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1 Introduction

This paper aims to prove a special case of a generalized Gross–Kudla conjecture
G-Kudla
[10]. This conjecture relates the height of the modified diagonal cycle on the
triple product of Shimura curves and the derivative of the triple product L-
series. In their original conjecture, we take three cusp forms f , g, h of weight 2
for Γ0(N) with N square free, and consider the function F := f×g×h on H 3,
where H is the upper half plane. There are a triple product L-series L(s, F )
as studied by Garrett

Gar
[6] in the classical setting and by Piatetski-Shapiro and

Rallis
PS-R
[29] in the adelic setting. This function is entire and has a functional

equation with a center at s = 2 and a decomposition of the global root number
into a product of local ones:

ϵ(F ) = −
∏
p|N

ϵp(F ), ϵp(F ) = −ap(f)ap(g)ap(h) = ±1.

Assume that the global root number is −1. Then there is a canonically defined
Shimura curve X, associated with an indefinite quaternion algebra B, which is
nonsplit over a non-archimedean prime p if and only if ϵp(F ) = −1. There is an
F -eigen component ∆(F ) of the diagonal ∆ of X3 as an elements in the Chow
group of codimension 2 cycles in X3 as studied by Gross and Schoen

G-S
[11]. The

conjecture formulated by Gross and Kudla take shape.

L′(2, F ) = Ω(F )⟨∆(F ),∆(F )⟩BB,

where Ω(F ) is an explicit positive constant and ⟨·, ·⟩BB is the Beilinson–Bloch
height pairing. This formula is an immediate higher dimensional generalization
of the Gross–Zagier formula

GZ
[12].

In this paper, we will give a full generalization of the conjecture to totally
real fields and prove the conjecture in the spherical case.

We will consider cuspidal Hilbert modular forms of parallel weight 2 with
arbitrary level and Gross–Kudla–Schoen cycles on Shimura curves over totally
real number fields. We will formulate a conjecture

main-conjmain-conj
1.3.1 regarding automorphic

representations. This conjecture is analogous to the central value formula of
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Ichino
I
[14]. In this paper, we can prove this conjecture when the representa-

tions are unramified; see Theorem
main-thmmain-thm
1.3.3. In the following, we will describe our

conjectures, theorems, and the main ideas of proofs.

1.1 Shimura curves and abelian varieties

First, let us recall the definition of Shimura curves defined by an incoherent
quaternion algebra, and the abelian varieties parameterized by these Shimura
varieties, following

YZZ-GZ
[33].

Shimura curves

Let F be a number field with adele ring A = AF and let F̂ = Af be the ring of
finite adeles. Let Σ be a finite set of places of F . Up to isomorphism, there is
a unique A-algebra B , free of rank 4 as an A-module, such that for each place
v, the localization Bv := B⊗A Fv is isomorphic to M2(Fv) if v ̸∈ Σ and to the
unique division quaternion algebra over Fv if v ∈ Σ. We call B the quaternion
algebra over A with ramification set Σ(B) := Σ.

If #Σ is even then B = B ⊗F A for a quaternion algebra B over F unique
up to F -isomorphisms. In this case, we call B a coherent quaternion algebra.
If #Σ is odd, then B is not the base change of any quaternion algebra over F .
In this case, we call B an incoherent quaternion algebra. This terminology is
inspired by Kudla’s notion of incoherent collections of quadratic spaces

K97
[19].

Now assume that F is a totally real number field and that B is an incoherent
quaternion algebra over A, totally definite at infinity in the sense that Bτ is
the Hamiltonian algebra for every archimedean place τ of F . Then we have a
projective system XU of projective curves over F indexed by open subgroups
U of B×

f . The projective system X is endowed with an action Tx of x ∈ B×

given by “the right multiplication by xf .” The action Tx is trivial if and only
if xf ∈ F×, the closure of F× in B×

f . Each XU is just the quotient of X by the
action of U .

The induced action of B×
f on the set π0(XF ) of geometrically connected

components of X factors through the norm map q : B×
f → A×

f and makes

π0(XF ) a principal homogeneous space over F×
+ \A×

f .

Abelian varieties parametrized by Shimura curves

Let A be a simple abelian variety defined over F . We say that A is parametrized
by X if there is a non-constant morphism XU → A over F for some U . By
the Eichler–Shimura theory, if A is parametrized by X, then A is of strict
GL(2)-type in the sense that

M = End0(A) := EndF (A)⊗Z Q

is a field and Lie(A) is a free module of rank one over M ⊗Q F by the induced
action.
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Define
πA = Hom0

ξ(X,A) := lim−→
U

Hom0
ξU
(XU , A),

where Hom0
ξU
(XU , A) denotes the morphisms in HomF (XU , A)⊗Z Q using the

normalized Hodge bundle ξU as a base point. Since any morphism XU → A
factors through the Jacobian variety JU of XU , we also have

πA = Hom0(J,A) := lim−→
U

Hom0(JU , A).

Here Hom0(JU , A) = HomF (JU , A)⊗ZQ. The direct limit of Hom(JU , A) de-
fines an integral structure on πA but we will not use this.

The space πA admits a natural B×-module structure. It is an automorphic
representation of B× over Q. See

YZZ-GZ
[33, §3.2]. We will see the natural identity

EndB×(πA) = M and that πA has a decomposition π = ⊗vπv where πv is
an absolutely irreducible representation of B×

v over M . Using the Jacquet–
Langlands correspondence, one can define the L-series

L(s, π) =
∏
v

Lv(s, πv) ∈M ⊗Q C

as an entire function of s ∈ C. Let

L(s,A,M) =
∏

Lv(s,A,M) ∈M ⊗Q C

be the L-series defined using ℓ-adic representations with coefficients in M ⊗Q
Qℓ, completed at archimedean places using the Γ-function. Then L(s,A,M)
converges absolutely in M ⊗ C for Re(s) > 3/2. The Eichler–Shimura theory
asserts that, for almost all finite places v of F , the local L-function of A is given
by

Lv(s,A,M) = L(s− 1

2
, πv).

Conversely, by the Eichler–Shimura theory and the isogeny theorem of Falt-
ings, if A is of strict GL(2)-type, and if for some automorphic representation π
of B× over Q, Lv(s,A,M) is equal to L(s− 1/2, πv) for almost all finite places
v, then A is parametrized by the Shimura curve X.

If A is parametrized by X, then so is the dual abelian variety A∨. Denote
by M∨ = End0(A∨). There is a canonical isomorphism M → M∨ sending a
homomorphism m : A→ A to its dual m∨ : A∨ → A∨.

There is a perfect B×-invariant pairing

πA × πA∨ −→M

given by

(f1, f2) = vol(XU )
−1(f1,U ◦ f∨2,U ), f1,U ∈ Hom(JU , A), f2,U ∈ Hom(JU , A

∨),

where f∨2,U : A → JU is the dual of f2,U composed with the canonical isomor-

phism J∨
U ≃ JU . It follows that πA∨ is dual to πA as representations of B× over

M .
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1.2 Trilinear cycles on the triple product of abelian varieties

Let A1, A2, A3 be three abelian varieties over a number field F . Let A =
A1×A2×A3 be their product. We consider the space Ch1(A) of 1-dimensional
Chow cycles with Q-coefficients.

Using Mukai–Fourier transformation, we have a decomposition

Ch1(A) =
⊕
s

Ch1(A, s),

where s = (s1, s2, s3) is a triple of non-negative integers, and Ch1(A, (s1, s2, s3))
consists of cycles x such that under push-forward by multiplication by k =
(k1, k2, k3) ∈ (Z \ {0})3 on A:

[k]∗x = ks · x, ks := ks11 k
s2
2 k

s3
3 .

The cycles with s = (1, 1, 1) are called trilinear cycles and denoted by

Chℓℓℓ(A) := Ch1(A, (1, 1, 1)).

The space Chℓℓℓ(A) is conjecturally the complement of the subspace generated
by cycles supported on the image of Ai × Aj × 0k for some reordering (i, j, k)
of (1, 2, 3), where 0k denote the 0-point on Ak.

Let L(s,A1 ⊠ A2 ⊠ A3) denote the L-series attached the triple product of
ℓ-adic representation of Gal(F̄ /F ) on

H1(A1,Qℓ)⊗H1(A2,Qℓ)⊗H1(A3,Qℓ).

Then it is conjectured that L(s,A1⊠A2⊠A3) has a holomorphic continuation on
the complex plane. An extension of the Birch and Swinneron-Dyer conjecture
or Beilison–Bloch conjecture gives the following:

Conjecture 1.2.1. The space Chℓℓℓ(A) is finite-dimensional and

dimQ Chℓℓℓ(A) = ords=2L(s,A1 ⊠A2 ⊠A3).

Like the Neron–Tate height pairing between points on A and A∨ = Pic0(A),
there is a canonical height pairing between Chℓℓℓ(A) and Chℓℓℓ(A∨) given by the
Poincare bundles Pi on Ai ×A∨

i with trivializations on Ai × 0 and 0×A∨
i :

⟨x, y⟩ := (x× y) · ĉ1(P̄1) · ĉ1(P̄2) · ĉ1(P̄3), x ∈ Chℓℓℓ(A), y ∈ Chℓℓℓ(A∨),

where ĉ1(P̄i) is the first Chern class of the arithmetic cubic structure P̄i of
Pi. The right hand of the formula makes sense for all elements x ∈ Ch1(A)
and y ∈ Ch1(A

∨).
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Refinement for abelian varieties of strictly GL2-type

Assume that eachAi is of GL2-type with endomorphism fieldMi := End0(Ai) =
End0(A∨

i ). Then M = M1 ⊗M2 ⊗M3 acts on Chℓℓℓ(A) and on Chℓℓℓ(A∨) by
pushing forward. As we will see in §

S3.1S3.1
3.1, these actions are additive and thus

make Chℓℓℓ(A) and Chℓℓℓ(A∨) modules over M . As M is a direct sum of its
quotients fields L, Chℓℓℓ(A) is the direct sum of Chℓℓℓ(A,L) := Chℓℓℓ(A) ⊗M L.
We can also define the triple product L-series L(s,A1 ⊠ A2 ⊠ A3, L) ∈ L ⊗ C
with coefficients in L using Galois representation on

H1(A1,Qℓ)⊗L⊗Qℓ
⊗H1(A2,Qℓ)⊗L⊗Qℓ

H1(A3,Qℓ)

where we choose ℓ inert in L.

Conjecture 1.2.2. The space Chℓℓℓ(A)L is finitely generated with

dimL Chℓℓℓ(A,L) = ords=2 ιL(s,A1 ⊠A2 ⊠A3, L),

where ι : L⊗ C −→ C is the surjection given by any embedding L −→ C.

Also, we have a unique height paring with values in L:

⟨−,−⟩L : Chℓℓℓ(A,L)⊗L Chℓℓℓ(A∨, L) −→ L⊗ R

such that

TrL⊗R/R⟨ax, y⟩L = ⟨ax, y⟩, a ∈ L, x ∈ Chℓℓℓ(A,L), y ∈ Chℓℓℓ(A∨, L).

1.3 Generalized Gross–Kudla conjecture

Now we assume that all Ai are parametrized by a Shimura curve X as before
and take a quotient L of M = M1 ⊗M2 ⊗M3. For any fi ∈ πAi , we have a
morphism

f := f1 × f2 × f3 : X −→ A.

We define f∗(X) ∈ Ch1(A) by

f∗(X) := vol(XU )
−1fU∗(X) ∈ Ch1(A)

if fi is represented by fiU on XU . This definition does not depend on the choice
of U . Define

PL(f) := f∗(X)ℓℓℓ ⊗ 1 ∈ Chℓℓℓ(A,L).

Let πi,L = πAi ⊗Mi L be the automorphic representation of B× with coefficients
in L. Let πL = π1,L ⊗ π2,L ⊗ π3,L be their product representation of (B×)3.
Then by §2.1, f 7→ P (f) defines a linear map:

PL : πL −→ Chℓℓℓ(A,L).
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This map is invariant under the action of the diagonal ∆(B×). Thus it defines
an element

PL ∈ P(πA,L)⊗L Chℓℓℓ(A,L),

where
P(πA,L) = Hom∆(B×)(πA,L, L).

Therefore PL(f) ̸= 0 for some f only if P(πA,L) ̸= 0.
By a theorem of Prasad and Loke (

P
[27],

P0
[28],

Lo
[26]), P(πA,L) is at most one-

dimensional, and it is one-dimensional if and only if the following two conditions
both hold:

1. the central characters ωi of πi satisfy

ω1 · ω2 · ω3 = 1,

2. and the ramification Σ(B) of B is equal to

Σ(A,L) =

{
places v of F : ϵ

(
1

2
, πA,L,v

)
= −1

}
.

The next problem is to find a non-zero element α of P(πA,L) if it is non-
zero. It is more convenient to work with P(πL) ⊗ P(π̃L) where π̃L is the
contragradient of πL is given by the product A∨ of A∨

i . Decompose πL = ⊗vπv
then we have a decomposition P(πL) = ⊗P(πv) where the space P(πv) is
defined analogously. We construct an element αv in P(πv) ⊗ P(π̃v) for each
place v of F by

α(fv ⊗ f̃v) :=
L(1, πv, ad)

ζv(2)2L(1/2, πv)

∫
F×
v \B×

v

(π(b)fv, f̃v)db, fv ⊗ f̃v ∈ πv ⊗ π̃v.

main-conj Conjecture 1.3.1 (Generalized Gross–Kudla conjecture). Assume ω1·ω2·ω3 =
1. Then we have for any f ∈ πA,L and f̃ ∈ πA∨,L,

⟨PL(f), PL(f̃)⟩ =
16ζF (2)

2

L(1, πL, ad)
L′(1/2, πL) · α(f, f̃)

as an identity in L⊗ C.

prop-CL Proposition 1.3.2. Under the condition of the conjecture
main-conjmain-conj
1.3.1, there is a

constant L (π) such that for any f ∈ πA,L and f̃ ∈ πA∨,L,

⟨PL(f), PL(f̃)⟩ = L (π) · α(f, f̃)

as an identity in L⊗ C.

The main result of this paper is as follows.
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main-thm Theorem 1.3.3. With assumption as Conjecture
main-conjmain-conj
1.3.1 Let P be the set of

rational primes p such that π is ramified over a prime v | p. Then there are
algebraic numbers cp ∈ Q̄ ⊂ C such that for any f ∈ πA,L and f̃ ∈ πA∨,L,

L (π) =
16ζF (2)

2

L(1, πL, ad)
L′(1/2, πL) +

∑
p∈P

cp log p

as an identity in L ⊗ C, where Ω(σ) is the Peterson period of the Jacquet–
Langlands correspondence of π. In particular, the Conjecture

main-conjmain-conj
1.3.1 holds when

π is unramified.

Remarks 1.3.1. 1. The theorem implies that L′(1/2, πL) = 0 if and only if
it is zero for all conjugates of σ.

2. Assume that σ is unitary and take f̃ = f̄ . The Hodge index conjecture
implies L′(1/2, πL) ≥ 0. This positivity is a consequence of the Riemann
hypothesis.

By the Theorem of Prasad and Loke, we have the following weak form of
the conjecture:

An outline of the proof

The basic strategy is analogous in spirit to the proof of the Gross-Zagier formula
GZ
[12] in our book

YZZ-GZ
[33]. We want to compare the analytic kernel function and the

geometric one.
By the work of Garrett

Gar
[6] and Piatetski-Shapiro–Rallis

PS-R
[29], the analytic

kernel function can be constructed from the central derivative of an incoher-
ent Siegel–Eisenstein series on Sp6. Kudla first studied this derivative of the
Eisenstein series in

K97
[19] and is the analytic side of his conjectured “arithmetic

Siegel–Weil formula”. The construction of the geometric kernel function is sim-
ilar to that in the proof of the Gross-Zagier formula in our book

YZZ-GZ
[33]. More

precisely, we can define some generating functions of Hecke operators. Such
generating functions have appeared in Gross–Zagier’s paper. Works of Kudla–
Millson and Borcherds relate them to the Weil representation. A little extension
of our result (

Y-Z-Z
[32]) shows that these generating functions are automorphic forms

on GL2. Then the geometric kernel function is given by a specific arithmetic
intersection of three such generating functions of Hecke operators.

We reduce the questions to local ones to compare the analytic kernel func-
tion with the geometric one. At a non-archimedean place where the Shimura
curve has a sound reduction, it is sufficient to use the result of Gross–Keating
G-K
[9]. At an archimedean home, we can carry out the calculation explicitly. But
there are essential difficulties in carrying out the regional analysis explicitly at
finite places where the Shimura curve could have a better reduction. Under the
assumption of the main theorem, we can overcome these difficulties by choosing
some special test functions to define the generating function of Hecke operators.
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1.4 Notations

In the following, k denotes a local field of a number field.

• Normalize the absolute value | · | on k as follows:

It is the usual one if k = R.
It is the square of the usual one if k = C.
If k is non-archimedean, it maps the uniformizer to N−1. Here N is

the cardinality of the residue field.

• Normalize the additive character ψ : k → C× as follows:

If k = R, then ψ(x) = e2πix.

If k = C, then ψ(x) = e4πiRe(x).

If k is non-archimedean, then it is a finite extension of Qp for some
prime p. Take ψ = ψQp ◦ trk/Qp

. Here the additive character ψQp of Qp

is defined by ψQp(x) = e−2πiι(x), where ι : Qp/Zp ↪→ Q/Z is the natural
embedding.

• For a reductive algebraic group G defined over a number field F we denote
by ZG its center and by [G] the quotient

[G] := ZG(A)G(F )\G(A).

• We will use measures normalized as follows. We first fix a non-trivial
additive character ψ = ⊗vψv of F\A. Then we will take the self-dual
measure dxv on Fv with respect to ψv and take the product measure
on A. We will use this measure for the normal unipotent subgroup
N of SL2(F ) and GL2(F ). We will take the Haar measure on F×

v

as d×xv = ζFv(1)|xv|−1dxv. Similarly, the measure on Bv and B×
v are

the self-dual measure dxv with respect to the character ψv(tr(xy
ι)) and

d×xv = ζFv(1)|ν(xv)|−2dxv. If B is coherent: B = BA, then we have a de-
composition of the Haar measure on A×\B×: dx =

∏
dxv. We will choose

the Tamagawa measure on SL2(AE) defined by an invariant differential
form and denote the induced decomposition into a product dg =

∏
v dgv.

Then we choose a decomposition dg =
∏
v dgv of the Tamagawa measure

on G(A) such that locally at every place, it is compatible with the chosen
measure on SL2(Ev).

• For the non-connected group O(V ), we will normalize the measure on
O(V )(A) such that

vol([O(V )]) = 1.
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• For the quadratic space V = (B, ν) associated with a quaternion alge-
bra, we have three groups: SO(V ), O(V ), and GSpin(V ). They can be
described as follows.

GSpin(V ) = {x, y) ∈ B× ×B×|ν(x) = ν(y)}.

SO(V ) = GSpin(V )/∆(F×).

Let µ2 be the group of order two generated by the canonical involution
on B. Then we have a semi-direct product.

O(V ) = SO(V )⋊ µ2.

Moreover, by the description above, we have an isomorphism.

GSpin(V ) = B× ×B1,

Where B1 is the kernel of the reduced norm:

1 → B1 → B× → F× → 1.

And similarly, we have an isomorphism.

SO(V ) = B×/F× ×B1.

Then for a local field F , we will choose the measure on B1, B×/F×

induced from the action we have fixed on F× and B× via the exact
sequences. In this way, we also get a Haar measure on SO(V ). We
normalize the measure on µ2(F ) = {±1} such that the total volume is 1.
The measure on O(V ) is then the product measure.

• G = GL◦
2,E := {g ∈ GL2(E)| det(g) ∈ F×}.

• We will also identify Sym3 with the unipotent radical of the Siegel parabolic
P of Sp6:

n(b) =

(
1 b

1

)
, b ∈ Sym3(A).

And we denote [Sym3] = Sym3(F )\Sym3(A). And we use the self-dual
measure on Sym3(A) concerning the additive character ψ◦tr of Sym3(A).
By Sym3(F )reg, we denote the subset of non-singular elements. For a non-
archimedean local field f , denote by Sym(OF )

∨ the dual of Sym3(OF )
with respect to the pairing (x, y) 7→ tr(xy). For X,Y ∈ Sym3(F ), we
write X ∼ Y if there exists g ∈ GL3(OF ) such that X = tgY g. For
F = R, we have a similar notation but with g ∈ SO(3).
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2 Weil representations and Ichino’s formula

This section will review Weil’s representation and apply it to the triple product
L-series. We will follow the work of Garrett, Piateski-Shapiro–Rallis, Wald-
spurger, Harris–Kudla, Prasad, and Ichino. The first main result is Theorem
2.3.1 about the integral representation of the triple product L-series using the
Eisenstein series from the Weil representation on an adelic quaternion algebra.

When the sign of the functional equation is +1, the adelic quaternion alge-
bra is coherent because it comes from a quaternion algebra over a number field.
Then we have the central value formula of the triple product L-series due to
Ichino (Theorem

central valuecentral value
2.4.4), a refinement of Jacquet’s conjecture proved by Harris

and Kudla.
When the sign is −1, then the quaternion algebra is incoherent, and the

derivative of the Eisenstein series is the kernel function for the result of the
triple product L-series (cf. (

eqn kernel E’eqn kernel E’
2.3.10)). Next, we will study the T -th Fourier

coefficients for nonsingular T . We show that these coefficients are non-vanishing
only if T is represented by elements in a nearby quaternion algebra (cf. (

eqn E’veqn E’v
2.5.4)).

2.1 Weil representation and theta liftings

In this subsection, we will review the Weil representation as its its extension
to similitudes by Harris and Kudla and normalized Shimuzu lifting by Wald-
spurger.

Extending Weil representation to similitudes

Let F be a local filed, n a positive integer, and Sp2n the symplectic group with

the standard alternating form J =

(
0 1n

−1n 0

)
on F 2n. With the standard

polarization F 2n = Fn ⊕ Fn, we have two subgroups of Sp2n:

M =

{
m(a) =

(
a 0
0 ta−1

) ∣∣∣∣∣a ∈ GLn(F )

}
and

N =

{
n(b) =

(
1 b
0 1

) ∣∣∣∣∣b ∈ Symn(F )

}
.

Note that M,N and J generate the symplectic group Sp2n.
Let (V, (·, ·)) be a non-degenerate quadratic space of even dimension m with

orthogonal group O(V ). Associated to V , there is a character χV of F×/F×,2

defined by
χV (a) = (a, (−1)m/2 det(V ))F

where (·, ·)F is the Hilbert symbol of F and det(V ) ∈ F×/F×,2 is the deter-
minant of the moment matrix Q({xi}) = 1

2((xi, xj)) of any basis x1, ..., xm of
V .

11



Let S (V n) be the space of Bruhat-Schwartz functions on V n = V ⊗ Fn

(for archimedean F , functions corresponding to polynomials in the Fock model).
Then the Weil representation r = rψ of Sp2n×O(V ) can be realized on S (V n)
by the following formulae:

r(m(a))Φ(x) = χV (det(a))| det(a)|
m
2
F Φ(xa),

r(n(b))Φ(x) = ψ(Tr(bQ(x)))Φ(x),

and
r(J)Φ(x) = γΦ̂(x),

where γ is an eighth root of unity and Φ̂ is the Fourier transform of Φ:

Φ̂(x) =

∫
Fn

Φ(y)ψ(
∑
i

(xi, yi))dy

for x = (x1, ..., xn) ∈ V n and y = (y1, ..., yn) ∈ V n.
Now we want to extend r to representations of groups of similitudes. Let

GSp2n and GO(V ) be groups of similitudes with similitude homomorphism
ν (to save notations, ν will be used for both groups). Consider a subgroup
R = GSp2n ×Gm GO(V ) of GSp2n ×GO(V )

R = {(g, h) ∈ GSp2n ×GO(V )|ν(g) = ν(h)} .

Then we can identify GO(V ) (resp., Sp2n) as a subgroup of R consisting of
(d(ν(h)), h) where

d(ν) =

(
1n 0
0 ν · 1n

)
(resp. (g, 1)). We then have isomorphisms

R/Sp2n ≃ GO(V ), R/O(V ) ≃ GSp+2n

where GSp+2n is the subgroup of GSp2n with similitudes in ν(GO(V )).
We then extend r to a representation of R as follows: for (g, h) ∈ R and

Φ ∈ S (V n),

r((g, h))Φ = L(h)r(d(ν(g)−1)g)Φ = r(gd(ν(g)−1))L(h)Φ

where
L(h)Φ(x) = |ν(h)|−

mn
4

F Φ(h−1x).

For F , a number field, we patch every local representation to obtain repre-
sentations of adelic groups. For Φ ∈ S (VA), we can define a theta series as an
automorphic form on R(A):

θ(g, h,Φ) =
∑
x∈V n

r(g, h)Φ(x), (g, h) ∈ R(A).

12



Theta lifting: local and global

Now we consider the case when n = 1 and V is the quadratic space attached
to a quaternion algebra B with its reduced norm. Note that Sp2 = SL2 and
GSp2 = GL2. And GL+

2 (F ) = GL2(F ) unless F = R and B is the Hamilton
quaternion in which case GL+

2 (R) is the subgroup of GL2(R) with positive
determinants.

We first consider the local theta lifting. For an infinite-dimensional repre-
sentation σ of GL2(F ), let π be the representation of B× associated by Jacquet-
Langlands correspondence and let π̃ be the contragredient of π. Note that we
set π ≃ σ when B =M2×2.

We have natural isomorphisms between various groups:

1 → Gm → B× ×B× → GSO(V ) → 1

where (b1, b2) ∈ B× ×B× acts on B via (b1, b2)x = b1xb
−1
2 ,

GO(V ) = GSO(V )⋊ {1, c}

where c acts on B via the canonical involution c(x) = xι and acts on GSO(V )
via c(b1, b2) = (bι2, b

ι
1)

−1. Let

R′ = GSO(V )GmGL2 := {(h, g)) ∈ GSO(V )×GL2|ν(g) = ν(h)}.

Proposition 2.1.1 (Shimizu liftings). There exists an GSO(V ) ≃ R′/SL2-
equivariant isomorphism

loc shimizuloc shimizu (2.1.1) (σ ⊗ r)SL2 ≃ π ⊗ π̃.

Proof. Note that this is stronger than Howe’s usual duality in the current set-
ting. The result essentially follows from the results on Jacquet-Langlands corre-
spondence. Here we explain why we can replace GO(V ) by GSO(V ). Two ways
exist to extend an irreducible representation of GSO(V ) to GO(V ). But only
one can participate in the theta correspondence because the representation sign
of GO(V ) does not occur in the theta correspondence unless dimV ≤ 2.

Let Wσ = W ψ
σ be the ψ-Whittaker model of σ and let Wφ be a Whittaker

function corresponding to φ. Define

S : S (V )⊗ Wσ → C

(Φ,W ) 7→ S(Φ,W ) =
ζ(2)

L(1, σ, ad)

∫
N(F )\SL2(F )

r(g)Φ(1)W (g)dg.

See the normalization of measure in “Notations”. By
W
[31, Lemma 5] the integral

is absolutely convergent and defines an element in

HomSL2×B×(r ⊗ σ,C)

13



where B× is diagonally embedded into B× ×B×, and S(Φ,W ) = 1 for unram-
ified data. Since

HomSL2×B×(r ⊗ σ,C) ≃ HomB×((r ⊗ σ)SL2 ,C) ≃ HomB×(π ⊗ π̃,C)

and the last space is of one dimensional spanned by the canonical B×-invariant
pairing between π and its (smooth) dual space π̃, we may define a normalized
R′-equivariant map θ

theta-normalizationtheta-normalization (2.1.2) θ : σ ⊗ r → π ⊗ π̃.

such that
S(Φ,W ) = (f1, f2)

where f1 ⊗ f2 = θ(Φ⊗W ).
Now in the global situation where B is a quaternion algebra defined over a

number field, we define the normalized global theta lifting by

θ(Φ⊗φ)(h) = ζ(2)

2L(1, σ, ad)

∫
SL2(F )\SL2(A)

φ(g1g)θ(g1g, h,Φ)dg1, (h, g) ∈ R′(A).

prop theta decomp Proposition 2.1.1. We have a decomposition θ =
⊗

v θv in

HomR′(A)(r ⊗ σ, π ⊗ π̃).

Proof. It suffices to prove the identity after composing with the tautological
pairing π × π̃ → C. Assume that f1 ⊗ f2 ∈ π ⊗ π̃, Φ = ⊗Φv ∈ S (VA) and
φ = ⊗φv ∈ σ satisfy

f1 ⊗ f2 = θ(Φ⊗ φ).

and decomposable. We need to prove

(f1, f2) =
∏
v

S(Φv, φv).

This follows from
I
[14, Prop. 3.1]. We have different normalizations of θ and

the map S (essentially the map B♯
v in

I
[14]).

2.2 Local zeta integrals
subsec local Z

Let E be a semi-simple algebra over F of dim 3. Consider the symplectic form
on the six-dimensional F -vector space E2:

E2 ⊗ E2 ∧−→ E
Tr−→ F

(x, y)⊗ (x′, y′) 7→ TrE/F (xy
′ − yx′).

14



Let GSp6 be the group of similitudes relative to this symplectic form, and we
define

G =
{
g ∈ GL2(E)|det(g) ∈ F×} .

Then the above construction of symplectic form identifies G with a subgroup
of GSp6.

Let I(s) = Ind
GSp6
P λs be the degenerate principle series of GSp6. Here, P

is the Siegel parabolic subgroup:

P =

{(
a ∗
0 νta−1

)
∈ GSp6

∣∣∣∣∣a ∈ GLF (E), ν ∈ F×

}
and for s ∈ C, λs is the character of P defined by

λs

((
a ∗
0 νta−1

))
= |ν|−3s

F |det(a)|2sF .

We have a GSp6 ×Gm GO(BF ))-intertwining map

local SWlocal SW (2.2.1) i : S (BE) → I(0)

sending Φ to fΦ(·, 0), where

fΦ(g, 0) = |ν(g)|−3r(d(ν(g))−1g)Φ(0), g ∈ GSp6(F ).

We extend it to a standard section fΦ,s of I(s), called the Seigel–Weil section
associated to Φ. Let Π(B) be the image of the map (

local SWlocal SW
2.2.1).

L SW Lemma 2.2.1. For non-archimedean F , let B,B′ be the two (isomorphism
classes of ) quaternion algebras. Then we have

(2.2.2) I(0) = Π(B)⊕Π(B′).

Proof. See Harris–Kudla
H-K
[13], section. 4, (4.4)-(4.7) and Kudla

K92
[18], II.1.

Now we assume that F is archimedean.

• If F = C, then one has only one quaternion algebra B over F . In this
case, we have

complexcomplex (2.2.3) I(0) = Π(B).

This is proved in Lemma A.1 of Appendix of Harris–Kudla
H-K
[13].

• If F = R, then one has two quaternion algebras, B = M2×2 and B′ the
Hamilton quaternion. The replacement of Lemma

L SWL SW
2.2.1 is the following

isomorphism (Harris–Kudla
H-K
[13], (4.8))

realreal (2.2.4) I(0) = Π(B)⊕Π(B′)

where Π(B′) = Π(4, 0) ⊕ Π(0, 4) is the direct sum of the two spaces
associated with the two quadratic spaces obtained by changing signs of
the reduced norm on the Hamilton quaternion.
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Local zeta integral of triple product

For an irreducible admissible representation σ of G, let Wσ = Wψ
σ be the ψ-

Whittaker module of σ. The local zeta integral of Garrett (
Gar
[6]) and Piatetski-

Shapiro–Rallis (
PS-R
[29]) is a (family of) linear functional on I(s) × Wσ defined

by

Z(s, f,W ) =

∫
F×N0\G

fs(ηg)W (g)dg, (f,W ) ∈ I(s)×Wσ.eqn local Zeqn local Z (2.2.5)

See the normalization of measure in “Notations”. Here, N0 is a subgroup of G
defined as

N =

{(
1 b
0 1

) ∣∣∣∣∣b ∈ E,TrE/F (b) = 0

}
,

and η ∈ GSp6 is a representative of the unique open orbit of G acting on
P\GSp6. The integral Z(s, f,W ) is absolutely convergent for Re(s) ≫ 0. When
the exponent Λ(σ) < 1

2 (cf.
I
[14, §2]) of the representation σ (cf.

I
[14, §2]), the

integral Z(0, f,W ) is absolutely convergent.

non-van Proposition 2.2.2. For σ with Λ(σ) < 1
2 , the local zeta integral Z(0, f,W )

defines a non-vanishing linear functional on I(0)×Wσ.

Proof. See
PS-R
[29, Prop. 3.3] and

Ik
[16, pp. 227].

Let π be an irreducible admissible representation of B×
E with trivial restric-

tion on F×. We define the integration of matrix coefficients as follows:

α(ϕ1 ⊗ ϕ2) :=
L(1, σ, ad)

ζ(2)2L(1/2, σ)

∫
F×\B×

(π(b)ϕ1, ϕ2)db, ϕ1 ⊗ ϕ2 ∈ π ⊗ π̃.

eqn alphaeqn alpha (2.2.6)

Let σ be the Jacquet–Langlands correspondence of π to GL2(E). Assume
that Λ(σ) < 1/2. If f is the Siegel–Weil section fΦ associated to Φ ∈ S (B),
we also write

Z(s,Φ, φ) := Z(s, fΦ,Wφ),eqn local Z Phieqn local Z Phi (2.2.7)

where φ 7→Wφ is a fixed homomorphism σ → Wσ.

Ichino Proposition 2.2.3 (Ichino
I
[14]). Assume Λ(σ) < 1

2 . Under the normalization
of θ as in

theta-normalizationtheta-normalization
2.1.2, we have

Z(0,Φ, φ) = sgn(B)
L(1/2, σ)

ζF (2)
α(θ(Φ⊗ φ)),

where sgn(B) = 1 if B is split and −1 if B is division.

Proof. This is Proposition 5.1 of Ichino
I
[14]. Notice that our choice of the local

Haar measure on F×\B× differs from that of
I
[14] by ζF (2).
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2.3 Integral representation of triple-product L-series

In this subsection, we review the integral representation of the triple product
L-series of Garrett, Piatetski-Shapiro, and Rallis and various improvements of
Harris–Kudla. Let F be a number field with adeles A, B a quaternion algebra
over A with ramification set Σ(B), E a cubic semisimple algebra. We write
BE := B⊗F E the base changed quaternion algebra over AE := A⊗F E.

Siegel–Eisenstein series

For Φ ∈ S (BE), analogous to (
local SWlocal SW
2.2.1) we define

fΦ(g, s) = r(g)Φ(0)λs(g),

where the character λs of P defined as

λs(d(ν)n(b)m(a)) = |ν|−3s|det(a)|2s.

and it extends to a function on GSp6 via Iwasawa decomposition GSp6 = PK
such that λs(g) is trivial on K. It satisfies

fΦ(d(ν)n(b)m(a)g, s) = |ν|−3s−3| det(a)|2s+2fΦ(g, s).

It thus defines a section, called a Siegel–Weil section, of I(s) = Ind
GSp6
P (λs).

Then the Siegel–Eisenstein series is defined to be

E(g, s,Φ) =
∑

γ∈P (F )\GSp6(F )

fΦ(γg, s).eqn S-Eeqn S-E (2.3.1)

This is absolutely convergent when Re(s) > 2. It extends to a meromorphic
function of s ∈ C and holomorphic at s = 0 (

K97
[19, Thm. 2.2]).

For T ∈ Sym3(F ), we define its T -th Fourier coefficients to be:

ET (g, s,Φ) =

∫
[Sym3]

E(n(b)g, s,Φ)ψ(−Tb)db.eqn E_Teqn E_T (2.3.2)

(cf. “Notations” and we have shorten ψ(T ) for ψ(Tr(T )) if no confusion arises.)
Suppose that Φ = ⊗vΦv is decomposable. When T is non-singular, we have

a decomposition into a product of local Whittaker functions

ET (g, s,Φ) =
∏
v

WT,v(gv, s,Φv),eqn E_T=W_Teqn E_T=W_T (2.3.3)

where the local Whittaker function is given by

WT,v(gv, 0,Φv) =

∫
Sym3(Fv)

fΦ(wn(b)g, s)ψ(−Tb)db,eqn W_Teqn W_T (2.3.4)
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where

w =

(
13

−13

)
.

By
K97
[19, Prop. 1.4], for non-singular T , the Whittaker function WT,v(gv, s,Φv)

has an entire analytic extension to s ∈ C. Moreover, under the following
“unramified” conditions:

• v is non-archimedean, T is integral with det(T ) ∈ O×
Fv
,

• the maximal fractional ideal of Ov on which ψv is trivial is OFv ,

• Φv is the characteristic function of a self-dual lattice Λv of Vv,

• gv ∈ Kv = GSp6(Ov), the standard maximal compact subgroup of GSp6(Fv),

we have
K97
[19, Prop. 4.1]:

WT,v(gv, s,Φv) = ζFv(s+ 2)−1ζFv(2s+ 2)−1.

Rankin triple product L-function

Let σ be a cuspidal automorphic representation of GL2(AE). Let π be associ-
ated with Jacquet-Langlands correspondence of σ on B×

E . Let ωσ be the central
character of σ. We assume that

(2.3.5) ωσ|A×
F
= 1.

Define a finite set of places of F

(2.3.6) Σ(σ) =

{
v

∣∣∣∣∣ϵ(σv, 12) = −1

}
.

Define the global zeta integral as

(2.3.7) Z(s, ϕ, φ) =

∫
[G]
E(g, s,Φ)φ(g)dg,

where [G] := A×G(F )\G(A). Recall that the local zeta integral is defined by
(
eqn local Zeqn local Z
2.2.5), (

eqn local Z Phieqn local Z Phi
2.2.7).

thm zeta int Theorem 2.3.1 (Piatetski-Shapiro–Rallis
PS-R
[29]). Assume that Φ = ⊗Φv is de-

composable. For a cusp form φ ∈ σ and Re(s) ≫ 0 we have an Euler product

zeta intzeta int (2.3.8) Z(s,Φ, φ) =
∏
v

Z(s,Φv, φv) =
L(s+ 1

2 , σ)

ζF (2s+ 2)ζF (4s+ 2)

∏
v

α(s,Φv, φv),

where

α(s,Φv,Wφv) :=
ζFv(2s+ 2)ζFv(4s+ 2)

L(s+ 1
2 , σv)

Z(s,Φv, φv),

which equals one for almost all v.
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cor kernel L’ Corollary 2.3.2. 1. The global zeta integral Z(0,Φ, φ) ̸= 0 only if Σ(B) =
Σ(σ) and both have even cardinality. In this case, we have an identity:

zeta intzeta int (2.3.9)

∫
[G]
E(g, 0,Φ)φ(g)dg =

L(12 , σ)

ζF (2)

∏
v

α(θ(Φv, φv)).

2. If Σ(B) = Σ(σ) is odd, then the global root number ϵ(1/2, σ) = −1 and
L(1/2, σ) = 0. We have the following integral representation for the
central derivative:

eqn kernel E’eqn kernel E’ (2.3.10)

∫
[G]
E′(g, 0,Φ)φ(g)dg = −

L′(12 , σ)

ζF (2)

∏
v

α(θ(Φv, φv)).

Proof. The condition Λ(σv) <
1
2 holds if σ is a local component of a cuspidal

automorphic representation by the work of Kim–Shahidi
K-S
[25]. By Proposition

IchinoIchino
2.2.3, we have

(2.3.11) α(0,Φv, φv) = sgn(Bv) ζF (2)α(θ(Φv ⊗ φv)).

The corollary follows that the integration of matrix coefficients α : πv⊗ π̃v → C
is nonzero if and only if ϵ(1/2, σv) = sgn(Bv).

2.4 Ichino’s formula

In this subsection, we review a central value formula of Ichino. We assume that
Σ(B) is even. Let B be a quaternion algebra over F with ramification set Σ(B).
Then, we write V for the orthogonal space (B, q).

For our purpose, we first recall the Siegel–Weil formula for groups of simil-
itudes. The theta kernel is defined to be, for (g, h) ∈ R(A),

θ(g, h,Φ) =
∑
x∈BE

r(g, h)Φ(x).eqn thetaeqn theta (2.4.1)

It is R(F )-invariant. The theta integral is the theta lifting of the trivial auto-
morphic form, for g ∈ GSp+6 (A),

I(g,Φ) =

∫
[O(BE)]

θ(g, h1h,Φ)dh1,eqn I inteqn I int (2.4.2)

where h is any element in GO(BE) such that ν(h) = ν(g). It does not depend
on the choice of h. When B =M2×2 the integral needs to be regularized. The
measure is normalized such that the volume of [O(BE)] is one. The function
g 7→ I(g,Φ) is left invariant under GSp+6 (A) ∩ GSp6(F ) and under the center
ZGSp6(A) of GSp6(A).

The following Siegel–Weil formula can be found
H-K
[13, Thm. 4.2].
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thm SW Theorem 2.4.1 (Siegel–Weil). The Siegel–Eisenstein series E(g, s,Φ) is holo-
morphic at s = 0 and

(2.4.3) E(g, 0,Φ) = 2I(g,Φ), g ∈ GSp+6 (A).

To eliminate the dependence on the choice of measure on O(V )(A), we shall
write it as

(2.4.4) E(g, 0,Φ) = 2(vol([O(V )]))−1I(g,Φ).

Now we deduce a formula for the T -th Fourier coefficient of the Siegel–Eisenstein
series.

cor E_T=I_T Corollary 2.4.2. Assume that V is anisotropic and det(T ) ̸= 0. Then for
g ∈ GSp+6 (A) we have

ET (g, 0,Φ) = 2vol([O(V )x0 ])

∫
O(V )(A)/O(V )x0 (A)

r(g, h)Φ(h−1
1 x0) dh1,

where h ∈ GO(VA) has the same similitude as g, x0 ∈ V (F ) is a base point
with Q(x0) = T , and O(V )x0 ≃ O(x⊥0 ) is the stabilizer of x0.

Proof. Put g1 = d(ν(g))−1g. We obtain by Theorem
thm SWthm SW
2.4.1:

ET (g, 0,Φ) = 2

∫
[Sym3]

ψ(−Tb)I(n(b)g,Φ) db

= 2

∫
[Sym3]

ψ(−Tb)
∫
[O(V )]

∑
x∈V (F )

|ν(g)|−3
A r(d(ν(g)−1)n(b)g)Φ(h−1h−1

1 x) dh1db.

Note that d(ν(g)−1)n(b)g = n(ν(g)b)d(ν(g)−1)g. We thus have

r(d(ν(g)−1)n(b)g)Φ(h−1h−1
1 x) = ψ(ν(g)bQ(h−1x))r(g1)Φ(h

−1h−1
1 x) = ψ(bQ(x))r(g1)Φ(h

−1h−1
1 x).

Since [O(V )] is compact, we may interchange the order of integrations. Then
the integral over [Sym3] is zero unless T = Q(x). Since T is non-singular,
by Witt theorem, the set of x ∈ V (F )3 with Q(x) = T is either empty or a
single O(V )(F )-orbit. Fix a base point x0. Then the stabilizer O(V )x0 of x0 is
isomorphic to O(W ) for the orthogonal complement W of the space spanned
by the components of x0. We now have

ET (g, 0,Φ) = 2

∫
[O(V )]

∑
γ∈O(V )(F )/O(V )x0 (F )

r(g1)Φ(h
−1h−1

1 γ−1x0)dh1

= 2vol([O(V )x0 ])

∫
O(V )(A)/O(V )x0 (A)

r(g1)Φ(h
−1h1x0)dh1.

This completes the proof.
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For non-singular T we define

IT (g,Φ) = 2vol([O(V )x0 ])

∫
O(V )(A)/O(V )x0 (A)

r(g, h)Φ(h−1
1 x0)dh1.eqn def I_Teqn def I_T (2.4.5)

We have O(V ) = SO(V )⋊µ2 (cf. Notations) where µ2 ⊂ O(V ) is generated by
the canonical involution on the quaternion algebra. When T is non-singular, it
is easy to see that SO(V ) is surjective onto O(V )/O(V )x0 . We then may choose
a measure on O(V )(A) such that it is the product measure of the Tamagawa
measure on SO(V )(A) and the measure on µ2(A) such that

vol(µ2(A)) = 1.

Since the Tamagawa number of SO(V ) is 2, we have

vol([O(V )]) =
1

2
vol(SO(V )(F )\O(V )(A)) =

1

2
vol([SO(V )])vol(µ2(A)) = 1,

vol(µ2(F )\µ2(A)) =
vol(µ2(A))
|µ2(F )|

=
1

2
.

Now we define (a certain orbital integral):

IT,v(gv,Φv) =

∫
SO(V )(Fv)

r(gv, hv)Φv(h1x0) dh1, ν(gv) = ν(hv).eqn I_T veqn I_T v (2.4.6)

Then we may rewrite (
eqn def I_Teqn def I_T
2.4.5), when Φ = ⊗vΦv is decomposable,

IT (g,Φ) =
∏
v

IT,v(gv,Φv),eqn I_T=localeqn I_T=local (2.4.7)

Moreover, Corollary
cor E_T=I_Tcor E_T=I_T
2.4.2 can be rewritten as:

ET (g, 0,Φ) = IT (g,Φ).eqn E_T=I_T 2eqn E_T=I_T 2 (2.4.8)

We also need a local Siegel–Weil formula for later use.

prop local SW Proposition 2.4.3. Suppose that T ∈ Sym3(Fv) is non-singular. Then there
is a non-zero constant κ such that for all gv ∈ GSp6(Fv), Φv ∈ S (V 3

v )

WT,v(gv, 0,Φv) = κ · IT,v(gv,Φv).

In particular, the functional Φv 7→ WT,v(1, 0,Φv) is non-zero if and only if T
is represented by Vv.

Proof. It suffices to prove the statement for gv = 1. Consider the space of
linear functionals ℓ on S (V 3

v ) that satisfy

ℓ(r(n(b))Φv) = ψ(Tb)ℓ(Φv).

Then by
K97
[19, Prop. 1.2], this space is spanned by Φv 7→ IT,v(1,Φv) (whose

definition depends on the normalization of the measure dµT,v). Since Φv 7→
WT,v(1, 0,Φv) also satisfies this relation, it defines a multiple of the linear func-
tional IT,v(1, ·) above. The multiple can be chosen to be non-zero by

K97
[19, Prop.

1.4 (ii)].
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We now state the central value formula due to Ichino
I
[14, Theorem 1.1].

Note that we will not use this formula in this paper. However, the proofs of
this and our main theorem are parallel. Considering the diagonal embedding
B× ↪→ B×

E , we define the trilinear period:

Pπ(f) =

∫
F×\B×(A)

f(b)db, f ∈ π.

central value Theorem 2.4.4. For f = ⊗vfv ∈ π, f̃ = ⊗vf̃v ∈ π̃, we have

Pπ(f)Pπ̃(f̃) =
1

2c
ζE(2)

ζF (2)

L(12 , σ)

L(1, σ, ad)
α(f, f̃).

Here the constant c is 3, 2, and 1 respectively if E = F ⊕ F ⊕ F , E = F ⊕K
for a quadratic K, and a cubic field extension E of F respectively.

Remark 2.4.1. The formula is trivial if the global root number is −1. Therefore,
the primary purpose of this paper is to study the case where the global root
number is −1.

2.5 Derivatives of Eisenstein series
decomp

Now we fix an incoherent quaternion algebra B over A with ramification set
Σ. We assume that B has definite Bv at archimedean places. We consider the
Eisenstein series E(g, s,Φ) for Φ ∈ S (B3). We always take Φ∞ to be standard
Gaussian. In this case this Eisenstein series vanishes at s = 0 as observed by
Kudla

K97
[19, Thm. 2.2(ii)]. As we now discuss, vanishing a non-singular T -th

Fourier coefficient is easier to see.
For T ∈ Sym3(F )reg, let Σ(T ) be the set of places over which T is anisotropic.

Then Σ(T ) has even cardinality. By Prop.
prop local SWprop local SW
2.4.3, the vanishing order of the

T -th Fourier coefficient ET (g, s,Φ) at s = 0 is at least (also cf.
K97
[19, Coro. 5.3])

|Σ ∪ Σ(T )| − |Σ ∩ Σ(T )|.

Since |Σ| is odd, we see that ET (g, s,Φ) always vanishes at s = 0. Furthermore,
its derivative does not vanish only if Σ and Σ(T ) is nearby: they differ by
precisely one place v. Thus we define

Σ(v) =

{
Σ \ {v} if v ∈ Σ

Σ ∪ {v} otherwise
(2.5.1)

When Σ(T ) = Σ(v), the derivative is given by

E′
T (g, 0,Φ) =W ′

T,v(gv, 0,Φv) ·
∏
w ̸=v

WT,w(gw, 0,Φw).(2.5.2)
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We thus obtain a decomposition of E′(g, 0,Φ) according to the difference of
Σ(T ) and Σ:

(2.5.3) E′(g, 0,Φ) =
∑
v

E′
v(g, 0,Φ) + E′

sing(g, 0,Φ),

where

eqn E’veqn E’v (2.5.4) E′
v(g, 0,Φ) :=

∑
Σ(T )=Σ(v)

E′
T (g, 0,Φ),

and
E′

sing(g, 0,Φ) =
∑

det(T )=0

E′
T (g, 0,Φ).

A weak intertwining property

In the case where Σ is odd, the functional Φ 7→ E′(g, 0,Φ) is not equivariant
under the action of Sp6(A). Instead, we have a weak intertwining property:

prop wk inter Proposition 2.5.1. Let A0 be the image of Π(BA) under the map f 7→ E(g, 0, f)
for all quaternion algebra B over F . Then for any h ∈ Sp6(A), f ∈ I(0), the
function

Sp6(A) ∋ g 7→ E′(gh, 0, f)− E′(g, 0, r(h)f)

belongs to A0.

Proof. Let α(s, h)(g) = α(s, g, h) = 1
s (|

δ(gh)
δ(g) |

s − 1), s ̸= 0. Then it extends to

an entire function of s and is left PA-invariant. Now for Re(s) ≫ 0, we have

E(gh, s, f)− E(g, s, r(h)f) = sE(g, s, α(s, h)r(h)f)

Now note that g → α(s, h)r(h)f(g)δ(g)s defines a holomorphic section of I(s).
Hence the Eisenstein series E(g, s, α(s, h)r(h)f) is holomorphic at s = 0 since
any holomorphic section of I(s) is a finite linear combination of the standard
section with holomorphic coefficients. This implies the desired assertion.

3 Trilinear cycles and generating series

In this section, we construct the geometric kernel function for Φ ∈ S (B3) where
B is an incoherent totally definite quaternion algebra over a totally real field F .
We will first prove the spectral decomposition of 1-cycles and additivity under
the action of endomorphisms using the Fourier–Mukai transform. Then we
review the generating series of Hecke operators and its modularity (Proposition
prop mod Zprop mod Z
3.3.1) following our previous paper

Y-Z-Z
[32]. The main conjecture can then be

reformulated as a kernel identity between the derivative of the Eisenstein series
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and the geometric kernel associated with Φ, see Conjecture
kernel-identitykernel-identity
??. Finally, we

introduce arithmetic Hodge classes and arithmetic Hecke operators, which gives
a decomposition of the geometric kernel function to a sum of local heights and
singular pairings.

3.1 Trilinear 1-cyles
S3.1

In this subsection, we would like to prove the essential facts in the introduction.
Let A = A1 × A2 × A3 be a product of three simple abelian varieties over a
field F . First, we want to decompose Ch1(A) into eigenspaces under push
forwards. For k = (k1, k2, k3) ∈ (Z \ {0})3, we have a multiplication [k] on A
by component-wise multiplication by ki.

Lemma 3.1.1. We have a decomposition

Ch1(A) =
∑
s

Ch(A, s),

where s = (s1, s2, s3) is triple of non-negative integers, and Ch1(A, s) is sub-
space of cycles x such that

[k]∗x = ks · x, ks := ks11 k
s2
2 k

s3
3 .

Proof. We prove the lemma for general cycles Ch∗(A) using Fourier–Mukai
transform. Let A∨ = A∨

1 × A∨
2 × A∨

3 be the product of duals. Let Pi be the
Poincare bundle on Ai×A∨

i , and use the same notation for their pull and-back
on A. Then P = ⊠Pi is the Poincare bundle on A × A∨. Define a Fourier
transform on Chow groups with rational coefficients by

F : Ch∗(A) −→ Ch∗(A∨), F (x) = q∗(p
∗x · ec1(P))

F∨ : Ch∗(A∨) −→ Ch∗(A), F∨(y) = p∗(q
∗y · ec1(P))

where p and q are projections of A × A∨ onto A and A∨ respectively. Then
these two operators are almost inverse to each other:

F∨ ◦ F = [−1]g[−1]∗A, F ◦ F∨ = [−1]g[−1]∗A∨

where g = dimA.
From these identities, it follows that any x ∈ Ch∗(A) has an expansion

x =
∑

t1,t2,t3≥0

p∗
(
c1(P1)

t1 · c1(P2)
t2 · c1(P3)

t3 · q∗(yt1,t2,t3)
)

with yt1,t2,t3 ∈ Ch∗(A∨). It is easy to see that each term on the right-hand side
is an eigenvector under pull-back [k]∗ with eigenvalue kt11 t

t2
2 t

t3
3 . Since [k]∗[k]

∗ =

k2g11 k2g22 k2g33 , it follows that each term is also an eigenvector under [k]∗ with

eigenvalue k2g1−t11 k2g2−t22 k2g3−t33 .
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Let Chℓℓℓ(A) denote Ch1(A, (1, 1, 1)) and call it the space of trilinear one-
cycles. We want to study the End(Ai) action on this space.

Lemma 3.1.2. For each i, let ϕi, ψi ∈ End(Ai) and let ϕ = (ϕ1, ϕ2, ϕ3) and
ψ = (ψ1, ψ2, ψ3) be the induced element in End(A). Then for any x ∈ Chℓℓℓ(A),

(ϕ+ ψ)∗x =
∏
i

(ϕi∗ + ψi∗)x.

Proof. We use functoriality of Mukai–Fourier transform: if φ : B −→ C is a
morphism of abelian varieties, then for any z ∈ Ch∗(B),

F (φ∗z) = φ∨∗F (z),

where φ∨ : C∨ −→ B∨ is the dual morphism.
Let y = F (x) ∈ Ch∗(A∨). Applying the above formula for ϕ : A −→ A,

the equality in the lemma is equivalent to

(ϕ∨ + ψ∨)∗y =
∏
i

(ϕ∨∗i + ψ∨∗
i )y.

By the same formula and the assumption, we have that x and y are trilinear
under pull-back morphism:

[k]∗y = k1k2k3y.

From the proof of the previous lemma, y has an expression as

y = q∗ (c1(P1) · c1(P2) · c1(P3) · p∗(z))

for some z ∈ Ch∗(A). It follows that the following identity holds:

(ϕ∨+ψ∨)∗y = q∗

(
(ϕ̃∨1 + ψ̃∨

1 )
∗c1(P1) · (ϕ̃∨2 + ψ̃∨

2 )
∗c1(P2) · (ϕ̃∨3 + ψ̃∨

3 )
∗c1(P3) · p∗(z)

)
where for each i, ϕ̃∨i and ψ̃∨

i denote the endomorphism of Ai ×A∨
i induced by

ϕi and ψi on the second factor. Thus we are reduced to prove the following
identity for each i:

(ϕ̃∨i + ψ̃∨
i )

∗c1(Pi) = (ϕ̃∨∗1 + ψ̃∨∗
1 )c1(Pi)

This follows from the additivity of Pi in the second variable: Let µi, βi, and γi
denote morphisms induced by addition and two projections in the second and
third variable:

A×A∨ ×A∨ −→ A×A∨,

then
µ∗iPi = β∗i P + γ∗i P.
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Composing the above identity with φ∗ where φ is the morphism defined by

φ : A×A∨ −→ A×A∨ ×A∨ : (x, y) −→ (x, ϕi(x), ψi(x)),

Then we obtain the desired identity:

(ϕ̃∨i + ψ̃∨
i )

∗c1(Pi) = (ϕ̃∨∗1 + ψ̃∨∗
1 )c1(Pi).

By the second lemma, we see that the action of End(Ai) on Chℓℓℓ(A) makes
Chℓℓℓ(A) a module over

Endℓℓℓ(A) := End(A1)⊗ End(A2)⊗ End(A3).

Recall that we have defined the height pairing of trilinear 1-cycles:

⟨−,−⟩ : Chℓℓℓ(A)⊗Q Chℓℓℓ(A∨) −→ C, ⟨x, y⟩ := (x× y)
∏
i

ĉ1(P̄i).

Let ϕ 7→ ϕ∨ denote the anti-isomorphism induced by duality:

Endℓℓℓ(A) −→ Endℓℓℓ(A∨).

By definition and projection formula, we have

Lemma 3.1.3. For ϕ ∈ Endℓℓℓ(A), x ∈ Chℓℓℓ(A), y ∈ Chℓℓℓ(A∨), we have

⟨ϕx, y⟩ = ⟨x, ϕ∨y⟩.

Moreover, if ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 is a pure tensor, then both terms in the above
are equal to

(x× y)
∏
i

ϕ̃∗i ĉ1(P̄i) = (x× y)
∏
i

ϕ̃
∨∗
i ĉ1(P̄i),

where ϕ̃i and ϕ̃
∨
i are endomorphisms of A×A∨ induced by ϕi and ϕ

∨
i .

Now we assume that each Ai is of GL(2)-type with End0(Ai) = Mi. Then
M = ⊗iMi acts linearly on Chℓℓℓ(A). We can define a height pairing

⟨−,−⟩M : Chℓℓℓ(A)⊗M Chℓℓℓ(A∨) −→M ⊗ C

such that for any a ∈M , x ∈ Chℓℓℓ(A), y ∈ Chℓℓℓ(A∨),

TrM⊗C/C(a⟨x, y⟩M ) = ⟨ax, y⟩ = ⟨x, ay⟩.

We need the formula to express this pairing. For this we consider Pic−(Ai×
A∨
i ) of line bundles on Ai × A∨

i with trivializations at 0 × A∨
i and Ai × 0.

Then we have actions of Mi on Pic−(Ai × A∨
i )Q by pulling back which makes

Pic−(Ai × A∨
i ) a free vector space over Mi of dimension one generated by
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Poincare bundle Pi. This induces an action of M on
∏
i Pic

−(Ai×A∨
i ). Using

the same formulation; we can define an intersection paring with coefficients in
M ⊗ C:

(x× y) ·
∏
M,i

ĉ1(P̄i) ∈M ⊗ C

such that for each a ∈M ,

TrM⊗C/C

a((x× y)
∏
M,i

ĉ1(P̄i))

 = (x× y) · a∗
∏
i

ĉ1(P̄i).

By the above lemma and projection formula, we have

lem ht formula Lemma 3.1.4. For x ∈ Chℓℓℓ(A), y ∈ Chℓℓℓ(A∨),

⟨x, y⟩M = (x× y)
∏
M

ĉ1(P̄i).

Remark 3.1.1. Let C be a curve over F . Gross and Schoen have constructed
height pairings ⟨−,−⟩GS on the space Ch001 (C3) of one-cycles homologous to 0.
Let ϕ : C −→ J an embedding into its Jacobian defined by a divisor of degree
1 on C. Then one has to map into one cycle on J3 homologous to 0:

ϕ∗ : Ch001 (C3) −→ Ch001 (J3).

It can be shown that
⟨x, y⟩GS = ⟨ϕ∗xℓℓℓ, ϕ∗yℓℓℓ⟩.

The advantage of using Chℓℓℓ(J3) over Ch001 (J3) is that the previous is a module
over Endℓℓℓ(J3). How to prove this module structure on Ch001 (J3) needs to be
clarified. Conjecturally these two spaces are isomorphic to each other.

3.2 Gross–Kudla–Schoen cycles

Now go back to the setting in the introduction. Let X be a Shimura curve
over a totally real field associated with an incoherent quaternion algebra B.
Let A = A1 × A2 × A3 be a product of three simple abelian varieties over F
parametrized by X, and L a quotient field of ⊗iEnd

0(Ai). Let fi ∈ πAi,L and
gi ∈ πA∨

i ,L
and define f =

∏
i fi and g =

∏
i gi are morphisms from X to A and

A∨ respectively. Then we have Gross–Kudla–Schoen cycles

PL(f) = (f∗X)ℓℓℓ ⊗ 1 ∈ Chℓℓℓ(A,L), PL(g) = (g∗X)ℓℓℓ ⊗ 1 ∈ Chℓℓℓ(A∨, L).

Consider the height pairing:

⟨PL(f), PL(g)⟩L ∈ L⊗ C.

We want to express this height pairing as an intersection number on X ×X.
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By Lemma
lem ht formulalem ht formula
3.1.4 and the projection formula we have

eqn triple paireqn triple pair (3.2.1) ⟨PL(f), PL(g)⟩M = (f∗X × g∗X)
∏
L,i

ĉ1(P̄i) =
∏
L,i

ĉ1(L̄ (fi, gi)),

where
L (fi, gi) := (fi, gi)

∗Pi ∈ Pic−(X ×X)Q

is endowed with the admissible metric. We must describe the bundle L (fi, gi)
directly.

The space Pic−(X × X)Q is a subspace of correspondences on X with an
action by (B×)2. It is closed under convolution and thus has a ring structure.
This ring has an action T on representations πB for any simple abelian variety
B parametrized byX by obvious way: if L ∈ Pic−(X×X) and f ∈ Hom(X,B)
realized at some level U , then T(L ) · f will bring x ∈ XU to

f∗(c1(L |x×XU
)) ∈ B.

As a representation of (B×)2, we have

Pic−(X ×X)Q =
⊕
B

πB ⊗MB
πB∨ ,

where the sum runs through the set of isogenous classes of simple abelian
varieties B parametrized by X, and MB = End0(B). The main result of this
subsection is the following:

lem triple pair Lemma 3.2.1. Let B be a simple abelian variety parametrized by X with en-
domorphism field MB. Then for α ∈ πB, β ∈ πB∨,

(α, β)∗PB = α⊗ β.

Proof. We need to check the identity by applying to the representations πC for
any abelian variety C parametrized by X. Let γ ∈ πC . Assume α, β, γ are all
realized on some XU . Then for any x ∈ XU ,

T((α, β)∗PB)γ(x) = γ∗((α, β)
∗PB|x×XU

) = γ∗β
∗Pα(x)×B∨ .

Notice that
t 7→ γ∗β

∗Pt×B∨

defines a morphism B −→ C. Thus this vanishes if C and B are not isogenous.
Now we assume that B = C. By definition, this morphism is simply the
multiplication by (γ, β) ∈MB. Thus we have shown that

T((α, β)∗PB)γ = (γ, β)α.

This completes the proof.
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3.3 Generating series of Hecke correspondences

Let V denote the orthogonal space B with quadratic form q. Recall that S (V)
carries an extended Weil representation of

R =
{
(b1, b2, g) ∈ B× × B× ×GL2(A) : q(b1b

−1
2 ) = det g

}
by

r(h, g)Φ(x) = |q(h)|−1r(d(det(g))−1g)Φ(h−1x).

For α ∈ F×
+ \A×

f , let Mα denote the union

Mα =
∐

a∈π0(X)

Xa ×Xaα.

This is a Shimura subvariety of X ×X stabilized by the subgroup GSpin(V) of
B× × B× of elements with the same norms. Define the group of cocycles:

Ch1(Mα) := lim−→
U1

Ch1(Mα,U1),

where U1 runs through the open and compact subgroups of GSpin(V). For an
h ∈ B× × B×, the pull-back morphism T(h) of right multiplication defines an
isomorphism

T(h) : Ch1(Mα) −→ Ch1(Mαν(h)−1).

Using Kudla’s generating series and the modularity proved in
Y-Z-Z
[32], for each

Φ ∈ S (V) and g ∈ GL2(F )+\GL2(A)+, we will construct an element

Z(g,Φ) ∈ Ch1(Mdet g)

such that for any (g′, h′) ∈ R,

Z(g, r(g′, h′)Φ) = T(h′)Z(gg′,Φ).

Hecke correspondences

For any double coset UxU of U\B×
f /U , we have a Hecke correspondence

Z(x)K ∈ Z1(XU ×XU )

defined as the image of the morphism

(πU∩xUx−1,U , πU∩x−1Ux,U ◦ Tx) : ZU∩xUx−1 −→ X2
U .

In terms of complex points at a place of F as above, the Hecke correspon-
dence Z(x)U takes

(z, g) 7−→
∑
i

(z, gxi)

for points on XU,τ (C) represented by (z, g) ∈ H ± ×Bf where xi are represen-
tatives of UxU/U .

Notice that this cycle is supported on the component Mν(x)−1 of X ×X.
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Hodge class

On X ×X, one has a Hodge bundle LK ∈ Pic(X ×X)⊗Q defined as

LK =
1

2
(p∗1L + p∗2L ).

Generating Function

Write M = M1, which has an action by GSpin(V). For any x ∈ V and an
open and compact subgroup K of GSpin(V) of the form U ×U , let us define a
cycle Z(x)K on MK as follows. This cycle is non-vanishing only if q(x) ∈ F×

or x = 0. If q(x) ∈ F×, then we define Z(x)K to be the Hecke operator
UxU defined in the last subsection. If x = 0, then we define Z(x)K to be the
push-forward of the Hodge class on the subvariety Mα which is the union of
connected components Xa ×Xa with a ∈ π0(X). Let K̃ = O(F∞) ·K act on
V.

For Φ ∈ S (V)K̃ , we can form a generating series

Z(Φ) =
∑

x∈K̃\V

Φ(x)Z(x)K .

It is easy to see that this definition is compatible with pull-back maps in Chow
groups in the projection MK1 −→ MK2 with K1 ⊂ K2. Thus it defines an
element in the direct limit Ch1(M)Q := limK Ch1(MK) if it is absolutely con-
vergent. We extend this definition to S (V) by projection

S (V) −→ S (V)O(F∞), Φ −→ Φ̃ :=

∫
O(F∞)

r(g)Φdg,

where dg is the Haar measure on O(F∞) with volume 1.
For g ∈ SL2(A), define

Z(g,Φ) = Zr(g)Φ ∈ Ch1(M).

By our previous paper
Y-Z-Z
[32], this series is absolutely convergent and is modular

for SL2(A):

(3.3.1) Z(γg,Φ) := Z(g,Φ), γ ∈ SL2(F ).

Moreover, for any h ∈ H,

(3.3.2) Z(g, r(h)Φ) = T(h)Z(g,Φ).

where T(h) denotes the pull-back morphism on Ch1(M) by right translation of
hf .

Let GL2(A)+ denote subgroup of GL2(A) with totally positive determinant
at archimedean places. For g ∈ GL2(AF )+, define

Z(g,Φ) = T(h)−1Z(r(g, h)Φ) ∈ Ch1(Mdet g),
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where h is an element in B× × B× with norm det g. By (3.3.1), the definition
here does not depend on the choice of h. It is easy to see that this cycle satisfies
the property

Z(g, r(g1, h1)Φ) = T (h1)Z(gg1,Φ), (g, h) ∈ R.

The following is the modularity of Z(g,Φ):

prop mod Z Proposition 3.3.1. The cycle Z(g,Φ) is automorphic for GL2(A)+: for any
γ ∈ GL2(F )

+, g ∈ GL2(A),

Z(γg,Φ) = Z(g,Φ).

Moreover, the minus part Z(g,Φ)− is cuspidal.

Proof. Let γ ∈ GL2(F )
+ it suffices to show

T(αh)−1Z(r(γg, αh)Φ) = T(h)−1Z(r(g, h)Φ),

where (γ, α) and (g, h) are both elements in R. This is equivalent to

T(α)−1Z(r(γg, αh)Φ) = Z(r(g, h)Φ)

and then to
T(α)−1Z(r(γ, α)Φ) = Z(Φ)

with r(g, h)Φ replaced by Φ. Write γ1 = d(γ)−1γ. By definition, the left-hand
side is equal to

T(α)−1Z(L(α)r(γ1)Φ) =
∑

x∈K̃\V

r(γ1)Φ(α
−1x)ρ(α)−1Z(x)K

=
∑

x∈K·O(F∞)\V

r(γ1)Φ(α
−1x)Z(α−1x)K

=
∑

x∈K̃\V

r(γ1)Φ(x)Z(x)K

=Z(r(γ1)Φ) = Z(Φ).

For the minus part, we notice that the constant term of Z(g,Φ) which is a
multiple of LK . Thus the constant term of Z−(g,Φ) vanishes by definition.

Notice that the natural embedding GL2(AF )+ −→ GL2(AF ) gives bijective
map

GL2(F )
+\GL2(AF )+

∼−→ GL2(F )\GL2(AF ).

Thus we can define Z(g,Φ) for g ∈ GL2(AF ) by

Z(g,Φ) = Z(γg,Φ)

for some γ ∈ GL2(F ) such that γg ∈ GL+
2 (AF ). Then Z(g,Φ) is automorphic

for GL2(A).
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3.4 Geometric theta lifting

Let σ be an irreducible cuspidal automorphic representation of GL2(A) of par-
allel weight 2. For any φ ∈ σ, α ∈ F×

+ \A×
f , we define

Zα(Φ⊗ φ) :=

∫
SL2(F )\SL2(A)

Z(g1g,Φ)φ(g1g)dg1 ∈ Ch1(Mα),

where g ∈ GL2(A) with determinant equal to α. Then it is easy to see that by
YZZ-GZ
[33], Theorem 3.5.2, we have the following identity:

eqn Z=Teqn Z=T (3.4.1) Z(Φ⊗ φ) =
L(1, π, ad)

2ζF (2)
T(θ(Φ⊗ φ)).

The collection (Zα(Φ⊗ φ)) defines an element

(Zα(Φ⊗ φ)) ∈
∏
α

Ch1(Mα).

It is easy to see that this element is invariant under open compact subgroup
U × U of B× × B×. An element gives

Z(Φ⊗ φ) ∈ Ch1(X ×X), Φ ∈ S (V).

Kernel identity

For a Φ = ⊗Φi ∈ S (V3), we can define an automorphic form on GL2(A)3 by

Z-T3Z-T3 (3.4.2) Θ−(g,Φ) = Ẑ−(g1,Φ1) · Ẑ−(g2,Φ2) · Ẑ−(g3,Φ3),

where the right-hand side is the intersection of the admissible class extending
the projection Z(gi,Φ)

− ∈ Pic−(Y × Y ) of Z(gi,Φ). By Proposition
prop mod Zprop mod Z
3.3.1, this

a cusp form

prop-kernel Proposition 3.4.1. The Conjecture
main-conjmain-conj
1.3.1 is equivalent to that Θ−(g,Φ) is the

projection of −2E′(·, 0,Φ) in the space of cups forms of parallel weight 2, i.e.,
the following identity for any cusp form φ for of parallel weight 2 for GL2(A)3:

(−2E′(·, 0,Φ), φ) = (Θ(·,Φ), φ).

Proof. After decomposing the space of cusp forms into irreducible representa-
tions, we may assume that φ ∈ σ for some irreducible representations.

By Corollary
cor kernel L’cor kernel L’
2.3.2, the left-hand side of the kernel identity is

2L′(1/2, σ)

ζF (2)
α(θ(Φ⊗ φ).

If θ(Φ⊗ φ) =
⊗

i(fi ⊗ gi), by (
eqn Z=Teqn Z=T
3.4.1) the right-hand side is

L(1, π, ad)

8ζF (2)3

∏
i

ĉ1(Ẑ(fi, gi)).
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By the formula (
eqn triple paireqn triple pair
3.2.1) and Lemma

lem triple pairlem triple pair
3.2.1, we have∏

i

ĉ1(Ẑ(fi, gi)) = ⟨P (f), P (g)⟩.

Thus both sides multiples of α(Φ⊗ φ). If either side is non-zero, then Σ(σ) =
Σ(B). Therefore Conjecture

main-conjmain-conj
1.3.1 follows.

For the actual computation, we may replace Ẑ(g,Φi)
− by arithmetic classes

extending Z(g,Φi). In fact, since each Z(g,Φi) will fix class Picξ(X), it is in
the space

π∗1Pic
ξ(X)⊗ Ch0(X) + Ch0(X)⊗ π∗2Pic

ξ(X) + Pic−(X ×X).

Thus we have a decomposition

Z(g,Φi) = Zξ1(g,Φi) + Zξ2(g,Φi) + Z−(g,Φi).

It is easy to see that both Zξ(g,Φi) are Eisenstein series with values in Hodge
cycles. Now for each α ∈ Picξ(X), fix an arithmetic extension α̂. Then the
above decomposition defines an arithmetic extension Ẑ(g,Φi). Now we define

Z-deltaZ-delta (3.4.3) Θ(g,Φ) = Ẑ(g1,Φ1) · Ẑ(g2,Φ2) · Ẑ(g3,Φ3).

Then the difference Ẑ(g,Φ) − Ẑ−(g,Φ) is Eisenstein in the sense that it is a
sum of forms which is Eisenstein for at least one variable gi. It follows that it
has zero inner product with cusp forms. Thus we have the following equivalent
form of the above Conjecture

main-conjmain-conj
1.3.1:

Remark 3.4.1. Unlike the formalism Φi 7→ Z(g,Φi) which is equivariant under
the action of B××B×, the formalism Φi 7→ Ẑ(g,Φi) is not B××B× equivariant
in general.

3.5 Arithmetic Hodge class and Hecke operators
subsec arith hecke

In this section, we want to introduce an arithmetic Hodge class and the arith-
metic Hecke operators. The construction depends on the choice of integral
models, which depends on a maximal order OB of B we fix here.

Moduli interpretation at an archimedean place

Let U be an open and compact subgroup of O×
B . Let τ be an archimedean

place of F . Write B a quaternion algebra over F with ramification set Σ \ {τ}.
Fix an isomorphism Bτ ≃ B ⊗ Aτ . Recall that from

Z01
[35, §5.1], the curve XU

parameterizes isomorphism classes of triples (V, h, κ̄) where

1. V is a free B-module of rank 1;
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2. h is an embedding S −→ GLB(VR) which has weight −1 at τ1, and trivial
component at τi for i > 1, where τ1 := τ, τ2, · · · , τg are all archimedean
places of F ;

3. κ̄ is a class in Isom(V̂0, V̂ )/U , where V0 = B as a left B-module.

The Hodge structure h defines a Hodge decomposition on Vτ,C:

Vτ,C = V −1,0 + V 0,−1.

By Hodge theory, the tangent space of Y at a point (V, h, κ) is given by

L (V )τ = HomB(V
−1,0, VC/V

−1,0) = HomB(V
−1,0, V 0,−1).

Since the complex conjugation on VC switches two factors V −1,0 and V 0,−1, one
has a canonical identification

L (V )τ ⊗ L (V )τ = HomB(V
−1,0, V −1,0) = C.

This identification defines a Hermitian norm on L (V )τ .

Lemma 3.5.1. Let δ(V ) denote the one dimensional vector space over F gen-
erated by symbol δ(v) for v ∈ V with relation δ(bv) = ν(b)δ(v). Then we have
a canonical isomorphism:

L (V ) = δ(V )⊗F,τ det(V
−1,0
C )∨.

Proof. There is a pairing ψ : V ⊗ V −→ δ(V ) defined by

ψ(u, v) :=
1

2
(δ(u+ v)− δ(u)− δ(v)).

Let B× act on this space by multiplication by ν : B× −→ F×. Then we have

ψ ∈ HomB×(V ⊗ V, δ(V )).

This pairing is compatible with Hodge structures when δ(V ) is equipped with
action weight (−1,−1). Thus on Vτ,C, the above pairing has isotropic spaces
V −1,0 and V 0,−1 and defines bilinear B×

C -equivariant pairing

V −1,0 ⊗ V 0,−1 −→ δ(V )C.

On the other hand, the wedge product defines a B×
C -pairing

V −1,0 ⊗ V 0,−1 −→ det(V −1,0),

where the later space is equipped with an action ν : B× −→ F×. The above
two pairings define canonical identifications:

V 0,−1 = δ(V )τ,C ⊗HomB×(V −1,0,C),

V −1,0 = det(V −1,0)⊗HomB×(V −1,0,C).
Thus we have

L (V )τ = Hom(V −1,0, V 0,−1) = δ(V )τ,C ⊗ det(V −1,0)∨.
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Modular interpretation at a finite place

Let v be a finite place. Recall from
Z01
[35, §5.3], the prime to v-part of (V̂U , κ̄)

extends to an étale system over XU , the canonical integral model of XU . The v-
part extends to a system of special divisible OBv -module of dimension 2, height
4, with Drinfeld level structure:

(A , ᾱ)

with an identification
κv(Ov) ≃ Tv(A ),

where Tv(A ) is the Tate module of A for prime v.
The Lie algebra of the formal part A 0 of A defines a two-dimensional vector

bundle Lie(A ) on XU . The tangent space of XU is canonically identified with
Lv := δ(V )OF

⊗ Lie(A )∨. The level structure defines an integral structure on
δ(V ) at place v. Thus Lv has an integral structure by the tensor product.

If v is not split in B, then OBv is the unique maximal order in Bv, and
the integral structure on L is unique. This can also be seen from the group
A being formal and supersingular. Any isogeny φ : Ax −→ Ay of two such
OBv -modules representing two points x and y on XU smooth over Ov induces
an isomorphism of Ov-modules:

L (A ) ≃ L (B).

If v is split in B, then we may choose an isomorphism OBv =M2(Ov). Then
the divisible module A is a direct sum E ⊕E where E is a divisible OF -module
of dimension 1 and height 2. Then we have an isomorphism

L = Lie(E )⊗−2 ⊗ detTv(A ).

Let x be an ordinary Ov-point of YU then we have an formal–étale decomposi-
tion

0 −→ E 0
x −→ E −→ E et −→ 0.

This induces an isomorphism

Lx = (Lie(E )∨ ⊗ Tv(E
0))⊗2 ⊗ (Tv(E

et
x )⊗ Tv(E

0
x )

∨).

The first part does not depend on the level structure, but the second part does.
If φ : Ex −→ Ey is an isogeny of orders a, b on the formal and etale parts,
respectively, then it has order b− a for the bundles Lx −→ Ly.

Admissible arithmetic classes

Combining the above, we have introduced an arithmetic structure L̂ for L .
The roots of this define an arithmetic structure on elements of Hodges classes

Picξ(X). We denote the resulting groups of arithmetic classes as P̂ic
ξ
(X).
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Unlike Picξ(X), the group P̂ic
ξ
(X) is not invariant under the action of B× but

invariant under O×
B . We normalize the metric of ξ̂ at one archimedean place

such that on each connected component of any XU

ξ̂2 = 0.

Now for any class α ∈ Ch1(XU,a ×XU,b) in some irreducible component of
X×X in a finite level which fixes ξ by both push-forward and pull-back, we can
attach a class α̂ such that if α = α− + d2π

∗
1ξ1 + d1π

∗
2ξ2 with α ∈ Pic−(X ×X)

and ξi ∈ Picξ(X), then we have

α̂ = α̂− + d2π
∗
1 ξ̂1 + d1π2ξ̂2.

We call such a L-lifting of α. This agrees with the notion of “L-liftings” in
Z22
[37,

Corollary 2.5.7], Corollary for polarization L̂ = ξ̂1 + ξ̂2 + c, where c is positive

number making L̂ ample. The following properties can characterize such a
class:

1. admissibility: for any point (p1, p2) ∈ XU,a×XU,b, the induced arithmetic

classes α̂1 := α̂|p1×Ub
and α̂2 := α̂Xa×p2 on XU,a or XU,b are ξ̂-admissible

in the sense that α̂i − degαiξ̂ has curvature 0 at all archimedean places
and zero intersection with vertical cycles.

2. rigidity: α̂ · π∗1 ξ̂1 · π∗2 ξ̂2 = 0.

The class α 7→ α̂ extends to the whole group Ch1(X ×X).

Arithmetic Hecke operators

Let Z be a Hecke correspondence as a divisor inXU×XU . We want to construct

canonical arithmetic lifting Ẑ ∈ Ẑ1(XU×XU ) so that its class in Ĉh
1
(XU×XU )

is the L-lifting of the class [Z] ∈ Ch1(XU × XU ). For the construction of Ẑ,
we first construct Arakelov lifting ẐAr = (Z, gAr) as in our recent paper

Z22
[37],

where gAr is admissible with integral 0 against c1(ξ̂1) · c1(ξ̂2) meausure on each

fiber. The difference [Ẑ]− [ẐAr] ∈ Ch1 is a class C ∈ P̂ic(F ) such that

degC = −ξ̂1|Z · ξ̂2|Z =
1

2
(ξ̂1 − ξ̂2)|2Z .

Notice that ξ1|Z and ξ2|Z are canonically isomorphic. Thus (ξ̂1 − ξ̂2)|Z is
canonically represented by a vertical cycles

∑
v Gv supported over the fiber Fv

of XU ×XU where U is not maxial. Thus can define

Ẑ = ẐAr +
∑
v

(G2
v)Fv

where G2
v ∈ Q is the geometric intersection of Gv.
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Let p1, p2 be the two projections of Z onto XU . Then pi’s have the same
degree called d, and there is a canonical isomorphism p∗1ξ → p∗2ξ of line bundles
(with fractional power). This induces isomorphisms,

Z∗ξ1 ≃ d ξ2, Z∗ξ2 = ξ1.

Proposition 3.5.1. The above isomorphisms induce isometries:

Ẑ∗ξ̂1 ≃ d ξ̂2, Ẑ∗ξ̂2 = dξ̂1.

Proof. By similarity, we need only prove the first identity. Since Ẑ is ξ̂-
admissible, Ẑ∗ξ1 is also admissible. Thus we have constant C ∈ P̂ic(F ) cycles
such that Ẑ∗ξ̂1 = dξ̂2 + C. Now we intersect with ξ̂2 to obtain

degC = Ẑ∗ξ̂1 · ξ̂2 = Ẑ · ξ̂1 · ξ̂2 = 0.

First decomposition

With the construction of cycles as above, we can decompose the intersection
as follows

Θ(g,Φ) := Ẑ(g1,Φ1) · Ẑ(g2,Φ2) · Ẑ(g3,Φ3).

First, this intersection is non-trivial only if all gi have the same norm. In this
case we have one h ∈ B× × B× such that

Z(gi,Φi) = T(h)Z(r(gi, h)Φi).

Thus we have that

Ẑ(g1,Φ1) · Ẑ(g2,Φ2) · Ẑ(g3,Φ3) = Ẑ(r(g1, h)Φ1) · Ẑ(r(g2, h)Φ2) · Ẑ(r(g3, h)Φ3).

Assume that each r(gi, hi)Φi is invariant underK. In this case, this intersection
number is given by

Θ(g,Φ) =
∑

(x1,x2,x3)∈(K̃\V)3
r(g, h)Φ(x1, x2, x3)Ẑ(x1)K · Ẑ(x2)K · Ẑ(x3)K .

We write Θ(g, ϕ)sing for the partial sum where Z(xi) has a non-empty inter-
section at the generic fiber. Then the remaining terms can be decomposed into
local intersections. Thus we have a decomposition

Θ(g,Φ) = Θ(g,Φ)sing +
∑
v

Θ(g,Φ)v.eqn 1st decompeqn 1st decomp (3.5.1)
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4 Fourier expansions of Eisenstein series

As we have seen in section
decompdecomp
2.5, we need to study Fourier coefficients of the

derivative of Eisenstein series for Schwartz function Φ ∈ S (B3) on an incoher-
ent (adelic) quaternion algebra B over the adeles A of a number field F .

For non-singular coefficients, we want to compute them directly. The com-
putation is known in the unramified Siegel–Weil section at a non-archimedean
place, and we will recall the results. Then we compute the archimedean Whit-
taker integrals.

For singular coefficients, we give some criteria for the vanishing property.
First of all, we show that if locally at two places Φ is supported on elements
in B3 whose components are linearly independent, then E′

T (g, 0,Φ) = 0 for
singular T (cf. Proposition

singular coesingular coe
4.3.3). Then we show that ET (e, s,Φ) = 0 if Φ

is k-regularly supported for large k (cf. Proposition
van of ram whittakervan of ram whittaker
4.4.3). These two facts

together imply that E′(g, 0,Φ) has only non-zero Fourier coefficients at non-
singular T with Σ(T ) = Σ(v) for those unramified v for suitable Φ (cf. (

eqn E’ Seqn E’ S
4.5.1)).

By Theorem
non-vanishing of localnon-vanishing of local
A.0.1 of Yifeng Liu, we conjecture that we can always make such a

choice (cf. Conjecture) such that the local triple zeta integral does not vanish.

4.1 Nonarchimedeanl local Whittaker integral

Now we recall some results about the local Whittaker integral and local density.
Let F be a non-archimedean local field with integer ring O whose residue

field is of odd characteristic p. All results in this subsection hold for p = 2.
For simplicity of exposition, we only record the results for odd p. Let ϖ be a
uniformizer and q = |O/(ϖ)| be the cardinality of the residue field. Assume
further that the additive character ψ is unramified.

Let V = B = M2(F ) with the quadratic form q = det. Let Φ0 the charac-
teristic function of M2(O). Let T ∈ Sym3(O)∨ (cf. “Notations”). It is a fact
that WT (e, s,Φ0) is a polynomial of q−s.

To describe the formula, we recall the definition of several invariants of
T ∈ Sym3(O)∨. Suppose that T ∼ diag[uiϖ

ai ] with a1 < a2 < a3 ∈ Z,
ui ∈ O×. Then we define ξ(T ) to be the Hilbert symbol

(−u1u2
ϖ

)
= (−u1u2, ϖ)

if a1 ≡ a2 (mod 2) and a2 < a3, otherwise zero. Note that this does not depend
on the choice of the uniformizer ϖ.

Firstly, we have a formula for the central value of Whittaker integralWT (e, 0,Φ0).

Proposition 4.1.1. The Whittaker function at s = 0 is given by

WT (e, 0,Φ0) = ζF (2)
−2β(T )

where

1. When T is anisotropic, we have

β = 0.
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2. When T is isotropic, we have three cases

(a) If a1 ̸= a2 mod 2, we have

β(T ) = 2

 a1∑
i=0

(1 + i)qi +

(a1+a2−1)/2∑
i=a1+1

(a1 + 1)qi

 .

(b) If a1 ≡ a2 mod 2 and ξ = 1, we have

β(T ) = 2

 a1∑
i=0

(i+ 1)qi +

(a1+a2−2)/2∑
i=a1+1

(a1 + 1)qi

+ (a1 + 1)(a3 − a2 + 1)q(a1+a2)/2.

(c) If a1 ≡ a2 mod 2 and ξ = −1, we have

β(T ) = 2

 a1∑
i=0

(i+ 1)qi +

(a1+a2−2)/2∑
i=a1+1

(a1 + 1)qi

+ (a1 + 1)q(a1+a2)/2.

The second result we need is a formula for the central derivativeW ′
T (e, 0,Φ0).

prop local W derivative Proposition 4.1.2. We have

W ′
T (e, 0,Φ0) = log q · ζF (2)−2ν(T ),

where ν(T ) is given as follows. Let T ∼ diag[t1, t2, t3] with ai = ord(ti) in the
order a1 ≤ a2 ≤ a3.

1. If a1 ̸= a2 mod 2, we have

ν(T ) =

a1∑
i=0

(1+i)(3i−a1−a2−a3)qi+
(a1+a2−1)/2∑
i=a1+1

(a1+1)(4i−2a−1−a2−a3)qi.

2. If a1 ≡ a2 mod 2, we must have a2 ̸= a3 mod 2. In this case, we have

ν(T ) =

a1∑
i=0

(i+ 1)(3i− a1 − a− 2− a3)q
i

+

(a1+a2−2)/2∑
i=a1+1

(a1 + 1)(4i− 2a− 1− a2 − a3)q
i

− a1 + 1

2
(a3 − a2 + 1)q(a1+a2)/2.

prop W_T Phi’ Proposition 4.1.3. Let Φ′
0 be the characteristic function of O3

D where OD is
the maximal order of the division quaternion algebra D. Then we have for all
anisotropic T ∈ Sym3(O)∨:

WT (e, 0,Φ
′
0) = −2q−2(1 + q−1)2.
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For the proof of the three propositions above, we refer to
ARGOS
[1, Chap. 15, 16]

where a key ingredient is a result in
Ka
[17] on the local representation density for

Hermitian forms.

Proposition 4.1.4. Let Φ′
0 be the characteristic function of maximal order

OD of the division quaternion algebra D. Then we have for all anisotropic
T ∈ Sym3(O)∨:

IT (e,Φ
′
0) = vol(SO(V ′)),

where the left-hand side is defined by (
eqn I_T veqn I_T v
2.4.6).

Proof. A prior we know that IT (e,Φ
′
0) is a constant multiple of WT (e, 0,Φ

′
0).

Take any x ∈ O3
D with moment T . Then it is easy to see that h · x is still in

O3
D for all h ∈ SO(V ′). This completes the proof.

4.2 Archimedean Whittaker integral

We want to compute the Whittaker integral WT (g, s,Φ) when F = R, B = H
is the Hamiltonian quaternion algebra,

Φ∞(x) = Φ(x) = e−2πtr(Q(x)), x ∈ B3 = H3.eqn gaussianeqn gaussian (4.2.1)

and the additive character

ψ(x) = e2πix, x ∈ R.

Let K∞ be the maximal compact subgroup of Sp6(R):

K∞ =

{(
x y
−y x

)
∈ Sp6(R)

∣∣∣∣∣x+ yi ∈ U(3)

}
.

Denote by χm the character of K∞

χm

(
x y
−y x

)
= det(x+ yi)m.

Then the Siegel–Weil section attached to Φ transform by the character χ2 under
the action of K∞ (cf.

G-Kudla
[10],

K97
[19]).

Lemma 4.2.1. Let g = n(b)m(a)k ∈ Sp6(R) be the Iwasawa decomposition.
Then we have when Re(s) ≫ 0:

WT (g, s,Φ) = χ2(k)ψ(Tb)λs(m(ta−1))|det(a)|4WtaTa(e, s,Φ).

Proof. This follows the invariance under K∞ and the property of Siegel–Weil
section.
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Thus it suffices to consider only the identity element g = e of Sp6(R). It is
easy to obtain a formula for λs(wn(u)) to see that

WT (e, s,Φ) =

∫
Sym3(R)

ψ(−Tu) det(1 + u2)−sr(wn(u))Φ(0)du.

Lemma 4.2.2. When Re(s) ≫ 0, we have

WT (e, s,Φ) = −
∫
Sym3(R)

ψ(−Tu) det(1 + iu)−s det(1− iu)−s−2du,eqn W_T 1eqn W_T 1 (4.2.2)

where we have the usual convention i =
√
−1.

Proof. Let u =tkak be the Cartan decomposition where a = diag(u1, u2, u3) is
diagonal and k ∈ SO(3). Then it is easy to see that n(u) = m(k)−1n(a)m(k)
and wm(k)−1 = m(−k−1)w. Note that det(k) = 1 and χ2(m(k)) = 1. We
obtain:

r(wn(u))Φ(0) = r(wn(a))Φ(0).

By definition, we have

r(wn(a))Φ(0) = γ(H, ψ)
∫
H3

ψ(aQ(x))Φ(x)dx,

where, for our choice, the Weil constant is

γ(H, ψ) = −1.

Therefore we have

r(wn(a))Φ(0) = −
3∏
j=1

∫
H
eπ(iuj−1)q(xj)dxj .

This is equal to constant times.

3∏
j

1

(1− iuj)2
= det(1− iu)−2.

To recover the constant, we let u = 0 and note that

r(w)Φ(0) = χ2(w)Φ(0) = −Φ(0) = −1.

We thus obtain that

r(wn(u))Φ(0) = r(wn(a))Φ(0) = −det(1− iu)−2.

Since det(1 + u2) = det(1− iu) det(1 + iu), the lemma now follows.
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Following Shimura (
Shi
[30, pp.274]), we introduce an integral for g, h ∈ Symn(R)

and α, β ∈ C

η(g, h;α, β) =

∫
x>±h,x∈Symn(R)

e−gx det(x+ h)α−2 det(x− h)β−2dx,eqn def etaeqn def eta (4.2.3)

which is convergent when g > 0 and Re(α),Re(β) > n
2 . Here x > ±h means

that x+ h > 0 and x− h > 0; and in the rest of this section, for simplicity, we
will write, for a (square) matrix g:

eg = eTr(g).(4.2.4)

Here we point out that the measure dx in
Shi
[30] is the Euclidean measure

viewing Symn(R) as Rn(n+1)/2 naturally. This measure is not self-dual but
only up to a constant 2n(n−1)/4. In the following, we always use the Euclidean
measure as

Shi
[30] does. For two elements h1, h2 ∈ Symn(R), by h1 ∼ h2 we mean

that h1 = kh2k
−1 for some k ∈ O(n).

We recall a formula in
Shi
[30, (1.16)]. Let z ∈ Symn(C) with Re(z) > 0, then

we have for s ∈ C with Re(s) > n−1
2 ,∫

Symn(R)+
e−Tr(zx) det(x)s−

n+1
2 dx = Γn(s) det(z)

−s,siegelsiegel (4.2.5)

where the “higher” Gamma function is defined as

Γn(s) = π
n(n−1)

4 Γ(s)Γ(s− 1

2
)...Γ(s− n− 1

2
).

For instance, when n = 1, we have when Re(z) > 0 and Re(s) > 0∫
R+

e−zxxs−1dx = Γ(s)z−s.

Tth-arch Lemma 4.2.3. When Re(s) > 1, we have

WT (e, s,Φ) = κ(s)Γ3(s+ 2)−1Γ3(s)
−1η(2π, T ; s+ 2, s)

where

κ(s) = −29/2π6s+6.eqn def kappaeqn def kappa (4.2.6)

Proof. Consider

f(x) =

{
e−vx det(x)s−

n+1
2 x > 0,

0 otherwise.

Applying (
siegelsiegel
4.2.5) to z = v + 2πiu for u, v ∈ R, we obtain when Re(s) > n−1

2 ,

f̂(u) = Γn(s) det(v + 2πiu)−s.
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Take the inverse Fourier transformation; we obtain a formula that we will use
several times later:

∫
Symn(R)

e2πiux det(v + 2πiu)−sdu =

{
1

2n(n−1)/2Γn(s)
e−vx det(x)s−

n+1
2 x > 0,

0 otherwise.

fou-invfou-inv (4.2.7)

By (
siegelsiegel
4.2.5) for n = 3, we may rewrite (

eqn W_T 1eqn W_T 1
4.2.2)

WT (e, s,Φ) = − π3s+6

Γ3(s+ 2)

∫
Sym3(R)

e−2πiTu det(1 + iu)−s
∫
Sym3(R)+

e−π(1−iu)x det(x)sdx23/2du.

Here du is changed to the Euclidean measure and the constant multiple 23/2

comes from the ratio between the self-dual measure and the Euclidean one.
Interchange the order of the two integrals

−23/2
π3s+6

Γ3(s+ 2)

∫
Sym3(R)+

e−πx det(x)s

(∫
Sym3(R)

e2πiu(
1
2
x−T ) det(1 + iu)−sdu

)
dx.

By (
fou-invfou-inv
4.2.7) for n = 3, we obtain

− 23/2
π3s+6

Γ3(s+ 2)

∫
x>0,x>2T

e−πx det(x)s
(2π)6

23Γ3(s)
e−2π(x

2
−T ) det(2π(

x

2
− T ))s−2dx

=− 29/2
π6s+6

Γ3(s+ 2)Γ3(s)

∫
x>0,x>2T

e−2π(x−T ) det(x)s det(x− 2T )s−2dx.

Finally we may substitute x 7→ T + x to complete the proof.

To compute the integral η-integral (
eqn def etaeqn def eta
4.2.3) in an inductive way, we recall the

“higher” confluent hypergeometric function (
Shi
[30, pp.280,(3.2)]). Let Symn(C)+

be the subset of z with Re(z) > 0. Then for z ∈ Symn(C)+, we define

ζn(z, α, β) =

∫
Symn(R)+

e−zx det(x+ 1)α−
n+1
2 det(x)β−

n+1
2 dx.zeta nzeta n (4.2.8)

Shimura first introduced the analytic continuation:

zeta infinity Lemma 4.2.4 (Shimura). For z ∈ Symn(C) with Re(z) > 0, the integral
ζn(z;α, β) is absolutely convergent for α ∈ C and Re(β) > n−1

2 . And the
function

ω(z, α, β) := Γn(β)
−1 det(z)βζn(z, α, β)

can be extended to a holomorphic function of (α, β) ∈ C2.

Proof. See
Shi
[30, Thm. 3.1].

The following proposition gives an inductive way to compute the Whittaker
integral WT (e, s,Φ), or equivalently η(2π, T ; s + 2, s). To simplify notations,
we use w′ to denote the transpose of w if no confusion arises.
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ind of infinity Proposition 4.2.5. Assume that sign(T ) = (p, q) with p + q = 3 so that we
have 4πT ∼ diag(a,−b) for a ∈ Rp+, b ∈ Rq+. Let t = diag(a, b). Then we have

η(2π, T ; s+ 2, s) = 26se−t/2|det(T )|2sξ(T, s),

where

ξ(T, s) =

∫
M
e−(aW+bW ′) det(1 +W )2sζp(ZaZ, s+ 2, s− 3− p

2
)

× ζq(Z
′bZ ′, s, s+

q + 1

2
) dw,

where M = Rpq, W = w ·w′, W ′ = w′w, Z = (1+W )1/2 and Z ′ = (1+W ′)1/2.

Proof. We may assume that 4πT = kt′k−1 where k ∈ O(3) and t′ = diag(a,−b).
Then it is easy to see that.

η(2π, T ; s+ 2, s) = η(2π, t′/(4π); s+ 2, s) = |det(T )|2sη(t/2, 1p,q; s+ 2, s)

where 1p,q = diag(1p,−1q). By
Shi
[30, p.289, (4.16),(4.18),(4.24)], we have

η(2π, T ; s+ 2, s) = 26se−t/2|det(T )|2sξ(T, s).

This completes the proof.

Corollary 4.2.6. Suppose that sign(T ) = (p, q) with p+q = 3. ThenWT (e, s,Φ)
is holomorphic at s = 0 with vanishing order

ords=0WT (e, s,Φ) ≥ [
q + 1

2
].

Proof. By Proposition
ind of infinityind of infinity
4.2.5, we know that

WT (e, s,Φ) ∼
Γp(s− 3−p

2 )Γq(s+
q+1
2 )

Γ3(s+ 2)Γ3(s)

∫
F
e−(aW+bW ∗) det(1 +W )2s

× 1

Γp(s− 3−p
2 )

ζp(ZaZ; s+ 2, s− 3− p

2
)

1

Γq(s+
q+1
2 )

ζq(Z
′bZ ′; s, s+

q + 1

2
)dw

where “∼” means up to nowhere vanishing the entire function. Lemma
zeta infinityzeta infinity
4.2.4

implies that the latter two factors in the integral are entire functions. Thus we
obtain that.

ords=0WT (e, s,Φ) ≥ ords=0
Γp(s− 3−p

2 )Γq(s+
q+1
2 )

Γ3(s+ 2)Γ3(s)
= [

q + 1

2
].
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Remark 4.2.1. 1. The same argument also applies to higher rank Whittaker
integral. More precisely, let V be the n+ 1-dimensional positive definite
quadratic space and Φ0 be the standard Gaussian e−2πTr(x,x) on V n. Then
for T non-singular, we have

ords=0WT (e, s,Φ0) ≥ ords=0
Γp(s− n−p

2 )Γq(s+
q+1
2 )

Γn(s+
n+1
2 )Γn(s)

= [
n− p+ 1

2
] = [

q + 1

2
].

And it is easy to see that when T > 0 (namely, represented by V ),
WT (e, 0,Φ0) is non-vanishing. One immediate consequence is thatWT (e, s,Φ0)
vanishes with order precisely one at s = 0 only if the quadratic space with
signature (n−1, 2) represents T . We will see by concrete computation for
n = 3 that the formula above actually gives the exact order of vanishing
at s = 0. It should be true for general n, but we have yet to try to verify
this.

prop WT T>0 Proposition 4.2.7. When T > 0, we have

WT (e, 0,Φ) = κ(0)Γ3(2)
−1e−2πT ,

where κ(s) is defined by (
eqn def kappaeqn def kappa
4.2.6).

Proof. Near s = 0, we have

η(2π, T ; s+ 2, s)

=e−2πT

∫
x>0

e−2πx det(x+ 2T )s det(x)s−2dx

=e−2πT

(∫
x>0

e−2πx det(2T )s det(x)s−2dx+O(s)

)
=e−2πT

(
det(2T )s(2π)−3sΓ3(s) +O(s)

)
.

Note that Γ3(s) = π3/2Γ(s)Γ(s − 1
2)Γ(s − 1) has a double pole at s = 0 and

Γ3(s+ 2) is non-zero at s = 0. The desired result follows immediately.

4.3 Singular coefficients

In this subsection, we deal with the singular part E′
sing(g, 0,Φ) of the Siegel-

Eisenstein series on G = GSp6. We will write Gr = Sp2r, and P the Siegel
parabolic of Sp6 (not G).

Definition 4.3.1. For a place v of F , we define the open subset B3
v,sub (resp.

B3
v,reg) of B3

v to be all x ∈ B3
v such that the components of x generate a dimension

3 subspace of Bv (resp. with non-degenerate moment matrix).

Note that S (B3
v,sub) is P (Fv)-stable under the action defined by the Weil

representation.
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big cell Lemma 4.3.2. For a place v, if a Siegel–Weil section fΦ,s ∈ I(s) is associated
to Φ ∈ S0(B3

v,sub), then fΦ,s is supported in the open cell Pw0P for all s.

Proof. By definition we have fΦ,s(g) = r(g)Φ(0)λs(g). Thus it suffices to prove
supp(fΦ,0) ⊂ Pw0P . Note that by the Bruhat decomposition G =

∐
i PwiP ,

it suffices to prove r(PwiP )Φ(0) = 0 for i = 1, 2, 3. Since S (B3
v,sub) is P (Fv)-

stable, it suffices to prove r(wi)Φ(0) = 0 for i = 1, 2, 3. By

r(wi)Φ(0) = γ

∫
Bn−i

Φ(0, ...0, xi+1, ..., x3)dxi+1...dx3

for a certain eighth-root of unity γ, and since

Φ(0, ..., 0, xi+1, ..., x3) ≡ 0

when i ≥ 1, we complete the proof.

singular coe Proposition 4.3.3. For an integer k ≥ 1, fix non-archimedean (distinct) places
v1, v2, ..., vk. Let Φ = ⊗vΦv ∈ S (B3) with supp(Φvi) ⊂ Bnvi,sub (i=1,2,...,k).
Let g ∈ G(A) satisfy gvi ∈ P (Fvi), (i = 1, 2, ..., k). Then for singular T , the
vanishing order ords=0ET (g, s,Φ) is at least k. In particular, when T is singu-
lar, we have ET (g, 0, f) = 0 if k ≥ 1, and E′

T (g, 0,Φ) = 0 if k ≥ 2.

Proof. We deduce this from some results of Kudla–Rallis (
K-R
[21],

K-R-3
[22]). Suppose

rank(T ) = 3− r with r > 0. We may write T =tγT ′γ, T ′ =

(
0

β

)
for some

β ∈ GL3−r and γ ∈ GL3. We have

ET (g, s,Φ) = ET ′(m(γ)g, s,Φ), g ∈ G(A).

Since m(γ) ∈ P (Fvi), it suffices to prove the assertion for

T =

(
0

β

)
with β ∈ GL3−r non-singular.

For Re(s) ≫ 0, the T -th Fourier coefficient is a sum

ET (g, s,Φ) =

∫
[N ]

∑
P (F )\G(F )

fΦ,s(γng)ψ−T (n)dn

=

∫
[N ]

3∑
i=0

∑
γ∈P\PwiP

fΦ,s(γng)ψ−T (n)dn,

where for i = 0, 1, 2, 3,

wi :=


1i

13−i
1i

−13−i

 .
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By Lemma
big cellbig cell
4.3.2, fΦv(γnvgv, s) ≡ 0 for γ ∈ PwiP, i > 0, v ∈ {v1, ..., vk} and

gv ∈ P (Fv). Thus for g as in the desired statement, only the open cell has
nonzero contribution in the coefficients

ET (g, s,Φ) =

∫
NA

fΦ,s(w0ng)ψ−T (n)dn.

This is exactly the Whittaker functional WT (g, s,Φ) =WT (e, s, r(g)Φ).
Let i : G3−r → G3 be the standard embedding defined by

(
a b
c d

)
7→


1r

a b
1r

c d

 .

Then this induces a map by restriction: i∗ : I(s) → I3−r(s+ r
2) to the degenerate

principal series on G3−r. We now denote by f the Siegel–Weil section fΦ. Let
M(s) =

∏
vMv(s) : I(s) → I(−s) be the intertwining operator (cf.

K-R
[21, §4]).

Lemma 4.3.4. Let Eβ(g, s, i
∗M(s)f) denote the β-Fourier coefficient of the

Eisensetin series on G3−r(A) defined by section i∗M(s)f . Then we have

WT (e, s, f) = Eβ(e,−s+
r

2
, i∗M(s)f).

Proof. By
K-R-3
[22, (4.13)–(4.18)] we have

WT (e, s, f) = Eβ(e, s−
r

2
, i∗U(s)f),

where U(s) = Ur(s) is
K-R-3
[22, (4.14)]. By the functional equation, we have

WT (e, s, f) = Eβ(e,−s+
r

2
,M(s− r

2
) ◦ i∗U(s)f).

By the relation (
K-R-3
[22, (4.19)]),

M(s− r

2
) ◦ i∗U(s) = i∗M(s),

we obtain
WT (e, s, f) = Eβ(e,−s+

r

2
, i∗M(s)f).

This completes the proof.

Since det(β) ̸= 0, this last lemma shows that we have an Euler product
when Re(s) ≫ 0,

WT (e, s, f) =
∏
v

Wβ,v(e,−s+
r

2
, i∗Mv(s)fv).
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By the theory of intertwining operator (
K-R
[21, §4, (4.7)]), there exist certain

Artian L-functions av(s), bv(s) such that, for a finite set S outside which fS is
spherical,

M(s)f(s) =
a(s)

b(s)

(⊗
v∈S

bv(s)

av(s)
Mv(s)fv(s))

)
⊗ fS(−s).

By
K-R
[21, Lemma 4.2, Prop. 4.3,(4.10)], for a local Siegel–Weil section fv,

bv(s)
av(s)

Mv(s)fv is holomorphic at s = 0 and there is a non-zero constant λv
independent of f such that

bv(s)

av(s)
Mv(s)fv(s))|s=0 = λvfv(0).

Thus there is a certain Artian L-function Λ3−r,v(s) (cf.
K-R-3
[22, (1.14)]) such that

WT (e, s, f) =
∏
v

Wβ,v(e,−s+
r

2
, i∗Mv(s)fv)

=Λ3−r(−s+
r

2
)
a(s)

b(s)

∏
v∈S′

β

1

Λ3−r,v(−s+ r
2)
Wβ,v(e,−s+

r

2
, i∗(

bv(s)

av(s)
Mv(s)fv))

=Λ3−r(−s+
r

2
)
a(s)

b(s)

∏
v∈S′

β

Aβ,v(s, f),

where Sβ is the set of all primes such that outside Sβ, fv is the spherical vector,
ψv is unramified and ordv(det(β)) = 0.

Since ords=0Λ3−r,v(−s+ r
2) = 0 (cf.

K-R-3
[22, (1.14)]), bv(s)

av(s)
Mv(s)fv is holomor-

phic and Wβ(e, s, f) extends to an entire function, we know that Aβ,v(s, f) is
holomorphic at s = 0. We have a formula

Aβ,v(0, f) =
λv

Λ3−r,v(0)
W 3−r
β,v (e,

r

2
, i∗fv(0)).

Lemma 4.3.5. Define a linear functional

ι : S (B3
v) → C
Φv 7→ Aβ,v(0, fΦv).

Then, we have ι(r(n(b))Φv) = ψv,T (b)ι(Φv), i.e., ι ∈ HomN (S (B3
v), ψT ).

Proof. It is straightforward to check that

Wβ,v(e,−s+
r

2
, i∗(Mv(s)r(n(b))fv)) = ψT (b)Wβ,v(e,−s+

r

2
, i∗Mv(s)fv).

Thus, the linear functional fs 7→ Aβ,v(s, f) defines an element in HomN (I(s), ψT ).
In particular, when s = 0, the composition ι of Aβ,v with the G-intertwining
map S (B3

v) → I(0) defines a linear functional in HomN (S (B3
v), ψT ).
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Then the map ι factors through the ψT -twisted Jacquet module S (B3
v)N,T

(i.e., the maximal quotient of S (B3) on which N acts by character ψT ). Thus
by the following result of Rallis (cf.

K-R-3
[22, Lemma 2.3]), ι is trivial on S (B3

v,sub)
when T is singular:

Lemma 4.3.6. Let ΩT,v be the (closed) subset of B3
v of elements x with moment

Q(x) = T . Then the map S (B3
v) → S (B3

v)N,T can be realized as the restriction
S (B3

v) → S (ΩT,v).

Now since the restriction of Φvi to ΩT,v is zero if Φvi ∈ S (B3
vi,reg), and since

ords=0
a(s)
b(s) = 0, we conclude that

ords=0WT (e, s, fΦ) ≥ k.

For a general g ∈ G(A), we have

WT (g, s, fΦ) =WT (e, s, r(g)Φ)

=Λn−r(−s+
r

2
)
a(s)

b(s)

∏
v∈S′

β,g

Aβ,v(s, r(gvi)Φv),

where Sβ,g is a finite set of place that depends also on g. Since S (B3
v) →

I(0) is G(Fv)-equivariant, we have Aβ,v(0, r(gv)fv) = ι(r(gv)Φv). Since gvi ∈
P (Fvi), we have r(gvi)Φvi ∈ S (B3

vi,sub
) and Aβ,vi(0, r(gvi)fvi) = 0 by the same

argument above. This completes the proof of Proposition
singular coesingular coe
4.3.3.

4.4 Functions with regular support

Let F be a non-archimedean field. Let B be a quaternion algebra over F .
Recall that we have the moment map

Q : B3 −→ Sym3(F ).

defn-ram func Definition 4.4.1. Let k be an integer. A function Φ ∈ S (B3
reg) is “k-regularly

supported” if it satisfies the condition that Q(supp(Φ))+p−kSymn(O) ⊆ Q(B3
reg).

Even though it looks that such functions are exceptional, in fact generate
S (B3

reg) under the action of a very small subgroup of Sp6.

Lemma 4.4.2. Let k be any fixed integer. Then S (B3
reg) is generated by all

k-regularly supported functions under the action of elements m(aI3) ∈ Sp6 for
all a ∈ F×.

Proof. Without loss of generality, we can assume that k is even and that Φ =
1U ∈ S (B3

reg) is the characteristic function of some open compact set U ⊆ B3.
Then Q(U) is an compact open subset of Sym3(F )reg. Let

Z3
+ = {(a1, a2, a3) ∈ Z3|a1 ≤ a2 ≤ a3}.
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Then the “elementary divisors.” defines a map δ : b ∈ Sym3(F ) → (a1, a2, a3) ∈
Z3
+. One can check that it is locally constant on Sym3(F )reg. Hence the

composition of this map and the moment map Q is also locally constant on
B3
reg. In particular, this gives a partition of U into a disjoint union of finitely

many open subsets. So we can assume that δ◦Q is constant on U , say, δ◦Q(U) =
{(a1, a2, a3)}.

Consider m(aI3)Φ, a certain multiple of 1aU . Choose a = p−A for some
integer A > 1 + a1 + (a2 − a1) + (a3 − a1) . Then we can prove that such
1p−A−k/2U is k-regularly supported. It suffices to prove that, for any x ∈ U and

t ∈ Sym3(O), Q(p−A−k/2x) + p−kt belongs to Q(B3
reg). Note that

Q(p−A−k/2x) + p−kt = p−k−2A+2[
a1−1

2
](Q(p−[

a1−1
2

]x) + p2A−2[
a1−1

2
]t).

Now Q(p−[
a1−1

2
]x) ∈ Sym3(O). It is well-known that for T ∈ Sym3(O)reg, T

and T +p2+det(T )T ′ for any T ′ ∈ Sym3(O) define isomorphic integral quadratic
forms of rank n. Equivalently, T + p2+det(T )T ′ =tγTγ for some γ ∈ GL3(O).
Now it is easy to see that Q(p−A−k/2x) + p−kt ∈ Q(B3

reg).

We have the following pleasant property: a k-regularly supported for large
k.

van of ram whittaker Proposition 4.4.3. Suppose that Φ ∈ S (B3
reg) is k-regularly supported for a

sufficiently large k (depending on the conductor of the additive character ψ).
Then we have

WT (e, s,Φ) ≡ 0

for regular T /∈ Q(B3
reg) and any s ∈ C. In particular, for such T ,

WT (e, 0,Φ) =W ′
T (e, 0,Φ) = 0.

Proof. When Re(s) ≫ 0, we have

WT (e, s,Φ) = γ(V, ψ)

∫
Sym3(F )

ψ(−b(T −Q(x)))

∫
B3

Φ(x)δ(wn(b))s dx db

= γ(V, ψ)cv

∫
Sym3(F )

ψ(b(T ′ − T ))δ(wn(b))sIT ′(Φ) db dT ′,

where cv is a suitable non-zero constant and IT ′(Φ) = IT ′(e,Φ) is defined by
(
eqn I_T veqn I_T v
2.4.6). Then T ′ 7→ IT ′(Φ) defines a function in S (Sym3(F )reg) for our choice
of Φ. As a function of b ∈ Sym3(F ), δ(wn(b)) is invariant under the translation
of Sym3(O). It follows that∫

Sym3(F )
ψ(bt)δ(wb)sdb =

(∫
Sym3(O)

ψ(xt)dx

) ∑
b∈Sym3(F )/Sym3(O)

ψ(bt)δ(wb)s,
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which is zero unless t ∈ p−kSym3(O) for some k depending on the conductor
of the additive character ψ.

Therefore the nonzero contribution to the integral comes from T ′ − T ∈
p−kSym3(O) and IT ′(Φ) ̸= 0. The assumption in the proposition forces that T ′

is not in Q(supp(Φ)). But this in turn implies that IT ′(Φ) = 0! Therefore, for
a k-regularly supported Φ, we have WT (e, s,Φ) ≡ 0 for Re(s) ≫ 0, and hence
by analytic continuation, for all s ∈ C. This completes the proof.

1

4.5 Holomorphic projection

From now on, we will choose Φ = ⊗vΦv such that Φv to be k-regularly sup-
ported for sufficiently higher k when v is in a finite set S of finite places with
at least two elements, and Φv is spherical for each finite v /∈ S. And we always
choose the standard Gaussian at all archimedean places. Then for g ∈ G(AS),
we have by Proposition

singular coesingular coe
4.3.3 and

van of ram whittakervan of ram whittaker
4.4.3,

eqn E’ Seqn E’ S (4.5.1) E′(g, 0,Φ) =
∑
v/∈S

∑
Σ(T )=Σ(v)

E′
T (g, 0,Φ),

where the sum runs over v outside S and nonsingular T . In this section, we
study the holomorphic projection of E′(g, 0,Φ) (restricted to G(A)).

Firstly let us try to study the holomorphic projection for a cusp form φ on
GL2(A). Fix a non-trivial additive character ψ of F\A, say ψ = ψ0◦TrF/Q with
ψ0 the standard additive character on Q\AQ, and let W be the corresponding
Whittaker function:

Wφ(g) =

∫
F\A

φ(n(b)g)ψ(−b)db.

Then φ has a Fourier expansion

φ(g) =
∑
a∈F×

Wφ

((
a 0
0 1

)
g

)
.

We say that φ is holomorphic of weight 2, ifWΦ =W∞ ·Wf has a decomposition
with W∞ satisfying the following properties:

W∞(g) =

{
ye2πi(x+iy)e2iθ if y > 0

0 otherwise
eqn W inftyeqn W infty (4.5.2)

for the decomposition of g ∈ GL2(R):

g = z

(
1 x
0 1

)
·
(
y 0
0 1

)
·
(

cos θ sin θ
− sin θ cos θ

)
.

1Shall we call such Φ S-admissible/nice/exceptional??
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For any Whittaker function W of GL2(A) which is holomorphic of weight 2
as above with Wf (gf ) compactly supported modulo Z(Af )N(Af ), the Poinaré
series is defined as follows:

φW (g) := lim
t→0+

∑
γ∈Z(F )N(F )\G(F )

W (γg)δ(γg)t, G = GL2,

where

δ(g) = |a∞/d∞|, g =

(
a b
0 d

)
k, k ∈ K,

where K is the standard maximal compact subgroup of GL2(A). Let φ be a
cusp form and assume that both W and φ have the same central character.
Then we can compute their inner product as follows:

(φ,φW ) =

∫
Z(A)GL2(F )\GL2(A)

φ(g)φW (g)dg

= lim
t−→0

∫
Z(A)N(F )\GL2(A)

φ(g)W (g)δ(g)tdg

= lim
t−→0

∫
Z(A)N(A)\GL2(A)

Wφ(g)W (g)δ(g)tdg.eqn W inn prodeqn W inn prod (4.5.3)

Let φ0 be the holomorphic projection of φ in the space of holomorphic forms
of weight 2. Then we may write

WΦ0(g) =W∞(g∞)Wφ0(gf )

with W∞ as in (
eqn W inftyeqn W infty
4.5.2). Then (

eqn W inn prodeqn W inn prod
4.5.3) is a product of integrals over finite places

and integrals at infinite places:∫
Z(R)N(R)\GL2(R)

|W∞(g∞)|2dg =

∫ ∞

0
y2e−4πydy/y2 = (4π)−1.

In other words, we have

eqn W prodeqn W prod (4.5.4) (φ,φW ) = (4π)−g
∫
Z(Af )N(Af )\GL2(Af )

Wφ0(gf )W (gf )dgf .

AsW can be anyWhittaker function with compact support modulo Z(Af )N(Af ),
the combination of (

eqn W inn prodeqn W inn prod
4.5.3) and (

eqn W prodeqn W prod
4.5.4) gives

lem holo proj Lemma 4.5.1. Let φ be a cusp form with trivial central character at each
infinite place. Then the holomorphic projection φ0 of φ has Whittaker function
W∞(g∞)Wφ0(gf ) with Wφ0(gf ) given as follows:

Wφ0(gf ) = (4π)g lim
t−→0+

∫
Z(F∞)N(F∞)\GL2(F∞)

Wφ(g∞gf )W̄∞(g∞)δ(g∞)tdg∞.
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For more details, see
YZZ-GZ
[33, §6.4, 6.5].

Now we calculate the holomorphic projection of E′(g, 0,Φ). By Lemma
lem holo projlem holo proj
4.5.1, we need to calculate the integral

αs(T ) :=

∫
R3
+

W ′
T (Φ,

(
y1/2

y−1/2

)
, 0) det(y)1+se−2πTy dy

det(y)2
,eqn alpha(T)eqn alpha(T) (4.5.5)

where y = diag(y1, y2, y3) and T ∈ Sym3(R) with positive diagonal diag(T ) =
t = diag(t1, t2, t3).

Note that when t > 1 and Re(s) > −1, we have an integral representation
of the Legendre function of the second kind:

Qs(t) =

∫
R+

du

(t+
√
t2 − 1 cosh u)1+s

=
1

2

∫ ∞

1

(x− 1)sdx

x1+s( t−1
2 x+ 1)1+s

.

The admissible pairing at the Archimedean place will be given by the constant
term at s = 0 of (the regularized sum of, cf.

YZZ-GZ
[33, §8.1]) Qs(1 + 2sγx(z)/q(x)).

Consider another closely related function for t > 1,Re(s) > −1:

Ps(t) :=
1

2

∫ ∞

1

dx

x( t−1
2 x+ 1)1+s

.

Then obviously, we have
Q0(t) = P0(t).

One may use any one of the three functions (i.e., Ei, Qs and Ps) to construct
Green’s functions. As Theorem

thm W’T archthm W’T arch
5.1.1 The function Ei is the right choice to

match the analytic kernel function, while the admissible pairing requires using
Qs. The following proposition relates Ei to Ps and hence to Qs by coincidence
Q0 = P0.

prop star prod Proposition 4.5.1. Let x ∈M3
2,R such that T = T (x) is non-singular and has

positive diagonal. Then we have

αs(T ) = det(t)−1

(
Γ(s+ 1)

(4π)1+s

)3 ∫
D±

ηs(x1) ∗ ηs(x2) ∗ ηs(x3),

where

ηs(x, z) := Ps

(
1 + 2

sx(z)

q(x)

)
defines a Green’s function of Zx.

Proof. First by the definition (
eqn alpha(T)eqn alpha(T)
4.5.5) we have

αs(T ) =

∫
R3
+

det(
√
y)2W ′√

yT
√
y(Φ, e, 0) det(y)e

−2πTy det(y)s
dy

y2
,
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which is equal to ∫
R3
+

W ′√
yT

√
y(Φ, e, 0)e

−2πTy det(y)sdy.

If we modify x ∈ M3
2,R with moment T = T (x) to a new x′ = (x′i) with

x′i = xi/q(xi)
1/2, we have T (x′) = t−

1
2Tt−

1
2 (so that the diagonal are all 1). By

Theorem
thm W’T archthm W’T arch
5.1.1 we have (after substitution y → yt)

αs(T ) = det(t)−1−s
∫
R3
+

Λ(y
1
2T (x′)y

1
2 )e−4πy det(y)sdy.

By the definition of Λ(T ), this is the same as

det(t)−1−s
∫
R3
+

{
∗3i=1η(y

1
2
i x

′
i; z), 1

}
D±

e−4πy det(y)sdy

where we write η(x; z) = η(sx(z)) and{
∗3i=1η(y

1
2
i x

′
i; z), 1

}
D±

=

∫
D±

∗3i=1η(y
1
2
i x

′
i; z).

We can interchange the star product and integral over y to obtain

αs(T ) = det(t)−1−s
{
∗3i=1

∫
R+

η(y
1
2
i xi; z)e

−4πyysi dyi, 1

}
D±

.

Now we compute the inner integral:∫
R+

η(y
1
2x; z)e−4πyysdy

=

∫
R+

Ei(−4πysx(z))e
−4πyysdy

=

∫
R+

∫ ∞

1
e−4πysx(z)u 1

u
due−4πyysdy

=
Γ(s+ 1)

(4π)1+s

∫ ∞

1

1

u(1 + sx(z)u)1+s
du

=
Γ(s+ 1)

(4π)1+s
Ps(1 + 2sx(z)).

(Also cf.
YZZ-GZ
[33, §8.1].) This completes the proof.

Based on the decomposition of E′(g, 0,Φ) in §
decompdecomp
2.5, we have a decomposition

of its holomorphic projection, denoted by E′(g, 0,Φ)hol:

decomp holdecomp hol (4.5.6) E′(g, 0,Φ)hol =
∑
v

E′(g, 0,Φ)v,hol,

and
E′(g, 0,Φ)v,hol =

∑
T,Σ(T )=Σ(v)

E′
T (g, 0,Φ)hol.
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5 Local triple height pairings

In this section, we want to compute the local triple-height pairings of Hecke
operators at archimedean places, the unramified places, and reduce Conjecture
main-conjmain-conj
1.3.1 to some local conjecture.

For archimedean places, we introduce Green functions for Hecke correspon-
dences and compute their star product. The central technical part is to relate
the star product to the archimedean Whittaker function in §4.

For unramified places, we first study the modular interpretation of Hecke
operators and reduce the question to the work of Gross–Keating on deforming
endomorphisms of formal groups.

For ramified places v, we made a conjecture about the local intersections,
which will imply Conjecture

main-conjmain-conj
1.3.1. In particular, Conjecture

main-conjmain-conj
1.3.1 holds if there

is no ramified places.
In this section, we assume that Φ = ⊗Φv is a pure tensor so that for for at

least two places v, Φv is k-regularly supported for sufficient large k.

5.1 Archimedean height

Now let B = H be the Hamilton quaternion and let Φ be the standard Gaussian
(
eqn gaussianeqn gaussian
4.2.1). Let B′ = M2,R be the matrix algebra. Let D± be the union of H 2

±
and H+ = H (H−, resp.) is the upper (lower, resp.) half-plane. Let x =
(x1, x2, x3) ∈ B′3 with non-singular moment matrix Q(x) and let gi = gxi be
a Green’s function of Zxi , the special divisor on D± defined by xi. Define the
star product

Λ(x) =

∫
D±

g1 ∗ g2 ∗ g3.(5.1.1)

Then Λ(x) depends only on the moment Q(x) ∈ Sym3(R) (with signature either
(1, 2) or (2, 1) since B′ has signature (2, 2)). Hence we write it as Λ( 1

4πQ(x))
(note that we need to shift it by a multiple 4π).

We will consider Green’s function of logarithmic singularity, which we call
pre-Green function since it does not give the admissible Green’s function. Their
difference will be discussed later.

Now we specify our choice of pre-Green functions. For x ∈ B′ we define a
function D± = H 2

± → R+ defined by

sx(z) := q(xz) = 2
(x, z)(x, z)

(z, z)
.

In terms of coordinates z =

(
z1 −z1z2
1 −z2

)
and x =

(
a b
c d

)
, we have

sx(z) =
(−az2 + dz1 − b+ cz1z2)(−az2 + dz1 − b+ cz1z2)

−(z1 − z1)(z2 − z2)
.eqn s_xeqn s_x (5.1.2)
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We will consider the pre-Green function of Zx on D given by

gx(z) := η(sx(z)),

where we recall that

η(t) = Ei(−t) := −
∫ ∞

1
e−tu

du

u
.

In the following, we want to compute the star product for a non-singular
moment 4πT = Q(x).

thm W’T arch Theorem 5.1.1. For T ∈ Sym3(R) with signature either (1, 2) or (2, 1), we
have

W ′
T,∞(e, 0,Φ) =

κ(0)

2Γ3(2)
e−2πTΛ(T ).

In particular, everything depends only on the eigenvalues of T (a priori not
obvious).

Proof.

Comparison

Assume that τ |∞ and we want to relate the archimedean height at τ to the
global τ -Fourier coefficient (

eqn E’veqn E’v
2.5.4) of the Eisenstein series. Recall that the

generating function is defined for g ∈ GL+
2 (A)

Z(g,Φ) =
∑

x∈V̂ /K

r(g1f )Φ(x)Z(x)KWT (x)(g∞),

Where the sum runs over all admissible classes. For our fixed embedding τ :
F ↪→ C we have an isomorphism of C-analytic varieties (as long as K is neat):

Y an
K,τ ≃ G(F )\D ×G(Af )/K ∪ {cusp}

where, for short, G = G(τ) is the nearby group.
For x = xi ∈ V, i = 1, 2, 3, we define a Green function as follows: for

[z, h′] ∈ G(F )\D ×G(Af )/K

gx,hK([z, h′]) =
∑

γ∈G(F )/Gx(F )

γ∗[η(sx(z))1Gx(F̂ )hK
(h′))].

For an admissible class x ∈ V̂ , we will denote its Green function by gx. Note
that this is not the right choice of the Green function. We will get the right one
when we come to the holomorphic projection of the analytic kernel function.
Therefore we denote

(Z(x1, h1)K · Z(x2, h2)K · Z(x3, h3)K)Ei,∞ := gx1,h1K ∗ gx2,h2K ∗ gx3,h3K ,

where Ei is to indicate the current choice of Green functions.
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cf infty Theorem 5.1.2. Let τ |∞ and g = (g1, g2, g3) ∈ GA = GL+,3
2 (A). Assume

that Φv is supported on non-singular locus at some finite place v. Then the
archimedean contribution

(Z(g1,Φ1) · Z(g2,Φ2) · Z(g3,Φ3))Ei,∞ = −2E′
v(g, 0,Φ),

where E′
v(g, 0,Φ) is defined by (

eqn E’veqn E’v
2.5.4).

Proof. First we consider g = (g1, g2, g3) ∈ SL3
2(A). Afterward, we extend this

to GL+
2 (A).

By definition, the left-hand side is given by

Z(g,Φ)∞ = vol(K̃)
∑

x=(xi)∈(K\V̂ )3

Φ(x)WT (x∞)(g∞)

(∫
G(F )\D±×G(Af )/K

∗3i=1gxi(z, h
′)d[z, h′]

)
,

where the sum is over all admissible classes.
Note that

γ∗[η(sx(z)1Gx(F̂ )hK
(h′))] = η(sγ−1x(z)1Gγ1x(F̂ )γ−1hK

(h′)).

For a fixed triple (xi), the integral is nonzero only if there exists a γ ∈ G(F )
such that

γh′ ∈ Gγ−1
i xi

(F̂ )γ−1
i hiK ⇐⇒ γ−1

i hi ∈ Gγ−1
i xi

(F̂ )γh′K.

Observe that the sum in the admissible classes can be written as xi ∈
G(F )\V (F ) and hi ∈ Gxi(F̂ )\G(F̂ )/K. Here we denote for short V = V (τ)
that is the nearby quadratic space ramified at Σ(τ). Thus we may combine
the sum xi ∈ G(F )\V (F ) with γi ∈ G(F )/Gxi(F ) and combine the sum over
γ ∈ G(F ) with the quotient G(F )\D± ×G(Af )/K:

vol(K̃)
∑

x∈G(F )\V (F )3

(∫
h′∈G(F̂ )/K

Φ(h′x)dh′

)(∫
D±

∗3i=1ηxi(z)dz

)
.

Here we have used the fact that Gx = {1} if T (x) is non-singular and we are
assuming that Φv is supported in the non-singular locus at some finite place v.

Therefore we have

Z(g,Φ)∞ =
∑
T

vol(SO(B∞))e−2πTΛ(T )IT (g
∞,Φ∞),(5.1.3)

where the sum is over all non-singular T with ΣT = Σ(τ), namely those non-
singular T represented by the nearby quaternion B(τ).

Similar to the unramified p-adic case, we compare this with the derivative
of the Eisenstein series for a regular T :

E′
T (g, 0,Φ) =

W ′
T (g∞, 0,Φ∞)

WT (g∞, 0,Φ′
∞)

ET (g, 0,Φ
∞ ⊗ Φ′

∞),eqn Kudla formula inftyeqn Kudla formula infty (5.1.4)
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where Φ′
∞ is any test function on V

′3
∞ which makes WT (g∞, 0,Φ

′
∞) nonvanish-

ing. We may also rewrite

Z(g,Φ)∞ =
∑
T

vol(SO(B∞))e−2πTΛ(T )

IT (g∞,Φ′
∞)

IT (g,Φ
∞ ⊗ Φ′

∞).eqn height niftyeqn height nifty (5.1.5)

Like the p-adic case, we may reduce the desired equality to g = e, which we
assume now.

We need to evaluate the constant. Note that by the local Siegel–Weil Prop.
prop local SWprop local SW
2.4.3, the ratio

WT (e, 0,Φv)

IT (Φv)

(whenever the denominator is non-zero) does not depend on Φv, T (det(T ) ̸= 0),
but only on the measure on SO(Vv) (and, of course, ψv). Let cv,+ (cv,+, resp.)
be this ratio for the quaternion algebra over Fv that is split (division, resp.).
We now use the Siegel–Weil formula of Kudla–Rallis to show that (under our
choice of measures)

av :=
cv,+
cv,−

= ±1.

Indeed, fix two distinct places v1, v2. Choose a global quaternion algebra B
split at v1, v2. Let B(v1, v2) be the quaternion algebra that differs from B only
at v1, v2. Note that our choice of measures on the orthogonal groups associated
with all quaternion algebras ensures we always get Tamagawa measures on the
adelic points. Compare the Siegel–Weil (we may choose B anisotropic to apply)
for B and B(v1, v2):

av1av2 = 1.

But v1, v2 are arbitrary, we conclude that av is independent of v and hence
a2v = 1.

From §4.2 Prop.
prop WT T>0prop WT T>0
4.2.7, we have for T > 0

WT,∞(e, 0,Φ∞) = κ(0)Γ3(2)
−1e−2πT ,

where κ(0) < 0. It is easy to see that

IT,∞(e,Φ∞) = vol(SO(B∞))e−2πT .

Hence, we have

c∞,− =
κ(0)Γ3(2)

−1

vol(SO(B∞))
< 0.

On the other hand, it is not hard to see that c∞,+ is positive, so we have

c∞,+ = −c∞,− = − κ(0)Γ3(2)
−1

vol(SO(B∞))
.
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Now note that IT (g,Φ
∞ ⊗ Φ′

∞) = ET (g, 0,Φ
∞ ⊗ Φ′

∞), and by Theorem
thm W’T archthm W’T arch
5.1.1:

W ′
T (g∞, 0,Φ∞) =

κ(0)

2Γ3(2)
e−2πTΛ(T ).

Hence the ratio of
eqn Kudla formula inftyeqn Kudla formula infty
5.1.4 over the T -th term of

eqn height niftyeqn height nifty
5.1.5 is given by

κ(0)Γ3(2)
−1

2vol(SO(B∞))
· 1

c∞,+
= −1

2
.

This completes the proof.

cf arch Theorem 5.1.3. Let τ be an archimedean place. Then for g ∈ G with gw = 1
for w ∈ Sf at each place where Φv is not unramified,

Θ(g,Φ)τ = −2E′(g, 0,Φ)τ,hol.

Proof. The holomorphic projection changes E′
T (g, 0,Φ) only when Σ(T ) = Σ(v)

and v is an archimedean place, in which case we have a formula for g∞ = e:

E′
T (g, 0,Φ)hol =WT (g∞)mv(T )WT,f (gf , 0,Φf ),

where m(T ) is the star product defined by Ps(1 + 2sx(z)/q(x)) for x with
moment T . The general g∞ can be recovered by the transformation rule under
Iwasawa decomposition. Then all equalities above are valid for g ∈ G with
gv = 1 when v ∈ S, the finite set of non-archimedean places outside which Φv
is unramified.

Under the assumption, all singular coefficients vanish on both sides. For the
non-singular coefficients, the right choice of Green’s function is the regularized
limit of Qs as s→ 0. Since Ps−Qs is holomorphic and equal to zero when s = 0,
by the same argument of

YZZ-GZ
[33, §8.1], we may use Ps in the Green’s function and

then take the regularized limit. Then the result follows from Theorem
cf inftycf infty
5.1.2

and Proposition
prop star prodprop star prod
4.5.1.

5.2 Modular interpretation of Hecke operators

In this section, we would like to study the reduction of Hecke operators. Let U
be an open and compact subgroup of B×

f and let K = U ×A×
f
U . For an x ∈ V

with (totally) the positive norm in F , the cycle Z(x)K is the graph of the Hecke
operator given by the cost UxU . Namely, Z(x)K is the correspondence defined
by maps:

Z(x)K ≃ YU∩xUx−1 −→ XU ×FU
XU .
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Moduli interpretation at an archimedean place

First, let us give some moduli interpretation of Hecke operators at an archimedean
place τ . Let B = B(τ) be the nearby quaternion algebra. If we decompose
UxU =

∐
i xiU , then Z(x)K as a correspondence sends one object (V, h, κ̄) to

sum of (V, h, κxi). In other words, we may write abstractly,

(5.2.1) Z(x)K(V, h, κ̄) =
∑
i

(Vi, hi, κ̄i),

where the sum is over the isomorphism class of (Vi, hi, κ̄i) such that there
is an isomorphism yi : (Vi, hi) −→ (V, h) such that the induced diagram is
commutative:

(5.2.2) V̂0
κi //

xi
��

V̂i

ŷi
��

V̂0
κ // V̂ .

Assume that xi = uixvi. Replacing κ and κi by equivalent classes κ ◦ ui and
κi ◦ v−1

i , we may assume that xi = x. Thus the subvariety Z(x)K of MK

parameterizes the triple:

(V1, h1, κ̄1), (V2, h2, κ̄2), y,

where the first two are objects as described above for κ̄1 and κ̄2 level structures
modulo U1 := U∩xUx−1 and U2 = U∩x−1Ux respectively, and y : (V2, h2) −→
(V1, h1) is an isomorphism of Hodge structures such that the diagram

(5.2.3) V̂0
κ2 //

x
��

V̂2

ŷ
��

V̂0
κ1 // V̂1

is commutative.
Now we want to describe the above moduli interpretation with an integral

Hodge structure concerning a maximal open compact subgroup of the form
Ô×
B = O×

B containing U , where OB is a maximal order of B. Let V0,Z =
OB as an OB-lattice in V0. Then for any triple (V, h, κ̄) we obtain a triple
(VZ, h, κ̄) with VZ = κ(V0Z) which satisfies the analogous properties as above.
MU parameterizes such integral triples. The Hecke operator Z(x)K has the
following expression:

Z(x)K(VZ, h, κ̄) =
∑
i

(ViZ, hi, κi)
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where ViZ = κi(V0Z). We can’t replace terms in the above diagram by integral
lattices as yi and xi only define a Quasi-isogeny:

yi ∈ HomOB
(ViZ, VZ)⊗ F, xi ∈ B̂ = EndOB

(V̂0,Z)⊗ F.

When U is sufficiently small, we have universal objects (VU , h, κ̄), (VU,Z, h, κ̄).

We will also consider the divisible OB-module ṼU = V̂U/V̂U,Z. The subvariety
Z(x)K also has a universal object y : VU2 −→ VU1 .

Let us return to curves XU over F . Though the rational structure V at
a point on XU does not make sense, the local system V̂ and V̂Z make sense
as Bf and OBf

modules respectively. The Hecke operator parameterizes the

morphism ŷ : V̂U2 −→ V̂U1 .

Modular interpretation at a finite place v

We would like to give a moduli interpretation for the Zariski closure Z (x)K
of Z(x)K . The isogeny y : V̂U2 −→ V̂U1 induces a quasi-isogeny on divisible
OBf

-modules. For prime to v-part, this is the same as over generic fiber. We
need to describe the quasi-isogeny in standard modules. First, assume that
Uv = O×

Bv
is maximal.

If v is not split in B, then U1v = U2v = Uv. Thus, the condition on yv on the
generic fiber requires an order equal to ord(ν(x)). Hence Z (x)K parameterizes
the quasi-isogeny of pairs whose order at v has order x. Here we refer to

Z01
[35,

§5.3] for the notion of quasi-isogeny as quasi-isogeny of the divisible module,
which can be lifted to the generic fiber.

If v is split in B, then we may choose an isomorphism OBv =M2(Ov). Then
the formal module A is a direct sum E ⊕ E where E is a divisible OF -module
of dimension 1 and height 2. By replacing x with an element in UvxUv we may

assume that xv is diagonal: xv =

(
ϖc

ϖd

)
with c, d ∈ Z and c ≤ d. It is

clear that the condition on y on the generic fiber is a composition of a scalar
multiplication by ϖc

v (as a quasi-isogeny) and an isogeny with kernel isomor-
phic to the cyclic module Ov/ϖ

d−aOv. Thus the scheme Z (x)K parameterizes
quasi-isogenies f of geometric points of type (c, d) in the following sense:

1. the v-component ϖ−cyv : E2 −→ E1 is an isogeny;

2. the kernel of ϖ−cyv is cyclic of order d−c in the sense that it is the image
of a homomorphism Ov/ϖ

d−c −→ E2.

We also call such a quasi-isogeny of type (c, d). Notice that the number c, d can
be defined without reference to Uv. Indeed, c is the minimal integer such that
ϖ−cxv is integral over Ov and that c+ d = ord(detxv).
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5.3 Supersingular points on Hecke correspondences

For a geometric point in MK with formal object E1,E2, by Serre–Tate theory,
the formal neighborhood D is the product of universal deformations Di of
Ei. The divisor of Z (x)ssK in this neighborhood is defined as the sum of the
universal deformation of quasi-isogenies. In the following, we want to study the
behaviors of this divisor in a formal neighborhood of a pair of supersingular
points on MK when U = UvU

v with Uv maximal.

Supersingular points on XU and MK

Recall that by
Z01
[35, §5.4], all supersingular points on XU are isogenous to each

other. Fix one of the supersingular point P0 representing the triple (A0, Ṽ
v
0 , κ̄

v
0).

Let B = End0(P0) which is the nearby quaternion algebra B(v) over F . We
may use κ0 to identify Ṽ0 with V̂0/V̂0Z. The groups (B ⊗ Avf )× and (Bvf )×

both act on Ṽ0. We may use κ0 to identify them. In this way, the set X ss
U of

supersingular point is identified with

Y ss
U,v = B0\(B ⊗ Avf )×/Uv

so that the element g ∈ (B ⊗ Avf )× represents the triple

(A0, V̂
v
0 , gU

v),

where B0 denotes the subgroup of B× of elements with order 0 at v.
The supersingular points on MK will be represented by a pairs of elements

in (B⊗Avf )× with the same norm. Thus we can describe the set of supersingular
points on MK using orthogonal space V = (B, q) and the Spin similitudes:

H = GSpin(V ) = {(g1, g2) ∈ B×, ν(g1) = ν(g2)},

which acts on V by

(g1, g2)x = g1xg
−1
2 , gi ∈ B×, x ∈ V.

We then have a bijection

M ss
K,v ≃ H(F )0\H(Avf )/Kv.

Supersingular points on Z (x)K

The set Z (x)ssK,v of supersingular points on the cycle Z (x)K represents the

isogeny y : P2 −→ P1 of two supersingular points of level U1 = U ∩ xUx−1 and
U2 = U ∩ x−1Ux. In terms of triples as above, Z (x)ssK represents equivalent
classes of the triples (g1, g2, y) of elements gi ∈ (B⊗Avf )×/Ui and y ∈ B× with
the following properties

gfgf (5.3.1) g−1
1 yvg2 = xv, ordv(det(xv)) = ordv(q(yv)).
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Two triples (g1, g2, y) and (g′1, g
′
2, y

′) are equivalent if there are γ1, γ2 ∈ B×
0

such that

gammagfgammagf (5.3.2) γigi = g′i, γ1yγ
−1
2 = y′.

By (
gfgf
5.3.1), the norms of g1 and g2 are in the same class modulo F×

+ . By (
gammagfgammagf
5.3.2),

we may modify them so that they have the same norm. Thus in terms of the
group H, we may rewrite condition (

gfgf
5.3.1) as

xgfxgf (5.3.3) xv = g−1yv, g = (g1, g2) ∈ H(Avf ).

This equation is always solvable in g, y for given x. Indeed, since the norm of
x is positive, we have an element y ∈ B with the same norm as x. Then there
is a g ∈ H(Avf ) such that x = g−1yv in V̂ v. In summary, we have shown the
following description of Z (x)ssK,v:

Lemma 5.3.1. Let (y, g) be a solution to (
xgfxgf
5.3.3) and Hy be the stabilizer of y.

Then we have

Z (x)ssK,v =H(F )0\H(F )0(Hy(Avf )g)Kv/Kv

≃Hy(F )0\Hy(Avf )/Ky,

where Ky := Hy(Avf ) ∩ gKvg−1.

Supersingular formal neighborhood on Hecke operators

Let Hv be the universal deformation of A0. Then the union of universal defor-
mation of supersingular points is given by

Ŷ ss
U := B0\Hv × (B ⊗ Avf )×/Uv.

Notice that Hv is a formal scheme over Our
v . Thus the formal completion of

MK along its supersingular points is given by

M̂ ss
K := H(F )0\Dv ×H(Avf )/Kv.

where Dv = Hv⊗̂Our
v

Hv. Let Dy(c, d) be the divisor of D defined by universal
deformation of y of type (c, d).

lem CZ(x) Lemma 5.3.2. Let Hy be the stabilizer of y. Then for any g ∈ H(Avf ), the
formal neighborhood of Z (x)ssK,v is given by

Ẑ (x)ssK =H(F )0\H(F )0(Dy(c, d)×Hy(Avf )g)Kv/Kv

≃Hy(F )\Df (c, d)×Hy(Avf )/Ky,

where Ky = Hy(Avf ) ∩ gKvg−1.
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5.4 Local intersection at an unramified place

In this subsection, we want to study the local intersection at a finite place v
which is split in B.

Reduction to a local calculation We still work with the group H =
GSpin(V). Let x1, x2, x3 be three vectors in K\Vf such that the cycles Z (xi)K
intersects properly in the integral model MK of MK . This means that there
are no ki ∈ K such that the space∑

Fkixi

is one or two-dimensional with totally positive norms.
First, let us consider the case where Uv is maximal. We want to compute

the intersection index at a geometric point (P1, P2) in the special fiber over a
finite prime v of F . The non-zero intersection of the three cycles will provide
three quasi-isogenies yi : P2 −→ P1 with type determined by xi’s. Notice
that P1 is ordinary (resp. supersingular) if and only if P2 is ordinary (resp.
supersingular).

If they both are ordinary, then we have canonical liftings P̃i to CM points
on the generic fiber. Since

Hom(P1, P2) = Hom(P̃1, P̃2),

all yi can be also lifted to quasi-isogenies of ỹi : P̃2 −→ P̃1. This will contradict
the assumption that the three cycles Z(xi)K have no intersection on the generic
fiber. It follows that all Pi’s are supersingular points.

Now let us assume that all Pi’s are supersingular. Then we have the nearby
quaternion algebra B = B(v) and quadratic space (V, q) as before. By Lemma
lem CZ(x)lem CZ(x)
5.3.2, we know that Z (xi)

ss
K has an extension

Ẑ (xi)
ss
K = Hf (F )\Dyi(ci, di)×Hyi(A

v
f )/Kyi

on the formal neighborhood of supersingular points:

M̂ ss
K = H(F )0\D ×H(Avf )/Kv.

Here ci, di ∈ Z such that

(
ϖci

ϖdi

)
∈ UvxivUv, and (yi, gi) ∈ B × H(Avf )

such that g−1
i (yi) = xvi in Vvf . If these three have a nontrivial intersection at a

supersingular point represented by g ∈ H(F )0\H(Avf )/Kv, then we can write
gi = gki with some ki ∈ Kv. The intersection scheme Z (k1x1, k2x2, k3x3)K is
represented by

Z (k1x1, k2x2, k3x3)K = [Dy1(c1, d1) · Dy2(c2, d2) · Dy3(c3, d3)× g]
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on D , here y = (yi) ∈ V 3 and c = (ci), d = (di) ∈ Z3. As this intersection is
proper, the space generated by yi’s is three-dimensional and positive definite.
Notice that g ∈ H(Avf )/Kv is completely determined by the condition g−1yi ∈
Kvxvi . Thus we have that the total intersection at supersingular points is given
by

Z (x1)K ·Z (x2)K ·Z (x3)K :=
∑

kxv∈Kv\(Kxv1 ,Kxv2 ,Kxv3)

degZ (k1x1, k2x2, k3x3)K ,

where the sum runs through cosets such that kix
v
i generated a subspace of

dimension 3.
In the following, we let us compute the intersection at v for cycles Z (Φi)

for Φi ∈ S (V). Assume that Φi(x) = Φvi (x
v)Φiv(xv). By the above discussion,

we see that the total supersingular intersection is given by

Z (Φ1) · Z (Φ2) · Z (Φ3) =vol(K̃)
3∏
i=1

∑
xi∈K̃\V

Φi(xi)Z (xi)K

=vol(K̃)
∑

xv∈K̃3\(Vv)3+

∑
xv∈K3

v\(Vv)3xv

Φ(x) degZ (x)K

=vol(K̃)
∑

xv∈K̃v\(Vv)3+

Φv(xv)m(xv,Φv),eqn deg Z(Phi)eqn deg Z(Phi) (5.4.1)

where (V̂ )3+ denote the set of elements xv ∈ (V̂ v)3 such that the moment matrix
of xvi as a symmetric elements in M3(Avf ) takes entries in F+, (Vv)

3
xv denote

the set of elements (xiv) with norm equal to the norms of (xvi ), and

m(xv,Φv) =
∑

xv∈K3
v\(Vv)3xv

Φv(xv) degZ (xv, xv)K .eqn def m(Phi)eqn def m(Phi) (5.4.2)

We note that the volume factor vol(K̃) is a product of the volume of the image
of Kv in SO(Vv) concerning the Tamagawa measure (cf. Notations). Conse-
quently, and by definition, it also includes the archimedean factor vol(SO(B∞)).

To compare the above with the theta series, let us rewrite the intersection
(
eqn deg Z(Phi)eqn deg Z(Phi)
5.4.3) in terms of the quadratic space V = B. Notice that every xv can be
written as xv = g−1(y) with y ∈ (V )3+ of elements with non-degenerate moment
matrix. Thus we have

Z (Φ1) · Z (Φ2) · Z (Φ3) = vol(K̃)
∑

y∈H(F )\V 3
+

∑
g∈H(Av)/K̃v

Φv(g−1y)m(y,Φv)K ,

eqn deg Z(Phi)eqn deg Z(Phi) (5.4.3)

where for y ∈ (Vv)
3

m(y,Φv) =
∑

xv∈K3
v\(Vv)3xv

Φv(xv) degZ (y, xv)K .eqn def m(y,Phi)eqn def m(y,Phi) (5.4.4)
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This is a pseudo-theta series (cf.
YZZ-GZ
[33]) if m(·,Φv) has no singularity over y ∈

(Vv)
3.

The intersection formula of Gross–Keating In the following, we want
to deduce a formula of the intersection number (

eqn def m(y, Phi)eqn def m(y, Phi)
??) using the work of Gross–

Keating
G-K
[9]. For an element y ∈ Bv with the integral norm, let Ty denote the

universal deformation divisor on D of the isogeny y : A −→ A . We extend
this definition to arbitrary y by setting Ty = 0 if y is not integral. Then we
have the following relation:

Dy(c, d) = Tϖ−cy − Tϖ−c−1y.

Indeed, for any y ∈ ϖOB, there is an embedding from Ty/ϖ to Ty by taking any
deformation φ : E1 −→ E2 to ϖφ. The complement is exactly the deformation
with the cyclic kernel. It follows that degZ (y, xv) is an alternative sum of
intersection of Gross–Keating’s cycles:

degZ (y, xv)K =
∑

ϵi∈{0,1}

(−1)ϵ1+ϵ2+ϵ3Tϖ−c1−ϵ1y1 · Tϖ−c2−ϵ2y2 · Tϖ−c3−ϵ3y3

thm GK Theorem 5.4.1 (Gross–Keating,
G-K
[9]). Let Φv = 1O3

B,v
be the characteristic

function of O3
B,v. Then for y ∈ (Vv)

3
reg, the intersection number Ty1 · Ty2 · Ty3

and m(y,Φv) depends only on the moment T = Q(y) and

m(y,Φv) = ν(Q(y)),

Where the ν-invariant is defined as in Prop.
prop local W derivativeprop local W derivative
4.1.2.

cor G-K Corollary 5.4.2. Let gv ∈ G(Fv) and Φv = 1O3
B,v

. Then for y ∈ (Vv)
3
reg, the

intersection number m(y, r(gv)Φv) depends only on the moment T = Q(y) and
is thus denoted by mT (r(gv)Φv), and we have

(5.4.5) W ′
T,v(gv, 0,Φv) = ζv(2)

−2mT (r(gv)Φv).

Proof. By Gross–Keating theorem
thm GKthm GK
5.4.1 and Prop.

prop local W derivativeprop local W derivative
4.1.2, this is true when

gv = e is the identity element. We will reduce the general gv to this known
case.

Suppose that
gv = d(ν)n(b)m(a)k

for b, a are both diagonal matrices and k in the standard maximal compact
subgroup of G. Then it is easy to see that the Whittaker function obeys the
rule:

W ′
T,v(gv, 0,Φv) = ψ(νTb)|ν|−3| det(a)|2W ′

νaTa(e, 0,Φv).
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On the intersection side, from Theorem
thm GKthm GK
5.4.1 we know that degZ (y, xv)K :=

degZT (xv)K depends only on T = Q(y). We have a similar formula:

m(y, r(g)Φv) =|ν|−3
∑
xv

r(g1)Φv(hvxv) degZT (xv)K

=ψνT (b)|ν|−3|det a|2
∑
xv

Φv(xva) degZνT (xv)K ,

where hv ∈ GO(Vv) with ν(hv) = ν−1, and the last sum runs over all xv with
norm ν · diag(T ).

By our definition of cycles, for diagonal matrix a, we have

degZνT (x) = degZνaTa(xa).

It follows that

mT (r(g)Φv) = ψνT (b)|ν|−3| det a|2mνaTa(Φv).

This completes the proof.

Comparison

In this subsection, we will relate the global v-Fourier coefficient (
eqn E’veqn E’v
2.5.4) of the

analytic kernel function with the local intersection of triple Hecke correspon-
dences when the Shimura curve has a good reduction at v.

Recall that we have a decomposition of E′(g, 0,Φ) according to the differ-
ence of ΣT and Σ:

(5.4.6) E′(g, 0,Φ) =
∑
v

E′
v(g, 0,Φ),

where

(5.4.7) E′
v(g, 0,Φ) =

∑
ΣT=Σ(v)

E′
T (g, 0,Φ).

On the intersection part, we have an analogous decomposition

(5.4.8) Θ(g,Φ) = Θ(g,Φ)sing +
∑
v

Θ(g,Φ)v,

and each Θ(g,Φ)v has a part Z (g,Φ)v of intersection of horizontal cycles.

cf good v Theorem 5.4.3. Let v be a finite place such that Φv is the characteristic func-
tion of O3

Bv
. Then for g = (g1, g2, g3) ∈ G such that gi,v = 1 for v ∈ S, we have

an equalities

(Z (g1,Φ1) · Z (g2,Φ2) · Z (g3,Φ3))v = −2E′
v(g, 0,Φ)

and
Θ(g,Φ)v = −2E′

v(g, 0, ϕ).
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Proof. Since XU has a smooth model XU,v over v, the restriction of Ẑ(gi,Φi)
over Ov is equal to Z (gi,Φi) + c(gi,Φi)V . This implies

Θ(g,Φ) = Z (g1,Φ1) · Z (g2,Φ2) · Z (g3,Φ3).

Thus the second equality follows from the first one.
By our choice of ΦS , there is no self-intersection in Z (g1,Φ1) ·Z (g2,Φ2) ·

Z (g3,Φ3)v:

(Z (g1,Φ1) · Z (g2,Φ2) · Z (g3,Φ3))v

=
∑

xv∈(K̃v)3\(Vv)3+

r(gv)Φv(xv)m(xv, r(gv)Φv)

=
∑

Σ(T )=Σ(v)

∏
w ̸=v

∫
(B3

v)T

r(gv)Φw(xw)dxw ·mT (r(gv)Φv),

where
mT (Φv) =

∑
xv∈K3

v\(Bv)3diag(T )

Φv(xv) degZT (xv)K ,

where the sum is over elements of B3
v with norms equal to diagonal of T , and the

cycle ZT (xv) is equal to Z (xv, xv) with x
v ∈ (Vv) with non-singular moment

matrix T .
In summary, the intersection number is given by∑

T

vol(Kv)IT (g
v,Φv)mT (r(gv)Φv).(5.4.9)

We need to compare this with the derivative of the Eisenstein series. We
invoke the formula of Kudla (

K97
[19]):

E′
T (g, 0,Φ) =

W ′
T (g, 0,Φv)

WT (g, 0,Φ′
v)
ET (g, 0,Φ

v ⊗ Φ′
v).eqn Kudla formulaeqn Kudla formula (5.4.10)

Under our choice of measures, by Siegwl–Weil, we have

ET (g, 0,Φ
v ⊗ Φ′

v) = IT (g,Φ
v ⊗ Φ′

v).

We therefore have

E′
T (g, 0,Φ) =

W ′
T (g, 0,Φv)

WT (g, 0,Φ′
v)
IT (g,Φ

v ⊗ Φ′
v)

=W ′
T (g, 0,Φv)

IT,v(gv,Φ
′
v)

WT (g, 0,Φ′
v)
IT (g

v,Φv).

Note that
IT,v(gv ,Φ

′
v)

WT (g,0,Φ′
v)

is a constant independent of T, g,Φ′
v. By Corollary

cor G-Kcor G-K
5.4.2,

E′
T (g, 0,Φ) =ζv(2)

−2mT (r(gv)Φv)
IT,v(e,Φ

′
v)

WT (e, 0,Φ′
v)
IT (g

v,Φv).
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It suffices to prove that

ζv(2)
−2 IT,v(e,Φ

′
v)

WT (e, 0,Φ′
v)

= −1

2
vol(Kv).

Now the nearby quaternion B is non-split at v. And we have

I(e,Φ′
v) = vol(SO(Bv)).

So we need to show

vol(SO(Bv))

vol(Kv)
= −1

2
ζv(2)

2WT (e, 0,Φ
′
v).

It is easy to see that (cf.
ARGOS
[1, Chap. 16, §3.5]):

vol(SO(Bv))

vol(Kv)
=

1

(q − 1)2
.

Indeed, we have an isomorphism (cf. Notations)

SO(B) ≃ B×/F× ×B1.

We now may compute the ratio for a non-archimedean v:

vol(GL2(Ov))

vol(O×
Bv

)
=
ζv(1)

−1ζv(2)
−1

ζv(2)−1
· vol(M2(Ov))

vol(OBv)
= (q − 1).

Moreover, we have
vol(GL2(Ov))

vol(O×
Bv

)
=

vol(SL2(Ov))

vol(B1
v)

.

By Prop.
prop W_T Phi’prop W_T Phi’
4.1.3, we also have

ζv(2)
2WT (e, 0,Φ

′
v) = − 2

(q − 1)2
.

This completes the proof.

5.5 Local intersection at ramified places

Let E (g,Φ) denote the holomorphic projection of E′(g, 0,Φ). Then by Propo-
sition

prop-kernelprop-kernel
3.4.1, the Conjecture

main-conjmain-conj
1.3.1 is equivalent to the identity

Θ−(g,Φ) = −2E (g,Φ).

By Theorem
cf archcf arch
5.1.3 and

cf good vcf good v
5.4.3,

Θ(g,Φ) + 2E (g,Φ) = Θ(g,Φ)sing +
∑
v∈S

(Θ(g,Φ)v + 2E (g,Φ)v),
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where S is the set of finite places of F where Φv is not spherical. Thus the
conjecture is equivalent to

Θ(g,Φ)−Θ−(g,Φ) = Θ(g,Φ)sing +
∑
v∈S

(Θ(g,Φ)v + 2E (g,Φ)v).

Notice that the left-hand side is an explicit Eisenstein series for G. This
leads to the following speculation:

Conjecture 5.5.1. For each v ∈ S, Θ(g,Φ)v + 2E (g,Φ)v is the nonsingular
part of an Eisenstein series for G. In other words, there is an Eisenstein series
G(g,Φ)v with Fourier coefficients Gt1,t2,t3(g,Φ)v such that it Fourier expansion
takes

Θ(g,Φ)v + 2E (g,Φ)v =
∑

t1t2t3 ̸=0

Gt1,t2,t3(g,Φ).

This conjecture implies Conjecture
main-conjmain-conj
1.3.1. At this moment, we can prove

the following weak form:

prop-alg Proposition 5.5.2. For each prime p, there is a modular form fp with alge-
braic coefficients in Q̄ such that

Θ(g,Φ) + 2E (g,Φ) =
∑
p∈P

fp(g) log p.

Proof. Since modular forms on G are determined by their non-singular coeffi-
cients, it suffices to show there there are modular forms f with non-singular
coefficients given by nonsingular part is given by

f∗p :=
1

log p

∑
v|p

Θ(g,Φ)v + 2E (g,Φ)v.

It is clear that f∗p has algebraic coefficients, and we have an expansion

Θ(g,Φ) + 2E (g,Φ) = Θ(g,Φ)sing +
∑
p

f∗p log p.

It is clear that E (g,Φ) and Θ(g,Φ) are both in the finite-dimensional space
A of holomorphic modular forms of parallel weight 2 of GL2(A∞)3 some level
U = ⊗vUv where Uv is maximal for v /∈ S.

Now we consider the action on A by the Hecke algebra

T = ⊗v/∈SQ[Uv\GL2(Fv)
3/Uv].

This action is semi-simple. Thus we have a decomposition into eigenforms:

Θ(g,Φ) + 2E (g,Φ) =
∑
i

fi.
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For each v /∈ S, the coefficient (t1, t2, t3) = (πn1
v , π

n2
v , π

n3
v ) has the form

a(πn1
v , π

n2
v , π

n3
v ) =

∑
i

ci

3∏
j=1

αn1
ij − βn1

ij

αij − βij

where ci, αij , βij are non-zero complex numbers. It is easy to see that the
vector space

∑
n1,n2,n3

Q̄a(πn1
v , π

n2
v , π

n3
v ) over Q̄ is finite-dimensional if and only

if αij , βij ∈ Q̄. This shows that fi are multiples of algebraic forms φi: fi = ciφi.
By comparing the Fourier coefficient and linear independence of log p over Q̄,
we see that ci ∈

∑
p Q̄ log p. This shows that each f∗p is a linear combination

over Q̄ of nonsingular parts of φi. This finishes the proof of the Proposition.

Proof of Theorem
main-thmmain-thm
1.3.3. Let v1, v2 be two places prime to P . Then we apply

the non-vanishing theorem of Yifeng Liu to find a Schwartz function Φ ∈ S (V3)
so that α(θ(Φ ⊗ φ) ̸= 0 for some φ ∈ σ and that Φv is k-regularly supported
for sufficiently large k. By density of algebraic functions, we may assume that
Φ is algebraic. Now apply

prop-algprop-alg
5.5.2 for the set S′ = S ∪ {v1, v2} and the set P ′ of

primes under S to get algebraic modular forms fp for each p ∈ P ′ so that

Θ(g,Φ) + 2E (g,Φ) =
∑
p∈P ′

fp(g) log p.

Now we do pairing with φ to obtain

(Θ(−,Φ), φ) + (2E (−,Φ), φ) =
∑
p∈P ′

(fp, φ) log p.

Assume that θ(Φ ⊗ φ) = f ⊗ f̃ ∈ π ⊗ π̃, then as in the proof of Proposition
prop-kernelprop-kernel
3.4.1, the left-hand side is

2L′(1/2, σ)

ζF (2)
α(θ(Φ⊗ φ)) +

L(1, π, ad)

8ζF (2)3
⟨P (f), P (f̃)⟩.

For the right hand side (fp, φ) is same as the projection fp,σ in fp with φ. Thus
it is in Q̄Ω(σ). This shows that we have dp ∈ Q̄p such that

2L′(1/2, σ)

ζF (2)
α(θ(Φ⊗ φ)) +

L(1, π, ad)

8ζF (2)3
⟨P (f), P (f̃)⟩ =

∑
p∈P ′

Ω(σ)dp log p.

Rewrite this as

⟨P (f), P (f̃)⟩ =

8L′(1/2, σ)ζF (2)
2

L(1, π, ad)
+
ζF (2)

3Ω(σ)

L(1, π, ad)

∑
p∈P ′

cp log p

α(f, f̃),

where cp = −8dp/α(f, f̃) ∈ Q̄.

71



As α(f, f̃) = α(θ(Φ⊗ φ)) ̸= 0, comparison with Proposition
prop-CLprop-CL
1.3.2 gives

L (π) =
8L′(1/2, σ)ζF (2)

2

L(1, π, ad)
+
ζF (2)

3Ω(σ)

L(1, π, ad)

∑
p∈P ′

cp log p.

Notice that L (π) does not depend on the choice of v1, v2. This shows the sum
is in fact a sum over P .

A Test functions with trilinear zeta integrals with
regular support

Yifeng Liu

non-vanishing of local Theorem A.0.1. Assume that HomG(S (V 3)×σ,C) ̸= 0. Then the local zeta
integral Z(0, f,W ) is non-zero for some choice of W ∈ W (σ, ψ) and f ∈ Π(B)
attached to Φ ∈ S (V 3

reg).
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