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1 Introduction

The aim of this paper is to prove a formula conjectured by B. Gross and S. Kudla in [11]
which relates the heights of modified diagonal cycles on the triple products of Shimura curves
and the derivative of the triple product L-series. More precisely, for three cusp forms f , g, h
of weight 2 for a congruent subgroup Γ0(N) of SL2(Z) with N square free, we may consider
the function F := f × g × h on H 3. There is a triple product L-series L(s, F ) as studied
by Garrett [7] in classical setting and by Piatetski-Shapiro and Rallis [32] in adelic setting.
This function is entire and has functional equation with center at s = 2 and a decomposition
of the global into a product of local signs:

ε(F ) =
∏
p≤∞

εp(F ), εp(F ) = ±1.

Assume that the global sign is −1, then there is canonically defined a Shimura curve X
defined by some congruent subgroup of B× where B is an indefinite quaternion algebra B
which is nonsplit over a non-archimedean prime p if and only if εp(F ) = −1. There is an
F -eigen component ∆(F ) of the diagonal ∆ of X3 as an elements in the Chow group of
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codimension 2 cycles in X3 as studied by Gross and Schoen [13]. The conjecture formulated
by Gross and Kudla takes the shape

L′(2, F ) = Ω(F )〈∆(F ),∆(F )〉BB,

where Ω(F ) is an explicit positive constant and 〈·, ·〉BB is the Beilinson–Bloch height pairing.
This formula is an immediate higher dimensional generalization of the Gross–Zagier formula
[14].

The objective in this paper is more general than that considered by Gross and Kudla. In
fact, we will consider cuspidal Hilbert modular forms of parallel weight 2 and Gross–Schoen
cycles on Shimura cures over totally real number fields. We will formulate a conjecture 1.2.3
in terms of automorphic representations and linear forms. This conjecture is analogous to
a central value formula of Ichino [16]. In this paper, we can prove this conjecture under
some assumption on ramifications, see Theorem 1.2.4. In the following we will describe our
conjecture, theorem, and the main idea of proof.

1.1 Shimura curves and abelian varieties

1.1.1 Incoherent quaternion algebras and Shimura curves

Let F be a number field with adele ring AF and let Af be the ring of finite adeles. Let Σ be
a finite set of places of F . Up to isomorphism, let B be the unique A-algebra, free of rank 4
as an A-module, whose localization Bv := B⊗A Fv is isomorphic to M2(Fv) if v 6∈ Σ and to
the unique division quaternion algebra over Fv if v ∈ Σ. We call B the quaternion algebra
over A with ramification set Σ(B) := Σ.

If #Σ is even then B = B ⊗F A for a quaternion algebra B over F unique up to an
F -isomorphism. In this case, we call B a coherent quaternion algebra. If #Σ is odd, then B
is not the base change of any quaternion algebra over F . In this case, we call B an incoherent
quaternion algebra. This terminology is inspired by Kudla’s notion of incoherent collections
of quadratic spaces.

Now assume that F is a totally real number field and that B is an incoherent quaternion
algebra over A, totally definite at infinity in the sense that Bτ is the Hamiltonian algebra
for every archimedean place τ of F .

For each open compact subgroup U of B×f := (B ⊗A Af )
×, we have a (compactified)

Shimura curve XU over F . For any embedding τ : F ↪→ C, the complex points of XU at τ
forms a Riemann surface as follows:

XU,τ (C) ' B(τ)×\H ± × B×f /U ∪ {cusps}.

Here B(τ) is the unique quaternion algebra over F with ramification set Σ \ {τ}, Bf is
identified with B(τ)

Åf
as an Åf -algebra, and B(τ)× acts on H ± through an isomorphism

B(τ)τ 'M2(R). The set {cusps} is non-empty if and only if F = Q and Σ = {∞}.
For any two open compact subgroups U1 ⊂ U2 of Bf×, one has a natural surjective

morphism
πU1,U2 : XU1 → XU2 .
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Let X be the projective limit of the system {XU}U . It is a regular scheme over F , locally
noetherian but not of finite type. In terms of the notation above, it has a uniformization

Xτ (C) ' B(τ)×\H ± × B×f /D ∪ {cusps}.

Here D denotes the closure of F× in A×f . If F = Q, then D = F×. In general, D is much
larger than F×.

The Shimura curve X is endowed with an action Tx of x ∈ B× given by “right multipli-
cation by xf .” The action Tx is trivial if and only if xf ∈ D. Each XU is just the quotient
of X by the action of U . In terms of the system {XU}U , the action gives an isomorphism
Tx : XxUx−1 → XU for each U .

The induced action of B×f on the set π0(XU,F ) of geometrically connected components of

XU factors through the norm map q : B×f → A×f and makes π0(XU,F ) a principal homogeneous

space over F×+ \A×f /q(U). There is a similar description for X.

1.1.2 Hodge classes

The curve XU has a Hodge class LU ∈ Pic(XU)Q. It is the line bundle whose global sections
are holomorphic modular forms of weight two. The system L = {LU}U is a direct system in
the sense that it is compatible under the pull-back via the projection πU1,U2 : XU1 → XU2 .

Here are some basic explicit descriptions. IfXU is a modular curve, which happens exactly
when F = Q and Σ = {∞}, then LU is linearly equivalent to some linear combination of
cusps on XU . If F 6= Q or Σ 6= {∞}, then XU has no cusps and LU is isomorphic to the
canonical bundle of XU over F for sufficiently small U .

For each component α ∈ π0(XU,F ), denote by LU,α = LU |XU,α the restriction to the
connected component XU,α of XU,F̄ corresponding to α. It is also viewed as a divisor class

on XU via push-forward under XU,α → XU . Denote by ξU,α =
1

degLU,α
LU,α the normalized

Hodge class on XU,α, and by ξU =
∑

α ξU,α the normalized Hodge class on XU .
We remark that degLU,α is independent of α since all geometrically connected components

are Galois conjugate to each other. It follows that degLU,α = degLU/|F×+ \A×f /q(U)|. The
degree of LU can be further expressed as the volume of XU .

For any open compact subgroup U of B×f , define

vol(XU) :=

∫
XU,τ (C)

dxdy

2πy2
.

Here the measure
dxdy

2πy2
on H descends naturally to a measure on XU,τ (C) via the complex

uniformization for any τ : F ↪→ C. It can be shown that degLU = vol(XU). In particular,
the volume is always a positive rational number.

For any U1 ⊂ U2, the projection πU1,U2 : XU1 → XU2 has degree

deg(πU1,U2) = vol(XU1)/vol(XU2).

It follows from the definition. Because of this, we will often use vol(XU) as a normalizing
factor.
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1.1.3 Abelian varieties parametrized by Shimura curves

Let A be a simple abelian variety defined over F . We say that A is parametrized by X if
there is a non-constant morphism XU → A over F for some U . By the Eichler–Shimura
theory, if A is parametrized by X, then A is of strict GL(2)-type in the sense that

M = End0(A) := EndF (A)⊗Z Q

is a field and Lie(A) is a free module of rank one over M ⊗Q F by the induced action.
Define

πA = Hom0
ξ(X,A) := lim−→

U

Hom0
ξU

(XU , A),

where Hom0
ξU

(XU , A) denotes the morphisms in HomF (XU , A)⊗ZQ using ξU as a base point.
More precisely, if ξU is represented by a divisor

∑
i aixi on XU,F , then f ∈ HomF (XU , A)⊗ZQ

is in πA if and only if
∑

i aif(xi) = 0 in A(F )Q.
Since any morphism XU → A factors through the Jacobian variety JU of XU , we also

have
πA = Hom0(J,A) := lim−→

U

Hom0(JU , A).

Here Hom0(JU , A) = HomF (JU , A)⊗ZQ. The direct limit of Hom(JU , A) defines an integral
structure on πA but we will not use this.

The space πA admits a natural B×-module structure. It is an automorphic representation
of B× over Q. We will see the natural identity EndB×(πA) = M and that πA has a decompo-
sition π = ⊗Mπv where πv is an absolutely irreducible representation of B×v over M . Using
the Jacquet–Langlands correspondence, one can define L-series

L(s, π) =
∏
v

Lv(s, πv) ∈M ⊗Q C

as an entire function of s ∈ C. Let

L(s, A,M) =
∏

Lv(s, A,M) ∈M ⊗Q C

be the L-series defined using `-adic representations with coefficients in M ⊗Q Q`, completed
at archimedean places using the Γ-function. Then L(s, A,M) converges absolutely in M ⊗C
for Re(s) > 3/2. The Eichler–Shimura theory asserts that, for almost all finite places v of
F , the local L-function of A is given by

Lv(s, A,M) = L(s− 1

2
, πv).

Conversely, by the Eichler–Shimura theory and the isogeny theorem of Faltings, if A is of
strict GL(2)-type, and if for some automorphic representation π of B× over Q, Lv(s, A,M) is
equal to L(s− 1/2, πv) for almost all finite places v, then A is parametrized by the Shimura
curve X.
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If A is parametrized by X, then the dual abelian variety A∨ is also parametrized by
X. Denote by M∨ = End0(A∨). There is a canonical isomorphism M → M∨ sending a
homomorphism m : A→ A to its dual m∨ : A∨ → A∨.

There is a perfect B×-invariant pairing

πA × πA∨ −→M

given by

(f1, f2) = vol(XU)−1(f1,U ◦ f∨2,U), f1,U ∈ Hom(JU , A), f2,U ∈ Hom(JU , A
∨)

where f∨2,U : A→ JU is the dual of f2,U composed with the canonical isomorphism J∨U ' JU .
It follows that πA∨ is dual to πA as representations of B× over M . Replacing A∨ in the above
construction, then we get a perfect B×-invariant pairing

πA × πA∨ −→ Hom0(A∨, A),

where the M acts on the right hand side through its action on A, and the B× acts via the
central character ωπA of πA. So we will denote

ωA := Hom0(A∨, A).

In the case that A is an elliptic curve, we have M = Q and πA is self-dual. For any
morphism f ∈ πA represented by a direct system {fU}U , we have

(f, f) = vol(XU)−1 deg fU .

Here deg fU denotes the degree of the finite morphism fU : XU → A.

1.2 Trilinear cycles on the triple product of abelian varieties

1.2.1 Trilinear cycles on triple product of abelian varieties

Let A1, A2, A3 be three abelian varieties defined over a number field F . Let A = A1×A2×A3

be denote their product. We consider the space Ch1(A) of 1-dimensional Chow cycles with
Q-coefficients.

Using Mukai–Fourier transformation, we have a decomposition

Ch1(A) = ⊕sCh1(A, s),

where s = (s1, s2, s3) are non-negative integers, and Ch1(A, s1, s2, s3) consists of cycles x
such that under push-forward of by multiplication by k = (k1, k2, k3) ∈ Z3 on A:

[k]∗x = ks · x, ks := ks11 k
s2
2 k

s3
3 .

If s has non-trivial contribution in the decomposition, then it is known that |s| = s1+s2+s3 ≥
2, and conjectured that |s| ≤ 3. When |s| = 3 the cycles are homologically trivial. Further
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more, the cycles with s = (1, 1, 1) are conjecturally the complement of the subspace generated
by cycles supported on the image of Ai×Aj×0k for some reordering (i, j, k) of (1, 2, 3), where
0k denote the 0-point on Ak. Using Mukai–Fourier transfer, the group Ch1(A, (1, 1, 1)) can
be further defined as the group of trilinear cycles, namely those cycles z ∈ Ch1(A) satisfying
the following equations:

(1.2.1) m∗i z = p∗i z + q∗i z, i = 1, 2, 3

where mi, pi, qi are respectively the addition map, first projection, and second projection on
the i-th factor:

mi, pi, qi : Ai × Ai × Aj × Ak −→ Ai × Aj × Ak, {i, j, k} = {1, 2, 3}.

We will denote
Ch```1 (A) := Ch1(A, (1, 1, 1)).

Let L(s, A1 � A2 � A3) denote the L-series attached the triple product of `-adic repre-
sentation of Gal(F̄ /F ) on

H1(A1,Q`)⊗H1(A2,Q`)⊗H1(A3,Q`).

Then it is conjectured that L(s, A1 � A2 � A3) has homomorphic continuation on whole
complex plane. An extension of the Birch and Swinneron-Dyer or Beilison–Bloch conjecture
gives the following:

Conjecture 1.2.1. The space group Ch```1 (A) is finitely generated with rank given by

dim Ch```1 (A) = ords=2L(s, A1 � A2 � A3).

Like Neron–Tate height pairing between points on A and A∨ = Pic0(A), there is a
canonical height pairing between Ch```1 (A) and Ch```1 (A∨) given by Poincare bundles Pi on
Ai × A∨i with trivializations on Ai × 0 and 0× A∨i :

〈x, y〉 := (x× y) · ĉ1(P̄1) · ĉ1(P̄2) · ĉ1(P̄3), x ∈ Ch```1 (A), y ∈ Ch```1 (A∨),

where ĉ1(P̄i) is the first Chern class of arithmetic cubic structure P̄i of Pi. This paring can
also defined using Tate’s iteration formula analogous to the Neron–Tate height pairing. The
right hand of the formula makes sense for all elements in Ch1(A) and vanishes on Ch```1 (A).

1.2.2 Refinement for abelian varieties of strictly GL2-type

Assume that Ai are strictly GL2-type over fields Mi := End0(Ai). Let M = M1 ⊗M2 ⊗M3.
Then M acts on Ch```1 (A) by push forward and on Ch```1 (A∨) by duality. Using equation
1.2.1, one can show that these actions are linear. As M is a direct sum of its quotients
fields L, Ch```1 (A) is the direct sum of Ch```1 (A,L) := Ch```1 (A) ⊗M L. We can also define
the triple product L-series L(s, A1 �A2 �A3, L) ∈ L⊗C with coefficients in L using Galois
representation on

H1(A1,Q`)⊗L⊗Q` ⊗H1(A2,Q`)⊗L⊗Q` H1(A3,Q`)

where we choose ` inert in L.
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Conjecture 1.2.2. The space group Ch```1 (A)L is finitely generated with rank given by

dimL Ch```1 (A,L) = ords=2ιL(s, A1 � A2 � A3, L),

where ι : L⊗ C −→ C is the surjection given by any embedding L −→ C.

Also we have a unique height paring with coefficient in M :

〈−,−〉L : Ch```1 (A,L)⊗L Ch```1 (A∨, L) −→ L⊗ R

such that

trL⊗R/R(ax, y)L) = 〈ax, y〉, a ∈ L, x ∈ Ch```1 (A,L), y ∈ Ch```1 (A∨, L).

1.2.3 Gross–Kudla–Shoen cycles

Now we assume that Ai are parametrized by a Shimura curve X as before. Let Mi =
End0(Ai) and L a quotient of M1 ⊗M2 ⊗M3. For any fi ∈ πAi , we have a morphism

f := f1 × f2 × f3 : X −→ A.

We define f∗(X) ∈ Ch1(A) by

f∗(X) := vol(XU)−1fU∗(X) ∈ Ch1(A)

if fi is represented by fiU on XU . It is clear that this definition does not depend on the
choice of U . Define

PL(f) := f∗(X)``` ⊗ 1 ∈ Ch```1 (A,L).

Let πi = πAi ⊗Mi
L be the automorphic representation of B× with coefficients in L. Let

πL = π1 ⊗ π2 ⊗ π3 be their triple representation of (B×)3. Then by equation 1.2.1 f 7→ P (f)
defines a linar map:

PL : πL −→ Ch```1 (A,L).

It is clear that this map is invariant under the action of the diagonal ∆(B×); thus it defines
an element

PL ∈P(πA,L)⊗L Ch```1 (A,L)

where
P(πA,L) = Hom∆(B×)(πA,L, L).

Thus PL(f) 6= 0 for some f only if P(πA,L) 6= 0.
By the following Theorem 1.4.1, P(πA,L) is at most one dimensional, and it is one-

dimensional if and only if the central characters ωi of πi satisfy

ω1 · ω2 · ω3 = 1
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and the ramification Σ(B) of B is equal to

Σ(A,L) =

{
places v of F : ε

(
1

2
πA,L,v

)
= −1

}
.

The next problem is to find a non-zero element α of P(πA,L) if it is non-zero. It is more
convenient to work with P(πL) ⊗P(π̃L) where π̃L is the contragradient of πL is by the
product A∨ of A∨i . Decompose πL = ⊗v then we have decomposition P(πL) = ⊗P(πv)
where the space P(πv) is defined analogously. We will construct element αv in P(πv) ⊗
P(π̃v) for each place v of F by

α(fv ⊗ f̃v) :=
L(1, πv, ad)

ζv(2)2L(1/2, πv)

∫
F×v \B×v

(π(b)fv, f̃v)db, fv ⊗ f̃v ∈ πv ⊗ π̃v.

Conjecture 1.2.3. Assume ω1 · ω2 · ω3 = 1. For any f1 ∈ πA,L and f2 ∈ πA∨,L,

〈PL(f1), PL(f2)〉 =
8ζF (2)2

L(1, πL, ad)
L′(1/2, πL) · α(f1, f2)

as an identity in L⊗ C.

Theorem 1.2.4. The conjecture is true under the assumption that B has at least two finite
place not split over F and that π is unramified over the places which is split in B.

Remarks 1.2.1. 1. it is conjectured that the theorem is true without the assumption in
the theorem; we plan to treat other case in future;

2. the theorem implies that L′(1/2, πL) = 0 if and only if it is zero for all conjugates of σ;

3. assume that σ is unitary, then we take f̃ = f̄ . The Hodge index conjecture implies
L′(1/2, πL) ≥ 0. This is an consequence of the Riemann Hypothesis.

1.3 Application to adjoint and exterior products

1.3.1 Adjoint product

Assume that A1 = A∨2 and that M1 and M2 are identified in L via the dual map M1 7→M2.
Let ϕ : A1 −→ A2 be any polarization. Define an involution s ∈ End0(A1 × A2) by

s(x, y) = (ϕ−1y, ϕ(x)).

Then s induced an involution on Ch```1 (A) which does not depend on the choice of ϕ. De-
compose Ch```1 (A) as a direct sum of ± eigen spaces. The Beilonson–Bloch conjecture in this
case gives

dim Ch```1 (A,L)− = ords=1/2L(s,Ad(A1)2 � A3, L),

and
dim Ch```1 (A,L)+ = ords=1/2L(s, A3, L).
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In view of the usual BSD

dimA3(F )L = ords=1/2L(s, A3, L),

we will define a homomorphism:

α : Ch```1 (A,L)+ −→ A(F )L,

z 7→ 1

2
p3∗(z · π∗12P12)) ∈ Ch0(A3)deg=0

L = A3(F )L.

One can prove that the Neron–Tate height paring are related by:

〈z1, z2〉 = 2〈αz1, αz2〉.

For f ∈ π, we denote
PA3
L (f) := αPL(f) ∈ A3(F )L.

Since P(π̃) := HomB×(π̃,C) is one dimensional, it is given by a sign ε(s) = ±1. By work
of Prasad [30],

ε(s) = ε(Ad(π1)⊗ π3).

Corollary 1.3.1. Assume that π1 = π∨2 and ε(s) = −1, then ε(π3) = 1 and

PL(f) ∈ Ch```1 (A,L)−, f ∈ π

and for any f1 ∈ π, f2 ∈ π̃,

〈PL(f1), PL(f2)〉 =
8ζF (2)2L(1/2, π3)

L(1, π, ad)
L′(1/2,Adπ1 ⊗ π3).

Corollary 1.3.2. Assume that π1 = π∨2 and ε(s) = 1, then ε(π3) = −1 and

PL(f) ∈ Ch```1 (A,L)+, f ∈ π

and for any f1 ∈ π and f2 ∈ π̃,

〈PA3
L (f1), PA3

L (f2)L〉 =
4ζF (2)2L(1/2,Adπ1 ⊗ π3)

L(1, π, ad)
L′(1/2, π3)α(f1, f2).

Here is a simple formula for PA3
L (f) for f = (f1, f2, f3) whose first two components satisfy

f2 = ϕ◦f1 where ϕ : A1 −→ A∨1 = A2 is a polarization associated to an ample and symmetric
line bundle L :

ϕ(x) = T∗xL ⊗L −1.

In this case
PA3
L (f) =

∑
(f3∗f

∗
1 c1(L )) ∈ A3(F )L

where the sum is the group addition map Ch0(A3)L −→ A3(F )L.

10



1.3.2 Symmetric product

Finally we assume that A1 = A2 = A3 with Mi = L and with trivial central characters. Then
the permutation group S3 acts on A3 and then Ch```1 (A) and decompose it into subspaces
according three irreducible representations of S3

Ch```1 (A,L) = Ch```1 (A,L)+ ⊕ Ch```1 (A,L)− ⊕ Ch```1 (A,L)0

where Ch```1 (A,L)+ is the space of invariants under S3, and Ch```1 (A,L)− is the space where
S3 acts as sign function, and Ch```1 (A,L)0 is the space where S3 is acts as a direct sum of
the unique 2 dimensional representation. Then the Beilinson–Bloch conjecture gives

dim Ch```1 (A,L)+ = 0

dim Ch```1 (A,L)− = ords=2L(s, Sym3A1, L)

dim Ch```1 (A,L)0 = 2ords=1L(s, A1, L).

The action of S3 on P(π) is either trivial or given by sign function. By Prasad’s theorem
we have:

Corollary 1.3.3. Assume that A1 = A2 = A3 with trivial central character. Let L = Mi.

1. If ε(Sym3σ1) = 1 or ε(σ1) = −1, then

PL(f) = 0, f ∈ π

2. If ε(Sym3) = −1 and ε(σ1) = 1, then

PL(f) ∈ Ch```1 (A)−,

and for any f1 ∈ π and f2 ∈ π̃,

〈PL(f1), PL(f2)〉 =
8ζF (2)2L(1/2, π1)2

L(1, π, ad)
L′(1/2, Sym3π1).

1.4 Local linear forms over local fields

Let F be a local field and E a cubic semisimple algebra over F . More precisely, E can be
taken as one of the following:

• F ⊕ F ⊕ F ,

• F ⊕K for a quadratic field extension K of F , and

• a cubic field extension E of F .

11



Let B be a quaternion algebra over F . Thus B is isomorphic to either the matrix algebra
M2(F ) or the division quaternion algebra D (unique up to isomorphism). We define the sign
ε(B) of B as 1 if B 'M2(F ) and −1 if B ' D. Let π be a admissible representation of B×E
and σ its Jacquet–Langlands correspondence on GL2(E). Assume that the central character
ω of π has trivial restriction to F×

ω|F× = 1.

Consider the space of linear functionals invariant under the subgroup B× of B×E :

P(π) := HomB×(π,C).

By the following result of Prasad and Loke, this space is determined by the local root number

ε(σ) := ε(
1

2
, σ, ψ ◦ trE/F ) ∈ {±1}.

(The definition here does not depend on the choice of the non-trivial character ψ of F .)

Theorem 1.4.1. [Prasad, Loke [28, 27]] The space P(π) is at most one dimensional. More-
over it is non-zero if and only if

ε(σ) = ε(B).

Now assume that π is tempered or a local component of an irreducible unitary cuspidal
automorphic representation, then the following integration of matrix coefficients with respect
to a Haar measure on F×\B× is absolutely convergent by Ichino [16]:

I(f ⊗ f̃) :=

∫
F×\B×

(π(b)f, f̃)db, f ⊗ f̃ ∈ π ⊗ π̃

This integration defines an element I in P(π) ⊗P(π̃) which is invariant under B× × B×,
i.e., an element in

P(π)⊗P(π̃) = HomB××B×(π ⊗ π̃,C).

One can show that this linear form is nonzero if and only if P(π) 6= 0. Moreover, we may
evaluate the integral in the following spherical case:

1. E/F and π are unramified, f and f̃ are spherical vectors such that (f, f̃) = 1;

2. the measure dg is normalized such that the volume of the maximal compact subgroup
of B× is one.

In this case, one can show that the integration is given by

ζE(2)

ζF (2)

L(1/2, σ)

L(1, σ, ad)
.

See Ichino [16, Lem. 2.2]. Thus we can define a normalized linear form

α ∈P(π)⊗P(π̃)

α :=
ζF (2)

ζE(2)

L(1, σ, ad)

L(1/2, σ)
I.

If π is tempered and unitary then this pairing induces a positive hermitian form on P(π).
We remark that the linear form depends only on a choice of the Haar measure on F×\B×.
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1.5 Global linear forms

Let F be a number field with ring of adeles A and E a cubic semisimple algebra over F . We
start with an irreducible (unitary) cuspidal automorphic representation σ of GL2(AE). In
[32], Piatetski-Shapiro and Rallis defined an eight dimensional representation r8 of the L-
group of the algebraic group ResEFGL2. Thus we have a Langlands L-series L(s, σ, r8) which
we abbreviate as L(s, σ) in this paper. When E = F ⊕ F ⊕ F and σ = σ1 ⊗ σ2 ⊗ σ3, this
L-function is the Rankin type triple product L-function. When E is a field, the L-function
L(s, σ) is the Asai L-function of σ for the cubic extension E/F . Without confusion, we will
simply denote the L-function by L(s, σ).

Assume that the central character ω of σ is trivial when restricted to A×

ω|A× = 1.

Then we have a functional equation

L(s, σ) = ε(s, σ)L(1− s, σ).

And the global root number ε(1/2, σ) ∈ {±1}. For a fixed non-trivial additive character ψ
of F\A, we have a decomposition

ε(s, σ, ) =
∏
v

ε(s, σv, ψv).

The local root number ε(1/2, σv, ψv) ∈ {±1} does not depend on the choice of ψv. Thus we
have a well-defined (finite) set of places of F :

Σ = {v : ε(1/2, σv, ψv) = −1.}

Let B be a quaternion algebra over A which is obtained from M2(A) with M2(Fv) replaced
by Dv if v ∈ Σ. Let π = ⊗vπv be the admissible representation of B×E such that πv is the
Jacquet–Langlands correspondence of σv. Define

P(π) := HomB×(π,C).

Then we have
P(π) = ⊗vP(πv).

Fix a Haar measure db = ⊗dbv on A×\B× then we have integral of matrix coefficients αv for
each place v.

If Σ is even then B is coherent in the sense that it is the base change a quaternion algebra
B over F :

B = B ⊗F A.

In this case π is automorphic and the periods integrals over diagonal will define an element
Pπ ∈P(π) and the Ichino formula will give an expression for 〈Pπ, Pπ〉 in terms of L(1/2, σ).
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If Σ is odd, the B is incoherent in the sense that such a B does not exit. In this case,
ε(1/2, σ) = −1, the central value L(1

2
, σ) = 0 as forced by the functional equation, and we

are led to consider the first derivative L′(1
2
, σ). In this case π is no longer an automorphic

representation. Instead, heights of certain cohomologically trivial cycles will provide an
invariant linear form Pπ whose heights will be given in terms of L′(1/2, σ).

We will need to impose certain constraints as follows:

1. F is a totally real field.

2. E = F ⊕ F ⊕ F is split. We may thus write σ = σ1 ⊗ σ2 ⊗ σ3 where each σi is a
cuspidal automorphic representation of GL2(A). In this case, the condition on the
central character of σ can be rewritten as

ω1 · ω2 · ω3 = 1.

3. For i = 1, 2, 3 and v|∞, all σi,v are discrete of weight 2. It follows that the odd set Σ
must contain all archimedean places.

1.6 Ichino’s formula

Assume that the global root number is 1. Then |Σ| is even. In this case, B is the base
change BA of a quaternion algebra B over F , and π is an irreducible cuspidal automorphic
representation of B×E. Thus we may view elements in π and π̃ as functions on B×E\B

×
E with

duality given by Tamagawa measures. As the central characters of π (resp. π̃) is trivial when
restricted to A×, we can define an element Pπ ∈P(π) by periods integral:

Pπ(f) :=

∫
Z(A)B×\B×

f(b)db.

Here the Haar measure is normalized as Tamagawa measure. Jacquet’s conjecture says that
`π 6= 0 if and only if L(1/2, σ) 6= 0. this conjecture has been proved by Harris and Kudla
[15] for the split case, Prasad and Schulze-Pillot [31] in the general case. A refinement of
Jacquet’s conjecture is the following formula due to Ichino:

Theorem 1.6.1 (Ichino [16]). For each f1 ∈ π and f2 ∈ π̃,

Pπ(f1) · Pπ̃(f2) =
1

2c
ζE(2)

ζF (2)

L(1/2, σ)

L(1, σ, ad)
· α(f1, f2).

Here the constant c is 3, 2, and 1 respectively if E = F ⊕F ⊕F , E = F ⊕K for a quadratic
K, and a cubic field extension E of F respectively.

Here if the RHS use the measure dbv on F×\B×v , then we require that db =
∏

v dbv.
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1.7 Strategy of proof

The strategy of proof of the height formula will be analogous in spirit to the proof of Gross-
Zagier formula [14]. Basically it contains the analytic and geometric sides and the comparison
between them. Instate of newforms theory, we will make use of representation of adelic groups
and linear forms in the same sprit of our recent work of Gross–Zagier formula [36].

First of all, we notice that our conjecture 1.2.3 is an identity between two liner functionals
in

P(π)⊗P(π̃) ⊂ Hom(π ⊗ π̃,C).

The reduced norm on BE defines an orthogonal form with values in AE = A3. Thus we
have a Weil representation on R = G(SL2(AE)× SO(VE)) on the space S (BE) of Schwartz
functions. We can define a Shimizu lifting

θ : σ ⊗ r −→ π ⊗ π̃

by a decomposition θ = ⊗θv and a normalized local theta lifting in 2.1.2:

(1.7.1) θv : σv ⊗ rv → πv ⊗ π̃v.

Via Shimizu’s lifting, the height formula can be expressed as an identity of two functionals
`1 and `2 in

HomSL2(AE)(σ ⊗ r,C).

For each `i, we will construct a kernel function

ki ∈ HomSL2(AE)(r, C
∞(GL2(F )\GL2(A)))

to represent ` in the sense

`i(ϕ⊗ φ) =

∫
SL2(E)\SL2(A)

ϕ(g)ki(g, φ)dg.

Thus at the end, we need only to prove an identity k1 = k2 of two kernel functions.
The kernel function for analytic side is given by the derivative of the restriction of a

Siegel–Eisenstein series By the work of Garrett and Piatetski-Shapiro-Rallis. More precisely,
consider BE as an orthogonal space over A via trace AE → A. One can associate to φ ∈
S (BE) the Siegel-Eisenstein series E(s, g, φ). Due to the incoherence, E(s, g, φ) vanishes at
s = 0. We obtain an integral representation

(1.7.2)

∫
[G]

E ′(g, 0, fΦ)ϕ(g)dg = −L
′(1/2, σ)

ζF (2)

∏
v

m(θ(Φ⊗ ϕ).

In this method we obtain E ′(g, 0, fΦ) as a kernel function. This kind of Siegel-Eisenstein
series has been studied extensively. In particular, its first derivative was firstly studied by
Kudla in [21]. It is natural to consider its Fourier expansion:

E ′(g, 0, fΦ) =
∑

T∈Sym3(F )

E ′T (g, 0, fΦ).
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For nonsingular T ∈ Sym3(F ), we have an Euler expansion as a product of local Whittaker
functions (for Re(s)� 0)

ET (g, s, fΦ) =
∏
v

WT,v(g, s,Φ).

It is known that the Whittaker functional WT,v(g, s,Φ) can be extended to an entire func-
tion on the complex plane for the s-variable and that WT,v(g, 0,Φ) vanishes if T cannot be
represented as moment matrix of three vectors in the quadratic space Bv. This motivates
the following definition. For T ∈ Sym3(F )reg (here “reg” meaning that T is regular), let
Σ(T ) be the set of places over which T is anisotropic. Then Σ(T ) has even cardinality and
the vanishing order of ET (g, s,Φ) at s is at least

| {v : T is not representable in Bv} | = |Σ ∪ Σ(T )| − |Σ ∩ Σ(T )|.

Since |Σ| is odd, ET (g, s,Φ) always vanishes at s = 0. And its derivative is non-vanishing
only if Σ and Σ(T ) is nearby: they differ by precisely one place v, i.e., only if Σ(T ) = Σ(v)
with

Σ(v) =

{
Σ \ {v} if v ∈ Σ

Σ ∪ {v} otherwise

Moreover when Σ(T ) = Σ(v), the derivative is given by

E ′T (g, 0,Φ) =
∏
w 6=v

WT,w(gw, 0,Φw) ·W ′
T,v(gv, 0,Φv).

We thus obtain a decomposition of E ′(g, 0,Φ) according to the difference of ΣT and Σ:

(1.7.3) E ′(g, 0,Φ) =
∑
v

E ′v(g, 0,Φ) + E ′sing(g, 0,Φ)

where

(1.7.4) E ′v(g, 0,Φ) =
∑

ΣT=Σ(v)

E ′T (g, 0,Φ)

and
E ′sing(g, 0,Φ) =

∑
T,det(T )=0

E ′T (g, 0,Φ).

Moreover, the local Whittaker functional W ′
T,v(g, 0,Φv) is closely related to the evaluation

of local density. In the spherical case (i.e., Bv = M2(FV ) is split, ψv is unramified, Φv is the
characteristic function of the maximal lattice M2(Ov)

3), W ′
T,v(g, 0,Φv) has essentially been

calculated by Katsurada ([19]).
Now two difficulties arise:

1. The vanishing of singular Fourier coefficients (parameterized by singular T ∈ Sym3(F ))
are not implied by local reason. Hence it is hard to evaluate the first derivative E ′T for
singular T .

16



2. The explicit calculation of W ′
T,v(e, 0,Φv) for a general Φv seems to be extremely com-

plicated.

The solution is to utilize the uniqueness of linear form (note that we have a lot of freedom
to choose appropriate Φ) and to focus on certain very special Φv. More precisely, define the
open subset B3

v,reg of B3
v to be all x ∈ B3

v such that the components of x generates a non-
degenerate subspace of Bv of dimension 3. Then we can prove

1. If Φv is supported on B3
v,reg for v ∈ S where S contains at least two finite places, then

for singular T and g ∈ G(AS), we have

E ′T (g, v,Φ) = 0.

2. If the test function Φv is “regular at a sufficiently higher order” (see Definition 6.2.1),
we have for all non-singular T with ΣT = Σ(v) and g ∈ G(Av):

E ′T (g, 0,Φ) = 0.

To conclude the discussion of analytic kernel function, we choose Φv to be a test function
“regular at a sufficiently higher order” for v ∈ S where S is a set of finite places with at
least two elements such that any finite place outside S is spherical. And we always choose
the standard Gaussian at all archimedean places. Then for g ∈ G(AS), we have

(1.7.5) E ′(g, 0,Φ) =
∑
v

E ′v(g, 0,Φ)

where the sum runs over v outside S and

(1.7.6) E ′v(g, 0,Φ) =
∑

T,Σ(T )=Σ(v)

E ′T (g, 0,Φ)

where the sum runs over nonsingular T .
Moreover, we can have a decomposition of its holomorphic projection, denoted by E ′(g, 0,Φ)hol.

And it has a decomposition

(1.7.7) E ′(g, 0,Φ)hol =
∑
v

∑
T,Σ(T )=Σ(v)

E ′T (g, 0,Φ)hol

where we only change E ′T (g, 0,Φ) to E ′T (g, 0,Φ)hol when Σ(T ) = Σ(v) for v an archimedean
place. So similarly we may define E ′v(g, 0,Φ)hol.

This yields an analytic kernel function of the central derivative L′(1
2
, σ) for all three

possibilities of the cubic algebra E.
Now we describe the geometric kernel function under the further assumptions appeared

in the beginning of the last subsection. The construction of geometric kernel function is
similar to that in the proof of Gross-Zagier formula. More precisely, for Φ ∈ S (Bf ) we
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can define a generating function of Hecke operators, denoted by Z(Φ) (see Section 3). Such
generating functions have appeared in Gross-Zagier’s paper. Works of Kudla-Millson and
Borcherds first relate it to the Weil representation. A little extension of our result ([35])
shows that Z(Φ) is a modular form on GL2(A). Thus it is natural to consider the generating
function for a triple Φ = ⊗iΦi ∈ S (B3

f ) fixed by U6 for a compact open U ⊂ B×f valued in
the correspondences on Y 3

U . The kernel function for geometric side is given by

Z(g,Φ,∆ξ) := 〈∆U,ξ, Z(g,Φ)∆U,ξ〉, g ∈ GL3
2(A)

where ∆ξ is the projection of the diagonal ∆U of Y 3
U in Ch2(YU)00.

Now the main ingredient of our proof is the following weak form of an arithmetic Siegel–
Weil formula:

−E ′(g, 0,Φ) ≡ Z(g,Φ,∆ξ), g ∈ G(A)

where “≡” means modulo all forms on G(A) that is perpendicular to σ. Note that this is
parallel to the classical Siegel–Weil formula in the coherent case

E(g, 0,Φ) = 2I(g,Φ).

The replacement of “=” by “≡” should be necessary due to representation theory reason.
To make local computation, we will define arithmetic generating series Ẑ(gi,Φi) with

generic fiber Z(gi,Φi) on the product YU × YU and their triple product

Z(g,Φ,∆) = Ẑ(g1,Φ1) · Ẑ(g2,Φ2) · Ẑ(g3,Φ3)

and show that
Z(g,Φ,∆ξ) ≡ Z(g,Φ,∆).

It follows that we have a decomposition to a sum of local heights:

Z(g,Φ,∆) ≡
∑
v

Z(g,Φ,∆)v

where the intersection takes place on certain “good” model of Y 2
U .

Under our assumption that for v /∈ Σ, Uv is maximal and the Shimura curve YU has good
reduction at v. The work of Gross-Keating ([10]) essentially implies that for g ∈ G(AS):

Z(g,Φ,∆)v ≡ −E ′v(g, 0,Φ).

And when v|∞, using the complex uniformization we may construct the Green current.
And we prove that the contribution from the main diagonal to the archimedean height in
the intersection is equal to E ′v(g, 0,Φ)hol (1.7.7).

Finally, when v is a finite place in Σ, then we use Cerednik–Drinfeld uniformization to
show that

Z(g,Φ,∆)v ≡ 0.

Under our assumption of Φ, we have the same conclusion that E ′v = 0 in this case.
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1.8 Notations

In the following, k denotes a local field of a number field.

• Normalize the absolute value | · | on k as follows:

It is the usual one if k = R.

It is the square of the usual one if k = C.

If k is non-archimedean, it maps the uniformizer to N−1. Here N is the cardinality
of the residue field.

• Normalize the additive character ψ : k → C× as follows:

If k = R, then ψ(x) = e2πix.

If k = C, then ψ(x) = e4πiRe(x).

If k is non-archimedean, then it is a finite extension of Qp for some prime p. Take
ψ = ψQp ◦trk/Qp . Here the additive character ψQp of Qp is defined by ψQp(x) = e−2πiι(x),
where ι : Qp/Zp ↪→ Q/Z is the natural embedding.

• For a reductive algebraic group G defined over a number field F we denote by ZG its
center and by [G] the quotient

[G] := ZG(A)G(F )\G(A).

• We will use measures normalized as follows. We first fix a non-trivial additive character
ψ = ⊗vψv of F\A. Then we will take the self-dual measure dxv on Fv with respect
to ψv and take the product measure on A. We will use this measure for the standard
unipotent subgroup N of SL2(F ) and GL2(F ). We will take the Haar measure on
F×v as d×xv = ζFv(1)|xv|−1dxv. Similarly, the measure on Bv and B×v are the self-dual
measure dxv with respect to the character ψv(tr(xy

ι)) and d×xv = ζFv(1)|ν(xv)|−2dxv.
If B is coherent: B = BA then we have a decomposition of the Haar measure on
A×\B×: dx =

∏
dxv. We will choose the Tamagawa measure on SL2(AE) defined by

an invariant differential form and denote the induced decomposition into a product
dg =

∏
v dgv. Then we choose a decomposition dg =

∏
v dgv of the Tamagawa measure

on G(A) such that locally at every place it is compatible with the chosen measure on
SL2(Ev).

• For the non-connected group O(V ), we will normalize the measure on O(V )(A) such
that

vol([O(V )]) = 1.

• For the quadratic space V = (B, ν) associated to a quaternion algebra, we have three
groups: SO(V ), O(V ) and GSpin(V ). They can be described as follows.

GSpin(V ) = {x, y) ∈ B× ×B×|ν(x) = ν(y)}.
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SO(V ) = GSpin(V )/∆(F×).

Let µ2 be the group of order two generated by the canonical involution on B. Then
we have a semi-direct product

O(V ) = SO(V ) o µ2.

Moreover, by the description above, we have an isomorphism

GSpin(V ) = B× ×B1,

where B1 is the kernel of the reduced norm:

1→ B1 → B× → F× → 1.

And similarly, we have an isomorphism

SO(V ) = B×/F× ×B1.

Then for a local field F , we will choose the measure on B1, B×/F× induced from the
measure we have fixed on F× and B× via the exact sequences. In this way, we also
get a Haar measure on SO(V ). We normalize the measure on µ2(F ) = {±1} such that
the total volume is 1. The measure on O(V ) is then the product measure.

•
G = GL◦2,E := {g ∈ GL2(E)|det(g) ∈ F×}.

• We will also identify Sym3 with the unipotent radical of the Siegel parabolic of Sp6:

n(b) =

(
1 b

1

)
, b ∈ Sym3(A).

And we denote [Sym3] = Sym3(F )\Sym3(A). And we use the self-dual measure on
Sym3(A) with respect to the additive character ψ ◦ tr of Sym3(A). We denote by
Sym3(F )reg the subset of non-singular elements. For a non-archimedean local field f ,
denote by Sym(OF )∨ the dual of Sym3(OF ) with respect to the pairing (x, y) 7→ tr(xy).
For X, Y ∈ Sym3(F ), we write X ∼ Y if there exists g ∈ GL3(OF ) such that X =t gY g.
For F = R, we have similar notation but with g ∈ SO(3).
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2 Weil representations and Ichino’s formula

In this section, we will review Weil representation and apply it to triple product L-series.
We will follow work of Garrett, Piateski-Shapiro–Rallis, Waldspurger, Harris–Kudla, Prasad,
and Ichino etc. The first main result is Theorem 2.3.1 about integral representation of the
triple product L-series using Eisenstein series from the Weil representation on an adelic
quaternion algebra.

When the sign of the functional equation is +1, then the adelic quaternion algebra is
coherent in the sense that it comes form a quaternion algebra over number field, then our
main result is the special value formula of Ichino Theorem 2.4.3.

When the sign is −1, then the quaternion algebra is incoherent, and the derivative of
the Eisenstein series is the kernel function for the derivative of L-series, see formula (2.3.7).
We will study the non-singular Fourier coefficients T . We show that these coefficients are
non-vanishing only if T is represented by elements in B if we remove one factor at a place v,
see formula (2.5.2).

2.1 Weil representation and theta liftings

In this subsection, we will review the Weil representation as its its extension to similitudes
by Harris and Kudla, and normalized Shimuzu lifting by Waldspurger.

Extending Weil representation to similitudes

Let F be a local filed. Let n be a positive integer and let Sp2n be the symplectic group with

the standard alternating form J =

(
0 1n
−1n 0

)
on F 2n. With the standard polarization

F 2n = F n ⊕ F n, we have two subgroups of Sp2n:

M =

{
m(a) =

(
a 0
0 ta−1

) ∣∣∣∣∣a ∈ GLn(F )

}

and

N =

{
n(b) =

(
1 b
0 1

) ∣∣∣∣∣b ∈ Symn(F )

}
.

Note that M,N and J generate the symplectic group Sp2n.
Let (V, (·, ·)) be a non-degenerate quadratic space of even dimension m. Associated to V

there is a character χV of F×/F×,2 defined by

χV (a) = (a, (−1)m/2 det(V ))F

where (·, ·)F is the Hilbert symbol of F and det(V ) ∈ F×/F×,2 is the determinant of the
moment matrixQ({xi}) = 1

2
((xi, xj)) of any basis x1, ..., xm of V . Let O(V ) be the orthogonal

group.
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Let S (V n) be the space of Bruhat-Schwartz functions on V n = V ⊗F n (for archimedean
F , functions corresponding to polynomials in the Fock model). Then the Weil representation
r = rψ of Sp2n ×O(V ) can be realized on S (V n) by the following formulae:

r(m(a))Φ(x) = χV (det(a))| det(a)|
m
2
F Φ(xa),

r(n(b))Φ(x) = ψ(tr(bQ(x)))Φ(x)

and
r(J)Φ(x) = γΦ̂(x)

where γ is an eighth root of unity and Φ̂ is the Fourier transformation of Φ:

Φ̂(x) =

∫
Fn

Φ(y)ψ(
∑
i

xiyi)dy

for x = (x1, ..., xn) and y = (y1, ..., yn).
Now we want to extend r to representations of groups of similitudes. Let GSp2n and

GO(V ) be groups of similitudes with similitude homomorphism ν (to save notations, ν will
be used for both groups). Consider a subgroup R = G(Sp2n ×O(V )) of GSp2n ×GO(V )

R = {(g, h) ∈ GSp2n ×GO(V )|ν(g) = ν(h)} .

Then we can identify GO(V ) (resp., Sp2n) as a subgroup of R consisting of (d(ν(h)), h) where

d(ν) =

(
1n 0
0 ν · 1n

)
(resp. (g, 1)). We then have isomorphisms

R/Sp2n ' GO(V ), R/O(V ) ' GSp+
2n

where GSp+
2n is the subgroup of GSp2n with similitudes in ν(GO(V )).

We then extend r to a representation of R as follows: for (g, h) ∈ R and Φ ∈ S (V n),

r((g, h))Φ = L(h)r(d(ν(g)−1)g)Φ

where
L(h)Φ(x) = |ν(h)|−

mn
4

F Φ(h−1x).

For F a number field, we patch every local representation to obtain representations of
adelic groups. For Φ ∈ S (VA) we can define a theta series as an automorphic form on R(A):

θ(g, h,Φ) =
∑
x∈V

r(g, h)Φ(x), (g, h) ∈ R(A).
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Theta lifting: local and global

In this subsection, we consider the case when n = 1 and V is the quadratic space attached to
a quaternion algebra B with its reduced norm. Note that Sp2 = SL2 and GSp2 = GL2. And
GL+

2 (F ) = GL2(F ) unless F = R and B is the Hamilton quaternion in which case GL+
2 (R)

is the subgroup of GL2(R) with positive determinants.
We first consider the local theta lifting. For an infinite-dimensional representation σ of

GL2(F ), let π be the representation of B× associated by Jacquet-Langlands correspondence
and let π̃ be the contragredient of π. Note that we set π = σ when B = M2×2.

We have natural isomorphisms between various groups:

1→ Gm → B× ×B× → GSO(V )→ 1

where (b1, b2) ∈ B× ×B× acts on B via (b1, b2)x = b1xb
−1
2 ,

GO(V ) = GSO(V ) o {1, c}

where c acts on B via the canonical involution c(x) = xι and acts on GSO(V ) via c(b1, b2) =
(bι2, b

ι
1)−1, and

R′ = {(h, g)) ∈ GSO(V )×GL2|ν(g) = ν(h)}.

Proposition 2.1.1 (Shimizu liftings). There exists an GSO(V ) ' R′/SL2-equivariant iso-
morphism

(2.1.1) (σ ⊗ r)SL2 ' π ⊗ π̃.

Proof. Note that this is stronger than the usual Howe’s duality in the present setting. The
result essentially follows from results on Jacquet-Langlands correspondence. Here we explain
why we can replace GO(V ) by GSO(V ). In fact, there are exactly two ways to extend an
irreducible representation of GSO(V ) to GO(V ). But only one of them can participate the
theta correspondence due to essentially the fact that the sign of GO(V ) does not occur in
the theta correspondence unless dimV ≤ 2.

Let Wσ = W ψ
σ be the ψ-Whittaker model of σ and let Wϕ be a Whittaker function

corresponding to ϕ. Define

S : S (V )⊗Wσ → C

(Φ,W ) 7→ S(Φ,W ) =
ζ(2)

L(1, σ, ad)

∫
N(F )\SL2(F )

r(g)Φ(1)W (g)dg.

See the normalization of measure in “Notations”. The integral is absolutely convergent by
Lemma 5 of [34] and defines an element in

HomSL2×B×(r ⊗ σ,C)
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where B× is diagonally embedded into B××B×. The factor before the integral is chosen so
that S(Φ,W ) = 1 when everything is unramified. Since

HomSL2×B×(r ⊗ σ,C) ' HomB×((r ⊗ σ)SL2 ,C) ' HomB×(π ⊗ π̃,C)

and the last space is of one dimensional spanned by the canonical B×-invariant pairing
between π and its (smooth) dual space π̃, we may define a normalized R′-equivariant map θ

(2.1.2) θ : σ ⊗ r → π ⊗ π̃.

such that
S(Φ,W ) = (f1, f2)

where f1 ⊗ f2 = θ(Φ⊗W ).
Now in the global situation where B is a quaternion algebra defined over a number field,

we define the normalized global theta lifting by

θ(Φ⊗ ϕ)(h) =
ζ(2)

2L(1, σ, ad)

∫
SL2(F )\SL2(A)

ϕ(g1g)θ(g1g, h,Φ)dg1, (h, g) ∈ R′(A).

Proposition 2.1.1. With definition as above, we have a decomposition θ =
⊗

θv in

HomR′(A)(r ⊗ σ, π ⊗ π̃).

Proof. It suffices to prove the identity after composing with the tautological pairing on π×π̃.
More precisely, let f1,⊗f2 ∈ π ⊗ π̃ be an element in a cuspidal representatio, Φ ∈ S (VA)
and ϕ ∈ σ so that

f1 ⊗ f2 = θ(Φ⊗ ϕ).

Assume everything is decomposable, we want to compute (f1, f2) in terms of local terms in

Φ = ⊗Φv ∈ r = ⊗rv, ϕ = ⊗ϕv ∈ σ = ⊗σv.

Then what we need to prove is

(f1, f2) =
∏
v

S(Φv, ϕv).

This follows from a result of Waldspurger (see. [16, Prop. 3.1]). Note that we have different
normalizations of θ and the map S (which is essentialy the map B]

v in [16]).

2.2 Trilinear form

In this subsection, we review a tri-linear form following Garrett, Piatetski-Shapiro and Rallis,
Prasad and Loke, and Ichino.
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Consider the symplectic form on the six-dimensional space E2:

E2 ⊗ E2 ∧−→ E
tr−→ F

(x, y)⊗ (x′, y′) 7→ trE/F (xy′ − yx′).

where the first map is by taking wedge product and the second one is the trace map from E
to F . Let GSp6 be the group of similitudes relative to this symplectic form. In this way, we
see that elements in GL2(E) with determinants in F× belong to GSp6. So we define

G =
{
g ∈ GL2(E)| det(g) ∈ F×

}
.

and identify it with a subgroup of GSp6.
Let I(s) = Ind

GSp6
P λs be the degenerate principle series of GSp6. Here, P is the Siegel

parabolic subgroup:

P =

{(
a ∗
0 νta−1

)
∈ GSp6|a ∈ GLF (E), ν ∈ F×

}
and for s ∈ C, λs is the character of P defined by

λs

((
a ∗
0 νta−1

))
= | det(a)|2sF |ν|−3s

F .

For an irreducible admissible representation σ of G, let Wσ = Wψ
σ be the ψ-Whittaker

module of σ.
There is a G(Sp6 ×O(BF ))-intertwining map

(2.2.1) i : S (BE)→ I(0)

Φ 7→ fΦ(·, 0)

where for g ∈ GSp6,
fΦ(g, 0) = |ν(g)|−3r(d(ν(g))−1g)Φ(0).

We extend it to a standard section fΦ,s of I(s) and called the Seigel–Weil section associated
to Φ.

Let Π(B) be the image of the map (2.2.1). Similarly, for B′, we can define Π(B′) for the
unique quaternion algebra B′ over F not equivalent to B.

Lemma 2.2.1. For nonarchimedean F ,

(2.2.2) I(0) = Π(B)⊕ Π(B′).

Proof. See Harris–Kudla [15], section. 4, (4.4)-(4.7) and Kudla [20], II.1.
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Now we treat the case when F is archimedean.
If F = C, then one has only one quaternion algebra B over F . In this case we have

(2.2.3) I(0) = Π(B).

This is proved in Lemma A.1 of Appendix of Harris–Kudla [15].
If F = R, then one has two quaternion algebras, B = M2×2 and B′ the Hamilton

quaternion. The replacement of Lemma 2.2.1 is the following isomorphism Harris–Kudla
([15], (4.8))

(2.2.4) I(0) = Π(B)⊕ Π(B′)

where Π(B′) = Π(4, 0) ⊕ Π(0, 4) where the two spaces are associated to the two quadratic
spaces obtained by changing signs of the reduced norm on the Hamilton quaternion.

Local zeta integral of triple product

The local zeta integral of Garrett ([7]) and Piatetski-Shapiro and Rallis ([32]) is a (family
of) linear functional on I(s)×Wσ defined as

Z(s, f,W ) =

∫
F×N0\G

fs(ηg)W (g)dg, (f,W ) ∈ I(s)×Wσ.

See the normalization of measure in “Notations”. Here, N0 is a subgroup of G defined as

N =

{(
1 b
0 1

)
|b ∈ E, trE/F (b) = 0

}
,

and η ∈ GSp6 is a representative of the unique open orbit of G acting on P\GSp6. The
integral is absolutely convergent for Re(s) � 0. And the integral Z(0, f,W ) is absolutely
convergent when the exponent Λ(σ) < 1

2
. This condition holds if σ is a local component of a

cuspidal automorphic representation by the work of Kim–Shahidi [26]. If f is the image of
a Φ ∈ S (B), we also write Z(s, f,W ) as Z(s,Φ,W ).

Proposition 2.2.2. For σ with Λ(σ) < 1
2
, Z(f,W ) := Z(0, f,W ) defines a non-vanishing

linear functional on I(0)×Wσ.

Proof. See [32, Prop. 3.3] and [18, pp. 227]. But we will reprove this later in the proof of
Theorem 6.3.1.

Local tri-linear forms

Let π be an irreducible admissible representation of B×E with trivial restriction on F×. Let
σ be the Langlands correspondence to GL2(E). Assume that Λ(σ) < 1/2.
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Proposition 2.2.3 (Ichino [16]). Under the normalization of θ as in 2.1.2, we have

Z(Φ, ϕ) = (−1)ε(B)L(1/2, σ)

ζF (2)
m(θ(Φ⊗ ϕ)).

Proof. This is Proposition 5.1 of Ichino [16]. Notice that our choice of the local Haar measure
on F×\B× differs from that of [16] by ζF (2).

Proposition 2.2.4. Assume that π is unitary.

1. One has the following positivity I(f, f̄) ≥ 0 for f ∈ π.

2. Moreover, the following are equivalent:

(a) m(π) = 1.

(b) Z does not vanish on σ ⊗ Π(B).

(c) I does not vanish on π.

Proof. The first one follows essentially from a theorem of He [17]. We need to prove the
second one. Obviously, c)⇒ a). The previous proposition implies that b)⇔ c). We are left
to prove a)⇒ b). Let B′ be the (unique) quaternion algebra non-isomorphic to B and π′ the
Jacquet–Langlands correspondence on (B′E)× of σ. By the dichotomy, Hom(B′)×(π′,C) = 0,
and thus Z = I = 0 identically for B′. First we assume that F is non-archimedean. Then by
the direct sum decomposition I(0) = Π(B)⊕Π(B) and the non-vanishing of Z on I(0)⊗σ, we
conclude that Z does not vanish on Π(B)⊗σ. If F is archimedean, we only need to consider
F is real. The assertion is trivial if B is the Hamilton quaternion since then B×/F× ' SO(3)
is compact. We assume that B = M2×2,R. Then one can use the same argument as above.

2.3 Integral representation of L-series

In this subsection, we review integral representation of triple product L-series of Garrett,
Piatetski-Shapiro and Rallis, and various improvements of Harris–Kudla. Let F be a number
field with adeles A, B a quaternion algebra over A, E a cubic semisimple algebra. We write
BE := B⊗F E the base changed quaternion algebra over AE := A⊗F E.

Eisenstein series

For Φ ∈ S (BE), we define
fΦ(g, s) = r(g)Φ(0)λs(g)

where the character λs of P defined as

λs(d(ν)n(b)m(a)) = |ν|−3s| det(a)|2s.

and it extends to a function on GSp6 via Iwasawa decomposition GSp6 = PK such that
λs(g) is trivial on K. It satisfies

fΦ(d(ν)n(b)m(a)g, s) = |ν|−3s−3| det(a)|2s+2fΦ(g, s).
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It thus defines a section, called a Siegel–Weil section, of I(s) = Ind
GSp6
P (λs). Then the

Siegel–Eisenstein series is defined to be

E(g, s,Φ) =
∑

γ∈P (F )\GSp6(F )

fΦ(γg, s).

This is absolutely convergent when Re(s) > 2. It extends to a meromorphic function of
s ∈ C and holomorphic at s = 0 ([21, Thm. 2.2]).

For T ∈ Sym3(F ), we define its T -th Fourier coefficients to be:

ET (g, s,Φ) =

∫
[Sym3]

E(n(b)g, s,Φ)ψ(−Tb)db.(2.3.1)

(cf. “Notations” and we have shorten ψ(T ) for ψ(tr(T )) without confusion.)
Suppose Φ = ⊗vΦv is decomposable. When T is non-singular, we have a decomposition

into a product of local Whittaker functions

ET (g, s,Φ) =
∏
v

WT,v(gv, s,Φv),

where the local Whittaker function is given by

WT,v(gv, 0,Φv) =

∫
Sym3(Fv)

fΦ(wn(b)g, s)ψ(−Tb)db

where

w =

(
13

−13

)
.

By [21, Prop. 1.4], for non-singular T , the Whittaker function WT,v(gv, s,Φv) has an entire
analytic extension to s ∈ C. Moreover, under the following “unramified” conditions:

• v is non-archimedean, T is integral with det(T ) ∈ O×Fv ,

• The maximal ideal of Fv on which ψv is trivial is OFv ,

• Vv has a self-dual lattice Λ and Φv is the characteristic function of Λv,

• gv ∈ Kv the standard maximal compact subgroup of GSp(Fv),

we have [21, Prop. 4.1]:

WT,v(gv, s,Φv) = ζFv(s+ 2)−1ζFv(2s+ 2)−1
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Rankin triple L-function

Let σ be a cuspidal automorphic representation of GL2(AE). Let π be the associated to
Jacquet-Langlands correspondence of σ on B×E. Let ωσ be the central character of σ. We
assume that

(2.3.2) ωσ|A×F = 1.

Define a finite set of places of F

(2.3.3) Σ(σ) =

{
v|ε(σv,

1

2
) = −1

}
.

Define the zeta integral as

(2.3.4) Z(s, φ, ϕ) =

∫
[G]

E(g, s,Φ)ϕ(g)dg

where [G] = A×G(F )\G(A).

Theorem 2.3.1 (Piatetski-Shapiro–Rallis [32]). Assume that Φ = ⊗Φv is decomposable.
For a cusp form ϕ ∈ σ and Re(s)� 0 we have an Euler product

(2.3.5) Z(s,Φ, ϕ) =
∏
v

Z(s,Φv, ϕv) =
L(s+ 1

2
, σ)

ζF (2s+ 2)ζF (4s+ 2)

∏
v

α(s,Φv, ϕv)

where

α(s,Φv,Wϕv) =
ζFv(2s+ 2)ζFv(4s+ 2)

L(s+ 1
2
, σv)

Z(s,Φv, ϕv)

which equals one for almost all v.

For σv a local component of an irreducible cuspidal automorphic representation, by Kim-
Shahidi’s work we have λ(σv) < 1/2. Hence the local zeta integral is absolutely convergent
for all v at s = 0. At s = 0, the local zeta integral has already appeared earlier in this paper:

Z(Φv,Wϕv) =

∫
F×N0\G

fΦv ,s(ηg)Wϕv(g)dg.

This constant is non-zero only if ε(Bv) = ε(σv,
1
2
). By 2.2.3, the normalization local constant

becomes

(2.3.6) α(0,Φv, ϕv) = (−1)sgn(B)ζF (2)m(θ(Φv ⊗ ϕv).
Thus the global Z(Φ, ϕ, 1/2) 6= 0 only if Σ(B) = Σ(σ) and both of them have even

cardinality. In this case we have an identity:

(2.3.7)

∫
[G]

E(g, 0,Φ)ϕ(g)dg =
L(1

2
, σ)

ζF (2)

∏
v

m(θ(Φv, ϕv))

If Σ = Σ(σ) is odd, L(1/2, σ) = 0. We have the following representation for the derivative:

(2.3.8)

∫
[G]

E ′(g, 0,Φ)ϕ(g)dg = −
L′(1

2
, σ)

ζF (2)

∏
v

m(θ(Φv, ϕv))
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2.4 Ichino’s formula

In this subsection, we review a special value formula of Ichino. We assume that Σ is even.
Let B be a quaternion algebra with ramification set Σ. We write V for the orthogonal space
(B, q).

Siegel-Weil for similitudes

The theta kernel is defined to be, for (g, h) ∈ R(A),

θ(g, h,Φ) =
∑
x∈BE

r(g, h)Φ(x).

It is R(F )-invariant. The theta integral is the theta lifting of the trivial automorphic form,
for g ∈ GSp+

6 (A),

I(g,Φ) =

∫
[O(BE)]

θ(g, h1h,Φ)dh

where h1 is any element in GO(BE) such that ν(h1) = ν(g). It dees not depend on the choice
of h1. When B = M2×2 the integral needs to be regularized. The measure is normalized
such that the volume of [O(BE)] is one.

I(g,Φ) is left invariant under GSp+
6 (A)∩GSp6(F ) and trivial under the center ZGSp6

(A)
of GSp6.

The following Siegel-Weil formula can be found [15, Thm. 4.2].

Theorem 2.4.1 (Siegel-Weil). E(g, s,Φ) is holomorphic at s = 0 and

(2.4.1) E(g, 0,Φ) = 2I(g,Φ).

To eliminate the dependence of the choice of measure on O(V )(A), we rewrite it as

(2.4.2) E(g, 0,Φ) = 2(vol([O(V )]))−1I(g,Φ).

Now we deduce a formula for the T -th Fourier coefficient of the Siegel–Eisenstein series.

Corollary 2.4.2. Assume that V is anisotropic and det(T ) 6= 0. Then for g ∈ GSp+(A) we
have

ET (g, 0,Φ) = 2vol([O(V )x0 ])

∫
O(V )(A)/O(V )x0 (A)

r(g, h)Φ(h−1
1 x0)dh1,

where h ∈ GO(VA) has the same similitude as g, x0 ∈ V (F ) is a base point with Q(x0) = T ,
and O(V )x0 ' O(1) is the stabilizer of x0.

Proof. g1 = d(ν(g))−1g, We obtain by Siegel-Weil for similitudes:

ET (g, 0,Φ) = 2

∫
[Sym3]

ψ(−Tb)I(n(b)g,Φ)db

= 2

∫
[Sym3]

ψ(−Tb)
∫

[O(V )]

∑
x∈V (F )

|ν(g)|−3
A r(d(ν(g)−1)n(b)g)Φ(h−1h−1

1 x)dh1db.
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Note that d(ν(g)−1)n(b)g = n(ν(g)b)d(ν(g)−1)g. We thus have

r(d(ν(g)−1)n(b)g)Φ(h−1h−1
1 x) = ψ(ν(g)bQ(h−1x))r(g1)Φ(h−1h−1

1 x) = ψ(bQ(x))r(g1)Φ(h−1h−1
1 x).

Since [O(V )] is compact, we may interchange the order of integration. Then the integral is
zero unless T = Q(x). Since T is non-singular, by Witt theorem, the set of x ∈ V (F ) with
Q(x) = T is either empty or a single O(V )(F )-orbit. Fix a base point x0. Then the stabilizer
O(V )x0 of x0 is isomorphic to O(W ) for the orthogonal complement W of the space spanned
by the components of x0. We now have

ET (g, 0,Φ) = 2

∫
[O(V )]

∑
γ∈O(V )(F )/O(V )x0 (F )

r(g1)Φ(h−1h−1
1 γ−1x0)dh1

= 2vol([O(V )x0 ])

∫
O(V )(A)/O(V )x0 (A)

r(g1)Φ(h−1h1x0)dh1.

This completes the proof.

We now define for non-singular T

IT (g,Φ) = 2vol([O(V )x0 ])

∫
O(V )(A)/O(V )x0 (A)

r(g, h)Φ(h−1
1 x0)dh1.(2.4.3)

Or equivalently, let ΩT be the set of elements x with Q(x) = T and we may endow ΩT (A)
an O(V )-invariant measure denoted by µT (x) by identifying with O(V )(A)/O(V )x0(A) · x0.
So we have

IT (g,Φ) = 2vol([O(V )x0 ])

∫
ΩT (A)

r(g, h)Φ(x)dµT (x).

We also do so locally to define an O(V )-invariant measure to define

IT,v(gv,Φv) =

∫
ΩT (Fv)

r(gv, hv)Φv(x)dµT,v(x)

and we then have
IT (g,Φ) = 2vol([O(V )x0 ])

∏
v

IT,v(gv,Φv),

when Φ = ⊗vΦv is decomposable.
We may identify it with µ2 as an algebraic group. and therefore O(V ) = SO(V ) o µ2

(cf. Notations) where µ2 ⊂ O(V ) is generated by the canonical involution on the quaternion
algebra. When T is non-singular, it is easy to see that SO(V ) is surjective ontoO(V )/O(V )x0 .
We then may choose a measure on O(V )(A) such that it is the product measure of the
Tamagawa measure on SO(V )(A) and the measure on µ2(A) such that

vol(µ2(A)) = 1.
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Since the Tamagawa number of SO(V ) is 2, we have

vol([O(V )]) =
1

2
vol(SO(V )(F )\O(V )(A)) =

1

2
vol([SO(V )])vol(µ2(A)) = 1.

Now we have

vol(µ2(F )\µ2(A)) =
vol(µ2(A))

|µ2(F )|
=

1

2
.

So we may rewrite

IT (g,Φ) =
∏
v

IT,v(gv,Φv),(2.4.4)

where the local factor is a certain orbital integral:

IT,v(gv,Φv) =

∫
SO(V )(Fv)

Φv(hx0)dh.(2.4.5)

Moreover, the Siegel–Weil formula implies that

ET (g, 0,Φ) = IT (g,Φ).(2.4.6)

For later use we also need what we may call a local Siegel–Weil.

Proposition 2.4.3. Suppose that T ∈ Sym3(Fv) is non-singular. Then there is a non-zero
constant κ such that for all gv ∈ GSp6(Fv), Φv ∈ S (V 3

v )

WT,v(gv, 0,Φv) = κ · IT,v(gv,Φv).

In particular, the functional Φv 7→ WT,v(1, 0,Φv) is non-zero if and only if T is represented
by Vv.

Proof. It suffices to prove the statement for gv = 1. Consider the space of linear functionals
` on S (V 3

v ) that satisfy
`(r(n(b))Φv) = ψ(Tb)`(Φv).

Then by [21, Prop. 1.2], this space is spanned by Φv 7→ IT,v(1,Φv) (whose definition depends
on the normalization of the measure dµT,v). Since Φv 7→ WT,v(1, 0,Φv) also satisfies this
relation, it defines a multiple of the linear functional IT,v(1, ·) above. The multiple can be
chosen to be non-zero by [21, Prop. 1.4 (ii)].

Special value formula

Theorem 2.4.4 (Ichino [16]). Let dg =
∏

v dgv be the Tamagawa measure on B×F \B
×
A . For

f = ⊗vfv ∈ π, f̃ = ⊗vf̃v ∈ π̃, we have

Pπ(f)Pπ̃(f̃) =
1

2c
ζE(2)

ζF (2)

L(1
2
, σ)

L(1, σ, ad)
m(f, f̃).

Here the constant c is 3, 2, and 1 respectively if E = F ⊕F ⊕F , E = F ⊕K for a quadratic
K, and a cubic field extension E of F respectively.
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Proof. Without loss of generality we may assume that f ⊗ f̃ = θ(Φ ⊗ ϕ) is the normalized
theta lifting. Then we have

Pπ(f)Pπ̃(f̃) =

∫
[B×]×[B×]

θ(Φ⊗ ϕ)(x, y)dxdy.

We recall some results of Harris–Kudla. When the measures are normalized such that the
volume of [B×], [GO(BE)] and [G] are equal to one, Harris–Kulda [15] proved that the seesaw
identity, the uniqueness of Prasad and Loke together give∫

[B×]×[B×]

θ(Φ⊗ ϕ)(x, y)dxdy = C

∫
[G]

I(g,Φ)ϕ(g)dg,

where the constant

C =
1

2c
ζE(2)

L(1, σ, Ad)

is used in the normalization of the theta lifting. Together with Sigel–Weil formula, we have∫
[B×]×[B×]

θ(Φ⊗ ϕ)(x, y)dxdy =
1

2
C

∫
[G]

E(g, 0,Φ)ϕ(g)dg.

To allow us to change measures, we may rewrite the formula as

Pπ(f)Pπ̃(f̃) = vol([B×])2(vol([G]))−1 1

2
C

∫
[G]

E(g, 0,Φ)ϕ(g)dg.

Now with our choice of Tamagawa measures, we have vol([B×]) = vol([G]) = 2 and hence

Pπ(f)Pπ̃(f̃) = C

∫
[G]

E(g, 0,Φ)ϕ(g)dg.

By (2.3.6), this implies that

Pπ(f)Pπ̃(f̃) = I(θ(Φ, ϕ)) = C
L(1

2
, σ)

ζF (2)

∏
v

m(θv(Φv, ϕv))(2.4.7)

Since θ =
⊗

v θv, plugging in the value of C we obtain

Pπ(f)Pπ̃(f̃) =
1

2c
ζE(2)

ζF (2)

L(1
2
, σ)

L(1, π, ad)

∏
v

m(fv, f̃v).

We have the following consequence on the special values of triple product L-series:

Theorem 2.4.5. Let F be an number field and E/F be a cubic semisimple algebra. For any
cuspidal automorphic representation σ of GL2(AE) with central character ω|A× = 1, we have
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1. (Positivity)

L(
1

2
, σ) ≥ 0

2. (Jacquet’s conjecture) L(1
2
, σ) 6= 0 if and only if there exists (uniquely determined)

quaternion algebra B over F such that the period∫
[B×]

f(b)db 6= 0

for some f ∈ ΠB,E, the Jacquet-Langlands correspondence of σ.

Proof. These trivially follow from local results above and the global period formula

|
∫

[B×]
f(b)db|2

(f, f)Pet
= C · L(

1

2
, σ)
∏
v

αv(fv, fv)

where C > 0 is an explicit real number and α is proportional to Iv by a positive multiple
such that αv = 1 for almost all v.

Remark 2.4.1. The non-vanishing and positivity of the matrix coefficient integral is conjec-
tured to be true for all pair (SO(n), SO(n+1)) in the refinement of Gross-Prasad conjecture
by Ichino-Ikeda. One consequence of the non-vanishing and positivity (together with the
global period formula) is the positivity of the central value of L-function.

2.5 Derivatives of Eisenstein series

Fix an incoherent quaternion algebra B over A with ramification set Σ. We assume that B
has totally positive component Bv at archimedean places. We consider the Eisenstein series
E(g, s,Φ) for Φ ∈ S (B3). We always take Φ∞ to be standard Gaussian. In this case this
Eisenstein series vanishes at s = 0 as observed by Kudla [21, Thm. 2.2(ii)]. The vanishing
of a non-singular T -th Fourier coefficient is easier to see as we now discuss.

For T ∈ Sym3(F )reg, let Σ(T ) be the set of places over which T is anisotropic. Then
Σ(T ) has even cardinality. By Prop. 2.4.3, the vanishing order of the T -th Fourier coefficient
ET (g, s,Φ) at s = is at least

|Σ ∪ Σ(T )| − |Σ ∩ Σ(T )|.
Also cf. [21, Coro. 5.3]. Since |Σ| is odd, ET (g, s,Φ) always vanishes at s = 0. And its
derivative is non-vanishing only if Σ and Σ(T ) is nearby: they differ by precisely one place
v. Thus we define

Σ(v) =

{
Σ \ {v} if v ∈ Σ

Σ ∪ {v} otherwise

When Σ(T ) = Σ(v), the derivative is given by

E ′T (g, 0,Φ) =
∏
w 6=v

WT,w(gw, 0,Φw) ·W ′
T,v(gv, 0,Φv).
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We thus obtain a decomposition of E ′(g, 0,Φ) according to the difference of Σ(T ) and Σ:

(2.5.1) E ′(g, 0,Φ) =
∑
v

E ′v(g, 0,Φ) + E ′sing(g, 0,Φ)

where

(2.5.2) E ′v(g, 0,Φ) =
∑

Σ(T )=Σ(v)

E ′T (g, 0,Φ)

and
E ′sing(g, 0,Φ) =

∑
T,det(T )=0

E ′T (g, 0,Φ).

Weak Intertwining property

In the case where Σ is odd, the formulation Φ 7→ E ′(g, 0,Φ) is not equivariant under the
action of Sp6(A). The following gives a weak intertwining property:

Proposition 2.5.1. Let A (G)0 be the image of Π(BA) under the map f 7→ E(g, 0, f) for
all quaternion algebra B over F . Then for any h ∈ G(A), f ∈ I(0), the function

g 7→ E ′(gh, 0, f)− E ′(g, 0, r(h)f) ∈ A0.

Proof. Let α(s, h)(g) = α(s, g, h) = 1
s
(| δ(gh)

δ(g)
|s − 1), s 6= 0. Then it obviously extends to an

entire function of s and it is left PA-invariant. Now for Re(s)� 0, we have

E(gh, s, f)− E(g, s, r(h)f) = sE(g, s, α(s, h)r(h)f)

Now note that the section g → α(s, h)r(h)f(g)δ(g)s is a holomorphic section of I(s). Hence
the Eisenstein series E(g, s, α(s, h)r(h)f) is holomorphic at s = 0 since any holomorphic
section of I(s) is a finite linear combination of standard section with holomorphic coefficients.
This implies the desired assertion.

Similarly one can prove the (G , K)-intertwining if v1 is archimedean. We skip this and
refer to [23].
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3 Gross–Schoen cycles and generating series

In this section we construct the geometric kernel function for Φ ∈ S (B3) where B is an
incoherent totally definite quaternion algebra over a totally real field F . We first give a
decomposition 3.1.1 for codimension 2 cycles on the triple curves and their Bloch-Beilinson
height pairing following the Gross–Schoen [13]. Then we define the direct and inverse limits
of these cycles on the product of Shimura curves as representation of Hecke operators. This
allows us to reformulate our main conjecture 1.2.3 in terms of Hecke operators acts on mod-
ified diagonal P of Gross and Schoen, see Conjecture 3.2.1. Then we review the generating
series of Hecke operators and its modularity on product of Shimura curves associate to B, see
Proposition 3.3.1 following our previous paper [35]. The main conjeture can then be further
reformulated as a kernel identity betweenthe derivative of Eisenstein series and geometric
kernel associate Φ, see Conjecture 3.5.1. Finally, we introduce arithematic Hodge classes and
arithemtic Hecke operators which gives a decomposition of the geometric kernel function to
a sum of local heights and singular parirings.

3.1 Cycles on triple product of curves

Decomposition of cycles

Let Ci (i = 1, 2, 3) be three smooth, projective, and connective curves over a number field k.
Let V = C1 × C2 × C3. We want to study the group of codimension 2 cycles Ch2(V ). First
of all, let us define a filtration as follows:

Ch2(V ) ⊃ Ch2,1(V ) ⊃ Ch2,2(V ) ⊃ Ch2,3(V ).

For Ch2,1(V ), we consider the class map

Ch2(V ) −→ H4(V̄ ,Q`)

where the right hand side denotes the `-adic cohomology of V := Vk̄. Let Ch2,1(V ) and
N2(V ) denote the kernel and image respectively then we have an exact sequence

0 −→ Ch2,1(V ) −→ Ch2(V ) −→ N2(V ) −→ 0.

The space N2(V ) has dimension predict by Tate’s conjecture.
For Ch2,2(V ), we consider the Kunneth decomposition of

H4(V̄ ,Q`) = ⊕i+j+k=4H
i(C̄1)⊗Hj(C̄2)⊗Hk(C̄k).

It is immediate that a class in N2(V ) is zero if and only if it has zero projection to all
H2(Ci × Cj). Thus we define a subgroup Ch2,2(V ) consisting of elements in Ch2(V ) with 0
projection to all Ch1(Vi × Vj). The quotient Ch2,1(V )/Ch2,2(V ) is isomorphic to the direct
sum of homologically trivial cycles on Ci × Cj:⊕

i<j

Ch1(Ci × Cj)0 = ⊗iPic0(Ci)
⊕2
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where we have used the identity

Ch1(Ci × Cj)0 ' Pic0(Ci)⊕ Pic0(Cj).

These groups are finitely generated and taking cared by the BSD conjecture on curves. See
Zhang [39], Lemma 5.1.2.

The last subspace Ch2,3(V ) is defined to be generated by elements of the form

π∗i αi · π∗jαj, i < j, αi ∈ Pic0(Ci).

By a conjecture of Beilinson–Bloch, this subgroup is finite.
In the following we would like to give a spliting for the above filtration by choosing classes

ei ∈ Pic1(Ci)Q with rational coefficient and degree 1:

ei =
∑

aijpj,
∑
j

aij deg pj = 1.

For each i < j, let Pic−(Ci × Cj) denote the class α in Pic(Ci × Cj)Q such that

πi∗(α · π∗j ej) = 0, πj∗(α · π∗i ei) = 0.

By Zhang [39], Lemma 2.2.1, we have a decomposition given by canonical maps:

Pic0(Ci × Cj)Q = π∗i Pic0(Ci)Q ⊕ π∗jPic0(Cj)Q.

NS(Ci × Cj)Q ' Qπ∗i ei ⊕Qπ∗j ej ⊕ Pic−(Ci ⊗ Cj)Q.

By Kunneth formula, the class N2(V ) is generated by π∗i ei ⊗ NS(Cj × Ck)Q, it follows the
isomorphism given by canonical maps:

Ch2(V )Q/Ch2,1(V )Q =
⊕
i<j

(
Qπ∗i ei · π∗j ej ⊕QPic−(Ci × Cj) · π∗kek

)
.

Similarly, by the proof in Zhang [39], Lemma 5.1.2,

Ch2,1(V )Q/Ch2,2(V )Q =
⊕
i 6=j

Pic0(Ci)Q · π∗j ej.

Finally, we define Ch2(V )00 to be subgroup of Ch2,2(V ) consists of elements α such that

πij∗(α · π∗kek) = 0, i < j

in Ch2(Ci × Cj). Then the canonical map gives an isomorphism:

Ch2,2(V )Q/Ch2,3(V )Q ' Ch2(V )00.
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In summary, we have a decomposition

Ch2(V )Q =Ch2(V )00
Q ⊕

⊕
ij

Pic0(Ci)Qej⊕(3.1.1) ⊕
i<j

(
π∗Pic0(Ci) · π∗jPic0(Cj)⊕Qeiej ⊕ Pic−(Ci × Cj)Qek

)
.

For each i, let Ti be the subspace of α ∈ Ch1(Ci×Ci) consisting of elements α such that
both α∗ and α∗ fixes the line Qei. Then

Ti = Q(ei × Ci) + Q(Ci × ei) + Pic−(Ci × Ci).

Under the composition, this algebra is isomorphic to the direct sum

(3.1.2) Ti = Q⊕Q⊕ End(Ji)Q

where Ji is the Jacobian of Ci. The actions of Ti’s on Ch∗(Ci) by pulling back preserve the
decomposition

Ch∗(Ci)Q = Ch0(Ci)Q ⊕Qei ⊕ Pic0(Ci)Q.

Consequently Ti’s act on Ch2(V )Q by pullbacks and fix the decomposition 3.1.1. The sub-
space Ch2(V )00 is the subspace where all Ci × ei and ei × Ci acts as 0.

For a codimension 2 cycle Z on V with projection Zij on Ci × Cj and mkCk on Ck, its
decomposition can be performed as follows. First of all, its projection onto Ch2(V )2,2 is
given by

Z2,2 = Z −
∑
i<j

Zijek +
∑
k

mkeiej.

It has projection

Z2,3 :=
∑
i,j

π∗ijπij∗(Z · π∗kek)

in Ch2,3(V ) and
Z00 = Z2,2 − Z2,3(V )

in Ch2(V )00.
The cycle Zij has projection Z−ij on Pic−(Ci × Cj) given by

Z−ij = Zi,j − Ci × Zi,j(ei)− Z∗ij(ej)× Cj.

The cycle Zij(ei) has projection on Pic0(Cj) given by

Zij(ei)− degZij(ei)ej.
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Height pairing

In the following we want to define a height pairing on homologically trivial cycles Ch2,1(V )
following Bloch [4], Beilinson [2, 3], Gillet–Soulé [9], and Gross and Schoen [13].

Let V be a regular and integral model of V over a the ring of integers Ok′ for some finite
extension k′ of k. For example, we may choose k′ such that Ci has a regular and semistable
model Ci over Ok′ . Then we may blow-up

V ′ := C1 ×Ok′ C2 ×Ok′ C3

successively at irreducible components over singular fiber with any given order (cf. [13]).

Then for each cycle Z ∈ Ch2,1(V ) we are going to construct an arithmetic cycle Ẑ = (Z̃, gZ)
where

• Z̃ is an extension of ∆e over V over SpecOk;

• gZ is a Green’s current on the complex manifold V (C) of the complex variety V ⊗Q C
for the cycle Z: gZ is a current on V (C) of degree (1, 1) with singularity supported on
Z(C) such that the curvature equation holds:

∂∂̄

πi
gZ = δZ(C).

Here the right hand side denotes the Dirac distribution attached to the cycle Z(C)
when integrating with forms of degree (2, 2) on V (C).

The height pairing of two cycle Z1, Z2 in Ch2,1(V ) is defined to

〈Z1, Z2〉 =
1

[k′ : k]
Ẑ1 · Ẑ2.

It is clear that this definition does not depend on the choice of Ẑ’s.
Before construction of cycles Ẑ, we want to also show that this definition does not

depend on the choice of k′ and model V using de Jong’s alteration. In fact for any regular,
projective, flat scheme, X over Z (not necessarily geometrically connected), let Ĉh(X )0

denote the quotient of groups of cycles Ẑ which are numerically trivial over all fibers modulo
the subgroup of cycles which vanishes on the generic fiber. Then we want show that this
group depends only on the generic fiber X of X . More generally, if X and Y are two
projective varieties over Q with regular models X and Y , and a generically finite morphism
f : X −→ Y , then we can define maps extending the corresponding maps over generic fiber:

f∗ : Ĉh(X )0 −→ Ĉh(Y )0, f ∗ : Ĉh(Y )0 −→ Ĉh(Y )0

such that f∗ ◦ f ∗ = deg f .
To define these maps, first we notice that the Zariski closure X ′ of the graph of f in

X × Y is another model of X dominating both X and Y . By de Jong’s alteration, there is
a regular scheme X ′′ dominating X ′: this we have generically finite morphisms:

α : X ′′ −→X , β : X ′′ −→ Y .
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Now we define

f∗ :=
1

[X ′′ : X ]
β∗ ◦ α∗, f ∗ =

1

[X ′′ : X ]
α∗ ◦ β∗.

Now we go back to construction of Ẑ. From the decomposition above, we see that
Ch2,1(V ) is generated by cycles of the forms in two types:

• π∗ijDij · π∗kDk with Dij a divisor on Ci × Cj and Dk a divisor on Ck of degree 0;

• C2,1 where C is a curve on V which has finite degree under each projection πi : V −→
Ci.

If Z is of first type, then over a semistable model Ci, Di can be extend to an arithmetic
model D̂i which has degree 0 on each component in the special fiber and curvature 0 at all

archimedean places. Let π̂∗ijDij be any integral model of π∗ijDij on Y . Then we may define

Ẑ = π̂∗ijDij · π∗kD̂i.

If Z = C2,1 is of second type, we consider the morphism

p : C × C × C −→ V.

Let e be base point e on C which exits if k is replaced by a finite extension, and let ∆e be
the modified diagonal cycle defined in Gross–Schoen [13]. In our terminology, ∆e = ∆2,1 for
the diagonal ∆ on C × C × C and base (e, e, e). Then Z − p∗∆e is of first type. Thus to

construct Ẑ it suffices to construct ∆̂e on a model Y of C ×C ×C which has been done by
Gross–Schoen [13].

In the following, we want to recall a triple product for Gross–Schoen cycles ∆e. Let
ti ∈ T (= 1, 2, 3) be three classes fixing Qe defined as in 3.1.2, and let t−i be its projection
on Pic−(C × C). Then by Lemma 2.2.3 in [39], each t−i can be extended into a unique so
called admissible arithmetic class t̂−i such that following holds:

1. t̂−i has zero intersection with components in the fibers over closed points for the two
projects C × C −→ C;

2. t̂−i is trivial on {e} × C and on C × {e}.

By formula (2.3.5) in [39], we have the following formula

(3.1.3) 〈∆e, (t1 × t2 × t3)∗∆e〉 = t̂−1 · t̂−2 · t̂−3

where the right hand side is the arithmetic intersection numbers on C × C.

3.2 Cycles on product of Shimura curves

In the following, we want to prove the decomposition formula given in the introduction.
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First decomposition

Recall that Shimura curve Y is a projective limit of the curves YU which is a disjoint union
of curves YU,α parameterized by α ∈ π0(YU). Let ξU,α denote the Hodge class on YU,α of
degree 1. Let Picξ(YU) denote the subspace of Pic(YU)Q generated by ξU,i’s. Then we have
a decomposition

Pic(YU)Q = Pic0(YU)Q ⊕ Picξ(YU)Q.

Let us define Ch2(XUE)00 to be the direct sum of the corresponding group for the product
of components of XU . Then the decomposition 3.1.1 implies

Ch2(XUE)Q =Ch2(XUE)00
Q ⊕

⊕
i 6=j

π∗i Pic0(YU)Q · π∗jPicξ(YU)Q · π∗kCh0(YU)⊕(3.2.1) ⊕
i<j

π∗i Pic0(YU) · π∗jPic0(YU) · Ch0(YU)⊕⊕
i<j

π∗i Picξ(YU)Q · π∗jPicξ(YU) · π∗kCh0(YU)⊕⊕
i<j

π∗ijPic−(YU × YU)Q · π∗kPicξ(YU)Q.

Taking direct limit gives

Ch2(X)Q =Ch2(X)00
Q ⊕

⊕
i 6=j

π∗i Pic0(Y )Q · π∗jPicξ(Y )Q · π∗kCh0(Y )⊕(3.2.2) ⊕
i<j

π∗i Pic0(Y ) · π∗jPic0(Y ) · Ch0(Y )⊕⊕
i<j

π∗i Picξ(Y )Q · π∗jPicξ(Y ) · π∗kCh0(Y )⊕⊕
i<j

π∗ijPic−(Y × Y )Q · π∗kPicξ(Y )Q.

Hecke algebra

It remains to decompose Ch2(X). First we use Hecke operators to reduced to finite level.
Recall that the Hecke algebra HE := C∞c (B×E/DE) consists of smooth and compactly-

supported functions Φ : B×E/DE → C. Its multiplication is given by the convolution

(Φ1 ∗ Φ2)(h) :=

∫
B×E/DE

Φ1(h′)Φ2(h′−1h)dh′.

For any smooth representation (V, ρ) of B×E/DE, there is a representation

H −→ End(V )
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given by

ρ(f)v =

∫
B×E/DE

f(g)ρ(g)vdg.

Fix an open compact subgroup UE of B×E/DE. Denote

HUE = C∞c (U\B×E/DEUE) := {Φ ∈ C∞c (B×E/DE) : Φ(UEhUE) = Φ(h), ∀h ∈ B×E}.

It is a subalgebra of HE whose multiplicative unit is the characteristic function vol(UE)−11U .
For any smooth representation V of B×E/DE, the action of HUE stabilizes V UE , the subspace
of vectors in V fixed by UE. The study of decomposition of V under B×E/DE is equivalent
to the study of the representation of V UE under HE,UE . In particular, the correspondence
σ −→ σUE is bijection between the set of irreducible representations of B×E/DE with non-
trivial UE-invariants and the set of nonzero irreducible representations of HE,UE .

We may define the similar algebras H and HU of functions on B×/D. Then we have

HE = H ⊗3, HE,UE = H ⊗3
U

for UE = U3.
For each Φ ∈HE, lets us define

T(Φ) :=

∫
B×/D

Φ(x)T(x) ∈ End(Ch2(X)C).

For UE a compact and open subgroup of B×E/DE, then Ch2(XUE)C has actions by HUE =
H ⊗3

U . It is clear that every element in each component HU fixes the base class ξU . Thus
the actions fix the decomposition 3.2.1 and 3.2.2 and factor through the quotient

HU −→ End(Ch0(YU)Q)⊕ End(Picξ(YU)Q)⊕ End(Pic0(YU)Q).

The actions of HU on Ch0(YU) and Picξ(YU) are both factor through actions on functions
on π0(YU), and the action of HU on Pic0(YU) factor through its action on the space of cusp
forms. Thus the right hand side of the above quotient is isomorphic to

H ′
U :=

⊕
ρ

ρU ⊗ ρ̃U

where ρ runs through automorphic characters and automorphic cuspidal representations of
parallel weight 2. Since the right hand side is of finite dimensional, any representation V of
H ′

U will have decomposition

V =
⊕
ρ

HomH ′
U

(ρU , V )⊗ ρU .

Applying these to Ch2(XUE and Ch2(X), we obtain decompositions

Ch2(XUE)C =
⊕
ρ

Ch2(ρ)⊗ ρU ,
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Ch2(X)C =
⊕
ρ

Ch2(ρ)⊗ ρ

where ρ = ρ1⊗ ρ2⊗ ρ3 runs through automorphic representations of B×E such that each ρi is
either one dimensional or cuspidal of parallel weight 2. The sum over cuspidal ρ gives

Ch2(X)00 =
⊕

ρ:cuspidal

Ch2(ρ)⊗ ρ.

If we normalize the height paring on Ch2,1(XU) by a factor vol(UE) then we have a height
pairing on Ch2,1(X) which induces a bilinear pairing

Ch2,1(ρ)⊗ Ch2,1(ρ̃) −→ C.

Decomposition of homological group

The decomposition on the cohomological cycles induces a decomposition on the class group:

Ch1(X)C =
∏
ρ

Hom(ρ,C)⊗ Ch2(ρ).

Let Cl1(X)00
C denote sum over components where ρ is cuspidal.

The decomposition induces an inclusion

Ch2(X)C ⊂ Ch1(X)C

which is given concretely by assigning an element α ∈ Ch2(XUE) to a unique element α∗ ∈
Ch1(X)C with component α∗U ′E

:= vol(U ′E)α if U ′ ⊂ U .

This decomposition induces a pairing between Ch2(X)00 and Ch1(X)00
C which is nothing

than the one induced by the height pairing.

Gross–Schoen cycle

As in Introduction, let ∆ be the image of the diagonal embedding of Y −→ X considered
as an element in Ch1(X). Its projection to Ch1(X)00 is called the Gross–Schoen cycle and
denoted as ∆ξ. For each cupidal represenation of B×E of parallel weight 2, one has component
∆π ∈P(π)⊗ Ch2(π̃).

For f ⊗ f̃ ∈ π ⊗ π̃ we define

T(f ⊗ f̃)∆ξ := f̃ ⊗∆π(f) ∈ π̃ ⊗ Ch2(π̃) ⊂ Ch2(X)00
C .

We claim the following

(∆π,∆π̃)m(f ⊗ f̃) = (T(f ⊗ f̃)∆ξ,∆ξ).

Indeed, by definition, the left hand side is equal to

(∆π(f),∆π̃(f̃)).
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While the right hand side equals to

(f̃ ⊗∆π(f),∆π̃).

These two are equal by definition. Thus we can rewrite our main theorem as

Conjecture 3.2.1.

〈T(f ⊗ f̃)∆ξ,∆ξ〉 =
8ζF (2)2

2L(1, σ, ad)
L′(1/2, σ)m(f ⊗ f̃).

3.3 Generating series of Hecke correspondences

Let V denote the orthogonal space B with quadratic form q. Recall that S (V) has an
extended Weil representation on by

R =
{

(b1, b2, g) ∈ B× × B× ×GL2(A) : q(b1b
−1
2 ) = det g

}
by

r(h, g)Φ(x) = |q(h)|−1r(d(det(g))−1g)Φ(h−1x).

For α ∈ F×+ \A×f , let Xα denote the union

Mα =
∐

a∈π0(Y )

Ya × Yaα.

This is a Shimura subvariety of Y × Y stabilized by the subgroup GSpin(V) of B× × B× of
elements with same norms. Define the group of cocycles:

Ch1(Mα) := lim−→
U1

Ch1(Mα,U1)

where U1 runs through the open and compact subgroups of GSpin(V). For an h ∈ B××B×,
the pull-back morphism T (h) of right multiplication defines an isomorphism

T(h) : Ch1(Mα) −→ Ch1(Mαν(h)−1).

Using Kudla’s generating series and the modularity proved in [35], for each Φ ∈ S (V)
and g ∈ GL2(F )+\GL2(A)+, we will construct an element

Z(g,Φ) ∈ Ch1(Mdet g)

such that for any (g′, h′) ∈ R,

Z(g, r(g′, h′)Φ) = T(h′)Z(gg′,Φ).
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Hecke correspondences

For any double coset UxU of U\B×f /U , we have a Hecke correspondence

Z(x)U ∈ Z1(YU × YU)

defined as the image of the morphism

(πU∩xUx−1,U , πU∩x−1Ux,U ◦ Tx) : ZU∩xUx−1 −→ Y 2
U .

In terms of complex points at a place of F as above, the Hecke correspondence Z(x)U
takes

(z, g) −→
∑
i

(z, gxi)

for points on XU,τ (C) represented by (z, g) ∈ H ± × Bf where xi are representatives of
UxU/U .

Notice that this cycle is supported on the component Mν(x)−1 of Y × Y .

Hodge class

On Y × Y , one has a Hodge bundle LK ∈ Pic(Y × Y )⊗Q defined as

LK =
1

2
(p∗1L + p∗2L ).

Generating Function

Write M = M1 which has an action by GSpin(V). For any x ∈ V and open and compact
subgroup K of GSpin(V), let us define a cycle Z(x)K on MK as follows. This cycle is non-
vanishing only if q(x) ∈ F× or x = 0. If q(x) ∈ F×, then we define Z(x)K to be the Hecke
operator UxU defined in the last subsection. If x = 0, then we define Z(x)K to be the push-
forward of the Hodge class on the subvariety Mα which is union of connected components
Ya × Ya with a ∈ π0(Y ). Let K̃ = O(F∞) ·K act on V.

For Φ ∈ S (V)K̃ , we can form a generating series

Z(Φ) =
∑
x∈K̃\V

Φ(x)Z(x)K .

It is easy to see that this definition is compatible with pull-back maps in Chow groups in
the projection MK1 −→ MK2 with K1 ⊂ K2. Thus it defines an element in the direct limit
Ch1(M)Q := limK Ch1(MK) if it absolutely convergent. We extend this definition to S (V)
by projection

S (V) −→ S (V)O(F∞), Φ −→ Φ̃ :=

∫
O(F∞)

r(g)Φdg

where dg is the Haar measure on O(F∞) with volume 1.
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For g ∈ SL2(A), define
Z(g,Φ) = Zr(g)Φ ∈ Ch1(M).

By our previous paper [35], this series is absolutely convergent and is modular for SL2(A):

(3.3.1) Z(γg,Φ) := Z(g,Φ), γ ∈ SL2(F )

Moreover, for any h ∈ H,

(3.3.2) Z(g, r(h)Φ) = T(h)Z(g,Φ).

where T(h) denotes the pull-back morphism on Ch1(M) by right translation of hf .
Let GL2(A)+ denote subgroup of GL2(A) with totally positive determinant at archimedean

places. For g ∈ GL2(AF )+, define

Z(g,Φ) = T(h)−1Z(r(g, h)Φ) ∈ Ch1(Mdet g),

where h is an element in B× × B× with norm det g. By (3.3.1), the definition here does not
depend on the choice of h. It is easy to see that this cycle satisfies the property

Z(g, r(g1, h1)Φ) = T (h1)Z(gg1,Φ), (g, h) ∈ R.

The following is the modularity of Z(g,Φ):

Proposition 3.3.1. The cycle Z(g,Φ) is automorphic for GL2(A)+: for any γ ∈ GL2(F )+,
g ∈ GL2(A),

Z(γg,Φ) = Z(g,Φ).

Proof. Let γ ∈ GL2(F )+ if suffices to show

T(αh)−1Z(r(γg, αh)Φ) = T(h)−1Z(r(g, h)Φ)

where (γ, α) and (g, h) are both elements in R. This is equivalent

T(α)−1Z(r(γg, αh)Φ) = Z(r(g, h)Φ)

and then to
T(α)−1Z(r(γ, α)Φ) = Z(Φ)

with r(g, h)Φ replaced by Φ. Write γ1 = d(γ)−1γ. By definition, the left is equal to

T(α)−1Z(L(α)r(γ1)Φ) =
∑
x∈K̃\V

r(γ1)Φ(α−1x)ρ(α)−1Z(x)K

=
∑

x∈K·O(F∞)\V

r(γ1)Φ(α−1x)Z(α−1x)K

=
∑
x∈K̃\V

r(γ1)Φ(x)Z(x)K

=Z(r(γ1)Φ) = Z(Φ).

46



Notice that the natural embedding GL2(AF )+ −→ GL2(AF ) gives bijective map

GL2(F )+\GL2(AF )+ −→ GL2(F )\GL2(AF )

thus we can define Z(g,Φ) for g ∈ GL2(AF ) by

Z(g,Φ) = Z(γg,Φ)

for some γ ∈ GL2(F ) such that γg ∈ GL+
2 (AF ). Then Z(g,Φ) is automorphic for GL2(A).

3.4 Geometric theta lifting

Let σ be a cuspidal representation of GL2(A) of parallel weight 2. For any ϕ ∈ σ, α ∈ F×+ \A×f ,
define

Zα(Φ⊗ ϕ) :=

∫
SL2(F )\SL2(A)

Z(g1g,Φ)ϕ(g1g)dg1 ∈ Ch1(Mα)

where g ∈ GL2(A) with determinant equal to α. Then it is easy to see that By [36], Theorem
3.5.2, we have the following identity:

(3.4.1) Z(Φ⊗ ϕ) =
L(1, π, ad)

2ζF (2)
T(θ(Φ⊗ ϕ)).

The collection (Zα(Φ⊗ ϕ)) defines an element

(Zα(Φ⊗ ϕ)) ∈
∏
α

Ch1(Mα).

It is easy to see that this element is invariant under open compact subgroup U×U of B××B×.
Thus is given by an element

Z(Φ⊗ ϕ) ∈ Ch1(Y × Y ).

Kernel identity

Recall that the diagonal Y of X = Y 3 defines a holomogical cycle in Ch1(X) whose projection
to Ch1(X)00 is denoted by P . For a Φ ∈ S (VE), we can define a correspondence Z(Φ) on
X by linear combination of product of correspondences on Y : if Φ = Φ1 ⊗ Φ2 ⊗ Φ3 and
g = (g1, g2, g3) with Φi ∈ S (V) and gi ∈ GL2(A), then

Z(g,Φ) = π∗1Z(g1,Φ1) · π∗2Z(g2,Φ2) · π∗3Z(g3Φ3).

This correspondences maps homological cycles to cohomological cycles. In particular we
have cycle Z(Φ)∆ξ ∈ Ch2(X)00. Thus the number

Z(g,Φ,∆ξ) := 〈∆ξ, Z(g,Φ)∆ξ〉

is well defined.
Our main theorem is reduced to the following identity of kernel functions:
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Conjecture 3.4.1.
(−E ′(·, 0,Φ), ϕ) = (Z(·,Φ,∆ξ), ϕ).

Deduce conjecture 3.2.1 from the above kernel identity. By (2.3.7), the left hand side of the
kernel identity is

L′(1/2, σ)

ζF (2)
m(θ(Φ⊗ ϕ).

By formula (3.4.1), the right hand side is

L(1, π, ad)

8ζF (2)3
〈∆ξ, T (θ(Φ⊗ ϕ))∆ξ〉.

As the image generates all π ⊗ π̃, the conjecture 3.2.1 follows.

By 3.1.3, we may write

(3.4.2) Z(g,Φ,∆ξ) = Ẑ−(g1,Φ1) · Ẑ−(g2,Φ2) · Ẑ−(g3,Φ3)

where the right hand side is the intersection of the admissible class extending the projection
Z(gi,Φ)− ∈ Pic−(Y × Y ) of Z(gi,Φ).

For the actually computation, we may replace Ẑ(g,Φ)− by arithmetic classes extending
Z(g,Φ). In fact, since Z(g,Φ) will fix class Picξ(Y ), we see it is in the space

π∗1Picξ(Y )⊗ Ch0(Y ) + Ch0(Y )⊗ π∗2Picξ(Y ) + Pic−(Y × Y ).

Thus we have an decomposition

Z(g,Φ) = Zξ
1(g,Φ) + Zξ

2(g,Φ) + Z−(g,Φ).

It is easy to see that both Zξ
i (g,Φ) are Eisenstein series with valued in Hodge cycles. Now

for each α ∈ Picξ(Y ), fix an arithmetic extension α̂. Then the above decomposition defines

an arithmetic extension Ẑ(g,Φ). Now we define

(3.4.3) Z(g,Φ,∆) = Ẑ(g1,Φ1) · Ẑ(g2,Φ2) · Ẑ(g3,Φ3)

Then we have that the difference Z(g,Φ, P ) − Z(g,Φ) is sum of forms which is Eisenstein
for at least one variable gi. It follows that it has zero inner product with cusp forms. Thus
we have the following equivalent form of the above theorem:

Conjecture 3.4.2 (Kernel identity).

(−E ′(·, 0,Φ), ϕ) = (Z(·,Φ,∆), ϕ).

Remark 3.4.1. Unlike the formalism Φ 7→ Z(g,Φ) which is equivariant under the action of

B× × B×, the formalism Φ 7→ Ẑ(g,Φ) is not B× × B× equivariant in general.
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3.5 Arithmetic Hodge class and Hecke operators

In this section, we want to introduce an arithmetic Hodge classes and then the arithmetic
Hecke operators. The construction depends on the choice of integral models which in terms
depends on a maximal order OB of B we fix here.

Moduli interprstation at an archimedean place

Let U be an open and compact subgroup of O×B . Let τ be an archimedean place of F .
Write B a quaternion algebra over F with ramification set Σ \ {τ}. Fix an isomorphism
Bτ ' B ⊗ Aτ . Recall from §51 in our Asia journal paper, that the curve YU parameterizes
the isomorphism classes of triples (V, h, κ̄) where

1. V is a free B-module of rank 1;

2. h is an embedding S −→ GLB(VR) which has has weight−1 at τ1, and trivial component
at τi for i > 1, where τ1 := τ, τ2, · · · , τg are all archimedean places of F ;

3. κ̄ is a Isom(V̂0, V̂ )/U , where V0 = B as a left B-module.

The Hodge structure h define a Hodge decomposition on Vτ,C:

Vτ,C = V −1,0 + V 0,−1.

By Hodge theory, the tangent space of Y at a point (V, h, κ) is given by

L (V )τ = HomB(V −1,0, VC/V
−1,0) = HomB(V −1,0, V 0,−1).

Since the complex conjugation on VC switches two factors V −1,0 and V 0,−1, one has a canon-
ical identification

L (V )τ ⊗L (V )τ = HomB(V −1,0, V −1,0) = C.

This identification defines a Hermitian norm on L (V )τ .

Lemma 3.5.1. Let δ(V ) denote the one dimensional vector space over F of reduced norms
δ(v) for v ∈ V with relation δ(bv) = ν(b)δ(v). Then we have a canonical isomorphism:

L (V ) = δ(V )⊗F,τ det(V −1,0
C )∨.

Proof. Indeed, there is pairing ψ : V ⊗ V −→ δ(V ) define by

ψ(u, v) :=
1

2
(δ(u+ v)− δ(u)− δ(v)).

Let B× acts on this space by multiplication by ν : B× −→ F× then

ψ ∈ HomB×(V ⊗ V, δ(V )).
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This pairing is compatible with Hodge structures when δ(V ) is equipped with action weight
(−1,−1). Thus on Vτ,C, the above pairing has isotropic spaces V −1,0 and V 0,−1 and defines
bilinaer B×C equivariant pairing

V −1,0 ⊗ V 0,−1 −→ δ(V )C.

On the other hand the wedge product defines a B×C pairing

V −1,0 ⊗ V 0,−1 −→ det(V −1,0)

when the later space is equipped with action ν : B× −→ F×. The above two pairing define
canonical identifications:

V 0,−1 = δ(V )τ,C ⊗ HomB×(V −1,0,C)

V −1,0 = det(V −1,0)⊗ HomB×(V −1,0,C).

Thus we have
L (V )τ = Hom(V −1,0, V 0,−1) = δ(V )τ,C ⊗ det(V −1,0)∨.

Modular interpretation at an finite place

Let v be a finite place. Recall from §5.3 in our Asia journal paper, the prime to v-part of
(V̂U , κ̄) extends to an étale system over YU , but the v-part extends to a system of special
divisible OBv -module of dimension 2, height 4, with Drinfeld level structure:

(A , ᾱ)

with an identification
κv(Ov) ' Tv(A ).

where Tv(A ) is the Tate module of A for prime v.
The Lie algebra of the formal part A 0 of A defines a two dimensional vector bundle

Lie(A ) on YU . The tangent space of YU is canonically identified with Lv := δ(V )OF ⊗
Lie(A )∨. The level structure defines an integral structure on δ(V ) at place v. Thus Lv has
an integral structure by the tensor product.

If v is not split in B, then OBv is unique and then integral structure on L is unique.
This can also been seen from the fact that the group A is totally formal and supersingular.
Any isogeny ϕ : Ax −→ Ay of two such OBv -modules representing two points x and y on YU

smooth over Ov induces an isomorphism of Ov-modules:

L (A ) ' L (B).

If v is split in B, then we may choose an isomorphism OBv = M2(Ov). Then the divisible
module A is a direct sum E ⊕E where E is a divisible OF -module of dimension 1 and height
2. Then we have an isomorphism

L = Lie(E )⊗−2 ⊗ det Tv(A ).
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Let x be an ordinary Ov-point of YU then we have an formal–etale decomposition

0 −→ E 0
x −→ E −→ E et −→ 0.

This induces an isomorphism

Lx = (Lie(E )∨ ⊗ Tv(E
0))⊗2 ⊗ (Tv(E

et
x )⊗ Tv(E

0
x )∨).

The first part does not depend on the level structure but the second part does. If ϕ : Ex −→
Ey be an isogeny of orders a, b on the formal and etale part respectively, then it has order
b− a for the bundles Lx −→ Ly.

Admissible arithmetic classes

Combining the above, we have introduce an arithmetic structure L̂ for L . The roots of
this defines an arithmetic structure on elements of Hodges classes Picξ(Y ). We denote the

resulting the groups of arithmetic classes as as P̂ic
ξ
(Y ). Unlike Picξ(Y ), the group P̂ic

ξ
(Y )

is not invariant under the action of B× but invariant under O×B . We normalize the the metric

of ξ̂ at one archimedean place such that on each connected component of any YU

ξ̂2 = 0.

Now for any class α ∈ Ch1(YU,a×YU,b) in some irreducible component of Y ×Y in a finite
level which fixes ξ by both push-forward and pull-back, we can attached a class α̂ such that
if α = α− + aπ∗1ξ1 + bπ∗2ξ2 with α ∈ Pic−(Y × Y ) and ξi ∈ Picξ(Y ), then we

α̂ = α̂− + aπ∗1 ξ̂1 + bπ2ξ̂2.

We call such a class ξ̂-admissible. Such a class can be characterized by the following prop-
erties:

1. for any point (p1, p2) ∈ YU,a × YU,b, the induced class arithmetic classes α̂1 := α̂|p1×Ub
and α̂2 := α̂Ya×p2 on YU,a or YU,b is ξ̂-admissible in the sense that α̂i − degαiξ̂ has
curvature 0 at archimedean places and and zero intersection with vertical cycles.

2. α̂ · π∗1 ξ̂1 · π∗2 ξ̂2 = 0.

The class α 7→ α̂ extends to whole group Ch1(Y × Y ).

Arithmetic Hecke operators

Let Z be a Hecke operator as a divisor in YU × YU . We want to define an adelic green’s
function g = (gv) such that the arithmetic cycle Ẑ = (Z, g) is ξ̂-admissible. Let p1, p2 be two
projection of Z onto YU . Then pi’s have the same degree called d and there is an canonical
isomorphism p∗1ξ → p∗2ξ of line bundles (with fractional power). This induces an isomorphism

α : Z∗ξ1 ' dξ2.

We want to construct a green function g for Z such that arithmetic class Ẑ satisfies the
property 1 above and with property 2 replaced by the following refined one:
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3. The isomorphisms α and β above induces isometry of adelic metrized line bundles:

α : Ẑ∗ξ̂1 ' dξ̂2.

First of all, we define an adelic green’s function g0 = (g0
v) with the following two properties

at each place v of F parallel to the properties as above,

4. (Z, g0) has curvatures parallel to c1(ξ̂i)v at fibers p∗i y over two projections pi to YU .

5. g0
v has integral 0 against c1(ξ̂1) · c1(ξ̂2).

The class Ẑ0 := (Z, g0) will satisfies the property 1. Since the bundle Ẑ0
∗ ξ̂1 will have same

curvatures as dξ̂2, then we have constants c = (cv) such that α induces isometry

Ẑ0
∗ ξ̂1 = dξ̂2 + c.

Define

Ẑ := Ẑ0 − 1

d
c.

Then Ẑ will have required properties. Notice that by property 1 and 3, the classes is closed
under composition.

Remark 3.5.2. The above class Ẑ may not give an isometry between dξ̂1 under Ẑ∗ξ̂2. In fact,
we will give an expression of c in terms of bundles bundles p∗i ξ̂. Notice that the difference

Ẑ∗ξ̂1 − dξ̂2 = π2∗(Ẑ · (π∗1ξ1 − π∗2ξ2)).

The class π∗1ξ1 − π∗2ξ2 is represented by a vertical divisor class C = (Cv) and

cv = π2∗(Ẑ · Cv).

We intersect this with ξ̂2 then we have

cv = Ẑ · Cv · π∗2 ξ̂2.

Since property 4, this las sum is equal to an intersection number on Z:

cv = Cv|Z · p∗2ξ̂2.

If we redo the construction for Z∗, then we will obtain a class Ẑ ′ = Ẑ0 + c′ with

c′v = −Cv|v · ·p∗1ξ1.

Notice that sum of cv and c′v are both equal to p∗1ξ̂1 · p∗2ξ̂2 since ξ̂2
i = 0. The sum cv + c′v is

equal to −(Cv|Z)2 which is nonnegative. This shows that Ẑ0 ≥ Ẑ.
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First decomposition

With construction of cycles as above, we can decompose the intersection as follows

Z(g,Φ,∆) := Ẑ(g1,Φ1) · Ẑ(g2,Φ2) · Ẑ(g3,Φ3).

First of this intersection is non-trivial only if all gi have the same norm. In this case we have
one h ∈ B× × B× such that

Z(gi,Φi) = T(h)Z(r(gi, h)Φi).

Thus we have that

Ẑ(g1,Φ1) · Ẑ(g2,Φ2) · Ẑ(g3,Φ3) = Ẑ(r(g1, h)Φ1) · Ẑ(r(g2, h)Φ2) · Ẑ(r(g3, h)Φ3).

Assume that each r(gi, hi)Φi is invariant under K. In this case this intersection number is
given by

Z(g,Φ,∆) =
∑

(x1,x2,x3)∈(K̃\V)3

r(g, h)Φ(x1, x2, x3)Ẑ(x1)K · Ẑ(x2)K · Ẑ(x3)K .

We write Z(g, φ)sing for the partial sum where Z(xi) has non-empty intersection at the
generic fiber. Then the rest term can be decompose into local intersections. Thus we have
a decomposition

Z(g,Φ,∆) = Z(g,Φ,∆)sing +
∑
v

Z(g,Φ,∆)v.
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4 Local Whittaker integrals

As we have seen in section 2.5, we need to study the non-singular Fourier coefficients of the
derivative of Eisenstein series for Schwartz function Φ ∈ S (B3) on an incoherent (adelic)
quaternion algebra B over the adeles A of a number field F . This is essentially reduced
to the study of the derivative at the local Whittaker functions. In the case of unramified
Siegel–Weil section section at a non-archimedean place, the computation is known. We will
recall the results. Then we move to compute the archimedean Whittaker integrals.

4.1 Nonarchimedeanl local Whittaker integral

Now we recall some results about the local Whittaker integral and local density.
Let F be a nonarchimedean local field with integer ring O whose residue field is of odd

characteristic p. We remark that all results in this subsection actually holds for p = 2.
For simplicity of exposition, we only record the results for odd p. Let $ be a uniformizer
and q = |O/($)| be the cardinality of the residue field. Assume further that the additive
character ψ is unramified.

Let V = B = M2(F ) with the quadratic form q = det. Let Φ0 the characteristic function
of M2(O). Let T ∈ Sym3(O)∨ (cf. “Notations”). It is a fact that WT (e, s,Φ0) is a polynomial
of q−s.

To describe the formula, we need several invariants of T ∈ Sym3(Ov)
∨. Suppose that

T ∼ diag[ui$
ai ] with a1 < a2 < a3 ∈ Z, ui ∈ O×. Then we define ξ(T ) to be the Hilbert

symbol
(−u1u2

$

)
= (−u1u2, $) if a1 ≡ a2 (mod 2) and a2 < a3, otherwise zero. Note that this

doesnot depend on the choice of the uniformizer $.
Firstly, we have a formula for the central value of Whittaker integral WT,v(e, 0,Φ0).

Proposition 4.1.1. The Whittaker function at s = 0 is given by

WT,v(e, 0,Φ0) = ζF (2)−2βv(T )

where

1. When T is anisotropic, we have
βv = 0.

2. When T is isotropic, we have three cases

(a) If a1 6= a2mod 2, we have

βv(T ) = 2(

a1∑
i=0

(1 + i)qi +

(a1+a2−1)/2∑
i=a1+1

(a1 + 1)qi).
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(b) If a1 ≡ a2mod 2 and ξ = 1, we have

βv(T ) =2(

a1∑
i=0

(i+ 1)qi +

(a1+a2−2)/2∑
i=a1+1

(a1 + 1)qi)

+ (a1 + 1)(a3 − a2 + 1)q(a1+a2)/2.

(c) If a1 ≡ a2mod 2 and ξ = −1, we have

βv(T ) =2(

a1∑
i=0

(i+ 1)qi +

(a1+a2−2)/2∑
i=a1+1

(a1 + 1)qi)

+ (a1 + 1)q(a1+a2)/2.

The second result we will need is a formula of the central derivative W ′
T,v(e, 0,Φ0).

Proposition 4.1.2. We have

W ′
T,v(e, 0,Φ0) = log q · ζF (2)−2ν(T ),

where ν(T ) is given as follows: let T ∼ diag[ti] with ai = ord(ti) in the order a1 ≤ a2 ≤ a3,
then

1. If a1 6= a2mod 2, we have

ν(T ) =

a1∑
i=0

(1 + i)(3i− a1 − a2 − a3)qi +

(a1+a2−1)/2∑
i=a1+1

(a1 + 1)(4i− 2a− 1− a2 − a3)qi.

2. If a1 ≡ a2mod 2, we must have a2 6= a3mod 2. In this case we have

ν(T ) =

a1∑
i=0

(i+ 1)(3i− a1 − a− 2− a3)qi

+

(a1+a2−2)/2∑
i=a1+1

(a1 + 1)(4i− 2a− 1− a2 − a3)qi

− a1 + 1

2
(a3 − a2 + 1)q(a1+a2)/2.

Proposition 4.1.3. Let Φ′0 be the characteristic function of O3
D where OD is the maximal

order of the division quaternion algebra D. Then we have for all anisotropic T ∈ Sym3(O)∨:

WT (e, 0,Φ′0) = −2q−2(1 + q−1)2.

For the proof of the three propositions above, we refer to [1, Chap. 15, 16] where a key
ingredient is a result in [19] on the local representation density for Hermitian forms.
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Proposition 4.1.4. Let Φ′0 be the characteristic function of maximal order OD of the division
quaternion algebra D. Then we have for all anisotropic T ∈ Sym3(O)∨:

IT (e,Φ′0) = vol(SO(V ′)).

Proof. A prior we know that IT (e,Φ′0) is a constant multiple of WT (e, 0,Φ′0). Take any
x ∈ O3

D with moment T .Then it is easy to see that h · x is still in O3
D for all h ∈ SO(V ′).

This completes the proof.

4.2 Archimedean Whittaker integral

We want to compute the Whittaker integral WT (g,Φ, g, s) when F = R, B = H is the
Hamiltonian quaternion algebra, and

Φ∞(x) = Φ(x) = e−2πtr(Q(x)), x ∈ B3 = H3.

Recall that we have choose the additive character

ψ(x) = e2πix, x ∈ R.

Let K∞ be the maximal compact subgroup of Sp6(R):

K∞ =

{(
x y
−y x

)
∈ Sp6(R) | x+ yi ∈ U(3).

}
Denote by χm the character of K∞

χm

(
x y
−y x

)
= det(x+ yi)m.

Then the Siegel–Weil section attached to Φ transform by the character χ2 under the action
of K∞ (cf. [11], [21]).

Lemma 4.2.1. Let g = n(b)m(a)k ∈ Sp6(R) be the Iwasawa decomposition. Then we have
when Re(s)� 0:

WT (g, s,Φ) = χ2(k)ψ(Tb)λs(m(ta−1))| det(a)|4WtaTa(e, s,Φ).

Proof. This follows the invariance under K∞ and the property of Siegel–Weil section.

Thus it suffices to consider only the identity element g = e of Sp6(R). It is easy to obtain
a formula for λs(wn(u)) and we have

WT (e, s,Φ) =

∫
Sym3(R)

ψ(−Tu) det(1 + u2)−sr(wn(u))Φ(0)du.
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Lemma 4.2.2. When Re(s)� 0, we have

WT (e, s,Φ) = −
∫

Sym3(R)

ψ(−Tu) det(1 + iu)−s det(1− iu)−s−2du,

where we have the usual convention i =
√
−1.

Proof. Let u =t kak be the Cartan decomposition where a = diag(u1, u2, u3) is diagonal and
k ∈ SO(3). Then it is easy to see that n(u) = m(k)−1n(a)m(k) and wm(k)−1 = m(−k−1)w.
Note that det(k) = 1 and χ2(m(k)) = 1. We obtain by the previous lemma:

r(wn(u))Φ(0) = r(wn(a))Φ(0).

By definition we have

r(wn(a))Φ(0) = γ(H, ψ)

∫
H3

ψ(aQ(x))Φ(x)dx,

where for our choice the Weil constant is

γ(H, ψ) = −1.

Therefore we have

r(wn(a))Φ(0) = −
3∏
j=1

∫
H
eπ(iuj−1)q(xj)dxj.

This is equal to a constant times

3∏
j

1

(1− iuj)2
= det(1− iu)−2.

To recover the constant, we let u = 0 and note that

r(w)Φ(0) = χ2(w)Φ(0) = −Φ(0) = −1.

We thus obtain that

r(wn(u))Φ(0) = r(wn(a))Φ(0) = − det(1− iu)−2.

Since det(1 + u2) = det(1− iu) det(1 + iu), the lemma now follows.

Following Shimura ([33, pp.274]), we introduce a function for g, h ∈ Symn(R) and α, β ∈
C

η(g, h;α, β) =

∫
x>±h

e−gx det(x+ h)α−2 det(x− h)β−2dx

which is absolutely convergent when g > 0 and Re(α),Re(β) > n
2
. Here we use x ± h to

mean that x + h > 0 and x − h > 0. Here we point out that the measure dx in [33] is the
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Euclidean measure viewing Symn(R) as Rn(n+1)/2 naturally. This measure is not self-dual
but only up to a constant 2n(n−1)/4. In the following we always use the Euclidean measure
as [33] does. For two elements h1, h2 ∈ Symn(R), by h1 ∼ h2 we mean that h1 = kh2k

−1 for
some k ∈ O(n), the real orthogonal group for the standard positive definite quadratic form.

Before we proceed let us recall some well-known results. Let z ∈ Symn(C) with Re(z) > 0,
then we have for s ∈ C with Re(s) > n−1

2
,∫

Symn(R)+

e−tr(zx) det(x)s−
n+1
2 dx = Γn(s) det(z)−s,(4.2.1)

where the “higher” Gamma function is defined as

Γn(s) = π
n(n−1)

4 Γ(s)Γ(s− 1

2
)...Γ(s− n− 1

2
).

For instance, when n = 1, we have when Re(z) > 0 and Re(s) > 0∫
R+

e−zxxs−1dx = Γ(s)z−s.

Consider

f(x) =

{
e−vx det(x)s−

n+1
2 x > 0,

0 otherwise.

Applying (4.2.1) to z = v + 2πiu for u, v ∈ R, we obtain when Re(s) > n−1
2

,

f̂(u) = Γn(s) det(v + 2πiu)−s.

Take the inverse Fourier transformation, we obtain∫
Symn(R)

e2πiux det(v + 2πiu)−sdu =

{
1

2n(n−1)/2Γn(s)
e−vx det(x)s−

n+1
2 x > 0,

0 otherwise.
(4.2.2)

Lemma 4.2.3. When Re(s) > 1, we have

WT (e, s,Φ) = κ(s)Γ3(s+ 2)−1Γ3(s)−1η(2π, T ; s+ 2, s)

where
κ(s) = −29/2π6s+6.

Proof. By (4.2.1) for n = 3, we may rewrite the Whittaker function in the previous lemma
as

WT (e, s,Φ) = − π3s+6

Γ3(s+ 2)

∫
Sym3(R)

e−2πiTu det(1 + iu)−s
∫

Sym3(R)+

e−π(1−iu)x det(x)sdx23/2du.
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Here du is changed to the Euclidean measure and the constant multiple 23/2 comes from the
ratio between the self-dual measure and the Euclidean one. Interchange the order of the two
integrals

−23/2 π3s+6

Γ3(s+ 2)

∫
Sym3(R)+

e−πx det(x)s
(∫

Sym3(R)

e2πiu( 1
2
x−T ) det(1 + iu)−sdu

)
dx.

By (4.2.2) for n = 3, we obtain

− 23/2 π3s+6

Γ3(s+ 2)

∫
x>0,x>2T

e−πx det(x)s
(2π)6

23Γ3(s)
e−2π(x

2
−T ) det(2π(

x

2
− T ))s−2dx

=− 29/2 π6s+6

Γ3(s+ 2)Γ3(s)

∫
x>0,x>2T

e−2π(x−T ) det(x)s det(x− 2T )s−2dx.

Finally we may substitute x→ T + x to complete the proof.

To compute the integral η in an inductive way, we recall the “higher” confluent hyperge-
ometric function ([33, pp.280,(3.2)]). Let Symn(C)+ be the set of z with Re(z) > 0. Then
for z ∈ Symn(C)+, we define

ζn(z, α, β) =

∫
Symn(R)+

e−zx det(x+ 1)α−
n+1
2 det(x)β−

n+1
2 dx.(4.2.3)

It was first introduced by Koecher and its analytic continuation is settled by Shimura:

Lemma 4.2.4 (Shimura). For z ∈ Symn(C) with Re(z) > 0, the integral ζn(z;α, β) is
absolutely convergent for α ∈ C and Re(β) > n−1

2
. And the function

ω(z, α, β) := Γn(β)−1 det(z)βζn(z, α, β)

can be extended to a holomorphic function of (α, β) ∈ C2.

Proof. See [33, Thm. 3.1].

The following proposition gives an inductive way to compute the Whittaker integral
WT (e, s,Φ), or equivalently η(2π, T ; s+ 2, s). From now on, to simplify notations, we use w′

to denote the transpose of w if no confusion arises.

Proposition 4.2.5. Assume that sign(T ) = (p, q) with p + q = 3 so that we have 4πT ∼
diag(a,−b) for a ∈ Rp

+, b ∈ Rq
+. Let t = diag(a, b). Then we have

η(2π, T ; s+ 2, s) = 26se−t/2| det(T )|2sξ(T, s)

where

ξ(T, s) =

∫
M

e−(aW+bW ′) det(1 +W )2sζp(ZaZ, s+ 2, s− 3− p
2

)

× ζq(Z ′bZ ′, s, s+
q + 1

2
)dw.

where M = Rp
q, W = w · w′, W ′ = w′w, Z = (1 +W )1/2 and Z ′ = (1 +W ′)1/2.
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Proof. We may assume that 4πT = kt′k−1 where k ∈ O(3) and t′ = diag(a,−b). Then it is
easy to see that

η(2π, T ; s+ 2, s) = η(2π, t′/(4π); s+ 2, s) = | det(T )|2sη(t/2, 1p,q; s+ 2, s)

where 1p,q = diag(1p,−1q).
By [33, pp.289, (4.16),(4.18),(4.24)], we have

η(2π, T ; s+ 2, s) = 26se−t/2| det(T )|2sξ(T, s).

Corollary 4.2.6. Suppose that sign(T ) = (p, q) with p + q = 3. Then WT (e, s,Φ) is holo-
morphic at s = 0 with vanishing order

ords=0WT (e, s,Φ) ≥ [
q + 1

2
].

Proof. By Proposition 4.2.5, we know that

WT (e, s,Φ) ∼
Γp(s− 3−p

2
)Γq(s+ q+1

2
)

Γ3(s+ 2)Γ3(s)

∫
F

e−(aW+bW ∗) det(1 +W )2s

× 1

Γp(s− 3−p
2

)
ζp(ZaZ; s+ 2, s− 3− p

2
)

1

Γq(s+ q+1
2

)
ζq(Z

′bZ ′; s, s+
q + 1

2
)dw

where “∼” means up to nowhere vanishing entire function. Lemma 4.2.4 implies that the
latter two factors in the integral are entire functions. Thus we obtain that

ords=0WT (e, s,Φ) ≥ ords=0

Γp(s− 3−p
2

)Γq(s+ q+1
2

)

Γ3(s+ 2)Γ3(s)
= [

q + 1

2
].

Remark 4.2.1. 1. The same argument also applies to higher rank Whittaker integral.
More precisely, let V be the n + 1-dimensional positive definite quadratic space and
Φ0 be the standard Gaussian e−2πtr(x,x) on V n. Then for T non-singular we have

orders=0WT (e, s,Φ0) ≥ ords=0

Γp(s− n−p
2

)Γq(s+ q+1
2

)

Γn(s+ n+1
2

)Γn(s)
= [

n− p+ 1

2
] = [

q + 1

2
].

And it is easy to see that when T > 0 (namely, represented by V ), WT (e, 0,Φ0) is
non-vanishing. One immediately consequence is that: WT (e, s,Φ0) vanishes with order
precisely one at s = 0 only if the quadratic space with signature (n − 1, 2) represents
T . We will see by concrete computation for n = 3 that the formula above actually
gives the exact order of vanishing at s = 0. It should be true for general n but we have
not tried to verify this.
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Proposition 4.2.7. When T > 0, we have

WT (e, 0,Φ) = κ(0)Γ3(2)−1e−2πT .

Proof. Near s = 0, we have

η(2π, T ; s+ 2, s)

=e−2πT

∫
x>0

e−2πx det(x+ 2T )s det(x)s−2dx

=e−2πT

(∫
x>0

e−2πx det(2T )s det(x)s−2dx+O(s)

)
=e−2πT

(
det(2T )s(2π)−3sΓ3(s) +O(s)

)
Note that

Γ3(s) = π3/2Γ(s)Γ(s− 1

2
)Γ(s− 1).

has a double pole at s = 0 and Γ3(s+ 2) is non-zero at s = 0. Thus when s = 0, we obtain

WT (e, 0,Φ) = κ(0)Γ3(2)−1e−2πT .

4.3 Indefinite Whittaker integrals

Now we consider a non-definite T . We will find certain nice integral representations of the
central derivative of the Whittaker integral WT (e, s,Φ) in the sequel when the sign of T is
(p, q) = (1, 2) or (2, 1) respectively.

Case (p, q) = (1, 2)

Proposition 4.3.1. Suppose that 4πT ∼ diag(a,−b), b = diag(b1, b2). Then we have

W ′
T (e, 0,Φ) =− κ(0)

2π2Γ3(2)
et/2

∫
R2

e−(a(1+w2)+b1(1+w2
1)+b2(1+w2

2))ζ2(diag(z1, z2), 0,
3

2
)

×
(
a(1 + w2)− 1

)
dw1dw2,

where (z1, z2) are the two eigenvalues of b(1 + w′w) and w2 = w2
1 + w2

2.

Proof. Recall by Prop. 4.2.5

WT (e, s,Φ) = κ(s)Γ3(s+ 2)−1Γ3(s)−126se−t/2| det(T )|2sξ(T, s),(4.3.1)

where

ξ(T, s) =

∫
R2

e−(aW+bW ∗) det(1 +W )−2sζp(ZaZ; s+ 2, s− 3− p
2

)

× ζq(Z ′bZ ′; s, s+
q + 1

2
)dw.
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When (p, q) = (1, 2), ζ1(ZaZ; s + 2, s − 1) has a simple pole at s = 0. We here recall a
fact that will be used frequently later, namely ζ1(z;α, β) satisfies a recursive relation ([33,
pp. 282,(3.14)])

βζ1(z, α, β) = zζ1(z, α, β + 1)− (α− 1)ζ1(z, α− 1, β + 1).(4.3.2)

Repeating this

(s− 1)ζ1(z, s+ 2, s− 1) = zζ1(z, s+ 2, s)− (s+ 1)ζ1(z, s+ 1, s),

sζ1(z, s+ 2, s) = zζ1(z, s+ 2, s+ 1)− (s+ 1)ζ1(z, s+ 1, s+ 1),

sζ1(z, s+ 1, s) = zζ1(z, s+ 1, s+ 1)− sζ1(z, s, s+ 1),

we obtain the residue at s = 0

Ress=0ζ1(z, s+ 2, s− 1) = −(z2ζ1(z, 2, 1)− 2zζ1(z, 1, 1)).

It is easy to see that

ζ1(z, 1, 1) =

∫
R+

e−zxdx =
1

z

and

ζ1(z, 2, 1) =

∫
R+

e−zx(x+ 1)dx =
1

z
+

1

z2
.

Thus we have
Ress=0ζ1(z, s+ 2, s− 1) = −z + 1.

Suppose that w = (w1, w2) and b = (b1, b2). Note that Γ3(s) has a double pole at s = 0
with leading term

Γ3(s) = 2π3/2Γ(1/2)s−2 + ... = 2π2s−2 + ....

Since the trace tr(t) = a+ b1 + b2, we have:

W ′
T (e, 0,Φ∞) =− κ(0)

2π2Γ3(2)
et/2

∫
F

e−(a(1+w2)+b1(1+w2
1)+b2(1+w2

2))ζ2(diag(z1, z2), 0,
3

2
)

× (ZaZ − 1) dw1dw2.

Finally we note that Z = (1 + w2)1/2.

The next result involves the exponential integral Ei defined by

−Ei(−z) =

∫ ∞
0

e−z(1+t)

1 + t
dt = e−zζ1(z, 0, 1), z ∈ R+.(4.3.3)
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It satisfies
d

dz
Ei(z) =

ez

z
and

Ei(z) = γ + log(−z) +

∫ z

0

et − 1

t
dt

where γ is the Euler constant. Then it is easy to see that Ei(z) has logarithmic singularity
near 0.

Lemma 4.3.2. For simplicity, we will denote

F (w) = F (w1, w2) = e−(b1(1+w2
1)+b2(1+w2

2))ζ((z1, z2), 0, 3/2) = e−(z1+z2)ζ((z1, z2), 0, 3/2).

(4.3.4)

Then we have

W ′
T (e, 0,Φ) =

κ(0)

8π2Γ3(2)
et/2−a

(∫
R2

Ei(−aw2)(2w1F1 + 2w2F2 + (1 + w2)∆F )dw − 4πF (0)

)
where Fi = ∂

∂wi
F and ∆ = ∂2

∂w2
1

+ ∂2

∂w2
1

is the Laplace operator.

Proof. Note that
∆e−aw

2

= 4a(aw2 − 1)e−aw
2

∇Ei(−aw2) =
2e−aw

2

w2
(w1, w2)

and
∆Ei(−aw2) = −4ae−aw

2

.

We may thus rewrite our integral as∫
R2

e−a(1+w2)F (w)(a(1 + w2)− 1)dw

=

∫
R2

e−a(1+w2)(aw2 − 1)F (w)dw +

∫
R2

ae−a(1+w2)F (w)dw

=1/(4a)

∫
∆e−a(1+w2)F (w)dw − (1/4)e−a

∫
∆Ei(−aw2)F (w)dw.

By Stokes theorem and noting that the function Ei(z) has a logarithmic singularity near
z = 0, the second term is equal to:

−(1/4)e−a
(∫

Ei(−aw2)∆Fdw − lim
r→0

∫
Cr

∇Ei(−aw2)F (w)nds

)
where Cr is the circle of radius r centered at the origin. It is not hard to simplify it as

−(1/4)e−a
(∫

Ei(−aw2)∆Fdw − 4πF (0)

)
.
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Again by Stokes theorem the first term is equal to

−1/(4a)

∫
∇e−a(1+w2) · ∇F = 1/2

∫
e−a(1+w2)(w1F1 + w2F2)dw.

Note that ∇Ei(−aw2) = 2e−aw
2

w2 (w1, w2). This last term is equal to

(1/4)e−a
∫
∇Ei(−aw2) · (w2F1, w

2F2).

Apply Stokes again:

−(1/4)e−a
∫
Ei(−aw2)(2w1F1 + 2w2F2 + w2∆F )dw.

Together we have shown that∫
R2

e−a(1+w2)F (w)(a(1 + w2)− 1)dw

=− 1

4
e−a

(∫
Ei(−aw2)(2w1F1 + 2w2F2 + (1 + w2)∆F )dw − 4πF (0)

)
.

In the following we want to find nice integral representations of F (w) (4.3.4) and its
various derivatives. First we deduce an integral expression of ζ2(diag(z1, z2); 0, 3

2
) (recall

(4.2.3)).

Lemma 4.3.3. For z = (z1, z2) ∈ Sym2(C)+, we have

ζ2(diag(z1, z2); 0,
3

2
) = 2

∫
x>0

∫
y>0

e−z1x−z2y(x+ 1)−1(y + 1)−1

√
xy√

(x+ y + 1)
dxdy.

Proof. By definition ζ2(diag(z1, z2); 0, 3
2
) is given by∫

x>0

∫
y>0

e−z1x−z2y
∫
|t|<√xy

((x+ 1)(y + 1)− t2)−3/2dtdxdy.

Substitute t→ t(x+ 1)1/2(y + 1)1/2∫
x>0

∫
y>0

e−z1x−z2y(x+ 1)−1(y + 1)−1

∫
|t|<

√
xy√

(x+1)(y+1)

(1− t2)−3/2dtdxdy.

It is easy to calculate the inner integral

2[t(1− t2)−1/2]|
√
xy√

(x+1)(y+1)

0 = 2

√
xy√

(x+ y + 1)
.

64



Lemma 4.3.4. We have

∂

∂w1

F (w) = −4Γ(3/2)e−z1−z2
∫
R+

e−x
√
x

(x+ z1)3/2(x+ z2)3/2
(

w1

1 + w2
x+ b1w1)dx(4.3.5)

and

F11(w) :=
∂2

∂w2
1

F = −4Γ(3/2)e−z1−z2
∫
R+

e−x
√
x

(x+ z1)3/2(x+ z2)3/2
A11dx(4.3.6)

where

A11 =− 2b1w1(
w1

1 + w2
x+ b1w1) +

(1 + w2)− 2w2
1

(1 + w2)2
x+ b1

+ (−3/2)
2b1b2w1 + 2b1w1x

(x+ z1)(x+ z2)
(

w1

1 + w2
x+ b1w1).

Similar formula for w2.

Proof. By Lemma 4.3.3, we have

∂

∂w1

F (w) = −2
∂z1

∂w1

∫
e−z1(1+x)−z2(1+y)

√
xy

(y + 1)
√

1 + x+ y
dxdy − 2

∂z2

∂w1

...

where we omit the similar term for z2 and the integral is taken over x, y ∈ R+. All integrals
in this proof below are taken over R+ which we hence omit.

Let us consider the integral right after ∂z1
∂w1

. Substitute x 7→ x(1 + y):∫
e−z1x−z2y

√
xy

(y + 1)
√

1 + x+ y
dxdy =

∫
e−z1x(1+y)−z2y

√
x(1 + y)y

(y + 1)
√

1 + x(1 + y) + y
(1 + y)dxdy.

This can be simplified: ∫
e−z1x−y(z1x+z2)

√
xy

√
1 + x

dxdy.

Substitute y 7→ y(z1x+ z2)−1 and separate variables:∫
e−z1x

√
x√

1 + x(z1x+ z2)3/2
dx

∫
e−yy1/2dy.

Substitute x 7→ xz−1
1 :

1

z1

Γ(3/2)

∫
e−x

√
x√

x+ z1(x+ z2)3/2
dx.

We have similar expression for the integral right after ∂z2
∂w1

. Thus we have

∂

∂w1

F (w) = −2Γ(3/2)e−z1−z2
∫
e−x

√
x

(x+ z1)3/2(x+ z2)3/2
(
∂

∂w1

log(z1z2)x+
∂

∂w1

(z1 + z2))dx.
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Note that z1z2 = b1b2(1 + w2), z1 + z2 = b1(1 + w2
1) + b2(1 + w2

2):

∂

∂w1

log(z1z2) =
2w1

1 + w2
,

∂

∂w1

(z1 + z2) = 2b1w1.

From this we deduce further that

F11(w) = −4Γ(3/2)e−z1−z2
∫
e−x

√
x

(x+ z1)3/2(x+ z2)3/2
A11dx,

where

A11 = −2b1w1(
w1

1 + w2
x+ b1w1) +

(1 + w2)− 2w2
1

(1 + w2)2
x+ b1 + (−3

2
)
2b1b2w1 + 2b1w1x

(x+ z1)(x+ z2)
(

w1

1 + w2
x+ b1w1).

Similarly we have

F22(w) = −4Γ(3/2)e−z1−z2
∫
e−x

√
x

(x+ z1)3/2(x+ z2)3/2
A22dx,

where

A22 = −2b2w2(
w2

1 + w2
x+ b2w2) +

(1 + w2)− 2w2
2

(1 + w2)2
x+ b2 + (−3

2
)
2b1b2w2 + 2b2w2x

(x+ z1)(x+ z2)
(

w2

1 + w2
x+ b2w2).

Proposition 4.3.5. We have

W ′
T (e, 0,Φ∞) =

κ(0)

8π2Γ3(2)
et/2−a

(
−4πe−b1−b2ζ2((b1, b2), 0, 3/2) + ξ(T )

)
where

ξ(T ) = −4Γ(3/2)

∫
R2

Ei(−aw2)e−z1−z2(

∫
R
e−u

2−2(z1 + z2 − 1− b1 − b2)

(u2 + z1)1/2(u2 + z2)1/2
du

+

∫
R
e−u

2 (2z1z2 − 2b1b2 − z1 − z2)u2 + 2z1z2(z1 + z2 − 1− b1 − b2)

(u2 + z1)1/2(u2 + z2)3/2
du)dw.

Proof. Recall that we have

W ′
T (e, 0,Φ) =

κ(0)

8π2Γ3(2)
et/2−a

(∫
R2

Ei(−aw2)(2w1F1 + 2w2F2 + (1 + w2)∆F )dw − 4πF (0)

)
.

By Lemma 4.3.4, we obtain that

∆F (w) = −4Γ(3/2)e−z1−z2
∫
R+

e−x
√
x

(x+ z1)3/2(x+ z2)3/2
Adx,
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where

A = −2
b1w

2
1 + b2w

2
2

1 + w2
x− 2(b2

1w
2
1 + b2

2w
2
2) +

2

(1 + w2)2
x+ b1 + b2

+ (−3

2
)

2

(x+ z1)(x+ z2)
(
b1w

2
1 + b2w

2
2

1 + w2
x2 +

b1b2w
2

1 + w2
x+ (b2

1w
2
1 + b2

2w
2
2)x+ b1b2(b1w

2
1 + b2w

2
2)).

And we have

2(w1F1(w) + w2F2(w)) = −4Γ(3/2)e−z1−z2
∫
e−x

√
x

(x+ z1)3/2(x+ z2)3/2
Bdx,

where

B =
2w2x

1 + w2
+ 2(b1w

2
1 + b2w

2
2).

Together we obtain

(2(w1F1(w) + w2F2(w)) + (1 + w2)∆F )(−4Γ(3/2))−1 = e−z1−z2
∫
R+

e−x
√
x

(x+ z1)3/2(x+ z2)3/2
Cdx,

where C is given by

− 2(b1w
2
1 + b2w

2
2 − 1)x− (b1 − b2)(w2

1 − w2
2) + (b1(1 + w2

1) + b2(1 + w2
2)) + 2b1b2w

2 − 2(b1 − b2)2w2
1w

2
2

− 2(b1w
2
1 + b2w

2
2)(b1(1 + w2

1) + b2(1 + w2
2))− 3(b1 − b2)2w2

1w
2
2

x

(x+ z1)(x+ z2)
.

We substitute x 7→ u2 and change the domain of integration from x ∈ R+ to u ∈ R.

(2(w1F1(w) + w2F2(w)) + (1 + w2)∆F )(−4Γ(3/2))−1 = e−z1−z2
∫
R
e−u

2 u2

(u2 + z1)3/2(u2 + z2)3/2
Cdu.

To finish the proof we need to compare the integral in the RHS of the above with:∫
R
e−u

2

(
−2(z1 + z2 − 1− b1 − b2)

(u2 + z1)1/2(u2 + z2)1/2
+

(2z1z2 − 2b1b2 − z1 − z2)u2 + 2z1z2(z1 + z2 − 1− b1 − b2)

(u2 + z1)1/2(u2 + z2)3/2
)du,

which is also equal to∫
e−u

2−2(b1w
2
1 + b2w

2
2 − 1)u4 − 2(b1w

2
1 + b2w

2
2)(z1 + z2)u2 + (2b1b2w

2 + z1 + z2)u2

(u2 + z1)3/2(u2 + z2)3/2
du.

Therefore it suffices to prove that the following integral vanishes:

(b1 − b2)2

∫
Ei(−aw2)w2

1w
2
2e
−z1−z2

∫
e−u

2 2u2

((u2 + z1)(u2 + z2))3/2
+

3u4

((u2 + z1)(u2 + z2))5/2
dudw

+ (b1 − b2)

∫
Ei(−aw2)(w2

1 − w2
2)e−z1−z2

∫
e−u

2 u2

((u2 + z1)(u2 + z2))3/2
dudw.
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By the definition Ei(−aw2) = −
∫∞

1
e−aw

2uu−1du, it suffices to prove that the following
integral vanishes

(b1 − b2)

∫
e−aw

2−b1w2
1−b2w2

2w2
1w

2
2

∫
e−u

2 2u2

((u2 + z1)(u2 + z2))3/2
+

3u4

((u2 + z1)(u2 + z2))5/2
dudw

+

∫
e−aw

2−b1w2
1−b2w2

2(w2
1 − w2

2)

∫
e−u

2 u2

((u2 + z1)(u2 + z2))3/2
dudw.

We substitute X = w2
1 + w2

2 and Y = w2
1 − w2

2. Then we have

dXdY = 2w1w2dw1dw2 =
√
X2 − Y 2dw1dw2

and ∫
e−aw

2−b1w2
1−b2w2

2(w2
1 − w2

2)
u2

((u2 + z1)(u2 + z2))3/2
dw

=

∫
X≥0

∫
−X≤Y≤X

e−(a+b1/2+b2/2)X−(b1−b2)Y/2Y
u2

((u2 + z1)(u2 + z2))3/2

dY√
X2 − Y 2

dX.

We apply integration by parts to the inner integral

−
∫
X≥0

e−(a+b1/2+b2/2)X

∫
−X≤Y≤X

e−(b1−b2)Y/2 u2

((u2 + z1)(u2 + z2))3/2
d
√
X2 − Y 2dX

=

∫
X≥0

e−(a+b1/2+b2/2)X

∫
−X≤Y≤X

√
X2 − Y 2e−(b1−b2)Y/2 u2

((u2 + z1)(u2 + z2))3/2

(−b1 − b2

2
− 3

2

b1 − b2

2

u2

(u2 + z1)(u2 + z2)
)dY dX.

We may simplify it and plug back

− (b1 − b2)/2

∫
X≥0

e−(a+b1/2+b2/2)X

∫
−X≤Y≤X

√
X2 − Y 2e−(b1−b2)Y/2 u2

((u2 + z1)(u2 + z2))3/2

(2 +
3u2

(u2 + z1)(u2 + z2)
)dY dX

= −(b1 − b2)

∫
e−aw

2−b1w2
1−b2w2

2w2
1w

2
2(

2u2

((u2 + z1)(u2 + z2))3/2
+

3u4

((u2 + z1)(u2 + z2))5/2
)dw.

This proves the desired vanishing result.
Finally note that F (0) = e−b1−b2ζ2((b1, b2), 0, 3/2) and we complete the proof.

Case (p, q) = (2, 1)

Lemma 4.3.6. ζ2([z1, z2]; s+ 2, s− 1
2
) has a simple pole at s = 0 with residue given by

√
π

2

(∫
R
e−u

2 (4z1z2 − (z1 + z2))u2 + 2z1z2(z1 + z2 − 1)

(u4 + u2(z1 + z2) + z1z2)3/2
du+

∫
R
e−u

2 4z1z2 − 2z1 − 2z2 + 2

(u4 + u2(z1 + z2) + z1z2)1/2
du

)
.
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Proof. By [33, pp. 283], we have an integral representation when Re(s) > 1

ζ2([z1, z2]; s+ 2, s− 1

2
)

=

∫
R
e−z2w

2

(1 + w2)2s−1/2ζ1(z1 + z2w
2, s+ 2, s− 1/2)ζ1(z2(1 + w2), s+ 3/2, s− 1)dw.

By (4.3.2) we have

(s− 1/2)ζ1(z, s+ 2, s− 1/2) = zζ1(z, s+ 2, s+ 1/2) + (−s− 1)ζ1(z, s+ 1, s+ 1/2).

It is easy to obtain

ζ1(z, 2, 1/2) =

∫
R+

e−zx(1 + x)x−1/2dx = z−1/2Γ(1/2) + z−3/2Γ(3/2)

and

ζ1(z, 1, 1/2) =

∫
R+

e−zxx−1/2dx = z−1/2Γ(1/2).

Therefore we obtain

ζ1(z, 2,−1/2) = −Γ(1/2)z−1/2(2z − 1).

By (4.3.2) again we have

(s− 1)ζ1(z, s+ 3/2, s− 1) = zζ1(z, s+ 3/2, s) + (−s− 1/2)ζ1(z, s+ 1/2, s).

We may obtain

Ress=0ζ1(z, s+ 3/2, s− 1)

=− z(zζ1(z, 3/2, 1)− 1

2
ζ1(z, 1/2, 1)) +

1

2
(zζ1(z, 1/2, 1) +

1

2
ζ1(z,−1/2, 1))

=− z2ζ1(z, 3/2, 1) + zζ1(z, 1/2, 1) +
1

4
ζ1(z,−1/2, 1).

Applying integration by parts to the first and third integrals, we may evaluate the sum:

Ress=0ζ1(z, s+ 3/2, s− 1) = −z +
1

2
.

Therefore we obtain the residue of ζ2([z1, z2]; s+ 2, s− 1
2
) as an integral

2Γ(1/2)

∫
R
e−z2w

2

(1 + w2)−1/2(z1 + z2w
2)−1/2(z1 + z2w

2 − 1

2
)(z2(1 + w2)− 1

2
)dw.

69



Substitute u = z2w
2 to obtain

2Γ(1/2)

∫
R+

e−u(z1 + u)−1/2(z2 + u)−1/2(u+ z1 − 1/2)(u+ z2 − 1/2)u−1/2du.

Now let A = z1 + z2− 1/2, B = −1/2 so that A+B = z1 + z2− 1. Then we can split the
integral into three pieces:∫

u∈R
e−u

2 (u2 + z1 − 1/2)(u2 + z2 − 1/2)

(z1 + u2)1/2(z2 + u2)1/2
du = I + II + III

where

I =

∫
R
e−u

2 u4 + Au2

(u4 + u2(z1 + z2) + z1z2)1/2
du

II =

∫
R
e−u

2 Bu2 − 1/4

(u4 + u2(z1 + z2) + z1z2)1/2
du

and

III =

∫
R
e−u

2 1

4

4z1z2 − 2z1 − 2z2 + 2

(u4 + u2(z1 + z2) + z1z2)1/2
du.

Now, we rewrite the first integral and apply integration by parts

I = −1

2

∫
R

u3 + Au

(u4 + u2(z1 + z2) + z1z2)1/2
de−u

2

=
1

2

∫
R
e−u

2

(
3u2 + A

(u4 + u2(z1 + z2) + z1z2)1/2
+

(u3 + Au)(−1
2
)(4u3 + 2u2(z1 + z2))

(u4 + u2(z1 + z2) + z1z2)3/2

)
du

which can be simplified∫
R
e−u

2
1
2
u2 + 1

4

(u4 + u2(z1 + z2) + z1z2)1/2
du+

1

2

∫
R
e−u

2 (A(z1 + z2)− z2
1 − z2

2)u2 + 2z1z2A− z1z2(z1 + z2)

(u4 + u2(z1 + z2) + z1z2)3/2
du.

Notice that the first term cancels II. Plugging A = z1 + z2 − 1/2 into the above, we obtain

∫
u∈R

e−u
2 (u2 + z1 − 1/2)(u2 + z2 − 1/2)

(z1 + u2)1/2(z2 + u2)1/2
du

=
1

4

∫
R
e−u

2 (4z1z2 − (z1 + z2))u2 + 2z1z2(z1 + z2 − 1)

(u4 + u2(z1 + z2) + z1z2)3/2
du+

1

4

∫
R
e−u

2 4z1z2 − 2z1 − 2z2 + 2

(u4 + u2(z1 + z2) + z1z2)1/2
du.
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Proposition 4.3.7. Suppose that 4πT ∼ diag(a,−b), a = diag(a1, a2). Then we have an
integral representation

W ′
T (e, 0,Φ∞) = − κ(0)

4π3/2Γ3(2)
et/2

∫
R2

Ei(−b(1 + w2))e−a1(1+w2
1)−a2(1+w2

2)dw(∫
R
e−u

2 (4z1z2 − (z1 + z2))u2 + 2z1z2(z1 + z2 − 1)

(u4 + u2(z1 + z2) + z1z2)3/2
du+

∫
R
e−u

2 4z1z2 − 2z1 − 2z2 + 2

(u4 + u2(z1 + z2) + z1z2)1/2
du

)
where z1, z2 are the two eigenvalues of ZaZ.

Proof. Recall by Prop. 4.2.5

WT (e, s,Φ) = κ(s)Γ3(s+ 2)−1Γ3(s)−126set/2| det(T )|2sξ(T, s)(4.3.7)

where

ξ(T, s) =

∫
R2

e−(aW+bW ∗) det(1 +W )−2sζ2(ZaZ; s+ 2, s− 1

2
)

× ζ1(Z ′bZ ′; s, s+ 1)dw.

Note that

ζ1(z; 0, 1) =

∫
R+

e−zx(x+ 1)−1dx = −ezEi(−z).

Now the statement follows from the previous Lemma and that Γ3(s) = 2π2s−2 + ....

4.4 Holomorphic projection

In this section, we want to study holomorphic projection of E ′(g, 0,Φ).
Firstly let us try to study holomorphic projection for a cusp form ϕ on GL2(A). Fix a

non-trivial additive character ψ of F\A, say ψ = ψ0 ◦ trF/Q with ψ0 the standard additive
character on Q\AQ, and let W be the corresponding Whittaker function:

Wϕ(g) =

∫
F\A

ϕ(n(b)g)ψ(−b)db.

Then ϕ has a Fourier expansion

ϕ(g) =
∑
a∈F×

Wϕ

((
a 0
0 1

)
g

)
.

We say that ϕ is holomorphic of weight 2 , if WΦ = W∞ ·Wf has a decomposition with W∞
satisfying the following properties:

W∞(g) =

{
ye2πi(x+iy)e2iθ if y > 0

0 otherwise
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for the decomposition of g ∈ GL2(R):

g = z

(
1 x
0 1

)
·
(
y 0
0 1

)
·
(

cos θ sin θ
− sin θ cos θ

)
.

For any Whittaker function W of GL2(A) which is holomorphic of weight 2 as above with
Wf (gf ) compactly supported modulo Z(Af )N(Af ), the Poinaré series is define as follows:

ϕW (g) := lim
t→0+

∑
γ∈Z(F )N(F )\G(F )

W (γg)δ(γg)t,

where

δ(g) = |a∞/d∞|, g =

(
a b
0 d

)
k, k ∈ K

where K is the standard maximal compact subgroup of GL2(A). Let ϕ be a cusp form and
assume that both W and ϕ have the same central character. Then we can compute their
inner product as follows:

(ϕ, ϕW ) =

∫
Z(A)GL2(F )\GL2(A)

ϕ(g)ϕ̄W (g)dg

= lim
t−→0

∫
Z(A)N(F )\GL2(A)

ϕ(g)W̄ (g)δ(g)tdg

= lim
t−→0

∫
Z(A)N(A)\GL2(A)

Wϕ(g)W̄ (g)δ(g)tdg.(4.4.1)

Let ϕ0 be the holomorphic projection of ϕ in the space of holomorphic forms of weight
2. Then we may write

WΦ0(g) = W∞(g∞)Wϕ0(gf )

with W∞ as above. Then (11.1) is a product of integrals over finite places and integrals at
infinite places: ∫

Z(R)N(R)\GL2(R)

|W∞(g∞)|2dg =

∫ ∞
0

y2e−4πydy/y2 = (4π)−1.

In other words, we have

(4.4.2) (ϕ, ϕW ) = (4π)−g
∫
Z(Af )N(Af )\GL2(Af )

Wϕ0(gf )W̄ (gf )dgf .

As W̄ can be any Whittaker function with compact support modulo Z(Af )N(Af ), the com-
bination of (10.1) and (10.2) gives

Lemma 4.4.1. Let ϕ be a cusp form with trivial central character at each infinite place. Then
the holomorphic projection ϕ0 of Φ has Wittacher function W∞(g∞)Wϕ0(gf ) with Wϕ0(gf )
given as follows:

Wϕ0(gf ) = (4π)g lim
t−→0+

∫
Z(F∞)N(F∞)\GL2(F∞)

Wϕ(g∞gf )W̄∞(g∞)δ(g∞)tdg∞.

For more details, see [36, §6.4,6.5].
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5 Local triple height pairings

In this section, we want to compute the local triple height pairings of Hecke operators at the
unramified places and archimedean places.

For unramified places, we first study the modular interpretation of Hecke operators and
reduce the question to the work of Gross–Keating on deforming endomorphisms of formal
groups.

For archimedean places, we introduce Green functions for Hecke correspondences and
compute their star product. The hard part is to relate the star product to the archimedean
Whittaker function.

5.1 Modular interpretation of Hecke operators

In this section, we would like to study the reduction of Hecke operators. For an x ∈ V with
positive norm in F , the cycle Z(x)K is the graph of the Hecke operator given by the coset
UxU . Namely, Z(x)K is the correspondence defined by maps:

Z(x)K ' YU∩xUx−1 −→ YU × YU .

Moduli interpretation at an archimedean place

First let us give some moduli interpretation of Hecke operators at an archimedean place τ .
Let B = B(τ) be the nearby quaternion algebra. If we decompose UxU =

∐
xiU , then

Z(x)K as a correspondence sends one object (V, h, κ̄) to sum of (V, h, κxi). In other words,
we may write abstractly,

(5.1.1) Z(x)K(V, h, κ̄) =
∑
i

(Vi, hi, κ̄i),

where the sum is over the isomorphism class of (Vi, hi, κ̄i) such that there is an isomorphism
yi : (Vi, hi) −→ (V, h) such that the induced diagram is commutative:

(5.1.2) V̂0

κi //

xi
��

V̂i

ŷi
��

V̂0
κ // V̂

.

Replacing κ and κi by equivalent classes, we may assume that xi = x. Thus the subvariety
Z(x)K of MK parameterizes the triple:

(V1, h1, κ̄1), (V2, h2, κ̄2), y,

where the first two are objects as described as above for k̄1 and k̄2 level structures modulo
U1 := U ∩ xUx−1 and U2 = U ∩ x−1Ux respectively, and y : (V2, h2) −→ (V1, h1) such that
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the diagram

(5.1.3) V̂0

κ2 //

x

��

V̂2

ŷ
��

V̂0

κ1 // V̂1

is commutative.
Now we want to describe the above moduli interpretation with an integral Hodge struc-

ture with respect to a maximal open compact subgroup of the form Ô×B = O×B containing
U , where OB is a maximal order of B. Let V0,Z = OB as an OB-lattice in V0. Then for any
triple (V, h, κ̄) we obtain a triple (VZ, h, κ̄) with VZ = κ(V0Z) which satisfies the analogous
properties as above. In fact, MU parameterizes such integral triples. The Hecke operator
Z(x)K has the following expression:

Z(x)K(VZ, h, κ̄) =
∑
i

(ViZ, hi, κi)

where ViZ = κi(V0Z). We can’t replace terms in the above diagram by integral lattices as yi
and xi only define a quasi-isogeny:

yi ∈ HomOB(ViZ, VZ)⊗ F, xi ∈ B̂ = EndOB(V̂0,Z)⊗ F.

When U is sufficiently small, we have universal objects (VU , h, k̄), (VU,Z, h, κ̄). We will also

consider the divisible OB-module ṼU = V̂U/V̂U,Z. The subvariety Z(x)K also has a universal
object y : VU2 −→ VU1 .

Let us return to curves YU over F . Though the rational structure V at a point on YU does
not make sense, the local system V̂ and V̂Z make sense as Bf and OBf modules respectively.

The Hecke operator parameterizes the morphism ŷ : V̂U2 −→ V̂U1 .

Modular interpretation at a finite place

We would like to give a moduli interpretation for the Zariski closure Z (x)K of Z(x)K . The

isogeny y : V̂U2 −→ V̂U1 induces a quasi-isogeny on divisible OBf -modules. For prime to v-
part, this is the same as over generic fiber. We need to describe the quasi-isogeny on formal
modules. First lets us assume that Uv = O×Bv is maximal.

If v is not split in B, then U1v = U2v = Uv. Thus the condition on yv on the generic fiber
is just required to have order equal to ord(ν(x)). Hence Z (x)K parameterizes the quasi-
isogeny of pairs whose order at v has order x. Recall from §5.3 in our Asia journal paper
that the notion of quasi-isogeny as quasi-isogeny of divisible module which can be lifted to
the generic fiber.

If v is split in B, then we may choose an isomorphism OBv = M2(Ov). Then the formal
module A is a direct sum E ⊕ E where E is a divisible OF -module of dimension 1 and
height 2. By replacing x by an element in UvxUv we may assume that xv is diagonal:
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xv =

(
$c

$d

)
with c, d ∈ Z and c ≤ d. It is clear that the condition on y on the

generic fiber is a composition of a scalar multiplication by $c
v (as a quasi-isogeny) and an

isogeny with kernel isomorphic to the cyclic module Ov/$
d−aOv. Thus the scheme Z (x)K

parameterizes quasi-isogenies f of geometric points of type (c, d) in the following sense:

1. the v-component $−cyv : E2 −→ E1 is an isogeny;

2. the kernel of $−cyv is cyclic of order d − c in the sense that it is the image of a
homomorphism Ov/$

d−c −→ E2.

We also call such a quasi-isogeny of type (a, b). Notice that the number a, b can be defined
without reference to Uv. Indeed, a is the minimal integer such that $−axv is integral over
Ov and that a+ b = ord(detxv).

5.2 Supersingular points on Hecke correspondences

For a geometric point in MK with formal object E1,E2, by Serre–Tate theory, the formal
neighborhood D is the product of universal deformations Di of Ei. The divisor of Z (x)ssK in
this neighborhood is defined as the sum of the universal deformation of quasi-isogenies. In
the following, we want to study the behaviors of this divisor in a formal neighborhood of a
pair of surpersingular points on MK when U = UvU

v with Uv maximal.

Supersingular points on YU and MK

Recall from §5.4 in our Asia journal paper, all supersingular points on YU are isogenous to
each other. Fix one of the supersingular point P0 representing the triple (A0, Ṽ

v
0 , κ̄

v
0). Let

B = End0(P0) which is a quaternion algebra over F obtained from B by changing invariants

at v. We may use κ0 to identify Ṽ0 with V̂0/V̂0Z. The action of (B ⊗ Av
f )
× and (Bvf )× both

acts on Ṽ0. We may use κ0 to identify them. In this way, the set Y ss
U of supersingular point

is identified with
Y ss
U,v = B0\(B ⊗ Av

f )
×/U v

so that the element g ∈ (B ⊗ Av
f )
× represents the triple

(A0, V̂
v

0 , gU
v),

where B0 means the subgroup of B× of elements with order 0 at v.
The supersingular points on MK will be represented by a pairs of elements in (B⊗Av

f )
×

with the same norm. Thus we can describe the set of supersingular points on MK using
orthogonal space V = (B, q) and the Spin similitudes:

H = GSpin(V ) = {(g1, g2) ∈ B×, ν(g1) = ν(g2)},

which acts as
(g1, g2)x = g1xg

−1
2 , gi ∈ B×, x ∈ V.
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We then have a bijection
M ss

K,v ' H(F )0\H(Av
f )/K

v.

Supersingular points on Z (x)K

The set Z (x)ssK,v of supersingular points on the cycle Z (x)K represents the isogeny y :
P2 −→ P1 of two supersingular points of level U1 = U ∩ xUx−1 and U2 = U ∩ x−1Ux. In
terms of triples as above, Z (x)ssK represents equivalent classes of the triples (g1, g2, y) of
elements gi ∈ (B ⊗ Av

f )
×/Ui and y ∈ B× with following properties

(5.2.1) g−1
1 yvg2 = xv, ordv(det(xv)) = ordv(q(yv)).

Two triples (g1, g2, y) and (g′1, g
′
2, y
′) are equivalent if there is a γi ∈ B×0 such that

(5.2.2) γigi = g′i, γ1yγ
−1
2 = y′.

By (5.2.1), the norms of g1 and g2 are in the same class modulo F×+ . Thus by (5.2.2) we
may modify them so that they have the same norm. Thus in term of the group H, we may
rewrite condition (5.2.1) as

(5.2.3) xv = g−1yv, g = (g1, g2) ∈ H(Av
f ).

This equation is always solvable in g, y for given x. Indeed, since the norm of x is positive,
we have an element y ∈ B with the same norm as x. Then there is a g ∈ H(Av

f ) such that

x = g−1yv in V̂ v. In summary, we have shown the following description of Z (x)ssK,v:

Lemma 5.2.1. Let (y, g) be a solution to (5.2.3) and Hy be the stabilizer of y. Then we
have

Z (x)ssK,v =H(F )0\H(F )0(Hy(Av
f )g)Kv/Kv

'Hy(F )0\Hy(Av
f )/Ky,

where Ky := Hy(Av
f ) ∩ gKvg−1.

Supersingular formal neighborhood on Hecke operators

Let Hv be the universal deformation of A0. Then the union of universal deformation of
supersingular points is given by

Ŷ ss
U := B0\Hv × (B ⊗ Av

f )
×/U v.

Notice that Hv is a formal scheme over Our
v . Thus the formal completion of MK along its

supersingular points is given by

M̂ ss
K := H(F )0\Dv ×H(Av

f )/K
v.

where Dv = Hv ⊗Our
v

Hv. Let Dy(c, d) be the divisor of D defined by universal deformation
of y of type (c, d).
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Lemma 5.2.2. Let Hy be the stabilizer of y. Then for any g ∈ H(Av
f ), the formal neighbor-

hood of Z (x)ssK,v is given by

Ẑ (x)ssK =H(F )0\H(F )0(Dy(c, d)×Hy(Av
f )g)Kv/Kv

'Hy(F )\Df (c, d)×Hy(Av
f )/Ky,

where Ky = Hy(Av
f ) ∩ gKvg−1.

5.3 Local intersection at unramified place

In this section, we want to study the local intersection at a finite place v which is split in B.
We still work on H = GSpin(V). Let x1, x2, x3 be three vectors in K\Vf such that the

cycles Z (xi)K intersects properly in the integral model MK of MK . This means that there
are no ki ∈ K such that the space ∑

Fkixi

is one or two dimensional with totally positive norms.
First let us consider the case where Uv is maximal. We want to compute the intersection

index at a geometric point (P1, P2) in the spacial fiber over a finite prime v of F . The non-zero
intersection of the three cycles will imply that there are three quasi-isogenies yi : P2 −→ P1

with type determined by xi’s. Notice that P1 is ordinary (resp. supersingular) if and only if
P2 is ordinary (resp. supersingular).

If they both are ordinary, then we have canonical liftings P̃i to CM-points on the generic
fiber. Since

Hom(P1, P2) = Hom(P̃1, P̃2),

all yi can be also lifted to quasi-isogenies of ỹi : P̃2 −→ P̃1. This will contradict the as-
sumption that the three cycles Z(xi)K have no intersection. It follows that all Pi’s are
supersingular points.

Now lets us assume that all Pi’s are supersingular. Then we have the nearby quaternion
algebra B and quadratic space (V, q) as before. By Lemma (5.2.2), we know that Z (xi)

ss
K

has an extension
Ẑ (xi)

ss
K = Hf (F )\Dyi(ci, di)×Hyi(Av

f )/Kyi

on the formal neighborhood of supersingular points:

M̂ ss
K = H(F )0\D ×H(Av

f )/K
v.

Here ci, di ∈ Z such that

(
$ci

$di

)
∈ UvxivUv, and (yi, gi) ∈ B × H(Av

f ) such that

g−1
i (yi) = xvi in Vv

f . If these three has nontrivial intersection at a supersingular point
represented by g ∈ H(F )0\H(Av

f )/K
v, then we can write gi = gki with some ki ∈ Kv. The

intersection scheme Z (k1x1, k2x2, k3x3)K is represented by

Z (k1x1, k2x2, k3x3)K = [Dy1(c1, d1) ·Dy2(c2, d2) ·Dy3(c3, d3)× g]
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on D , here y = (yi) ∈ V 3 and c = (ci), d = (di) ∈ Z3. As this intersection is proper, the space
generated by yi’s is three dimensional and positive definite. Notice that g ∈ H(Av

f )/K
v

is completely determined by the condition g−1yi ∈ Kvxvi . Thus we have that the total
intersection at supersingular points is given by

Z (x1)K ·Z (x2)K ·Z (x3)K :=
∑

kxv∈Kv\(Kxv1 ,Kxv2 ,Kxv3)

deg Z (k1x1, k2x2, k3x3)K ,

where sum runs through cosets such that kix
v
i generated a subspace of dimension 3.

In the following, we let us compute the intersection at v for cycles Z (Φi) for Φi ∈
S (V). Assume that Φi(x) = Φv

i (x
v)Φiv(xv). By the above discussion, we see that the total

supersingular intersection is given by

Z (Φ1) ·Z (Φ2) ·Z (Φ3) =vol(K̃)
3∏
i=1

∑
xi∈K̃\V

Φi(xi)Z (xi)K

=vol(K̃)
∑

xv∈K̃3\(Vv)3+

∑
xv∈K3

v\(Vv)3xv

Φ(x) deg Z (x)K

=vol(K̃)
∑

xv∈K̃v\(Vv)3+

Φv(xv)m(xv,Φv),

where (V̂ )3
+ denote the set of elements xv ∈ (V̂ v)3 such that the intersection matrix of xvi as

a symmetric elements in M3(Av
f ) takes entries in F+, (Vv)

3
xv denote the set of elements (xiv)

with norm equal to the norms of (xvi ), and

m(xv,Φv) =
∑

xv∈K3
v\(Vv)3xv

Φv(xv) deg Z (xv, xv)K .

We note that the volume factor vol(K̃) is product of the volume of the image of Kv in SO(Vv)
with respect to the Tamagawa measure (cf. Notations). And by definition it also includes
the archimedean factor vol(SO(B∞)).

In order to compare the above with theta series, let us rewrite the intersection in terms
of the quadartic space V = B. Notice that every xv can be written as xv = g−1(y) with
y ∈ (V )3

+ of elements with non-degenerate moment matrix. Thus we have

Z (Φ1) ·Z (Φ2) ·Z (Φ3) = vol(K̃)
∑

y∈H(F )\V 3
+

∑
g∈H(Av)/K̃v

Φv(g−1y)m(y,Φv)K ,

where for y ∈ (Vv)
3

m(y,Φv) =
∑

xv∈K3
v\(Vv)3xv

Φv(xv) deg Z (y, xv)K .

This is a pseudo-theta series (cf. [36]) if m(·,Φv) has no singularity over y ∈ (Vv)
3.
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In the following we want to deduce a formula for the intersection using the work of Gross–
Keating. For a element y ∈ Bv with integral norm, let Ty denote the universal deformation
divisor on D of the isogeny y : A −→ A . We extend this definition to arbitrary y by setting
Ty = 0 if y is not integral. Then we have the following relation:

Dy(c, d) = T$−cy −T$−c−1y.

Indeed, for any y ∈ $OB, there is an embedding from Ty/$ to Ty by taking any deformation
ϕ : E1 −→ E2 to $ϕ. The complement are exactly the deformation with cyclic kernel. It
follows that deg Z (xv, xv) is an alternative sum of intersection of Gross–Keating’s cycles:

deg Z (xv, xv) =
∑

εi∈{0,1}

(−1)ε1+ε2+ε3T$−c1−ε1y1T$−c2−ε2y2T$−c3−ε3y3

Theorem 5.3.1 (Gross–Keating, [10]). Assume that Φv is the characteristic function of
O3
B,v. Then for y ∈ (V ′v)

3, the intersection number m(y,Φv) depends only on the moment
T = Q(y) and

m(y,Φv) = ν(Q(y)),

where the ν-invariant is defined as in Prop. 4.1.2.

Corollary 5.3.2. We have

(5.3.1) W ′
T,v(gv, 0,Φv) = ζv(2)−2mT (r(gv)Φv).

Proof. By Gross–Keating and Prop. 4.1.2, this is true when gv = e is the identity element.
We will reduce the general gv to this known case.

Suppose that
gv = d(ν)n(b)m(a)k

for b, a are both diagonal matrices and k in the standard maximal compact subgroup of G.
Then it is easy to see that the Whittaker function obeys the rule:

W ′
T,v(gv, 0,Φv) = ψ(νTb)|ν|−3| det(a)|2W ′

νaTa(e, 0,Φv).

On the intersection side, we have the similar formula:

mT (r(g)Φv) =|ν|−3
∑
xv

r(g1)Φv(hvxv) deg ZνT (xv)K

=ψνT (b)|ν|−3| det a|2
∑
xv

Φv(xva) deg ZνT (xv)K ,

where hv ∈ GO(Vv) with ν(hv) = ν−1 and the sum runs over all xv with norm ν · diag(T ).
By our definition of cycles, for diagonal matrix a, we have

ZνT (x) = ZνaTa(xa).

It follows that
mT (r(g)Φv) = ψνT (b)|ν|−3| det a|2mνaTa(Φv).
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Comparison

In this subsection we will relate the global v-Fourier coefficient of the analytic kernel function
with the local intersection of triple Hecke correspondences when the Shimura curve has good
reduction at v.

Recall that we have a decomposition of E ′(g, 0,Φ) according to the difference of ΣT and
Σ:

(5.3.2) E ′(g, 0,Φ) =
∑
v

E ′v(g, 0,Φ) + E ′sing(g, 0,Φ),

where

(5.3.3) E ′v(g, 0,Φ) =
∑

ΣT=Σ(v)

E ′T (g, 0,Φ),

and
E ′sing(g, 0,Φ) =

∑
T,det(T )=0

E ′T (g, 0,Φ).

On the height intersection part, we have analogous decomposition

(5.3.4) Z(g,Φ,∆) = Z(g,Φ,∆)sing +
∑
v

Z(g,Φ,∆)v,

and each Z(g,Φ,∆)v has a part Z (g,Φ)v of intersection of horizontal cycles.

Theorem 5.3.3. Assume that Φ = ⊗wΦw with Φv is the characteristic function of O3
Bv .

And let S be the set of places outside which everything is unramified. Assume further that
for w ∈ S, Φw is supported in V3

w,reg, the subspace of elements (xi) such that the moment
matrix (xi, xj) ∈ M3(Fw) is non-degenerate. Then for g = (g1, g2, g3) ∈ G such that gi,v = 1
for v ∈ S, we have an equalities

(Z (g1,Φ1) ·Z (g2,Φ2) ·Z (g3,Φ3))v = −2E ′v(g, 0,Φ)

and
Z(g,Φ,∆)v = −2E ′v(g, 0, φ) +

∑
i

cv(gi,Φi)Z(gj,Φj) · Z(gk,Φk)

where cv(gi,Φi) are some constants which vanish for almost all v, {j, k} is the complement
of i in {1, 2, 3}, and Z(gj,Φj) · Z(gk,Φk) is the intersection on YU × YU .

Proof. Since YU has a smooth model YU,v over v, the restriction of Ẑ(gi,Φi) over v can be
constructed from Z (gi,Φ) by adding some multiple of the special fiber V :

Ẑ(gi,Φi) = Z (gi,Φi) + c(gi,Φi)V
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Here cv(gi,Φi)V is some constant which vanishes for almost all v. Since V 2 = 0 in Y 2
U , one

has This implies

Z(g,Φ,∆) = Z (g1,Φ1) ·Z (g2,Φ2) ·Z (g3,Φ3) +
∑
i

c(gi,Φi)Z(gj,Φj) · Z(gk,Φk).

Thus we have the equality follows from the first equality.
By our choice of Φ, there is no self-intersection in Z (g1,Φ1) ·Z (g2,Φ2) ·Z (g3,Φ3)v:

(Z (g1,Φ1) ·Z (g2,Φ2) ·Z (g3,Φ3))v

=
∑

xv∈(K̃v)3\(Vv)3+

r(gv)Φv(xv)m(xv, r(gv)Φv)

=
∑

Σ(T )=Σ(v)

∏
w 6=v

∫
(B3
v)T

r(gv)Φw(xw)dxw ·mT (r(gv)Φv),

where
mT (Φv) =

∑
xv∈K3

v\(Bv)3
diag(T )

Φv(xv) deg ZT (xv)K ,

where the sum is over elements of B3
v with norms equal to diagonal of T , and the cycle

ZT (xv) is equal to Z (xv, xv) with xv ∈ (Vv) with non-singular moment matrix T .
In summary, the intersection number is given by∑

T

vol(Kv)IT (gv,Φv)mT (r(gv)Φv).(5.3.5)

We need to compare this with the derivative of Eisenstein series. We invoke the formula
of Kudla ([21]):

E ′T (g, 0,Φ) =
W ′
T (g, 0,Φv)

WT (g, 0,Φ′v)
ET (g, 0,Φv ⊗ Φ′v).(5.3.6)

Under our choice of measures, by Siegwl–Weil we have

ET (g, 0,Φv ⊗ Φ′v) = IT (g,Φv ⊗ Φ′v).

We therefore have

E ′T (g, 0,Φ) =
W ′
T (g, 0,Φv)

WT (g, 0,Φ′v)
IT (g,Φv ⊗ Φ′v)

=W ′
T (g, 0,Φv)

IT,v(gv,Φ
′
v)

WT (g, 0,Φ′v)
IT (gv,Φv).

Note that
IT,v(gv ,Φ′v)

WT (g,0,Φ′v)
is a constant independent of T, g,Φ′v. By Corollary 5.3.2,

E ′T (g, 0,Φ) =ζv(2)−2mT (r(gv)Φv)
IT,v(e,Φ

′
v)

WT (e, 0,Φ′v)
IT (gv,Φv).
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It suffices to prove that

ζv(2)−2 IT,v(e,Φ
′
v)

WT (e, 0,Φ′v)
= −1

2
vol(Kv).

Now the nearby quaternion B is non-split at v. And we have

I(e,Φ′v) = vol(SO(Bv)).

So we need to show
vol(SO(Bv))

vol(Kv)
= −1

2
ζv(2)2WT (e, 0,Φ′v).

It is easy to see that (cf. [1, chap. 16, §3.5]):

vol(SO(Bv))

vol(Kv)
=

1

(q − 1)2
.

Indeed, we have an isomorphism (cf. Notations)

SO(B) ' B×/F× ×B1.

We now may compute the ratio for a non-archimedean v:

vol(GL2(Ov))

vol(O×Bv)
=
ζv(1)−1ζv(2)−1

ζv(2)−1
· vol(M2(Ov))

vol(OBv)
= (q − 1).

Moreover we have
vol(GL2(Ov))

vol(O×Bv)
=

vol(SL2(Ov))

vol(B1
v)

.

From §4.1 we also have

ζv(2)2WT (e, 0,Φ′v) = − 2

(q − 1)2
.

This completes the proof.

5.4 Archimedean height

Let B be the Hamilton quaternion and let Φ be the standard Gaussian. Let B′ = M2,R be
the matrix algebra. Let x = (x1, x2, x3) ∈ B′3 with non-singular moment matrix Q(x) and
let gi = gxi be a Green’s function of Dxi . Define the star product

Λ(x) =

∫
D±

g1 ∗ g2 ∗ g3,(5.4.1)
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where D± is the union of H 2
± and H+ = H (D−, resp.) is the upper (lower, resp.) half

plane.
Then Λ(x) depends only on the moment Q(x) ∈ Sym3(R) (with signature either (1, 2) or

(2, 1) since B′ has signature (2, 2)). Hence we simply write it as Λ( 1
4π
Q(x)) (note that we

need to shift it by a multiple 4π).
We will consider a Green’s function of logarithmic singularity which we call pre-Green

function since it does not give the admissible Green’s function. Their difference will be
discussed later.

Now we specify our choice of pre-Green functions. For x ∈ B′ consider a function
D± = H 2

± → R+ defined by

sx(z) := q(xz) = 2
(x, z)(x, z)

(z, z)
.

In terms of coordinates z =

(
z1 −z1z2

1 −z2

)
and x =

(
a b
c d

)
, we have

sx(z) =
(−az2 + dz1 − b+ cz1z2)(−az2 + dz1 − b+ cz1z2)

−(z1 − z1)(z2 − z2)
.

We will consider the pre-Green function of Dx on D given by

gx(z) := η(sx(z))

where we recall that

η(t) = Ei(−t) = −
∫ ∞

1

e−tu
du

u
.

In the following we want to compute the star product for a non-singular moment 4πT =
Q(x). Our strategy is close to that of [21], namely by steps: in the first step we will establish
a SO(3)-invariance of Λ(T ) which simplifies the computation to the case T is diagonal; in
the second step we compute Λ(T ) when T is diagonal and we compare the result with the
derivative of the Whittaker integrals W ′

T (e, s,Φ).

Step one: SO(3)-invariance

The following lemma is a special case of a more general result of Kudla-Millson. For conve-
nience we give a proof here.

Lemma 5.4.1. Let ωx = ∂∂gx. For any (x1, x2) ∈ V 2, the (2, 2)-form ωx1 ∧ ωx2 on H 2 is
invariant under the action of SO(2) on V 2.

Proof. Let k ∈ SO(2) be the matrix

(
cosθ sinθ
−cosθ sinθ

)
and for simplicity, we denote c = cosθ

and s = sinθ. Let x = cx1 + sx2 and y = −sx1 + cx2. Then, by the formula

esx(z)ωx = sx(z)∂logsx(z)∂logsx(z)− ∂∂logsx(z)

=
(x, z)(x, z)

(z, z)
(
∂(x, z)

(x, z)
− ∂log(z, z))(

∂(x, z)

(x, z)
− ∂log(z, z))− ∂∂log(z, z)
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and similar formula for ωy, we have that

esx(z)+sy(z)ωx ∧ ωy(z) = A+B ∧ ∂∂log(z, z) + ∂∂log(z, z)∂∂log(z, z)

where

A =
(x, z)(x, z)

(z, z)
(
∂(x, z)

(x, z)
− ∂log(z, z))(

∂(x, z)

(x, z)
− ∂log(z, z))

∧ (y, z)(y, z)

(z, z)
(
∂(y, z)

(y, z)
− ∂log(z, z))(

∂(y, z)

(y, z)
− ∂log(z, z))

and

B =
(x, z)(x, z)

(z, z)
(
∂(x, z)

(x, z)
− ∂log(z, z))(

∂(x, z)

(x, z)
− ∂log(z, z))

+
(y, z)(y, z)

(z, z)
(
∂(y, z)

(y, z)
− ∂log(z, z))(

∂(y, z)

(y, z)
− ∂log(z, z)).

It is easy to see that

B = (sx(z) + sy(z))∂log(z, z)∂log(z, z)− ∂((x, z)(x, z) + (y, z)(y, z))∂log(z, z)/(z, z)

− ∂((x, z)(x, z) + (y, z)(y, z))∂log(z, z)/(z, z) + (∂(x, z)∂(x, z) + ∂(y, z)∂(y, z))/(z, z).

Now it is easy to see that the above sum is invariant since the following two terms are
respectively invariant

(x, z)(x, z) + (y, z)(y, z), (∂(x, z)∂(x, z) + ∂(y, z)∂(y, z)).

Now we come to A:

(z, z)2A = ∂(x, z)∂(x, z)∂(y, z)∂(y, z)− ((y, z)∂(x, z)− (x, z)∂(y, z))∂(x, z))∂(y, z))∂log(z, z)

− ((y, z)∂(x, z)− (x, z)∂(y, z))∂(x, z))∂(y, z))∂log(z, z)

+ (∂(x, z)∂(x, z) + ∂(y, z)∂(y, z))∂log(z, z)∂log(z, z).

This is invariant since the following four terms are respectively invariant

∂(x, z)∂(x, z), ∂(y, z)∂(y, z),

(y, z)∂(x, z)− (x, z)∂(y, z), (y, z)∂(x, z)− (x, z)∂(y, z).

This completes the proof.

Proposition 5.4.2 (Invariance under SO(3)). The local archimedean height pairing Λ(T )
is invariant under SO(3), i.e.,

Λ(T ) = Λ(kTkt), k ∈ SO(3).
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Proof. Note that the group SO(3) is generated by matrices of the form

 1
cosθ sinθ
−cosθ sinθ


and subgroup of even permutation of S3, the symmetric group. Thus it suffices to prove that

Λ(x1, x2, x3) = Λ(x, y, x3)

for x = cx1 + sx2 and y = −sx1 + cx2 where c = cosθ, s = sinθ.

Further, since g∗ωx = ωg−1x for g ∈ Aut(H 2), we can assume that x3 =
√
a

(
1
±1

)
depending on the sign of det(x3). Then Zx3 = ∆(H ) is the diagonal embedding of H if
det(x3) > 0, otherwise Zx3 = ∅.

By definition,

Λ(x, y, x3) =

∫
H 2

gx3(z)ωx(z) ∧ ωy(z) +

∫
Zx3

gx ∗ gy|Zx3 .

Now the first term is invariant by Lemma above and the second term is either zero (when
det(x3) < 0) or has been treated in the work of Kudla ([21]) when x, y generates a plane of
signature (1, 1). The left case is when x, y generates a negative definite plane. In this case
the proof of Kudla still applies. This completes the proof.

Remark 5.4.1. 1. The proof of SO(2)-invariance in [21] is indeed very difficult though
elementary.

2. Similarly, by induction we can prove invariance for SO(n+ 1) for V of signature (n, 2).

Step two: star product

It turns out that for the convenience of computation, it is better to consider the bounded
domain D2 where D = {z ∈ C||z| < 1} is the unit disk. We have an explicit biholomorphic
isomorphism from D2 →H 2 given by

(z1, z2) 7→ (i
1 + z1

1− z1

, i
1 + z2

1− z2

).

Then, using the bounded model D2, we can express

sx(z) =
|(ai− b− c− di)z1z2 + (ai+ b− c+ di)z1 + (−ai+ b− c− di)z2 + (−ai− b− c+ di)|2

4(1− |z1|2)(1− |z2|2)
.

We first compute several differentials which will be used later on.

Lemma 5.4.3. Let ai ∈ R+ and xi ∈ B′, i = 1, 2, 3, 4, be the following four elements

x1 =
√
a1

(
1 0
0 1

)
, x2 =

√
a2

(
1 0
0 −1

)
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x3 =
√
a3

(
0 1
1 0

)
, x4 =

√
a4

(
0 1
−1 0

)
.

We will shorten s1(z) := sxi(z). Then we have

s1(z) = a1
|z1 − z2|2

(1− |z1|2)(1− |z1|2)
, s2(z) = a2

|1− z1z2|2

(1− |z1|2)(1− |z1|2)

s3(z) = a3
|1 + z1z2|2

(1− |z1|2)(1− |z1|2)
, s4(z) = a4

|z1 + z2|2

(1− |z1|2)(1− |z1|2)
.

Moreover, we have

es1(z)∂∂Ei(−s1(z)) =

(
a1 + a1

|z1 − z2|2

(1− |z1|2)(1− |z2|2)
− 1

)
dz1 ∧ dz1

(1− |z1|2)2
+ ...

− a1
(1− z1z2)2

(1− |z1|2)(1− |z2|2)

dz1 ∧ dz2

(1− |z1|2)(1− |z2|2)
+ ....

where we the omitted terms can be easily recovered by the symmetry of z1, z2. Similarly we
have

es2(z)∂∂Ei(−s2(z)) =

(
a2

|z1 − z2|2

(1− |z1|2)(1− |z2|2)
− 1

)
dz1 ∧ dz1

(1− |z1|2)2
+ ...

− a2
(z1 − z2)2

(1− |z1|2)(1− |z2|2)

dz1 ∧ dz2

(1− |z1|2)(1− |z2|2)
+ ....

es3(z)∂∂Ei(−s3(z)) =

(
a3

|z1 + z2|2

(1− |z1|2)(1− |z2|2)
− 1

)
dz1 ∧ dz1

(1− |z1|2)2
+ ...

a3
(z1 + z2)2

(1− |z1|2)(1− |z2|2)

dz1 ∧ dz2

(1− |z1|2)(1− |z2|2)
+ ....

es4(z)∂∂Ei(−s4(z)) =

(
a4 + a4

|z1 + z2|2

(1− |z1|2)(1− |z2|2)
− 1

)
dz1 ∧ dz1

(1− |z1|2)2
+ ...

+ a4
(1 + z1z2)2

(1− |z1|2)(1− |z2|2)

dz1 ∧ dz2

(1− |z1|2)(1− |z2|2)
+ ....

And moreover

∂∂Ei(−s1(z)) ∧ ∂∂Ei(−s4(z)) = e−s1(z)−s4(z) dz1 ∧ dz1

(1− |z1|2)2
∧ dz2 ∧ dz2

(1− |z2|2)2(
4a1a4

(1− |z1z2|2)2

(1− |z1|2)2(1− |z2|2)2
− 2a1

|1 + z1z2|2

(1− |z1|2)(1− |z2|2)
− 2a4

|1− z1z2|2

(1− |z1|2)(1− |z2|2)
+ 2

)
.
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∂∂Ei(−s2(z)) ∧ ∂∂Ei(−s3(z)) = e−s2(z)−s3(z) dz1 ∧ dz1

(1− |z1|2)2
∧ dz2 ∧ dz2

(1− |z2|2)2(
4a2a3

(|z1|2 − |z2|2)2

(1− |z1|2)2(1− |z2|2)2
− 2a2

|z1 − z2|2

(1− |z1|2)(1− |z2|2)
− 2a3

|z1 + z2|2

(1− |z1|2)(1− |z2|2)
+ 2

)
.

Proof. Simple but tedious computation.

We also need

Lemma 5.4.4 (Change of variables). Define a diffeomorphism between D2 and C2 ' R4 by
(z1, z2) 7→ (w1, w2) where wi = ui +

√
−1vi and

ui =
xi

(1− |z1|2)1/2(1− |z2|2)1/2
, vi =

yi
(1− |z1|2)1/2(1− |z2|2)1/2

.

Then the Jacobian is given by

∂(u1, v1, u2, v2)

∂(x1, y1, x2, y2)
= − 1− |z1|2|z2|2

(1− |z1|2)3(1− |z2|2)3
.

Moreover we have

dx1dy1dx2dy2

(1− |z1|2)2(1− |z2|2)2
= − du1dv1du2dv2√

(1 + |w1|2 + |w2|2)2 − 4|w1|2|w2|2
.

Proof. Let λ = 1
(1−|z1|2)(1−|z2|2)

. Note that

u2
1 + v2

1 = λ− 1

1− |z2|2

and similarly

u2
2 + v2

2 = λ− 1

1− |z1|2
.

This shows that λ satisfies a quadratic equation

λ2 − (1 + |w1|2 + |w2|2)λ+ |w1|2|w2|2 = 0.

Denote its two roots by λ1 > λ2. Since |zi| < 1, a careful check shows that λ = λ1 is the
larger one of its two roots. Moreover, we have

1− |z1|2|z2|2

(1− |z1|2)(1− |z2|2)
= λ− λ−1|w1|2|w2|2 = λ1 − λ2 =

√
∆

where ∆ is the discriminant of the quadratic equation above.
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Theorem 5.4.5. We have for T ∈ Sym3(R) with signature either (1, 2) or (2, 1),

W ′
T,∞(e, 0,Φ) =

κ(0)

2Γ3(2)
e−2πTΛ(T ).

In particular, everything depends only on the eigenvalues of T (presumedly not obvious).

Proof. By Proposition 5.4.2, we may assume that T is a diagonal matrix.
We first treat the case (p, q) = (2, 1) and let’s assume that 4πT = (a1, a4,−b). And we

may choose xi as in Lemma 5.4.3 as long as we take a2 = b. Then by the same lemma, Λ(T )
is given by the integral

Λ(T ) = 2(−2πi)−2

∫
D2

Ei(−b |1 + z1z2|2

(1− |z1|2)(1− |z2|2)
)e−s1(z)−s4(z) dz1 ∧ dz1

(1− |z1|2)2
∧ dz2 ∧ dz2

(1− |z2|2)2

(4a1a4
(1− |z1z2|2)2

(1− |z1|2)2(1− |z2|2)2
− 2a1

|1 + z1z2|2

(1− |z1|2)(1− |z2|2)
− 2a4

|1− z1z2|2

(1− |z1|2)(1− |z2|2)
+ 2)

Here the factor 1
−2πi

is from the definition star product, and the factor 2 is due to the fact
that D± has two copies.

Now let us make the substitution

u1 =
x1 + x2

(1− |z1|2)1/2(1− |z2|2)1/2
, u2 =

x1 − x2

(1− |z1|2)1/2(1− |z2|2)1/2

v1 =
y1 + y2

(1− |z1|2)1/2(1− |z2|2)1/2
, v2 =

y1 − y2

(1− |z1|2)1/2(1− |z2|2)1/2
.

By Lemma 5.4.4 we may calculate the Jacobian of our substitutions to arrive at

Λ(T ) =
1

2π2

∫
R4

Ei(−b(1 + u2
1 + v2

2))e−a1(u22+v22)−a4(u21+v21)

(4a1a4∆− 2a1(1 + u2
1 + v2

1)− 2a4(1 + u2
2 + v2

2) + 2)
du1dv1du2dv2√

∆
,

which we may rearrange as

1

2π2

∫
R2

Ei(−b(1 + u2
1 + v2

2))e−a4v
2
2−a1u21dv2du1

∫
R2

e−a4u
2
2−a1v21

(4a1a4∆− 2a1(1 + u2
1 + v2

1)− 2a4(1 + u2
2 + v2

2) + 2)
dv1du2√

∆
.

Here

∆ = 1 + u2
1 + v2

1 + u2
2 + v2

2 + (u1u2 + v1v2)2.(5.4.2)

Comparing with Proposition 4.3.7, it suffices to prove that the integral

1√
π

∫
R2

e−a4y
2
2−a1y21(4a1a4∆− 2a1(1 + x2

1 + y2
1)− 2a4(1 + x2

2 + y2
2) + 2)

dy1dy2√
∆

(5.4.3)
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is equal to

∫
R
e−u

2 4AB − 2A− 2B + 2

((u2 + A)(u2 +B))1/2
du+

∫
R
e−u

2 (4AB − A−B)u2 + 2AB(A+B − 1)

((u2 + A)(u2 +B))3/2
du.

(5.4.4)

Here note that we rename the variables ui, vi to xi, yi and they should not be confused with
the real/imaginary part of zi (coordinates of the bounded domain D). And A,B are the two
eigenvalues (as the z1, z2 in Prop. 4.3.7) of 2 × 2 matrix (1 + xx′)1/2a(1 + xx′)1/2 for x be
the column vector (x1, x2)tand

∆ = (1 + x′x)(1 + y′y)− (x′y)2.

Now notice that the 2× 2 matrix (1 + xx′)−1 = 1− 1
1+x′x

xx′. We have

1 + y′(1 + xx′)−1y = 1 + y′y − y′xx′y

1 + x′x
=

∆

1 + x′x
.

Substitute y 7→ (1 + xx′)1/2y, the integral (5.4.3) is reduced

1√
π

∫
R2

e−y
′(1+xx′)1/2a(1+xx′)1/2y(4AB(1+y′y)−2y′(1+xx′)1/2a(1+xx′)1/2y−2A−2B+2)

dy1dy2√
1 + y′y

.

Now make another substitution y 7→ ky where k ∈ SO(2) is such that

(1 + xx′)1/2a(1 + xx′)1/2 = k′diag(A,B)k.

We obtain:

1√
π

∫
R2

e−y
′diag(A,B)y(4AB(1 + y′y)− 2y′diag(A,B)y − 2A− 2B + 2)

dy1dy2√
1 + y′y

.(5.4.5)

Using the integral ∫
x∈R

e−Ax
2

dx =
1√
A

Γ(1/2) =
√
π

1√
A
,

we may rewrite the integral (5.4.5) as∫
R3

e−w
2(1+y21+y22)−Ay21−By22(4AB(1 + y2

1 + y2
2)− 2(Ay2

1 +By2
2)− 2A− 2B + 2)dwdy1dy2.

We interchange the order of integrals∫
R
e−w

2

∫
R2

e−y
2
1(w2+A)−y22(w2+B)((4AB − 2A)y2

1 + (4AB − 2B)y2
2 − 4AB − 2A− 2B + 2)dy1dy2dw.

Now we can integrate against y1, y2 and it is easy to verify that we arrive at the integral
(5.4.4). This finishes the proof when (p, q) = (2, 1).
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We now treat the slightly harder case (p, q) = (1, 2). Assume that 4πT = (a,−b1,−b2)
and we may take a4 = a, b1 = a3, b2 = a2 as in Lemma 5.4.3. Then the same substitution as
before yields that Λ(T ) is the sum of two terms:

1

2π2

∫
R4

Ei(−a(u2
1 + v2

1))e−b1(1+u21+v22)−b2(1+u22+v21)

× (4b1b2(u1u2 + v1v2)2 − 2b1(u2
1 + v2

2)− 2b2(u2
2 + v2

1) + 2)
du1du2dv1dv2√

∆
,

and (note that s4(z) has zeros along the divisor defined z1 + z2 = 0 on D2)

− 1

2πi

∫
D
Ei(−s2(z,−z))∂∂Ei(−s3(z,−z)).

By Proposition 4.3.5, the Whittaker integral also breaks into two pieces. It is easy to
prove that the first one matches the second term above. Indeed this already appeared in the
work [25, Thm. 5.2.7, (ii)]. It suffices to prove that the integral∫

R2

e−b1v
2
2−b2u22(4b1b2(u1u2 + v1v2)2 − 2b1(u2

1 + v2
2)− 2b2(u2

2 + v2
1) + 2)

du2dv2√
∆

(5.4.6)

is equal to
(5.4.7)
√
π

∫
R
e−u

2

(
−2(A+B − 1− b1 − b2)

(u2 + A)1/2(u2 +B)1/2
+

(2AB − 2b1b2 − A−B)u2 + 2AB(A+B − 1− b1 − b2)

(u2 + A)1/2(u2 +B)3/2

)
du.

Here A,B are the two eigenvalues of (1 + w′w)1/2b(1 + w′w)1/2 where w = (u1, v1).
Similar to the previous case we may rewrite the integral (5.4.6) as

1√
π

∫
R
e−x

2(1+u21+v21)I(x)dx,(5.4.8)

where

I(x) =

∫
R2

e−(b1+x2)v22−(b2+x2)u22−x2(u1u2+v1v2)2(4b1b2(u1u2+v1v2)2−2b1(u2
1+v2

2)−2b2(u2
2+v2

1)+2)du2dv2.

We now want to make the exponent in I(x) as a linear combination of only square terms
(we point out that the same idea also works for the previous case). This suggests to make
the substitution

y1 = u1u2 + v1v2, y2 =

√
b2 + x2

b1 + x2
v1u2 −

√
b1 + x2

b2 + x2
u1v2.

Then we have

u2 = η−1(−

√
b1 + x2

b2 + x2
u1y1 − v1y2), v2 = η−1(−

√
b2 + x2

b1 + x2
v1y1 + u1y2),
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where

η =
(b1 + x2)u2

1 + (b2 + x2)v2
1√

(b1 + x2)(b2 + x2)
.

Also note that

y2
1 + y2

2 = ((b2 + x2)u2
2 + (b1 + x2)v2

2)(
u2

1

b2 + x2
+

v2
1

b1 + x2
).

After a suitable substitution we obtain

I(x) =

∫
R2

e
−(

(b1+x
2)(b2+x

2)

(b1+x
2)u21+(b2+x

2)v21
+x2)y21−

(b1+x
2)(b2+x

2)

(b1+x
2)u21+(b2+x

2)v21
y22

(Cy2
1 +Dy2

2 + E)η−1dy1dy2,

where 
C = 4b1b2 + η−2(−2b1

b2+x2

b1+x2
v2

1 − 2b2
b1+x2

b2+x2
u2

1)

D = η−2(−2b1u
2
1 − 2b2v

2
1)

E = −2b1u
2
1 − 2b2v

2
1 + 2.

Moreover let’s denote

F =(b1 + x2)(b2 + x2) + ((b1 + x2)u2
1 + (b2 + x2)v2

1)x2

=(1 + u2
1 + v2

1)x4 + (b1(1 + u2
1) + b2(1 + v2

1))x2 + b1b2.

Now we may fold the integrals against y1, y2 to obtain

I(x) = πF−1/2

(
CF−1((b1 + x2)u2

1 + (b2 + x2)v2
1)/2 +D

(b1 + x2)u2
1 + (b2 + x2)v2

1

(b1 + x2)(b2 + x2)
/2 + E

)
,

which can be simplified as

πF−1/2E + πF−3/2
(
2b1b2(u2

1 + v2
1)− b1(1 + u2

1)− b2(1 + v2
1))x2 + 2b1b2(b1u

2
1 + b2v

2
1 − 1)

)
.

Plug back to the integral (5.4.8) and make a substitution u = x(1 + u2
1 + v2

1). Therefore, we
have proved that the integral (5.4.6) is equal to

π

∫
R
e−u

2 −2b1u
2
1 − 2b2v

2
1 + 2

(u4 + (b1(1 + u2
1) + b2(1 + v2

1))u2 + b1b2(1 + u2
1 + v2

1))1/2
du

+ π

∫
R
e−u

2 (2b1b2(u2
1 + v2

1)− b1(1 + u2
1)− b2(1 + v2

1))u2 + 2b1b2(1 + u2
1 + v2

1)(b1u
2
1 + b2v

2
1 − 1)

(u4 + (b1(1 + u2
1) + b2(1 + v2

1))u2 + b1b2(1 + u2
1 + v2

1))3/2
du

This is clearly equal to the integral (5.4.7). We then complete the proof.
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Comparison

Assume that τ |∞ and we want to treat the archimedean height at τ . Recall that the
generating function is defined for g ∈ GL+

2 (A)

Z(g,Φ) =
∑

x∈V̂ /K

r(g1f )Φ(x)Z(x)K ,WT (x)(g∞)

where the sum runs over all admissible classes. And for our fixed embedding τ : F ↪→ C we
have an isomorphism of C-analytic varieties (as long as K is neat ):

Y an
K,τ ' G(F )\D ×G(Af )/K ∪ {cusp}

where, for short, G = G(τ) is the nearby group.
For xi ∈ V, i = 1, 2, 3, we define a Green function as follows: for [z, h′] ∈ G(F )\D ×

G(Af )/K

gx,hK([z, h′]) =
∑

γ∈G(F )/Gx(F )

γ∗[η(sx(z))1Gx(F̂ )hK(h′))].

For an admissible class x ∈ V̂ we will denote by gx its Green function. Note that this is
not the right choice of Green function. We will get the right one when we come to the
holomorphic projection of the analytic kernel function. Therefore we denote

(Z(x1, h1)K · Z(x2, h2)K · Z(x3, h3)K)Ei,∞ := gx1,h1K ∗ gx2,h2K ∗ gx3,h3K ,

where Ei is indicate the current choice of Green functions.

Theorem 5.4.6. Let τ |∞ and g = (g1, g2, g3) ∈ GA = GL+,3
2 (A). And assume that Φv is

supported on non-singular locus at some finite place v. Then the archimedean contribution

(Z(g1,Φ1) · Z(g2,Φ2) · Z(g3,Φ3))Ei,∞ = −2E ′v(g, 0,Φ),

where E ′v(g, 0,Φ) is defined before Theorem 5.3.3.

Proof. First we consider g = (g1, g2, g3) ∈ SL3
2(A). Afterwards we extend this to GL+

2 (A).
By definition, (Z(x1, h1)K · Z(x2, h2)K · Z(x3, h3)K)Ei,∞ is given by

Z(g,Φ)∞ = vol(K̃)
∑

x=(xi)∈(K\V̂ )3

Φ(x)WT (x∞)(g∞)

(∫
G(F )\D±×G(Af )/K

∗3
i=1gxi(z, h

′)d[z, h′]

)
,

where the sum is over all admissible classes.
Note that

γ∗[η(sx(z)1Gx(F̂ )hK(h′))] = η(sγ−1x(z)1Gγ1x(F̂ )γ−1hK(h′)).

For a fixed triple (xi), the integral is nonzero only if there exists a γ ∈ G(F ) such that

γh′ ∈ Gγ−1
i xi

(F̂ )γ−1
i hiK ⇔ γ−1

i hi ∈ Gγ−1
i xi

(F̂ )γh′K.
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Observe that the sum in the admissible classes can be written as xi ∈ G(F )\V (F ) and

hi ∈ Gxi(F̂ )\G(F̂ )/K. Here we denote for short V = V (v) that is the nearby quadratic space
ramified at Σ(v). Thus we may combine the sum xi ∈ G(F )\V (F ) with γi ∈ G(F )/Gxi(F )
and combine the sum over γ ∈ G(F ) with the quotient G(F )\D± ×G(Af )/K:

vol(K̃)
∑

x∈G(F )\V (F )3

(∫
h′∈G(F̂ )/K

Φ(h′x)dh′
)(∫

D±

∗3
i=1gxi(z)dz

)
.

Here we have used the fact that Gx = {1} if T (x) is non-singular and we are assuming that
Φv is supported in the non-singular locus at some finite place v.

Therefore we have

Z(g,Φ)∞ =
∑
T

vol(SO(B∞))e−2πTΛ(T )IT (g∞,Φ∞),(5.4.9)

where the sum is over all non-singular T with ΣT = Σ(τ), namely those non-singular T
represented by the nearby quaternion B(τ).

Similar to the unramified p-adic case, we compare this with the derivative of Eisenstein
series for a regular T :

E ′T (g, 0,Φ) =
W ′
T (g∞, 0,Φ∞)

WT (g∞, 0,Φ′∞)
ET (g, 0,Φ∞ ⊗ Φ′∞),(5.4.10)

where Φ′∞ is any test function on V
′3
∞ which makes v nonvanishing. We may also rewrite

Z(g,Φ)∞ =
∑
T

vol(SO(B∞))e−2πTΛ(T )

IT (g∞,Φ′∞)
IT (g,Φ∞ ⊗ Φ′∞).(5.4.11)

Similar to the p-adic case, we may reduce the desired equality to the case g = e which we
assume now.

We need to evaluate the constant. Note that by local Siegel–Weil, the ratio

WT (e, 0,Φv)

IT (Φv)

(whenever the denominator is non-zero) is independent of Φv, T (det(T ) 6= 0) and depends
only the measure on SO(Vv) (and, of course, ψv). Let cv,+ (cv,+, resp.) be this ratio for
the quaternion algebra over Fv that is split (division, resp.). We now use the Siegel–Weil
formula of Kudla–Rallis to show that (under our choice of measures)

av :=
cv,+
cv,−

= ±1.

Indeed, fix two distinct places v1, v2. Choose a global quaternion algebra B split at v1, v2.
Let B(v1, v2) be the quaternion algebra that differs from B only at v1, v2. Note that our
choice of measures on the orthogonal groups associated to all quaternion algebras makes sure
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that we always get Tamagawa measures on the adelic points. Compare the Siegel–Weil (we
may choose B anisotropic to apply) for B and B(v1, v2):

av1av2 = 1.

But v1, v2 are arbitrary, we conclude that av is independent of v and hence a2
v = 1.

From §4.2 Prop. 4.2.7, we have for T > 0

WT,∞(e, 0,Φ∞) = κ(0)Γ3(2)−1e−2πT ,

where κ(0) < 0. It is easy to see that

IT,∞(e,Φ∞) = vol(SO(B∞))e−2πT .

Hence,

c∞,− =
κ(0)Γ3(2)−1

vol(SO(B∞))
< 0

On the other hand, it is not hard to see that c∞,+ is positive so we have

c∞,+ = −c∞,− = − κ(0)Γ3(2)−1

vol(SO(B∞))
.

Now note that IT (g,Φ∞ ⊗ Φ′∞) = ET (g, 0,Φ∞ ⊗ Φ′∞), and by Theorem 5.4.5:

W ′
T (g∞, 0,Φ∞) =

κ(0)

2Γ3(2)
e−2πTΛ(T ).

Hence the ratio of 5.4.10 over the T -th term of 5.4.11 is given by

κ(0)Γ3(2)−1

2vol(SO(B∞))
· 1

c∞,+
= −1

2
.

This completes the proof.

Holomorphic projection

Now we calculate the holomorphic projection of E ′(g, 0,Φ) and come to the right choice of
Green functions. By Lemma 4.4.1, we need to calculate the integral

αs(T ) :=

∫
R3
+

W ′
T (Φ,

(
y1/2

y−1/2

)
, 0) det(y)1+se−2πTy dy

det(y)2
,

where y = diag(y1, y2, y3) and T ∈ Sym3(R) with positive diagonal diag(T ) = t = diag(t1, t2, t3).
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Note that when t > 1 and Re(s) > −1, we have an integral representation of the Legendre
function of the second kind:

Qs(t) =

∫
R+

du

(t+
√
t2 − 1cosh u)1+s

=
1

2

∫ ∞
1

(x− 1)sdx

x1+s( t−1
2
x+ 1)1+s

.

And the admissible pairing at archimedean place will be given by the constant term at s = 0
of (the regularized sum of, cf. [36, §8.1]) Qs(1 + 2sγx(z)/q(x)).

Consider another closely related function for t > 1,Re(s) > −1:

Ps(t) :=
1

2

∫ ∞
1

dx

x( t−1
2
x+ 1)1+s

.

Then obviously we have
Q0(t) = P0(t).

One may use either of the three functions (i.e., Ei, Qs and Ps) to construct Green’s func-
tions. As Theorem 5.4.5 shows that to match the analytic kernel function, the function Ei is
the right choice; while the admissible pairing requires to use Qs. The following proposition
relates Ei to Ps and hence to Qs by the coincidence Q0 = P0.

Proposition 5.4.7. Let x ∈ M3
2,R such that T = T (x) is non-singular and has positive

diagonal. Then we have

αs(T ) = det(t)−1

(
Γ(s+ 1)

(4π)1+s

)3 ∫
D±

ηs(x1) ∗ ηs(x2) ∗ ηs(x3),

where

ηs(x, z) := Ps(1 + 2
sx(z)

q(x)
)

is a Green’s function of Dx.

Proof. First by the definition we have

αs(T ) =

∫
R3
+

2

det(y1/2)W ′√
yT
√
y(Φ, e, 0) det(y)e−2πTy det(y)s

dy

y2
,

which is equal to ∫
R3
+

W ′√
yT
√
y(Φ, e, 0)e−2πTy det(y)sdy.

If we modify x ∈ M3
2,R with moment T = T (x) to a new x′ = (x′i) with x′i = xi/q(xi)

1/2,

we have T (x′) = t−
1
2Tt−

1
2 (so that the diagonal are all 1). By Theorem 5.4.5 we have (after

substitution y → yt)

αs(T ) = det(t)−1−s
∫
R3
+

Λ(y
1
2T (x′)y

1
2 )e−4πy det(y)sdy.
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By the definition of Λ(T ), this is the same as

det(t)−1−s
∫
R3
+

{∗3
i=1η(y

1
2
i x
′
i; z), 1}De−4πy det(y)sdy

where

{∗3
i=1η(y

1
2
i x
′
i; z), 1}D =

∫
D

∗3
i=1η(y

1
2
i x
′
i; z).

We can interchange the star product and integral over y to obtain

αs(T ) = det(t)−1−s{∗3
i=1

∫
R+

η(y
1
2
i xi; z)e−4πyysi dyi, 1}D± .

Here we use 〈·, ·〉D± to denote the integration of the product over D±. Now we compute the
inner integral: ∫

R+

η(y
1
2x; z)e−4πyysdy

=

∫
R+

Ei(−4πysx(z))e−4πyysdy

=

∫
R+

∫ ∞
1

e−4πysx(z)u 1

u
due−4πyysdy

=
Γ(s+ 1)

(4π)1+s

∫ ∞
1

1

u(1 + sx(z)u)1+s
du

=
Γ(s+ 1)

(4π)1+s
Ps(1 + 2sx(z)).

For more details, see [36, §8.1].

Based on the decomposition of E ′(g, 0,Φ) in §2.5, we can have a decomposition of its
holomorphic projection, denoted by E ′(g, 0,Φ)hol:

(5.4.12) E ′(g, 0,Φ)hol =
∑
v

E ′(g, 0,Φ)hol,

and
E ′(g, 0,Φ)hol =

∑
T,Σ(T )=Σ(v)

E ′T (g, 0,Φ)hol,

where the holomorphic projection only changes E ′T (g, 0,Φ) only when Σ(T ) = Σ(v) for v is
an archimedean place and in which case we give the formula only when g∞ = e:

E ′T (g, 0,Φ)hol = WT (g∞)mv(T )WT,f (gf , 0,Φf ),

where m(T ) is the star product of Ps(1 + 2sx(z)/q(x)) for x with moment T . For the general
g∞, it can be recovered by the transformation rule under Iwasawa decomposition Then all
equalities above are valid for g ∈ G with gv = 1 when v ∈ S, the finite set of non-archimedean
places outside which Φv is unramified.
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Theorem 5.4.8. Let τ be an archimedean place. Assume that for at least two non-archimedean
v where Φv ∈ S (V 3

v,reg). Then for g ∈ G with gw = 1 for w ∈ Sf , the set of finite place
outside which Φv is unramified, Then we have

Z(g,Φ,∆)τ = −2E(g, 0,Φ)τ,hol.

Proof. Under the assumption, all singular coefficients vanish on both sides. For the non-
singular coefficients, the right choice of Green’s function is the regularized limit of Qs as
s→ 0. Since Ps−Qs is holomorphic and equal to zero when s = 0, by the same argument of
[36, §8.1], we may use Ps in the Green’s function and then take the regularized limit. Then
the result follows from Theorem 5.4.6 and the holomorphic projection above.
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6 Vanishing of singular Whittaker integerals

In this section, we study the vanishing property of the Fourier coefficients E ′T (g, 0,Φ) of
the derivative of the Eisestein series for Siegel–Weil sections associated to an incoherent
quaternion algebra B. First of all we show that if for two places Φ is supported on elements
in B3 whose components are linearly independent, then E ′T (g, 0,Φ) = 0 when T is singular,
see Proposition 6.1.1. Then we show that ET (e, s,Φ) = 0 if Φ is exceptional of sufficiently
high order, see Proposition 6.2.3. Combination of these two facts implies that E ′(g, 0,Φ) has
only non-zero Fourier coefficients at non-singular T with Σ(T ) = Σ(v) for those unramified
v if we choose Φ carefully enough, see formula (6.2.1). Finally, we conjecture that we can
always make such a choice, see Conjecture 6.3.1. Meanwhile we can only prove this conjecture
when πv has at least two ramifield finite places and all of them are not split in B, see Theorem
6.3.2.

6.1 Singular coefficients

In this subsection we deal with the singular part E ′sing(g, 0,Φ) of the Siegel-Eisenstein series.

Definition 6.1.1. For a place v of F , we define the open subset B3
v,sub (resp. B3

v,reg) of
B3
v to be all x ∈ B3

v such that the components of x generates a dimension 3 subspace of Bv
(resp. with non-degenerate restricted). We define the subspace S (B3

v,sub) (resp. S (B3
v,reg))

of S (B3
v) to be the set of all Bruhat-Schwartz functions Φ with supp(Φ) ⊂ B3

v,sub (resp.
supp(Φ) ⊂ B3

v,reg).

Note that S (B3
v,sub) is Pv-stable under the action defined by the Weil representation.

Proposition 6.1.2. For an integer k ≥ 1, fix non-archimedean (distinct) places v1, v2, ..., vk.
Let Φ = ⊗vΦv ∈ S (B3) with supp(Φvi) ⊂ Bnvi,sub (i=1,2,...,k) . Then for T singular
and g ∈ G(A) with gvi ∈ Pvi , (i = 1, 2, ..., k), the vanishing order of the analytic function
ords=0ET (g, s,Φ) is at least k − 1. In particular, when T is singular, then ET (g, 0, f) = 0 if
k ≥ 1 ; and E ′T (g, 0,Φ) = 0 if k ≥ 2, .

Proof. We will use some results about Siegel-Weil formula and related representation theory.
They should be well-known to experts and are proved mostly in series of papers by Kudla–
Rallis ([23],[24]). We will sketch proofs of some of them but don’t claim any originality and
we are not sure if there are more straightforward ways.

Suppose rank(T ) = 3− r with r > 0. Note that if T =t γT ′γ, T ′ =

(
0

β

)
for some

β ∈ GL3−r and γ ∈ GL3, we have

ET (g, s,Φ) = ET ′(m(γ)g, s,Φ).

Since m(γ) ∈ Pvi , it suffices to prove the assertion for

T =

(
0

β

)
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with β non-singular.
For Re(s)� 0, we have

ET (g, 0,Φ) =

∫
[N ]

∑
P (F )\G(F )

fΦ,s(γng)ψ−T (n)dn

=

∫
[N ]

3∑
i=0

∑
γ∈P\PwiP

fΦ,s(γng)ψ−T (n)dn.

Here For i = 1, 2, 3,

wi :=


1i

13−i
1i

−13−i

 .

Lemma 6.1.3. For a place v, if a Siegel-Weil section fΦ,s ∈ I(s) is associated to Φ ∈
S0(B3

v,sub), then fΦ,s is supported in the open cell Pw0P for all s.

Proof. By the definition fΦ,s(g) = r(g)Φ(0)λs(g). Thus it suffices to prove supp(fΦ,0) ⊂
Pw0P . Note that by the Bruhat decompositionG =

∐
i PwiP , it suffices to prove r(pwip)Φ(0) =

0 for i = 1, 2, 3. Since S (B3
v,sub) is Pv-stable, it suffices to prove r(wi)Φ(0) = 0 for i = 1, 2, 3.

Since

r(wi)Φ(0) = γ

∫
Bn−i

Φ(0, ...0, xi+1, ..., x3)dxi+1...dx3

for certain eighth-root of unity γ, we compelete the proof since

Φ(0, ..., 0, xi+1, ..., x3) ≡ 0

when i ≥ 1.

By Lemma 6.1.3, fΦv(γnvgv, s) ≡ 0 for γ ∈ PwiP, i > 0, v ∈ {v1, ..., vk} and gv ∈ Pv.
Thus for g as in the statement, only the open cell has nonzero contribution in the coefficients

ET (g, s,Φ) =

∫
NA

r(w0ng)Φ(0)ψ−T (n)dn.

This is exactly the Whittaker functional WT (g, s,Φ) = WT (e, s, r(g)Φ).
Let i : Sp(3− r)→ Sp(3) be the standard embedding indicated by

(
a b
c d

)
7→


1r

a b
1r

c d

 .

Then this induces a map by restriction: i∗ : I(s) → I3−r(s + r
2
) to the degenerate principal

series on Sp(3− r). We will frequently use upper/lower index n− r to indicate the rank of
the symplectic group we work on. Let M(s) be the intertwining operator. We now simply
denote by f the Siegel–Weil section fΦ.
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Lemma 6.1.4. Let Eβ(g, s, i∗M(s)f) denote the β-Fourier coefficient of the Eisensetin series
defined by section i∗M(s)f . Then

WT (e, s, f) = Eβ(e,−s+
r

2
, i∗M(s)f)

Remark 6.1.1. Note that in general, besides WT (g, s, f) in ET (g, s, f) there are also other
terms including Eβ(e, s+ r

2
, i∗r(g)f).

Proof. By [24] we have

WT (e, s, f)

=

∫
N

fs(wng)ψ−T (n)dn

=

∫
Nr

∫
N3−r,3

fs(wn1n2g)ψ−T (n1n2)dn1dn2

=

∫
Nr

(∫
N3−r,3

fs(ww
−1
n−rwn−rn1(x, y)w−1

n−rwn−rn2(z)g)dn1

)
ψ−β(n2)dn2

=

∫
Nr

(∫
U3−r,3

fs(w
(r)u(x, y)wn−rn2(z)g)du

)
ψ−β(n2)dn2

=Eβ(e, s− r

2
, i∗U(s)f),

where the matrices

u(x, y) =


1r y x

13−r
1r
−ty 13−r

 ,

n(x, y) =


1r x y

13−r
ty
1r

13−r

 ,

u(x, y) = w3−rn(x, y)w−1
3−r,

and the operator

Ur(s)f =

∫
U3−r,3

fs(w
(r)ug)du, w(r) =


1r

13−r
−1r

13−r

 .

Apply the functional equation to the Eisenstein series E(g, s, i∗M(s)f),

WT (e, s, f) = Eβ(e,−s+
r

2
,M(s− r

2
) ◦ i∗U(s)f).
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By the relation ([24, page 37]),

M(s− r

2
) ◦ i∗U(s) = i∗M(s),

we obtain
WT (e, s, f) = Eβ(e,−s+

r

2
, i∗M(s)f).

Now we have an Euler product when Re(s)� 0,

WT (e, s, f) =
∏
v

Wβ,v(e,−s+
r

2
, i∗Mv(s)fv).

Note that by the standard Gindikin-Karpelevich type argument, for the spherical vector
f 0
v (s) at a non-archimedean v and when χv is unramified, we have

Mv(s)f
0
v (s) =

av(s)

bv(s)
f 0
v (−s),

where
av(s) = Lv(s+ %3 − 3, χv)ζv(2s− 1),

and
bv(s) = Lv(s+ %3, χv)ζv(2s+ 2).

Thus, for a finite set outside which everything is unramified,

M(s)f(s) =
a(s)

b(s)

(⊗
v∈S

bv(s)

av(s)
Mv(s)fv(s))

)
⊗ f 0

S(−s).

For a local Siegel-Weil section fv for all v, bv(s)
av(s)

Mv(s)fv is holomorphic at s = 0 and there is
a non-zero constant independent of f such that

bv(s)

av(s)
Mv(s)fv(s))|s=0 = λvfv(0).

Thus we have

WT (e, s, f)

=
∏
v

Wβ,v(e,−s+
r

2
, i∗Mv(s)fv)

=Λ3−r(−s+
r

2
)
a(s)

b(s)

∏
v∈S′β

1

Λ3−r,v(−s+ r
2
)
Wβ,v(e,−s+

r

2
, i∗(

bv(s)

av(s)
Mv(s)fv))

=Λ3−r(−s+
r

2
)
a(s)

b(s)

∏
v∈S′β

Aβ,v(s, f),
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where Sβ is the set of all primes such that outside Sβ, fv is the spherical vector, ψv is
unramifed and ordv(det(β)) = 0.

Since ords=0Λ3−r,v(−s + r
2
) = 0, bv(s)

av(s)
Mv(s)fv is holomorphic and Wβ(e, s, f) extends to

an entire function, we know that Aβ,v(s, f) is holomorphic at s = 0. We have a formula

Aβ,v(0, f) =
λv

Λ3−r,v(0)
W 3−r
β,v (e,

r

2
, i∗fv(0)).

Lemma 6.1.5. Define a linear functional

ι : S (B3
v)→ C

Φv 7→ Aβ,v(0, fΦv).

Then, we have ι(r(n(b))Φv) = ψv,T (b)ι(Φv), i.e., ι ∈ HomN(S (B3
v), ψT ).

Proof. Let b =

(
x y
ty z

)
∈ Sym3(Fv). Since Mn is Sp(3)-intertwining, we have

Wβ,v(e,−s+
r

2
, i∗(Mv(s)r(n(b))fv))

=Wβ,v(e,−s+
r

2
, i∗(r(n(b))Mv(s)fv))

=

∫
Sym3−r

(Mv(s)fv)(w3−rn

((
0 0
0 z′

))
n(b))ψ−β(z′)dz′

=

∫
Sym3−r

(Mv(s)fv)(u(x, y)w3−rn

((
0 0
0 z′ + z

))
)dz′

=

∫
Sym3−r

(Mv(s)fv)(w3−rn

((
0 0
0 z′ + z

))
)ψ−β(z′)dz′

=ψβ(z)Wβ,v(e,−s+
r

2
, i∗Mv(s)fv)

=ψT (b)Wβ,v(e,−s+
r

2
, i∗Mv(s)fv).

Thus, the linear functional fs 7→ Aβ,v(s, f) defines an element in HomN(I(s), ψT ). In par-
ticular, when s = 0, the composition ι of Aβ,v with the G-intertwining map S (B3

v) → I(0)
defines a linear functional in HomN(S (B3

v), ψT ).

Then the map ι factors through the ψT -twisted Jacquet module S (B3
v)N,T (i.e., the

maximal quotient of S (B3) on which N acts by character ψT ). Thus by the following result
of Rallis, ι is trivial on S (B3

v,sub) when T is singular:

Lemma 6.1.6. The map S (B3) → S (B3)N,T can be realized as the restriction S (B3) →
S (ΩT ).
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Now since ords=0
a(s)
b(s)

= 0, we can now conclude that

ords=0WT (e, s, fΦ) ≥ k

if Φvi ∈ S (B3
vi,reg) since the restriction to ΩT is zero.

For a general g ∈ GA, we have

WT (g, s, fΦ)

=WT (e, s, r(g)Φ)

=Λn−r(−s+
r

2
)
a(s)

b(s)

∏
v∈S′β

Aβ,v(s, r(gvi)Φv)

where Sβ,g is a finite set of place that depends also on g.
Since S (B3

v) → I(0) is G-equivariant, Aβ,v(0, r(gv)fv) = ι(r(gv)Φv). Since gvi ∈ Pvi , we
have r(gvi)Φvi ∈ S (B3

vi,sub
) and by the same argument above Aβ,vi(0, r(gvi)fvi) = 0. This

completes the proof of Proposition 6.1.2.

Remark 6.1.2. The proof would be much shorter if it were true that WT,v(g, s, fv) extends
to C and holomorphic at s = 0 for singular T .

Now it is easy to extend to the similitude group GSp3. Recall that we have a decompo-
sition of E ′(g, 0,Φ) according to the difference of Σ(T ) and Σ:

(6.1.1) E ′(g, 0,Φ) =
∑
v

E ′v(g, 0,Φ) + E ′sing(g, 0,Φ),

where

(6.1.2) E ′v(g, 0,Φ) =
∑

Σ(T )=Σ(v)

E ′T (g, 0,Φ),

and
E ′sing(g, 0,Φ) =

∑
T,det(T )=0

E ′T (g, 0,Φ).

Corollary 6.1.7. The same assumption as in Proposition 6.1.2, then we have for T singular
and g ∈ GSp3(A) with gvi ∈ Pvi , (i = 1, 2, ..., k), the vanishing order of the analytic function
ords=0ET (g, s,Φ) is at least k − 1. In other words, for such g we have

E ′sing(g, 0,Φ) = 0.

Proof. For g ∈ GSp3(A), we still have

WT (g, s,Φ) = Λ3−r(−s+
r

2
)
a(s)

b(s)

∏
v∈S′β

Aβ,v(s, r(gvi)fv)

for a finite set of places Sβ,g.
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6.2 Functions with regular support

Let F be a non-archimedean field. Let B be a quaternion algebra over F . And we have the
moment map

Q : B3 → Sym3(F ).

Definition 6.2.1. We call a function Φ ∈ S (B3
reg) “exceptional of order k” if it satisfies

the condition that Q(supp(Φ)) + p−kSymn(O) ⊆ Q(B3
reg).

Even though it looks that such functions are very special, they in fact generate S (B3
reg)

under the action of a very small subgroup.

Lemma 6.2.2. Let k be any fixed integer. Then S (B3
reg) is generated by all exceptional

function of order k under the action of elements m(aI3) ∈ Sp3 for all a ∈ F×.

Proof. Without loss of generality, we can assume that k is even and that Φ = 1U ∈ S (B3
reg)

is the characteristic function some open compact set U ⊆ B3. Then Q(U) is an compact open
subset of Sym3(F )reg. Let Z3

+ = {(a1, a2, a3) ∈ Z3|a1 ≤ a2 ≤ a3}. Then the “elementary
divisors” defines a map δ : b ∈ Sym3(F ) → (a1, a2, a3) ∈ Z3

+. One can check that it is
locally constant on Sym3(F )reg. Hence the composition of this map and the moment map
Q is also locally constant on B3

reg. In particular, this gives a partition of U into disjoint
union of finitely many open subsets. So we can assume that δ ◦ Q is constant on U , say,
δ ◦Q(U) = {(a1, a2, a3)}.

Consider m(aI3)Φ which is certain multiple of 1aU . Choose a = p−A for some integer
A > 1 + a1 + (a2 − a1) + (a3 − a1) . Then we are left to prove that that such 1p−A−k/2U
is exceptional of order k. It suffices to prove that, for any x ∈ U and t ∈ Sym3(O),
Q(p−A−k/2x) + p−kt belongs to Q(B3

reg). Note that

Q(p−A−k/2x) + p−kt = p−k−2A+2[
a1−1

2
](Q(p−[

a1−1
2

]x) + p2A−2[
a1−1

2
]t).

Now Q(p−[
a1−1

2
]x) ∈ Sym3(O). It is well-known that for T ∈ Sym3(O)reg, T and T +

p2+det(T )T ′ for any T ′ ∈ Sym3(O) defines isomorphic integral quadratic forms of rank n.
Equivalently, T + p2+det(T )T ′ =t γTγ for some γ ∈ GL3(O). Now it is easy to see that
Q(p−A−k/2x) + p−kt ∈ Q(B3

reg).

The nice property of an exceptional of high order is exhibited in the vanishing of the
Whitatker function.

Proposition 6.2.3. Suppose that Φ ∈ S (B3
reg) is exceptional of sufficiently large order k

depending on the conductor of the additive character ψ. Then we have

WT (Φ, e, s) ≡ 0

for regular T /∈ Q(B3
reg) and any s ∈ C. In particular, WT (Φ, e, 0) = W ′

T (Φ, e, 0) = 0.
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Proof. When Re(s)� 0, we have

WT (Φ, e, s)

= γ(V, ψ)

∫
Sym3(F )

ψ(−b(T −Q(x)))

∫
B3

Φ(x)δ(wb)sdxdb

= γ(V, ψ)cv

∫
Sym3(F )

ψ(b(T ′ − T ))δ(wb)s, IT ′(Φ)dbdT ′

where cv is a suitable non-zero constant and IT ′(Φ) is a certain orbital integral defined
earlier. Then T ′ 7→ IT ′(Φ) defines a function in S (Sym3(F )reg) for our choice of Φ. Since as
a function of b ∈ Sym3(F ), δ(wb) is invariant under the translation of Sym3(O), we have∫

Sym3(F )

ψ(bt)δ(wb)sdb

=

(∫
Sym3(O)

ψ(xt)dx

) ∑
b∈Sym3(F )/Sym3(O)

ψ(bt)δ(wb)s,

which is zero unless t ∈ p−kSym3(O) for some k depending on the conductor of the additive
character ψ.

Therefore the nonzero contribution to the integral are from T ′ − T ∈ p−kSym3(O) and
IT ′(Φ) 6= 0. The assumption in the proposition forces that T ′ is not in Q(supp(Φ)). But this
in turn implies that IT ′(Φ) = 0!

In conclusion, we proves that, if Φ is exceptional of order at least k and Re(s) � 0, we
have

WT (Φ, e, s) ≡ 0.

By analytic continuation, we still have WT (Φ, e, s) ≡ 0 for all s ∈ C!

From now on, we will choose Φv to be a test function “exceptional of sufficiently higher
order” for v ∈ S where S is a set of finite places with at least two elements such that
any finite place outside S is spherical. And we always choose the standard Gaussian at all
archimedean places. Then for g ∈ G(AS), we have

(6.2.1) E ′(g, 0,Φ) =
∑
v

∑
Σ(T )=Σ(v)

E ′T (g, 0,Φ),

where the sum runs over v outside S and nonsingular T .

6.3 Local zeta integrals with regular support

Let σ = ⊗3
i=1σi be unitary irreducible admissible representation of G with each σi of infinite

dimensional and with Λ(σ) < 1/2. Recall that we let Λ(σi) be zero if it is supercuspidal and
|Λ| if σ = IndGB(χ| · |λ| · |−λ) for a unitary χ. Let Λ(σ) be the sum of Λ(σi). Note that if σ
is local component of global automorphic cuspidal representation, we have Λ(σ) < 1/2 by
work of Kim-Shahidi (Ramanujam conjecture predicts that Λ(σ) = 0 ).
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Conjecture 6.3.1. Assume that HomG(S (V 3) × σ,C) 6= 0. Then the local zeta integral
Z(f,W ) is non-zero for some choice of W ∈ W (σ, ψ) and f ∈ I(B) attached to Φ ∈ S (V 3

reg).

Since that above space HomG(S (V 3) × σ,C) is one dimensional and generated by zeta
integral, thus the zeta integral defines an SL2(F )3-equivariant map

α : S (V 3) −→ σ̃.

We need only show that there is an element in S (B3
reg) with non-zero image.

In the following we want to show that the theorem is true in some special cases including
the case when V is anisotropic by induction.

Theorem 6.3.2. Assume that V is anisotropic. Let αi : S (V ) −→ σi (i = 1, · · ·m)
be some SL2(F )-surjective morphisms to irreducible and admissible SL2(F ) representations.
Let α = α1 ⊗ α2 ⊗ · · ·αm be their product:

α : S (V m) −→ σ := σ1 ⊗ · · · ⊗ σm.

Let W be a non-degenerate subspace of V (with respect to the norm q|W ) such that

dimW +m ≤ dimV.

There is a function φ ∈ S (V m) such that α(φ) 6= 0 and that the support supp(φ) of φ
contains only elements x = (x1, · · · , xm) such that

W (x) := W + Fx1 + · · ·Fxm

is non-degenerate of dimension dimW +m.

Proof of the case m = 1. Since W is non-degenerate, we have an orthogonal decomposition
V = W ⊕ W ′, and an identification S (V ) = S (W ) ⊗ S (W ′). The action of SL2(F ) is

given by actions of the double cover S̃L2(F ) on S (W ) and S (W ′) respectively. Since V is
anisotropic, W ′ is anisotropic. So the space S (W ′) is generated over SL2(F ) by the subspace
S (W ′

q 6=0) of function supported on nonzero elements. In fact, one has

S (W ′) = S (W ′
q 6=0) + wS (W ′

q 6=0).

Choose any φ such that α(φ) 6= 0 and that φ is a pure tensor:

φ = f ⊗ f ′, f ∈ S (W ), f ′ ∈ S (W ′).

Write
f ′ = f ′0 + wf ′1, f ′i ∈ S (W ′

q 6=0) gi ∈ S̃L2(F ).

Then we have decomposition

φ = φ0 + wφ1, φ0 = f ⊗ f ′0, φ1 = w−1f ⊗ f ′1.

One of α(φi) 6= 0. Thus we may replace φ by this φi to conclude that the support of φ is
contained in the set of x = (w,w′) with W (x) := W ⊕ Fw′ non-degenerate.
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Proof of the case m > 1. We prove by induction on m. We assume that we have a φ′ ∈
S (V m−1) with nonzero image in σ1 ⊗ · · · ⊗ σm−1 under

α′ = α1 ⊗ · · · ⊗ αm−1

such that the support of φ is contained in the set of elements x′ = (x1, · · · , xm−1) with non-
degenerate W (x′) of dimension dimW +m−1. For any x ∈ supp(φ′) by applying the proved
case m = 1 to the subspace W (x′), we have a φx′ ∈ S (V ) such that supp(φx′) contains only
elements xm with non-degenerate

W (x′)(xm) = W (x), x = (x1, · · · , xm)

of dimension dimW+m. By computing moment matrix of W ′′, we see that this last condition
is open in x′. Thus there is an open subset U(x′) of x′ such that above non-degenerate
condition holds for all elements in U(x′).

As x′ varies in supp(φ′), U(x′) covers supp(φ′). By the compactness of supp(φ′), we can
find finitely many U(x′i) to cover supp(φ′). Replacing U(x′i) by sub-coverings of U(x′i) ∩
supp(φ′), we may assume that φxi takes constants ci on every U(x′i). Thus we have an
decomposition

φ′ =
∑
i

ci1U(x′i)
.

As α′(φ′) 6= 0, for one of xi, say y, α′(1U(y)) 6= 0. Now we define

φ = 1U(y) ⊗ φy ∈ S (V m).

Then φ satisfies the conditions in the theorem.
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7 Local intersection at ramified places

In this subsection, we want to describe the local height pairing of Gross–Schoen cycles on
the triple product of a Shimura curve at bad places. Our treatment is complete only if v is
non-split in the corresponding quaternion algebra. Some further treatment needs to treat so
called non surpersingular local intersection.

7.1 Analytic unformizations

In the following, we want to give an analytic description of Hecke correspondence when v is
not split in B×. Again, we let B denote the quaternion algebra over F such that

B ⊗ A 'M2(Fv)⊗ Bv.

Cerednik–Drinfeld uniformization

First we want recall the Cerednik–Drinfeld uniformization when Uv = U0
v := O×B,v is maximal

for the formal completion ŶU along its special fiber over v. Let Ω̂ denote Deligne’s formal
scheme over Ov obtained by blowing-up P1 along its rational points in the special fiber over
the residue field k of Ov successively. So the generic fiber Ω of Ω̂ is a rigid analytic space
over Fv whose F̄v-points are given by P1(F̄v) − P1(Fv). The group GL2(Fv) has a natural

action on Ω̂. Let H0 = Ω ⊗ F ur
v be its base change to the maximal unramified extension

of Fv. Then Σ0 := ResFur
v /FvH0 when viewed as a formal scheme over Fv has a action by

B× × B×v via action of g1 ∈ B×v ∈ GL2(Fv) and the following action on Our
v :

(g1, g2) ∈ B×v × B×v −→ g1 × Frob−ordv(ν(g1)ν(g2)).

The theorem of Cerednik–Drinfeld gives a natural isomorphism between two analytic spaces:

Y an
U ' B×\Σ0 × (Bv)×/U v.

The projective system of these varieties when U v various form a projective system with
compatible action by B×/B×0,v. The analytic space Σ0 over F ur

v is geometrically connected
but ResFur

v
Ω0 is not. In fact over F ur

v is isomorphic to Ω0×Z. Thus we have description over
F ur
v :

Y an
U,Fur

v
' B×0 \H0 × (Bv)×/U v

here B×0 denote the subgroup of elements b such that ordvν(b) = 0. The action of b ∈ B×v in
this new description is given as follows:

[z, g] 7→ [f−1z, f−1g]

for some elements f ∈ B whose norm has the same order as b.
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More generally, for any integer n ≥ 1, let Un
v denote the subgroup 1 + πnOBv . Then

there is an etale covering Hn of H0 over F ur
v with an compatible action of B×v × B×v on

Σn := ResFur
v /Fv(Hn) over F such that

Y an
Unv ·Uv ' B×\Σn × (Bv)×/U v.

with compatible action by B×v . The analytic space Hn over F ur
v has an action of by the

subgroup of elements (γ, b) of B×v ×B×v with ord(ν(γ)ν(b)) = 0. Thus we have an description
over F ur

v as
Y an
Unv ·Uv ,Fur

v
' B×0 \Hn × (Bv)×/U v.

The right action of an element b ∈ B×v is given by

[z, g] 7→ [(f−1, b)z, f−1g].

Here f ∈ B is any element with the same norm as b.
Write H as projective limit of Hn which admit an action of O×Bv so that quotient by any

compact subgroup Uv gives an rigid space HUv over F ur
v . Write Σn = ResFur

v /Fv(Hn) and
Σ = ResFur

v /Fv(H ). Then we have a unformization for general open compact subgroup U of
B×:

Y an
U = B×\ΣUv × (Bv)×/U v = B×\ResFur

v /FvΣ× (Bv)×/U.

The projective system of these spaces when n and U v various form a projective system with
action by B×. We have a similar description over F ur

v :

Y an
U,Fur

v
= B×0 \HUv × (Bv)×/U v = B×0 \H × (Bv)×/U.

The analytic space at v associate to MK can be described using orthogonal space V =
(B, q) and

H = GSpin(V ) = {(g1, g2) ∈ B×, ν(g1) = ν(g2)},

(g1, g2)x = g1xg
−1
2 , gi ∈ B×, x ∈ V,

DK := HUv ×Fur
v

HUv , D = Σ×Fur
v

Σ.

In this case,

Man
K = H(F )\ResFur

v /FvDKv ×H(Av
f )/K

v = H(F )\ResFur
v /FvD ×H(Av

f )/K

Man
K,Fur

v
= H(F )0\DKv ×H(Av

f )/K
v = H(F )0\D ×H(Av

f )/K

Uniformization of Z(x)K

For x ∈ B×, the Hecke correspondence Z(x)K represents the right action of x on YU if
q(x) ∈ F×+ , then we can find f ∈ B× with the same norm as xv. Then Z(x)K over can be
described in terms of

Y an
U,Fur

v
= B×0 \H × (Bv)×/U :
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[z, g] 7→ [(f−1, xv)z, f
−1gxv].

Let Df (xv) ⊂ H 2 denote the graph of the action (f−1, xv) on H . Notice that the
equation g2 = f−1g1x in gi ∈ (Bv)× is equivalent to

x = g−1(f), g = (g1, g2) ∈ H(Av
f ).

Thus we have the following description of Z(x)K,Fur
v

:

Lemma 7.1.1.
Z(x)an

K = H(F )0\
⋃

g−1f=xv

(Df (xv)× gKv)/Kv

7.2 Local intersection at a non-split prime

In the following, we let us compute the local intersection over F ur
v for cycles Ẑ(Φi) for

Φi ∈ S (V). Assume that Φi(x) = Φv
i (x

v)Φiv(xv) with Φiv invariant under Uv × Uv with
Uv = Un

v . We assume that the support of the function Φ := Φ1⊗φ2⊗Φ3 on V3 is supported
on set of (V3)sub of points (x1, x2, x3) whose components are linearly independent. This

implies that the cycles Ẑ(φi) have no intersection in the generic fiber.

Lemma 7.2.1. Consider Z(φ) = Z(φ1)× Z(φ2)× Z(φ3) as a correspondence on Y 3
U . Then

there is an arithmetic class ∆̂v of the diagonal ∆ in Y 3
U at place v such that

(Ẑ(φ1) · Ẑ(φ2) · Ẑ(φ3))v = deg(Z(φ)∗∆̂v|∆)

Proof. First of all, we recall the discuss in §3.5 that since v is not split in B, the Hecke
operators does not change the v-adic structure of Hodge classes. This implies that for each
x ∈ B× the admissible class Ẑ(φi) at place v can be written as

Ẑ(x)v = Z(x)∗∆̂v := p2∗p
∗
1Ẑ(1)v

where Ẑ(1)v is the admissible class for the diagonal in YU × YU , and pi are two projections
of Z(x) onto YU . In this way we have

Ẑ(φi) = Z(φi)∗Ẑ(1).

Secondly, define the arithmetic class for Z(φ) on Y 6
U as the intersection

Ẑ(φ) = p1,4Ẑ(φ1) · p∗2,5Ẑ(φ2) · p∗3,6Ẑ(φ3)

where for any subset I of {1, 2, · · · , 6}, pI denotes the projection to the project of factors

Y
|I|
U indexed by I. Then

Ẑ(φ1) · Ẑ(φ2) · Ẑ(φ3) = deg(Ẑ(φ)|∆×∆.
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Write ∆×∆ as intersection p∗123∆× p∗456∆ to obtain

deg p456∗(Ẑ(φ)|p∗123∆)∆ = deg p456∗(Ẑ(φ)|p∗123∆)|∆ = deg p456∗(Z(φ)∗Ẑ(1)3|p∗123∆)|∆.

It is easy to check that two pushfords p456∗ and Z(φ)∗ commute. Thus we have

Z(Φ,∆)v := (Ẑ(φ1) · Ẑ(φ2) · Ẑ(φ3))v = deg(Z(φ)∗∆̂v|∆)

where ∆̂v is an arithmetic class of the diagonal in Y 3
U defined by:

∆̂v := p456∗(Ẑ(1)3
v|∆)

For each g ∈ B× denote the diagonal ∆(g) (resp. arithmetic class ∆̂(g) the diagonal) in
component Y 3

U indexed by (g, g, g) in the uniformization:

Y an,3
U = (B×0 )3\H 3

U × (Bv)×3/(U v)3.

Then we can rewrite the intersection by

Z(Φ,∆) =
∑

(g1,g2)∈(B×0 )2\(Bv)×2/U2

∑
x∈K3\V3

Φ(x) deg(Z(x)∗∆̂(g1)|∆(g2)).

Notice that Hecke operator does not change these component in Y 3
U . Thus we may

assume that ν(g1) = ν(g2). In other words, we may replace the index in the summer by
group H(F )0\H(Av)×/Kv. Moreover, on the uniformization level, the Hecke operator Z(xi)
is given by

(z, g) −→ ([f−1
i , xiv], f

−1
i gxvi )

where fi ∈ B has the same norm as x. If deg(Z(x)∗∆̂(g1)|∆(g2) 6= 0, we must have g2 =
f−1
i g1x

v
i . In terms of action of H on V = B, we have xvi = g−1fi. Thus we can rewrite the

sum as
Z(Φ,∆) =

∑
(g1,g2)∈(B×0 )2\(Bv)×2/U2

∑
f∈V 3

Φv(g−1f)m(f,Φv)

where
m(f,Φv) =

∑
xv∈K3

v\B3
v

Φv(xv) deg(Z(xv, f)∗∆̂(g1)|∆(g2)).

Here Z(xv, f) is a correspondence from YU,g1 to YU,g2 by action by [f−1, xv] on the analytic
space H 3

U .
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7.3 Compactness of local intersection

In the following, we want to show that following

Lemma 7.3.1. For given Φv with compact support, the function m(f,Φv) 6= 0 only if the
moment matrix of f is supported in a compact subject of Sym3(Fv).

In the following, we want to study the horizontal local intersection at a finite place v
which is split in B. We can construct a regular integral model D for Dn := H 3

Unv
over some

base change of F ur
v as follows. First all, over some base change of F n

v of F ur
v , the rigid

space Hn has an equivariant semistable model Ĥ over OFnv . Then we blow up some closed

subscheme in the special fiber of the triple fiber product Ĥ 3
n over OFur

v
to get a regular

model D of D, see Lemma 2.2.1 in [39]. In this way, we obtain integral models of XU and
XU = Y 3

U as follows:
X an

U = (B×0 )3\Dn × (Av
f )
×3/(U v)3.

In this way the arithmetic cycle ∆̂(x)v has a decomposition

∆̂v = ∆̄v + V

where V is a vertical cycle. The intersection has decomposition

deg(Z(xv, f)∆̂(g1)|∆(g2) = Z(xv, f)∆̄(g1) · ∆̄(g2) + Z(xv, f)V · ∆̄(g2).

We will prove the compactness by working on the horizontal and vertical separately.

Lemma 7.3.2. Fix a x and g. The function deg(Z(xv, f)∆̄(g1)|∆(g2)) 6= 0 only if the moment
metrix is supported in a compact subset of Sym3(Fv).

Proof. The cycle Z(xv, f)∆̄ has non-empty intersection with ∆̄ only if they have non-empty
intersection in the minimal level, and only if any two of the graphs Γ(fi) of the isomorphisms
fi : Ω −→ Ω have a non-empty intersection in the generic fiber P1(Cv) − P1(Fv). Or in the
other words, the morphism fif

−1
j does not have a fixed point in P1(Fv). This will implies

that fif̄j = fif
−1
j q(fj) is elliptic in the sense it generates a quadratic subfield Eij in Bv over

Fv. Recall that in a quadratic field, an element t is integral only if its norm is integral. If n is
an integer such that 2n ≥ −ord(q(t)), then $n

v t has integral norm, thus tr($n
v t) is integral.

Take n = −[ord(q(t))/2], then we get for all t ∈ Eij:

ordtr(t) ≥ −[ord(q(t))/2].

Since q(fi) = q(xi), we thus obtain that entries of Q(f) has an estimate

ord(tr(fif̄j)) ≥ −[ord(xix̄j)/2].

This shows that Q(f) is in a compact subset of Sym3(Fv).

Now let us to compute vertical local intersection at v. We need only show that
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Lemma 7.3.3. For an irreducible vertical cycle S of D , the support of the function f −→
[f−1, xv]S · ∆̄ 6= 0 has compact moments.

Proof. Assume that S has image in Ω3 included into A1×A2××A3, where Ai’s are irreducible
components of special component of Ω. If Z(xv, f)S · ∆̄ 6= 0, then y−1

i Ai has non-trivial
intersection on Ω̄. This implies that for any i 6= j, yiy

−1
j Aj is adjacent to Ai.

Recall that after fixing an isomorphism Bv ' M2(Fv), the irreducible components in
the special component of Ω are parameterized by homothety classes of lattices in F 2

v . Thus
for each i, there is a finite set Ti of elements in GL2(Fv) such that tAi for ti,j ∈ Ti are all
component with non-trivial intersection with Ai. Then we have t−1yiy

−1
j Ai = Ai for some

t ∈ T . Thus yiy
−1
j ∈ ti,jF×v GL2(Ov). Since yi has the same norm as xi, this equation implies

that yiȳj is in a compact set which implies that the moment matrix is bounded.

By Lemma 7.3.1, we can replace m(f,Φv) by a Schwarts function Φ′v on B3
v. Then we

have shown that that the local triple product at v is given by integration over [H] of the
theta series attached to Φ′. By Siegel–Weil theorem, this integration is a coherent Eisenstein
series:

Theorem 7.3.1. Assume that Φv ∈ S (V 3
v ) is neat of sufficiently large order. Then there is

an Φ′ = Φv ⊗ Φ′v ∈ S (V 3
A ) such that

Z(g,Φ,∆)v = E(g,Φ′)

for g ∈ G such that gv is in a small neighborhood of 1.

7.4 Proof of Main Theorem

In this section we will finish proving the main result 1.2.4 of this paper. Note that we need to
prove conjecture 3.4.2 under the assumption of the theorem. Firstly we compile established
facts. Note that the test functions are chosen as follows:

1. For v /∈ Σ we choose Φv to be the characteristic function of O3
B,v

2. For v|∞, we have chosen Φv to the standard Gaussian.

3. For finite v in Σ, we choose Φv to be neat of sufficiently large order depending on ψv.

Now by the decomposition of E ′(·, 0,Φ)hol (equation 5.4.12), we have for g ∈ G with
gv = 1 when v ∈ S:

(7.4.1) E ′(g, 0,Φ)hol =
∑
v

E ′v(g, 0,Φ)hol

E ′v(g, 0,Φ)hol =
∑

T,Σ(T )=Σ(v)

E ′T (g, 0,Φ)hol
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where the sum runs only over non-singular T by the vanishing of singular coefficients for
such g. And when Σ(T ) = Σ(v) for v|∞, we have

E ′T (g, 0,Φ)hol = WT (g∞)mv(T )WT,f (gf , 0,Φf )

where mv(T ) is the star product of Ps(1 + 2sx(z)/q(x)) for x with moment T .
On the intersection side, we also have a decomposition

Z(g,Φ,∆) =
∑
v

Z(g,Φ,∆)v (mod Acoh(G))

where Acoh(G) is the subspace of A (G) generated by restrictions of E(·, 0,Φ) for Φ ∈ S (V 3
A )

for all possible coherent VA, and forms on (g1, g2, g3) which is Eisenstein for at least one
variable gi.

And we have proved the following comparison for g ∈ G with gw in a small neighborhood
U ′w when w ∈ Σf , subset of finite places in Σ:

1. For v /∈ Σ, by Theorem 5.3.3,

Z(g,Φ,∆)v = E ′v(g, 0,Φ) +
∑
i

cv(gi,Φi)Z(gj,Φj) · Z(gk,Φk)

where cv(gi,Φi) are some functions which are vanishes for almost all v, and Z(gj,Φj) ·
Z(gk,Φk) is the intersection of two divisors on YU × YU .

2. When v|∞, by Theorem 5.4.8,

Z(g,Φ, δ)v = E ′v(g, 0,Φ)hol.

3. When v ∈ S, by Theorem 7.3.1,

Z(g,Φ,∆)v = E(v)(g)

for some E(v) ∈ Acoh(G). And by Proposition 6.2.3, we have for g as above

E ′v(g, 0,Φ) = 0.

To sum up, we have an automorphic form

F (g) = Z(g,Φ,∆)− E ′(g, 0,Φ)hol −
∑
v∈S

E(v)(g) ∈ A (G)

with the property that for all g ∈
∏

v∈Σf
U ′vGΣf :

(7.4.2) F (g) =
∑
i

c(gi,Φi)Z(gj,Φj) · Z(gk,Φk)
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where c(gi,Φi) are some functions of gi. Since F (g) and Z(gi,Φi) are all automorphic, we
have for any

γ ∈ SL2(F )3 ∩
∏
v∈Σf

GΣf ,

∑
i

(c(γigi,Φi)− c(gi,Φi))Z(gj,Φj) · Z(gk,Φk) = 0

In particular if Z(gj,Φj) · Z(gk,Φk) 6= 0, then c(γigi,Φi) = c(gi,Φi). Since

SL2(F 3) ·
∏
v∈Σf

U ′vGΣf = SL2(A)
∏
v∈Σf

U ′vGΣf

There are unique functions λ(gi,Φi) for g ∈ SL2(A)3
∏

v∈Σf
U ′vGΣf with the following prop-

erties:

1. λ(γigi,Φi) = α(gi,Φi) if γi ∈ SL2(F )

2. λ(gi,Φi) = c(gi,Φi) if there are gj, gk with the sam norm as gi such that Z(gj,Φj) ·
Z(gk,Φk) 6= 0

3. λ(gi,Φi) = 0 if there such that Z(gj,Φj) · Z(gk,Φk) 6= 0 for all gj, gk with the same
norm as gi.

Now we have a new equation

(7.4.3) F (g) =
∑
i

λ(gi,Φi)Z(gj,Φj) · Z(gk,Φk), g ∈ SL2(A)3
∏
v∈Σf

U ′vGΣf .

We want to show that F is perpendicular to any cusp form ϕ ∈ σ in the Main theorem.
By our definition of F , we see that if∫

G(F )\G(A)

F (g)ϕ(g)dg = `(θ(Φ⊗ ϕ))

where ` ∈ P(Π) is the difference of two linear forms in remark 1.5.1 following the Main
Theorem 1.2.4 on the Shimizu lifting Π = π ⊗ π̃ of σ on O(V)3, Choose a fundamental
domain Ω of F×\A× in

∏
v∈Σf

detU ′v(A×)Σf . Then we have a decomposition ` =
∑
`i with

`i(Φ⊗ ϕ) =

∫
Ω

λα(Φi ⊗ ϕi)Zα(Φj ⊗ ϕj) · Zα(Φk ⊗ ϕk)dα

where

λα(ϕi) =

∫
SL2(F )\SL2(A)

λ(ggα,Φi)ϕi(ggα), Zα(Φj⊗ϕj) =

∫
SL2(F )\SL2(A)

Z(ggα,Φ)ϕ(ggα)dg.
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Notice that for each α, j, and k the intersection number Zα(Φj ⊗ ϕj) · Zα(Φk ⊗ ϕk) is
invariant under the orthogonal group O(V). Thus this defines a form in

HomO(V)(Πj ⊗ Πk,C).

It follows that if `i 6= 0, then Πi = Π̃k, and then `i = µi ⊗ νi,j where µi is a functional on Πi

and νij is natural contraction between Πj and Πk.
The invariance of ` under the diagonal action by O(V) implies that for any h ∈ O(V),∑

i

µ′i(vi)νjk(vj ⊗ vk) = 0, vi ∈ πi ⊗ π̃i,

where µ′i(vi) = µi(hvi) − µi(vi)). If all πi are infinite dimensional, then we claim that that
Hom(Πi,C)⊗ νij are independent in Hom(Π,C).

In fact, we need only show this independence when restricted to a finite dimensional
spaces Vi ⊂ Πi. We assume all Vi ' Cn with a basis of linear forms ei. Assume that νij is
given by the diagonal form

∑
m em ⊗ em, and µ′i is given by

∑
ainen. Then `i is given by

`1 =
∑
m,n

anen ⊗ em ⊗ em, `2 =
∑
m,n

bnem ⊗ en ⊗ em, `3 =
∑
m,n

cnem ⊗ em ⊗ en.

If dimVi > 1, then the equation `1 + `2 + `3 = 0 implies that all `i = 0.
By our claim, µ′i = 0. In other words, µi is an O(V)- equivariant linear form. This is

impossible since Πi is irreducible of dimension > 1. In summary, we have shown that ` = 0.
Thus we have completed the proof of Main Theorem 1.2.4.
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