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1 Introduction

The aim of this paper is to prove a formula conjectured by B. Gross and S. Kudla in [11]
which relates the heights of modified diagonal cycles on the triple products of Shimura curves
and the derivative of the triple product L-series. More precisely, for three cusp forms f, g, h
of weight 2 for a congruent subgroup I'g(N) of SLy(Z) with N square free, we may consider
the function F := f X g x h on 3. There is a triple product L-series L(s, F') as studied
by Garrett [7] in classical setting and by Piatetski-Shapiro and Rallis [32] in adelic setting.
This function is entire and has functional equation with center at s = 2 and a decomposition
of the global into a product of local signs:

eF)=[]&(F). eF)==+L

p<oo

Assume that the global sign is —1, then there is canonically defined a Shimura curve X
defined by some congruent subgroup of B* where B is an indefinite quaternion algebra B
which is nonsplit over a non-archimedean prime p if and only if €,(#) = —1. There is an
F-eigen component A(F) of the diagonal A of X? as an elements in the Chow group of



codimension 2 cycles in X? as studied by Gross and Schoen [13]. The conjecture formulated
by Gross and Kudla takes the shape

L'(2, F) = Q(F)(A(F), A(F))gs,

where Q(F') is an explicit positive constant and (-, -)pp is the Beilinson—Bloch height pairing.
This formula is an immediate higher dimensional generalization of the Gross—Zagier formula
[14].

The objective in this paper is more general than that considered by Gross and Kudla. In
fact, we will consider cuspidal Hilbert modular forms of parallel weight 2 and Gross—Schoen
cycles on Shimura cures over totally real number fields. We will formulate a conjecture 1.2.3
in terms of automorphic representations and linear forms. This conjecture is analogous to
a central value formula of Ichino [16]. In this paper, we can prove this conjecture under
some assumption on ramifications, see Theorem 1.2.4. In the following we will describe our
conjecture, theorem, and the main idea of proof.

1.1 Shimura curves and abelian varieties
1.1.1 Incoherent quaternion algebras and Shimura curves

Let F' be a number field with adele ring Ap and let A; be the ring of finite adeles. Let X be
a finite set of places of F'. Up to isomorphism, let B be the unique A-algebra, free of rank 4
as an A-module, whose localization B, := B ®, F), is isomorphic to M (F,) if v ¢ ¥ and to
the unique division quaternion algebra over F), if v € ¥. We call B the quaternion algebra
over A with ramification set %(B) := X.

If #X is even then B = B ®pr A for a quaternion algebra B over F' unique up to an
F-isomorphism. In this case, we call B a coherent quaternion algebra. If #X is odd, then B
is not the base change of any quaternion algebra over F'. In this case, we call B an incoherent
quaternion algebra. This terminology is inspired by Kudla’s notion of incoherent collections
of quadratic spaces.

Now assume that F'is a totally real number field and that B is an incoherent quaternion
algebra over A, totally definite at infinity in the sense that B, is the Hamiltonian algebra
for every archimedean place 7 of F.

For each open compact subgroup U of B; := (B @4 Ay)*, we have a (compactified)
Shimura curve Xy over F. For any embedding 7 : F' — C, the complex points of X at 7
forms a Riemann surface as follows:

Xy (C) =~ B(1)\A* x B% /U U {cusps}.
Here B(r) is the unique quaternion algebra over F' with ramification set ¥ \ {7}, By is
identified with B (7')A° as an As-algebra, and B(7)* acts on s#* through an isomorphism

B(7), =~ M3(R). The fset {cusps} is non-empty if and only if F = Q and 3 = {oo}.
For any two open compact subgroups U; C U, of Byx, one has a natural surjective
morphism
U, ,Us - XU1 — XUQ'

3



Let X be the projective limit of the system {Xy}y. It is a regular scheme over F', locally
noetherian but not of finite type. In terms of the notation above, it has a uniformization

X (C) ~ B(1)\#* x B%/D U {cusps}.

Here D denotes the closure of F'x in A?. If F=Q, then D = F*. In general, D is much
larger than F*.

The Shimura curve X is endowed with an action T, of x € B* given by “right multipli-
cation by xy.” The action T, is trivial if and only if 2y € D. Each Xy is just the quotient
of X by the action of U. In terms of the system {Xy}y, the action gives an isomorphism
T, : X,p.—1 — Xy for each U.

The induced action of IB%JT on the set mo(X U,F) of geometrically connected components of
Xy factors through the norm map ¢ : By — Af and makes m( Xy 7) a principal homogeneous
space over F/\AT/q(U). There is a similar description for X.

1.1.2 Hodge classes

The curve Xy has a Hodge class Ly € Pic(Xy)g. It is the line bundle whose global sections
are holomorphic modular forms of weight two. The system L = { Ly }y is a direct system in
the sense that it is compatible under the pull-back via the projection my, v, : Xv, = Xu,-

Here are some basic explicit descriptions. If Xy is a modular curve, which happens exactly
when F' = Q and ¥ = {oo}, then Ly is linearly equivalent to some linear combination of
cusps on Xy. If FF # Q or 3 # {oo}, then Xy has no cusps and Ly is isomorphic to the
canonical bundle of Xy over F' for sufficiently small U.

For each component o € FO(XU’f), denote by Ly, = Ly| Xy. the restriction to the
connected component Xy, of Xz corresponding to a. It is also viewed as a divisor class
1
deg LU,oc

Hodge class on Xy, and by g =Y &u.a the normalized Hodge class on Xy

We remark that deg Ly, is independent of « since all geometrically connected components
are Galois conjugate to each other. It follows that deg Ly, = deg Ly /|F\AF /q(U)|. The
degree of Ly can be further expressed as the volume of Xj.

For any open compact subgroup U of IB%?, define

dxd
vol(Xy) ::/ 5 g
Xu,-(C) #TY

on S descends naturally to a measure on Xy -(C) via the complex

on Xy via push-forward under Xy, — Xy. Denote by {y o = Ly« the normalized

dxd

2Ty
uniformization for any 7 : F' < C. It can be shown that deg Ly = vol(Xy). In particular,
the volume is always a positive rational number.

For any U; C Uy, the projection 7y, 1, : Xy, — Xy, has degree
deg(nUI’UZ) = VOl(XUl)/VOI(XUQ).

It follows from the definition. Because of this, we will often use vol(Xy) as a normalizing
factor.

Here the measure 5



1.1.3 Abelian varieties parametrized by Shimura curves

Let A be a simple abelian variety defined over F. We say that A is parametrized by X if
there is a non-constant morphism Xy — A over F' for some U. By the Eichler-Shimura
theory, if A is parametrized by X, then A is of strict GL(2)-type in the sense that

M = End’(A) := Endp(A) @z Q

is a field and Lie(A) is a free module of rank one over M ®q F' by the induced action.
Define
T4 = Homg(X, A) = lim HomgU(XU, A),
U
where HomgU (Xvu, A) denotes the morphisms in Homg (X, A) ®7Q using & as a base point.
More precisely, if { is represented by a divisor » _; a;z; on X, 7, then f € Homp(Xy, A)®7zQ
is in 74 if and only if Y, a;f(z;) = 0 in A(F)q.
Since any morphism Xy — A factors through the Jacobian variety Jy of Xy, we also
have
74 = Hom?(J, A) := lim Hom’(Jy, A).
U
Here Hom®(Jy;, A) = Homp(Jy, A)gzQ. The direct limit of Hom(Jy;, A) defines an integral
structure on m4 but we will not use this.

The space w4 admits a natural B*-module structure. It is an automorphic representation
of B* over Q. We will see the natural identity Endgx (74) = M and that 74 has a decompo-
sition m = ®pm, where 7, is an absolutely irreducible representation of B over M. Using
the Jacquet—Langlands correspondence, one can define L-series

L(s,m) = [ [ Lu(s,m) € M @¢ C

as an entire function of s € C. Let
L(s, A, M) = [[ Lo(s, A, M) € M g C

be the L-series defined using ¢-adic representations with coefficients in M ®¢g Qy, completed
at archimedean places using the I'-function. Then L(s, A, M) converges absolutely in M @ C
for Re(s) > 3/2. The Eichler-Shimura theory asserts that, for almost all finite places v of
F, the local L-function of A is given by

1
L,(s,A,M)=L(s — 5,7@).

Conversely, by the Eichler—Shimura theory and the isogeny theorem of Faltings, if A is of
strict GL(2)-type, and if for some automorphic representation 7 of B* over Q, L, (s, A, M) is
equal to L(s —1/2,m,) for almost all finite places v, then A is parametrized by the Shimura
curve X.



If A is parametrized by X, then the dual abelian variety AY is also  parametrized by
X. Denote by MY = End’(AY). There is a canonical isomorphism M — MV sending a
homomorphism m : A — A to its dual m" : AY — AV.

There is a perfect B*-invariant pairing

TA X Tav —> M
given by
(f1, f2) = vol(Xp) " (frw o i),  fiv € Hom(Jy, A), for € Hom(Jy, A)

where f2v v+ A— Jy is the dual of foy composed with the canonical isomorphism J} ~ Ji.
It follows that 74v is dual to w4 as representations of B* over M. Replacing A" in the above
construction, then we get a perfect B*-invariant pairing

TA X Tpov — HOIIIO(AV,A),

where the M acts on the right hand side through its action on A, and the B* acts via the
central character w,, of m4. So we will denote

wy := Hom"(AY, A).

In the case that A is an elliptic curve, we have M = Q and 7, is self-dual. For any
morphism f € 74 represented by a direct system { fy }, we have

(f, f) = vol(Xy) ™" deg fu.

Here deg fi; denotes the degree of the finite morphism fy : Xy — A.

1.2 Trilinear cycles on the triple product of abelian varieties
1.2.1 Trilinear cycles on triple product of abelian varieties

Let A;, As, Az be three abelian varieties defined over a number field F. Let A = A; x Ay X Aj
be denote their product. We consider the space Ch;(A) of 1-dimensional Chow cycles with
Q-coeflicients.

Using Mukai—Fourier transformation, we have a decomposition

Chy(A) = ®,Chy (4, s),

where s = (s1, $2, s3) are non-negative integers, and Ch;(A, sq, s2,s3) consists of cycles z
such that under push-forward of by multiplication by k = (ky, ks, k3) € Z* on A:

Kl =k -z, Kk =k kPES.

If s has non-trivial contribution in the decomposition, then it is known that |s| = s;+sy+s3 >
2, and conjectured that |s| < 3. When |s| = 3 the cycles are homologically trivial. Further
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more, the cycles with s = (1, 1, 1) are conjecturally the complement of the subspace generated
by cycles supported on the image of A; x A; x 0y, for some reordering (i, j, k) of (1,2, 3), where
0 denote the 0-point on Aj. Using Mukai-Fourier transfer, the group Ch; (A4, (1,1,1)) can
be further defined as the group of trilinear cycles, namely those cycles z € Ch;(A) satisfying
the following equations:

(1.2.1) miz=p;z+q z, 1=1,2,3

where m;, p;, q; are respectively the addition map, first projection, and second projection on
the i-th factor:

Mg, Pis i - A X Aj X Aj X A —> Ai X Aj X Ay, {i,g,k} ={1,2,3}.
We will denote
Ch{*(A) := Chy(A4, (1,1,1)).
Let L(s, A; X Ay ) A3) denote the L-series attached the triple product of f-adic repre-
sentation of Gal(F'/F') on
H' (A, Q) @ H' (A, Qp) @ H' (A3, Qy).

Then it is conjectured that L(s, Ay X Ay K A3) has homomorphic continuation on whole
complex plane. An extension of the Birch and Swinneron-Dyer or Beilison—Bloch conjecture
gives the following:

Conjecture 1.2.1. The space group Ch{“(A) s finitely generated with rank given by
dim Ch{*(A) = ord,—yL(s, A; X Ay K As).

Like Neron-Tate height pairing between points on A and AY = Pic’(A), there is a
canonical height pairing between Ch!{*(A) and Ch‘*(AV) given by Poincare bundles £; on
A; x AY with trivializations on A; x 0 and 0 x AY:

(w,y) = (v xy) - C(P1) - C(Pn) -a(P5), @€ Ch’(4), ye Chi(AY),

where ¢;(;) is the first Chern class of arithmetic cubic structure &2; of &;. This paring can
also defined using Tate’s iteration formula analogous to the Neron—Tate height pairing. The
right hand of the formula makes sense for all elements in Ch;(A) and vanishes on Ch{*(A).

1.2.2 Refinement for abelian varieties of strictly GL,-type

Assume that A; are strictly GLy-type over fields M; := End®(4;). Let M = M, ® My ® M.
Then M acts on Ch”(A) by push forward and on Ch{*(AY) by duality. Using equation
1.2.1, one can show that these actions are linear. As M is a direct sum of its quotients
fields L, Ch{*(A) is the direct sum of Ch“(A, L) := Ch{*(A) ®; L. We can also define
the triple product L-series L(s, A; X Ay X A3, L) € L ® C with coefficients in L using Galois
representation on

H'(A1,Qr) ®rg0, @H' (A2, Q) ®1g0, H' (A3, Qr)

where we choose ¢ inert in L.



Conjecture 1.2.2. The space group Chfa(A)L 1s finitely generated with rank given by
dimL Chia(A, L) = Ol"dSZQLL(S, A1 X A2 X Ag, L),
where 1 : L ® C — C is the surjection given by any embedding L — C.

Also we have a unique height paring with coefficient in M:
(=, —)p: Chi*(A, L) ®; Chi*(AY, L) — L®R
such that

tI‘L®R/R(CLI,y)L) = <(Z£L’,y>, ac L7 YIS Ch$£€<A7 L)? RS Chﬁa(Av7L>‘

1.2.3 Gross—Kudla—Shoen cycles

Now we assume that A; are parametrized by a Shimura curve X as before. Let M; =
End’(4;) and L a quotient of M; ® M, ® Ms. For any f; € m4,, we have a morphism

fZ:f1Xf2><f31 X — A
We define f.(X) € Ch;(A) by
f*(X) = VOI(XU)_lfU*(X) € Chl(A)

if f; is represented by f;;y on Xy. It is clear that this definition does not depend on the
choice of U. Define
Pr(f) = f.(X)" ® 1 € Chi"(A, L).

Let m; = 74, ®u, L be the automorphic representation of B* with coefficients in L. Let
7L = T ® Ty @ w3 be their triple representation of (B*)2. Then by equation 1.2.1 f — P(f)
defines a linar map:

P : 7, — Chi(A, L).

It is clear that this map is invariant under the action of the diagonal A(B*); thus it defines
an element
P; e Q(WA,L) XRr Chia(A, L)

where
‘@(WAL) = HOHIA(BX)(WAL, L)

Thus Pr(f) # 0 for some f only if (74 ) # 0.
By the following Theorem 1.4.1, &(m4,) is at most one dimensional, and it is one-
dimensional if and only if the central characters w; of m; satisfy

wl'MQ'LUg:l



and the ramification X(B) of B is equal to

1
(A L) = {places vof FF': e <§7TA,L,U> — _1} '

The next problem is to find a non-zero element a of &(my 1) if it is non-zero. It is more
convenient to work with 2 (m;) ® &(71) where 7, is the contragradient of 7 is by the
product AY of AY. Decompose 7, = ®, then we have decomposition Z(r;) = P (m,)
where the space & (m,) is defined analogously. We will construct element o, in & (7m,) ®
P (7,) for each place v of F by

ra L vy d ra ra ~
& F) = s o, GO FI, S0 T em e,

 G(2)2L(1/2,m,)
Conjecture 1.2.3. Assume wy - wsy - w3 = 1. For any f1 € ma and fy € Tav 1,

8Cr(2)°

m[/(l/lﬂm a(fi1, fo)

(Pr(f1), P(f2)) =

as an identity in L @ C.

Theorem 1.2.4. The conjecture is true under the assumption that B has at least two finite
place not split over F' and that m is unramified over the places which is split in B.

Remarks 1.2.1. 1. it is conjectured that the theorem is true without the assumption in
the theorem; we plan to treat other case in future;

2. the theorem implies that L'(1/2,7;) = 0 if and only if it is zero for all conjugates of o;

3. assume that o is unitary, then we take f = f. The Hodge index conjecture implies
L'(1/2,7) > 0. This is an consequence of the Riemann Hypothesis.

1.3 Application to adjoint and exterior products
1.3.1 Adjoint product
Assume that A; = Ay and that M; and M, are identified in L via the dual map M; — M.
Let ¢ : Ay — A, be any polarization. Define an involution s € End”(A; x Aj) by
s(@,y) = (¢7'y, o(x)).

Then s induced an involution on Ch{*(A) which does not depend on the choice of ¢. De-
compose Cht(A) as a direct sum of + eigen spaces. The Beilonson-Bloch conjecture in this

case gives
dim Ch{*(A, L)~ = ordy—y /s L(s, Ad(A;)? K A3, L),

and
dim Ch{*(A, L)" = ord,_1/2L(s, A3, L).
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In view of the usual BSD
dim Ag(F)L = Ordszl/QL(Sa A37 L)a
we will define a homomorphism:

a: Chi*(A, L)Y — A(F)p,

1 cg—
2 oPal2 M P1)) € Ch(As) ™" = As(F)y.
One can prove that the Neron—Tate height paring are related by:
(21, 29) = 2{avz1, z9).

For f € m, we denote
Pi(f) == aPy(f) € A3(F)y.

Since & (7) := Homgx (7, C) is one dimensional, it is given by a sign €(s) = +1. By work
of Prasad [30],
€(s) = e(Ad(m) ® 7).

Corollary 1.3.1. Assume that 7y = w5 and €(s) = —1, then e(mw3) = 1 and
Py(f) € Chi*(A,L)",  fenm
and for any f1 € w, fy €T,

(Pr(f1), PL(f2)) = SCFS()LL;Z;)’ 7T3)L’(1/2,Ad7r1 ® T3).

Corollary 1.3.2. Assume that 7y = my and €(s) = 1, then e(mw3) = —1 and
Py(f) € Chi(A,L)",  fenx
and for any f € m and fy €T,

_ 4CF(2)2L(1/2, Ad7T1 &® ’/Tg)

(PR (1), PA(f)) L(1, 7, ad)

L'(1/2,ms)a(fy, f2)-

Here is a simple formula for PZ‘?’ (f) for f = (f1, f2, f3) whose first two components satisfy

fa = o f1 where p : Ay — A} = A is a polarization associated to an ample and symmetric
line bundle .Z"
oa)=TiL © 2.

In this case

P(f) =Y (fsefier(L)) € Ay(F)r
where the sum is the group addition map Chg(As), — A3(F)y.
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1.3.2 Symmetric product

Finally we assume that A; = Ay = A3 with M; = L and with trivial central characters. Then
the permutation group .% acts on A% and then Ch{*(A) and decompose it into subspaces
according three irreducible representations of .73

Chi"(A, L) = Chi*(A, L)" @ Chi"(A, L)” @ Chi(A, L)°

where Ch{(A, L)* is the space of invariants under .#3, and Ch"(A, L)~ is the space where
Sy acts as sign function, and Ch{*(A, L)° is the space where .% is acts as a direct sum of
the unique 2 dimensional representation. Then the Beilinson—-Bloch conjecture gives

dim Ch“(A, L)t =0
dim Ch%“(A, L)~ = ord,—yL(s, Sym>A,, L)
dim Chi*(A, L)° = 2ord,—; L(s, Ay, L).

The action of .3 on & (7) is either trivial or given by sign function. By Prasad’s theorem
we have:

Corollary 1.3.3. Assume that Ay = Ay = Az with trivial central character. Let L = M;.

1. If e(Sym®cy) =1 or e(oy) = —1, then

2. If ¢(Sym®) = —1 and €(0;) = 1, then
Pr(f) € Chy"(4),
and for any fi € m and fy €T,

_ 8(r(2)PL(1/2,m)?

/ 3
L1 ad) L'(1/2,Sym°m).

(PL(f1), Pu(f2))

1.4 Local linear forms over local fields

Let F' be a local field and E a cubic semisimple algebra over F'. More precisely, £ can be
taken as one of the following:

e FOFDF,
e ['d K for a quadratic field extension K of F', and

e a cubic field extension F of F.

11



Let B be a quaternion algebra over F'. Thus B is isomorphic to either the matrix algebra
M, (F) or the division quaternion algebra D (unique up to isomorphism). We define the sign
€(B) of B as 1if B ~ M,(F) and —1 if B ~ D. Let 7 be a admissible representation of B,
and o its Jacquet—Langlands correspondence on GLg(FE). Assume that the central character
w of 7 has trivial restriction to F™*

wlpx = 1.

Consider the space of linear functionals invariant under the subgroup B* of Bj:
P () :== Hompx (7, C).

By the following result of Prasad and Loke, this space is determined by the local root number

1
(o) := e(ﬁ,a,w otrg/p) € {£1}.
(The definition here does not depend on the choice of the non-trivial character i of F'.)

Theorem 1.4.1. [Prasad, Loke [, 27]] The space 2 (m) is at most one dimensional. More-
over it is non-zero if and only if
(o) = €(B).

Now assume that 7 is tempered or a local component of an irreducible unitary cuspidal
automorphic representation, then the following integration of matrix coefficients with respect
to a Haar measure on F'*\ B* is absolutely convergent by Ichino [10]:

(o) = /F L EOs D jeferor

This integration defines an element [ in & (7) ® Z(7) which is invariant under B* x B*,
i.e., an element in

gz(’ﬂ') X t@(%) = HOIIle x BX (ﬂ' X %, C)
One can show that this linear form is nonzero if and only if & () # 0. Moreover, we may
evaluate the integral in the following spherical case:
1. E/F and 7 are unramified, f and fare spherical vectors such that (f, f) =1;
2. the measure dg is normalized such that the volume of the maximal compact subgroup
of B* is one.
In this case, one can show that the integration is given by
¢e(2) L(1/2,0)
Cr(2) L(1,0,ad)
See Ichino [16, Lem. 2.2]. Thus we can define a normalized linear form
a€ P(m) A7)
Cr(2) L(1,0,ad)
o=
Ce(2) L(1/2,0)
If 7 is tempered and unitary then this pairing induces a positive hermitian form on Z(w).
We remark that the linear form depends only on a choice of the Haar measure on F*\B*.
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1.5 Global linear forms

Let F' be a number field with ring of adeles A and E a cubic semisimple algebra over F'. We
start with an irreducible (unitary) cuspidal automorphic representation o of GLy(Ag). In
[32], Piatetski-Shapiro and Rallis defined an eight dimensional representation rg of the L-
group of the algebraic group ResEGLy. Thus we have a Langlands L-series L(s, o, rg) which
we abbreviate as L(s, o) in this paper. When £ = F & F & F and 0 = 01 ® 03 ® 03, this
L-function is the Rankin type triple product L-function. When F is a field, the L-function
L(s,0) is the Asai L-function of ¢ for the cubic extension E/F. Without confusion, we will
simply denote the L-function by L(s, o).
Assume that the central character w of ¢ is trivial when restricted to A*

CU|A>< =1.
Then we have a functional equation
L(s,0) =¢€(s,0)L(1 — s,0).

And the global root number €(1/2,0) € {£1}. For a fixed non-trivial additive character ¢
of F\A, we have a decomposition

€(s,0,) = H €(s, 04, 1Uy).

v

The local root number €(1/2,0,,1,) € {£1} does not depend on the choice of v,. Thus we
have a well-defined (finite) set of places of F"

Y=Av: €(1/2,0,,¢,) = —1.}

Let B be a quaternion algebra over A which is obtained from My (A) with My (F,) replaced
by D, if v € 3. Let 7 = ®,m, be the admissible representation of B}, such that m, is the
Jacquet—Langlands correspondence of o,. Define

P () := Homgx (m, C).

Then we have

P (1) = @, P ().

Fix a Haar measure db = ®@db, on A*\B* then we have integral of matrix coefficients «, for
each place v.
If ¥ is even then B is coherent in the sense that it is the base change a quaternion algebra
B over F"
B=B®rA.

In this case 7 is automorphic and the periods integrals over diagonal will define an element
P, € Z(m) and the Ichino formula will give an expression for (P, P;) in terms of L(1/2,0).
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If ¥ is odd, the B is incoherent in the sense that such a B does not exit. In this case,
€(1/2,0) = —1, the central value L(%, o) = 0 as forced by the functional equation, and we
are led to consider the first derivative L'(3,0). In this case m is no longer an automorphic
representation. Instead, heights of certain cohomologically trivial cycles will provide an
invariant linear form P, whose heights will be given in terms of L'(1/2,0).

We will need to impose certain constraints as follows:

1. F'is a totally real field.

2. E = F® F & F is split. We may thus write ¢ = 01 ® 05 ® 03 where each o; is a
cuspidal automorphic representation of GLs(A). In this case, the condition on the
central character of o can be rewritten as

wl'w2'w3:1.

3. For i = 1,2,3 and v|oo, all o;, are discrete of weight 2. It follows that the odd set ¥
must contain all archimedean places.

1.6 Ichino’s formula

Assume that the global root number is 1. Then |X| is even. In this case, B is the base
change B, of a quaternion algebra B over F', and 7 is an irreducible cuspidal automorphic
representation of By. Thus we may view elements in 7 and 7 as functions on B \Bj with
duality given by Tamagawa measures. As the central characters of 7 (resp. 7) is trivial when
restricted to A*, we can define an element P, € & () by periods integral:

P.(f):= b)db.
Gy B C

Here the Haar measure is normalized as Tamagawa measure. Jacquet’s conjecture says that
(. # 0 if and only if L(1/2,0) # 0. this conjecture has been proved by Harris and Kudla
[15] for the split case, Prasad and Schulze-Pillot [31] in the general case. A refinement of
Jacquet’s conjecture is the following formula due to Ichino:

Theorem 1.6.1 (Ichino [10]). For each fi € ™ and fy € T,

_ 1¢(?) L(1/2.0)
P(f1) - Px(f2) = 2¢(p(2) L(1, 0, ad)

a(f1, f2).

Here the constant ¢ is 3,2, and 1 respectvely if E = F@& F&F, E=F & K for a quadratic
K, and a cubic field extension E of F' respectively.

Here if the RHS use the measure db, on F*\ B}, then we require that db =[], db,.
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1.7 Strategy of proof

The strategy of proof of the height formula will be analogous in spirit to the proof of Gross-
Zagier formula [11]. Basically it contains the analytic and geometric sides and the comparison
between them. Instate of newforms theory, we will make use of representation of adelic groups
and linear forms in the same sprit of our recent work of Gross—Zagier formula [30].
First of all, we notice that our conjecture 1.2.3 is an identity between two liner functionals
in
P(r) @ P (1) C Hom(r @ 7, C).

The reduced norm on By defines an orthogonal form with values in Ay = A%. Thus we
have a Weil representation on R = G(SLy(Ag) x SO(Vg)) on the space .7 (Bg) of Schwartz
functions. We can define a Shimizu lifting

0: o@r—7mQT7
by a decomposition § = ®6, and a normalized local theta lifting in 2.1.2:
(1.7.1) O,: 0y RTy — Ty Q Ty.

Via Shimizu’s lifting, the height formula can be expressed as an identity of two functionals
El and 52 n
Homgr,(a,)(c @1, C).

For each /¢;, we will construct a kernel function
k; € Homgp, s (r, O (GLy(F)\GLa(4)))

to represent £ in the sense

o) = | o(a)kilg. 6)dg.
SLa2(E)\SL2(A)
Thus at the end, we need only to prove an identity k; = ks of two kernel functions.

The kernel function for analytic side is given by the derivative of the restriction of a
Siegel-Fisenstein series By the work of Garrett and Piatetski-Shapiro-Rallis. More precisely,
consider By as an orthogonal space over A via trace A — A. One can associate to ¢ €
(Bg) the Siegel-Eisenstein series E(s, g, ¢). Due to the incoherence, E(s, g, ¢) vanishes at
s = 0. We obtain an integral representation

L'(1/2,0)
_CF—(Q) Hm(@(@ ® @).

In this method we obtain E'(g,0, fo) as a kernel function. This kind of Siegel-Eisenstein
series has been studied extensively. In particular, its first derivative was firstly studied by

(1.7.2) /[G] (9,0, fo)p(g)dg =

Kudla in [21]. It is natural to consider its Fourier expansion:
E/(9707f<13) = Z Eé‘(gaoaflb)
TeSymgs(F)
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For nonsingular 7' € Sym,(F'), we have an Euler expansion as a product of local Whittaker
functions (for Re(s) > 0)

ET(gv S, fcb) = HWT,U(ga‘S?(I))'

It is known that the Whittaker functional Wy, (g, s, ®) can be extended to an entire func-
tion on the complex plane for the s-variable and that Wr,(g,0, ®) vanishes if 7' cannot be
represented as moment matrix of three vectors in the quadratic space B,. This motivates
the following definition. For T' € Symg(F),., (here “reg” meaning that T is regular), let
Y¥(T') be the set of places over which T is anisotropic. Then ¥(7") has even cardinality and
the vanishing order of Er(g,s,®) at s is at least

|{v : T is not representable in B,}| = |XUX(T)| — [ NX(T)|.

Since || is odd, E7(g,s,®) always vanishes at s = 0. And its derivative is non-vanishing
only if ¥ and 3(T") is nearby: they differ by precisely one place v, i.e., only if ¥(T") = 3(v)

with
() = Y\ {v} 1fv€§?
Y U{v} otherwise

Moreover when ¥(7') = ¥(v), the derivative is given by

Er(9,0,@) = [ [ Wraw(guw: 0, ®u) - Wi, (90, 0, o).
wWH#v

We thus obtain a decomposition of E’(g, 0, ®) according to the difference of ¥ and X:

(1.73) E'(9.0.9) = > El(9,0,2) + Ely,(9.0,)
where
(1.74) El(g.0,®)= Y Ej(g,0,9)
ZT:E(’U)
and
E;ing(g707 (D) = Z E’T(g,(), q))
T,det(T)=0

Moreover, the local Whittaker functional Wz (g, 0, ,) is closely related to the evaluation
of local density. In the spherical case (i.e., B, = Ms(Fy) is split, ¢, is unramified, ®, is the
characteristic function of the maximal lattice My(&,)?), Wi, (g,0, ®,) has essentially been
calculated by Katsurada ([19]).

Now two difficulties arise:

1. The vanishing of singular Fourier coefficients (parameterized by singular 7" € Syms(F))
are not implied by local reason. Hence it is hard to evaluate the first derivative E. for
singular 7.
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2. The explicit calculation of Wy, (e, 0, ®,) for a general ®, seems to be extremely com-
plicated.

The solution is to utilize the uniqueness of linear form (note that we have a lot of freedom
to choose appropriate ®) and to focus on certain very special ®,. More precisely, define the
open subset B3 reg Of B3 to be all x € B3 such that the components of z generates a non-
degenerate subspace of B, of dimension 3. Then we can prove

L. If ®, is supported on Bj ., for v € S where S contains at least two finite places, then
for singular 7" and g € G(AS ), we have

EL(g,v,®) = 0.

2. If the test function ®, is “regular at a sufficiently higher order” (see Definition 6.2.1),
we have for all non-singular 7" with X7 = ¥(v) and g € G(A"):

E7(g,0,®) = 0.

To conclude the discussion of analytic kernel function, we choose ®, to be a test function
“regular at a sufficiently higher order” for v € S where S is a set of finite places with at
least two elements such that any finite place outside S is spherical. And we always choose
the standard Gaussian at all archimedean places. Then for g € G(A¥), we have

(1.7.5) E'(g,0,®) ZE’ (9,0,®)

where the sum runs over v outside S and

(1.7.6) E(g.0,2)= > Ep(g,0,0)

T,5(T)=%(v)

where the sum runs over nonsingular 7.
Moreover, we can have a decomposition of its holomorphic projection, denoted by E’(g, 0, ®) -
And it has a decomposition

(177) E 9,0 (I) hol = Z Z E&"(gaovq)”wl

v TX(T)=

where we only change E7.(g,0,®) to E/.(g,0, ®)ny when 3(T") = X(v) for v an archimedean
place. So similarly we may define E! (g, 0, ®)por.

This yields an analytic kernel function of the central derivative L'(1,0) for all three
possibilities of the cubic algebra E.

Now we describe the geometric kernel function under the further assumptions appeared
in the beginning of the last subsection. The construction of geometric kernel function is
similar to that in the proof of Gross-Zagier formula. More precisely, for & € .#(By) we
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can define a generating function of Hecke operators, denoted by Z(®) (see Section 3). Such
generating functions have appeared in Gross-Zagier’s paper. Works of Kudla-Millson and
Borcherds first relate it to the Weil representation. A little extension of our result ([35])
shows that Z(®) is a modular form on G Ly(A). Thus it is natural to consider the generating
function for a triple ® = ®;®; € .7 (B}) fixed by U° for a compact open U C Bf valued in
the correspondences on Y;}. The kernel function for geometric side is given by

Z(9,®,A¢) == (Aug, Z(9, P)Ape), g€ GL3(A)

where A is the projection of the diagonal Ay of Y;3 in Ch?(Yy)®.
Now the main ingredient of our proof is the following weak form of an arithmetic Siegel—
Weil formula:

—E'(9,0,0) = Z(g,®,A¢), g€ G(A)

“—"n

where “=" means modulo all forms on G(A) that is perpendicular to o. Note that this is
parallel to the classical Siegel-Weil formula in the coherent case

E(g,0,®) =2I(g,®).

I —i

The replacement of “=" by should be necessary due to representation theory reason.
To make local computation, we will define arithmetic generating series Z(g;, ®;) with
generic fiber Z(g;, ®;) on the product Yy x Yy and their triple product

Z(g,®,A) = Z(g1, ®1) - Z(ga, ®3) - Z(gs, Bs)

and show that
Z(g,®,A¢) = Z(g, P, A).

It follows that we have a decomposition to a sum of local heights:

Z(g,®,0) =Y Z(g,®,A),

where the intersection takes place on certain “good” model of Y.
Under our assumption that for v ¢ ¥, U, is maximal and the Shimura curve Yy has good
reduction at v. The work of Gross-Keating ([10]) essentially implies that for g € G(A®):

Z(g,®,A), = —FE!(g,0,P).

And when v|oo, using the complex uniformization we may construct the Green current.
And we prove that the contribution from the main diagonal to the archimedean height in
the intersection is equal to E! (g, 0, ®)pe (1.7.7).

Finally, when v is a finite place in 3, then we use Cerednik—Drinfeld uniformization to
show that

Z(g,®,A), =0.

Under our assumption of ®, we have the same conclusion that £ = 0 in this case.
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1.8 Notations

In the following, k denotes a local field of a number field.

e Normalize the absolute value |- | on k as follows:
It is the usual one if £ = R.
It is the square of the usual one if £ = C.

If k is non-archimedean, it maps the uniformizer to N=!. Here N is the cardinality
of the residue field.

e Normalize the additive character v : k — C* as follows:
If k = R, then 1(x) = ™.
If k = C, then () = 'R,

It k is non-archimedean, then it is a finite extension of @Q, for some prime p. Take
Y = g, otry/q,. Here the additive character g, of Q, is defined by v, (v) = e~ 2miua)
where ¢ : Q,/Z, — Q/Z is the natural embedding.

e For a reductive algebraic group G defined over a number field F' we denote by Zg its
center and by [G] the quotient

G] = Za(A)G(F)\G(A).

e We will use measures normalized as follows. We first fix a non-trivial additive character
1 = ®u1b, of F\A. Then we will take the self-dual measure dx, on F, with respect
to 1, and take the product measure on A. We will use this measure for the standard
unipotent subgroup N of SLy(F) and GLo(F). We will take the Haar measure on
F* as d*x, = (p,(1)|2,|'dz,. Similarly, the measure on B, and B are the self-dual
measure dx, with respect to the character ¥, (tr(zy*)) and d*z, = (g, (1)|v(z,)|2dz,.
If B is coherent: B = B, then we have a decomposition of the Haar measure on
AX\B*: dzr =[] dz,. We will choose the Tamagawa measure on SLy(Ag) defined by
an invariant differential form and denote the induced decomposition into a product
dg =[], dg,. Then we choose a decomposition dg = [[, dg, of the Tamagawa measure
on G(A) such that locally at every place it is compatible with the chosen measure on
S L2(Ev)

e For the non-connected group O(V'), we will normalize the measure on O(V)(A) such
that
vol([O(V)]) = 1.

e For the quadratic space V = (B, v) associated to a quaternion algebra, we have three
groups: SO(V), O(V) and GSpin(V'). They can be described as follows.

GSpin(V) = {x,y) € B* x B*|v(z) = v(y)}.
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SO(V) = GSpin(V)/A(F¥).

Let po be the group of order two generated by the canonical involution on B. Then
we have a semi-direct product

O(V) =SO(V) X ps.
Moreover, by the description above, we have an isomorphism
GSpin(V) = B* x B,
where B! is the kernel of the reduced norm:
1—-B'—-B* 5 F* =1
And similarly, we have an isomorphism
SO(V) = B*/F* x B,

Then for a local field F', we will choose the measure on B!, B*/F* induced from the
measure we have fixed on F'* and B* via the exact sequences. In this way, we also
get a Haar measure on SO(V'). We normalize the measure on ps(F) = {£1} such that
the total volume is 1. The measure on O(V) is then the product measure.

G = GLy p := {9 € GLy(E)|det(g) € F*}.

We will also identify Sym, with the unipotent radical of the Siegel parabolic of Spg:

n(b):(l ll’) b€ Sym,(A).

And we denote [Syms] = Syms(F)\Syms(A). And we use the self-dual measure on
Syms(A) with respect to the additive character i o tr of Syms(A). We denote by
Symg(F'),e, the subset of non-singular elements. For a non-archimedean local field f,
denote by Sym(&r)Y the dual of Sym, (&) with respect to the pairing (x,y) — tr(zy).
For X, Y € Sym4(F), we write X ~ Y if there exists g € GL3(OF) such that X = ¢gYg.
For F' = R, we have similar notation but with g € SO(3).
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2 Weil representations and Ichino’s formula

In this section, we will review Weil representation and apply it to triple product L-series.
We will follow work of Garrett, Piateski-Shapiro—Rallis, Waldspurger, Harris—Kudla, Prasad,
and Ichino etc. The first main result is Theorem 2.3.1 about integral representation of the
triple product L-series using Eisenstein series from the Weil representation on an adelic
quaternion algebra.

When the sign of the functional equation is +1, then the adelic quaternion algebra is
coherent in the sense that it comes form a quaternion algebra over number field, then our
main result is the special value formula of Ichino Theorem 2.4.3.

When the sign is —1, then the quaternion algebra is incoherent, and the derivative of
the Eisenstein series is the kernel function for the derivative of L-series, see formula (2.3.7).
We will study the non-singular Fourier coefficients T. We show that these coefficients are
non-vanishing only if 7" is represented by elements in B if we remove one factor at a place v,
see formula (2.5.2).

2.1 Weil representation and theta liftings

In this subsection, we will review the Weil representation as its its extension to similitudes
by Harris and Kudla, and normalized Shimuzu lifting by Waldspurger.

Extending Weil representation to similitudes

Let F be a local filed. Let n be a positive integer and let Sp,,, be the symplectic group with

0 1,
-1, O
F?" = " @ F", we have two subgroups of Spay:

M:{m(a)z(g tao_l)
N:{n(b):(é f)

Note that M, N and J generate the symplectic group Spa,.
Let (V, (-,-)) be a non-degenerate quadratic space of even dimension m. Associated to V'
there is a character xy of F'*/F*? defined by

the standard alternating form J = < ) on F?". With the standard polarization

a € GLn(F)}

and

be Symn(F)} :

xv(a) = (a,(=1)"™2 det(V))r

where (-,-)r is the Hilbert symbol of F' and det(V) € F*/F*? is the determinant of the
moment matrix Q({z;}) = 3((2;, ;)) of any basis x1, ..., Z,,, of V. Let O(V) be the orthogonal
group.
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Let . (V™) be the space of Bruhat-Schwartz functions on V" = V & F" (for archimedean
F', functions corresponding to polynomials in the Fock model). Then the Weil representation
r =1y of Spa, x O(V) can be realized on .(V") by the following formulae:

r(m(a))®(z) = xv(det(a))| det(a)| / (a),

r(n(b))®(x) = (tr(bQ(x)))®(x)

and R
r(J)®(z) = v2(z)

where ~ is an eighth root of unity and ® is the Fourier transformation of ®:
B) = [ 203 iy
jal p

for = (z1,...,x,) and y = (Y1, ..., Yn)-
Now we want to extend r to representations of groups of similitudes. Let GSp,, and
GO(V) be groups of similitudes with similitude homomorphism v (to save notations, v will

be used for both groups). Consider a subgroup R = G(Sp,,, x O(V)) of GSp,, x GO(V)
R ={(g,h) € GSpy, x GO(V)|v(g) = v(h)} .

Then we can identify GO(V') (resp., Sp,,) as a subgroup of R consisting of (d(v(h)), h) where

(resp. (g,1)). We then have isomorphisms

where GSp,, is the subgroup of GSp,, with similitudes in v(GO(V)).
We then extend 7 to a representation of R as follows: for (¢g,h) € R and & € .7 (V"),

r((g.h))® = L(h)r(d(v(g) ")g)®

where

L(R)®(z) = [v(h)|p * (h~"2).

For F' a number field, we patch every local representation to obtain representations of
adelic groups. For ® € .(V,) we can define a theta series as an automorphic form on R(A):

0(g.h,®) =Y r(g,M)®(x),  (9,h) € R(A).

zeV
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Theta lifting: local and global

In this subsection, we consider the case when n = 1 and V' is the quadratic space attached to
a quaternion algebra B with its reduced norm. Note that Sp, = SLy and GSp, = GL,. And
GLj (F) = GLy(F) unless F = R and B is the Hamilton quaternion in which case GLj (R)
is the subgroup of GLy(R) with positive determinants.

We first consider the local theta lifting. For an infinite-dimensional representation o of
GLy(F), let m be the representation of B* associated by Jacquet-Langlands correspondence
and let 7 be the contragredient of 7. Note that we set m = 0 when B = Mjys.

We have natural isomorphisms between various groups:

1—-G,, > B*xB*—=GSO(V) =1
where (b1, by) € B* x B* acts on B via (by,by)x = byaby ',
GO(V) =GSO(V) x {1, ¢}
where ¢ acts on B via the canonical involution ¢(z) = z* and acts on GSO(V') via ¢(by, by) =
(b5, )7, and
R ={(h,g)) € GSO(V) x GLa|v(g) = v(h)}.

Proposition 2.1.1 (Shimizu liftings). There exists an GSO(V') ~ R'/SLy-equivariant iso-
morphism

(2.1.1) (60 @T)sp, =7 RT.

Proof. Note that this is stronger than the usual Howe’s duality in the present setting. The
result essentially follows from results on Jacquet-Langlands correspondence. Here we explain
why we can replace GO(V') by GSO(V'). In fact, there are exactly two ways to extend an
irreducible representation of GSO(V) to GO(V'). But only one of them can participate the
theta correspondence due to essentially the fact that the sign of GO(V') does not occur in
the theta correspondence unless dim V' < 2. O

Let #, = #¥ be the ¢-Whittaker model of ¢ and let W, be a Whittaker function
corresponding to ¢. Define

S:SV)e#, —C

2 .
L(1,0,ad) /N(F)\SLQ(F) (9) ()W (g)dy.

See the normalization of measure in “Notations”. The integral is absolutely convergent by
Lemma 5 of [31] and defines an element in

(@, W) > S(®, W) =

HOHISL2><B>< (7” ® o, C)
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where B* is diagonally embedded into B* x B*. The factor before the integral is chosen so
that S(®, W) = 1 when everything is unramified. Since

Homgy,«px (r ® 0,C) ~ Hompx ((r ® 0)sr,, C) ~ Hompgx (7 ® 7, C)

and the last space is of one dimensional spanned by the canonical B*-invariant pairing
between 7 and its (smooth) dual space 7, we may define a normalized R'-equivariant map 6

(2.1.2) 0:00r >R,

such that
S(@, W) = (f1, f2)
Where f1 X fQ = Q(CI) ® W)

Now in the global situation where B is a quaternion algebra defined over a number field,
we define the normalized global theta lifting by

¢(2)

b2 ®p)(h) = 2L(1, 0, ad)

/ o(919)8(019, 1, ®)dgr,  (hg) € R(A).
SLa(F)\SLa2(A)

Proposition 2.1.1. With definition as above, we have a decomposition 0 = @) 0, in
HOHIR/(A)(T RQo,mTR %)

Proof. 1t suffices to prove the identity after composing with the tautological pairing on 7 X 7.
More precisely, let f1,®fy € T ® T be an element in a cuspidal representatio, ® € .7 (V,)
and ¢ € o so that

[1i® fo=0(Q® ).

Assume everything is decomposable, we want to compute (f1, fo) in terms of local terms in
P=QP,cr=Qr, @=Qp, €o=QRa0,.

Then what we need to prove is

(f1 f2) = [ [ S(@w, 00).

This follows from a result of Waldspurger (see. [16, Prop. 3.1]). Note that we have different
normalizations of § and the map S (which is essentialy the map Bf in [10]).
U

2.2 Trilinear form

In this subsection, we review a tri-linear form following Garrett, Piatetski-Shapiro and Rallis,
Prasad and Loke, and Ichino.
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Consider the symplectic form on the six-dimensional space E?:
EB*or? M E S F

(z,y) ® (', y) = trg/p(zy — ya’).

where the first map is by taking wedge product and the second one is the trace map from F
to F. Let GSpg be the group of similitudes relative to this symplectic form. In this way, we
see that elements in GLy(E) with determinants in F* belong to GSpg. So we define

G = {g € GLy(E)|det(g) € F*} .

and identify it with a subgroup of GSpy.
Let I(s) = Inngpﬁ)\s be the degenerate principle series of GSpg. Here, P is the Siegel
parabolic subgroup:

P = {( 8 Vt;,l ) € GSpgla € GLp(E),v € FX}

and for s € C, A is the character of P defined by

a * S —Oo8
A (5 s )) =l

For an irreducible admissible representation o of G, let W, = WY be the 1)-Whittaker
module of o.
There is a G(Spg x O(Bp))-intertwining map

(2.2.1) i1 S(Bp)— I10)

P — fq><,0)

where for g € GSpy,
fa(9,0) = [v(g)[*r(d(r(9)) " 9)®(0).

We extend it to a standard section fgp s of I(s) and called the Seigel-Weil section associated
to P.

Let II(B) be the image of the map (2.2.1). Similarly, for B’, we can define II(B’) for the
unique quaternion algebra B’ over F' not equivalent to B.

Lemma 2.2.1. For nonarchimedean F,
(2.2.2) I1(0) =1I(B) & II(B).

Proof. See Harris-Kudla [15], section. 4, (4.4)-(4.7) and Kudla [20], IL.1. O
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Now we treat the case when F' is archimedean.
If F = C, then one has only one quaternion algebra B over F'. In this case we have

(2.2.3) 1(0) = II(B).

This is proved in Lemma A.1 of Appendix of Harris-Kudla [15].
If F = R, then one has two quaternion algebras, B = Msyo and B’ the Hamilton
quaternion. The replacement of Lemma 2.2.1 is the following isomorphism Harris—Kudla

([19], (4.8))

(2.2.4) I1(0) =1I(B) & II(B")

where II(B") = I1(4,0) & I1(0,4) where the two spaces are associated to the two quadratic
spaces obtained by changing signs of the reduced norm on the Hamilton quaternion.

Local zeta integral of triple product

The local zeta integral of Garrett ([7]) and Piatetski-Shapiro and Rallis ([32]) is a (family
of) linear functional on I(s) x W, defined as

265wy = [ LW, (V) € 1(5) x W

See the normalization of measure in “Notations”. Here, Ny is a subgroup of G defined as

N_{<é ll’>|beE,trE/F(b)_o},

and n € GSpq is a representative of the unique open orbit of G acting on P\GSps. The
integral is absolutely convergent for Re(s) > 0. And the integral Z(0, f, W) is absolutely
convergent when the exponent A(o) < 1. This condition holds if o is a local component of a
cuspidal automorphic representation by the work of Kim—Shahidi [20]. If f is the image of
a d e .7(B), we also write Z(s, f, W) as Z(s,®,W).

Proposition 2.2.2. For o with A(o) < %, Z(f,W) :=Z(0, f,W) defines a non-vanishing
linear functional on I(0) x W,.

Proof. See [32, Prop. 3.3] and [18, pp. 227]. But we will reprove this later in the proof of
Theorem 6.3.1. ]

Local tri-linear forms

Let 7 be an irreducible admissible representation of B with trivial restriction on F*. Let
o be the Langlands correspondence to GLy(E). Assume that A(o) < 1/2.

26



Proposition 2.2.3 (Ichino [10]). Under the normalization of 6 as in 2.1.2, we have

2(0.) = (-0 ELE o 0 ).

Proof. This is Proposition 5.1 of Ichino [16]. Notice that our choice of the local Haar measure
on [\ B* differs from that of [16] by (#(2). O

Proposition 2.2.4. Assume that 7 is unitary.

1. One has the following positivity I(f, f) >0 for f € x.

2. Moreover, the following are equivalent:

(a) m(m) = 1.
(b) Z does not vanish on o @ I1(B).

(c) I does not vanish on .

Proof. The first one follows essentially from a theorem of He [I7]. We need to prove the
second one. Obviously, ¢) = a). The previous proposition implies that b) < ¢). We are left
to prove a) = b). Let B’ be the (unique) quaternion algebra non-isomorphic to B and 7’ the
Jacquet—Langlands correspondence on (B%)* of 0. By the dichotomy, Hom g« (7',C) = 0,
and thus Z = [ = 0 identically for B’. First we assume that F' is non-archimedean. Then by
the direct sum decomposition /(0) = [I(B)®II(B) and the non-vanishing of Z on I(0)®o, we
conclude that Z does not vanish on II(B) ® 0. If F is archimedean, we only need to consider
Fisreal. The assertion is trivial if B is the Hamilton quaternion since then B*/F* ~ SO(3)
is compact. We assume that B = My, r. Then one can use the same argument as above. [

2.3 Integral representation of L-series

In this subsection, we review integral representation of triple product L-series of Garrett,
Piatetski-Shapiro and Rallis, and various improvements of Harris—-Kudla. Let F' be a number
field with adeles A, B a quaternion algebra over A, E a cubic semisimple algebra. We write
Bg := B ®r E the base changed quaternion algebra over Ag := A ®p F.

Eisenstein series

For ® € .(Bg), we define
fo(g,s) =1(g)2(0)As(g)
where the character \; of P defined as

As(d(v)n(b)m(a)) = [v]~*| det(a)|*".

and it extends to a function on GSpg via Iwasawa decomposition GSpy = PK such that
As(g) is trivial on K. It satisfies

fold()n(b)m(a)g, s) = [v]* "] det(a)[***fo(g, 5).
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It thus defines a section, called a Siegel-Weil section, of I(s) = Inngpﬁ(As). Then the
Siegel-Fisenstein series is defined to be

E(gaqu)): Z f<1>(/797$)'

YEP(F)\GSpg(F)

This is absolutely convergent when Re(s) > 2. It extends to a meromorphic function of
s € C and holomorphic at s =0 ([21, Thm. 2.2]).
For T € Sym,(F'), we define its T-th Fourier coefficients to be:

(2.3.1) Er(g,s,®) = / E(n(b)g, s, &) (—Tb)db.

[Symj]

(cf. “Notations” and we have shorten ¢ (T") for ¢ (tr(7T')) without confusion.)
Suppose ¢ = ®,9P, is decomposable. When T' is non-singular, we have a decomposition
into a product of local Whittaker functions

ET(g; S, (I)) == H WT,U(.gm S, (I)v)a
where the local Whittaker function is given by

Wira(go. 0, By) = / fa(wn(B)g, $)(~Tb)db

Symg (Fy)

w= (_13 13) |

By [21, Prop. 1.4], for non-singular 7', the Whittaker function Wr,(g., s, ®,) has an entire
analytic extension to s € C. Moreover, under the following “unramified” conditions:

where

e v is non-archimedean, T is integral with det(T) € Oy, ,
e The maximal ideal of F, on which 1, is trivial is OF,,
e VU, has a self-dual lattice A and ®, is the characteristic function of A,,

e g, € K, the standard maximal compact subgroup of GSp(F}),
we have [21, Prop. 4.1]:

WT,v(gvy S, (I)v) = CFU(S + 2>_1§Fv (28 + 2)_1
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Rankin triple L-function

Let o be a cuspidal automorphic representation of GLy(Ag). Let 7 be the associated to
Jacquet-Langlands correspondence of o on By. Let w, be the central character of . We
assume that

(2.3.2) Welyx = 1.
Define a finite set of places of F’

(2.3.3) (o) = {v|e(crv, %) _ —1}.

Define the zeta integral as
(234) 20.6.9) = [ Flo.5,9)e(o)g
G

where [G] = A*G(F)\G(A).

Theorem 2.3.1 (Piatetski-Shapiro-Rallis [32]). Assume that & = @, is decomposable.
For a cusp form ¢ € o and Re(s) > 0 we have an Euler product

L(s+1%0)
2.3.5 ) Z(8, Dy, py) = 2’ D,, w0,
( ) S 790 H S, 90 CF(28+2)CF(4S+2 Has 80)

where

Cr, (25 + 2)(p, (45 + 2)
L(s+3,0,)

O_/(S, (Dvawcpu) = Z(S,(I)m%)

which equals one for almost all v.

For ¢, a local component of an irreducible cuspidal automorphic representation, by Kim-
Shahidi’s work we have A(o,) < 1/2. Hence the local zeta integral is absolutely convergent
for all v at s = 0. At s = 0, the local zeta integral has already appeared earlier in this paper:

Z((I)vaW%) = / f<1>u75(779)W%(9)d9'
FXNo\G

This constant is non-zero only if €(B,) = €(0, 3). By 2.2.3, the normalization local constant
becomes

(2.3.6) (0, D, 0,) = (—1)B (R (2)m(0(2, © ¢,).

Thus the global Z(®,p,1/2) # 0 only if ¥(B) = (o) and both of them have even
cardinality. In this case we have an identity:

L(3,0)
(2.3.7) / E(g,0,®)p(g)dg = —2 m(0(Py, ¢u))
©) Cr(2) H
If ¥ =3(0)isodd, L(1/2,0) = 0. We have the following representation for the derivative:
L'(3,0)
2.3.8 / E'(g,0,2)¢p(g)dg = ——= m(0(®y, pu))
(2.3.8) [G]( )#(9) <F<2)1:[((
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2.4 Ichino’s formula

In this subsection, we review a special value formula of Ichino. We assume that ¥ is even.
Let B be a quaternion algebra with ramification set X. We write V' for the orthogonal space

(B,q).

Siegel-Weil for similitudes

The theta kernel is defined to be, for (g,h) € R(A),
0(g, b, ®) = Y r(g,h)®(x).
r€BE

It is R(F)-invariant. The theta integral is the theta lifting of the trivial automorphic form,
for g € GSpg (A),

I(g,®) = / 8(g, huh, ®)dh
[O(BE)]

where hy is any element in GO(Bpg) such that v(h;) = v(g). It dees not depend on the choice
of hy. When B = Mj,5 the integral needs to be regularized. The measure is normalized
such that the volume of [O(Bg)] is one.

I(g, ®) is left invariant under GSp¢ (A) N GSpg(F) and trivial under the center Zggy, (A)
of GSpg.

The following Siegel-Weil formula can be found [15, Thm. 4.2].

Theorem 2.4.1 (Siegel-Weil). E(g, s, ®) is holomorphic at s =0 and
(2.4.1) E(g,0,®) = 2I(g,®).

To eliminate the dependence of the choice of measure on O(V)(A), we rewrite it as
(2.4.2) E(g,0,®) = 2(vol([O(V)])) (g, ®).

Now we deduce a formula for the T-th Fourier coefficient of the Siegel-Eisenstein series.

Corollary 2.4.2. Assume that V is anisotropic and det(T) # 0. Then for g € GSp*(A) we
have
E(g.0,8) = 2vol([0(V).,) | g, (s ),
O(V)(A)/O(V)xq (A)
where h € GO(V4) has the same similitude as g, xo € V(F') is a base point with Q(x¢) =T,
and O(V),, >~ O(1) is the stabilizer of xy.
)~

Proof. g1 = d(v(g

Er(g,0,) :2/[3 ]¢(—Tb)](n(b)g, )b

=2 —Tb) / Z d(v(g) " n(b)g)®(h~"hi a)dhydb.

[Sym3] zGV

1g, We obtain by Siegel-Weil for similitudes:

30



Note that d(v(g)~')n(b)g = n(v(g)b)d(v(g)~')g. We thus have

r(d(v(g)" n(b)g)@(h~ hy @) = Y (v(9)bQ(h™ 2))r(g) (b~ hi ' w) = Y (bQ(x))r(g1) ®(h ™ hy ).

Since [O(V)] is compact, we may interchange the order of integration. Then the integral is
zero unless T = Q(z). Since T' is non-singular, by Witt theorem, the set of x € V(F') with
Q(z) = T is either empty or a single O(V')(F')-orbit. Fix a base point xy. Then the stabilizer
O(V),, of xq is isomorphic to O(W) for the orthogonal complement W of the space spanned
by the components of xy. We now have

Er(s0.0) =2 [ S () )y
OV Se0(V)(F)/0(V)ay (F)
— 2vol([O(V).,]) / r(g1)®(h~ hyo)dhs.
O(V)(A)/O(V)ay (A)

This completes the proof. O]

We now define for non-singular T’

(2.4.3) Ir(g,®) = 2V01([O(V)$0])/ (g, h)®(hy  zo)dh;.
O(V)(A)/O(V)ay (A)

Or equivalently, let Q7 be the set of elements « with Q(z) = T and we may endow Q7(A)
an O(V)-invariant measure denoted by pr(x) by identifying with O(V)(A)/O(V ), (A) - (.
So we have

Ir(g.®) = 2v0l([O(V)s, ) / (g W)()dpir (x).

Qr(A)

We also do so locally to define an O(V')-invariant measure to define

Lr(ge, @) / (o o) B () djiro ()
Qr(Fy)

and we then have

IT(97 (I)) = 2V01([O(V):L‘0]) H ITﬂ)(gm (I)v)a

when ¢ = ®,9P, is decomposable.

We may identify it with us as an algebraic group. and therefore O(V) = SO(V) x ps
(cf. Notations) where ps C O(V') is generated by the canonical involution on the quaternion
algebra. When 7' is non-singular, it is easy to see that SO(V) is surjective onto O(V')/O(V )4,
We then may choose a measure on O(V)(A) such that it is the product measure of the
Tamagawa measure on SO(V')(A) and the measure on ps(A) such that

vol(uz(A)) = 1.
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Since the Tamagawa number of SO(V) is 2, we have
vl([O(V)]) = Svol(SO(V)(FNO(V)(A)) = Lvol([SO(V)] vol(ua(4)) = 1.

Now we have

vol(pa(A)) 1

vol(pa(F)\p2(A)) = ——=== = -
2(F)[ 2
So we may rewrite
(244) IT(ga (I)> = HIT,v(gva(I)v)7
where the local factor is a certain orbital integral:
(245) [T,v(g'ua (I)v> = / (I)v(hl'o)dh
SO(V)(F)

Moreover, the Siegel-Weil formula implies that
(2.4.6) Er(g,0,®) = Ir(g, D).

For later use we also need what we may call a local Siegel-Weil.

Proposition 2.4.3. Suppose that T' € Syms(F,) is non-singular. Then there is a non-zero
constant k such that for all g, € GSpg(F,), ®, € . (V3)

WT,’U(Q”LH 07 (I)v> = K- IT,v(gva cI)v)

In particular, the functional ®, — Wr,(1,0,®,) is non-zero if and only if T is represented
by V..
Proof. 1t suffices to prove the statement for g, = 1. Consider the space of linear functionals
¢ on .#(V2?) that satisfy

((r(n(b))®y) = (T)L(Dy).
Then by [21, Prop. 1.2], this space is spanned by ®, — I, (1, ®,) (whose definition depends
on the normalization of the measure duz,). Since ®, — Wr,(1,0,®,) also satisfies this

relation, it defines a multiple of the linear functional I7,(1,-) above. The multiple can be
chosen to be non-zero by [21, Prop. 1.4 (ii)]. O

Special value formula

Theorem 2.4.4 (Ichino [10]). Let dg =[], dg, be the Tamagawa measure on B}, \ By . For
f = ®va e ﬂ—yf — ®Uf'u E :ﬁ:, we have

PANPAD) = 3 2D 2Dy ]

Here the constant ¢ is 3,2, and 1 respectively if E = F& F®&F, E=F® K for a quadratic
K, and a cubic field extension E of I respectively.
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Proof. Without loss of generality we may assume that f ® fv: 0(® ® ¢) is the normalized
theta lifting. Then we have

PP = [ o0 ey

We recall some results of Harris—-Kudla. When the measures are normalized such that the
volume of [B*], [GO(Bg)] and [G] are equal to one, Harris-Kulda [15] proved that the seesaw
identity, the uniqueness of Prasad and Loke together give

[ ey = [ 16000
[BX]x[BX] (G]

where the constant

o1 @)

2¢ L(1,0, Ad)
is used in the normalization of the theta lifting. Together with Sigel-Weil formula, we have
[ e ydudy =50 [ E(g.0.8)p(0)ds
[B*]x[B*] G]
To allow us to change measures, we may rewrite the formula as
~ 41
PP = vol[B] (w0l (E1) 15 | (9.0, 9)plo)ds.
Now with our choice of Tamagawa measures, we have vol([B*]) = vol(|G]) = 2 and hence
PUNED = [ Blo.0.9)0(0)ds.
G

By (2.3.6), this implies that
L(3,0)

27

¢r(2)

(2.4.7) Po(f)Pr(f) = 1(6(®,)) = C [Tm(0.(20, 00))

v

Since 6 = ), 8,, plugging in the value of C' we obtain

_ . L(
PDPAP = 5 0 71y LT T

We have the following consequence on the special values of triple product L-series:

Theorem 2.4.5. Let F' be an number field and E/F be a cubic semisimple algebra. For any
cuspidal automorphic representation o of GLy(Ag) with central character w|yx = 1, we have
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1. (Positivity)
1
L(§,O') Z 0

2. (Jacquet’s conjecture) L(%,0) # 0 if and only if there exists (uniquely determined)
quaternion algebra B over F' such that the period

f(b)db # 0
[BX]

for some f € Ilp g, the Jacquet-Langlands correspondence of o.

Proof. These trivially follow from local results above and the global period formula

< f(b)db]?
M =C - L(%,U)Hav(fmfv)

(fv f)Pet
where C' > 0 is an explicit real number and « is proportional to I, by a positive multiple
such that «, = 1 for almost all v. O

Remark 2.4.1. The non-vanishing and positivity of the matrix coefficient integral is conjec-
tured to be true for all pair (SO(n), SO(n+1)) in the refinement of Gross-Prasad conjecture
by Ichino-Tkeda. One consequence of the non-vanishing and positivity (together with the
global period formula) is the positivity of the central value of L-function.

2.5 Derivatives of Eisenstein series

Fix an incoherent quaternion algebra B over A with ramification set ¥. We assume that B
has totally positive component B, at archimedean places. We consider the Eisenstein series
E(g,s, ®) for ® € #(B*). We always take @, to be standard Gaussian. In this case this
Eisenstein series vanishes at s = 0 as observed by Kudla [21, Thm. 2.2(ii)]. The vanishing
of a non-singular T-th Fourier coefficient is easier to see as we now discuss.

For T' € Symg(F),eq, let X(T') be the set of places over which T is anisotropic. Then
Y(T') has even cardinality. By Prop. 2.4.3, the vanishing order of the 7-th Fourier coefficient
Er(g,s, ®) at s = is at least

ISUX(T)| — 2N X(T)].
Also cf. [21, Coro. 5.3]. Since |X]| is odd, Ep(g,s, ®) always vanishes at s = 0. And its
derivative is non-vanishing only if ¥ and X(7") is nearby: they differ by precisely one place

v. Thus we define
b if >
() = \{v} ifve .
Y U{v} otherwise

When X(T') = X(v), the derivative is given by

E’_/Z“(g> 07 CI)) = H WT,w(gwa O, (I)w) . WJI“,U(gva 07 (I)v)
wHv
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We thus obtain a decomposition of E’'(g, 0, ®) according to the difference of ¥(7) and X:

(2.5.1) E'(g,0,®) =Y Ej(g.0,®) + El,,(9.0,®)

where

(2.5.2) Ey(9,0,®)= > Ep(g,0,9)
S(T)=%(v)

and

E;ing(g707q)) = Z E{p(g,O,(I))
T,det(T)=0

Weak Intertwining property

In the case where X is odd, the formulation ® — E’(g,0,®) is not equivariant under the
action of Spg(A). The following gives a weak intertwining property:

Proposition 2.5.1. Let o/ (G)q be the image of I1(By) under the map f — E(g,0, f) for
all quaternion algebra B over F'. Then for any h € G(A), f € 1(0), the function

g E'(gh,0, f) — E'(g,0,7(h)f) € .

Proof. Let a(s,h)(g) = a(s,g,h) = %(|%|5 —1),5 # 0. Then it obviously extends to an
entire function of s and it is left Py-invariant. Now for Re(s) > 0, we have

E(ghv S, f) - E(Q? S, T’(h)f) = SE(g7 S, a(87 h)T(h)f)

Now note that the section g — «(s, h)r(h)f(g)d(g)® is a holomorphic section of I(s). Hence
the Eisenstein series E(g, s, a(s, h)r(h)f) is holomorphic at s = 0 since any holomorphic
section of /(s) is a finite linear combination of standard section with holomorphic coefficients.
This implies the desired assertion.

Similarly one can prove the (¢, K)-intertwining if v; is archimedean. We skip this and
refer to [23]. O
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3 Gross—Schoen cycles and generating series

In this section we construct the geometric kernel function for ® € . (B?) where B is an
incoherent totally definite quaternion algebra over a totally real field F. We first give a
decomposition 3.1.1 for codimension 2 cycles on the triple curves and their Bloch-Beilinson
height pairing following the Gross—Schoen [13]. Then we define the direct and inverse limits
of these cycles on the product of Shimura curves as representation of Hecke operators. This
allows us to reformulate our main conjecture 1.2.3 in terms of Hecke operators acts on mod-
ified diagonal P of Gross and Schoen, see Conjecture 3.2.1. Then we review the generating
series of Hecke operators and its modularity on product of Shimura curves associate to B, see
Proposition 3.3.1 following our previous paper [35]. The main conjeture can then be further
reformulated as a kernel identity betweenthe derivative of Eisenstein series and geometric
kernel associate @, see Conjecture 3.5.1. Finally, we introduce arithematic Hodge classes and
arithemtic Hecke operators which gives a decomposition of the geometric kernel function to
a sum of local heights and singular parirings.

3.1 Cycles on triple product of curves
Decomposition of cycles

Let C; (i = 1,2, 3) be three smooth, projective, and connective curves over a number field k.
Let V = C; x Cy x C3. We want to study the group of codimension 2 cycles Ch*(V). First
of all, let us define a filtration as follows:

Ch*(V) D Ch*' (V) D Ch**(V)) D Ch**(V).
For Ch*!(V), we consider the class map
Ch*(V) — HY(V,Qy)

where the right hand side denotes the f-adic cohomology of V := V;. Let Ch*'(V) and
N?2(V) denote the kernel and image respectively then we have an exact sequence

0 — Ch*!(V) — Ch*(V) — N%*(V) — 0.

The space N?(V) has dimension predict by Tate’s conjecture.
For Ch**(V), we consider the Kunneth decomposition of

HY(V,Qp) = i jruma H' (C1) @ HI(Cy) @ HF(Cy).

It is immediate that a class in N?(V) is zero if and only if it has zero projection to all
H?(C; x C;). Thus we define a subgroup Ch*?(V') consisting of elements in Ch*(V) with 0
projection to all Ch'(V; x V). The quotient Ch*'(V')/Ch*?*(V) is isomorphic to the direct
sum of homologically trivial cycles on C; x C}:

@ Ch1<CZ X Cj)o = ®iPiCO(Ci)®2

1<j
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where we have used the identity
Ch'(C; x C;)° ~ Pic’(C;) @ Pic®(C}).

These groups are finitely generated and taking cared by the BSD conjecture on curves. See
Zhang [39], Lemma 5.1.2.
The last subspace Ch*?(V') is defined to be generated by elements of the form

T QG - Ty, i <j, a;€Pic(C;).

By a conjecture of Beilinson—Bloch, this subgroup is finite.
In the following we would like to give a spliting for the above filtration by choosing classes
e; € Pic'(C;)g with rational coefficient and degree 1:

€, = Z a;i5P;j, Zaij degpj =1.

J
For each i < j, let Pic™ (C; x C;) denote the class a in Pic(C; x C})qg such that
T (- mre;) =0, mj«(a - me;) = 0.
By Zhang [39], Lemma 2.2.1, we have a decomposition given by canonical maps:
Pic’(C; x C;)q = i Pic’(Ci)g ® W;PiCO(Cj)Q.

NS(CZ X Cj)@ ~ Qﬁei &P QT[';-(BJ' I, PIC_(C’Z (29 Cj)@.

By Kunneth formula, the class N?(V) is generated by mfe; ® NS(C; x Cy)g, it follows the
isomorphism given by canonical maps:

Ch*(V)g/Ch*! (V)g = €D (Qre; - w5e; @ QPic™ (Ci x Cy) - mey,) -

i<j
Similarly, by the proof in Zhang [39], Lemma 5.1.2,

Ch™! (V)g/Ch**(V)g = @D Pic®(Ci)g - ey
i#j

Finally, we define Ch*(V)® to be subgroup of Ch*?(V') consists of elements « such that
Tiji(ov - mex) = 0, i<
in Ch*(C; x C;). Then the canonical map gives an isomorphism:

Ch**(V)g/Ch**(V)g =~ Ch?(V)%.
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In summary, we have a decomposition
(3.1.1) Ch*(V)g =Ch*(V)E & EP Pic’(Ci)ge; ®
]

EB (7*Pic®(Cy) - 7 Pic’(C)) & Qese; @ Pie™ (C; x Cj)ger) -

i<j

For each 7, let T; be the subspace of a € Chl(C’i x C;) consisting of elements « such that
both «a, and a* fixes the line Qe;. Then

T: = Q(e; x Cy) + Q(C; x €;) + Pic™ (C; x ().
Under the composition, this algebra is isomorphic to the direct sum
(3.1.2) T, = Q® Q& End(J;)g

where J; is the Jacobian of C;. The actions of T;’s on Ch*(C;) by pulling back preserve the
decomposition
Ch*(Ci)g = Ch°(Cy)o ® Qe; @ Pic’(Cy)g.

Consequently 7;’s act on Ch*(V)q by pullbacks and fix the decomposition 3.1.1. The sub-
space Ch*(V)% is the subspace where all C; x ¢; and e; x C; acts as 0.

For a codimension 2 cycle Z on V' with projection Z;; on C; x C; and m;,Cj, on Cj, its
decomposition can be performed as follows. First of all, its projection onto Ch*(V)>? is

given by
7% =7 — Z Zijer + kaeiej.

i<j k

It has projection
Z2’3 = Zﬂ';}ﬂ'z‘j*(z . erk)

2%

in Ch*?(V) and
ZOO — 22,2 o 22,3(v)

in Ch?(V)%,
The cycle Z;; has projection Z;; on Pic™ (C; x C;) given by
ZZ; = Zi,j — Cz X Zi,j(€i> — Z;}(GJ) X Cj.

The cycle Z;;(e;) has projection on Pic’(C;) given by

Zij(ei) — deg Zij (62‘)6]'.
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Height pairing

In the following we want to define a height pairing on homologically trivial cycles Ch*' (V)
following Bloch [1], Beilinson [2, 3], Gillet-Soulé [9], and Gross and Schoen [13].

Let 7 be a regular and integral model of V' over a the ring of integers 0} for some finite
extension k' of k. For example, we may choose &’ such that %; has a regular and semistable
model %; over 0),. Then we may blow-up

!/
V=% X O ©2 X, C3

successively at irreducible components over singular fiber with any given order (cf. [13]).

Then for each cycle Z € Ch*!(V) we are going to construct an arithmetic cycle Z = (Z, gz)
where

e 7 is an extension of A, over ¥ over SpecOy;

e gz is a Green’s current on the complex manifold V(C) of the complex variety V ®q C
for the cycle Z: g is a current on V(C) of degree (1, 1) with singularity supported on
Z(C) such that the curvature equation holds:

90

—gz =90 .
i 9z Z(C)

Here the right hand side denotes the Dirac distribution attached to the cycle Z(C)
when integrating with forms of degree (2,2) on V(C).

The height pairing of two cycle Zy, Zy in Ch*!*(V/) is defined to

1 ~ ~
[k,:k]zl-ZQ.

<Z17 Z2> =

It is clear that this definition does not depend on the choice of 7’s.

Before construction of cycles Z, we want to also show that this definition does not
depend on the choice of k" and model ¥ using de Jong’s alteration. In fact for any regular,
projective, flat scheme, 2~ over Z (not necessarily geometrically connected), let Ch(2")°
denote the quotient of groups of cycles 7 which are numerically trivial over all fibers modulo
the subgroup of cycles which vanishes on the generic fiber. Then we want show that this
group depends only on the generic fiber X of 2. More generally, if X and Y are two
projective varieties over QQ with regular models 2" and %/, and a generically finite morphism
f: X — Y, then we can define maps extending the corresponding maps over generic fiber:

£ :Ch(2) — CL(#)°,  f*: Ch(2)° — Ch(#¥)"
such that f, o f* = deg f.
To define these maps, first we notice that the Zariski closure 2" of the graph of f in

X x Y is another model of X dominating both 2~ and . By de Jong’s alteration, there is
a regular scheme 2" dominating 2"': this we have generically finite morphisms:

a: 2" — 2, B: X" — X
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Now we define
1 1

= —————f,0a", Y=, 0 (3%,
/ [%”:3&”]6 / (27" X p

Now we go back to construction of Z. From the decomposition above, we see that
Ch*!'(V) is generated by cycles of the forms in two types:

o 7D - mi Dy, with D;; a divisor on C; x € and Dy, a divisor on Cj, of degree 0;

e C?! where C is a curve on V which has finite degree under each projection 7; : V. —
C;.

If Z is of first type, then over a semistable model ¢}, D; can be extend to an arithmetic
model D; which has degree 0 on each component in the special fiber and curvature 0 at all

archimedean places. Let m;D;; be any integral model of 7, D;; on %. Then we may define
7 — Dy mD.
If Z = C?! is of second type, we consider the morphism
p: CxCxC—V.

Let e be base point e on C' which exits if k is replaced by a finite extension, and let A, be
the modified diagonal cycle defined in Gross—Schoen [13]. In our terminology, A, = A% for
the diagonal A on C' x C' x C and base (e,e,e). Then Z — p,A, is of first type. Thus to
construct Z it suffices to construct A, on a model % of C' x C' x C' which has been done by
Gross—Schoen [13].

In the following, we want to recall a triple product for Gross—Schoen cycles A.. Let
t; € T (= 1,2,3) be three classes fixing Qe defined as in 3.1.2, and let ¢; be its projection
on Pic™(C' x C). Then by Lemma 2.2.3 in [39], each ¢; can be extended into a unique so
called admissible arithmetic class ?; such that following holds:

1. tAi_ has zero intersection with components in the fibers over closed points for the two
projects C' x C' — ()

2.t is trivial on {e} x C' and on C x {e}.

By formula (2.3.5) in [39], we have the following formula
(313) <Ae, (tl X ty X t3)*Ae> = %\1_ %\2_ %\??

where the right hand side is the arithmetic intersection numbers on C' x C'.

3.2 Cycles on product of Shimura curves

In the following, we want to prove the decomposition formula given in the introduction.
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First decomposition

Recall that Shimura curve Y is a projective limit of the curves Yy which is a disjoint union
of curves Yy, parameterized by o € m(Yy). Let £y, denote the Hodge class on Yy, of
degree 1. Let Pic®(Yy;) denote the subspace of Pic(Yy)g generated by &y;’s. Then we have
a decomposition

Pic(Yy)g = Pic®(Yy)g @ Pict (Yo )o.

Let us define Ch?( Xy, )% to be the direct sum of the corresponding group for the product
of components of Xy;. Then the decomposition 3.1.1 implies

(3.2.1) Ch*(Xy,)g =Ch*(Xu, )l & @ miPic’(Yy)g - ) Pic (Yo )g - mpCh’(Yy)®
i#]
B = Pic’(Yy) - w3 Pic’ (V) - ChO (V)@
1<j
@B = Pict (Yy)g - mjPict (V) - mpCh’(Yy) @
1<j
@B ;;Pic™ (Yy x Yu)g - mpPict (Y)g.
1<j

Taking direct limit gives

(3.2.2) Ch*(X)q =Ch*(X)g & @ 7 Pic®(Y)g - mPic* (Y)g - m;Ch° (V)@
i#]
P 7 Pic’(Y) - wiPic® (V) - ChO(Y) &
1<j
D 7 Pict (YV)g - mPict (V) - m;Ch° (V)@
1<j
@D ;;Pic (Y x Y)g - ;Pic* (Y)g.
1<j

Hecke algebra

It remains to decompose Ch?(X). First we use Hecke operators to reduced to finite level.
Recall that the Hecke algebra % := C°(Bj/Dg) consists of smooth and compactly-
supported functions ¢ : By /Dg — C. Its multiplication is given by the convolution

(B % By) () = / By (1) ('R

B}/Dg
For any smooth representation (V, p) of By /Dp, there is a representation

H — End(V)
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given by
o= [ fo)elg)eds
By/Dp
Fix an open compact subgroup Ug of By /Dg. Denote
Higy = CX(U\B/DpU) = {® € C2(B}/Dy) : D(UhUz) = 0(h), Vh € B},

It is a subalgebra of /% whose multiplicative unit is the characteristic function vol(Ug) 1.
For any smooth representation V of B}/ Dg, the action of 5, stabilizes VUE the subspace
of vectors in V fixed by Ug. The study of decomposition of V' under By /Dp is equivalent
to the study of the representation of VU under % p,. In particular, the correspondence
o — oUF is bijection between the set of irreducible representations of Bj/Dp with non-
trivial Ug-invariants and the set of nonzero irreducible representations of 7%y, .

We may define the similar algebras 7 and .4, of functions on B*/D. Then we have

My = A3, S v, = HEP
for Ug = U3.
For each ® € 7%, lets us define

T(®) := /EX/D ®(z)T(x) € End(Ch*(X)c).

For Uy a compact and open subgroup of BY/Dpg, then Ch*(Xy,)c has actions by 4, =
%”,]@3. It is clear that every element in each component .77 fixes the base class ;. Thus
the actions fix the decomposition 3.2.1 and 3.2.2 and factor through the quotient

Ay — End(Ch®(Yy)g) @ End(Pic* (Yy)g) @ End(Pic®(Yy)g).

The actions of %, on Ch’(Yy) and Pic®(Yy) are both factor through actions on functions
on 7°(Yy), and the action of .4 on Pic’(Yy) factor through its action on the space of cusp
forms. Thus the right hand side of the above quotient is isomorphic to

A ::@pU(@ﬁU

p

where p runs through automorphic characters and automorphic cuspidal representations of
parallel weight 2. Since the right hand side is of finite dimensional, any representation V' of
¢, will have decomposition

V= @Hom%ﬁ(p[], V)@ pY.
p

Applying these to Ch*(Xy, and Ch?*(X), we obtain decompositions

Ch*(Xu,)e = @D Ch?(p) @ o,

p
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Ch*(X @ Ch?(p

where p = p; ® py ® p3 runs through automorphlc representations of B such that each p; is
either one dimensional or cuspidal of parallel weight 2. The sum over cuspidal p gives

C’(X)?= @ cr’(p
p:cuspidal

If we normalize the height paring on Ch*!(Xy) by a factor vol(Ug) then we have a height
pairing on Ch*'(X) which induces a bilinear pairing

Ch*!(p) ® Ch*!(p) — C.

Decomposition of homological group

The decomposition on the cohomological cycles induces a decomposition on the class group:

Chy(X)c = HHom (p,C) ® Ch*(p).

Let Cl;(X)® denote sum over components where p is cuspidal.
The decomposition induces an inclusion

Ch*(X)e € Chy(X)¢

which is given concretely by assigning an element o € Chz(XUE) to a unique element o* €
Ch;(X)¢ with component agy = vol(Up)a it U' C U.

This decomposition induces a pairing between Ch?*(X)% and Ch;(X)® which is nothing
than the one induced by the height pairing.

Gross—Schoen cycle

As in Introduction, let A be the image of the diagonal embedding of Y — X considered
as an element in Chy(X). Its projection to Chy(X)% is called the Gross—Schoen cycle and
denoted as A¢. For each cupidal represenation of By, of parallel weight 2, one has component

A e P(m)® Ch*(7).
For f® f € # ® T we define

T(f ® f)Ae = f ® An(f) € T ® Ch(7) C Ch?(X)Y
We claim the following

(Ar, A)m(f @ f) = (T(f © f)Ag, Ae).
Indeed, by definition, the left hand side is equal to

(Ax(f), A% (]))-

43



While the right hand side equals to

(f ® Ax(f), Az).
These two are equal by definition. Thus we can rewrite our main theorem as

Conjecture 3.2.1.

(07 © P2 80) = 57 L2 0)mf ).

3.3 Generating series of Hecke correspondences

Let V denote the orthogonal space B with quadratic form ¢. Recall that .(V) has an
extended Weil representation on by

B = {(b1,bs,g) € B* x B* x GLy(A) :  q(bib;") = det g}

by
r(h, g)®(x) = |q(h)|~'r(d(det(g)) ' g)®(h™ ).
For o € FY\AY, let X, denote the union

M, = ]_[ Y, X Y.

aemo(Y)

This is a Shimura subvariety of Y x Y stabilized by the subgroup GSpin(V) of B* x B* of
elements with same norms. Define the group of cocycles:

Ch'(M,) := lim Ch'(Mq,1,)
Uy

where U; runs through the open and compact subgroups of GSpin(V). For an h € B* x B*,
the pull-back morphism T'(h) of right multiplication defines an isomorphism

T(h): Ch'(M,) — Ch'(Myny-1).

Using Kudla’s generating series and the modularity proved in [35], for each ® € . (V)
and g € GLy(F);\GL2(A) 4, we will construct an element

Z(g> (I)) € Chl (Mdetg)
such that for any (¢, h') € Z,

Z(g,r(g h")®) =T(I)Z(9q . ©).
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Hecke correspondences

For any double coset UzU of U\Bj /U, we have a Hecke correspondence
Z(l’)U < ZI(YU X YU)
defined as the image of the morphism

. 2
(WUﬂwUmfl,Uaﬂ-UﬂxflUx,U OTm) . ZUOZU:E*1 ? YU-

In terms of complex points at a place of F' as above, the Hecke correspondence Z(x)y

takes
(z,9) — Z(z,ga?i)

(2

for points on Xy, (C) represented by (z,9) € % x B; where x; are representatives of
UzU/U.
Notice that this cycle is supported on the component M, ;)-1 of ¥ x Y.

Hodge class
On Y x Y, one has a Hodge bundle Lk € Pic(Y x Y) ® Q defined as

1
Lk =501 L + L)

Generating Function

Write M = M; which has an action by GSpin(V). For any x € V and open and compact
subgroup K of GSpin(V), let us define a cycle Z(x)x on M as follows. This cycle is non-
vanishing only if ¢(z) € F* or . = 0. If ¢(z) € F*, then we define Z(z)x to be the Hecke
operator UzU defined in the last subsection. If x = 0, then we define Z(x)x to be the push-
forward of the Hodge class on the subvariety M, which is union of connected components
Y, x Y, with a € my(Y). Let K = O(FL) - K act on V.

For ® € (V)X we can form a generating series

zeK\V

It is easy to see that this definition is compatible with pull-back maps in Chow groups in
the projection My, — My, with K; C K,. Thus it defines an element in the direct limit
Ch'(M)g := limg Ch' (M) if it absolutely convergent. We extend this definition to .# (V)
by projection

FV) — AV b & ::/ r(g)Pdg
O(Fo)
where dg is the Haar measure on O(F,,) with volume 1.

45



For g € SLy(A), define
Z(g9,®) = Zn(p» € Ch'(M).

By our previous paper [35], this series is absolutely convergent and is modular for SLy(A):
(3.3.1) Z(vg,®) :==Z(g,®), 7 €SLy(F)

Moreover, for any h € Hi,

(3.3.2) Z(g,r(h)®) =T(h)Z(g, ).

where T(h) denotes the pull-back morphism on Ch'(M) by right translation of ;.
Let GLy(A)™ denote subgroup of GLa(A) with totally positive determinant at archimedean
places. For g € GLy(Ar)™, define

Z(g,®) = T(h)"'Z(r(g, h)®) € Ch' (Maerg),

where h is an element in B* x B* with norm det g. By (3.3.1), the definition here does not
depend on the choice of h. It is easy to see that this cycle satisfies the property

Z(g, (g1, ) ®) = T(h1)Z(991,®),  (9,h) € Z.
The following is the modularity of Z(g, ®):

Proposition 3.3.1. The cycle Z (g, ®) is automorphic for GLa(A)T: for any v € GLo(F)™T,
g € GLQ(A),
Z(vg,®) = Z(g, ®).

Proof. Let v € GLy(F)™ if suffices to show
T(ah)™' Z(r(vg, ah)®) = T(h)~' Z(r(g, h)P)
where (7, a) and (g, h) are both elements in #. This is equivalent
T(a)~' Z(r(vg,ah)®) = Z(r(g, h)®)
and then to
T(a)' Z(r(y,2)®) = Z(2)
with 7(g, h)® replaced by ®. Write v, = d(7)~'y. By definition, the left is equal to
T(a) "' Z(L(a)r()®) = Y r(n)®(a™"z)p(a) ' Z(z)x
zeK\V

- Z r(v)®(a2) Z(a )k

2€K-O(Foo)\V

= > r(m)e(@)Z(2)k
zeK\V

=Z(r(11)®) = 2(®).
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Notice that the natural embedding GLy(Ap)™ — GLy(Ap) gives bijective map
GLQ(F>+\GL2(AF>+ — GLQ(F)\GLQ(AF>
thus we can define Z(g, ®) for g € GLy(Ap) by

Z(g,®) = Z(vg, ®)
for some v € GLy(F) such that vg € GL (Ar). Then Z(g, ®) is automorphic for GLy(A).

3.4 Geometric theta lifting

Let o be a cuspidal representation of GLy(A) of parallel weight 2. For any ¢ € 0, a € FI\AT,
define

Za(® @ ) = / Z(919,®)¢(g19)dg: € Ch'(M.,)
SLa(F)\SL2(A)

where g € GLy(A) with determinant equal to . Then it is easy to see that By [30], Theorem
3.5.2, we have the following identity:

L(1,7,ad)
2¢r(2)
The collection (Z,(® ® ¢)) defines an element

(Za(@®¢)) € [] C' (M)

(3.4.1) Z(®® p) = T(O(P ® ).

It is easy to see that this element is invariant under open compact subgroup U x U of B* xB*.
Thus is given by an element

Z(®®¢) € Ch'(Y xY).
Kernel identity

Recall that the diagonal Y of X = Y defines a holomogical cycle in Chy (X') whose projection
to Chy(X)? is denoted by P. For a ® € . (Vg), we can define a correspondence Z(®) on
X by linear combination of product of correspondences on Y: if & = &; ® ¢ ® $3 and
g = (91,92, g3) with ®; € #(V) and g; € GL2(A), then

Z(g,®) = 71 Z (g1, 1) - 15 Z(ga, P2) - 73 72(g3P3).

This correspondences maps homological cycles to cohomological cycles. In particular we
have cycle Z(®)A, € Ch?(X)®. Thus the number

Z(g9,®,A¢) = (Ag, Z(g, P)Ag)

is well defined.
Our main theorem is reduced to the following identity of kernel functions:
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Conjecture 3.4.1.
(_E,('> 0, q))v ‘:0) = (Z(v P, AE)? 90)'

Deduce conjecture 3.2.1 from the above kernel identity. By (2.3.7), the left hand side of the
kernel identity is

L'(1/2,0)
——————m(0(P ® ).
0) (0(® @ )
By formula (3.4.1), the right hand side is
L(1,7,ad)
——— (A, T(O(P ® ¢))Ag).
As the image generates all T ® 7, the conjecture 3.2.1 follows. O
By 3.1.3, we may write
(3-4.2) 2(9,9,8¢) = Z7(91,91) - Z~ (92 ®2) - Z (g3, P3)

where the right hand side is the intersection of the admissible class extending the projection
Z(g;,®)” € Pic (Y xY) of Z(g;,®).

For the actually computation, we may replace A (g, ®)” by arithmetic classes extending
Z(g,®). In fact, since Z(g, ®) will fix class Pic*(Y), we see it is in the space

miPict (V) ® Ch?(Y) + Ch°(Y) ® m3Pic* (V) + Pic™ (Y x Y).
Thus we have an decomposition
Z(g,®) = Z3(g,®) + Z5(g.®) + Z (g, ®).

It is easy to see that both Zf(g, ®) are Eisenstein series with valued in Hodge cycles. Now
for each o € Pic*(Y), fix an arithmetic extension @. Then the above decomposition defines
an arithmetic extension Z (g, ®). Now we define

(3.4.3) Z(g,®,A) = Z(g1,®1) - Z(ga, ®3) - Z(gs, B3)

Then we have that the difference Z(g, ®, P) — Z(g, ®) is sum of forms which is Eisenstein
for at least one variable g;. It follows that it has zero inner product with cusp forms. Thus
we have the following equivalent form of the above theorem:

Conjecture 3.4.2 (Kernel identity).
(_El('7 07 q))v QO) = (Z(7 qD? A)J QO)

Remark 3.4.1. Unlike the formalism ® — Z(g,®) which is equivariant under the action of
B* x B*, the formalism ® +— Z(g,®) is not B* x B* equivariant in general.
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3.5 Arithmetic Hodge class and Hecke operators

In this section, we want to introduce an arithmetic Hodge classes and then the arithmetic
Hecke operators. The construction depends on the choice of integral models which in terms
depends on a maximal order O of B we fix here.

Moduli interprstation at an archimedean place

Let U be an open and compact subgroup of €5. Let 7 be an archimedean place of F.
Write B a quaternion algebra over F' with ramification set ¥ \ {r}. Fix an isomorphism
B™ ~ B® A". Recall from §51 in our Asia journal paper, that the curve Y parameterizes
the isomorphism classes of triples (V, h, &) where

1. V is a free B-module of rank 1;

2. hisanembedding S — GLg(Vk) which has has weight —1 at 7, and trivial component
at 7; for ¢« > 1, where 7y 1= 7,79, - , 7, are all archimedean places of F;

3. & is a Isom(Vp, V) /U, where Vy = B as a left B-module.
The Hodge structure i define a Hodge decomposition on V. c:
Vig = V10 4 yo-t,
By Hodge theory, the tangent space of Y at a point (V, h, k) is given by
Z(V); = Homp(V~10, Ve /V™H) = Homp(V 10, VO,

Since the complex conjugation on V¢ switches two factors V=50 and V%71, one has a canon-
ical identification

LV); 2 L(V), =Homg(V 1, V1) =C.

This identification defines a Hermitian norm on £ (V).

Lemma 3.5.1. Let §(V') denote the one dimensional vector space over F of reduced norms
d(v) for v €V with relation d(bv) = v(b)d(v). Then we have a canonical isomorphism:

L(V)=65(V) @p, det(VE ).
Proof. Indeed, there is pairing ¢ : V ® V. — §(V) define by
1
Y(u,0) = 5(0(u+v) = 6(u) = d(v)).
Let B* acts on this space by multiplication by v : B* — F* then

w c HOmBX (V ® V, (S(V))

49



This pairing is compatible with Hodge structures when 6(V') is equipped with action weight
(—1,—1). Thus on V, ¢, the above pairing has isotropic spaces V"1 and V%~ and defines
bilinaer B¢ equivariant pairing

VI VeTl (Ve
On the other hand the wedge product defines a B pairing
VI VO det(VHO)

when the later space is equipped with action v : B* — F*. The above two pairing define
canonical identifications:

VO =6(V),c ® Hompx (V~°,C)
V0 = det(V™"°) @ Hompx (V79, C).

Thus we have
ZL(V); =Hom(V 0 VO 1) = §(V), c @ det(VH0)Y.

Modular interpretation at an finite place

Let v be a finite place. Recall from §5.3 in our Asia journal paper, the prime to v-part of
(Vur, R) extends to an étale system over %, but the v-part extends to a system of special
divisible 0p,-module of dimension 2, height 4, with Drinfeld level structure:

(#,a)

with an identification

ko(O) = Ty ().

where T, (/) is the Tate module of 7 for prime v.

The Lie algebra of the formal part @7° of &7 defines a two dimensional vector bundle
Lie(«7) on %;. The tangent space of Yy is canonically identified with &, := §(V)g, ®
Lie(7)Y. The level structure defines an integral structure on §(V') at place v. Thus .%, has
an integral structure by the tensor product.

If v is not split in B, then O, is unique and then integral structure on .£ is unique.
This can also been seen from the fact that the group 7 is totally formal and supersingular.
Any isogeny ¢ : o7, — <, of two such Op, -modules representing two points z and y on %4,
smooth over @, induces an isomorphism of &,-modules:

L(A) ~ L(B).

If v is split in B, then we may choose an isomorphism O, = Ms(0,). Then the divisible
module &7 is a direct sum & @ & where & is a divisible &r-module of dimension 1 and height
2. Then we have an isomorphism

& = Lie(£)* % @ det T, ().
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Let x be an ordinary @,-point of %; then we have an formal-etale decomposition
0—& — & — & —0.

This induces an isomorphism
2, = (Lie(8)" @ Ty(67))% @ (Tu(&;") @ Tu(&;)").

The first part does not depend on the level structure but the second part does. If ¢ : &, —
&, be an isogeny of orders a,b on the formal and etale part respectively, then it has order

b — a for the bundles .Z, — .Z,.

Admissible arithmetic classes
Combining the above, we have introduce an arithmetic structure Z for £. The roots of
this defines an arithmetic structure on elements of Hodges classes Pic®(Y). We denote the

. . . —~& . . &
resulting the groups of arithmetic classes as as Pic (V). Unlike Pic®(Y’), the group Pic (Y)
is not invariant under the action of B* but invariant under &5 . We normalize the the metric

of E at one archimedean place such that on each connected component of any Yy,
£ =0.

Now for any class o € Ch! (Yo X Yup) in some irreducible component of Y x Y in a finite
level which fixes & by both push-forward and pull-back, we can attached a class @ such that
if @ = a~ + antéy + b€y with o € Pic™ (Y x V) and & € Pic*(Y), then we

a=a +aré + bmbs.
We call such a class g—admissz’ble. Such a class can be characterized by the following prop-
erties:

1. for any point (p1,p2) € Yy X Yy, the induced class arithmetic classes ay = a|pleb

and Qs = Qy,xp, O Yy, OF Yy, is f admissible in the sense that a; — deg azg has
curvature 0 at archimedean places and and zero intersection with vertical cycles.

2. & - mE = 0.
The class a + @ extends to whole group Ch'(Y x Y).

Arithmetic Hecke operators

Let Z be a Hecke operator as a divisor in Yy X Y. We want to define an adelic green’s
function g = (g,) such that the arithmetic cycle Z = (Z, g) is £&-admissible. Let pq, po be two
projection of Z onto Y. Then p;’s have the same degree called d and there is an canonical
isomorphism pi¢ — p3€ of line bundles (with fractional power). This induces an isomorphism

[0 Z*€1 ~ d&z

We want to construct a green function g for Z such that arithmetic class 7 satisfies the
property 1 above and with property 2 replaced by the following refined one:
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3. The isomorphisms a and 8 above induces isometry of adelic metrized line bundles:

First of all, we define an adelic green’s function ¢° = (¢°) with the following two properties
at each place v of F parallel to the properties as above,

4. (Z,¢°) has curvatures parallel to ¢ (g)v at fibers piy over two projections p; to Yy .
5. ¢° has integral 0 against ¢;(&;) - ¢1(&).

The class Z° := (Z,¢") will satisfies the property 1. Since the bundle Z\fa will have same
curvatures as dy, then we have constants ¢ = (¢,) such that a induces isometry

Z?El = dé%—c.

Define 1
2 = Z\O — EC.

Then Z will have required properties. Notice that by property 1 and 3, the classes is closed
under composition.

Remark 3.5.2. The above class Z may not give an isometry between dgl under Z *52 In fact,
we will give an expression of ¢ in terms of bundles bundles p;¢. Notice that the difference

2.6 — dy = m.(Z - (1161 — m36)).

The class 77&; — w5, is represented by a vertical divisor class C' = (C,) and

Cp = 7T2*(Z\ -Ch).
We intersect this with ng then we have

¢, =2-C, mb&.
Since property 4, this las sum is equal to an intersection number on Z:

ey = Cylz P;é
If we redo the construction for Z*, then we will obtain a class 7' = 70 + ¢ with

= —Cylv - &1

Notice that sum of ¢, and ¢, are both equal to plfl p2€2 since 52 = 0. The sum ¢, + ¢, is

equal to —(C,|z)? which is nonnegative. This shows that 7> 7.
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First decomposition

With construction of cycles as above, we can decompose the intersection as follows
Z(9,®,A) = 2(91, D) - 2(92, Dy) - 2(937 ®3).

First of this intersection is non-trivial only if all g; have the same norm. In this case we have
one h € B* x B* such that

Z(9i, ®;) = T(h)Z(r(gi, h)P;).
Thus we have that
Z(g1,®1) - Z(g2, ®3) - Z(gs, ®3) = Z(r(g1, h)®1) - Z(r(ga, h)®s) - Z(r(gs, h)Ps).

Assume that each r(g;, h;)®; is invariant under K. In this case this intersection number is
given by

Z(g,®,0) = > r(g, W1, x2,73) Z(21) i - Z(w2)ic - Z(w3)xc.
(z1,m2,23)€(K\V)3
We write Z(g, ¢)sing for the partial sum where Z(z;) has non-empty intersection at the

generic fiber. Then the rest term can be decompose into local intersections. Thus we have
a decomposition

Z(g7q)7A) = Z(Q? ®7A)sing + Z Z(g, CI)7A)U-
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4 Local Whittaker integrals

As we have seen in section 2.5, we need to study the non-singular Fourier coefficients of the
derivative of Eisenstein series for Schwartz function ® € .(B?) on an incoherent (adelic)
quaternion algebra B over the adeles A of a number field F. This is essentially reduced
to the study of the derivative at the local Whittaker functions. In the case of unramified
Siegel-Weil section section at a non-archimedean place, the computation is known. We will
recall the results. Then we move to compute the archimedean Whittaker integrals.

4.1 Nonarchimedeanl local Whittaker integral

Now we recall some results about the local Whittaker integral and local density.

Let F' be a nonarchimedean local field with integer ring & whose residue field is of odd
characteristic p. We remark that all results in this subsection actually holds for p = 2.
For simplicity of exposition, we only record the results for odd p. Let @w be a uniformizer
and ¢ = |0 /(w)| be the cardinality of the residue field. Assume further that the additive
character 1 is unramified.

Let V = B = M,(F) with the quadratic form g = det. Let ® the characteristic function
of My(0). Let T € Symy(0)" (cf. “Notations”). Tt is a fact that Wr(e, s, ®¢) is a polynomial
of ¢—°.

To describe the formula, we need several invariants of T € Symy(&,)Y. Suppose that
T ~ diaglu;w®] with a; < as < az € Z, u; € 0*. Then we define {(T") to be the Hilbert
symbol (%) = (—ujug, w) if a; = as (Mmod2) and ay < asz, otherwise zero. Note that this
doesnot depend on the choice of the uniformizer w.

Firstly, we have a formula for the central value of Whittaker integral Wr, (e, 0, ®y).

Proposition 4.1.1. The Whittaker function at s = 0 is given by
WT,U(€> Oa (I)O) = CF(2)72BU(T)
where

1. When T 1is anisotropic, we have

By = 0.
2. When T 1is isotropic, we have three cases

(a) If a1 # azmod?2, we have

a1 (a1+a2—-1)/2
Bu(T) =200 _(1+i)g + Y (ar+1)g").
=0 i=ai1+1
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(b) If ay = agmod?2 and & = 1, we have

a1 ‘ (a1taz2—2)/2 ‘
Buo(T)=20) _(i+1)g'+ > (a1 +1)q)
=0 i=ai1+1

+ (a1 + 1) (a3 — az + 1)g!® /2]

(c) If ay = agmod2 and & = —1, we have

a (a1+az2—2)/2
Bu(T) =20) (i+1)g'+ > (a1 +1)q)
i=0 i=a1+1

+ (ay + 1)g\®Fa2)/2,
The second result we will need is a formula of the central derivative Wy, (e, 0, g).
Proposition 4.1.2. We have
Wi.,(e,0,®0) = logq - (p(2)*v(T),

where v(T) is given as follows: let T ~ diag[t;] with a; = ord(t;) in the order a; < as < ag,
then

1. If a1 # aymod 2, we have

a1 (a14a2—1)/2
v(T)=> (1+))@Bi—ai—a—az)g' + Y (ar+1)(4i—2a—1—a,—as)q"
=0 i=a1+1

2. If a1 = as mod 2, we must have as # azmod?2. In this case we have

al
v(T) =) (i+1)(3i— a1 —a—2—as)q
i=0
(CL1+(1272)/2
+ Z (a1+1)(4i—2a— 1—a2—a3)q’
i=a1+1

a;+1
; 12 (as — az + 1)g'n+e2)/2,

Proposition 4.1.3. Let ®) be the characteristic function of O3, where Op 1is the mazimal

order of the division quaternion algebra D. Then we have for all anisotropic T € Symy(0)Y :

Wr(e,0,®)) = —2¢ 2(1 4+ ¢ )2

For the proof of the three propositions above, we refer to [1, Chap. 15, 16| where a key
ingredient is a result in [19] on the local representation density for Hermitian forms.
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Proposition 4.1.4. Let & be the characteristic function of maximal order Op of the division
quaternion algebra D. Then we have for all anisotropic T € Symy ()Y :

Ir(e, ®f) = vol(SO(V')).

Proof. A prior we know that Ir(e, ®f) is a constant multiple of Wr(e, 0, ®f). Take any
r € 0% with moment T.Then it is easy to see that h -z is still in &3 for all h € SO(V").
This completes the proof. O

4.2 Archimedean Whittaker integral

We want to compute the Whittaker integral Wr(g, ®,g,s) when F' = R, B = H is the
Hamiltonian quaternion algebra, and

CI)OO(:L‘) = @(I’) = 6_27TtT(Q($))’ = B3 — H3.
Recall that we have choose the additive character
¢(ZL’) — 627”'277 = R

Let K be the maximal compact subgroup of Spg(R):

X

Ko = {(_”’"y y) € Spe(R) | +yi € U(3).}

Denote by ., the character of K

r Y\ _ \m
Xm <—y m) = det(x + yi)™.

Then the Siegel-Weil section attached to ® transform by the character x, under the action
of K (cf. [L1], [21]).

Lemma 4.2.1. Let g = n(b)m(a)k € Spg(R) be the Iwasawa decomposition. Then we have
when Re(s) > 0:

Wr(g, s, ®) = x2(B)Y(Th)A(m(*a™h))| det(a)|*Wiara(e, s, ®).

Proof. This follows the invariance under K, and the property of Siegel-Weil section.
O

Thus it suffices to consider only the identity element g = e of Sps(R). It is easy to obtain
a formula for A\s;(wn(u)) and we have

Wr(e, s, ®) = / Y(=Tu) det(1 4+ u?)~*r(wn(u))®(0)du.

Symgs(R)
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Lemma 4.2.2. When Re(s) > 0, we have

Wr(e,s, @) = —/ Y(=Tu) det(1 + iu)~* det(1 — iu) > ?du,

Sym:s(R)
where we have the usual convention i = v/ —1.

Proof. Let u =" kak be the Cartan decomposition where a = diag(u1, us,us3) is diagonal and
k € SO(3). Then it is easy to see that n(u) = m(k)"'n(a)m(k) and wm(k)™' = m(—k !)w.
Note that det(k) = 1 and x2(m(k)) = 1. We obtain by the previous lemma:

r(wn(u))®(0) = r(wn(a))®(0).

By definition we have

r(wn(@)(0) = 1(H. ) [ v(aQ(a))bla)ds
where for our choice the Weil constant is

W(Ha ,QZ}) =-1L
Therefore we have

r(wn(a))®(0) = — H/He“(i“jl)q(xj)dxj.

J=1

This is equal to a constant times
ﬁ ; = det(1 — iu) 2.
(1 —duy)?
To recover the constant, we let u = 0 and note that
r(w)®(0) = xao(w)®(0) = —=®(0) = —1.
We thus obtain that
r(wn(u))®(0) = r(wn(a))®(0) = — det(1 — du) "2
Since det(1 + u?) = det(1 — iu) det(1 + iu), the lemma now follows. O

Following Shimura ([33, pp.274]), we introduce a function for g, h € Sym,,(R) and «, 8 €
C

n(g, h;a, B) = / e 9% det(x + h)**det(z — h)*2dx
r>+h

which is absolutely convergent when g > 0 and Re(a),Re(3) > 5. Here we use x & h to

mean that x +h > 0 and  — h > 0. Here we point out that the measure dx in [33] is the
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Euclidean measure viewing Sym,,(R) as R*™*Y/2 naturally. This measure is not self-dual
but only up to a constant 2"~/ In the following we always use the Euclidean measure
as [33] does. For two elements hy, hy € Sym,,(R), by hy ~ hy we mean that hy = khok™" for
some k € O(n), the real orthogonal group for the standard positive definite quadratic form.

Before we proceed let us recall some well-known results. Let z € Sym,,(C) with Re(z) > 0,
then we have for s € C with Re(s) > 231,

(4.2.1) / e~ (:2) dot (2)*~F dy = T (s) det ()~
Sym,, (R)+

where the “higher” Gamma function is defined as

n(n— 1 _].
()T (s — ). (s — — >

Lo(s)=m 5

).

For instance, when n = 1, we have when Re(z) > 0 and Re(s) > 0

/ e i e =T (s)z".
R4

Consider 1
{e‘”“’” det(z)* "2 x>0,

0 otherwise.

Applying (4.2.1) to z = v + 2miu for u,v € R, we obtain when Re(s) > "T_l,
f(u) =T, (s)det(v + 2miu)~°.

Take the inverse Fourier transformation, we obtain

1 vz g—ntl
(4.2.2) / X det (v + 2miu) " du = 2 D/AT,, (5) © det(z)*" 2" x>0,
R 0 otherwise.

Lemma 4.2.3. When Re(s) > 1, we have
Wr(e, s, ®) = k(s)D3(s +2) 'T3(s) 'n(2m, T 5 + 2, 5)

where
K(s) = _99/2,6s+6

Proof. By (4.2.1) for n = 3, we may rewrite the Whittaker function in the previous lemma
as

7T35+6 ] '
Wr(e, s, ®) = ——/ e 2T det (1 + iu)_s/ e det (1) da2® 2 du.
F3(S + 2) Syms(R) Symg(R)+
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Here du is changed to the Euclidean measure and the constant multiple 2%/2 comes from the
ratio between the self-dual measure and the Euclidean one. Interchange the order of the two
integrals

3s5+6 .
— 3/27r—/ e ™ det(x)® (/ 2riu(ze=T) det(1 + iu)_sdu) dr.
F3(8 + 2) Symg(R)+ Symgs(R)

By (4.2.2) for n = 3, we obtain

35+6 6
o8/ F:(—s 5 / s e det(xf—ngzs)e—%@—w det(QW(g = 1)) *da
= — 292 G / e~ 2"@=T) det(z)* det(z — 2T 2du.
T3(s +2)3(5) Jasoesor
Finally we may substitute x — T + = to complete the proof. O

To compute the integral n in an inductive way, we recall the “higher” confluent hyperge-
ometric function ([33, pp.280,(3.2)]). Let Sym,,(C); be the set of z with Re(z) > 0. Then
for z € Sym,,(C), we define

_n+l1

(4.2.3) Co(z, 0, B) = / e **det(x + 1)‘1_nTH det(z)*~ "2 da.
Sym,, (R)+

It was first introduced by Koecher and its analytic continuation is settled by Shimura:

Lemma 4.2.4 (Shimura). For z € Sym,(C) with Re(z) > 0, the integral (,(z;a, ) is
absolutely convergent for a € C and Re(B) > "T_l And the function

w(z, a, B) 1= Tn(B) ™" det(2) Ca(z, @, B)
can be extended to a holomorphic function of («, 3) € C%.
Proof. See [33, Thm. 3.1]. O

The following proposition gives an inductive way to compute the Whittaker integral
Wr(e, s, ®), or equivalently n(27,T; s + 2, s). From now on, to simplify notations, we use w’
to denote the transpose of w if no confusion arises.

Proposition 4.2.5. Assume that sign(T) = (p,q) with p + q = 3 so that we have 47T ~
diag(a, —b) for a € R b € RY. Let t = diag(a,b). Then we have

n2m, T; s 4 2,5) = 25572 det(T)|*¢(T, s)
where
, 3 —
E(T,s) = / e @WEW) det (1 + W) (ZaZ, s + 2,5 — Tp)
M

1
X C (20T 5,5+ —q;r Ydw.
where M =RE, W =w-w', W =w'w, Z = (14+W)Y? and Z' = (1 + W)V/2.
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Proof. We may assume that 47T = kt'k~! where k € O(3) and ¢ = diag(a, —b). Then it is
easy to see that

n2m, Tys+2,8) = n2m,t'/(47); s+ 2,5) = | det(T)[*n(t/2, 1p4; 5 + 2, 5)

where 1, , = diag(1,, —1,).
By [33, pp.289, (4.16),(4.18),(4.24)], we have

n(2m, Ty s +2,5) = 25| det(T)|**€(T), 5).
[

Corollary 4.2.6. Suppose that sign(T) = (p,q) with p+ q = 3. Then Wr(e, s, ®) is holo-
morphic at s = 0 with vanishing order

1
ords—oWr(e, s, ®) > [%]

Proof. By Proposition 4.2.5, we know that

Iy(s = 50y (s + 551) :
W @ ~ p 2 q 2 / —(aW+bW)dt1 WQS
T(@,S, ) F3(8+2)F3($) Fe e( + )
1 3—0p 1 qg+1
——(,(Zal, 2,8 — YAYAR —)d
B g e T T g el T

where “~” means up to nowhere vanishing entire function. Lemma 4.2.4 implies that the
latter two factors in the integral are entire functions. Thus we obtain that

I'p(s — %)Fq(s + %) g+1

dooWi(e,s,®) > ord._ _ .
ords—oWr(e, s, ®) 2 ord Ta(s + 2)Ts(s) ]

]

Remark 4.2.1. 1. The same argument also applies to higher rank Whittaker integral.
More precisely, let V' be the n + 1-dimensional positive definite quadratic space and
®, be the standard Gaussian e 2™ (#%) on V. Then for T non-singular we have

Fp(s—%)Fq(H%l)_[n—p+1]_[q+1]
T,(s+ 0T, (s) 2 b2 r

2

orders—oWr(e, s, ®g) > ords—g

And it is easy to see that when T > 0 (namely, represented by V'), Wr(e, 0, ®q) is
non-vanishing. One immediately consequence is that: Wr(e, s, ®¢) vanishes with order
precisely one at s = 0 only if the quadratic space with signature (n — 1,2) represents
T. We will see by concrete computation for n = 3 that the formula above actually
gives the exact order of vanishing at s = 0. It should be true for general n but we have
not tried to verify this.
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Proposition 4.2.7. When T > 0, we have
Wr(e,0,®) = x(0)T3(2) e 2",
Proof. Near s = (, we have
n(2m, T;s+2,s)

=e 2T / e~ 2™ det(x 4 27T)* det(z)* ?dx
x>0

—e 2T (/ e~ det(27)* det(x)* *dx + O(s))
=e ™ (det(27)*(2m) "> T's(s) + O(s))

Note that 1
Ds(s) = */2T(s)['(s — 5)1—‘(8 —1).

has a double pole at s = 0 and I's(s 4 2) is non-zero at s = 0. Thus when s = 0, we obtain

Wr(e,0,®) = k(0)I'3(2) te 2.

4.3 Indefinite Whittaker integrals

Now we consider a non-definite 7. We will find certain nice integral representations of the
central derivative of the Whittaker integral Wr (e, s, ®) in the sequel when the sign of T is
(p,q) = (1,2) or (2,1) respectively.

Case (p,q) = (1,2)
Proposition 4.3.1. Suppose that 47T ~ diag(a, —b), b = diag(by,by). Then we have

(0) t/Q/ —(a(14w?)+b1 (1+w?)+bz (14+w3)) , 3
- - 7 a w w w d 0 i
272F3<2)e R2 ‘ Ga(diag(z1, 22), 0, 5

x (a(l 4 w?) — 1) dwidws,

Wi(e,0,d) = )

where (z1,22) are the two eigenvalues of b(1 + w'w) and w? = w3 + w3.
Proof. Recall by Prop. 4.2.5
(4.3.1) Wr(e, s, ®) = r(s)Ts(s + 2) ' T3(s)7128%e2| det(T)[*¢(T), 5),
where
* 3 -
(T, s) = /2 e~ @WHEWD) det(1 + W)™ (ZaZ; s + 2,5 — Tp)
R

q+1

X ( (2’075 5,5 + )Ydw.

61



When (p,q) = (1,2), (1(ZaZ;s + 2,s — 1) has a simple pole at s = 0. We here recall a
fact that will be used frequently later, namely (;(z; «, ) satisfies a recursive relation ([33,
pp. 282,(3.14)))

(432) 6<l(zaaaﬁ) = ZCl(’Z?Oéaﬁ + 1) - (Oé - 1)C1<Z704 - 176 + 1)
Repeating this
(8 - 1)Cl(’za$ + 278 - 1) = ZCl(/Z?S + 278) - (S + 1)C1<Z7S + 153)7
Sz 5+ 2,8) = 225+ 2,5+ 1) — (s 4 (25 + 1,5+ 1),
SCI(Zv 5+ 17 8) = ZCl(Za 5+ 175 + 1) - SC1(2757S + 1)7
we obtain the residue at s =0
Ress—oCi(z,8+ 2,5 — 1) = —(z2§1(z,2, 1) —22¢1(2,1,1)).

It is easy to see that

and

Thus we have
Ress—oCi(z, 5 +2,5s — 1) = —z + 1.

Suppose that w = (wy,wy) and b = (b1, by). Note that I's(s) has a double pole at s = 0
with leading term
Ds(s) = 20°/21(1/2)s 2 + ... = 272572 + ...

Since the trace tr(t) = a + by + by, we have:

/ __ SO e [ ety en )b ) g 3
Wi(e,0,®,) = 27T2F3(2)6 Fe 1 2Dy (diag(z1, 22), 0, 2)
X (ZaZ — 1) dwidws.
Finally we note that Z = (1 + w?)/2. O

The next result involves the exponential integral Fi defined by

00 e—z(l—i-t)
(4.3.3) —Fi(—2) = / dt = e 7(1(2,0,1), z€R,.
o L+t
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It satisfies p :
e

ZRilz) = —

dz i(2) z

and

, el —1
Ei(z) = v+ log(—=2) + / dt

t

0

where 7y is the Euler constant. Then it is easy to see that Fi(z) has logarithmic singularity
near 0.

Lemma 4.3.2. For simplicity, we will denote

(4.3.4)
F(w) = F(wy,ws) = e O0+w)+b2(4wd) (51 20)0,3/2) = e~ 120 (21, 20), 0, 3/2).

Then we have

0
Wh(e,0,®) = Let/H / Bi(—aw?)(2w, Fy + 2wy Fy + (1 + w?)AF)dw — 47 F(0)
8W2F3(2) R2
where F; = a?u.F and A = 68—;2 + 6‘9—; 1s the Laplace operator.

Proof. Note that

Ae=™" = da(aw® — 1)e” ™

Qe —aw
2 (uh7ub)

2

2

VEi(—aw?) =

w

and
AEi(—aw?®) = —4ae™ ™.

We may thus rewrite our integral as
/ e=0+0%) P () (a(1 4+ w2) — 1)dw
R2
:/ e+ ) (qu? — 1) F(w)dw +/ ae~ 1) F(w)dw
R2 R2

:1/(4a)/Ae_a(1+w2)F(w)dw— (1/4)6_“/AEi(—an)F(w)dw.

By Stokes theorem and noting that the function Fi(z) has a logarithmic singularity near
z = 0, the second term is equal to:

—(1/4)e (/ Bi(—aw*)AFdw — 11_1)1(1) . VEi(—an)F(w)nds)

where C, is the circle of radius r centered at the origin. It is not hard to simplify it as
—(1/4)e™ (/ Bi(—aw?)AFdw — 47TF(O)) :
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Again by Stokes theorem the first term is equal to

~1/(4a) / Ve *+e?) . yp = 1/2 / e 0 (wy Fy + wy Fy)dw.

70411)2 . .
Note that VEi(—aw?) = 25— (w;, ws). This last term is equal to

(1/4)6_“/VEZ'(—awz) (W Fy, W Fy).
Apply Stokes again:
—(1/4)e™ / Ei(—aw?) (2w, Fy + 2wy Fy + w?AF)dw.
Together we have shown that

/ 2 e~ P (w) (a(1 4 w?) — 1)dw

1
S Ze—a (/ Ei(—aw?) (2w, Fy + 2wo Fy + (1 + w?)AF)dw — 47rF(O)> :

]

In the following we want to find nice integral representations of F'(w) (4.3.4) and its
various derivatives. First we deduce an integral expression of (y(diag(z1, 22);0,3) (recall
(4.2.3)).

Lemma 4.3.3. For z = (21, 22) € Sym,(C),, we have

) 3 o _ _ \/TY
Co(diag(z1, 22); 0, = ——2/ / e (o 4 1)y + 1) T e ee——dxdy.
(g 20090 =2 s R A RS

Proof. By definition (y(diag(z1, 22); 0, 3) is given by

/ / em Y / (2 + 1)y +1) = )" dtdady.
2>0 Jy>0 lt<vzy

Substitute ¢ — t(z + 1)/2(y 4 1)1/2

/ / e ey (g 4 1)y + 1) / L (L= didudy.
Ty
250 Jy>0 < e pem

It is easy to calculate the inner integral

Ne]
2[t(1 . t?)fl/QHO\/(z-&-l)?y-&-l) -9 Vv ry

VE+y+1)
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Lemma 4.3.4. We have

0 o _ \/E w1
4.3.5 —F = —4I'(3/2)e "1 ™*2 v b d
( ) ow, (w) (3/2)e /RJre (x+z1)3/2(:c+22)3/2(1+w2x+ rwn)de
and
02 VT
4.3. F = ——=F = —4I'(3/2)e =1 7= — Aqpd
(4.3.6) 11 (w) B2 (3/2)e /R+e (2 + 21)32(z + 2)3/? nar
where
w 1 4+ w?) — 2w?
All—_zblwl(l—l—lUJ x+b1w1)—|—( (1+102>2 1£U+b1
2b1b 2b
+ (_3/2) 100wy + 200w T w1 . blwl).

(x4 21)(x+ 22) 1+ w?
Similar formula for w,.

Proof. By Lemma 4.3.3, we have

0 0z / _ _ /Y 0z
R — 97t z1(142)—z2(1+y) drdy — 2——= .
ow, (w) = ow, ‘ (y+D/I+z+y owy

where we omit the similar term for z, and the integral is taken over z,y € R . All integrals
in this proof below are taken over R, which we hence omit.
Let us consider the integral right after az1 . Substitute z — z(1 + y):

_ _ /LY / _ (14y) (1 + y)y
T2y dy — z12(1+y)—22y 1+ Yy dl’dy
/ (y+DvVI+z+y (y+1)y/1+ ) + y( )

This can be simplified:

/e—zlx—y(21w+z2)—vxydxdy.
ite

Substitute y — y(z17 + 22) ' and separate variables:

B Nz / w1
e 1t dr | e Yy %dy.
v1+$(21$+22)3/2 4 Y

\/5
_F (3/2) / M(x+z2)3/2d

822

Substitute x — z2; "

We have similar expression for the integral right after . Thus we have

NG

0
(x+ 21)%%(x + 29)3/2 (8w1

0
o, —(21 + 22))dz.

@wl

—F(w) = —2I'(3/2)e "= /e_x log(z129)x +
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Note that z120 = bibe(1 + w?), 21 + 22 = by(1 + w?) + bo(1 + w3):

0 2w 0
a—wl 10g<2122) = 11 @102’ awl (21 + 2’2) = 2b1w1.
From this we deduce further that
e _ NG
— zZ1—2Z22 x
FH(UJ) == 4F(3/2)6 /6 (x+21)3/2($+z2)3/2/411d1',
where
w1 (1 + w2) — 2'LU% 3 2b1b2w1 + lewl.’ﬁ w1
Ay =—2b —_— b b —— b )
n S e R T TR I 2l provupeny yrapon oS gl kY

Similarly we have

NG

E: = —4I'(3/2)e "= — Agod
h2(w) (3/2)e /6 (z + 21)32(x + 20)3/2 220,
where
Wa (1 + w2) — 211}% 3 261b2w2 + ngng Wa
Agy = —2b — b b —— b .
2 2w2(1+w2x+ 202) + (14 w?)? ot 2) (x + 21)(x + 29) 1—|—w2x+ 202)
O
Proposition 4.3.5. We have
Wi(e,0,®.) = ﬂet/z—a (—dme 7220, ((b1, b2),0,3/2) + £(T))
T\% Yy Foo _87T2F3(2) 2 1,Y2),Y,
where
. P _ —2(21+22—1—b1—b2)
T) = —4T'(3/2) | Ei(—aw?®)e == w d
1) = —ar(3/2) [ Bitcat)es o [ ot SRSty
2 (22122 — 2blbg — 21 — ZQ)U2 -+ 22122(21 + 29 — 1-— b1 — bg)
“ du)dw.
+ /Re (U2 + 21)12(u2 4 25)3/2 u)dw
Proof. Recall that we have
0
Wir(e, 0,®) = &T%)(Q)em“ (/2 Ei(—aw?) (2w Fy + 2wo Fy + (1 + w?)AF)dw — 47rF(0)) :
3 R

By Lemma 4.3.4, we obtain that

AF(w) = —AT(3/2)e—5 > / - Ve Adz

R, (I‘+Zl)3/2(l'+22)3/2 )
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where

biwi + byw3 9

3 2 blw% +bQ'LU% 2 bll?Q'LU2 9 9 9 o ) )
2 b b bibo(b bow?)).
* 2)(5U+21)(33+22) Trw? & T1xu? + (bywy + bywy)x + biba(brwy + bawy))

And we have

2(w1F1(w) + ngg(w)) = —4F(3/2)6_Z1—22 /@—Z (m n 21)3/\2/(51' n 22)3/2 BdZL’,

where

2uw?x
14+ w

B =

+ 2(b1w1 + b2w2)

Together we obtain

VT

3/2(1 + 29)3/2

(2(w1 Fy (1) + ws Fy(w)) + (1 + w) AF)(—dT(3/2)) "} = e~ /R e Cdr,

where C' is given by

X
— 2(byw} + byw3) (b1 (1 + w}) + bo(1 +w3)) — 3(by — b2)2w§w§< TaT )

We substitute z — u? and change the domain of integration from z € Ry to u € R.

u2

(2(w1 Fy(w) + wa Fy(w)) + (1 + w?)AF)(—4T(3/2)) ! = =717 /Reuz R EC

To finish the proof we need to compare the integral in the RHS of the above with:

/ 2 —2<Zl + 29 — 1-— bl — bg) i (22122 — 2b1b2 — Z1 — 22)U2 + 22122(21 + 29 — 1— bl — bg)
R (U2 + 21)YV2(u? + 29)1/2 (u2 + 21)V2(u? + 29)3/2

)du,
which is also equal to

du.

/6“2 —2(byw? + byw3 — Vut — 2(byw? + bow3) (21 + 22)u® + (2b1bgw? + 21 + 29)u?
(u2 + 21)3/2(u? + 29)3/2

Therefore it suffices to prove that the following integral vanishes:
2 3u4

(by — bg) /EZ(— )w1w26 21—22 /e (W + zl)(u2 T ) + (@ + ) (2§ )2 dudw

2
: 2 e F1# u
+ (b1 — b2) / Bi(—aw?)(w? — wi)e "> / (CEEN TN dudw.
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oo

By the definition Ei(—aw?) = — fl e~y =1y, it suffices to prove that the following
integral vanishes

2u? 3ut

b —b 7aw27b1w%7b2w§ 2 2/ —u?
(b ”/e W2 [ € T )02+ 22)) 2 | (@R 2) (4 + 7))
2

u
+ [ et hwibawd 2 g2 /e_“2 dudw.
/ ) [ e
We substitute X = w? + w3 and Y = w? — w3. Then we have

dXdY = 2w1w2dw1dw2 =V X2 — Y2dw1d’w2

dudw

and

2
—aw?—brw?—byw? [, 2 2 u
/6 1wi—ba 2(w1 _w2)((u2+21)(u2+Z2))3/2dw

:/ / e—(a+b1/2+b2/2)X—(b1—bg)Y/ZY 'LL2 dY dX
x>0J-x<vy<x ((u? + 21)(u? + 22))32 /X2 - V2

We apply integration by parts to the inner integral

2

_ / o~ (atb /22 /)X / o (b1-b2)Y/2 u IXT VX
X>0 _X<Y<X

(u? + 21)(u? + 22))3/2

= / e(a+b1/2+b2/2)X/ VX2 — Y2 (bi—b2)Y/2 u
X>0 —X<Y<X

((u? + 21)(u? + 22))3/2

2

— _ 2
(b 3hb - )dY dX.
2 2 2 (w4 z)(u?+ 2)

We may simplify it and plug back

(b —by)/2 / o (a+by /2o /2)X / ST 2 (i—be)Y/2 U
X>0 —X<Y<X

((W? + 21)(u? + 22))*/?

2

3u?

(u? 4+ z1)(u? + z2)

— —(by — by) / eI g

(2+

)dY dX
2u2 n 3u4
(@ + )@ +22)PP (@ + ) (@ + 22))7?

This proves the desired vanishing result.
Finally note that F'(0) = e ®=%(,((by, b),0,3/2) and we complete the proof.

)dw.

Case (p,q) = (2,1)

Lemma 4.3.6. (5([z1, 22];5 + 2,5 — %) has a stmple pole at s = 0 with residue given by

NZs (/ 2 (42120 — (21 + 22))u? 4+ 22129(21 + 22 — 1) / L2 Azize — 2z — 22942
-— e du+ [ e
2 R (u* + u?(21 + 29) + 2129)3/2 R (u* + u?(21 + 22) + 2129)1/2
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Proof. By [33, pp. 283], we have an integral representation when Re(s) > 1

G([z1, 228+ 2,5 — %)

:/ e 2 (1 + w?) 2 V3¢ (2 4 2w?, s+ 2,5 — 1/2)C (22(1 + w?), 5 4+ 3/2, s — 1)dw.
R
By (4.3.2) we have

(S - 1/2)C1(Za s+ 273 - 1/2) = ZCl(ZNS + 27 s+ 1/2) + (_S - 1)(1(27 s+ 1a s+ 1/2)

It is easy to obtain

G(2,2,1/2) = / e (14 x)x Y2de = 27121 (1/2) + 273/%1(3/2)

Ry

and
G(z,1,1/2) = / e Y2dr = 27 Y21(1/2).
Ry

Therefore we obtain
G1(2,2,—1/2) = —I'(1/2)273(22 — 1).
By (4.3.2) again we have
(s — 1)z, 8+3/2,5s —1) = 2(1(2, 8+ 3/2,8) + (=5 — 1/2)(i (2,5 + 1/2, 5).
We may obtain
Ress—oCi(z,s +3/2,5 — 1)
=~ 2(=(2,3/2,1) — 502 1/2,1) + 5 (=G5, 1/2,1) + 5Gi(z,~1/2,1))
=—2201(2,3/2,1) + 2G1(2,1/2,1) + i(l(z, —~1/2,1).

Applying integration by parts to the first and third integrals, we may evaluate the sum:

1
Ress—oCi(z,8+3/2,s —1) = —z+ 3

1

5) as an integral

Therefore we obtain the residue of (5([z1, 22]; 5 + 2,5 —

1 1
2I'(1/2) / e (1 4+ w?) V2 (2 + 200?) V2 (21 + zpw? — 5)(22(1 + w?) — §)dw.
R
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Substitute u = zow? to obtain
2F(1/2)/ e (2 + u)_1/2(22 + u)—l/Z(u o —1/2)(u+ 2 — 1/2)u_1/2du.
R

Now let A = 2,4+ 20— 1/2, B = —1/2 so that A+ B = z; + 25 — 1. Then we can split the
integral into three pieces:

2 2
2 (W2 —1/2)(u? + 29 — 1/2)
u du=1+11+1I1
/ (o + @) 2 (2 + a2 AP

where
I= / e Wt Au du
R (u* + u?(z1 + 22) + 2129)1/2
2 Bu? —1/4
II:/e_“ 1 5 Y / - 2alu
R (u* 4+ u?(21 + 22) + 2122)V/
and

I]I—/e_u21 42122-221-222-’-2
R

du.
4 (u* + u?(z1 + 29) + 2122) /2 “

Now, we rewrite the first integral and apply integration by parts

du.

1 ud + Au 2
I=—- de
2 Jr (Ut 4+ u?(21 + 29) + 2122)1/2
1 / 2 3u*+ A N (u? + Au)(—3)(4u® + 2u? (21 + 22)) p
=— e
2 Jr (u* + u?(21 + 22) + 2129)1/2 (u* + u?(21 + 22) + 2129)3/2
which can be simplified
12,1 2 2,2
/ 2 SU” + 4 1 / 2 (A2 + 22) — 27 — 235)u” + 22120A — z120(21 + 22)
e dut+= [ e
R (u* + u2(21 + 22) + 2129)/2 2 Jr (u* + u(21 + 22) + 2122)3/2
Notice that the first term cancels I1. Plugging A = z; + 25 — 1/2 into the above, we obtain
/ 2 (W42 —1/2) (WP + 2 — 1/2)
e du
ueR (21 + u?) 2 (2 + u?)l/2
1 2 (4212’2 — (Zl + 22))U2 + 22’122(21 + 29 — 1) 1 2 42’122 — 22’1 — 22’2 + 2
=-fe du+- [ e du.
4 Jr (u* + u2(21 + 22) + 2122)3/2 4 Jr (u* + u(21 + 22) + 2129)1/2

]
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Proposition 4.3.7. Suppose that 47T ~ diag(a,—b), a = diag(ay,as). Then we have an
integral representation

#(0) t/2/ ~ 2\, — - 3
P A Fi(—=b(1 a1 (14wy) 02(1+w2)d
47T3/2F3<2)e . i(—=b(1 +w?))e w

2 (42122 - (Zl + 22))U2 + 22122<21 + 29 — 1) 2 42122 - 221 - 222 + 2
e du+ [ e du
R (u* + u?(z1 + 22) + 2122)3/2 R (u* + u?(21 + 22) + 2129)1/2

Wi(e,0,®.) =

where 21, zo are the two eigenvalues of ZaZ.

Proof. Recall by Prop. 4.2.5
(4.3.7) Wr(e, s, ®) = k(s)D3(s 4+ 2) 7' T3(s) 71252 | det(T)[#¢(T, 5)
where
E(T,s) = / e~ @WHW) det(1 + W)™ G(ZaZ; s 4 2,5 — %)
X Cl(Z’bZ’Efs, s+ 1)dw.

Note that
G(z;0,1) = / e (x4 1) tdr = —e*Ei(—2).
R4

Now the statement follows from the previous Lemma and that I'3(s) = 272572 + ...

4.4 Holomorphic projection

In this section, we want to study holomorphic projection of E’(g,0, ®).

Firstly let us try to study holomorphic projection for a cusp form ¢ on GLy(A). Fix a
non-trivial additive character ¢» of F'\A, say ¢ = 9y o trp/g with v the standard additive
character on Q\Ag, and let W be the corresponding Whittaker function:

W,(g) = / £y

Then ¢ has a Fourier expansion

olg) =D W ((8 (1)) g) :

a€eFXx

We say that ¢ is holomorphic of weight 2 , if We = W, - W} has a decomposition with W
satisfying the following properties:

W ( ) B y€27ri(:v+iy)e2i9 if y > 0
oA} = 0 otherwise
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for the decomposition of g € GLy(R):

_ (1 =\ [y 0\ [ cosf sind
g== 01 0 1 —sinf@ cosf )’

For any Whittaker function W of GLg(A) which is holomorphic of weight 2 as above with
We(gs) compactly supported modulo Z(Af)N(Ay), the Poinaré series is define as follows:

ew(g)=Jlim > W(yg)(r9)",
Y ZFINENGE)

where

a b
o) =lan/dul, a= (G )k ke

where K is the standard maximal compact subgroup of GLy(A). Let ¢ be a cusp form and
assume that both W and ¢ have the same central character. Then we can compute their
inner product as follows:

(¢, ow) = / ©(9)pw(9)dyg
Z(A)GL2(F)\GL2(A)

= lim w(9)W(9)d(g)"dg
0 Z(A)N(F)\GLa(4)
(4.4.1) = lim W (9)W (g)d(g)"dg.

0 Z()N(A)\GL2(A)
Let ¢y be the holomorphic projection of ¢ in the space of holomorphic forms of weight
2. Then we may write

Way(9) = Weo(9o0) W (97)

with W, as above. Then (11.1) is a product of integrals over finite places and integrals at
infinite places:

/ W) Py = [~ e "0dy/? = (4)
Z(R)N(R)\GLa(R) 0
In other words, we have

(142) (s ow) = (d4m)9 / W (97 (g)dgy.

Z(A)N(Ap)\GLa(Af)

As W can be any Whittaker function with compact support modulo Z(A;)N(A;), the com-
bination of (10.1) and (10.2) gives

Lemma 4.4.1. Let p be a cusp form with trivial central character at each infinite place. Then
the holomorphic projection o of ® has Wittacher function W (goo) W, (g5) with Wy, (gy)
gien as follows:

Wio(g5) = (4m)? lim Wor (9009 7) W (Go0) 3 (goo ) ' dGoc-
E=0% J Z(Foo)N (Foo)\GLa2 (Fo0)

For more details, see [30, §6.4,6.5].
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5 Local triple height pairings

In this section, we want to compute the local triple height pairings of Hecke operators at the
unramified places and archimedean places.

For unramified places, we first study the modular interpretation of Hecke operators and
reduce the question to the work of Gross—Keating on deforming endomorphisms of formal
groups.

For archimedean places, we introduce Green functions for Hecke correspondences and
compute their star product. The hard part is to relate the star product to the archimedean
Whittaker function.

5.1 Modular interpretation of Hecke operators

In this section, we would like to study the reduction of Hecke operators. For an x € V with
positive norm in F, the cycle Z(z)g is the graph of the Hecke operator given by the coset
UzU. Namely, Z(z)g is the correspondence defined by maps:

Z({L‘)K ~ YUO;UUafl — YU X YU-

Moduli interpretation at an archimedean place

First let us give some moduli interpretation of Hecke operators at an archimedean place 7.
Let B = B(7) be the nearby quaternion algebra. If we decompose UzU = []z;U, then
Z(x) as a correspondence sends one object (V) h, k) to sum of (V, h,%z;). In other words,
we may write abstractly,

(5.1.1) Z(x)k(V,h,R) = (Vi hi ),

7

where the sum is over the isomorphism class of (V;, h;, k;) such that there is an isomorphism
yi + (Vi, hy) — (V, h) such that the induced diagram is commutative:

(5.1.2) Vo —=V,

-

V==V

Replacing « and k; by equivalent classes, we may assume that x; = . Thus the subvariety
Z(x) i of Mk parameterizes the triple:

(‘/bhl?’%l)a (‘/27h27"_£2)7 Y,

where the first two are objects as described as above for k; and ky level structures modulo
U :=UnzUx™ " and Uy = U Nx~ Uz respectively, and y : (Va, hy) — (V4, hy) such that
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the diagram

(5.1.3) Vo —=V,

is commutative.

Now we want to describe the above moduli interpretation with an integral Hodge struc-
ture with respect to a maximal open compact subgroup of the form 0 = 0 containing
U, where O is a maximal order of B. Let Vjz = Op as an Op-lattice in V. Then for any
triple (V) h, k) we obtain a triple (Vz, h, k) with Vz = k(Vyz) which satisfies the analogous
properties as above. In fact, My parameterizes such integral triples. The Hecke operator
Z(z)k has the following expression:

Z(x)k(Vz, h,R) = Z(VZZ, hi, ki)

i

where V7 = k;(Voz). We can’t replace terms in the above diagram by integral lattices as y;
and x; only define a quasi-isogeny:

Y; € HOHI@B (V;Z, Vz) R F)| T; € § = End@B(‘/}oz) ® F.

When U is sufficiently small, we have universal objects (Vi7, b, k), (Viyrz, h, k). We will also
consider the divisible @z-module Vi, =V / XA/UZ. The subvariety Z(z)x also has a universal
object y : Vi, — Vi,

Let us return to curves Yy over F'. Though the rational structure V' at a point on Yy does
not make sense, the local system V and VZ make sense as By and Og, modules respectively.

The Hecke operator parameterizes the morphism 7y : VU2 — VU1

Modular interpretation at a finite place

We would like to give a moduli interpretation for the Zariski closure 2 (z)x of Z(z)x. The
isogeny y : \7U2 — ‘A/U1 induces a quasi-isogeny on divisible &, -modules. For prime to v-
part, this is the same as over generic fiber. We need to describe the quasi-isogeny on formal
modules. First lets us assume that U, = ﬁ’ﬁv is maximal.

If v is not split in B, then U;, = Uy, = U,. Thus the condition on ¥, on the generic fiber
is just required to have order equal to ord(v(z)). Hence Z(x)x parameterizes the quasi-
isogeny of pairs whose order at v has order x. Recall from §5.3 in our Asia journal paper
that the notion of quasi-isogeny as quasi-isogeny of divisible module which can be lifted to
the generic fiber.

If v is split in B, then we may choose an isomorphism Oy, = Ms(0,). Then the formal
module &7 is a direct sum & @ & where & is a divisible &r-module of dimension 1 and
height 2. By replacing z by an element in U,xU, we may assume that x, is diagonal:
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T, = (w wd> with ¢,d € Z and ¢ < d. It is clear that the condition on y on the

generic fiber is a composition of a scalar multiplication by w¢ (as a quasi-isogeny) and an
isogeny with kernel isomorphic to the cyclic module @, /w? *0,. Thus the scheme 2 (z)x
parameterizes quasi-isogenies f of geometric points of type (¢, d) in the following sense:

1. the v-component w™°y, : & — & is an isogeny;

2. the kernel of w™ ¢y, is cyclic of order d — ¢ in the sense that it is the image of a
homomorphism &, /wé ¢ — &.

We also call such a quasi-isogeny of type (a,b). Notice that the number a,b can be defined
without reference to U,. Indeed, a is the minimal integer such that w™“x, is integral over
0, and that a + b = ord(det ).

5.2 Supersingular points on Hecke correspondences

For a geometric point in My with formal object &1,&5, by Serre-Tate theory, the formal
neighborhood Z is the product of universal deformations Z; of &;. The divisor of 2 ()3 in
this neighborhood is defined as the sum of the universal deformation of quasi-isogenies. In
the following, we want to study the behaviors of this divisor in a formal neighborhood of a
pair of surpersingular points on My when U = U,U" with U, maximal.

Supersingular points on Y, and My

Recall from §5.4 in our Asia journal paper, all supersingular points on Y are isogenous to
each other. Fix one of the supersingular point P representing the triple (.27, ‘N/O ,kg). Let
B = EndO(PO) which is a quaternion algebra over F' obtained from B by changing invariants
at v. We may use k¢ to identify Vo with VO/VOZ The action of (B ® A”) and (IB%””) both
acts on VO. We may use kg to identify them. In this way, the set %;7° of supersingular point
is identified with

Y = Bo\(B @ A})*/U"

so that the element g € (B ® A%})* represents the triple
(e, Vi, gU").

where By means the subgroup of B* of elements with order 0 at v.

The supersingular points on Mg will be represented by a pairs of elements in (B ® A”J%)X
with the same norm. Thus we can describe the set of supersingular points on .#k using
orthogonal space V' = (B, ¢) and the Spin similitudes:

H = GSpin(V) = {(¢1,92) € B*, v(g1) =v(g2)},

which acts as
(91,92)r = quzgs ', g € B,z eV.
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We then have a bijection
M3, ~ H(F)\H(AY)/K®.
Supersingular points on Z(z)g

The set 2°(x)3, of supersingular points on the cycle Z'(x)x represents the isogeny y :
P, — P, of two supersingular points of level Uy = U NzUx™' and Uy = U Nz Uz, In

terms of triples as above, Z(x)% represents equivalent classes of the triples (g1, ¢2,y) of

elements g; € (B ® A})*/U; and y € B* with following properties

(5.2.1) gy ge = 2, ord,(det(z,)) = ord,(q(yy))-

Two triples (g1, g2, y) and (¢}, g5, y') are equivalent if there is a v; € B such that
(52.2) %G =g Y =y

By (5.2.1), the norms of ¢g; and g, are in the same class modulo F. Thus by (5.2.2) we
may modify them so that they have the same norm. Thus in term of the group H, we may
rewrite condition (5.2.1) as

(5.2.3) =g, g=(91,9) € H(A}).

This equation is always solvable in g,y for given x. Indeed, since the norm of x is positive,
we have an element y € B with the same norm as x. Then there is a g € H(A}) such that

x =g 1y’ in VY. In summary, we have shown the following description of 2°(x)% :

Lemma 5.2.1. Let (y,g) be a solution to (5.2.3) and H, be the stabilizer of y. Then we
have

Z(2)go =H(F)o\H (F)o(Hy(A})g) K*/K*
~H,(F)o\H,(A})/ Ky,

where K, = H,(A}) NgKg~".

Supersingular formal neighborhood on Hecke operators

Let %, be the universal deformation of .o4. Then the union of universal deformation of
supersingular points is given by

W3 = B\ A x (B @ AL)*JU".

Notice that .77, is a formal scheme over &.". Thus the formal completion of .#Z} along its
supersingular points is given by

M = H(F)o\Z, x HA})/K".

where 9, = €, ®gw H;,. Let D,(c,d) be the divisor of & defined by universal deformation
of y of type (c,d).
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Lemma 5.2.2. Let H, be the stabilizer of y. Then for any g € H(AY), the formal neighbor-
hood of Z ()3, is given by

Z () =H(F)o\H(F)o(Z,(c,d) x Hy(A7)g) K"/ K"
~H,(F)\Z;(c,d) x Hy(A})/ Ky,

where K, = H,(A}) N gK¥g~".

5.3 Local intersection at unramified place

In this section, we want to study the local intersection at a finite place v which is split in B.

We still work on H = GSpin(V). Let x4, 25, 25 be three vectors in K\V; such that the
cycles Z(z;) i intersects properly in the integral model .#} of Mk. This means that there
are no k; € K such that the space

is one or two dimensional with totally positive norms.

First let us consider the case where U, is maximal. We want to compute the intersection
index at a geometric point (P;, P») in the spacial fiber over a finite prime v of F'. The non-zero
intersection of the three cycles will imply that there are three quasi-isogenies y; : Po — P,
with type determined by z;’s. Notice that P, is ordinary (resp. supersingular) if and only if
P, is ordinary (resp. supersingular).

If they both are ordinary, then we have canonical liftings P to CM-points on the generic
fiber. Since L

HOHl(Pl, Pg) = HOHI(Pl, PQ),

all y; can be also lifted to quasi-isogenies of v; : P, —» P,. This will contradict the as-
sumption that the three cycles Z(z;)x have no intersection. It follows that all P;’s are
supersingular points.

Now lets us assume that all P;’s are supersingular. Then we have the nearby quaternion
algebra B and quadratic space (V,q) as before. By Lemma (5.2.2), we know that 2(x;)3
has an extension

Z ()3 = Hi(F)\Zy,(civdi) x Hy, (AY/K,

on the formal neighborhood of supersingular points:

M = H(F)o\Z x H(AY)/K".

Here ¢;,d; € 7Z such that <w Z wdi> € Uy, Uy, and (y;,9;) € B X H(A’Ji) such that

g7 (y;)) = x¢ in V4. If these three has nontrivial intersection at a supersingular point
represented by g € H(F)o\H(A})/K", then we can write g; = gk; with some k; € K”. The
intersection scheme 2(kyx1, koo, k3xs) i is represented by

Qp(kﬂl, koxs, ksl‘:s)K = [gyl(clu dl) : gyz(c% dz) : 9@/3(637 d3) X g]
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on Z, herey = (y;) € V3 and ¢ = (¢;),d = (d;) € Z3. As this intersection is proper, the space
generated by y;’s is three dimensional and positive definite. Notice that g € H(A})/K"
is completely determined by the condition g~'y; € K'z?. Thus we have that the total
intersection at supersingular points is given by

a@p(l’l)K . g(fbg)[( . g(l’g)]{ = Z deg g(lﬁl’l, /{ngg, k‘3I3)K

kxve KV\ (K Kz, KxY)

where sum runs through cosets such that k;x} generated a subspace of dimension 3.

In the following, we let us compute the intersection at v for cycles Z(®;) for ®; €
(V). Assume that ®;(x) = Y (2V)P;,(z,). By the above discussion, we see that the total
supersingular intersection is given by

,@F(CI)I) : g(@Q) : Qp q)g —VOl H Z K

=1 3,e K\V

=vol(K) Y~ > O(x)deg Z(x)x

IEUEI?S\(VU)i Iq;GKS\(Vv)iv

:vol(IN() Z OV (2" )m(z?, ®,),

v eKV\(V?)3

where (‘A/)i denote the set of elements z¥ € (1/7)3 such that the intersection matrix of z? as
a symmetric elements in M3(A}) takes entries in Fy, (V,)3, denote the set of elements (z;,)
with norm equal to the norms of (x¥), and

m(x’ @) = Y () deg Z (2", 2,k

T, €K3\(Vy)3y

We note that the volume factor vol(K) is product of the volume of the image of K, in SO(V,)
with respect to the Tamagawa measure (cf. Notations). And by definition it also includes
the archimedean factor vol(SO(By)).

In order to compare the above with theta series, let us rewrite the intersection in terms
of the quadartic space V = B. Notice that every z° can be written as ¥ = ¢~ !(y) with
y € (V)3 of elements with non-degenerate moment matrix. Thus we have

Z(P1) - Z(22) - Z(03) = VOI(R> Z Z (g~ y)m(y, Pu)x,
YyEH(F)\V3 geH(Av)/Kv
where for y € (V)3
m(y, @)=Y Oy(x,)deg Z(y, x.)x
xvng\(Vv)iv

This is a pseudo-theta series (cf. [30]) if m(-, ®,) has no singularity over y € (V,)3.
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In the following we want to deduce a formula for the intersection using the work of Gross—
Keating. For a element y € B, with integral norm, let .7, denote the universal deformation
divisor on Z of the isogeny y : &/ — /. We extend this definition to arbitrary y by setting
Z, = 0if y is not integral. Then we have the following relation:

.@y(c, d) - yw—cy - gw—c—ly.

Indeed, for any y € wOp, there is an embedding from 7/, to .7, by taking any deformation
Y & — & to wp. The complement are exactly the deformation with cyclic kernel. It
follows that deg 2°(z", x,) is an alternative sum of intersection of Gross—Keating’s cycles:

deg ff(in, $U) - Z (_1)61+62+63 gw—cl—elyl gw—CZ—EQyQ 9w—63—e3y3
e;€{0,1}

Theorem 5.3.1 (Gross—Keating, [10]). Assume that ®, is the characteristic function of
0%, Then for y € (V])?, the intersection number m(y,®,) depends only on the moment

T =Q(y) and
m(y, @) = v(Q(y)),

where the v-invariant is defined as in Prop. 4.1.2.

Corollary 5.3.2. We have

(5.3.1) Wil“,v(gvaoa ®,) = Cv(2)_2mT(T(gv)q)v)'

Proof. By Gross—Keating and Prop. 4.1.2, this is true when g, = e is the identity element.
We will reduce the general g, to this known case.
Suppose that
go = d(v)n(b)ym(a)k

for b, a are both diagonal matrices and k in the standard maximal compact subgroup of G.
Then it is easy to see that the Whittaker function obeys the rule:

Wi (90,0, ®,) = ¥(vTh)|v|~*| det(a) *W, 14 (e, 0, @,).

On the intersection side, we have the similar formula:

mr(r(g)®u) =lv[* ) r(g1)®y(hoz,) deg Zor(z,) K

Ty

=ty r(b)|v| | det a]* Y~ P (2,a) deg Zr(x) k.,

Ty

where h, € GO(V,,) with v(h,) = v~ and the sum runs over all z,, with norm v - diag(T).
By our definition of cycles, for diagonal matrix a, we have

%T(ﬂﬁ) = %aT&(xa’)°

It follows that
mT(r(g)q)fu) = 77ZJI/T(b)|V|_3| det a|2muaTa((I)v)'
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Comparison

In this subsection we will relate the global v-Fourier coefficient of the analytic kernel function
with the local intersection of triple Hecke correspondences when the Shimura curve has good
reduction at v.

Recall that we have a decomposition of E’(g,0, ®) according to the difference of Y1 and
PIE

(5.3.2) E'(g,0,®) ZE’ 9,0,®) + E.;,. (9.0, ®),

where

(5.3.3) Ey(9,0,®) = > Ep(g,0,9),
ZT:E(U)

and

Elng(9,0,®) = > Ep(g,0,9).

T,det(T)=0

On the height intersection part, we have analogous decomposition

(5.3.4) 2(9.9,8) = Z(9, 8, A)sing + > Z(9, @, A),.

and each Z(g,®,A), has a part Z(g, ), of intersection of horizontal cycles.

Theorem 5.3.3. Assume that ® = ®,9, with ®, is the characteristic function of ﬁ‘gv.
And let S be the set of places outside which everything is unramified. Assume further that
forw € S, ®, is supported in V3 regr the subspace of elements (x;) such that the moment
matriz (x;,x;) € Ms(F,) is non-degenerate. Then for g = (g1, 92, 93) € G such that g;, = 1
forv € S, we have an equalities

(Z (g1, 1) - Z (g2, 2) - Z (g3, ®3)),, = —2E,(g,0,P)

and
Z<97 (I)a A)v = —QE;)(Q, 07¢) + ch(ghq)’i)Z(gja (I)]> : Z(gka (I)k)

where ¢,(gi, ®;) are some constants which vanish for almost all v, {j,k} is the complement
of i in {1,2,3}, and Z(g;, ®;) - Z(gx, Px) is the intersection on Yy x Yy .

Proof. Since Yy has a smooth model %, over v, the restriction of 7 (gi, ®;) over v can be
constructed from Z(g;, ) by adding some multiple of the special fiber V:

Z(gi,®;) = Z(gi, ®;) + clgi, @)V
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Here c¢,(g;, ®;)V is some constant which vanishes for almost all v. Since VZ = 0 in %?, one
has This implies

Z2(9,9,A) = Z(g1, 1) - Z(g2, P2) - Z(g3,P3) + Z (9, ©:)Z (95, ®;) - Z(gk, Pr)-
Thus we have the equality follows from the first equality.
By our choice of @, there is no self-intersection in 2 (g1, ®1) - Z (g2, P2) - Z (g3, P3)o:
(Z (g1, 1) - Z (g2, P2) - Z (93, P3)),
= > (g )m(a,r(g,)®,)

ve(Kv)3\(V?)3
Z / xw)dxw mT( (gv)q)v>a
X(v) w#v
where
mp(P,) = o, (x,) deg Z7(xy) K,
xUEK \( )dlag(T)

where the sum is over elements of B3 with norms equal to diagonal of T', and the cycle
Z7(x,) is equal to Z (2, x,) with 2V € (V¥) with non-singular moment matrix 7.
In summary, the intersection number is given by

(5.3.5) Zvol (9", DV )mr(r(gy)®y).

We need to compare this with the derivative of Eisenstein series. We invoke the formula

of Kudla ([21]):

Wr(g,0,®,)
WT(Q,O Q)/)

Under our choice of measures, by Siegwl-Weil we have

(5.3.6) E(g,0,®) = Er(g,0,%" @ @).

ET(g, O, CI)U & (I);) = ]T(g, q)v X @;)
We therefore have
_le"<g,07 (bv)
_WT<gaoa (I)é))

IT,U(Q’M (I);})
WT(Q? 07 (I);))

E&“(ga()?@) IT(.g:@U@q)'IU)

:Wj/“<gaoa (bv) [T(gv’q)v)'

Note that % is a constant independent of T, g, ®!. By Corollary 5.3.2,

Ir,(e, @)

El(g,0, @) :@(2)‘2mT(r(gv)<I>v)m

IT(gv, @v)
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It suffices to prove that

Ir.(e, @, L
—3 (e, @) = ——vol(K,).

G(2) Wr(e,0,®) 2

Now the nearby quaternion B is non-split at v. And we have
I(e, @) = vol(SO(B,)).

So we need to show

vol(SO(B,)) 1 /
T[(v) = —§CU(2)2WT(€, O, q)v)
It is easy to see that (cf. [1, chap. 16, §3.5]):
vol(SO(B,)) 1
vol(K,)  (¢g—1)%

Indeed, we have an isomorphism (cf. Notations)
SO(B) ~ B*/F* x B
We now may compute the ratio for a non-archimedean v:

vol(GL2(0y)) _ Gu(1)7'6u(2)7 vol(Ms(6y)) (¢—1)
vol(O ) ((2)71 vol(O, ) '

Moreover we have

vol(GLy(0,))  vol(SLy(0,))
vol(0 ) vol(Bl)

From §4.1 we also have

Cv(2)2WT(67 07 @;}) = - (q _ 1)2 .

This completes the proof.

5.4 Archimedean height

Let B be the Hamilton quaternion and let ® be the standard Gaussian. Let B’ = M,y be
the matrix algebra. Let x = (xy, 73, 23) € B’® with non-singular moment matrix Q(z) and
let g; = g, be a Green’s function of D,,. Define the star product

(5.4.1) Ax) = / g1 * g2 * g3,
Dy
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where DL is the union of J#? and %, = 5 (D_, resp.) is the upper (lower, resp.) half
plane.

Then A(z) depends only on the moment Q(x) € Sym,(R) (with signature either (1,2) or
(2,1) since B’ has signature (2,2)). Hence we simply write it as A(=Q(z)) (note that we
need to shift it by a multiple 4r).

We will consider a Green’s function of logarithmic singularity which we call pre-Green
function since it does not give the admissible Green’s function. Their difference will be
discussed later.

Now we specify our choice of pre-Green functions. For x € B’ consider a function
Dy = #? — R, defined by

)
Sz(2) i =q(x,) =2 R

1 —2Z9 d
s (2) . (—(IZQ + le —b + 62122)(—a22 + d?l —b + 02152)
o —(21 = Z1)(22 — Z2) .

We will consider the pre-Green function of D, on D given by

. — b
In terms of coordinates z = ( S > and r = < OCL ), we have

92(2) = n(s2(2))
where we recall that - p
n(t) = Bi(—t) = / e
1 u

In the following we want to compute the star product for a non-singular moment 47T =
Q(z). Our strategy is close to that of [21], namely by steps: in the first step we will establish
a SO(3)-invariance of A(7") which simplifies the computation to the case T' is diagonal; in
the second step we compute A(7T) when T is diagonal and we compare the result with the

derivative of the Whittaker integrals Wi.(e, s, ®).

Step one: SO(3)-invariance

The following lemma is a special case of a more general result of Kudla-Millson. For conve-
nience we give a proof here.

Lemma 5.4.1. Let w, = 00g,. For any (11,15) € V2, the (2,2)-form wy, A wy, on H? is
invariant under the action of SO(2) on V2.

cosf  sinf
—cosf  sinf
and s = sinf. Let x = cxy + sxy and y = —sxy + cro. Then, by the formula

e** P, = 5,(2)0logs,(2)0logs,(2) —_aglogsx(z)
_ (m,z)(w,z)(ﬁ(x, 2) B 8[09(2,2))(8($’2)

(z,2)  (z,2) (z,2)

Proof. Let k € SO(2) be the matrix ( and for simplicity, we denote ¢ = cosf

0log(z,%)) — 00log(z,%)
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and similar formula for w,, we have that

e DG A w,(2) = A+ B A9dlog(z,Z) + ddlog(z,Z)ddlog(z, %)

where
@D e D@D s
A= -.2) (( ) lg(»))((x’z) — dlog(z,7))
(y,2)(y, %) Oy, 2) Ay,2)
A 2 (( 3 — 0log(z,2))( .7 Olog(z,Z))
and

p= @A) 02 g0 ) @D G,z

(2,2) (2,2) (z,%)
(v, 2)w.2) 0y.2) o _\OWw32) 5
M ( ) dlog(z,z))( .7 dlog(z,7)).

It is easy to see that
B = (s4(2) + s,(2))0log(z, Z)0log(z, Z) — (=, Z)(w, 2) + (y,2)(y, 2))Dlog(2,7) / (2, %)
= (2, 7)(2, 2) + (¥, 2)(y, 2))0log(2,7) / (2, %) + (0w, 2)0(x, Z) + Oy, 2)0(y. 7))/ (=, 7).

Now it is easy to see that the above sum is invariant since the following two terms are
respectively invariant

(z,2)(z,2) + (4,2)(y, 2), (O(x,2)d(x,%) + Iy, 2)0(y, Z)).
Now we come to A:
(2,2)2A = 0(x, 2)0(x, 2)(y, 2)0(y, Z) — ((y, 2)d(x, 2) — (2, 2)d(y, 2))d(x, %)) Dy, 7)) log(z, Z)

— ((4,2)0(2,%) — (2,7)0(y, 7))0(x, 2))(y, 2))Dlog (2, %)
+(0(x,2)0(w,7) + 0y, 2)0(y, %)) dlog(z, Z)Dlog (2, 7).

This is invariant since the following four terms are respectively invariant

O(w,2)0(x,%), 9y, 2)d(y,2),
(yv Z)@(:L‘,Z) - (xvz)a<y7z)’ (y,f)g(l’,f) ( )5<y7 )

This completes the proof. O

Proposition 5.4.2 (Invariance under SO(3)). The local archimedean height pairing A(T)
is invariant under SO(3), i.e.,

AT) = A(KTE), ke SO3).
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Proof. Note that the group SO(3) is generated by matrices of the form cosf  sind
—cosf  sinf
and subgroup of even permutation of S3, the symmetric group. Thus it suffices to prove that

A('rl; X, x3) = A(SE, y? .’L'g)

for x = cxy + sxy and y = —sxy + cxy where ¢ = cosfl, s = sinf.
Further, since g*w, = wy-1, for g € Aut(#?), we can assume that x5 = \/a ( L 1 )
depending on the sign of det(x3). Then Z,, = A(J#) is the diagonal embedding of .7 if

det(z3) > 0, otherwise Z,, = 0.
By definition,

Aa,y,zs) = / 0oy (2)eon(2) Aoy (2) + / G % Gyl
H2 7

r3

Now the first term is invariant by Lemma above and the second term is either zero (when
det(z3) < 0) or has been treated in the work of Kudla ([21]) when x,y generates a plane of
signature (1,1). The left case is when x,y generates a negative definite plane. In this case
the proof of Kudla still applies. This completes the proof. n

Remark 5.4.1. 1. The proof of SO(2)-invariance in [21] is indeed very difficult though
elementary.

2. Similarly, by induction we can prove invariance for SO(n+1) for V of signature (n, 2).

Step two: star product

It turns out that for the convenience of computation, it is better to consider the bounded
domain D? where D = {z € C||z| < 1} is the unit disk. We have an explicit biholomorphic
isomorphism from D? — J#? given by

1+21 1+22
(4 4
]_—2’17 1—2’2

).

(21,22) = (

Then, using the bounded model D?, we can express

|(at —b—c—di)z120+ (@i +b—c+di)zy + (—ai + b— ¢ — di)zy + (—ai — b — c+ di)|?

s0(2) = 41 = 212 (1 = |2

We first compute several differentials which will be used later on.
Lemma 5.4.3. Let a; € R, and z; € B',1 = 1,2,3,4, be the following four elements

n=vai(y 1) mmva( )
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x?’:*/a_f*’(? (1)) “:\/a_“(—ol (1))

We will shorten s1(z) := s,,(2). Then we have

|1 —2122‘2
(L =]z = |z21]?)

|21 —Z2|2
1—|z1))(1 =[]’

s1(2) = a1< S9(2) = agy

53(2) = a 11+ 2129/ 54(2) = |21 + 292
3 — Q3 ) 4 — Q4 .
(1= ]2 = [21[?) (1 =121 = [21]?)

Moreover, we have

B — 2|2 dzy Ndz
s12) 9 i (— = < + 21~ 2| - ) T T
e 1(—s1(2 ayra

( 1( )) 1 1 (1 — |Zl|2>(1 — |ZQ|2> (1 - |Zl‘2)2
—a (1-212)° da1 N dz + ..

(1= [z = [2) (1 = |21 *)(1 = |22f?)

where we the omitted terms can be easily recovered by the symmetry of z1, zo. Similarly we
have

. 2 —
2 QIFi(—s9(2)) = (GQ( 21 — 2 - 1) (dzl A dz

1= [z1) (1 = |2 1—|z?)
(21 — 22)2 le A d22 i
1= [2a)A = [2) A= |a)d = |2P)

— Z1 + Z2|2 le N dzl
e IDE(—s5(2)) = (a = - ) =Py "
( 3( )) 3(1 — ‘21|2)(1 — ‘22|2) (1 - |21’2)2
(Z1 + 22)° dzy A dzy
" . . . 5t
(1= [z = [z*) (1 = |2 ) (1 = [2[*)
B 2 dzy Ndz
s4(2) 99 i (— - < + 21t 2 - ) CESPRDE
e 1(—s4(2 ag T a
( 4( )) 4 4(1 — |Zl|2>(1 — |ZQ|2> (1 - |Zl‘2)2
+ ay (1+7Z129)° da1 Nz + .

(1= [z2)(1 = [22]?) (1 = |22 2)(1 — [22?)
And moreover

s4(2) le A dEl dZQ A dzz
(1 —=lz?)? (1= [2f*)

00Ei(—s51(2)) N OOEi(—s4(2)) = e *19)~

(1 — ’2122|2>2 |1 + 2122|2 |1 — 2122|2 )
daia — 2a —2a + 2
( =221 = [2)? O =TaP) (U =T=P) T 0= ]P0 = ]2P)

86



s3(2) le VAN d?l dZQ A dzg
(I =T]a?)? " (1= |zf*)?
(J21]* = |22?)? |Z1 — 292 |Z1 + 222 )
dasa —2a — 92 +92
( TP -2 T AP (= 2P T = AP - [2P)

Proof. Simple but tedious computation.

OOEi(—s2(2)) A DOEi(—s3(2)) = e ()~

We also need

Lemma 5.4.4 (Change of variables). Define a diffeomorphism between D* and C* ~ R* by
(21, 22) — (wy,wy) where w; = w; + v/ —1v; and

V; = .
(1= [z[)V2(1 = |22?) /2 (1= |21 2) 72 (1 — |22[?)1/2

U; =

Then the Jacobian is given by

O(uy,v1, ug,v2) _ 1 — |21 20)?

O(w1,y1,22,52) (1= |za?)P(1 — [22]?)*

Moreover we have

dﬁlfldyldl’gdyg . duldvldUdeg
(I= [T =[22)? (T + [wi]? + [wa[2)? — 4]wi 2wy |2
_ 1
P’I”OOf. Let )\ = m Note that
1
and similarly
1

This shows that A satisfies a quadratic equation
A — (1 4+ Jwi > + |wo )N + |w)*|wsa|* = 0.

Denote its two roots by A; > Ag. Since |z;| < 1, a careful check shows that A = \; is the
larger one of its two roots. Moreover, we have

1 — |21 [0
(1= [z1)(1 = [2/?)

where A is the discriminant of the quadratic equation above.

=X = A Hw P wa]? = A — Xo = VA
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Theorem 5.4.5. We have for T € Syms(R) with signature either (1,2) or (2,1),

Wi oo (e,0,®) = %e%TA(T).

In particular, everything depends only on the eigenvalues of T (presumedly not obvious).

Proof. By Proposition 5.4.2, we may assume that T is a diagonal matrix.

We first treat the case (p,q) = (2,1) and let’s assume that 477 = (ay, a4, —b). And we
may choose x; as in Lemma 5.4.3 as long as we take ay = b. Then by the same lemma, A(T)
is given by the integral

1 2 dz N dz dzy N\ dZ
A(T) = 2(_27”')—2/ Ei(—b | _22122| . )6—81(z)—54(z) 21 '212 Z2 ?2
D2 (1= |z = [22/?) (I =122 (1= ]2[?)
(1 = |z120]*)? 11+ Z1 2|2 11— Z125)?

(4ayay 5 — 2a; — 2ay +2)

(1= [21[)2(1 = [2[*) (1= [2*) (1 = [2[*) (1= [2[*)(1 =[2[?)

Here the factor # is from the definition star product, and the factor 2 is due to the fact

that D4 has two copies.
Now let us make the substitution

w — T+ To w — T1 — To
O D e P D L (D EE T PAR E
Y1+ Y1 — Y2
v = Vg =

(1= |z 2(1 = [2f?) 2 (1= |22 (1 = [2)7

By Lemma 5.4.4 we may calculate the Jacobian of our substitutions to arrive at

1 y —a U2 ’UZ —a. U2 'U2
A(T) — ﬁ ” E’L(-b(l +u% —+ Ug))e 1( ot 2) 4( i+ 1)

dU1 dUl dU/2 dUQ
VA

(darasA — 2a,(1 + u? + v2) — 2a4(1 + u2 + 03) + 2)

which we may rearrange as

1

o5 | Bi(=b(1+uf +u)))e i  dvyduy / emosi—arnt
27T R2 R2
d'l)ldUQ

(4aras N — 2a;y (1 4+ uf 4+ v?) — 2a4(1 4+ uj + v3) + 2)

VA

Here

(5.4.2) A=1+ud+0v] +ui+v;+ (uu + v1v2)°
Comparing with Proposition 4.3.7, it suffices to prove that the integral

dy,dys
VA

(5.4.3) e~ (4aya, A — 201 (1 + 22 + y2) — 2a4(1 + 22 4+ 43) + 2)

1
VT g2
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is equal to

(5.4.4)
/“ﬂwMB—W%QB+2d /’ﬂmMB—A—BMMJAMA+B—D
U (&
R R

((u? + A)(u? + B))1/? (2 + A2 + B))P~ du.

Here note that we rename the variables u;, v; to x;,y; and they should not be confused with
the real /imaginary part of z; (coordinates of the bounded domain D). And A, B are the two
eigenvalues (as the z;, z in Prop. 4.3.7) of 2 x 2 matrix (1 4+ x2')"/2a(1 4 x2')'/? for x be
the column vector (z1, z5)'and

A= (L+a)(1+yy) — @y

Now notice that the 2 x 2 matrix (1 +z2')™' = 1 — 75—x2’. We have

yrx'y A

Ly () ly =1 yly — 7 =

Substitute y — (1 + zz’)'/?y, the integral (5.4.3) is reduced

dy1dys

e—y/(1+mf)1/2a(1+m/)1/2y(4AB(1+y/y)_Qy/(l_mjx’)1/2a(1+$x’)1/2y_2A—23+2) T
vy

1
N
Now make another substitution y — ky where k € SO(2) is such that

(1 + z2")%a(1 + z2")V/? = K'diag(A, B)k.

We obtain:
1 —y'diag(A,B) / ! 7:
(5.4.5) NG e VHWAENUAB(1 +y'y) — 2y'diag(A, B)y — 2A — 2B + 2)
R2

Using the integral

dy,dys

I+yy

/ Re*AIde = im/z) =T

1
VA VA

we may rewrite the integral (5.4.5) as
/3 e~ (vl +u3)—Avi—By3 (4AB(1+ 92 4+ y5) — 2(Ay? + By3) — 2A — 2B + 2)dwdy, dys.
R
We interchange the order of integrals

/ e’ / e WA =BWHE) (YAB — 2A)y? + (4AB — 2B)y2 — 4AB — 2A — 2B + 2)dy,dysdw.
R R2

Now we can integrate against vy, y» and it is easy to verify that we arrive at the integral
(5.4.4). This finishes the proof when (p,q) = (2,1).
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We now treat the slightly harder case (p,q) = (1,2). Assume that 47T = (a, —by, —bs)
and we may take ay = a,b; = a3, by = ao as in Lemma 5.4.3. Then the same substitution as
before yields that A(7T') is the sum of two terms:

L Ez‘(—a(uf + Uf))e—b1(1+u§+v§)—b2(1+u§+v§>

27T2 R4

duidusdv;dusy
VA

and (note that s,(z) has zeros along the divisor defined z; + 25 = 0 on D?)

~ L [ Bi(sy(z, —2))00Ei(—s3(2, ).

21 Jp

X (4b1ba(uqug + v1v2)2 — 2b1(u% + vg) — 2b2(ug + v%) +2)

By Proposition 4.3.5, the Whittaker integral also breaks into two pieces. It is easy to
prove that the first one matches the second term above. Indeed this already appeared in the
work [25, Thm. 5.2.7, (ii)]. It suffices to prove that the integral

d’LLQ dUQ

VA

(5.4.6) / U023 (4 by (ugug + v1v9)? — 26y (u2 + v2) — 2by(ud + v?) + 2)
R2

is equal to

(5.4.7)

Jr 20A+B—1—b; —by) (2AB —2b1by — A — B)u?> + 2AB(A+ B — 1 —b; — by) p
/ ( (u2 + A)2(u? + B)1/2 + (u2 + A)2(u? + B)3/2 ) u-

Here A, B are the two eigenvalues of (1 + w'w)/2b(1 + w'w)'/? where w = (uy,v;).
Similar to the previous case we may rewrite the integral (5.4.6) as

1 2 2,2
(5.4.8) = / e~ [ (0 0y
VT Jr
where
I(x) = /]R; 67(b1+x2)v§f(b2+zz)u§712(u1u2+v1112)2 (4b1b2(U1U2+U1U2)2—2b1(U%+U§)—2b2(U%"—U%)‘FQ)CZUQdUQ.

We now want to make the exponent in I(z) as a linear combination of only square terms
(we point out that the same idea also works for the previous case). This suggests to make

the substitution
4 b2+.7}2 b1+$2
= U Uy + V1V, =\ ——=vu U V3.
Y1 1U2 12, Y2 b1+212 b2+x212

by + 2 ) = by + 22
ULy — V1Y2), Uy = -
by + g2 WYL T ) 2= by + a2

Then we have

uy =n"(— V1Y + UYa),
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where
(by + ) u? + (by + a:Q)vf.

\/(bl + .%2)(172 + x2)

Also note that

2 2

2 2 _ 2\ 2 2\, 2 Uy Uy
Y1 +yp = ((ba + 2%)uy + (b + )UQ)(b2+x2+b1+x2

).

After a suitable substitution we obtain

(b1+z®)(bo+z?) o

( (b12 I;WQ 122> 7 +2?)y7 - 2,2 N2 Y2 2 2 -1
l — bi+z<)us+(bg+a<)v by +z)uf+(bg+x=)v
(.’L‘) /2 . (by ) 1 (b ) 1 (b1 ) 1 (b2 ) 1 (Cy]_ + Dy2 + E)/r’ dyldy27
R

C' = dbiby + 17 2(—2by 2502 — 2b, B2 2)
D = n72(=2byu? — 2byv})

E= —2b111,% - QbQU% + 2.

Moreover let’s denote

F =(by + 2%)(by + 22) + ((b1 + 2*)ud + (by + 2°)v7)2?
=(1+uf + o))z’ + (b (1 4 uf) + ba(1 + 0]))z” + bbs.

Now we may fold the integrals against y;, yo to obtain

B - by + 2?)u? + (by + 2?)v?
I —F 1/2 F 1 b 2\, 2 b 2\,.2 2 D( 1 1 1 2 E
(x)=m (C ((b1 + 2%)uy + (b2 + z7)v7) /2 + (b + 22)(bs + 22) [2+E),

which can be simplified as
TFY2E 4 32 (2b1bo(u; + v7) — bi(1 + uf) — ba(1 +v7))a® + 2biba(byuf + bovi — 1)) .

Plug back to the integral (5.4.8) and make a substitution u = z(1 + u? 4+ v}). Therefore, we
have proved that the integral (5.4.6) is equal to

/ _u2 —le’LL% - QbQU% + 2

[ e

R (ut + (b (1 4 u?) + bo(1 + v2))u2 + bybo(1 + u? + v?))1/2

N ﬂ/ e (20109 (u? + v?) — by (1 + u?) — bo(1 + v3))u? + 2b1by(1 + u? + v?)(byu? + byv? — 1)
R (u* 4 (b1 (1 4 u?) + ba(1 + v}))u? + bybe(1 + u? + v}))3/2

du

du

This is clearly equal to the integral (5.4.7). We then complete the proof. O
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Comparison

Assume that 7|co and we want to treat the archimedean height at 7. Recall that the
generating function is defined for g € GLj (A)

Z(9.2) = Y r(91)®(2)Z(@)1c, Wr(n) (9)
:UEV/K

where the sum runs over all admissible classes. And for our fixed embedding 7 : F — C we
have an isomorphism of C-analytic varieties (as long as K is neat ):

Y~ G(F)\D x G(Ay)/K U {cusp}

where, for short, G = G(7) is the nearby group.
For z; € V,i = 1,2,3, we define a Green function as follows: for [z,h'] € G(F)\D x
G(Ap) /K

Jenri([2, 1)) = Z ol [n(sx(z))le(ﬁ)hK(h/))]'

VEG(F)/Ga(F)

For an admissible class 2 € V we will denote by g, its Green function. Note that this is
not the right choice of Green function. We will get the right one when we come to the
holomorphic projection of the analytic kernel function. Therefore we denote

(Z(x1, M)k - Z(x2, ho) i - Z(x3,h3) k) Bico = Gur b K * Gug ho K * Jug,hsk »
where E7 is indicate the current choice of Green functions.

Theorem 5.4.6. Let Tjoo and g = (g1, 92,93) € Gy = GLI?(A). And assume that ®, is
supported on non-singular locus at some finite place v. Then the archimedean contribution

(Z(g1,®1) - Z(g2, P2) - Z(g3, P3)) Biro = —2E,(9,0,P),
where E!(g,0,®) is defined before Theorem 5.3.5.

Proof. First we consider g = (g1, g2, g3) € SL3(A). Afterwards we extend this to GLJ (A).
By definition, (Z(z1, 1)k - Z(x2, ha)k - Z(x3, h3) k) Eico 1S given by

Z(ga CI))OO — VOI(IA{V) Z @(ZE)WT(xoo)(goo> (/ *?:lgzi (Z, h/)d[z7 h/]> ’
a=(z;)E(K\V)3 G(F)\D+xG(Af)/K

where the sum is over all admissible classes.
Note that

7*[77(596(2)1Gx(ﬁ)h[((h/))] = n(s'y*lz(@1G71I(ﬁ)771h[((h/))-
For a fixed triple (z;), the integral is nonzero only if there exists a v € G(F') such that

VW € G 1, (F)7 'K & 7 hi € G-, (FWI'EK.
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Observe that the sum in the admissible classes can be written as x; € G(F)\V (F') and
h; € GI(Z3 NG (]3 )/ K. Here we denote for short V' = V' (v) that is the nearby quadratic space
ramified at ¥(v). Thus we may combine the sum z; € G(F)\V(F) with v; € G(F)/Gy,(F)
and combine the sum over v € G(F') with the quotient G(F)\Dy x G(Ay)/K:

vol(K) ) ( /hIEG(ﬁ)/KCD(h’:p)dh’) ( /D ) *?1gxi(z)dz).

z€G(F)\V (F)3

Here we have used the fact that G, = {1} if T'(x) is non-singular and we are assuming that
®,, is supported in the non-singular locus at some finite place v.
Therefore we have

(5.4.9) Z(9, @)oo = »_vol(SO(Bx))e ™ A(T)I7 (g™, @),

where the sum is over all non-singular 7" with ¥ = ¥(7), namely those non-singular T
represented by the nearby quaternion B(7).

Similar to the unramified p-adic case, we compare this with the derivative of Eisenstein
series for a regular 7'

W:/F(gom 0,Ps)

5.4.10 El(g,0,®) =
( ) T(ga ) ) WT(gooaan)éo)

Er(g,0,9* @ @ ),

. . / . . . .
where @/ is any test function on V.2 which makes v nonvanishing. We may also rewrite

(5.4.11) 2(9,®) = vol(s OIS?;Z);Q;TA(T) Ir(g, > @ @.,).

Similar to the p-adic case, we may reduce the desired equality to the case ¢ = e which we
assume now.
We need to evaluate the constant. Note that by local Siegel-Weil, the ratio

WT(ev 07 (I)v>
Ir(®,)

(whenever the denominator is non-zero) is independent of ®,,T" (det(T") # 0) and depends
only the measure on SO(V,) (and, of course, 1,). Let ¢, (¢, 4, resp.) be this ratio for
the quaternion algebra over F), that is split (division, resp.). We now use the Siegel-Weil
formula of Kudla—Rallis to show that (under our choice of measures)

Cu,+

a, .= — = *£1.
Co—

Indeed, fix two distinct places v1,v9. Choose a global quaternion algebra B split at vy, vs.
Let B(v1,v3) be the quaternion algebra that differs from B only at vy, ve. Note that our
choice of measures on the orthogonal groups associated to all quaternion algebras makes sure
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that we always get Tamagawa measures on the adelic points. Compare the Siegel-Weil (we
may choose B anisotropic to apply) for B and B(vy,vs):

gy, Ay = 1.

But vy, vy are arbitrary, we conclude that a, is independent of v and hence a? = 1.
From §4.2 Prop. 4.2.7, we have for T' > 0

Wreo(e,0, ®o0) = £(0)T'3(2) " 'e ™7,
where £(0) < 0. It is easy to see that
Iro(e, Poo) = vol(SO(By,))e 2™
Hence,
o)
7 vol(SO(By))

On the other hand, it is not hard to see that c, + is positive so we have

<0

K(0)I'5(2)~"
vol(SO(By,))

COO,+ = _COO,— =

Now note that Ir(g, ®>* ® ¢/ ) = Er(g,0,P> @ ¢/ ), and by Theorem 5.4.5:

W (goo, 0, Boo) = 21*22(2;) e TA(T).

Hence the ratio of 5.4.10 over the T-th term of 5.4.11 is given by

O30 11

2vol(SO(Bs))  Coor 2

This completes the proof.

Holomorphic projection

Now we calculate the holomorphic projection of E’(g,0,®) and come to the right choice of
Green functions. By Lemma 4.4.1, we need to calculate the integral
dy

1/2
o) = [ Wi (V7 L) 0dety e S

3
R+

where y = diag(y1,y2, y3) and T € Sym,(R) with positive diagonal diag(T) =t = diag(t1, ta, t3).
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Note that when ¢ > 1 and Re(s) > —1, we have an integral representation of the Legendre
function of the second kind:

0 (t)—/ du _l/oo (x —1)%dx
’ R, (t+ V12 —1coshu)i+s 2 ), alts(Slo 4 1)1+

And the admissible pairing at archimedean place will be given by the constant term at s = 0
of (the regularized sum of, cf. [30, §8.1]) Qs(1 + 2s.,(2)/q(x)).
Consider another closely related function for ¢ > 1, Re(s) > —1:

1 [ dx
P,(t) := = .
( ) 2/1 :L’(tglx—f— 1)1+5

Then obviously we have
Qo(t) = Py(t).
One may use either of the three functions (i.e., Fi, Qs and P;) to construct Green’s func-
tions. As Theorem 5.4.5 shows that to match the analytic kernel function, the function Ei is

the right choice; while the admissible pairing requires to use ;. The following proposition
relates Fi to P, and hence to @), by the coincidence Qg = F,.

Proposition 5.4.7. Let v € Mg”R such that T = T'(z) is non-singular and has positive
diagonal. Then we have

0,(T) = det(r)" (%) [ ne o) oo

where

is a Green’s function of D,.

Proof. First by the definition we have

2 or oAy
a,(T) = /RS det(y > )W r (@, €, 0) det(y)e ™ det(y) "
+

which is equal to

g W:/gTﬁ(CI),e,O)e_%Ty det(y)*dy.
+
If we modify # € M3y with moment T = T'(z) to a new a’ = (z}) with } = z;/q(z;)"/?,

we have T'(z') = t"2Tt" 2 (so that the diagonal are all 1). By Theorem 5.4.5 we have (after
substitution y — yt)

oo (T) = det(t) '~ / CA@ET( )y e det(y)*dy.

+
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By the definition of A(T), this is the same as
det(t / {3 m(y? ol 2), 1y pe ™ det(y) dy

where
1 1
{*f’:m(yfwé;Z),l}sz < m(yZ ol 2).
D

We can interchange the star product and integral over y to obtain

1
as(T) = det(t) " {x, / Ny zi; 2)e”™yidy;, 1}p. .

Ry

Here we use (-, -)p, to denote the integration of the product over D.. Now we compute the
inner integral:

/ (yza; 2)e ™y dy
Ry

- / Bi(—dmys.(2)e ™y dy

/ / —47rysz(z)u dU@ 4y sdy
]R+

s+1

= (m)i / <1+sz< uyes 7
_F(s+ 1) (s
=y Lo 28:(2)).

For more details, see [36, §8.1]. ]

Based on the decomposition of E’(g,0,®) in §2.5, we can have a decomposition of its
holomorphic projection, denoted by E’(g, 0, ®)por:

(5412) El(ga()?q))hol = ZEI(970>CD)hol7
and
E/(g707 q))hol - Z Eé"(guo)q)>hol7
T,5(T)=%(v)

where the holomorphic projection only changes Ef.(g,0,®) only when 3(7") = ¥(v) for v is
an archimedean place and in which case we give the formula only when g, = e

E’}(ga O, qD)hol = WT(goo)mv<T>WT,f(gf7 07 (I)f>7

where m(T') is the star product of Ps(14 2s,(z)/q(z)) for = with moment T". For the general
Jso, it can be recovered by the transformation rule under Iwasawa decomposition Then all
equalities above are valid for ¢ € G with g, = 1 when v € S, the finite set of non-archimedean
places outside which ®, is unramified.
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Theorem 5.4.8. Let T be an archimedean place. Assume that for at least two non-archimedean
v where ®, € Y(ereg). Then for g € G with g, = 1 for w € Sy, the set of finite place
outside which ®, is unramified, Then we have

Z(gv (I)7 A)T = _2E(97 07 (I))T,hol'

Proof. Under the assumption, all singular coefficients vanish on both sides. For the non-
singular coefficients, the right choice of Green’s function is the regularized limit of @, as
s — 0. Since P; — @, is holomorphic and equal to zero when s = 0, by the same argument of
(36, §8.1], we may use P, in the Green’s function and then take the regularized limit. Then
the result follows from Theorem 5.4.6 and the holomorphic projection above. O
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6 Vanishing of singular Whittaker integerals

In this section, we study the vanishing property of the Fourier coefficients El.(g,0,®) of
the derivative of the Eisestein series for Siegel-Weil sections associated to an incoherent
quaternion algebra B. First of all we show that if for two places ® is supported on elements
in B? whose components are linearly independent, then E%.(g,0,®) = 0 when T is singular,
see Proposition 6.1.1. Then we show that Er(e,s, ®) = 0 if ® is exceptional of sufficiently
high order, see Proposition 6.2.3. Combination of these two facts implies that E’(g,0, ®) has
only non-zero Fourier coefficients at non-singular 7" with ¥(7") = X(v) for those unramified
v if we choose ® carefully enough, see formula (6.2.1). Finally, we conjecture that we can
always make such a choice, see Conjecture 6.3.1. Meanwhile we can only prove this conjecture
when 7, has at least two ramifield finite places and all of them are not split in B, see Theorem
6.3.2.

6.1 Singular coefficients

!/

In this subsection we deal with the singular part £, (g,0, ®) of the Siegel-Eisenstein series.

Definition 6.1.1. For a place v of F', we define the open subset Bi,sub (resp. Ei’reg) of
B2 to be all x € B? such that the components of x generates a dimension 3 subspace of B,
(resp. with non-degenerate restricted). We define the subspace (B ) (resp. 7 (B3 ..))
of Z(B}) to be the set of all Bruhat-Schwartz functions ® with supp(®) C BJ, (resp.

supp(®) C B2 .. ).

v,reg

Note that .« (B3

v,sub

) is P,-stable under the action defined by the Weil representation.

Proposition 6.1.2. For an integer k > 1, fir non-archimedean (distinct) places vy, vy, ..., Ug.
Let & = ®,®, € 7(B*) with supp(®,,) C B} ., (1=1,2,....k) . Then for T singular
and g € G(A) with g,, € P,,,(i = 1,2,...,k), the vanishing order of the analytic function
ords—oEr(g,s,®) is at least k — 1. In particular, when T is singular, then Er(g,0, f) =0 if
k>1;and El(g,0,®) =0 if k > 2, .

Proof. We will use some results about Siegel-Weil formula and related representation theory.
They should be well-known to experts and are proved mostly in series of papers by Kudla—-
Rallis ([23],[21]). We will sketch proofs of some of them but don’t claim any originality and
we are not sure if there are more straightforward ways.

Suppose rank(T) = 3 — r with r > 0. Note that if T =' yT"y, T' = ( 0 5 ) for some
B € GL3_, and v € GL3, we have

ET(97 S, CI)) = Ep (m(v)g, S, CI))

Since m(vy) € P,,, it suffices to prove the assertion for

r=(" )
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with 8 non-singular.
For Re(s) > 0, we have

Er(g,0,®) = /[ S™ fauling)ta(n)dn

N pr\G(F)

:/[N]Z Z fos(yng)—r(n)dn.

i=0 yeP\Pw; P

Here For v =1, 2, 3,

L3
1;
—15
Lemma 6.1.3. For a place v, if a Siegel-Weil section fos € I(s) is associated to ® €
fo(Bg’sub), then fg s is supported in the open cell PwoP for all s.

Proof. By the definition fps(9) = r(g)®(0)As(g). Thus it suffices to prove supp(foo) C
PuwyP. Note that by the Bruhat decomposition G = [ [, Pw; P, it suffices to prove r(pw;p)P(0) =
0 for i = 1,2,3. Since . (B ,,;) is P,-stable, it suffices to prove r(w;)®(0) = 0 for i = 1,2,3.
Since
r(w;)®(0) = fy/ ®(0,...0, 2441, ..., x3)dTitq...dT3
Bn—t
for certain eighth-root of unity v, we compelete the proof since

(I)(O, ceey 0, Lid1y ey {23'3) =0
when ¢ > 1. 0
By Lemma 6.1.3, fg,(vn,9y,5) = 0 for v € Pw;P,i > 0, v € {vy,...,v;} and g, € P,.
Thus for g as in the statement, only the open cell has nonzero contribution in the coefficients
E(g5,0) = [ r{uong)®(0)0_s(n)dn.
Ny

This is exactly the Whittaker functional Wr(g, s, ®) = Wr(e, s, r(g)®).
Let i : Sp(3 —r) — Sp(3) be the standard embedding indicated by

1,

a b N a b
c d 1,
c d
Then this induces a map by restriction: 7* : I(s) — I°7"(s + %) to the degenerate principal
series on Sp(3 — r). We will frequently use upper/lower index n — r to indicate the rank of

the symplectic group we work on. Let M(s) be the intertwining operator. We now simply
denote by f the Siegel-Weil section fg.
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Lemma 6.1.4. Let Eg(g, s,i*M(s)f) denote the 3-Fourier coefficient of the Eisensetin series
defined by section i*M (s)f. Then

Wr(e, s, f) = Ese, —s + g 7 M(s)f)

Remark 6.1.1. Note that in general, besides Wr(g, s, f) in Er(g,s, f) there are also other
terms including Es(e, s + 5,7*7(g) f).

Proof. By [21] we have
Wr(e,s, f)
:/ fs(wng)y_r(n)dn
N

:/ / fs(wningg)_r(ning)dnydnsg
Ny N37T,3

=/ (/ fs(wwr?lrwn—rnl(l’,?J)w;lrwn—rnz(z)g)dm) Y_p(na)dns
r N3_r3

:/T(@Hﬁﬂwmwaww%mxamw>w¢mﬁma

=Ejle,s = 5.i"U())).

where the matrices

1L, v T
e
ulz,y) = S :
_ty 13—r
1, r oy
13, !
137T

U(il?, y) = wg_r’l’L(ZE, y)w?)_—lr’
and the operator
1,

U)f = | flwPugyde, w®=|

Us—_r3
13—r

Apply the functional equation to the Eisenstein series F(g,s,i*M(s)f),

Wr(e, s, f) = Eg(e, —s + g M(s — g) o " U(s)f).
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By the relation ([24, page 37]),

M(s — g) o i*U(s) = i*M(s),

we obtain

Wr(e, s, f) = Ege, —s + g,i*M(s)f).

Now we have an Euler product when Re(s) > 0,

Wr(e,s, f) = H Ws.(e, —s + g, i*My(8) fo)-

Note that by the standard Gindikin-Karpelevich type argument, for the spherical vector
f9(s) at a non-archimedean v and when Y, is unramified, we have

a,(s)

o0,

M, (s) [ (s) =

where
ay(s) = Ly(s + 03 — 3, x0)Co(25 — 1),
and
by(s) = Ly(S + 03, X0)Co(25 + 2).

Thus, for a finite set outside which everything is unramified,

M(s)f(s) = 242 <® bu ) Mv<s>fv<s>>> ® f3(~s).

veES Gv (S)

For a local Siegel-Weil section f, for all v, Zz((i)) M, (s) f, is holomorphic at s = 0 and there is
a non-zero constant independent of f such that

by($)
ay($)

Mv(s)fv(5>>|s:0 = /\va<0)

Thus we have

Wr(e, s, f)
_HWB,v(e, s+ g7Z*MU(S>f”U)
r.a(s) 1 r bu(s)
—A3—r(_5 + 5) b(S) 15 A3—7‘,’U(_S + g)Wﬁ,v(ea -5+ 57 t (CLU(S) MW(‘S)fv))
—Ag_r(—S + g)% AB,U(*S? f)>
vES)
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where S is the set of all primes such that outside Sg, f, is the spherical vector, v, is
unramifed and ord,(det(3)) = 0.

Since ords—oAz_r,(—s+ 5) = 0, Z—((Z%Mv(s)fv is holomorphic and Wj(e, s, f) extends to
an entire function, we know that Ag, (s, f) is holomorphic at s = 0. We have a formula
Ay

A3—r,v (O>

Lemma 6.1.5. Define a linear functional

Agul0, f) = W3 (e, 5.7 £,(0).

L. (BE) = C
d, — Aﬁjv(O, fq;v).

Then, we have 1(r(n(b))®,) = 1, 1(0)e(P,), i.e., t € Homy (S (B2), 7).

Proof. Let b = ( txy Z ) € Syms(F,). Since M, is Sp(3)-intertwining, we have

Wiale, s+ 5.1 (M, (s)r(n(b))£,)

=Wi(e.—s + 3.8°(r(n(b) M, (5)£,))
= [ on@mn (5 2 ))nonwesas

= /S o M) )l s o (( 0L ))W

= [ onenen (51, ) et
—s()Waale, —s + 5,0 Mo (s) )

o,

:¢T(b)Wﬂ7v(€, —s + 5, (3 Mv(.S)fv).
Thus, the linear functional f; — Ag,(s, f) defines an element in Homy(I(s), 7). In par-
ticular, when s = 0, the composition ¢ of Ag, with the G-intertwining map .&(B?) — 1(0)
defines a linear functional in Homy (. (B2), ¢r). O

Then the map ¢ factors through the ¢r-twisted Jacquet module 7 (B3)y7 (i.e., the
maximal quotient of . (B?) on which N acts by character ¢r). Thus by the following result

of Rallis, ¢ is trivial on . (B} ) when T is singular:

Lemma 6.1.6. The map 7 (B*) — 7 (B*)nr can be realized as the restriction ./ (B*) —
S (Q7).
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Now since ordsz()% = 0, we can now conclude that

ords—oWr(e, s, fo) > k

if ,, € (B2 ..) since the restriction to Q7 is zero.

v;,reg
For a general g € GG, we have

Wr <g7$ f‘b)
=Wr(e, s,r(g)P)

_Anr _HABUSTQUI v)
ES’

7“
2

where S3, is a finite set of place that depends also on g.

Since . (B2) — 1(0 ) is G-equivariant, Ag,(0,7(g,)fs) = ¢(r(gs)®Py). Since g, € P,,, we
have 7(gy,)®., € (B, ,,;) and by the same argument above Ag,, (0,7(gy,)fy,) = 0. This
completes the proof of Proposition 6.1.2. O

Remark 6.1.2. The proof would be much shorter if it were true that Wr,(g, s, f,) extends
to C and holomorphic at s = 0 for singular 7.

Now it is easy to extend to the similitude group GSps. Recall that we have a decompo-
sition of E'(g,0,®) according to the difference of ¥(7") and X:

(6.1.1) E'(g,0,®) ZE’ 9,0,®) + E.;, (9.0, ®),

where

(6.1.2) Ey(9,0,®)= > Ep(g,0,9),
S(T)=%(v)

and

E;zng(g707q)) = Z Efp(g,O,(I))
T, det(T)=0

Corollary 6.1.7. The same assumption as in Proposition 6.1.2, then we have for T singular
and g € GSps(A) with g,, € P,,, (i = 1,2,..., k), the vanishing order of the analytic function
ords—oEr(g, s, P) is at least k — 1. In other words, for such g we have

E;zng(g7 07 (I)) =0.
Proof. For g € GSp,(A), we still have
a(s)
W Q) - A —r A v V. v
T(gasa ) 3 ( S le_S[, B, Sr-gz)f)

for a finite set of places Sg . O
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6.2 Functions with regular support

Let F' be a non-archimedean field. Let B be a quaternion algebra over F. And we have the
moment map

Q : B* — Symy(F).

Definition 6.2.1. We call a function ® € Y(Bff’eg) “exceptional of order k” if it satisfies
the condition that Q(supp(®)) + p~*Sym,,(0) C Q(B3,).

Even though it looks that such functions are very special, they in fact generate .7 (BJ,,)
under the action of a very small subgroup.

Lemma 6.2.2. Let k be any fizved integer. Then .#(B2.,) is generated by all exceptional

reg
function of order k under the action of elements m(alz) € Spy for all a € F*.

Proof. Without loss of generality, we can assume that k is even and that & = 1 € .% (Bfeg)
is the characteristic function some open compact set U C B®. Then Q(U) is an compact open
subset of Symg(F)e. Let Z3 = {(a1,a2,a3) € Z*|a; < as < az}. Then the “elementary
divisors” defines a map ¢ : b € Symy(F) — (a1,a2,a3) € Z3. One can check that it is
locally constant on Symg(F),.,. Hence the composition of this map and the moment map
() is also locally constant on Bf,’eg. In particular, this gives a partition of U into disjoint
union of finitely many open subsets. So we can assume that ¢ o ) is constant on U, say,
60 Q(U) = {(a1, a2, a3)}.

Consider m(al3)® which is certain multiple of 1,;. Choose a = p~# for some integer
A >1+a;+ (ag —ar) + (a3 — ay) . Then we are left to prove that that such 1,-a-r/2p
is exceptional of order k. It suffices to prove that, for any x € U and t € Symy4(0),
Q(p~47*/2z) + p~*t belongs to Q(B3). Note that

reg

ay—1 ap—1 ay—1

QU™ 2x) 4 pht = pT AN Q(pT ) 4 pM ),

Now Q(p’[alel]x) € Symg(0). It is well-known that for 7' € Symy(O)see, T and T +
p?Haet T for any T" € Symy(0) defines isomorphic integral quadratic forms of rank n.
Equivalently, 7' + p*T4tMT" =t ~T~ for some v € GL3(€). Now it is easy to see that

Q(p~**2x) + p~*t € Q(BL,). N

The nice property of an exceptional of high order is exhibited in the vanishing of the
Whitatker function.

Proposition 6.2.3. Suppose that & € y(Bfeg) is exceptional of sufficiently large order k
depending on the conductor of the additive character 1. Then we have

Wr(®,e,s) =0

for reqular T ¢ Q(B3

reg

) and any s € C. In particular, Wp(®,e,0) = WiL(®P,e,0) = 0.
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Proof. When Re(s) > 0, we have
WT((I)a €, S)

=V, w>/s (F)zp(—b(T—Q(x)))/ ®(z)0(wb)*dxdb

B3

—Vide, [ (T = T)6(wby’, (@) dbaT
Symg (F)

where ¢, is a suitable non-zero constant and I (®) is a certain orbital integral defined

earlier. Then 7" — I7+(®) defines a function in . (Symg(F),eg) for our choice of ®. Since as

a function of b € Syms(F'), §(wbd) is invariant under the translation of Sym, (&), we have

/ B(b)5 (wb)*db
Symg(F)

:( /Sym3(0)¢<xt>dx> S wes(wd),

bESymy(F)/Syms(€)

which is zero unless ¢ € p~*Sym? (&) for some k depending on the conductor of the additive
character 1.

Therefore the nonzero contribution to the integral are from 7" — T' € p~*Sym?*(&) and
I7/(®) # 0. The assumption in the proposition forces that 7" is not in Q(supp(®)). But this
in turn implies that I (®) = 0!

In conclusion, we proves that, if ® is exceptional of order at least k and Re(s) > 0, we
have

Wr(®,e,s) = 0.

By analytic continuation, we still have Wp(®,e,s) =0 for all s € C!
]

From now on, we will choose ®, to be a test function “exceptional of sufficiently higher
order” for v € S where S is a set of finite places with at least two elements such that
any finite place outside S is spherical. And we always choose the standard Gaussian at all
archimedean places. Then for g € G(A®), we have

(6.2.1) E'(g,0,2) =) >  Ep(g.0®),
v X(T)=%(v)

where the sum runs over v outside S and nonsingular 7'.

6.3 Local zeta integrals with regular support

Let 0 = ®3_,0; be unitary irreducible admissible representation of G with each o; of infinite
dimensional and with A(o) < 1/2. Recall that we let A(o;) be zero if it is supercuspidal and
IA| if o = Ind%(x|- [} - |7*) for a unitary y. Let A(o) be the sum of A(o;). Note that if o
is local component of global automorphic cuspidal representation, we have A(o) < 1/2 by
work of Kim-Shahidi (Ramanujam conjecture predicts that A(o) =0 ).
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Conjecture 6.3.1. Assume that Homg(#(V?) X 0,C) # 0. Then the local zeta integral
Z(f,W) is non-zero for some choice of W € # (0,%) and f € I(B) attached to ® € (V3 ).

reg

Since that above space Homg (7 (V?) x ¢,C) is one dimensional and generated by zeta
integral, thus the zeta integral defines an SLy(F')*-equivariant map

a: (V3 — 5.

We need only show that there is an element in . (B},,) with non-zero image.
In the following we want to show that the theorem is true in some special cases including
the case when V' is anisotropic by induction.

Theorem 6.3.2. Assume that V is anisotropic. Let oy @ S (V) — o; (i = 1,---m)
be some SLy(F')-surjective morphisms to irreducible and admissible SLy(F') representations.
Let o = aqg ® g ® - - -y, be their product:

a: SV —o=0® - Qop.
Let W be a non-degenerate subspace of V' (with respect to the norm qlw ) such that
dimW +m < dim V.
There is a function ¢ € (V™) such that a(¢) # 0 and that the support supp(¢) of ¢

contains only elements v = (xy1,- -+, x,,) such that
W(x) =W+ Faxy+ - Fa,,
1s non-degenerate of dimension dim W + m.

Proof of the case m = 1. Since W is non-degenerate, we have an orthogonal decomposition
V =W & W’ and an identification ./ (V) = (W) @ .#(W’). The action of SLy(F) is
given by actions of the double cover §I/12(F) on . (W) and #(W’) respectively. Since V' is
anisotropic, W’ is anisotropic. So the space . (W’) is generated over SLy(F’) by the subspace
(W) of function supported on nonzero elements. In fact, one has

S W) =S (W) + 0w (Wys).
Choose any ¢ such that a(¢) # 0 and that ¢ is a pure tensor:
o=faf, fesSW), [esW)

Write .
= fo+wfi, fie S Woy) g€ SLo(F).

Then we have decomposition
¢ = ¢o + wen, do=f®f, r=wf®f

One of a(¢;) # 0. Thus we may replace ¢ by this ¢; to conclude that the support of ¢ is
contained in the set of x = (w,w’) with W(x) := W & Fw' non-degenerate. O
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Proof of the case m > 1. We prove by induction on m. We assume that we have a ¢ €
S (V™=1) with nonzero image in 0y ® - - - ® 0,,_; under

/
=01 QQp_1

such that the support of ¢ is contained in the set of elements 2’ = (1, - , Z,,—1) with non-
degenerate W (z') of dimension dim W +m — 1. For any = € supp(¢’) by applying the proved
case m = 1 to the subspace W (z'), we have a ¢, € .7 (V') such that supp(¢,) contains only
elements x,, with non-degenerate

W(a)(wm) = W(z), o= (21, Tm)

of dimension dim W +m. By computing moment matrix of W”, we see that this last condition
is open in z/. Thus there is an open subset U(z’) of 2’ such that above non-degenerate
condition holds for all elements in U(z').

As 2’ varies in supp(¢’), U(z') covers supp(¢’). By the compactness of supp(¢’), we can
find finitely many U(z}) to cover supp(¢’). Replacing U(z}) by sub-coverings of U(x}) N
supp(¢’), we may assume that ¢,, takes constants ¢; on every U(x}). Thus we have an

decomposition
¢ = cilyw).
i

As o/(¢') # 0, for one of x;, say y, o/(1y(y)) # 0. Now we define
¢ = luw) ® ¢y € L (V™).

Then ¢ satisfies the conditions in the theorem. O
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7 Local intersection at ramified places

In this subsection, we want to describe the local height pairing of Gross—Schoen cycles on
the triple product of a Shimura curve at bad places. Our treatment is complete only if v is
non-split in the corresponding quaternion algebra. Some further treatment needs to treat so
called non surpersingular local intersection.

7.1 Analytic unformizations

In the following, we want to give an analytic description of Hecke correspondence when v is
not split in B*. Again, we let B denote the quaternion algebra over F' such that

B® A ~ My(F,) ® B".

Cerednik—Drinfeld uniformization

First we want recall the Cerednik—Drinfeld uniformization when U, = U? := & . 18 maximal
for the formal completion lA/U along its special fiber over v. Let Q denote Deligne’s formal
scheme over 0, obtained by blowing-up P! along its rational points in the special fiber over
the residue field £ of 0, successively. So the generic fiber Q of €2 is a rigid analytic space
over F, whose F,-points are given by P!(F,) — P}(F,). The group GLy(F,) has a natural
action on . Let 54 = Q® FE!" be its base change to the maximal unramified extension
of F,. Then Xy := Respw/p, 74 when viewed as a formal scheme over F, has a action by
B* x B via action of g; € B € GLy(F},) and the following action on &7

(91792) € Bg X B;; — g1 X Frob_ordv(V(gl)V(QQ))’
The theorem of Cerednik—Drinfeld gives a natural isomorphism between two analytic spaces:
Y(?n ~ BX\ZO « (IB’U)X/U’U‘

The projective system of these varieties when U" various form a projective system with
compatible action by B*/ Bofv. The analytic space Xy over F" is geometrically connected
but Resgur{)y is not. In fact over F}" is isomorphic to €y X Z. Thus we have description over
e

U Fur 2 Bi\st x (B")* /U
here By denote the subgroup of elements b such that ord,v(b) = 0. The action of b € B} in
this new description is given as follows:

[z,9] = [f 2, [ ]

for some elements f € B whose norm has the same order as b.
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More generally, for any integer n > 1, let U denote the subgroup 1 4 n"0%,. Then
there is an etale covering 7, of J& over F,* with an compatible action of B} x B, on
¥ = Respuw/p, (J6,) over F such that

Vi = BX\E, x (BY)*/U".

with compatible action by B). The analytic space 7, over F;" has an action of by the
subgroup of elements (v, b) of B,* x B with ord(v()r(b)) = 0. Thus we have an description
over ' as

Yinve pp = B\ x (B”)™/U".
The right action of an element b € B is given by

[z.9] = [(f7",b)z, f'g).

Here f € B is any element with the same norm as b.

Write 7 as projective limit of ., which admit an action of Og so that quotient by any
compact subgroup U, gives an rigid space ¢, over F*. Write ¥, = Respu /FU(%%) and
> = Respw/p, (). Then we have a unformization for general open compact subgroup U of
B*:

Yi" = B*\Xy, x (B")*/U" = B*\Respu ;5,2 x (B”)"/U.
The projective system of these spaces when n and U various form a projective system with
action by B*. We have a similar description over F}":

Y = Bo\Jy, x (B")" /U = B\ x (B")*/U.

The analytic space at v associate to Mg can be described using orthogonal space V =
(B, q) and
H = GSpin(V) = {(91,92) € B*, v(g1) =v(g2)},

(91, 92)x = qrzgs ", g €B xeV,
DK = %Uv XFq‘J” %UU, D = E XF;)Jr Z
In this case,

M?{n = H(F)\R‘eSFgr/FvDKU X H(A?)/KU = H(F)\RGSF#r/FvD X H(A?)/K

Mg = H(F)o\Dx, x H(A7)/K* = H(F)o\D x H(A})/K

Uniformization of Z(z)k

For x € B*, the Hecke correspondence Z(z)x represents the right action of = on Yy if
q(x) € F, then we can find f € B* with the same norm as z,. Then Z(z)x over can be
described in terms of

Yl = BE\A x (BY)*/U :
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[2,9] = [(f 7, 20)z, [ ga"].

Let Dy(x,) C % denote the graph of the action (f~' x,) on J#. Notice that the
equation go = f~lg;x in g; € (B”)* is equivalent to

r=g""(f),  g=_(91,9) € H(A}).
Thus we have the following description of Z(x)x, pu:

Lemma 7.1.1.
Z(x)e = H(F)o\ | J (Dglwn) x gK*)/K"

g f=av

7.2 Local intersection at a non-split prime

In the following, we let us compute the local intersection over F)" for cycles Z (®;) for
P, € (V). Assume that ®;(z) = &Y (2¥)D;(z,) with P, invariant under U, x U, with
U, = U". We assume that the support of the function ® := ®; ® ¢, ® ®3 on V? is supported
on set of (V3)gy, of points (zy,xs,x3) whose components are linearly independent. This
implies that the cycles Z (¢;) have no intersection in the generic fiber.

Lemma 7.2.1. Consider Z(¢) = Z(¢1) x Z(¢a) X Z(¢3) as a correspondence on Y. Then

-~

there is an arithmetic class A, of the diagonal A in Y3 at place v such that

(Z(¢n) - Z(¢) - Z(¢3))w = deg(Z(¢).A]a)

Proof. First of all, we recall the discuss in §3.5 that since v is not split in B, the Hecke
operators does not change the v-adic structure of Hodge classes. This implies that for each

~

x € B* the admissible class Z(¢;) at place v can be written as

~ ~

Z(x)y = Z(2), Ay = pouptZ(1),

where Z (1), is the admissible class for the diagonal in Yy X Yy, and p; are two projections
of Z(z) onto Yy. In this way we have

Z(¢;) = Z($:).Z(1).

Secondly, define the arithmetic class for Z(¢) on Y as the intersection

~

Z(6) = praZ(¢n) - s 5 2(¢s) - 1562 (¢3)

where for any subset I of {1,2,---,6}, p; denotes the projection to the project of factors
YUH| indexed by I. Then

2(%) ) 2(%) ) 2(%) = deg(2(¢)|AxA-
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Write A x A as intersection pj,3A X pissA to obtain

degp456*(2(¢)|p’{23A)A = degp456*(2(¢)|p1‘23A)|A = degp456*(Z(¢)*2(1)3|p1“23A)|A‘

It is easy to check that two pushfords pyse. and Z(¢), commute. Thus we have
Z(®,A), = (Z(¢n) - Z(¢2) - Z($3))0 = deg(Z(9).A]a)
where ﬁv is an arithmetic class of the diagonal in Y;? defined by:

3@ = p456*(2(1)3|A)
Il

For each g € B* denote the diagonal A(g) (resp. arithmetic class A(g) the diagonal) in
component Y indexed by (g, g, ¢) in the uniformization:

Vi = (B P\ x (B0 (U
Then we can rewrite the intersection by

Z(®,A) = > Y O(x)deg(Z(@).Alg1)|aem):

(91,92)€(BY)2\(Bv)*2 /U2 2€K3\V3

Notice that Hecke operator does not change these component in Y. Thus we may
assume that v(g1) = v(g2). In other words, we may replace the index in the summer by
group H(F)o\H(A")*/K". Moreover, on the uniformization level, the Hecke operator Z(x;)
is given by

(2,9) — (7" wiol, £ g27)

~

where f; € B has the same norm as x. If deg(Z().A(91)|a(g,) 7# 0, we must have g, =
fitg12?. In terms of action of H on V = B, we have ¥ = g~ f;. Thus we can rewrite the

Z(®,A) = 3 > (g fmlf, )

(91,92)E(BY)2\(BY)*x2/U2 fEV3

where R
m(f, @)= Y Oy(x,) deg(Z (w0, A1) agm)-
2, EK3\BJ

1

Here Z(x,, f) is a correspondence from Yy, to Yy, by action by [f~!, x,] on the analytic

space J43.
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7.3 Compactness of local intersection

In the following, we want to show that following

Lemma 7.3.1. For given ®, with compact support, the function m(f, ®,) # 0 only if the
moment matriz of f is supported in a compact subject of Syms(F,).

In the following, we want to study the horizontal local intersection at a finite place v
which is split in B. We can construct a regular integral model ¥ for D,, := %”U?:? over some
base change of F" as follows. First all, over some base change of F)' of F)", the rigid

space 7, has an equivariant semistable model S over O rp. Then we blow up some closed

subscheme in the special fiber of the triple fiber product %Z)’ over Opw to get a regular
model Z of D, see Lemma 2.2.1 in [39]. In this way, we obtain integral models of 27, and
Xy =Yg as follows:

2 = (BT x (A3 (U"),
In this way the arithmetic cycle 3@)1, has a decomposition
Ay=A,+V
where V' is a vertical cycle. The intersection has decomposition

deg(Z(zy, [)A(9)|ag) = Z (20 )A(91) - Alga) + Z(x,, [)V - A(ga)-

We will prove the compactness by working on the horizontal and vertical separately.

Lemma 7.3.2. Fiz ax and g. The function deg(Z(z,, f)A(g1)|a(g)) # O only if the moment
metriz is supported in a compact subset of Syms(F},).

Proof. The cycle Z(x,, f)A has non-empty intersection with A only if they have non-empty
intersection in the minimal level, and only if any two of the graphs I'(f;) of the isomorphisms
fi : © — Q have a non-empty intersection in the generic fiber P*(C,) — P!(F,). Or in the
other words, the morphism f; fj_1 does not have a fixed point in P!(F,). This will implies
that fif; = fi f;lq( f;) is elliptic in the sense it generates a quadratic subfield £;; in B, over
F,. Recall that in a quadratic field, an element ¢ is integral only if its norm is integral. If n is
an integer such that 2n > —ord(q(¢)), then w't has integral norm, thus tr(w/'t) is integral.
Take n = —[ord(q(t))/2], then we get for all t € E;;:

ordtr(t) > —[ord(q(t)),2).
Since q(f;) = q(z;), we thus obtain that entries of Q(f) has an estimate
ord(tr(fif;) = —[ord(zz,)/2]
This shows that Q(f) is in a compact subset of Syms(F,). O

Now let us to compute vertical local intersection at v. We need only show that
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Lemma 7.3.3. For an irreducible vertical cycle S of 2, the support of the function f —
[f~Y 2,]S - A # 0 has compact moments.

Proof. Assume that S has image in Q3 included into A; x Ay x x A3, where A;’s are irreducible
components of special component of Q. If Z(z,, f)S - A # 0, then y; ' A; has non-trivial
intersection on €. This implies that for any i # j, yiyj_lAj is adjacent to A;.

Recall that after fixing an isomorphism B, ~ My(F},), the irreducible components in
the special component of §2 are parameterized by homothety classes of lattices in F?. Thus
for each 4, there is a finite set 7; of elements in GLy(F},) such that tA; for ¢;; € T, are all
component with non-trivial intersection with A;. Then we have tilyiyj_lAi = A, for some
t € T. Thus yiyj_l € t;;FGLy(0,). Since y; has the same norm as z;, this equation implies
that y,;7; is in a compact set which implies that the moment matrix is bounded.

n

By Lemma 7.3.1, we can replace m(f, ®,) by a Schwarts function ® on B2. Then we
have shown that that the local triple product at v is given by integration over [H| of the
theta series attached to ®’. By Siegel-Weil theorem, this integration is a coherent Eisenstein
series:

Theorem 7.3.1. Assume that ®, € .#(V?) is neat of sufficiently large order. Then there is
an ' = ' @ @ € (V) such that

Z(g,®,A), = E(g,9)

for g € G such that g, is in a small neighborhood of 1.

7.4 Proof of Main Theorem

In this section we will finish proving the main result 1.2.4 of this paper. Note that we need to
prove conjecture 3.4.2 under the assumption of the theorem. Firstly we compile established
facts. Note that the test functions are chosen as follows:

1. For v ¢ X we choose ®, to be the characteristic function of &%,
2. For v|oco, we have chosen @, to the standard Gaussian.
3. For finite v in X, we choose ®, to be neat of sufficiently large order depending on 1),,.

Now by the decomposition of E'(-,0,®),, (equation 5.4.12), we have for ¢ € G with
g, = 1 when v € S:

(741) El(gvoa (I))hol - ZE;;(ga()?q))hol
Eil)(ga()?(p)ht)l = Z E%(ana (I))hol
T,5(T)=%(v)
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where the sum runs only over non-singular 7' by the vanishing of singular coefficients for
such g. And when X(7T') = X(v) for v|oco, we have

Eé“(ga 07 (I))hol - WT(.goo>mv(T)WT,f(gfa 07 (I)f)

where m,(T") is the star product of Ps(1 + 2s,(2)/q(z)) for x with moment 7.
On the intersection side, we also have a decomposition

Z(g,®,A) ZZ (9,2,A), (mod n(G))

where ., (G) is the subspace of &7 (G) generated by restrictions of E(-,0,®) for ® € .7 (V}})
for all possible coherent Vj, and forms on (g1, g2, g3) which is Eisenstein for at least one
variable g;.

And we have proved the following comparison for g € G with g,, in a small neighborhood
U,, when w € ¥y, subset of finite places in X:

1. For v ¢ 3, by Theorem 5.3.3,

Z(ga (I)a A)v - E:)(g7 07 CI)) + Z Cv(gi; q)Z)Z(gjv (I)]) : Z(gk> (I)k)
where ¢,(g;, ;) are some functions which are vanishes for almost all v, and Z(g;, ®,) -
Z(gr, D) is the intersection of two divisors on Yy x Yy.

2. When v|oco, by Theorem 5.4.8,

Z<g7 (I)a 5)1} = quj(ga 07 (I))hol-

3. When v € S, by Theorem 7.3.1,
Z(g,®,A), = EW(g)
for some E®) € o7.,,(G). And by Proposition 6.2.3, we have for g as above

E!(g,0,®) = 0.

To sum up, we have an automorphic form

y(Q) = Z(97<I>7A) - E,(nga (I))hol - ZE(U)(Q) € %(G)

vES

with the property that for all g € ] U/G*r:

veEf

(7.4.2) F(9) =Y clgi, ®:)Z(9;,2;) - Z(gr, Pr)

i
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where ¢(g;, ®;) are some functions of ¢g;. Since F(g) and Z(g;, ®;) are all automorphic, we
have for any

v €SLy(F)’n [ 6™,

Z(C(%gu ®;) — c(gi, i) Z (95, P5) - Z(gk, Px) = 0

In particular if Z(g;, ®;) - Z(gx, Px) # 0, then c(v;g:, D;) = c(gi, P;). Since

SLy(F?) - [] UsG™ =SLa(A) [ UIG™

’UEZf ’UEEf

There are unique functions A(g;, ®;) for g € SLo(A)3 ]
erties:

ves; U!G*s with the following prop-

L A(vigi, q’i) = a(g;, ;) if v € SLa(F)

2. Mg, ®:) = c(gi, ;) if there are g;, g, with the sam norm as g; such that Z(g;, ®;) -
Z(gr, Pr) # 0

3. AMgi, ®;) = 0 if there such that Z(g;, ®;) - Z(gk, Pr) # 0 for all g;, gr with the same
norm as g;.

Now we have a new equation

(7.4.3) F(g) = Z)\(gi>q>i)z(9ja ®;) - Z(gk, Pr), g€ SL2(A)3 H U{;sz-

UEE‘f

We want to show that . is perpendicular to any cusp form ¢ € o in the Main theorem.
By our definition of .%, we see that if

/ FZ(9)e(9)dg = ((0(3 @ 2)
G(F)\G(A)

where ¢ € Z(I1) is the difference of two linear forms in remark 1.5.1 following the Main
Theorem 1.2.4 on the Shimizu lifting IT = 7 ® T of ¢ on O(V)3, Choose a fundamental
domain Q of F*\A* in Hvezf det U/ (AX)*s. Then we have a decomposition ¢ = >_ ¢; with

(P ® @) = / Aa(Pi ® i) Za(P; @ 05) - Zo(Pr @ p1)da
Q

Aalpi) = / A9gGa, Pi)i(99a), Zo(Pj®p;) = / Z(99a, ®)p(994)dg.
SLa(F)\SL2(A) SLa(F)\SL2(A)
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Notice that for each «, j, and k the intersection number Z,(®; ® ¢;) - Zo(Pr ® @) is
invariant under the orthogonal group O(V). Thus this defines a form in

HomO(V)(Hj ® Hk, C)

It follows that if ¢; # 0, then II; = ﬁk, and then ¢; = p; ® v; ; where f; is a functional on II;
and v;; is natural contraction between II; and IIj.
The invariance of ¢ under the diagonal action by O(V) implies that for any h € O(V),

> pi(v) (v @ vy) = 0,v; € M ® T,

7

where p)(v;) = pi(hv;) — pi(v;)). If all ; are infinite dimensional, then we claim that that
Hom(IL;, C) ® v;; are independent in Hom(II, C).

In fact, we need only show this independence when restricted to a finite dimensional
spaces V; C 1I;. We assume all V; ~ C" with a basis of linear forms e;. Assume that v;; is
given by the diagonal form ) e, ® e,,, and p} is given by > a;,e,. Then ¢; is given by

glzzanen(gem@em; gQZanem(gen@ema gSZchem(gem@en-
If dim V; > 1, then the equation ¢; 4+ ¢5 + /5 = 0 implies that all /; = 0.
By our claim, p; = 0. In other words, u; is an O(V)- equivariant linear form. This is

impossible since I1; is irreducible of dimension > 1. In summary, we have shown that ¢ = 0.
Thus we have completed the proof of Main Theorem 1.2.4.
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