z

where h is an element in B* x B* with norm det g. By (3.3.1), the definition
here does not depend on the choice of h. It is easy to see that this cycle satisfies
the property

Z(g,7(91,h)®) = T(h1)Z(991,®),  (9,h) € Z.
The following is the modularity of Z(g, ®):
Proposition 3.3.1. The cycle Z(g,®) is automorphic for GLy(A)": for any
v € GLo(F)*, g € GLa(A),
Z(ng,®) = Z(g, ®).
Moreover, the minus part Z (g, ®)~ is cuspidal.
Proof. Let v € GLy(F)™ it suffices to show
T(ah)™' Z(r(vg, ah)®) = T(h) "' Z(r(g, h)®),
where (v, @) and (g, h) are both elements in %Z. This is equivalent to
T(a) "' Z(r(vg,0h)®) = Z(r(g,h)®)
and then to
T(a) "' Z(r(v,2)®) = Z(2)
with (g, h)® replaced by ®. Write 71 = d(y)~'v. By definition, the left-hand
side is equal to
T(2) ' Z(L(@)r(m)®) = Y r(m)®(a " z)p(a) " Z(2)k
zeK\V

= Z r(v)®(a'2)Z(a  2) K

= > r(n)®(@)Z(2)x
zeK\V
—Z(r(m)®) = Z(®).

For the minus part, we notice that the constant term of Z(g,®) which is a
multiple of Z. Thus the constant term of Z~ (g, ®) vanishes by definition. [

Notice that the natural embedding GLy(Ap)T — GL2(Afg) gives bijective
map
GL2(F)"\GL2(Ar)" — GL2(F)\GL2(Ap).

Thus we can define Z(g, ®) for g € GLa(Ap) by

2(9,®) = Z(n9,®)
for some v € GLy(F) such that vg € GL] (Ar). Then Z(g, ®) is automorphic
for GL2(A).
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prop-kernel

3.4 Geometric theta lifting

Let o be an irreducible cuspidal automorphic representation of GLa(A) of par-
allel weight 2. For any ¢ € 0, o € F{\A7, we define

Zo(® ® ) = Z(g19,®)(g19)dg1 € Ch'(M,,),

/SLz(F)\SLz(A)

dea(z g € GL2(A) with determinant equal to c. Then it is easy to see that by
? 3], Theorem 3.5.2, we have the following identity:

L(1,m,ad)
2Cr(2)
The collection (Z,(® ® ¢)) defines an element

(Za(® ©¢)) € [] Ch' (Ma).

(3.4.1) 2(®® p) = TO(® ® ¢)).

It is easy to see that this element is invariant under open compact subgroup
U x U of B* x B*. An element gives

Z(®®p) € ChH(X x X), ®c.7(V).

Kernel identity
For a ® = @®; € .7 (V?3), we can define an automorphic form on GLz2(A)? by

(3.4.2) 0 (g,®) = Z (g1, ®1) - Z (g2, 2) - Z™ (g3, P3),

where the right-hand side is the intersection of the admissible class e%cgenn%%l%
the projection Z(g;, ®)~ € Pic™ (Y xY) of Z(g;, ®). By Proposition B:3.T, this
a cusp form

Proposition 3.4.1. The Conjecture 17T Czsnequivalent to that ©~ (g, ®) is the
projection of —2E'(-,0,®) in the space of cups forms of parallel weight 2, i.e.,
the following identity for any cusp form ¢ for of parallel weight 2 for GLa(A)3:

<_2El('7 0, (I)), 90) = (@(7 (I))7 90)‘
Proof. After decomposing the space of cusp forms into irreducible representa-

tions, we may aSjuquthafia%,e o for some irreducible representations.
COY Kerne

By Corollary 2:37Z; the Teft-hand side of the kernel identity is
2L/ (1/2,0)

Cr(2)
I 6(® ® ) = ®,(f; @ g;), by G-I the right-hand side is

L(1,7,ad) 5
8{+ Hcl Z fz>gz))

a(0(®® p).

32



subsec arith hecke\

eqn triple pair lem triple pair
By the formula (B°Z7T) and Lemma B.Z.T, we have

[1e1(Z(i:90) = (P, Plg))-

Thus both sides multiples of a(® ® ). If either side is non-zero, then X(0) =
Y (B). Therefore Conjecture [[-3.T follows. O

For the actual computation, we may replace 7 (g, ®;)~ by arithmetic classes
extending Z(g, ®;). In fact, since each Z(g, ®;) will fix class Pic®(X), it is in
the space

miPict (X) ® Ch%(X) + Ch°(X) ® m3Pict (X) 4 Pic™ (X x X).
Thus we have a decomposition
Z(g. %) = Zi (g, ®:) + Z5(9, i) + Z7 (g, ).

It is easy to see that both Z¢(g, ®;) are Eisenstein series with values in Hodge
cycles. Now for each o € Pic®(X), fix an arithmetic extension @. Then the
above decomposition defines an arithmetic extension Z(g, ®;). Now we define

(3.4.3) O(g,®) = Z(g1,81) - Z(go, ®2) - Z(g3, P3).

Then the difference Z(g,®) — Z~ (g, ®) is Eisenstein in the sense that it is a
sum of forms which is Eisenstein for at least one variable g;. It follows that it
has zero inner product with c Sp. lfl’c_)gggls. Thus we have the following equivalent
form of the above Conjecture T.3.T:

Remark 3.4.1. Unlike the formalism ®; — Z(g, ®;) which is equivariant under
the action of B* x B>, the formalism ®; — Z(g, ®,) is not B* x B* equivariant
in general.

3.5 Arithmetic Hodge class and Hecke operators

In this section, we want to introduce an arithmetic Hodge class and the arith-
metic Hecke operators. The construction depends on the choice of integral
models, which depends on a maximal order &y of B we fix here.

Moduli interpretation at an archimedean place

Let U be an open and compact subgroup of 5. Let 7 be an archimedean
place of F'. Write B a quaternion algebra over F with ramification set X\ {7}.
Fix an isomorphism B™ ~ B ® A”. Recall that from [35, §5.1], the curve Xy
parameterizes isomorphism classes of triples (V, h, %) where

1. V is a free B-module of rank 1;
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2. his an embedding S — GLp(Vg) which has weight —1 at 71, and trivial
component at 7; for ¢ > 1, where 7 := 7,79,--- ,7, are all archimedean
places of F;

3. R is a class in Isom(Vy, V) /U, where Vy = B as a left B-module.
The Hodge structure h defines a Hodge decomposition on V c:
Vie=V 04 vl
By Hodge theory, the tangent space of Y at a point (V, h, k) is given by
ZL(V)y = Homp(V~10 Ve /V10) = Homp (V10 V01,

Since the complex conjugation on Vg switches two factors V=10 and V%=1, one
has a canonical identification

L(V)r @ Z(V); =Homp(V 10, v=19) = C.

This identification defines a Hermitian norm on Z(V),.

Lemma 3.5.1. Let 6(V') denote the one dimensional vector space over F gen-
erated by symbol 6(v) for v € V' with relation 6(bv) = v(b)d(v). Then we have
a canonical isomorphism:

LV)=3(V) @, det(VE )V,
Proof. There is a pairing 1 : V@ V. — §(V) defined by

1
¥(u,v) = 5(0(u +v) = d(u) = 4(v)).
Let B* act on this space by multiplication by v : B* — F*. Then we have

This pairing is compatible with Hodge structures when (V') is equipped with
action weight (—1,—1). Thus on V¢, the above pairing has isotropic spaces
V=10 and VO~ and defines bilinear BE -equivariant pairing

V0o vl L 5(V)e.
On the other hand, the wedge product defines a B{-pairing
V0@ VOt — det(VHY),

where the later space is equipped with an action v : B* — F*. The above
two pairings define canonical identifications:

VOl = §(V),c ® Hompx (V10,0),
VT = det(VTHY) @ Homp« (V710, C).
Thus we have

ZL(V)r = Hom(V 0 V01 = §(V), c @ det(V 1)V,
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Modular interpretation at a finite place

Let v be a finite place. Recall from %Ql’, §5.3], the prime to v-part of (VU, R)
extends to an étale system over 27, the canonical integral model of X¢;. The v-
part extends to a system of special divisible 0, -module of dimension 2, height
4, with Drinfeld level structure:

(o, @)

with an identification
Ky (Oy) ~ Ty (),

where T, (<) is the Tate module of &/ for prime v.

The Lie algebra of the formal part &7° of 7 defines a two-dimensional vector
bundle Lie(2/) on 2. The tangent space of Xy is canonically identified with
%y =08(V)g, ® Lie(«)". The level structure defines an integral structure on
0(V) at place v. Thus .%, has an integral structure by the tensor product.

If v is not split in B, then O, is the unique maximal order in B,, and
the integral structure on £ is unique. This can also be seen from the group
</ being formal and supersingular. Any isogeny ¢ : &, — 4, of two such
Op,-modules representing two points x and y on 2y smooth over &, induces
an isomorphism of &,-modules:

L(A) ~ L(B).

If v is split in B, then we may choose an isomorphism 0, = My(0,). Then
the divisible module &7 is a direct sum & @ & where & is a divisible &' p-module
of dimension 1 and height 2. Then we have an isomorphism

& = Lie(&)® % @ det T, ().

Let x be an ordinary &,-point of %; then we have an formal-étale decomposi-
tion
0— & —&— &1 —0.

This induces an isomorphism
%y = (Lie(8)” @ Ty(6°)%? @ (Tu(&;") @ Tu(&))Y)-

The first part does not depend on the level structure, but the second part does.
If ¢ : & — &, is an isogeny of orders a,b on the formal and etale parts,
respectively, then it has order b — a for the bundles %, — 2.

Admissible arithmetic classes

Combining the above, we have introduced an arithmetic structure Z for £.
The roots of this define an arithmetic structure on elements of Hodges classes

Pict(X). We denote the resulting groups of arithmetic classes as f’i\cg(X ).
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Unlike Pic(X), the group Pic’ (X) is not invariant under the action of B* but
invariant under & . We normalize the metric of £ at one archimedean place
such that on each connected component of any Xy,

&2 =0.

Now for any class « € Chl(XUﬂ x Xyp) in some irreducible component of
X x X in a finite level which fixes £ by both push-forward and pull-back, we can
attach a class @ such that if @ = o™ + dow}&; + dimiée with a € Pic™ (X x X)
and &; € Pict(X), then we have

~

a=a + d27TTE1 + dlﬂ'ggz.

2
We call such a L-lifting of . This agrees Wlth the notion of “L-liftings” in %
Corollary 2.5.7], Corollary for polarization 7= §1 + 52 + ¢, where c is positive
number making 2 ample. The following properties can characterize such a
class:

1. admissibility: for any point (p1,p2) € Xv,q X Xup, the induced arithmetic
classes a1 1= Qp, xu, and Qs 1= Qx,xp, 00 Xy, or Xy are E—admissible
in the sense that a; — deg aiE has curvature 0 at all archimedean places
and zero intersection with vertical cycles.

2. rigidity: @ - w1&; - wiEs = 0.

The class a — @ extends to the whole group Ch'(X x X).

Arithmetic Hecke operators

Let Z be a Hecke correspondence as a divisor in Xy x Xyy. We want to construct

canonical arithmetic lifting Z € Z(Xy x Xy7) so that its class in Ch' (XuxXy)
is the L-lifting of the class [Z] € Chl(XU x Xy ). For the construction o 2?
we first construct Arakelov lifting ZA* = (Z, gAr) as in our recent paper % 1,
where ¢ is admissible with integral 0 against ¢; (51) 01(52) meausure on each
fiber. The difference [Z] — [Z2] € Ch' is a class C € Pic(F) such that

o~ -~ 1 o -~
degC = =&z - &z = 5(51 - &)l
Notice that &)z and &z are canonically isomorphic. Thus (51 - fAz)|Z is

canonically represented by a vertical cycles ), G, supported over the fiber F,
of Xy x Xy where U is not maxial. Thus can define

7=7% 4 Y (GYF,
v
where G2 € Q is the geometric intersection of G.,,.
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Let p1,ps be the two projections of Z onto Xy. Then p;’s have the same
degree called d, and there is a canonical isomorphism p7{ — p5¢ of line bundles
(with fractional power). This induces isomorphisms,

Z*fl Edfg, Z*§2:€1.
Proposition 3.5.1. The above isomorphisms induce isometries:
26 =dl, 76 =dé.

Proof. By similarity, we need only prove the first identity. Since Z is 2-
admissible, Z.{; is also admissible. Thus we have constant C' € Pic(F) cycles
such that Z,.& = déy + C. Now we intersect with & to obtain

First decomposition

With the construction of cycles as above, we can decompose the intersection
as follows

O(g,®) := Z(g1,P1) - Z(g2, ®2) - Z(g3, B3).

First, this intersection is non-trivial only if all g; have the same norm. In this
case we have one h € B* x B* such that

Z(gi, ®;) = T(h)Z(r(gi, h)®;).
Thus we have that
Z(g1,®1) - Z (g2, ®2) - Z(g3, ®3) = Z(r(g1, h)®1) - Z(r(g2, h)®2) - Z(r(g3, h)®3).

Assume that each r(g;, h;)®; is invariant under K. In this case, this intersection
number is given by

O(g, ®) = > r(g, W)@ (w1, w2, 03)Z(21) K - Z(22) i - Z(23) s
(:El,:Eg,:pg)e(f(\i\/)3

We write ©(g, ¢)sing for the partial sum where Z(z;) has a non-empty inter-
section at the generic fiber. Then the remaining terms can be decomposed into
local intersections. Thus we have a decomposition

eqn 1st decomp| (3.5.1) O(g, ®) = O(g, P)sing + > _ O(g, ©)o.
v
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4 Fourier expansions of Eisenstein series

ecom
As we have seen in section ETE),_V%e need to study Fourier coefficients of the
derivative of Eisenstein series for Schwartz function ® € .%(B?) on an incoher-
ent (adelic) quaternion algebra B over the adeles A of a number field F'.

For non-singular coefficients, we want to compute them directly. The com-
putation is known in the unramified Siegel-Weil section at a non-archimedean
place, and we will recall the results. Then we compute the archimedean Whit-
taker integrals.

For singular coefficients, we give some criteria for the vanishing property.
First of all, we show that if locally at two places ® is supported on elements
in B3 whose components ar ,hne%r ly i mdependent then E7.(¢g,0,®) = 0 for
singular T (cf. Proposition B‘K%_T}En we show t}lbat EFQ ,w%))tt =0 if ©
is k-regularly supported for large k (cf. Proposition K 4-3)." These two facts
together imply that F’(g,0,®) has only non-zero Fourier coefficients at n n-g
singular T’ W]hlh E(az:gshlnu v} for those unramified v for suitable @ (cf. (EQS_%‘)f
By Theorem [A.UT of Yifeng Liu, we conjecture that we can always make such a
choice (cf. Conjecture) such that the local triple zeta integral does not vanish.

4.1 Nonarchimedeanl local Whittaker integral

Now we recall some results about the local Whittaker integral and local density.

Let F' be a non-archimedean local field with integer ring ¢ whose residue
field is of odd characteristic p. All results in this subsection hold for p = 2.
For simplicity of exposition, we only record the results for odd p. Let w be a
uniformizer and ¢ = |0/(w)| be the cardinality of the residue field. Assume
further that the additive character 1 is unramified.

Let V = B = My(F') with the quadratic form ¢ = det. Let ®¢ the charac-
teristic function of My(&). Let T € Symg(0)Y (cf. “Notations”). It is a fact
that Wr(e, s, ®g) is a polynomial of ¢—*.

To describe the formula, we recall the definition of several invariants of
T € Syms(0)Y. Suppose that T ~ diaglu;w%] with a3 < ay < a3z € Z,
u; € 0. Then we define (T)) to be the Hilbert symbol (=4%2) = (—ujuy, @)
if a1 = ag (mod2) and az < as, otherwise zero. Note that this does not depend
on the choice of the uniformizer w.

Firstly, we have a formula for the central value of Whittaker integral W (e, 0, ®p).

Proposition 4.1.1. The Whittaker function at s = 0 is given by
Wr(e, 0,®0) = (r(2)725(T)
where

1. When T is anisotropic, we have
B =0.
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2. When T 1is isotropic, we have three cases

(a) If a1 # a2 mod 2, we have

ai - (ataz-1)/2 '
BTy =2 (1+ig+ > (a+1)q
=0 i—ar 1

(b) If a1 = a2 mod 2 and £ =1, we have

ai (a1+az—2)/2
BT =2(> (i+Dg+ Y (ar+1)g" | + (a1 +1)(az — ag + 1)l +22)/2,
=0 i=a1+1

(¢) If ay = a2 mod 2 and £ = —1, we have

a ' (a1+az—2)/2 '
BT =2(> (i+Dg+ D (ar+1)q" | + (a1 +1)gl®+e)/2,
=0 i=a1+1

The second result we need is a formula for the central derivative Wi (e, 0, @).

local W derivative| Proposition 4.1.2. We have

Wi(e,0,®0) = logq - CF(2)_2V(T),

where v(T') is given as follows. Let T' ~ diagl[ty,ta,t3] with a; = ord(t;) in the
order a1 < as < as.

1. If a1 # a2 mod 2, we have

a (a1+a2—1)/2

v(T) = (1+i)(Bi-a1—azg—ag)g'+ Y (a1+1)(4i—2a—1—az—a3)q’.
1=0 i=a1+1

2. If a1 = ag mod 2, we must have ag # a3 mod 2. In this case, we have
ai
v(T) = Z(z +1)(3i —a; —a—2—az)q’
i=0
(a14a2—2)/2
+ Z (a1 +1)(4i —2a — 1 —ay — az)q’
i=a1+1
a1 +1
2

(a3 — ag + 1)l +e2)/2,

prop W_T Phi’

Proposition 4.1.3. Let ® be the characteristic function of O3 where Op is

the mazimal order of the division quaternion algebra D. Then we have for all
anisotropic T € Symg(0)V :

WT(€7 07 @6)

—2¢72(1+ ¢ )%
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eqn gaussian

RGOS
For the proof of the three propo?%tlions above, we refer to Hﬁ , Chap. 15, 16]

where a key ingredient is a result in [T7] on the local representation density for

Hermitian forms.

Proposition 4.1.4. Let @, be the characteristic function of mazimal order
Op of the division quaternion algebra D. Then we have for all anisotropic
T € Symy(0)V:

Ir(e, @) = vol(SO(V")),

IT
where the left-hand side is defined by (%5.67. .

Proof. A prior we know that Ir(e, @) is a constant multiple of Wr(e, 0, ®j).
Take any z € 03 with moment 7. Then it is easy to see that h -z is still in
0%, for all h € SO(V'). This completes the proof. O

4.2 Archimedean Whittaker integral

We want to compute the Whittaker integral Wp(g, s, ®) when F =R, B =H
is the Hamiltonian quaternion algebra,

and the additive character
Y(z) =¥, z R

Let K be the maximal compact subgroup of Spg(R):

Koo = {(_xy z> € Spg(R)

Denote by x,, the character of K,

T+ yi € U(3)}.

royy _ \m
Xm (—y x) = det(z + yi)™.

Then the Siegel-Weil sec {10 aa;ctached to ® transform by the character xs under
the action of K (cf. Fﬁ , [19]).

Lemma 4.2.1. Let g = n(b)m(a)k € Spg(R) be the Iwasawa decomposition.
Then we have when Re(s) > 0:

Wr(g,s,®) = x2 (k) (TH)As(m(a™")] det(a)| Wigra(e, s, D).

Proof. This follows the invariance under K, and the property of Siegel-Weil
section.

O
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Thus it suffices to consider only the identity element g = e of Spg(R). It is
easy to obtain a formula for A\s(wn(u)) to see that

Wr(e,s, @) = /s - Y(=Tu) det(1 + u?) "7 (wn(u))®(0)du.

Lemma 4.2.2. When Re(s) > 0, we have

(42.2) Wr(e,s,®) =~ / (—Tu) det(1 4 iu) =% det(1 — iu)~*2du,
Symg(R)

where we have the usual convention i = /—1.

Proof. Let u =%ak be the Cartan decomposition where a = diag(u1, us, us) is
diagonal and k € SO(3). Then it is easy to see that n(u) = m(k)~n(a)m(k)
and wm(k)™! = m(—k~!)w. Note that det(k) = 1 and x2(m(k)) = 1. We
obtain:

r(wn(u))®(0) = r(wn(a))®(0).

By definition, we have
r(wn(@)®(0) = 1(H,) | | 6(aQ()8(a)ds.

where, for our choice, the Weil constant is

Y(H, ) = —1.

Therefore we have

This is equal to constant times.

i 1
= det(1 —iu)"%
1;[ (1 _ zuj)2

To recover the constant, we let v = 0 and note that
r(w)®(0) = xa2(1)®(0) = ~B(0) = ~1.
We thus obtain that
r(wn(u))®(0) = r(wn(a))®(0) = — det(1 — iu) 2.

Since det(1 + u?) = det(1 — u) det(1 + iu), the lemma now follows. O
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b
Following Shimura (F*l, pp-274]), we introduce an integral for g, h € Sym,,(R)

and o, 8 € C

(4.2.3) n(g,h;a,p) = / e 9% det(x + h)* 2 det(z — h)’2dz,
x>+h,xeSym,, (R)

which is convergent when g > 0 and Re(a),Re(8) > 5. Here x > +h means
that z 4+ h > 0 and x — h > 0; and in the rest of this section, for simplicity, we
will write, for a (square) matrix g:

(4.2.4) ed = ™),

Here we point out that the measure dx in F’l’] is the Euclidean measure
viewing Sym,, (R) as R™"tD/2 naturally. This measure is not self-dual but
only up to constant 2n(n=1)/4 Tn the following, we always use the Euclidean
measure as ?F’] does. For two elements hj, ho € Sym,,(R), by hq ~ hy we mean
that hy = khok™! for some € O(n).

We recall a formula in ﬁ, (1.16)]. Let z € Sym,,(C) with Re(z) > 0, then

we have for s € C with Re(s) > ”T_l,

(4.2.5) / e Tr) det(2)° "% dz = Ty (s) det(z) ",
Sym,, (R)+

where the “higher” Gamma function is defined as

To(s) = 7" T ()1 (s — %)...F(s -2 L.

For instance, when n = 1, we have when Re(z) > 0 and Re(s) > 0

/ e #  de =T(s)2 ™%,
Ry

Lemma 4.2.3. When Re(s) > 1, we have

Wr(e, s, ®) = k(s)T3(s +2) ' T3(s) " In(2r, T; s + 2, 5)
where
(4.2.6) ki(s) = —29/2705+6,

Proof. Consider

otherwise.

n+1
e "det(x)*" 2 x>0,
@) = {0 o

siegel
. . . . -1
Applying (F.2.5] to z = v + 2miu for u,v € R, we obtain when Re(s) > "5~,

~

f(u) =Ty(s)det(v + 2miu)~°.
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’zeta infinity‘

Take the inverse Fourier transformation; we obtain a formula that we will use
several times later:

(4.2.7)
eV det(az)“”*%1 x>0,

1
/ 2™ det (v + 2miu) Sdu = { 2"V ()
Sym,, (R) 0 otherwise.

iegel T 1
By (E_.lf%for n = 3, we may rewrite (e.n.
3516 ] '
Wr(e,s,®) = ———— / e 2miTu det(l + iu)—s/ e~ m(1—iu)z det(x)sdx23/2du.
I3(s +2) Symg(R) Symj(R) 4

Here du is changed to the Euclidean measure and the constant multiple 23/2
comes from the ratio between the self-dual measure and the Euclidean one.
Interchange the order of the two integrals

7[.3s+6 L1
—23/2/ e " det(x)® / e2miu(ze—T) det(1 + tu) " *du | dz.
P3(s +2) Jsym,®), Symy (R)

foui
By (IZI?Zu. Jfor n = 3, we obtain

35+6 6
S / e det ()=o) e=27(5-T) qet (2m(% — T))*~2da
L3(s +2) Josoasor 23T3(s) 2
65+6
S (L / e 2@=T) det(z)® det(z — 2T)°2da.
F3(S + 2>F3(S) z>0,2>2T
Finally we may substitute x — T+ x to complete the proof. ]

f et
To compute the integral n-integral (e. 7 ehrfa?l inductive way, we recall the
“higher” confluent hypergeometric function ([30, pp.280,(3.2)]). Let Sym,,(C),
be the subset of z with Re(z) > 0. Then for z € Sym,,(C),, we define

+1

(4.2.8) Calz, 0, B) = / e~ det(z + 1)* "2 det(z)’~ "7 dz.
Sym,, (R)+

Shimura first introduced the analytic continuation:

Lemma 4.2.4 (Shimura). For z € Sym,(C) with Re(z) , the integral

>
Cn(z; 0, B) is absolutely convergent for a € C and Re(B) > "51. And the
function

W(Z’ «, /B) = Fn(ﬁ)il det(z)ﬁgn(z7 «, ﬁ)

can be extended to a holomorphic function of (a,3) € C2.

hi
Proof. See %’”, Thm. 3.1]. O

The following proposition gives an inductive way to compute the Whittaker
integral Wr(e, s, ®), or equivalently n(27,T;s + 2,s). To simplify notations,
we use w’ to denote the transpose of w if no confusion arises.
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ind of infinity| Proposition 4.2.5. Assume that sign(T) = (p,q) with p+ q = 3 so that we

have 47T ~ diag(a, —b) for a € R b € R’i. Let t = diag(a,b). Then we have
n(2m, Tss +2,5) = 20%71/2| det(T)|*¢(T, 5),
where
3—p

&(T,s) :/ e~ @WHIW) qet(1 4 W), (ZaZ, s + 2,5 — T)
M

1
X C(Z'b7, 5,5 + %) duw,

where M =RE, W =w-w', W =w'w, Z=(1+W)"2 and Z' = (1+W")'/2.

Proof. We may assume that 47T = kt'k~! where k € O(3) and t' = diag(a, —b).
Then it is easy to see that.

n(2m, T;s +2,5) = n(2m,t'/(47); s +2,8) = | det(T)[**n(t/2, 1pq4; 5 + 2, 5)
where 1, , = diag(1,, —14). By Hil;;’ p.289, (4.16),(4.18),(4.24)], we have
n2m, T s +2,5) = 20%¢712| det(T)|?°¢(T), 5).
This completes the proof. O

Corollary 4.2.6. Suppose that sign(T) = (p, q) with p+q = 3. Then Wr(e, s, ®)
18 holomorphic at s = 0 with vanishing order

1
ordooWr(e,5,®) > 117,
L ind of infinit
Proof. By Proposition 1.2.5, we know that
[p(s — 352)y(s 4+ 41) )
W 6,8,@ ~ p 2 q 2 / e*(aW+bW )det 1 + W 2s
r(€,5,2) To(s + 205(s) Ui (1+W)
1 3—p 1 17 1 g+1
X ———=——C(ZaZ;s+ 2,5 — ) G(Z'0Z" s, s + ——)dw
(s — 352) 2 Ty(s+ 4

Lo . . zeta infinit
where “~” means up to nowhere vanishing the entire function. Lemma IZI.ZZI
implies that the latter two factors in the integral are entire functions. Thus we

obtain that.

Ip(s — %Wq(s + %) g+l

dS: 9 7® Z ds: -
ords—oWr(e, s, ®) > ords—o Ta(s + 2)T3(s) [ 5

]
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Remark 4.2.1. 1. The same argument also applies to higher rank Whittaker
integral. More precisely, let V' be the n 4+ 1-dimensional positive definite
quadratic space and ®( be the standard Gaussian e 271*(#%) on V. Then
for T non-singular, we have

Tp(s — 2T (s+ L) n—p+1 +1
ords—oWr(e, s, ®g) > ords—g p(F (Sj2+1q)(1—‘ (5)2 ):[ ]29 | = [q 5 -
n T2 J)tn

And it is easy to see that when T > 0 (namely, represented by V),
Wr(e, 0, ®p) is non-vanishing. One immediate consequence is that Wr(e, s, ®¢)
vanishes with order precisely one at s = 0 only if the quadratic space with
signature (n— 1, 2) represents 7. We will see by concrete computation for

n = 3 that the formula above actually gives the exact order of vanishing

at s = 0. It should be true for general n, but we have yet to try to verify
this.

Proposition 4.2.7. When T > 0, we have

Wr(e,0,®) = k(0)['3(2) " Le 2",

egn _def kappa
where k(s) is defined by (2.2.63.

Proof. Near s = 0, we have
n2m,T;s+2,s)

:e_%T/ e~ 2™ det(x 4 27)° det(z)*2dz
>0

_—2nT (/ e~ 2m det(2T)s det(x)s—zd:p + O(S))
x>0

=~ 27T (det(27)"(27) *Ts(s) + O(s)) .

Note that T'3(s) = 73/20(s)['(s — $)I(s — 1) has a double pole at s = 0 and
I's(s 4+ 2) is non-zero at s = 0. The desired result follows immediately. O

4.3 Singular coefficients

In this subsection, we deal with the singular part E;mg(g, 0,®) of the Siegel-
Eisenstein series on G = GSpg. We will write G, = Sp,,, and P the Siegel

parabolic of Spg (not G).

Definition 4.3.1. For a place v of F, we define the open subset IB%% sub (T€SD.
]Bareg) of B2 to be all x € BY such that the components of x generate a dimension
3 subspace of B, (resp. with non-degenerate moment matriz).

3
Note that .7(B;
representation.

) is P(F,)-stable under the action defined by the Weil
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singular coe

Lemma 4.3.2. For a place v, if a Siegel-Weil section fo s € I1(s) is associated
to ® € S(B3 ), then fos is supported in the open cell PwoP for all s.

v,sub

Proof. By definition we have fo s(g) = 7(9)®(0)As(g). Thus it suffices to prove
supp(fe,0) C PwoP. Note that by the Bruhat decomposition G = [, Pw; P,
it suffices to prove r(Pw; P)®(0) = 0 for i = 1,2,3. Since Y(Bg’sub) is P(F,)-
stable, it suffices to prove r(w;)®(0) =0 for i = 1,2,3. By

T(?U»@(O) = ’)// ‘ CI)(O, 0, Lijd1yeeey {Eg)d[Ei_H...d.%g
IBT‘L—’L
for a certain eighth-root of unity -y, and since
(I)(O, cesy 0, Ljd1y eeey .%'3) =0

when ¢ > 1, we complete the proof. ]

Proposition 4.3.3. For an integer k > 1, fix non-archimedean (distinct) places
V1,02, ., V. Let @ = @,®, € S (B?) with supp(®,,) C BT o (i=1,2,....k).

V5,81
Let g € G(A) satisfy go, € P(Fy,), (i = 1,2,...,k). Then for singular T, the
vanishing order ords—oEr(g, s, ®) is at least k. In particular, when T is singu-
lar, we have Er(g,0,f) =0 if k> 1, and E}.(g,0,®) =0 if k > 2.

-R [K-R=3
Proof. We deduce this from some results of Kudla-Rallis (HLR’], HLR‘]T Suppose
rank(T') = 3 —r with r > 0. We may write T =!yT"y, T' = ( 0 5 > for some
B € GLs_, and v € GL3. We have

Er(g,s,®) = Epr(m(y)g,s,®), geG(A).

Since m(vy) € P(F,,), it suffices to prove the assertion for

0
T —
(")
with 8 € GL3_, non-singular.
For Re(s) > 0, the T-th Fourier coefficient is a sum

Er(gs®) = [ 3 foulmg)ios(n)dn

N p(rnG(r)
3
=/ > Y fas(mg)-r(n)dn,
[N i=0 ne P\ Pw; P

where for i =0, 1,2, 3,



i 11
By Lemma E?Z%.Zc,e fo,(Ynygv,s) = 0 for v € Pw;P,i > 0, v € {vy,...,v;} and
gy € P(F,). Thus for g as in the desired statement, only the open cell has
nonzero contribution in the coefficients

ET(Q»'qu)) = N f@,s(wong)zb_T(n)dn.

This is exactly the Whittaker functional Wrp(g, s, ®) = Wr(e, s,7(g)®).
Let i : G3_, — G3 be the standard embedding defined by

1,
(a b>’_> a b
c d 1,

c d

Then this induces a map by restriction: i* : I(s) — I*~"(s+%) to the degenerate
principal series on G3_,. We now denote by f the Siegel-Weil secti 1Y fo. Let
M(s) =11, My(s) : I(s) — I(—s) be the intertwining operator (cf. %”, §4]).

Lemma 4.3.4. Let Eg(g,s,i*M(s)f) denote the B-Fourier coefficient of the
Fisensetin series on Gs_r(A) defined by section i*M (s)f. Then we have

Wr(e,s, f) = Egle,—s + g, i*M(s)f).
Proof. By 70, {4.13) (4.18)] we have
Wr(e,s, f) = Eg(e, s — g,i*U(s)f),
where U (s U (s) is H(: _T4 14)]. By the functional equation, we have
Wr(e, s, f) = Ea(e, —s + g,M(s . g) o i*U(s)f).
By the relation ({7, {4.19)]),

M(s — g) 0i*U(s) =1i"M(s),
we obtain ,
WT(ea S, f) = E,B(e’ —s+ §a Z*M(S)f)
This completes the proof. O

Since det(f) # 0, this last lemma shows that we have an Euler product
when Re(s) > 0,

(e,s,f) = HW@ S—l—%,i*Mv(s)fv).

47



-R
By the theory of intertwining operator (%F", §4, (4.7)]), there exist certain
Artian L-functions a,(s),b,(s) such that, for a finite set S outside which f° is
spherical,

M) ) = 5 (® le) Mv<s>fv<s>>) & 19(-9).

vES av(s)

-R
By ﬁg" Lemma 4.2, Prop. 4.3,(4.10)], for a local Siegel-Weil section f,,
bu(s )M (s)fv is holomorphic at s = 0 and there is a non-zero constant A,
méependent of f such that

by ()
ay(s)
-R-3

Thus there is a certain Artian L-function Ag_,,(s) (cf. ﬁ{'”, 1.14)]) such that

6 S f HWBU ai*Mv(S)fv)

My(s) fu(s))]s=0 = Au fu(0).

:A3—r ( S +

(s 1 T . by
s) g/ Ag_yp(—s+ % )WB’ o(e gt (av(s)
)

a(s

=horl=s+ 330 bs)

Aﬁ,v(‘s; f)7

’
Sﬁ’

where Sg is the set of all primes such that outside Sg, f, is the spherical vector,

1y, is unramified and ord, (det( N
Since ordg—gAz—r(—s+ 5) = 0 cf &S Tl 14)]), ZZE?) M, (s) f, is holomor-
phic and Wj(e, s, f) extendb to an entire function, we know that Ag (s, f) is

holomorphic at s = 0. We have a formula

M
A3 rv( )

Lemma 4.3.5. Define a linear functional

Ap (0, f) = W5 (e, f,z'*fv(O))-

v (B3 = C
Q, = Ap (0, fo,)-

Then, we have t(r(n(b))®,) = 1y, 7(b)u(®y), i.c., « € Hompy (7 (B2), vr).
Proof. Tt is straightforward to check that
T L
Wa(e, =s + 5,7 (Mo(s)r(n(b)) fo)) = Yr(0)Wp(e, —s + 5, 7" Mo(s) fo).

Thus, the linear functional fs — Ag (s, f) defines an element in Homy (I(s), ¥7).

In particular, when s = 0, the composition ¢ of Ag, with the G-intertwining
map .7 (B3) — I(0) defines a linear functional in Homy (. (B3), ¥r). O
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Then the map ¢ factors through the yp-twisted Jacquet module % (IB%%) N, T
(i.e., the maximal quotient of . (BS}EQIP— which N acts by character ¢r). Thus

by the following result of Rallis (cf. [7Z, Lemma 2.3]), ¢ is trivial on . (Bg,sub)
when T is singular:

Lemma 4.3.6. Let Q7 be the (closed) subset of BS of elements x with moment
Q(z) =T. Then the map & (B3) — ' (B3) N1 can be realized as the restriction
y(B%) - y(QT,v)-

Now since the restriction of ®,, to {7, is zero if ®,, € . (Bgi’reg), and since

ordszo% = 0, we conclude that

ords—oWr(e, s, fo) > k.
For a general g € G(A), we have

WT(g7 S, fqi') :WT(67 S, T’(g)‘I))
a

r
_An—T(_S =+ 5)

(s
(s)

~—

H Aﬂ,v(57 T(gvi)(bv)u

!’
UESB’Q

S

where Sg, is a finite set of place that depends also on g. Since ./ (B3) —
1(0) is G(F;)-equivariant, we have Ag ,(0,7(gy) fo) = t(r(gy)Py). Since g, €

P(F,,), we have r(gy,)®,, € f(B%i,sub) and Ag ,, (0,7(gu;) I&l = 0 by the same
O

argument above. This completes the proof of Proposition 1.3.3.

4.4 Functions with regular support

Let F' be a non-archimedean field. Let B be a quaternion algebra over F'.
Recall that we have the moment map

Q : B> — Symy(F).

Definition 4.4.1. Let k be an integer. A function ® € V(Bfeg) is “k-reqularly
supported” if it satisfies the condition that Q(supp(®))+p~*Sym,, () C Q(B3,).

Even though it looks that such functions are exceptional, in fact generate
S (B3,,) under the action of a very small subgroup of Spg.

reg

Lemma 4.4.2. Let k be any fized integer. Then y(Bf'eg) is generated by all
k-regularly supported functions under the action of elements m(als) € Spg for
all a € F*.

Proof. Without loss of generality, we can assume that k is even and that ® =
ly e & (Bff’eg) is the characteristic function of some open compact set U C B3,
Then Q(U) is an compact open subset of Syms(F')ree. Let

73 = {(a1,a2,a3) € Z*|a1 < az < as}.
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Then the “elementary divisors.” defines a map ¢ : b € Syms(F') — (a1, az2,a3) €
Z3. One can check that it is locally constant on Symg(F).,. Hence the
composition of this map and the moment map @ is also locally constant on
B,?,’eg. In particular, this gives a partition of U into a disjoint union of finitely
many open subsets. So we can assume that do@ is constant on U, say, 60Q(U) =
{(a1,a2,a3)}.

Consider m(al3)®, a certain multiple of 14y. Choose a = p~4 for some
integer A > 1+ a; + (a2 —a1) + (a3 —a1) . Then we can prove that such
1,-a-k/2p 18 k-regularly supported. It suffices to prove that, for any € U and

t € Syms(0), Q(p~A~*/2x) 4+ p~*t belongs to Q(B2,,). Note that

reg

ay—1

Qp~A7%2g) 4 pFt = pF2AR2H Y (Q(p (M Ny 4+ p2A-ATT ]y,

ay—1

Now Q(p~"7 lz) € Sym4(&). Tt is well-known that for T € Symg(0)seq, T
and T 4 p?t3 T’ for any T € Symy (&) define isomorphic integral quadratic
forms of rank n. Equivalently, T + p>TdUD) T’ =tyT~ for some v € GL3(0).
Now it is easy to see that Q(p~A~%/2z) + p~Ft ¢ Q(Bf’cg). O

We have the following pleasant property: a k-regularly supported for large
k.

Proposition 4.4.3. Suppose that & € y(Bfeg) is k-reqularly supported for a
sufficiently large k (depending on the conductor of the additive character 1)).
Then we have

Wr(e,s,®) =0
for regular T' ¢ Q(B{?eg) and any s € C. In particular, for such T,

Wr(e,0,®) = Wh(e,0,®) = 0.

Proof. When Re(s) > 0, we have

WT(ea S, (I)) = ’Y(V,Ib) /

Symg(F)

BT - Q(x)) / & ()8 (wn(b))* dz db

BS

— (Ve / B(B(T' = T))o(wn(b))* Iro(®) dbdT”,
Symg (F)

where ¢, is a suitable non-zero constant and I (®) = Ip/(e, ®) is defined by

eqgn _q’ v

(Z25). Then T” — I7+(®) defines a function in .&(Symg(F)reg) for our choice

of ®. As a function of b € Symg(F), §(wn(b)) is invariant under the translation
of Syms(0). It follows that

/Symg(m vnObrdh = (/Sym3<ﬁ> wﬂ)dﬁ) 2 POty

bESym (F)/Sym;(0)
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which is zero unless ¢t € p~*Sym3(&) for some k depending on the conductor
of the additive character 1.

Therefore the nonzero contribution to the integral comes from 7/ — T €
p~*Sym?(&) and I7+(®) # 0. The assumption in the proposition forces that T"
is not in Q(supp(®)). But this in turn implies that I7+(®) = 0! Therefore, for
a k-regularly supported ®, we have Wr(e, s, ®) = 0 for Re(s) > 0, and hence
by analytic continuation, for all s € C. This completes the proof.

O]

4.5 Holomorphic projection

From now on, we will choose ® = ®,®, such that ®, to be k-regularly sup-
ported for sufficiently higher k£ when v is in a finite set S of finite places with
at least two elements, and ®,, is spherical for each finite v ¢ S. And we always
choose the standard Ga ssmrl at %ll arcfhlmed%a, E&aees Then for g € G(AY),
we have by Proposition 1.3.3 and 1.4.3;

(4.5.1) E'(g,0,®)=> Z E’T(g,0,<I>),

vgS (T

where the sum runs over v outside S and nonsingular 7. In this section, we
study the holomorphic projection of E’(g,0,®) (restricted to G(A)).

Firstly let us try to study the holomorphic projection for a cusp form ¢ on
GL2(A). Fix a non-trivial additive character ¢ of F\A, say ¢ = 1goTrp g with
1o the standard additive character on Q\Ag, and let W be the corresponding
Whittaker function:

Wo(g) = /F S

Then ¢ has a Fourier expansion
a 0
=X ((; 1)9):
acF'%
We say that ¢ is holomorphic of weight 2, if We = W W has a decomposition
with W satisfying the following properties:

2mi(z+iy) o210 if y >0

ye
4.5.2 Weao =
( ) (9) {0 otherwise

for the decomposition of g € GLy(R):

_ (1Y z\ (y 0\ [ cos sind
9=%\0 1 0 1 —sinf cosf )’

!Shall we call such ® S-admissible/nice/exceptional??
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eqn W prod

lem holo proj‘

For any Whittaker function W of GLy(A) which is holomorphic of weight 2
as above with Wy(gs) compactly supported modulo Z(A¢)N(Ay), the Poinaré
series is defined as follows:

ew(g) = Jim > W(19)3(vg)", G = GLy,
Ve Z(F)N(F)\G(F)

where

a b
50) = laficl a= (5 W)k kER

where K is the standard maximal compact subgroup of GLy(A). Let ¢ be a
cusp form and assume that both W and ¢ have the same central character.
Then we can compute their inner product as follows:

(o, ow) = e(9)pw(9)dg

/Z(A)GLz (F)\GL2(A)

= lim p(9)W (9)d(9)"dg
—0JZ(A)N(F)\GLa(A)

(4.5.3) = lim W (9)W (9)(g)"dg.
t—0J Z(A)N()\CL2(A)

Let g be the holomorphic projection of ¢ in the space of holomorphic forms
of weight 2. Then we may write

Wao(9) = Weo (gOO)tho (gf)

qun W 1nftv legn W i
with We, as in (1572, Then (1.5. ) s a product of integrals over finite places

and integrals at infinite places:

/ [Woo(goo)|*dg = / yre Mdy/y? = (4m) "t
Z(R)N(R)\GLa(R) 0

In other words, we have
@sd) (o) =(m [ Wy (9) T (7).
Z(Af)N(Ap)\GL2(Ay)

As W can be any Whlltta]@er functe&n‘)mth gompact support modulo Z (Af)N(Ay),
the combination of (F:53) and (X.5.4) gives

Lemma 4.5.1. Let ¢ be a cusp form with trivial central character at each
infinite place. Then the holomorphic projection ¢ of @ has Whittaker function
Woo(9oo) Wy (g5) with W, (gf) given as follows:

Wo(gr) = (4m)? lim Wi (9009 7) Woo(9o0)0 (gos ) dgoo-
t—=0+ JZ(Foo )N (Foo)\GL2(Foo)
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prop star prod‘

) 2Z-GZ
For more details, see % , 86.4, 6.5].
on M&vg we calculate the holomorphic projection of E’(g,0,®). By Lemma

1
IZI.b 1, we need to calculate the integral

1/2 dy

det(y)?’

(4.5.5)  as(T):= [ Wi(®, < 4 L1/ > ,0) det(y) 1 +se=2 Ty
R3 Y
where y = diag(y1,y2,y3) and T" € Syms(R) with positive diagonal diag(7T") =
t = diag(tl, tQ, tg).
Note that when ¢ > 1 and Re(s) > —1, we have an integral representation
of the Legendre function of the second kind:

Qu(8) _/ du B 1/°° (r —1)%dz
s\t) = R, (t+ V1 — Lcosh u)l+s 2/ x1+s(%x+1)1+5.

The admissible pairing at the Archimedean p ge G\yill be given by the constant
term at s = 0 of (the regularized sum of, cf. [73,88.1]) Qs(1 + 2s,,(2)/q(x)).
Consider another closely related function for ¢ > 1, Re(s) > —1:

1 [ dx
Ps(t) == = _—
( ) 2/1 l’(%xﬁ‘ 1)1+s

Then obviously, we have

Qo(t) = Fo(?).
One may use any one of the thhehe}npr,lctiorlg (i.e., Ei, Qs and Ps) to construct
arc

Green’s functions. As Theorem bH.T. e tunction Ei is the right choice to
match the analytic kernel function, while the admissible pairing requires using
Qs. The following proposition relates Ei to Ps and hence to Qs by coincidence

Qo = F.

Proposition 4.5.1. Let x € M3y such that T = T(x) is non-singular and has
positive diagonal. Then we have

3
) = deet) (ST [ o)+ mnGe) <o)

where

ns(xz, 2) := Py (1 i 2'290(%))

defines a Green’s function of Z,.

1pha(T)
Proof. First by the definition (IZIQ.LI)lt ) e have

_ dy
_ 2017 2T E
as(T) = s det(\/y)" W gr 5(®, €, 0) det(y)e Ydet(y) wE
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which is equal to

\ W:/QT\/@(CI), e,0)e 2™ det(y)*dy.

If we modify =z € M23]R with moment 7" = T'(z) to a new 2/ = (z}) with

7

x = xz/q'mlﬁ we Eave T(z') = =t 2Tt 3 (so that the diagonal are all 1). By

Theorem b We ave (after substltutlon y — yt)
(1) =det(t) ™ [ AGAT(@)yb)e " det(y)dy
R
By the definition of A(T'), this is the same as
1
det ()17 / {*?zln(yf @} 2), 1} ™™ det(y)*dy
R3 Dy

where we write n(z; z) = n(sz(z)) and

1 1
{*?m(yf i} 2), 1} = / i n(y2 o ).
D4 D4

We can interchange the star product and integral over y to obtain

1
as<T>—det<t>-1-s{*§:1 [tz dy}
+

Dy

Now we compute the inner integral:
1 —Ary, s
/ n(y2a; z)e”" "y dy
Ry

= / Ei(—4mys.(z))e ™y dy
Ry

ee 1
— / / e—47rys$(z)u 7due—47ryysdy
Ry J1 u
oo

1
T (4wt /1 w(1 + s5(2)u)lts

I'(s+1)
—WPs(l + 25,(2)).

(Also cf. % 1].) This completes the proof. O

du

Based on the decomposition of E’(g,0,®) in §2.5, we have a decomposition
of its holomorphic projection, denoted by E’(g,0, ®)pu:

(4.5.6) E'(9,0,®)hot = Y E'(9,0,2)u o
v
and
E'(9.0,)pmo= >, Er(g,0,®)pa
T,5(T)=%(v)
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5 Local triple height pairings

In this section, we want to compute the local triple-height pairings of Hecke
ogierf_acté)nrs at archimedean places, the unramified places, and reduce Conjecture
FIL.BTtTéome local conjecture.

For archimedean places, we introduce Green functions for Hecke correspon-
dences and compute their star product. The central technical part is to relate
the star product to the archimedean Whittaker function in §4.

For unramified places, we first study the modular interpretation of Hecke
operators and reduce the question to the work of Gross—Keating on deforming
endomorphisms of formal groups.

For ramified places v, we made a conjecture about the 1oc.al intersections,

aln-con aln-con
which will imply Conjecture%‘_.?»._l._ﬁllparticular, Conjecture T.3.T holds if there
is no ramified places.

In this section, we assume that ® = ®®,, is a pure tensor so that for for at
least two places v, @, is k-regularly supported for sufficient large k.

5.1 Archimedean height

Now let B.= H be the Hamilton quaternion and let ® be the standard Gaussian
eqn gausslian

(IZIZI ). Let B’ = My be the matrix algebra. Let Dy be the union of %ﬂ?
and S = A (A, resp.) is the upper (lower, resp.) half-plane. Let x =
(z1,72,23) € B with non-singular moment matrix Q(z) and let g; = g,, be
a Green’s function of Z,,, the special divisor on Dy defined by x;. Define the
star product

(5.1.1) A(x) =/ g1 * g2 * gs.
Dy

Then A(x) depends only on the moment Q(z) € Syms(R) (with signature either
(1,2) or (2,1) since B’ has signature (2,2)). Hence we write it as A(LQ(z))
(note that we need to shift it by a multiple 4).

We will consider Green’s function of logarithmic singularity, which we call
pre-Green function since it does not give the admissible Green’s function. Their
difference will be discussed later.

Now we specify our choice of pre-Green functions. For x € B’ we define a
function Dy = 72 — R, defined by

@)
sz(2) = q(z,) =2 o

. — b
In terms of coordinates z = [ ' A2 ) and = ¢ , we have
1 —2 c d

(—CLZQ +dz; — b+ 62122)(—(122 +dz1 — b+ C§1§2)

(5.1.2) sa(2) = —(z1 — Z1)(22 — Z2)
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We will consider the pre-Green function of Z, on D given by

9:(2) 1= n(s2(2)),
where we recall that
du
U

n(t) = Ei(—t) := — /100 o tu

In the following, we want to compute the star product for a non-singular
moment 477 = Q(z).

Theorem 5.1.1. For T' € Syms(R) with signature either (1,2) or (2,1), we
have 0)
K
W 0,®) = “2TTA(T).
T,oo(€> ) ) 2F3(2)e ( )
In particular, everything depends only on the eigenvalues of T (a priori not
obvious).

Proof. O

Comparison

Assume that 7]|oco and we w. nt to, ‘;elate the archimedean height at 7 to the
global 7-Fourier coefficient (254 of the Eisenstein series. Recall that the
generating function is defined for g € GL3 (A)

Z(g7(1)): Z r(glf)q)(l‘)z($)KWT(ac)(goo)a
zeV/K

Where the sum runs over all admissible classes. For our fixed embedding 7 :
F — C we have an isomorphism of C-analytic varieties (as long as K is neat):

Y5 = G(F)\D x G(Ay)/K U {cusp}

where, for short, G = G(7) is the nearby group.

For v = z; € V,i = 1,2,3, we define a Green function as follows: for
[, 1') € GIE\D x G(Ag)/K
P ( ) I S O e B 1)
YEG(F)/Ga(F)

For an admissible class x € Y//\', we will denote its Green function by g,. Note
that this is not the right choice of the Green function. We will get the right one
when we come to the holomorphic projection of the analytic kernel function.
Therefore we denote

(Z(z1,h)K - Z(z2, ho) K - Z(x3, h3) K)Eico := Ga1,h K * Juo,ho K * Jxs,hs K »

where Ei is to indicate the current choice of Green functions.
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Theorem 5.1.2. Let 7|oco and g = (g1,92,93) € G = GL;"?(A). Assume

that @, is supported on non-singular locus at some finite place v. Then the
archimedean contribution

<Z<gl7 q)l) ' Z(927 (I)Q) : Z(g?)a q)3>)Ei,oo = _2E1,1<ga Oa (I)>7

E)
where E!(g,0,®) is defined by (eg.g’ 4 T

Proof. First we consider g = (g1, g2,93) € SL3(A). Afterward, we extend this
to GL3 (A).
By definition, the left-hand side is given by

Z(g) (I))oo = VOI(I}) Z (b(JJ)WT(xOO)(goo) </ *?:1gxi(2,h/)d[z,h’]> :
w=(z;)€(K\V)? G(F)\D+xG(As)/K

where the sum is over all admissible classes.
Note that
7 150 () g s BN = 055122 gs_, 7y (B

ylz

For a fixed triple (z;), the integral is nonzero only if there exists a v € G(F)
such that

yh € Gvflxi(ﬁ)vi‘lhiK == th € Gvflxi(ﬁ)’yh,K.

Observe that the sum in the admissible classes can be written as z; €
G(F)\V(F) and h; € le(ﬁ)\G(ﬁ)/K Here we denote for short V' = V(1)
that is the nearby quadratic space ramified at X(7). Thus we may combine
the sum z; € G(F)\V(F) with v; € G(F)/G4,(F) and combine the sum over
v € G(F) with the quotient G(F)\D+ x G(Ay)/K:

wiB) Y ( /h o @(h’x)dh’) < /D ) *?Zlnxi(z)dz>.

2€G(F)\V (F)3

Here we have used the fact that G, = {1} if T'(x) is non-singular and we are
assuming that ®,, is supported in the non-singular locus at some finite place v.
Therefore we have

(5.1.3) Z(9,®)oc = Y _ vol(SO(Bao))e > A(T) I (g™, ™),
T

where the sum is over all non-singular 7" with X7 = ¥(7), namely those non-
singular T" represented by the nearby quaternion B(7).

Similar to the unramified p-adic case, we compare this with the derivative
of the Eisenstein series for a regular 7"

w7 0,
Kudla formula infty| (5.1.4) Ef(g,0,®) = MET@,O, P> ® ),

B WT(QOO? 07 (I)é)o)
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where ®’_ is any test function on V.3 which makes Wy (goo, 0, ¥, ) nonvanish-
ing. We may also rewrite

vol(SO(Boo))e 2T A(T
3 (SO(Bx)) (T)

Like the p-adic case, we may reduce the desired equality to g = e, which we
assume now.
o V\{e %eiegwto evaluate the constant. Note that by the local Siegel-Weil Prop.

T oC
5.4.33, the ratio

WT(67 07 q)v)
I (Py)

(whenever the denominator is non-zero) does not depend on ®,, 7" (det(1) # 0),
but only on the measure on SO(V,) (and, of course, ). Let ¢, 4+ (¢y 4, resp.)
be this ratio for the quaternion algebra over F), that is split (division, resp.).
We now use the Siegel-Weil formula of Kudla-Rallis to show that (under our
choice of measures)

ay = 2 = 41,

Co,—

Indeed, fix two distinct places vi,v2. Choose a global quaternion algebra B
split at v1,ve. Let B(vy,v2) be the quaternion algebra that differs from B only
at v1,v9. Note that our choice of measures on the orthogonal groups associated
with all quaternion algebras ensures we always get Tamagawa measures on the
adelic points. Compare the Siegel-Weil (we may choose B anisotropic to apply)
for B and B(v1,v2):

Gy Qyy = 1.

But v1,v9 are arbitrary, we conclude that a, is independent of v and hence
2
a; = 1.

From §4.2 Prop. E;%YT—Hvsgmave for T >0
Wroo(e,0,Po0) = £(0)T3(2) " te >,
where 1(0) < 0. It is easy to see that
I7,00(€, Po) = vol(SO(Boy))e 2.
Hence, we have

GV
7 vol(SO(Boo))

On the other hand, it is not hard to see that c 4 is positive, so we have

< 0.

e __sOT2)
St T T T 0l(SO(By)) |
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hm W’T h
Now note that Ir(g, > @ . ) = Er(g,0,®* ® @), and by Theorem E) o

#(0)
2'5(2)

legn Kudla formula infty legn helght nifty
Hence the ratio of b:T.4 over the T-th term of Hh.T.5 is given by

Wir(goo, 0, Poo) = e T N(T).

k(0)3(2) ! 1 1

2Wol(SO(Boo)) Cooy 2

This completes the proof.
O

Theorem 5.1.3. Let 7 be an archimedean place. Then for g € G with g, = 1
for w € Sy at each place where ®,, is not unramified,

@<gu CI)>7' = _2El(97 07 (I))T,hol~

Proof. The holomorphic projection changes E/.(g,0, ®) only when X(T') = X(v)
and v is an archimedean place, in which case we have a formula for g, = e:

E&“(gv Oa (I))hol = WT(goo) mv(T) WT,f(gf7 07 (I)f)a

where m(T) is the star product defined by Ps(1 + 2s,(z)/q(x)) for x with
moment 1. The general g, can be recovered by the transformation rule under
Iwasawa decomposition. Then all equalities above are valid for ¢ € G with
gv = 1 when v € S, the finite set of non-archimedean places outside which &,
is unramified.

Under the assumption, all singular coefficients vanish on both sides. For the
non-singular coefficients, the right choice of Green’s function is the regularized
limit of Q5 as s — 0. Sinc f ZQ is holomorphic and equal to zero when s = 0,
by the same argument of % TS 1], we may use Ps in the Green’s functio %nd
then take the reélrlcl)argzc%(% h{.%ét Then the result follows from Theorem b 2

and Proposition O

5.2 Modular interpretation of Hecke operators

In this section, we would like to study the reduction of Hecke operators. Let U
be an open and compact subgroup of IB%X and let K =U x A U. Foranx €V

with (totally) the positive norm in F, the cycle Z(z)k is the graph of the Hecke
operator given by the cost UzU. Namely, Z(z)x is the correspondence defined
by maps:

Z()k = Yynava— — Xu xpy, Xv.
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Moduli interpretation at an archimedean place

First, let us give some moduli interpretation of Hecke operators at an archimedean
place 7. Let B = B(1) be the nearby quaternion algebra. If we decompose
UzU = []; x;U, then Z(x)k as a correspondence sends one object (V,h, &) to
sum of (V| h,%Z;). In other words, we may write abstractly,

(5.2.1) Z(0)k(V,h,R) =Y (Vi his i),

1

where the sum is over the isomorphism class of (Vj, h;, %;) such that there
is an isomorphism y; : (V;,h;) — (V,h) such that the induced diagram is
commutative:

(5.2.2) Vo —s 1

b s

o~ o~

Vo —=V.

Assume that x; = u;zv;. Replacing £ and k; by equivalent classes x o u; and
K;i O v;l, we may assume that z; = x. Thus the subvariety Z(x)g of My
parameterizes the triple:

(‘G7h17/_fl)a (‘/Qah%RQ)a Y,

where the first two are objects as described above for k1 and &9 level structures
modulo Uy := UNzUz ™! and Uy = UNz~'Ux respectively, and y : (Va, ho) —
(Vi, hy) is an isomorphism of Hodge structures such that the diagram

(5.2.3) Vo 2 1

is commutative.

Now we want to describe the above moduli interpretation with an integral
Hodge structure concerning a maximal open compact subgroup of the form
O} = Op containing U, where Op is a maximal order of B. Let V7 =
Op as an Op-lattice in V. Then for any triple (V,h,%) we obtain a triple
(Vz, h, k) with Vz = k(Vjz) which satisfies the analogous properties as above.
My, parameterizes such integral triples. The Hecke operator Z(x)x has the
following expression:

Z()k (Vo hoR) = Y (Viz, iy 53)

7
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where Viz = k;(Voz). We can’t replace terms in the above diagram by integral
lattices as y; and z; only define a Quasi-isogeny:

y; € Homg, (Viz, Vz) ® F, T; € B= EndﬁB(‘?{),Z) ® F.

When U is sufficiently small, we have universal objects (Vis, h, k), (Vuz, h, K).
We will also consider the divisible &'g-module ‘N/U = YA/U / VUZ- The subvariety
Z(x)k also has a universal object y : Vi, — Vi,

Let us return to curves Xy over F. Though the rational structure V at
a point on Xy does not make sense, the local system V and ‘72 make sense
as By and Op, modules respectively. The Hecke operator parameterizes the

morphism ¥y : Vi, — Vy,.

Modular interpretation at a finite place v

We would like to give a moduli interpretation for the Zariski closure Z(x)x
of Z(z)k. The isogeny y : ‘A/U2 — 17U1 induces a quasi-isogeny on divisible
Op,-modules. For prime to v-part, this is the same as over generic fiber. We
need to describe the quasi-isogeny in standard modules. First, assume that
U, = ﬁﬁj is maximal.

If v is not split in B, then Uy, = Uy, = U,. Thus, the condition on ¥, on the

generic fiber requires an order equal to ord(v(z)). Hence Z'(z)x parameterjzes
the quasi-isogeny of pairs whose order at v has order . Here we refer to %Q’,
§5.3] for the notion of quasi-isogeny as quasi-isogeny of the divisible module,
which can be lifted to the generic fiber.

If v is split in B, then we may choose an isomorphism g, = M>(0,). Then
the formal module &7 is a direct sum & @© & where & is a divisible &p-module
of dimension 1 and height 2. By replacing « with an element in U,zU, we may

wC

assume that x, is diagonal: z, = d with ¢,d € Z and ¢ < d. It is

clear that the condition on y on the generic fiber is a composition of a scalar
multiplication by @ (as a quasi-isogeny) and an isogeny with kernel isomor-
phic to the cyclic module @, /w?%0,,. Thus the scheme 2 (z)x parameterizes
quasi-isogenies f of geometric points of type (c,d) in the following sense:

1. the v-component w™y, : & — & is an isogeny;

2. the kernel of w ™y, is cyclic of order d — ¢ in the sense that it is the image
of a homomorphism &, /w@w?=¢ — &.

We also call such a quasi-isogeny of type (c,d). Notice that the number ¢, d can
be defined without reference to U,. Indeed, ¢ is the minimal integer such that
w™“x, is integral over 0, and that ¢ + d = ord(det ).
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5.3 Supersingular points on Hecke correspondences

For a geometric point in My with formal object &1, &5, by Serre-Tate theory,
the formal neighborhood Z is the product of universal deformations %; of
&;. The divisor of 2 ()% in this neighborhood is defined as the sum of the
universal deformation of quasi-isogenies. In the following, we want to study the
behaviors of this divisor in a formal neighborhood of a pair of supersingular
points on M when U = U,U" with U, maximal.

Supersingular points on 2y and #x

Recall that by %Ql’, §5.4], all supersingular points on Xy are isogenous to each
other. Fix one of the supersingular point P representing the triple (.2, V’, kg)-
Let B = End"(P) which is the nearby quaternion algebra B(v) over F'. We
may use ko to identify Vy with Vo/Voz. The groups (B ® A%)* and (B})™
both act on Vy. We may use ko to identify them. In this way, the set 2;7° of
supersingular point is identified with

Y7y = Bo\(B ® A%)" /U"
so that the element g € (B ® A?)X represents the triple
(0, Ve, gU"),

where By denotes the subgroup of B* of elements with order 0 at v.

The supersingular points on .Z5 will be represented by a pairs of elements
in (B®A3’c) * with the same norm. Thus we can describe the set of supersingular
points on .#x using orthogonal space V = (B, ¢) and the Spin similitudes:

H = GSpin(V) = {(g1,92) € B*, v(g1) =v(g2)},
which acts on V' by

(91,92)r = quxgy ', g€ B,z eV
We then have a bijection

M, = H(F)o\H(A})/K".

Supersingular points on Z(z)x

The set 2 (x)j?v of supersingular points on the cycle Z(x)g represents the
isogeny 1 : Py — P; of two supersingular points of level U; = U NzUxz~! and
Uy = U Nz 'Uz. In terms of triples as above, 2 (x)3¢ represents equivalent
classes of the triples (g1, g2,y) of elements g; € (B ®A?)X/U,~ and y € B* with

the following properties

(5.3.1) 97y g0 = Y, ord,(det(xy)) = ordy(q(yy)).
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Two triples (g1,92,y) and (¢}, ¢5,y’) are equivalent if there are v1,72 € B{
such that

(5.3.2) Yigi =g, My =9

E% . % ammagf
By (5.3.1), the norms of g; and g are in the same class modulo F. By (5.3.2),

we may modify them so that they h ve the same norm. Thus in terms of the

group H, we may rewrite condition (5.3.1) as
(5.3.3) =gy’ g=(g1,92) € H(A}).

This equation is always solvable in g,y for given x. Indeed, since the norm of
x is positive, we have an element y € B with the same norm as . Then there
is a g € H(A}) such that x = g~ly¥ in V?. In summary, we have shown the
following description of 2°(x)%

£
Lemma 5.3.1. Let (y,g) be a solution to (15°3.3) and H, be the stabilizer of y.
Then we have

Z ()R =H(F)o\H(F)o(Hy(Af)g)K"/K®
2[{y(F)O\Hy(A?)/I(ya

where Ky := Hy(A%}) N gKvg1.

Supersingular formal neighborhood on Hecke operators

Let %, be the universal deformation of 2. Then the union of universal defor-
mation of supersingular points is given by

Y3® = Bo\ Ay x (B @AY JU".

Notice that J7, is a formal scheme over €}". Thus the formal completion of
M along its supersingular points is given by

M = H(F)o\Z, x H(AY)/K".
where 2, = %@@Er%. Let Zy(c,d) be the divisor of Z defined by universal
deformation of y of type (c,d).

Lemma 5.3.2. Let Hy, be the stabilizer of y. Then for any g € H(A}), the
formal neighborhood of Z (%)%, is given by

Z ()32 =H(F)O\H(F)o(Zy(c.d) x H,(A})g)K"/K"
~H,(F)\Z;(c.d) x H,(A})/K,,

where Ky = Hy(A%) N gKvg 1.
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5.4 Local intersection at an unramified place

In this subsection, we want to study the local intersection at a finite place v
which is split in B.

Reduction to a local calculation We still work with the group H =
GSpin(V). Let 1, z2, x3 be three vectors in K\V such that the cycles Z(z;)k
intersects properly in the integral model .#x of M. This means that there
are no k; € K such that the space

Z Fkia:i

is one or two-dimensional with totally positive norms.

First, let us consider the case where U, is maximal. We want to compute
the intersection index at a geometric point (P;, P») in the special fiber over a
finite prime v of F'. The non-zero intersection of the three cycles will provide
three quasi-isogenies y; : P» — P; with type determined by z;’s. Notice
that P; is ordinary (resp. supersingular) if and only if P, is ordinary (resp.
supersingular).

If they both are ordinary, then we have canonical liftings P, to CM points
on the generic fiber. Since

HOHl(Pl, PQ) = Hom(ﬁl, ﬁg),

all y; can be also lifted to quasi-isogenies of y; : ]52 — ]31. This will contradict
the assumption that the three cycles Z(z;)x have no intersection on the generic
fiber. It follows that all P;’s are supersingular points.
Now let us assume that all P;’s are supersingular. Then we have the nearby
guaternion algebra B = B(v) and quadratic space (V, q) as before. By Lemma
3.2, we know that 2(z;)% has an extension

Z(wi)g = Hy(F)\Dy,(ci, di) x Hy, (A})/ Ky,
on the formal neighborhood of supersingular points:

MiE = H(F)o\Z x H(A%)/K".

¢
Here ¢;,d; € Z such that ( wdi> € UyziyUy, and (y;,9;) € B X H(A?)

such that g;” Yy = z; in V4. If these three have a nontrivial intersection at a
supersingular point represented by g € H(F)o\H(A})/K", then we can write
gi = gk; with some k; € K". The intersection scheme % (k1x1, koxo, ksxs)x is
represented by

Z (krxy, koxa, ksxs)k = [Py, (c1,d1) - Dy, (c2,d2) - Dy, (c3,d3) X g]
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on 9, here y = (y;) € V3 and ¢ = (¢;),d = (d;) € Z3. As this intersection is
proper, the space generated by y;’s is three-dimensional and positive definite.
Notice that g € H(A%)/K" is completely determined by the condition gty €
K"z?. Thus we have that the total intersection at supersingular points is given
by

P (@) 2 () - 2 (@a)c = D deg Z'(kaes, hatea, Kscs)c,
kav e Kv\(Kay, Kag, Kag)

where the sum runs through cosets such that k;z] generated a subspace of
dimension 3.

In the following, we let us compute the intersection at v for cycles Z(®;)
for ®; € .7 (V). Assume that ®;(z) = ®}(z")P;y(z,). By the above discussion,
we see that the total supersingular intersection is given by

3
Z(01) - Z(®2) - Z(03) =vol(K) [ D ®ilwi) Z(wi)k
i=1 e R\V
=vol(K) > Y () deg Z(2)k
.'EUEI~(3\(V“)3_ :EEGKS\(V@ iv
eqn deg Z(Ph1)| (5.4.1) =vol(K) Y ®'(@")m(z",D,),
v eKv\(V?)3

where (17)1 denote the set of elements ¥ € (V)3 such that the moment matrix
of xj as a symmetric elements in Mg(A}%) takes entries in Fy, (V,)3, denote
the set of elements (x;,) with norm equal to the norms of (z}), and

eqn def m(Phi) | (5.4.2) m(z’, @)= > By(wy)deg (2", 1)k
xvng\(Vv i'u

We note that the volume factor vol(K) is a product of the volume of the image
of K, in SO(V,) concerning the Tamagawa measure (cf. Notations). Conse-
quently, and by definition, it also includes the archimedean factor vol(SO(B)).
. nT L COpRaLe the above with the theta series, let us rewrite the intersection
(I[S.ﬁ.?éi in terms of the quadratic space V' = B. Notice that every ¥ can be
written as z¥ = g~ !(y) with y € (V)3 of elements with non-degenerate moment
matrix. Thus we have

eqn deg Z(Phi)| (5.4.3)

Z(D1) - Z (D) - Z(D3) =vol(K) ) > (g y)mly, @)k,
yeH (F)\V? geH(A?)/Kv

where for y € (V)3

eqn def m(y,Phi) | (5.4.4) m(y, ®,) = Z D, (zy) deg Z(y, ) K-

T, €K3\(Vy)3,
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77-GZ
This is a pseudo-theta series (cf. %f if m(-, ®,) has no singularity over y €
(Vo)®.

The intersection formula of Gross—Keatin 151 %he folL%W)ing, we want
. . %qn ef m(y, Phi

to deducg g formula of the intersection number (77) using the work of Gross—

Keating F . For an element y € B, with the integral norm, let .7, denote the

universal deformation divisor on 2 of the isogeny y : & — /. We extend

this definition to arbitrary y by setting .7, = 0 if y is not integral. Then we

have the following relation:

.@y(c, d) == wacy - wacfl .

Y

Indeed, for any y € wdp, there is an embedding from 7, /-, to 7, by taking any
deformation ¢ : & — &5 to wy. The complement is exactly the deformation
with the cyclic kernel. It follows that deg 2(y,z,) is an alternative sum of
intersection of Gross—Keating’s cycles:

deg Z(y, xy) Kk = Z (—1)crteates Tty * Ter—<ayy " Tes—<ay,
e;€{0,1}
Theorem 5.4.1 (Gross—Keating, Ff‘_ﬁ Let &, = 16% be the characteristic
function of ﬁ%,v' Then for y € (V,)3, ., the intersection number Ty, - Ty, - Ty

reg’

and m(y, ®,) depends only on the moment T = Q(y) and

m(y, ®,) = v(Q(y)),

. . . . lprop local W derivative
Where the v-invariant is defined as in Prop. 1. 1.2.

Corollary 5.4.2. Let g, € G(F,) and &, = lgs . Then fory € (Vi)ieg, the
intersection number m(y,r(g,)®,) depends only on the moment T = Q(y) and

is thus denoted by mp(r(g,)®y), and we have

(5.4.5) Wﬁv(gvv 0,2,) = Cv(z)_2mT(T(gv)q)v)-

lprop local W derivative

) hm GK
Proof. By Gross—Keating theorem E)ZII and Prop. M.T.Z] this 1s true when
gy = e is the identity element. We will reduce the general g, to this known

case.
Suppose that
gv = d(v)n(b)m(a)k

for b,a are both diagonal matrices and k in the standard maximal compact
subgroup of G. Then it is easy to see that the Whittaker function obeys the
rule:

Wi (00,0, @) = B TH)|V]| =] det (@) PW. g€, 0, @,).
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On the intersection side, from Theorem b.2.T we know that deg 2 (y, )k =
deg 27 (x,) i depends only on T'= Q(y). We have a similar formula:

7 (0)9) =A™ 3 r(on)her) de 2 o)

=7 (b )\v\*”\deta\ > &y (wpa) deg Zr(zy) K

Loy

where h, € GO(V,) with v(h,) = v~!, and the last sum runs over all x,, with
norm v - diag(7T).
By our definition of cycles, for diagonal matrix a, we have
deg Z,r(x) = deg Zara(xa).
It follows that

mT(T(g)q)v) = qu(b)|V|_3| deta|2muaTa((I>v)~

This completes the proof.

Comparison

egqn E’v
In this subsection, we will relate the global v-Fourier coefficient (b%)?%ﬁ)f the
analytic kernel function with the local intersection of triple Hecke correspon-
dences when the Shimura curve has a good reduction at v.
Recall that we have a decomposition of E’(g,0,®) according to the differ-
ence of X and X:

(5.4.6) E'(g,0,®) ZE’ (9,0,®),

where

(5.4.7) E(9,0,®)= > E7(g,0,9).
ET:E(’U)

On the intersection part, we have an analogous decomposition

(5.4.8) O(g,®) = O(g, P)sing + »_ O(g, D)o

and each ©(g, ®), has a part Z(g, ®), of intersection of horizontal cycles.

Theorem 5.4.3. Let v be a finite place such that ®, is the characteristic func-
tion of ﬁﬁv. Then for g = (91,92, 93) € G such that g;, =1 for v € S, we have
an equalities

(Z(g1,®1) - Z (g2, P2) - Z (93, P3)), = —2E, (9,0, D)
and

@(97 (I))v = _2E:)<ga 0, ¢)
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Proof. Since Xy has a smooth model 277, over v, the restriction of E(gi, ;)
over 0, is equal to Z(g;, ®;) + c¢(g;, ®;)V. This implies

(g, ®) = Z(g1, 1) - Z (g2, P2) - Z(g3, P3)-

Thus the second equality follows from the first one.
By our choice of ®g , there is no self-intersection in % (g1, ®1) - Z (g2, P2) -

Z (g3, P3)o:
(Z(g1,®1) - Z(92,P2) - Z(g3,P3)),
= > r(g")®° (z")m(z", r(gv) Do)
xue(f(v)?s\(vu)s
= Z H / xw)dxw mT( (gv)q)v)a
v) WFV
where
mT(<I>U) = @U(xv) deg .,@pT(.rv)K
IUEK \( )dlag(T)

where the sum is over elements of B3 with norms equal to diagonal of T, and the
cycle Zp(x,) is equal to Z(x, x,) with z¥ € (VV) with non-singular moment

matrix T
In summary, the intersection number is given by
(5.4.9) > vol(Ky)Ir(g”, @ )yma (r(gy) ®).
T

We need to compare this i_yh the derivative of the Eisenstein series. We
9
invoke the formula of Kudla (}?

Wi(g,0,®,)

—_— 0,0 @ ®).
Wr(g,0,®,) Fr(9.0.2"© 2,)

eqn Kudla formula| (5.4.10) Ef(g,0,®) =

Under our choice of measures, by Siegwl-Weil, we have
Er(g,0,2" ® ) = I7(g, 2" ® D;,).

We therefore have

Wi.(g,0,®,)
Ef(g,0,®) =12 "2 11(g, 9" ® @)
T(g’ ) ) WT(g’O’(p{U) T(.g? ® U)
ITv(g'u (I)/)
=Wi(g,0,®,) "2 Ir(g", ®Y).
T(gv ) )WT( 0 (I),> T(ga )
G-K
Note that % is a constant independent of T', g, ®/. By Corollary I!CSOZIr 2,
_ ITU(G (I),)
Er(g,0,®) =(,(2) 72 o) Py) T (g?, BY).
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It suffices to prove that

Ir(e, @ 1
72M = ——vol(Ky).

C(2) Wr(e, 0, ) 2

Now the nearby quaternion B is non-split at v. And we have
I(e, @) = vol(SO(By,)).

So we need to show

vol(SO(By))

_ _Ll 2 /
VOI(KU) = 2(11(2) WT(G,O,(I)U).

RGOS
It is easy to see that (cf. }Fﬁthap. 16, §3.5)):
vol(SO(By)) 1

vol(Ky) (g —1)%

Indeed, we have an isomorphism (cf. Notations)
SO(B) ~ B*/F* x BL.
We now may compute the ratio for a non-archimedean v:

vol(GL2(0v)) _ Go(1)~'¢u(2)™!  vol(M3(6))
vol(05, ) Cw(2)71 vol(0p,)

=(g—1).

Moreover, we have
vol(GL2(0y))  vol(SLa(0%))

vol(O} ) ~ wvol(B})
rop W_T Phi’ !
By Prop. 1.T.3; we also have
Go(2)°Wr(e,0,®)) = — 2
: R V)

This completes the proof.

5.5 Local intersection at ramified places

Ife't & \ ;gzoé)kglg&cite t.he holo a(;{gp?gg .pr9jection of E (g, 0, <I>) Then by Propo-
sition 3.4.T, the Conjecture T.3.T 1s equivalent to the identity

lcf arch lcf good v
By Theorem b.T.3 and b.4.3,

O(g, @) +28(g,®) = O(g, D)sing + > _(O(g, D)y + 26(g, D)),
veS
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where S is the set of finite places of ' where ®, is not spherical. Thus the
conjecture is equivalent to

0(g,2) — 07 (g, ®) = O(g, P)sing + Y _(O(g, ®)y + 28(g, D)o).
veSs

Notice that the left-hand side is an explicit Eisenstein series for G. This
leads to the following speculation:

Conjecture 5.5.1. For each v € S, O(g,®), + 28 (g, P), is the nonsingular
part of an Eisenstein series for G. In other words, there is an Eisenstein series
G(g, ®), with Fourier coefficients Gy, t,,1,(9, ) such that it Fourier expansion
takes

@(97 ) +2éa gv Z th,t2,t3 9, )

tltgtg;ﬁo

ain-conj
This conjecture implies Conjecture 13T At this moment, we can prove
the following weak form:

Proposition 5.5.2. For each prime p, there is a modular form f, with alge-
braic coefficients in Q such that

O(g,®) +28(g,®) = > _ fp(g) logp.

peEP

Proof. Since modular forms on G are determined by their non-singular coeffi-
cients, it suffices to show there there are modular forms f with non-singular
coefficients given by nonsingular part is given by

fr= D 0(g, @)y +26(g, D).

It is clear that f; has algebraic coefficients, and we have an expansion

O(g, ) +2£(g,®) = O(g, B)sing + Y _ f; logp.
p

It is clear that &(g,®) and ©(g, ®) are both in the finite-dimensional space
A of holomorphic modular forms of parallel weight 2 of GLy(A™)? some level
U = ®,U, where U, is maximal for v ¢ S.

Now we consider the action on A by the Hecke algebra

T= ®v¢SQ[Uv\GL2(Fv)3/Uv]'

This action is semi-simple. Thus we have a decomposition into eigenforms:

O(g, ®) +26(g, ® Zfz
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For each v ¢ S, the coefficient (t1,t2,t3) = (7wt 7'2, m))3) has the form

v rtv v

3 n1 n1

ot — B

ni no n3\ __ i ) 7

CL(TFU y Ty ™5 Ty )_E Cle
i J

1

aij — i

where ¢;, a;5, 3;; are non-zero complex numbers. It is easy to see that the
vector space ), .. Qa(7™, 772 713) over Q is finite-dimensional if and only
if o5, Bij € Q. This shows that f; are multiples of algebraic forms ¢;: f; = c;¢;.
By comparing the Fourier coefficient and linear independence of logp over Q,
we see that ¢; € Zp@log p. This shows that each f is a linear combination

over Q of nonsingular parts of ;. This finishes the proof of the Proposition. [J

ain-thm
Proof of Theorem B._S'.T'?._Eet v1, V9 be two places prime to P. Then we apply
the non-vanishing theorem of Yifeng Liu to find a Schwartz function ® € .7 (V?)
so that a(0(® ® ¢) # 0 for some ¢ € o and that ®, is k-regularly supported
for sufficiently large k. By dﬁ}lS_iH of algebraic functions, we may assume that
® is algebraic. Now apply b.5.Z for the set S’ = S U {v1,v2} and the set P’ of
primes under S to get algebraic modular forms f, for each p € P’ so that

O(g,®) +26(g,®) = > fylg)logp.
peEP’
Now we do pairing with ¢ to obtain

(O(= ), 0) + (26(—,@),0) = > (fp. ) logp.

peP’!

?rsosqggnteliat PRy =f® ]7 € ™ ® 7, then as in the proof of Proposition

.T, The Teft-hand side is

2L'(1/2,0) L(1,m,ad) =
T(Q)a(@((l) ® (p)) + W(P(f)) P(f)>

For the right hand side (fp, ) is same as the projection f,, in f, with . Thus
it is in QQ(o). This shows that we have d, € Q, such that

21/(1/2,0)
Cr(2)

L(1,7,ad) o
a(0(@®p)) + WUDU),PU» = p;/ Q(o)dplogp.

Rewrite this as

~ ! o 2 Qo
(). PP = | PG ) D)

> cplogp | alf, ),

peEP’

where ¢, = —8d,/a(f, f) € Q.
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-vanishing of local

ARGOS

beilinsonl

beilinson2

blochl

faltings

Gar

’gillet—soulel

’gillet—soule2

~ -CL
As a(f, f) = a(0(® ® ¢)) # 0, comparison with Proposition T3 gives

8L'(1/2,0)(r(2)? 2)3Q(o
Zlm = (L(/l,n,)efg)( = Cllj((l,)ﬂ,a(d)) E}; logp-

Notice that .Z(7) does not depend on the choice of vq,ve. This shows the sum
is in fact a sum over P. O

A Test functions with trilinear zeta integrals with
regular support

Yifeng Liu

Theorem A.0.1. Assume that Homg(#(V3) x 0,C) # 0. Then the local zeta
integral Z(0, f,W) is non-zero for some choice of W € W (o,v) and f € II(B)

attached to ® € S (V2,).
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