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1 Introduction and notations

Let A be an abelian variety defined over a number field F and let

ρ : Gal(F̄ /F ) −→ GLn(C)

be a finite dimensional representation of the Galois group of F . Then the
Birch and Swinnerton-Dyer conjecture predicts the following identity

ords=1L(s, ρ, A) = dim(A(F̄ )⊗ ρ)Gal(F̄ /F ).

Here L(s, ρ, A) denotes an Euler product over all places of F :

L(s, ρ, A) :=
∏

v

Lv(s, ρ, A), (Re(s >> 0)

with good local factors given by

Lv(s, ρ, A) = det(1− q−s
v Frobv|T`(A)⊗ρ)

−1,

where ` is a prime different than the residue characteristic of v, and Z`

has been embedded into C. Moreover precisely, Birch and Swinnerton-Dyer
conjecture predicts that the leading term of L(s, ρ, A) in the Taylor expan-
sion in (s − 1) is given in terms of periods, Tate-Sharfarevich groups, and
Mordell-Weil group. We refer to Tate’s Bourbaki talk [9] for the details of
the formulation.

In this paper, we will restrict ourself to the following very special situa-
tion:
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• A/F is an abelian variety associated to a Hilbert newform φ over a
totally real field F with trivial central character;

• ρ is a representation induced from a ring class character χ of Gal(K̄/K)
where K/F is a totally imaginary quadratic extension;

• the conductor N of φ, the conductor c of χ, and the discriminant dK/F

of K/F are coprime to each other.

In this case, L(s + 1/2, ρ, A) is a product of the Rankin L-series L(s, χ, φσ),
where φσ are the Galois conjugates of φ. Moreover, L(s, χ, φ) has a symmetric
functional equation:

L(s, χ, φ) = ε(χ, φ) · NF/Q(ND)1−2s · L(1− s, χ, φ)

where
ε(χ, φ) = ±1, D = c2dK/F .

The main result in our papers in Asia Journal and Annals [16, 17] is to
express L′(1, χ, φ) (resp. L(1, χ, φ)) when ε(χ, φ) = −1 (resp. ε(χ, φ) = +1)
in terms of Heegner cycles in certain Shimura varieties of dimension 1 (resp.
0) of level ND. This result is a generalization of the landmark work of Gross
and Zagier in their Inventiones paper [6] on Heegner points on X0(N)/Q with
square free discriminant D.

The aim of this paper is to review the proofs in our previous papers
[16, 17]. We also take this opportunity to deduce a new formula for Shimura
varieties of level N . In odd case, the formula reads as

L′(1/2, χ, φ) =
2g+1

√
N(D)

‖φ‖2‖xφ‖2

where xφ is certain Heegner point in the Jacobian of Shimura curve. See
Theorem 6.1 for details. In even case, the formula reads as

L(1/2, χ, φ) =
2g

√
N(D)

‖φ‖2|(φ̃, Pχ)|2

where (φ̃, Pχ) is the evaluation of ceratin test form on a CM-cycle Pχ on a
Shimura variety of dimension 0. See Theorem 7.1 for details. These results
have more direct applications to the Birch and Swinnerton-Dyer conjecture
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and p-adic L-series and Iwasawa theory. See papers ([1, 11]) of Bertolini-
Darmon and Vatsal for details.

To do so, we need to compute various constants arising in the comparisons
of normalizations of newforms or test vectors. This will follow from a com-
parison of two different ways to compute the periods of Eisenstein series. One
is an extension of the method for cusp form in our Asia Journal paper [16],
and another one is a direct evaluation by unfolding the integrals. Notice that
the residue and constant term of Dedekind zeta function can be computed
by the periods formula for Eisenstein series. Thus, the Gross-Zagier formula
can be considered as an extension of class number formula and Kronecker
limit formula not only in its statement but also in its method of proof.

Notice that Waldspurger has obtained a formula (when χ is trivial [12])
and a criterion (when χ is non trivial [13]) in the general situation where

• K/F is any quadratic extension of number fields, and

• φ is any cusp form for GL2(AF ), and

• χ is any automorphic character of GL1(AK) such that the central char-
acter is reciprocal to χ|A×F .

We refer to papers of Gross and Vatsal ([5, 10]) in this volume for the ex-
planation of connections between our formula and his work. There seems to
be a lot of rooms left to generalize our formula to the case considered by
Waldspurger. In this direction, Hui Xue in his thesis ([15]) has obtained a
formula for the central values for L-series attached to a holomorphic Hilbert
modular form of parallel weight 2k.

This paper is organized as follows. In the first part (§2-7), we will give the
basic definitions of forms, L-series, Shimura varieties, CM-points, and state
our main formula (Theorem 6.1 and Theorem 7.1) in level N . The definitions
here are more or less standard and can be found from our previous work
as well as the work of Jacquet, Langlands, Waldspurger, Deligne, Carayol,
Gross, and Prasad. Forms has been normalized as newforms or test vectors
according to the action of uniportant or torus subgroup.

In the second part (§8-10), we will review the original ideas of Gross-
Zagier in their Inventiones paper ([6]) on X0(N) with square free D and its
generalization to Shimura curves of (N, K)-type in our Annals paper ([17]).
The central idea is to compare the Fourier coefficients of certain natural
kernel functions of level N with certain narural CM-points on Shimura curves
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X(N, K) of (N,K)-type. This idea only works perfectly when D is square
free and when X(N,D) has regular integral model but has essential difficulty
for the general case.

In the third part (§11-16), we review the basic construction and the proof
in our Asia Journal paper ([16]) for formulas in level ND. The kernel function
and CM-points we pick are good for computation but have level ND. Their
correspondence is given by local Gross-Zagier formula which is of course
the key of the whole proof. The final formulas involve the notion of quasi-
newforms or toric newforms as variations of newforms or test vectors.

In the last part (§17-19) which is our new contribution in addition to our
previous papers, we will deduce the formula in level N from level ND. The
plan of proof is stated in the beginning of §17 as three steps. The central
ideal to is use Eisenstein series to compute certain local constants. This is
one more example in number theory that local questions can be solved by
global method, as in the early development of local class field theory and in
the current work of Harris-Taylor on local Langlands conjecture.

The first three parts (§2-18) are simply review of ideas used in our pre-
vious papers. For details one may need to go to the original papers. For an
elementary expository of the Gross-Zagier formula (or its variants as Gross
formula or Kohen-Gross-Zagier formula) and its applications to Birch and
Swinnerton-Dyer conjecture, we refer to our paper for Harvard-MIT confer-
ence on current developments of mathematics ([18]).

I would like to thank N. Vatsal and H. Xue for pointing out many inaccu-
racies in our previous paper [16] ( especially the missing of the first Fourier
coefficient of the quasi-newform in the main formulas); to B. Gross for his
belief of the existence of a formula in level N and for his many very useful
suggestions in preparation of this note; to D. Goldfeld and H. Jacquet for
their constant supports and encouragements.

Notations

The notations of this note are mainly adopted from our Asia Journal paper
[16] with some simplifications.

1. Let F denote a totally real field of degree g with ring of integers OF ,
and adeles A. For each place v of F , let Fv denote the completion of of F
at v. When v is finite, let Ov denote the ring of integers and let πv denote a
uniformizer of Ov. We write ÔF for the product of Ov in A.

2. Let ψ denote a fixed nontrivial additive character of F\A. For each
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place v, let ψv denote the component of ψ and let δv ∈ F×
v denote the

conductor of ψv. When v is finite, δ−1
v Ov is the maximal fractional ideal of

Fv over which ψv is trivial. When v is infinite, ψv(x) = e2πδvx. Let δ denote∏
δv ∈ A×. Then the norm |δ|−1 = dF is the discriminant of F .
3. Let dx denote a Haar measure on A such that the volume of F\A is

one. This measure has a decomposition dx = ⊗dxv into local measures dxv

on Fv which are self-dual with respect to characters ψv. Let d×x denote a
Haar measure on A× which has a decomposition d×x = ⊗d×xv such that
d×xv = dxv/xv on F×

v = R× when v is infinite, and such that the volume of
O×

v is one when v is finite. Notice that our setting of multiplicative measures
is different than those in Tate’s thesis, where the volume of O×

v is |δv|1/2.
4. Let K denote a totally imaginary quadratic extension of F and T

denote the algebraic group K×/F× over F . We will fix a Haar measure dt
and its decomposition dt = ⊗dtv such that T (Fv) has volume 1 when v is
infinite.

5. Let B denote a quaternion algebra over F and let G denote the alge-
braic group B×/F× over F . We will fix a Haar measure dg on G(A) and a
decomposition dg = ⊗dgv such that at an infinite place G(Fv) has volume
one if it is compact, and that when G(Fv) ' PGL2(R),

dgv =
|dxdy|
2πy2

dθ,

with respect to the decomposition

gv = z

(
y x
0 1

)(
cos θ sin θ
− sin θ cos θ

)
.

In this way, the volume |U | of the compact open subgroup U of G(Af ) (or
G(Fv) for some v - ∞) is well defined. We write (f1, f2)U for the hermitian
product

(f1, f2)U = |U |−1

∫

G(A)

f1f̄2dg

for functions f1, f2 on G(A) (or G(Af ), or G(Fv)). This product depends
only on the choice of U but not on dg.

2 Automorphic forms

Let F be a totally real field of degree g, with ring of adeles A, and discrim-
inant dF . Let ω be a (unitary) character of F×\A×. By an automorphic
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form on GL2(A) with central character ω we mean a continuous function φ
on GL2(A) such that the following properties hold:

• φ(zγg) = ω(z)φ(g) for z ∈ Z(A), γ ∈ GL2(F );

• φ is invariant under right action of some open subgroup of GL2(Af );

• for a place v | ∞, φ is smooth in gv ∈ GL2(Fv), and the vector space
generated by

φ(grv), rv ∈ SO2(Fv) ⊂ GL2(A)

is finite dimensional;

• for any compact subset Ω there are positive numbers C, t such that

∣∣∣∣φ
((

a 0
0 1

)
g

)∣∣∣∣ ≤ C(|a|+ |a−1|)t

for all g ∈ Ω.

Let A(ω) denote the space of automorphic forms with central character
ω. Then A(ω) admits an admissible representation ρ by GL2(A). This is a
combination of a representation ρf of GL2(Af ) via right action:

ρf (h)φ(g) = φ(gh), h ∈ GL2(Af ), φ ∈ A(ω), g ∈ GL2(A),

and an action ρ∞ by pairs

(M2(Fv), O2(Fv)), v | ∞.

Here the action of O2(Fv) is the same as above while the action of M2(Fv) is
given by

ρ∞(x)φ(g) =
dφ

dt
(getx)|t=0, x ∈ M2(Fv), φ ∈ A(ω), g ∈ GL2(A), v | ∞.

An admissible and irreducible representation Π of GL2(A) is called automor-
phic if it is isomorphic to a sub-representation of A(ω). It is well-known
that the multiplicity of any irreducible representation in A(ω) is at most 1.
Moreover, if we decompose such a representation into local representations
Π = ⊗Πv then the strong multiplicity one says that Π is determined by all
but finitely many Πv.
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Fix an additive character ψ on F\A. Then any automorphic form will
have a Fourier expansion:

(2.1) φ(g) = Cφ(g) +
∑

α∈F×
Wφ

((
α 0
0 1

)
g

)
,

where Cφ is the constant term:

(2.2) Cφ(g) :=

∫

F\A
φ

((
1 x
0 1

)
g

)
dx,

and Wφ(g) is the Whittaker function:

(2.3) Wφ(g) =

∫

F\A
φ

((
1 x
0 1

)
g

)
dx.

It is not difficult to show that a form with vanishing Whittaker function
will have the form α(det g) where α is a function on F×\A×. Every auto-
morphic representation of dimension 1 appears in this space and corresponds
to a characters µ of F×\A× such that µ2 = ω.

We say that an autmoprhic form φ is cuspidal if the constant term Cφ(g) =
0. The space of cuspidal forms is denoted by A0(ω). We call an automorphic
representation cuspidal if it appears in A0(ω).

An irreducible automorphic representation which is neither one dimen-
sional nor cuspidal must be isomorphic to the space Π(µ1, µ2) of Eisenstein
series associated to two quasi characters µ1, µ2 of F×\A× such that µ1µ2 = ω.
To construct an Eisenstein series, let Φ be a Schwartz-Bruhat function on
A2. For s a complex number, define

(2.4) fΦ(s, g) := µ1(det g)| det g|s+1/2

∫

A×
Φ[(0, t)g]µ1µ

−1
2 (t)|t|1+2sd×t.

Then fΦ(s, g) belongs to the space B(µ1 · | · |s, µ2 · | · |−s) of functions on
GL2(A) satisfying

(2.5) fΦ

(
s,

(
a x
0 b

)
g

)
= µ1(a)µ2(b)

∣∣∣a
b

∣∣∣
1/2+s

fΦ(s, g).

The Eisenstein series E(s, g, Φ) is defined as follows:

(2.6) E(s, g, Φ) =
∑

γ∈P (F )\GL2(F )

fΦ(s, γg).
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One can show that E(s, g, Φ) is absolutely convergent when Re(s) is suf-
ficiently large, and has a meromorphic continuation to the whole complex
plane. The so-defined meromorphic function E(s, g, Φ) has at most simple
poles with constant residue. The space Π(µ1, µ2) consists of the following
Eisenstein series:

(2.7) E(g, Φ) := lim
s−→0

(
E(s, g, Φ)− (residue)s−1

)
.

3 Weights and levels

Let N be an ideal of OF and let U0(N) and U1(N) be the following subgroups
of GL2(Af ):

(3.1) U0(N) :=

{(
a b
c d

)
∈ GL2(ÔF ) : c ≡ 0 (mod N)

}
,

(3.2) U1(N) :=

{(
a b
c d

)
∈ U0(N) : d ≡ 1 (mod N)

}
.

For each infinite place v of F , let kv be an integer such that ωv(−1) = (−1)kv .
An automorphic form φ ∈ A(ω) is said to have level N , weight k = (kv :

v | ∞), if the following conditions are satisfied:

• φ(gu) = φ(g) for u ∈ U1(N);

• for a place v | ∞,
φ(grv(θ)) = φ(g)e2πikvθ

where rv(θ) is an element in SO2(Fv) ⊂ GL2(A) of the form

rv(θ) =

(
cos θ sin θ
− sin θ cos θ

)
.

Let Ak(N, ω) denote the space of forms of weight k, level N , and central
character ω. For any level N ′ | N of N and weight k′ ≤ k by which we mean
that k − k′ has non-negative components, we may define embeddings

Ak′(N
′, ω) −→ Ak(N, ω)
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by applying some of the following operators:

φ 7→ ρv

(
π−1

v 0
0 1

)
φ, (v -∞)

φ 7→ ρv

(
1 i
i −1

)
φ. (v | ∞)

The first operator increases level by order 1 at a finite place v; while the
second operator increases weight by 2 at an infinite place v. Let Aold

k (N,ω)
denote the subspace of forms obtained from lower level N ′ or lower weight k′

by applying at least one of the above operators.
For any ideal a prime to N , the Hecke operator Ta on Ak(N,ω) is defined

as follows:

(3.3) Taφ(g) =
∑

αβ=a
x mod α

φ

(
g

(
α x
0 β

))

where α and β runs through representatives of integral ideles modulo Ô×
F

with trivial component at the place dividing N such that αβ generates a.
One has the following formula for the Whittaker function:

(3.4) Wφ

(
g

(
aδ−1 0

0 1

))
= |a|WTaφ(g)

where g ∈ GL2(A) with component 1 at places v - N · ∞.
We say that φ is an eigenform if for any ideal a prime to N , φ is an

eigenform under the Hecke operator Ta. We say an eigenform φ is new if all
kv ≥ 0, and if there is no old eigenform with the same eigenvalues as φ. One
can show that two new eigenforms are proportional if and only if they share
the same eigenvalues for all but finitely many Tv.

For φ ∈ Ak(N,ω), let’s write Π(φ) for the space of forms in

A(ω) = ∪k,NAk(N,ω)

generated by φ by right action of GL2(A). Then one can show that Π(φ)
is irreducible if and only if φ is an eigenform. Conversely, any irreducible
representation Π of GL2(A) in A(ω) contains a unique line of new eigenform.
An eigenform φ with dim Π(φ) < ∞ will have vanishing Whittaker function
and is a multiple of a character.
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It can be shown that an eigen new form φ with dim Π(φ) = ∞ will have
Whittaker function non-vanishing and decomposable:

(3.5) Wφ(g) = ⊗Wv(gv)

where Wv(gv) at finite places can be normalized such that

(3.6) Wv

(
δ−1
v 0
0 1

)
= 1.

Each local components Πv is realized in the subspace

W(Πv, ψv) = Π(Wv)

generated by Wv under action right action of GL2(Fv) (or (M2(Fv), O2(Fv))
when v is infinite.)

4 Automorphic L-series

For an automorphic form φ, let us define its L-series by

L(s, φ) : = d
1/2−s
F

∫

F×\A×
(φ− Cφ)

(
a 0
0 1

)
|a|s−1/2d×a

= d
1/2−s
F

∫

A×
Wφ

(
a 0
0 1

)
|a|s−1/2d×a(4.1)

which is absolutely convergent for Re(s) >> 0, and has a meromorphic
continuation to the entire complex plane, and satisfies a functional equation.

Assume that φ is an eigen new form. Then its Whittaker function is
decomposable. The L-series L(s, φ) is then an Euler product

(4.2) L(s, φ) =
∏

v

Lv(s, φ)

where

(4.3) Lv(s, φ) = |δv|s−1/2

∫

F×v
Wv

(
a 0
0 1

)
|a|s−1/2d×a.

For a finite place v, the L-factor has the usual expression:

(4.4) Lv(s, φ) =

{
(1− λv|πv|s + ω(πv)|πv|2s)−1, if v - N ,

(1− λv|πv|s)−1, if v | N ,
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where λv ∈ C is such that λv|πv|−1/2 is the eigenvalue of Tv if v - N .
For an archimedean place v, the local factor Lv(s, φ) is certain product

of Gamma functions and is determined by analytic properties of φ at v. For
the purpose of this paper, we will only consider new forms such that at an
infinite place which is either holomorphic or even of weight 0, i.e. invariant
under O2(Fv) rather than SO2(Fv). More precisely, at an infinite place v lets
consider the function on H×GL2(Av) defined by

(4.5) f(z, gv) := |y|−(kv+wv)/2φ

((
y x
0 1

)
, gv

)
, z = x + yi

where wv = 0 or 1 is such that ωv(−1) = (−1)wv . Then we require that
f(z, gv) is holomorphic in z if kv ≥ 1, and that f(z, gv) = f(−z̄, gv) if kv = 0.
If φ is of weight 0, then φ is an eigen form for the Laplacien

(4.6) ∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

We write eigenvalues as 1/4 + t2v and call tv the parameter of φ at v. Let’s
define the standard Whittaker function at archiemdean places v of weight kv

in the following way: if kv > 0,

(4.7) Wv

(
a 0
0 1

)
=

{
2a(wv+kv)/2e−2πa if a > 0,

0 if a < 0,

and if kv = 0, then

(4.8) Wv

(
a 0
0 1

)
= |a|1/2

∫ ∞

0

e−π|a|(y+y−1)yitvd×y.

In this manner, (up to a constant c 6= 0,) φ will have a Whittaker function
decomposable as in (3.5) with local function Wv normalized as in (3.6), (4.7),
(4.8). We say that φ is a newform if c = 1. Equivalently, φ is a newform if
and only if L(s, φv) has decomposition (4.2) with local factors given by (4.4)
when v -∞, and the following when v | ∞:

(4.9) Lv(s, φ) =

{
G2(s + kv + wv), if kv > 0,

G1(s + itv)G1(s− itv), if kv = 0,

where

(4.10) G1(s) = π−s/2Γ(s/2), G2(s) = 2(2π)−sΓ(s) = G1(s)G1(s + 1).

If Π is an automorphic representation generated by a newform φ, we write
L(s, Π) and L(s, Πv) for L(s, φ) and Lv(s, φ), respectively.
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5 Rankin-Selberg L-series

Let K be a totally imaginary quadratic extension of F , and let ω be the non-
trivial quadratic character of A×/F×NA×K . The conductor c(ω) is the relative
discriminant of K/F . Let χ be a character of finite order of A×K/K×A×. The
conductor c(χ) is an ideal of OF which is maximal such that χ is factorized
through

A×K/K×A×Ô×
c(χ)K

×
∞ = Gal(Hc(χ)/K),

where Oc = OF +c(χ)OK and Hc is the ring class filed of conductor c(χ). We
define the ideal D = c(χ)2c(ω), and call χ a ring class character of conductor
c(χ).

Let φ be a newform with trivial central character and of level N . The
Rankin-Selberg convolution L-function L(s, χ, φ) is defined by an Euler prod-
uct over primes v of F :

(5.1) L(s, χ, φ) :=
∏

v

Lv(s, χ, φ)

where the factors have degree ≤ 4 in |πv|s. This function has an analytic
continuation to the entire complex plane, and satisfies a functional equation.
We will assume that the ideals c(ω), c(χ), N are copprime each other. Then
the local factors can be defined explicitly as follows.

For v a finite place, lets write

Lv(s, φ) = (1− α1|πv|s)−1(1− α2|πv|s)−1,

∏

w|v
L(s, χw) = (1− β1|πv|s)−1(1− β2|πv|s)−1,

then

(5.2) Lv(s, χ, φ) =
∏
i,j

(1− αiβj|πv|s)−1.

Here for a place w of K, the local factor L(s, χw) is defined as follows:

(5.3) L(s, χw) =





(1− χ(πw)|πw|s)−1, if w - c · ∞,

G2(s), if v | ∞,

1, if v | c.
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At an infinite place v, using formula G2(s) = G1(s)G1(s + 1) we may
write

Lv(s, φ) = G1(s + σ1)G1(s + σ2),

Lv(s, χ) = G1(s + τ1)G1(s + τ2).

Then the L-factor Lv(s, χ, φ) is defined as follows:

Lv(s, χ, φ) =
∏
i,j

G1(s + σi + τj)(5.4)

=

{
G2(s + (kv − 1)/2)2, if kv ≥ 2,

G2(s + itv)G2(s− itv), if kv = 0.

where tv is the parameter associated to φ at a place v where the weight is 0.
The functional equation is then

(5.5) L(1− s, χ, φ) = (−1)#ΣNF/Q(ND)1−2sL(s, χ, φ),

where Σ = Σ(N, K) is the following set of places of F :

(5.6) Σ(N, K) =

{
v

∣∣∣∣
v is infinite, and φ has weight kv > 0 at v, or
v is finite, and ωv(N) = −1.

}

6 Odd case

Now we assume that all kv = 2 and that the sign of the functional equation
(5.5) is −1, so #Σ is odd. Our main formula expresses the central derivative
L′(1/2, χ, φ) in terms of the heights of CM-points on a Shimura curve. Let
τ be any real place of F , and let B be the quaternion algebra over F which
ramified exactly at the places in Σ−{τ}. Let G be the algebraic group over
F , which is an inner form of PGL2, and has G(F ) = B×/F×.

The group G(Fv) ' PGL2(R) acts on H± = C−R. If U ⊂ G(Af ) is open
and compact, we get an analytic space

(6.1) MU(C) = G(F )+\H ×G(Af )/U

where G(F )+ denote the subgroup of elements of G(F ) with totally positive
determinants. Shimura proved these were the complex points of an algebraic
curve MU , which descends canonically to F (embedded in C, by the place
τ). The curve MU over F is independent of the choice of τ in Σ.
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To specify MU , we must define U ⊂ G(Af ). To do this, we fix an embed-
ding K −→ B, which exists, as all places in Σ are either inert or ramified
in K. One can show that there is an order R of B containing OK with re-
duced discriminant N . For an explicit description of such an order, we fix a
maximal ideal OB of B containing OK and an ideal N of OK such that

(6.2) NK/FN · discB/F = N,

where discB/F is the reduced discriminant of OB over OF . Then we take

(6.3) R = OK +N · OB.

We call R an order of (N, K)-type. Define an open compact subgroup Uv of
G(Fv) by

(6.4) Uv = R×
v /O×

v .

Let U =
∏

v Uv. This defines the curve MU up to F -isomorphism. Let X
be its compactification over F , so X = MU unless F = Q and Σ = {∞},
where X is obtained by adding many cusps. We call X a Shimura curve of
(N, K)-type. We write R(N, K), U(N,K), X(N, K) when types need to be
specified.

We will now construct points in Jac(X), the connected component of
Pic(X), from CM-points on the curve X. The CM-points corresponding to
K on MU(C) form a set

(6.5) G(F )+\G(F )+ · h0 ×G(Af )/U = T (F )\G(Af )/U,

where h0 ∈ H is the unique fixed point of the torus points T (F ) = K×/F×.
Let Pc denote a point in X represented by (h0, ic) where ic ∈ G(Af ) such
that

(6.6) UT := icUi−1
c ∩ T (Af ) ' Ô×

c /Ô×
F .

By Shimura’s theory, Pc is defined over the ring class field Hc of conductor c
corresponding to the Artin map

Gal(Hc/K) ' T (F )\T (Af )/T (F∞)UT .

Let Pχ be a divisor on X with complex coefficients defined by

(6.7) Pχ =
∑

σ∈Gal(Hc/K)

χ−1(σ)[P σ
c ].
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If χ is not of form χ = ν · NK/F with ν a quadratic character of F×A×,
then Pχ has degree 0 on each connected component of X. Thus Pχ defines a
class x in Jac(X)⊗ C. Otherwise we need a reference divisor to send Pχ to
Jac(X). In the modular curve case, one uses cusps. In the general case, we
use the Hodge class ξ ∈ Pic(X) ⊗ Q: the unique class whose degree is 1 on
each connected component and such that

Tmξ = deg(Tm)ξ

for all integral nonzero ideal m of OF prime to ND. The Heegner class we
want now is the class difference

(6.8) x := [Pχ − deg(Pχ)ξ] ∈ Jac(X)(Hc)⊗ C,

where deg(Pχ) is the multi-degree of Pχ on geometric components.
Notice that the curve X and its Jacobian have an action by the ring

of good Hecke operators. Thus x is a sum of eigen vectors of the Hecke
operators.

Theorem 6.1. Let xφ denote the φ-typical component of x. Then

L′(1/2, χ, φ) =
2g+1

√
N(D)

· ‖φ‖2 · ‖xφ‖2.

Here,

• ‖φ‖2 is computed using the invariant measure on

PGL2(F )\Hg × PGL2(Af )/U0(N)

induced by dxdy/y2 on H;

• ‖xφ‖2 is the Neron-Tate pairing of xφ with itself.

To see the application to the Birch and Swinnerton-Dyer conjecture, we
just notice that xφ actually lives in a unique abelian subvariety Aφ of the
Jacobian Jac(X) such that

(6.9) L(s, Aφ) =
∏

σ:Z[φ]→C
L(s, φσ).
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Y. Tian [14] has recently generalized the work of Kolyvagin and Bertolini-
Darmon to our setting and showed that the rank conjecture of Birch and
Sweinnerton-Dyer for A in the case ords=1/2L(s, χ, φ) ≤ 1.

Notice that ‖φ‖2 is not exactly the periods of Aφ appearing in the Birch
and Swinnerton-Dyer conjecture, but it has expression in L-series:

(6.10) ‖φ‖2 = 2N(N) · dF · L(1, Sym2φ)

where L(s, Sym2φ) is the L-series defined by an Euler product with local
factors Lv(s, Sym2φ) given by

(6.11) Lv(s, Sym2φ) = G2(s + 1/2)2G1(s)
−1,

if v | ∞, and by

(6.12) Lv(s, Sym2φ) = (1− α2|πv|s)−1(1− β2|πv|s)−1(1− αβ|πv|s)−1,

if v -∞, and α and β are given as follows:

Lv(s, φ) = (1− α|πv|s)−1(1− β|πv|s)−1.

It will be an interesting question to see how this relates the periods in Aφ.

7 Even case

We now return to the case where φ has possible nonholomorphic components,
but we assume that all weights be either 0 or 2 and that the sign of the
functional equation of L(s, χ, φ) is +1, or equivalently, Σ is even. In this
case, we have an explicit formula for L(1/2, χ, φ) in terms of CM-points on
locally symmetric varieties covered by Hn where n is the number of real
places of F where φ has weight 0.

More precisely, let B be the quaternion algebra over F ramified at Σ, and
G the algebraic group associated to B×/F×. Then

(7.1) G(F ⊗ R) ' PGL2(R)n × SOg−n
3

acts on (H±)n. The locally symmetric variety we will consider is

(7.2) MU = G(F )+\Hn ×G(Af )/U,
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where U =
∏

Uv was defined in the previous §. Again we call MU or its
compactification X a quaternion Shimura variety of (N, K)-type. We will
also have a CM-point Pc and a CM-cycle Pχ defined as in (6.6) and (6.7) but
with Gal(Hc/K) replaced by T (F )\T (Af )/T (F∞)UT .

By some results of Waldspurger, Tunnel, and Gross-Prasad ([17], Theo-

rem 3.2.2), there is a unique line of cuspidal functions φ̃ on MU such that for

each finite place v not dividing N ·D, φ̃ is the eigenform for Hecke operators
Tv with the same eigenvalues as φ. We call any such a form a test form of
(N, K)-type.

Theorem 7.1. Let φ̃ be a test form of norm 1 with respect to the measure
on X induced by dxdy/y2 on H. Then

L(1/2, χ, φ) =
2g+n

√
N(D)

· ‖φ‖2 · |(φ̃, Pχ)|2.

Here
(φ̃, Pχ) =

∑

t∈T (F )\T (Af )/UT

χ−1(t)φ̃(tPc).

Remark

There is a naive analogue between even and odd cases via Hodge theory which
is actually a starting point to believe that there will be a simultaneous proof
for both cases. To see this, lets consider the space Z(Ω1

X) of closed smooth
1-forms on a Shimura curve X of (N,K)-type with hermitian product defined
by

(α, β) =
i

2

∫
αβ̄.

The Hodge theory gives a decomposition of this space into a direct sum

Z(Ω1
X) =

⊕
α

Cα
⊕

(continuous spectrum)

where α runs through eigenforms under the Hecke operators and the Lapla-
cien. Each α is either holomorphic, anti-holomorphic or exact. In either case,
α corresponds to a test form φ̃ of weight 2, −2, or 0 on X in the following
sense

α =





φ̃dz, if α is holomorphic,

φ̃dz̄, if α is anti-holomorphic,

dφ̃, if α is exact.

18



We may take integration c 7→ ∫ec α to define a map

πα : Div0(X)⊗ C −→
{

Aφ ⊗ C, if α is holomorphic,

C, if α is exact.

Here c̃ is an 1-cycle on X with boundary c. In this manner, we have

πα(Pχ̄) =

{
zφ, if α is holomorphic,

(φ, Pχ), if α is exact.

Thus we can think of C as an abelian variety corresponding to φ in the even
case with Neron-Tate heights given by absolute value. This gives a complete
analogue of the right hand side of the Gross-Zagier formulas in the even and
odd case.

On the other hand, in the even case, one can define L-series L(s, χ, ∂φ/∂zv)
by (4.1) where v is the only archimedean place where kv = 0. It is not diffi-
cult to see that this L-series is essentially (s − 1/2)L(s, χ, φ). Its derivative
is given by L(1/2, χ, φ). Thus we have an analogue of the left hand side as
well!

8 Idea of Gross and Zagier

Let us describe the original idea of Gross and Zagier in the proof of a central
derivative formula (for Heegner points on X0(N)/Q with square free discrim-
inant D) in their famous Inventiones paper. For simplicity, we fix N , χ and
assume that Σ(N,K) is odd. For a holomorphic form φ of weight 2, we define

its Fourier coefficient φ̂(a) at an integral idele a by the equation

(8.1) Wφ

(
ay∞δ−1 0

0 1

)
= φ̂(a)W∞

(
y∞ 0
0 1

)
,

where W∞ =
∏

v-∞ Wv is the standard Whittaker function for weight 2 de-

fined in (4.7).
With the notation of §6, there is a cusp form Ψ of level N whose Fourier

coefficient is given by

(8.2) Ψ̂(a) = |a|〈x, Tax〉.
This follows from the following two facts:
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• the subalgebra T′ of Jac(X) ⊗ C generated by Hecke operators Ta

is a quotient of the subalgebra T in End(S2(N)) generated by Hecke
operators Ta. Here S2(N) is the space of holomorphic cups forms of
weight (2, · · · , 2), level N , with trivial central character;

• any linear functional ` of T is represented by a cusp form f ∈ S2(N)

in the sense that |a|`(Ta) = f̂(a).

(This form Ψ is not unique in general. But it is if we can normalize it to be
a sum of new forms.)

It is then easy to see that

(8.3) (φ, Ψ) = 〈xφ, xφ〉(φ, φ).

Here (φ, Ψ) is the inner product as in Theorem 6.1 which is the same as
(φ, Ψ)U0(N) in our notations in Introduction.

Thus, the question is reduced to showing that

(8.4) L′(1/2, χ, φ) =
2g+1

√
N(D)

(Ψ, φ).

On the other hand, one can express L(s, χ, φ) using a method of Rankin
and Selberg:

(8.5) L(s, χ, φ) =
d

1/2−s
F

|U0(ND)|
∫

PGL2(F )\PGL2(A)

φ(g)θ(g)E(s, g)dg.

We need to explain various term in this integration.
First of all, θ is a theta series associated to χ. More precisely, θ is an eigen

form of weight (−1, · · · ,−1), level D, and central character ω such that its
local Whittaker functions Wv(g) produces the local L-functions for χ:

(8.6) |δv|s−1/2

∫

F×v
Wv

(−a 0
0 1

)
|a|s−1/2d×a =

∏

w|v
L(s, χw).

Here L(s, χw) is defined in (5.3). It follows that the automorphic representa-
tion Π(χ) := Π(θ) generated by θ is irreducible with newform θχ(g) = θ(gε)

where ε =

(−1 0
0 1

)
.
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Secondly, E(s, g) = E(s, g,F) is an Eisenstein series (2.6) for the quasi-
characters | · |s−1/2 and | · |1/2−sω with following specific F = ⊗Fv ∈ S(A2).
If v is a finite place, then

(8.7) Fv(x, y) =





1, if v - c(ω), |x| ≤ |ND|v, |y| ≤ 1,

ω−1
v (y), if v | c(ω), |x| ≤ |ND|v, |y| = 1,

0, otherwise.

If v is an infinite place, then

(8.8) Fv(x, y) = (±ix + y)e−π(x2+y2)

where we take + sign (resp. -) if kv = 2 (resp. kv = 0).
Taking a trace, we obtain a form of level N :

(8.9) Φs(g) = trDΦ]
s(g) =

∑

γ∈U0(D)/U0(ND)

d
1/2−s
F θ(gγ)E(s, gγ).

This form has the property:

(8.10) L(s, χ, φ) = (φ, Φs)U0(N).

The idea of Gross and Zagier (in the odd case) is to compute the derivative
Φ′

1/2 of Φs with respect to s at s = 1/2 and take a holomorphic projection
to obtain a holomorphic form Φ so that

(8.11) L′(1/2, χ, φ) = (φ, Φ)U0(N).

(See [4] for a direct construction of the kernel using Poincaré series instead
of Rankin-Selberg method and holomorphic projection.) Now the problem is
reduced to proving that

Φ− 2g+1

√
N(D)

Ψ

is an old form. In other words, we need to show that the Fourier coefficients
of Φ are given by height pairings of Heegner points on Jac(X):

(8.12) Φ̂(a) = |a|〈x, Tax〉

for any finite integral ideles a prime to ND.

21



One expects to prove the above equality by explicit computations for both
sides respectively. Theses computations have been successfully carried out by
Gross and Zagier [6] when F = Q, D is square free, and X(N,K) = X0(N).
The computation of Fourier coefficients of Φ is essentially straightforward
and has been carried out for totally real fields [17]. For the computation of
〈x, Tax〉, Gross and Zagier represented the Hodge class ξ by cusps 0 and ∞
on X0(N):

(8.13) 〈x, Tax〉 = 〈Pχ − hχ0, Ta(Pχ)− hχ,a∞〉
where hχ and hχ,a are integers to make both divisors to have degree 0. The
right hand side can be further decomposed into local height pairing by de-
forming self-intersections using Dedekind η-functions. These local height
pairings can be finally computed by a modular interpretation in terms of
deformation of formal groups.

When F is arbitrary (even when D is square free), the computation of
heights has a lot of problems as there is no canonical representatives for the
Hodge class, and no canonical modular form for self-intersections. In §9-10,
we will see how Arakelov theory been used to compute the heights.

When D is arbitrary (even when F = Q), the computations of both
kernels and heights for Theorem 6.1 seem impossible to carry out directly
because of singularities in both analysis and geometry. Alternatively, we
will actually prove a Gross-Zagier formula for level ND (§11-16) and try to
reduce the level by using continuous spectrum (§17-19).

9 Calculus on arithmetic surfaces

The new idea in our Annals paper ([17]) is to use Arakelov theory to decom-
pose the heights of Heegner points as locally as possible, and to show that
the contribution of these terms which we don’t know how to compute are
negligible.

Let F be a number field. By an arithmetic surface over SpecOF , we mean
a projective and flat morphism X −→ SpecOF such that that X is a regular
scheme of dimension 2. Let D̂iv(X ) denote the group of arithmetic divisors

on X . Recall that an arithmetic divisor on X is a pair D̂ := (D, g) where D
is a divisor on X and g is a function on

X(C) =
∐

Xτ (C)
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with some logarithmic singularities on |D|. The form−∂∂̄
πi

g on X(C)−|D| can

be extended to a smooth form c1(D̂) on X(C) which is called the curvature

of the divisor D̂. If f is a nonzero rational function on X then we can define
the corresponding principal arithmetic divisor by

(9.1) d̂ivf = (divf,− log |f |).

An arithmetic divisor (D, g) is called vertical (resp. horizontal) if D is sup-
ported in the special fibers (resp. D does not have component supported in
the special fiber).

The group of arithmetic divisors is denoted by D̂iv(X ) while the sub-

group of principal divisor is denoted by P̂r(X ). The quotient Ĉl(X ) of these
two groups is called the arithmetic divisor class group which is actually iso-
morphic to the group P̂ic(X ) of hermitian line bundles on X . Recall that a
hermitian line bundle on X is a pair L = (L, ‖ · ‖), where L is a line bundle
on X and ‖ · ‖ is hermitian metric on L(C) over X(C). For a rational section
` of L, we can define the corresponding divisor by

(9.2) d̂iv(`) = (div`,− log ‖`‖).

It is easy to see that the divisor class of d̂iv(`) does not depend on the choice

of `. Thus one has a well defined map from P̂ic(X ) to Ĉl(X ). This map is
actually an isomorphism.

Let D̂i = (Di, gi) (i = 1, 2) be two arithmetic divisors on X with disjoint
support in the generic fiber:

|D1F | ∩ |D2F | = ∅.

Then one can define an arithmetic intersection pairing

(9.3) D̂1 · D̂2 =
∑

v

(D̂1 · D̂2)v,

where v runs through the set of places of F . The intersection pairing only
depends on the divisor class. It follows that we have a well defined pairing
on P̂ic(X ):

(9.4) (L,M) −→ ĉ1(L) · ĉ1(M) ∈ R.
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Let V (X ) be the group of vertical metrized line bundles: namely L ∈
P̂ic(X ) with L ' OX . Then we have an exact sequence

0 −→ V (X ) −→ P̂ic(X ) −→ Pic(XF ) −→ 0.

Define the group of flat bundles P̂ic
0
(X ) as the orthogonal complement of

V (X ). Then we have an exact sequence

0 −→ P̂ic(OF ) −→ P̂ic
0
(X ) −→ Pic0(XF ) −→ 0.

The following formula, which is referred as Hodge index theorem, gives a

relation between intersection pairing and height pairing: for L,M∈ P̂ic
0
(X ),

(9.5) 〈LF ,MF 〉 = −ĉ1(L) · ĉ1(M),

where the left hand side denotes the Neron-Tate height pairing on Pic0(X) =
Jac(X)(F ).

For X a curve over F , let P̂ic(X) denote the direct limit of P̂ic(X ) over all

models over X. Then the intersection pairing can be extended to P̂ic(X). Let

F̄ be an algebraic closure of F and let P̂ic(XF̄ ) be the direct limit of Pic(XL)

for all finite extensions L of F , then the intersection pairing on P̂ic(XL) times

[L : F ]−1 can be extended to an intersection pairing on P̂ic(XF̄ ).

Let L ∈ P̂ic(X )Q be a fixed class with degree 1 at the generic fiber. Let
x ∈ X(F ) be a rational point and let x̄ be the corresponding section X (OF ).

Then x̄ can be extended to a unique element x̂ = (x + D, g) in D̂iv(X )Q
satisfying the following conditions:

• the bundle O(x̂)⊗ L−1
is flat;

• for any finite place v of F , the component Dv of D on the special fiber
of X over v satisfies

Dv · c1(L) = 0;

• for any infinite place v,

∫

Xv(C)

gc1(L) = 0.
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We define now Green’s function gv(x, y) on

X(F )×X(F )− diagonal

by

(9.6) gv(x, y) = (x̂ · ŷ)v/ log qv,

where log qv = 1 or 2 if v is real or complex. It is easy to see that gv(x, y) is
symmetric, and does not depend on the model X of X, and is stable under
base change. Thus we have a well-defined Green’s function on X(F̄ ) for each
place v of F .

10 Decomposition of Heights

We now want to apply the general theory of the previous section to intersec-
tions of CM-points to Shimura curves X = X(N,K) over a totally real field
F as defined in §6. Recall that X has the form

(10.1) X = G(F )+\H ×G(Af )/U(N, K) ∪ {cusps}
which is a smooth and projective curve over F but may not be connected.

To define Green’s function we need to extend the Hodge class ξ in Pic(X)Q
to a class in P̂ic(X) ⊗ Q. Notice that ξ ∈ Pic(X)Q is Eisenstein under the
action of Hecke operators:

(10.2) Taξ = σ1(a) · ξ, σ1(a) := deg Ta =
∑

b|a
N(b),

for any integral idele a prime to the level of X.
It is an interesting question to construct a class ξ̂ to extend ξ such that the

above equation holds for ξ̂. But in [17], Corollary 4.3.3, we have constructed

an extension ξ̂ of ξ such that

(10.3) Taξ̂ = σ1(a)ξ̂ + φ(a)

where φ(a) ∈ P̂ic(F ) is a σ1-derivation, i.e., for any coprime a′, a′′

φ(a′a′′) = σ(a′)φ(a′′) + σ(a′′)φ(a′).

We have the following a general definition.
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Definition 10.1. Let NF denote the semigroup of nonzero ideals of OF . For
each a ∈ NF , let |a| denote the inverse norm of a:

|a|−1 = #OF /a.

For a fixed ideal M , let NF (M) denote the sub-semigroup of ideals prime to
M .

A function f on NF (M) is called quasi-multiplicative if

f(a1a2) = f(a1) · f(a2)

for all coprime a1, a2 ∈ NF (M). For a quasi-multiplicative function f , let
D(f) denote the set of all f -derivations, that is the set of all a linear combi-
nations

g = cf + h

where c is a constant, and where h satisfies

h(a1a2) = h(a1)f(a2) + h(a2)f(a1)

for all a1, a2 ∈ NF (M) with (a1, a2) = 1.

For a representation Π, the Fourier coefficients Π̂(a) is defined to be

Π̂(a) := WΠ,f

(
aδ−1 0

0 1

)
,

where WΠ,f is the product of Whittaker newvectors at finite places. In other

words, Π̂(a) is defined such that the finite part of L-series has expansion

Lf (s, Π) =
∑

Π̂(a)|a|s−1/2.

Then Π̂(a) is quasi-multiplicative.

We can now define Green’s functions gv on divisors on X(F̄ ) which are
disjoint at the generic fiber for each place v of F . Let’s try to decompose the
heights of our Heegner points. The linear functional

a −→ |a|〈x, Tax〉
is now the Fourier coefficient of a cuspform Ψ of weight 2:

(10.4) Ψ̂(a) = |a|〈x, Tax〉.
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In the following we want to express this height in terms of intersections
modulo some Eisenstein series and theta series.

Let P̂χ be the arithmetic closure of Pχ with respect to ξ̂. Then the Hodge
index formula (9.5) gives

|a|〈x, Tax〉 =− |a|
(
P̂χ − deg(Pχ)ξ̂, TaP̂χ − deg(TaP̂χ)ξ̂

)

=− |a|(P̂χ, TaP̂χ) + Ê(a),(10.5)

where Ê is a certain derivations of Eisenstein series.
The divisor Pχ and TaPχ have some common components. We want to

compute its contribution in the intersections. Let rχ(a) denote the Fourier
coefficients of the theta series associated to χ:

(10.6) rχ(a) =
∑

b|a
χ(b).

Then the divisor

(10.7) T0
aPχ := TaPχ − rχ(a)Pχ

is disjoint with Pχ.

It follows that Ψ̂(a) is essentially given by a sum of local intersections

− 1

[L : F ]

∑
v

∑

ι∈Gal(Hc/F )

gv(T
0
aP

ι
χ, P ι

χ)|a| log qv

modulo some derivations of Eisenstein series, and theta series of weight 1.
We can further simplify this sum by using the fact that the Galois action of
Gal(Kab/F ) is given by the composition of the class field theory map

ν : Gal(Kab/F ) −→ NT (F )\NT (Af ),

and the left multiplication of the group NT (Af ). Finally we obtain the fol-
lowing:

(10.8) Ψ̂(a) = −|a|
∑

v

gv(Pχ, T0
aPχ) log qv (mod D(σ1) +D(rχ)).

Assume that D is square free, and that X(N, K) has regular canonical
integral model over OK , which is the case when ordv(N) = 1 if v is not split
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in K or v | 2. We can use the theory of Gross on canonical or quasi-canonical
lifting to compute gv(Pχ, T0

aPχ) and to prove that the functional

Φ̂− 2g+1

√
N(D)

Ψ̂

vanishes modulo derivations of Eisenstein series or theta series. It then fol-
lows that this functional is actually zero by the following lemma:

Lemma 10.2. Let f1, · · · fr be distinct quas-multiplicative functions on NF (ND)
then the sum

D(f1) +D(f2) + · · ·+D(fr)

is a direct sum.

Thus we can prove the Gross-Zagier formula in the case D is square free
and X(N,K) has regular canonical model over OK . This is the main result
in our Annals paper [17].

11 Construction of the kernels

From this section to the end, we want to explain the idea to prove the Gross-
Zagier formula in §6-7 for the general case. We will start with a construction
of kernels. As explained early, there is no good construction of kernels in
level N . The best we can do is to construct some nice kernel in level ND in
the sense that the Fourier coefficients are symmetric and easy to compute,
and that the projection of this form in Π(φ) is recognizable.

Recall from (8.5) that we have an integral expression of Rankin-Selberg
convolution:

(11.1) L(s, χ, φ) =
|δ|s−1/2

|U0(ND)|
∫

φ(g)θ(g)E(s, g)dg

To obtain a more symmetric kernel we have to apply Atkin-Lehner op-
erators to θ(g)E(s, g). Let S be the set of finite places ramified in K. For
each such set T of S, let hT be an element in GL2(A) which has component

1 outside T and has component

(
0 1
−tv 0

)
where tv has the same order as

c(ωv) and such that ωv(tv) = 1. Now one can show that

(11.2) L(s, χ, φ) =
γT (s)

|U0(ND)|
∫

φ(g)θ(gh−1
T ε)E(s, gh−1

T )dg
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where γT is certain exponential function of s. Finally we define the kernel
function

Θ(s, g) = 2−|S|
∑
T⊂S

γT (s)θ(gh−1
T )E(s, gh−1

T ).

By our construction,

L(s, χ, φ) = (φ, Θ̄(s,−))U0(ND).

Now the functional equation of L(s, χ, φ) follows from the following equa-
tion of the kernel function which can be proved by a careful analysis of
Atkin-Lehner operators:

(11.3) Θ(s, g) = ε(s, χ, φ)Θ(1− s, g).

Assume that φ is cuspidal, then we may define the projection of Θ̄ in
Π(φ) as a form ϕ ∈ Π(φ) such that

∫
fΘdg =

∫
fϕ̄dg, ∀f ∈ Π.

Since the kernel Θ(s, g) constructed above has level ND, its projection onto
Π will have level DN and thus is a linear combination of the forms

(11.4) φa := ρ

(
a−1 0
0 1

)
φ, (a | D).

Proposition 11.1. The projection of Θ̄(s, g) on Π is given by

L(s, χ, φ)

(φ]
s, φ

]
s)U0(ND)

· φ]
s,

where φ]
s is the unique nonzero form in the space of Π(φ) of level ND satis-

fying the following identities:

(φ]
s, φa) = ν∗(a)(φ]

s, φ
]
s), (a | D),

where

ν∗(a)s =
∏

v|S

|a|s−1/2
v + |a|1/2−s

v

2

{
ν(a), if a|c(ω),

0, otherwise.
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Write φ] = φ]
1/2 and call it the quasi-newform with respect to χ.

The function Θ(s, g) has a Fourier expansion

(11.5) Θ(s, g) = C(s, g) +
∑

α∈F×
W

(
s,

(
α 0
0 1

)
g

)
.

Since Θ(s, g) is a linear combination of the form

Θ(s, g) =
∑

i

θi(g)Ei(g)

with θi ∈ Π(χ) and Ei(g) ∈ Π(|·|s−1/2, |·|1/2−sω), the constant and Whittaker
function of Θ(s, g) can be expressed precisely in terms of Fourier expansion
of θi) and Ei(g).

More precisely, let

(11.6) θi(g) =
∑

ξ∈F

Wθi
(ξ, g) , Ei(g) =

∑

ξ∈F

WEi
(ξ, g) ,

be Fourier expansions of θi and Ei respectively into characters

(
1 x
0 1

)
7→

ψ(ξx) on N(A). Then

(11.7) C(s, g) =
∑

ξ∈F

C(s, ξ, g),

(11.8) W (s, g) =
∑

ξ∈F

W (s, ξ, g),

where

(11.9) C(s, ξ, g) =
∑

i

Wθi
(−ξ, g) WEi

(ξ, g) ,

and

(11.10) W (s, ξ, g) =
∑

i

Wθi
(1− ξ, g) WEi

(ξ, g) .

The behavior of the degenerate term C(s, ξ, g) can be understood very
well. The computation shows that the complex conjugation of Θ(s, g) is finite
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at each cusp unless χ is a form ν ◦ NK/F in which case, we need to remove
two Eisenstein series in the space

E1 ∈ Π(‖ · ‖s, ‖ · ‖−s)⊗ ν, E2 ∈ Π(‖ · ‖1−s, ‖ · ‖s−1)⊗ νω.

We let Φ(s, g) denote Θ̄(1/2, g) if χ is not of form ν ◦ NK/F , or

Θ̄(s, g)− E1 − E2

if it is. Then Φ(s, g) is a form with following growth:

Φ

(
s,

(
a 0
0 1

))
= c1(g)|a|s−1/2 + c2(g)|a|1/2−s + Og(e

−ε|a|)

where c1(g), c2(g), and Og term are all smooth functions of g and s. It follows
that the value or all derivatives of Φ(s, g) at s = 1/2 are L2-forms.

With our very definition of Θ(s, g) in the last section, we are able to
decompose the non-degenerate term:

(11.11) W (s, ξ, g) = ⊗Wv(s, ξv, gv).

An explicit computation has given the following local functional equation:

(11.12) Wv(s, ξv, gv) = ωv(1− ξ−1
v )(−1)#Σ∩{v}Wv(1− s, ξv, g).

If Σ is even, then we can compute the Fourier coefficients of Θ(1/2, g)

for g =

(
aδ−1 0

0 1

)
very explicitly. The computation of non-degenerate term

W (s, ξ, g) is reduced to local terms Wv(s, ξ, g). By the functional equation,
we need only consider those ξ such that Equivalently,

(11.13) 1− ξ−1 ∈ N(K×
v ) ⇐⇒ v /∈ Σ.

The form Φ is holomorphic of weight 2 at infinite places where Π is of weight
2.

If Σ is odd, then by functional equation, Θ(1/2, g) = 0. We want to
compute its derivative Θ′(1/2, g) at s = 1/2. Let’s now describe the central

derivative for W (s, ξ, g) for g of the form

(
aδ−1 0

0 1

)
. Recall that W (s, ξ, g) is
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a product of Wv(s, ξ, g), and that Wv(s, ξ, g) satisfies the functional equation
(11. 12). It follows that

(11.14) W ′(1/2, g) =
∑

v

W ′(1/2, g)v,

where v runs through the places which are not split in K with

(11.15) W ′(1/2, g)v =
∑

ξ

W v(1/2, ξ, gv) ·W ′
v(1/2, ξ, g).

Here

• W v is the product of W` over places ` 6= v, and

• W ′
v is the derivative for the variable s, and

• ξ ∈ F − {0, 1} satisfies

(11.16) 1− ξ−1 ∈ N(K×
w ) ⇐⇒ w /∈v Σ,

with vΣ given by

vΣ =

{
Σ ∪ {v}, if v /∈ Σ,

Σ− {v}, if v ∈ Σ.

All these terms can be computed explicitly. We need to find the holomor-
phic projection of Θ̄′(1/2, g). That is a holomorphic cusp form Φ of weight
2 such that Θ̄′(1/2, g)− Φ is perpendicular to any holomorphic form.

Proposition 11.2. With respect to the standard Whittaker function for holo-
morphic weight 2 forms, the a-the Fourier coefficients Φ̂(a) of the holomor-
phic projection Φ of Θ̄′(1/2, g) is a sum

Φ̂(a) = A(a) + B(a) +
∑

v

Φ̂v(a)

where
A ∈ D(Π̂(χ)⊗ α1/2),

B ∈ D(Π̂(α1/2ν, α−1/2ν)) +D(Π̂(α1/2νω, α−1/2νω)),

and the sum is over places of F which are not split in K, with Φ̂v(a) given
by the following formulas:
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1. if v is a finite place then Φ̂v(a) is a sum over ξ ∈ F with 0 < ξ < 1 of
the following terms:

(2i)g|(1− ξ)ξ|1/2
∞ · W̄ v

f

(
1/2, ξ,

(
aδ−1

f 0

0 1

))
· W̄ ′

v

(
1/2, ξ,

(
aδ−1

f 0

0 1

))
.

2. if v is an infinite place, then Φ̂v(a) is the constant term at s = 0 of a
sum over ξ ∈ F such that 0 < ξw < 1 for all infinite place w 6= v and
ξv < 0 of the following terms:

(2i)g|ξ(1− ξ)|1/2
∞ · W̄f

(
1/2, ξ,

(
aδ−1

f 0

0 1

))
·
∫ ∞

1

−dx

x(1 + |ξ|vx)1+s
.

12 Geometric pairing

The key to prove the Gross-Zagier formula is to compare the Fourier coeffi-
cients of the kernel functions and the local heights of CM-points. These local
heights are naturally grouped by definite quaternion algebras which are the
endomorphism rings of the supersingular points in the reductions of modular
or Shimura curves. Furthermore, the intersection of two CM-points at su-
persingular points is given by a multiplicity function with depends only the
relative position of these two CM-points. In this section, we would like to
abstractly define this kind of pairing with respect to an arbitrary multiplic-
ity function. We will describe the relative position of two CM-points by a
certain parameter ξ which will relate the same parameter in the last section
by a local Gross-Zagier formula.

Let G be an inner form of PGL2 over F . This means that G = B×/F×

with B a quaternion algebra over F . Let K be a totally imaginary quadratic
extension of F which is embedded into B. Let T denote the subgroup of G
given by K×/F×. Then the set

(12.1) C := T (F )\G(Af )

is called the set of CM-points. This set admits a natural action by T (Af )
(resp. G(Af )) by left (resp. right) multiplications.

There is a map from C to the Shimura variety defined by G

(12.2) ι : C −→ M := G(F )+\Hn ×G(Af )
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as in §6-7 which sending the class of g ∈ G(Af ) to the class of (h0, g), where
h0 ∈ Hn is fixed by T . This map is an embedding if G is not totally definite.

The set of CM-points has a topology induced from G(Af ) and has a
unique G(Af )-invariant measure dx induced from the one on G(Af ). The
space

S(C) = S(T (F )\G(Af ))

of locally constant functions with compact support is called the space of CM-
cycles which admits a natural action by T (Af )×G(Af ). There is a natural
pairing between functions f on Shimura variety M and CM-cycles α by

(12.3) (f, α) =

∫

C

ᾱ(x)f(ιx)dx.

Thus CM-cycles may serve as distributions or functionals on the space of
functions on M . Of course this pairing is invariant under the action by
G(Af ).

Since T (F )\T (Af ) is compact, one has a natural decomposition

S(C) = ⊕χS(χ,C)

where the sum is over the characters of T (F )\T (Af ). There is also a local
decomposition for each character χ:

(12.4) S(χ,C) = ⊗vS(χv, G(Fv)).

In the following we will define a class of pairings on CM-cycles which
are geometric since it appears naturally in the local intersection pairing of
CM-points on Shimura curves . To do this, lets write CM-points in a slightly
different way,

(12.5) C = G(F )\(G(F )/T (F ))×G(Af ),

then the topology and measure of C is still induced by those of G(Af ) and
the discrete ones of G(F )/T (F ).

Let m be a real valued function on G(F ) which is T (F )-invariant and
such that m(γ) = m(γ−1). Then m can be extended to G(F )/T (F )×G(Af )
such that

(12.6) m(γ, gf ) =

{
m(γ), if gf = 1,

0, otherwise.
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We now have a kernel function

(12.7) k(x, y) =
∑

γ∈G(F )

m(x−1γy)

on C × C. Then we can define a pairing on S(C) by

〈α, β〉 =

∫

C2

α(x)k(x, y)β̄(y)dxdy(12.8)

:= lim
U→1

∫

C2

α(x)kU(x, y)β̄(y)dxdy

where U runs through the open subgroup of G(Af ) and

kU(x, y) = vol(U)−2

∫

U2

k(xu, yv)dudv.

This pairing is called a geometric pairing with multiplicity function m.
For two function α and β in S(T (F )\G(Af )), one has

(12.9) 〈α, β〉 =
∑

γ∈T (F )\G(F )/T (F )

m(γ)〈α, β〉γ

where

(12.10) 〈α, β〉γ =

∫

Tγ(F )\G(Af )

α(γy)β̄(y)dy,

and where

(12.11) Tγ := γ−1Tγ ∩ T =

{
T if γ ∈ NT ,

1 otherwise,

and where NT is the normalizer of T in G. The integral 〈α, β〉γ is called the
linking number of α and β at γ.

Since both α and β are invariant under left-translation by T (F ), the
liking number at γ depends only on the class of γ in T (F )\G(F )/T (F ). Lets
define a parameterization of this sets by the following function by writing
B = K + Kε where ε ∈ B is an element such that ε2 ∈ F× and εx = x̄ε.
Then the function

ξ(a + bε) =
N(bε)

N(a + bε)
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defines an embedding

(12.12) ξ : T (F )\G(F )/T (F ) −→ F.

Write

(12.13) 〈α, β〉γ = 〈α, β〉ξ.
Notice that ξ(γ) = 0 (resp. 1) iff ξ ∈ T (resp. ξ ∈ NT − T ). The image

of G(F )−NT is the set of ξ ∈ F such that ξ 6= 0, 1 and where for any place
v of F ,

(12.14) 1− ξ−1 ∈
{

N(K×
v ), if Bv is split,

F×
v − N(K×

v ) if Bv is not split.

We may write m(ξ) for m(γ) when ξ(γ) = ξ, and extend m(ξ) to all F
by setting m(ξ) = 0 if ξ is not in the image of the map in (12.12). Then we
have the following:

(12.15) 〈α, β〉 =
∑

ξ∈F

m(ξ)〈α, β〉ξ.

Let χ be a character of T (F )\T (Af ). The linking number is easy to
compute if ξ = 0 or 1. The difficult problem is to compute 〈α, β〉ξ when
ξ 6= 0, 1.

If both α and β are decomposable,

α = ⊗αv, β = ⊗βv,

then we have a decomposition of linking numbers into local linking numbers
when ξ 6= 0, 1:

(12.16) 〈α, β〉ξ =
∏
〈αv, βv〉ξ,

where

(12.17) 〈αv, βv〉ξ =

∫

G(Fv)

αv(γy)β̄v(y)dy.

Notice that when γ /∈ NT , these local linking numbers depend on the
choice of γ in its class in T (F )\G(F )/T (F ) while their product does not.
This problem can be solved by taking γ to be a trace free element in its class
which is unique up to conjugation by T (F ).

36



Notations

For a compact open compact subgroup U of G(Af ) (or G(Fv)) and two CM-
cycles α and β, we write 〈α, β〉U and 〈α, β〉ξ,U for

〈α, β〉U = |U |−1〈α, β〉, 〈α, β〉ξ,U = |U |−1〈α, β〉ξ.

Similarly, for a CM-cycle α and a function f on M , we write

(f, α)U = |U |−1(f, α).

13 Local Gross-Zagier formula

In this section, we would like to compute the linking numbers for some special
CM-cycles and then compare with Fourier coefficients of the kernel functions.
The construction of CM-cycles is actually quite simple and is given as follows.

We will fix one order A of B such that for each finite place v,

(13.1) Av = OK,v +OK,vλvc(χv),

where λv ∈ B×
v such that

• λvx = x̄λv for all x ∈ K, and

• ord(det λv) = ordv(N).

Let ∆ be a subgroup of G(Af ) generated by images of Â× and K×
v for v

ramified in K:

(13.2) ∆ =
∏

v-c(ωv)

A×
v F×

v /F×
v ·

∏

v|c(ωv)

A×
v K×

v /F×
v .

The character can be naturally extended to a character of ∆. The CM-
cycle we need is defined by the following function:

(13.3) η =
∏

ηv

with ηv supported on T (Fv) ·∆v and such that

(13.4) ηv(tu) = χv(t)χv(u), t ∈ T (Fv), u ∈ ∆v.
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Take an a ∈ A×f integral and prime to ND. We would like to compute
the pairing 〈Taη, η〉. The Hecke operator here is defined as

(13.5) Taη =
∏

v|a
Tavηv, Tavηv(x) =

∫

H(av)

ηv(xg)dg,

where

(13.6) H(av) := {g ∈ M2(Ov) : | det g| = |av|} ,

and dg is a measure such that GL2(Ov) has volume 1. Then we have the
following decomposition:

〈Taη, η〉∆ =vol(T (F )\T (Af )∆) (m(0)Taη(e) + m(1)Taη(ε)δχ2=1)

+
∑

ξ 6=0,1

m(ξ)
∏

v

〈Taηv, ηv〉ξ,∆v ,(13.7)

where ε ∈ NT (F )− T (F ).
Let v be a fixed finite place of F . We want to compute all terms in the

right hand side involving ηv. Notice that we have extended the definition to
all ξ ∈ F − {0, 1} by insisting that 〈Taηv, ηv〉ξ,∆v = 0 when ξ is not in the
image of (12.12).

The computation of degenerate terms is easy. The non-degenerate term
is given by the following local Gross-Zagier formula:

Proposition 13.1. Let g =

(
aδ−1

v 0
0 1

)
. Then

W̄v

(
1

2
, ξ, g

)
= |c(ωv)|1/2 · ε(ωv, ψv)χv(u) · |(1− ξ)ξ|1/2

v |a| · 〈Taηv, ηv〉ξ,∆v ,

where u is any trace free element in K×.

Corollary 13.2. Let 〈·, ·〉 be the geometric pairing on the CM-cycle with
multiplicity function m on F such that m(ξ) = 0 if ξ is not in the image of
(12.12). Assume that δv = 1 for v | ∞. Then there are constants c1, c2 such
that for an integral idele a prime to ND,

|c(ω)|1/2|a|〈Taη, η〉∆ =(c1m(0) + c1m(1))|a|1/2Wf (g)

+ i[F :Q]
∑

ξ∈F−{0,1}
|ξ(1− ξ)|1/2

∞ W̄f (1/2, ξ, g)m(ξ),

where g =

(
aδ−1

f 0

0 1

)
.
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Remarks

If the kernel Θ had level N as in the original approach §8, the CM-cycle
we should consider is Pχ as in §6 corresponding to the function ζ supported
in T (Af )icU(N,K) such that ζ(ticu) = χ(t). The computation of linking
numbers for this divisor seems very difficult!

Our local formula is the key to the proof of the Gross-Zagier formula.
But the formula is only proved under the condition that c(χ), c(ω), and N
are coprime to each other. One may still expect that this local formula is
still true in the general case considered by Waldspurger but with more than
one term on the right hand side. The main problem is to construct elements
in

S(χv, G(Fv)) and W(Π(χv), ψv)⊗W(Π(| · |s−1/2, | · |1/2−sω).

More precisely, we need to find an element

W =
∑

Wi1 ⊗W2i ∈ W(Π(χv), ψv)⊗W(Π(| · |s−1/2, | · |1/2−sω)

which satisfies the following properties:

• Let Φi be the element in S(F 2
v ) such that W2i = WΦi

. Then for any
representation Πv of GL2(Fv) with a newform Wv ∈ W(Π, ψv),

L(s, χv, φv) =
∑

Ψ(s,Wv,W1i, Φi)

with notation in [16] §2.5.

• Let’s define

W (s, ξ, g) =
∑

i

W1i

((
1− ξ 0

0 1

)
g

)
W2i

((
ξ 0
0 1

)
g

)
.

Then W (s, ξ, g) satisfies the following functional equation

W (s, ξ, g) = ωv(1− ξ−1)εv(Πv ⊗ χv, s)W (1− s, ξ, g).

The next step is to find elements qj ∈ S(χv, G(Fv)) such that the above
local Gross-Zagier formula is true with 〈Taηv, ηv〉ξ replaced by

∑
j

〈Taqj, qj〉ξ.

We may even assume that a = 1 in time. Thus, what really varies is the
parameter ξ.
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14 Gross-Zagier formula in level ND

The study of kernel functions, geometric pairing, and local Gross-Zagier for-
mula in the last three sections suggests that it may be easier to prove a
Gross-Zagier formula in level ND instead of level N directly. This is the
main result in our Asia Journal paper [16].

Let’s start with the case where Σ is odd. Thus, we are in the situation of
§6. Let U be any open compact subgroup of ∆ over which χ is trivial. Let
XU be corresponding Shimura curve or its compactification over F .

Recall that the CM-points corresponding to K on XU(C) form a set

CU := G(F )+\G(F )+ · h0 ×G(Af )/U = T (F )\G(Af )/U,

where h0 ∈ H+ is the unique fixed point of the torus points K×/F×. Let ηU

be a divisor on XU with complex coefficient defined by

ηU =
∑

x∈CU

η(x)[x].

The Heegner class we want now is the class difference

y := [ηU − deg(ηU)ξ] ∈ Jac(XU)(Hc)⊗ C.

Notice that this class has character χ∆ under the action by ∆ on Jac(Hc).
Let yφ denote the φ-typical component of y. The main theorem in our Asia
Journal paper [16] is now the following

Theorem 14.1. Let φ] be the quasi-newform as in §11. Then

φ̂](1)L′(1, χ, φ) = 2g+1d
−1/2
K/F · ‖φ]‖2

U0(ND) · ‖yφ‖2
∆

where

• dK/F is the relative discriminant of K over F ;

• ‖φ]‖2
U0(ND) is the L2-norm with respect to the Haar measure dg as in

Introduction normalized such that vol(U0(ND)) = 1

• ‖yφ‖∆ is the Neron-Tate height of yφ on XU times [∆ : U ]−1 which is
independent of choice of U ;

• φ̂](1) is the first Fourier coefficient of φ] as defined (8.1).
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We now move to the situation in §7 where φ has possible nonholomor-
phic components, but we assume that the sign of the functional equation of
L(s, χ, φ) is +1, or equivalently, Σ is even. We have the variety XU which
is defined in the same way as in odd case. Then we have a unique line of
cuspidal functions φχ on XU with the following properties:

• φχ has character χ∆ under the action of ∆;

• for each finite place v not dividing N ·D, φχ is the eigenform for Hecke
operators Tv with the same eigenvalues as φ.

We call φχ a toric newform associated to φ. See [16], §2.3 for more details.
The CM-points on XU , associated to the embedding K −→ B, form the

infinite set

CU := G(F )+\G(F )+h0 ×G(Af )/U ' H\G(Af )/U,

where h0 is a point in Hn fixed by T and H ⊂ G is the stabilizer of z in G.
Notice that H is either isomorphic to T if n 6= 0 or H = G if n = 0. In any
case there is a finite map

ι : CU = T (F )\G(Af )/U −→ MU .

The Gross-Zagier formula for central value in level ND is the following:

Theorem 14.2. Let φχ be a toric newform such that ‖φχ‖∆ = 1. Then

φ̂](1)L(1, χ, φ) = 2g+nd
−1/2
K/F · ‖φ]‖2

U0(ND) · |(φ, η)∆|2,

where φ̂](1) is the first Fourier coefficient by the same formula as (8.1) with
respect the standard Whittaker function defined in (4.7) and (4.8), and where

(φχ, η)∆ := [∆ : U ]−1
∑

x∈CU

η̄(x)φχ(ι(x)).

15 Green’s functions of Heegner points

In this section we want to explain the proof of the central derivative formula
for level ND stated in the last section. Just as explained in §8, the question
is reduced to a comparison of the Fourier coefficients of the kernel and heights
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of CM-points. We need to show that, up to a constant and modulo some
negligible forms, the new form Ψ with Fourier coefficient

(15.1) Ψ̂(a) := |a|〈η, Taη〉

is equal to the holomorphic cusp form Φ defined in §11 which represents the
derivative of Rankin L-function L′(1/2, χ, φ). Thus we need to show that the

functional Ψ̂ on NF (ND) is equal to the Fourier coefficient Φ̂(a).
As in §9, we would like to decompose the height pairing to Green’s func-

tions. It is more convenient work on the tower of Shimura curves than a single
one. Let’s first try to extend the theory of heights to the projective limit X∞
of XU . Let P̂ic(X∞) denote the direct limit of P̂ic(XU) with respect to the

pull-back maps. Then the intersection pairing can be extended to P̂ic(X∞)
if we multiply the pairings on Pic(XU) by the scale vol(U). Of course, this
pairing depends on the choice of measure dg on G(A) as in Introduction. For
some fixed open compact subgroup U of G(Af ), we write 〈z1, z2〉U for the
measure

〈z1, z2〉U = |U |−1〈z1, z2〉 = [U : U ′]−1〈z1, z2〉XU′ .

where z1, z2 are certain elements in P̂ic(X∞) realized on XU ′ for some U ′ ⊂ U .
So defined pairing will depends only on the choice of U and gives the exact
pairing on XU .

Similarly, we can modify the local intersection pairing and extend the
height pairing to Jac(X∞) = Pic0(X∞), which is the direct limit of Pic0(XU)
where Pic0(XU) is the subgroup of Pic(XU) of classes whose degrees are 0 on
each connected component.

We can now define Green’s functions gv on divisors on X∞(F̄ ) which are
disjoint at the generic fiber for each place v of F by multiplying the Green’s
functions on XU by vol(U). Notice that for two CM-divisors A and B on XU

with disjoint support represented by two functions α and β on T (F )\G(Af ),
the Green’s function at a place v depends only on α and β. Thus, we may
simply denote it as

gv(A,B)Uv = gv(α, β)Uv .

Recall that η is a divisor on X∞ defined by (13.3). As in §10, with Pχ

replaced by ηU , we have

(15.2) Ψ̂ =
∑

v

Ψ̂v mod D(σ1) +D(rχ),
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where v runs through the set of places of F , and

(15.3) Ψ̂v(a) := −|a|gv(η, T0
aη)∆v log qv.

Thus, it suffices to compare these local terms for each place v of F . We
need only consider v which is not split in K, since Φ̂v = 0 and Ψ̂v is a finite
sum of derivations of Eisenstein series when v is split in K.

Our main tool is the local Gross-Zagier formula in §13 for quaternion
algebra vB with the ramification set

(15.4) vΣ =

{
Σ ∪ {v}, if v /∈ Σ,

Σ− {v}, if v ∈ Σ.

Let vG denote the algebraic group vB
×/F×.

Lemma 15.1. For v an infinite place,

Φ̂v(a) = 2g+1|c(ω)|1/2Ψ̂v(a).

The idea of proof is to use the local Gross-Zagier formula to write both
sides as the constant terms at s = 0 of two geometric pairings of divisors Taη
and η with two multiplicity functions:

mv
s(ξ) =

∫ ∞

1

dx

x(1 + |ξ|vx)1+s
, 2Qs(ξ) =

∫ ∞

1

(1− x)sdx

x1+s(1 + |ξ|vx)1+s
.

It follows that the difference of two sides will be the constant term of a
geometric pairing on T (F )\vG(Af ) with mutiplicity function

mv
s − 2Qs

which has no singularity and converges to 0 as s −→ 0. Notice that the Leg-
endre function Qs appears here because an explicit construction of Green’s
function at archimedean place.

We now consider unramified cases.

Lemma 15.2. Let v be a finite place prime to ND. Then there is a constant
c such that

Φ̂v(a)− 2g+1|c(ω)|1/2Ψ̂v(a) = c log |a|v · |a|1/2Π̂(χ)(a).
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The proof is similar to the archimedean case. Write a = πn
v a′ (πv - a′).

Since the Shimura curve and CM-points all have good reduction, using Gross’
theory of canonical lifting, we can show that Ψ̂v(a) is the geometric pairing
of Ta′η and η on on T (F )\vG(Af ) with multiplicity function

mn(ξ) =





1
2
ordv(ξπ

1+n
v ), if ξ 6= 0 and ordv(ξπ

n
v ) is odd,

n/2, if ξ 6= 0 and n is even,

0, otherwise.

On other hand, by using the local Gross-Zagier formula, we may also write
Φ, up to a multiple of |a|1/2Π̂(χ) log |a|v, as a geometric pairing 〈Ta′η, η〉 with
multiplicity

−2mn(ξ) log qv.

It remains to treat the case where v is place dividing ND. In this case we
will not be able to prove the identity as in the archimedean case, or in the
unramified case, since there is no explicit regular model of Shimura curves
we can use. But we can classify these contributions:

Lemma 15.3. For v a finite place dividing ND, we have

Φ̂v(a)− 2g+1|c(ω)|1/2Ψ̂v(a) = c|a|1/2Π̂(χ)(a) +v f̂

where c is a constant, and vf̂ is a form on vG(F )\vG(Af ). Moreover, the
function vf has character χ under the right translation by K×

v .

Using the local Gross-Zagier formula, we still can show that Φ̂v is equal
the geometric local pairing

2g|c(ω))|1/2|a|〈η, Taη〉
for a multiplicity function m(g) on vG(F ) with singularity

log |ξ|v.
On other hand, it is not difficult to show that Green’s function

Ψ̂v(a) = −gv(η, T0
aη) log qv

is also a geometric pairing for a multiplicity function with singularity

1

2
log |ξ|v.
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(This is equivalent to saying that ξ1/2 is a local parameter in the v-adic space
of CM-points). Thus the difference

Φ̂v(a)− 2g+1|c(ω)|1/2Ψ̂v(a),

is a geometric pairing without singularity. In other words, it is given by

∫

[T (F )\vG(Af )]2
η(x)k(x, y)Taη(y)dxdy,

for k(x, y) a locally constant function of (vG(F )\vG(Af ))
2 which has a de-

composition

k(x, y) =
∑

i

ci(x)fi(y)

into eigenfunctions fj for Hecke operators on vG(F )\vG(Af ). It follows that
the difference of two sides in the lemma is given by

∑
i

λi(a)

∫

T (F )\vG(Af )

η(x)ci(x)dx ·
∫

T (F )\vG(Af )

fi(y)η̄(y)dy,

where λi(a) is the eigenvalue of Ta for fi. Thus, we may take

vf =
∑

i

∫

T (F )\vG(Af )

η(x)ci(x)dx ·
∫

T (F )\vG(Af )

fi(y)η̄(y)dy.

In summary, at this stage we have shown that the quasi-newform

Φ− 2g+1|c(ω)|1/2Ψ

has Fourier coefficients which are a sum of the following terms:

• derivations A of Eisenstein series,

• derivations B of theta series Π(χ)⊗ α1/2,

• functions vf appearing in vG(F )\vG(Af ) with character χ under the
right translation of K×

v , where v are places dividing DN .

By linear independence of Fourier coefficients of derivations of forms in
Lemma 10.3, we may conclude that A = B = 0.
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Let Π now be the representation generated by the form φ, then all the
projections of vf ’s in Π must vanish by some local results of Waldspurger,
Gross-Prasad. See §2.3 in [16].

In summary we have shown that Φ − 2g+1|c(ω)|1/2Ψ is an old form. By
Proposition 11.1, the projection of this difference on Π(φ) is

L′(1/2, χ, φ)

(φ], φ])U0(ND)

· φ] − 2g+1|c(ω)|1/2 · 〈yφ, yφ〉∆ · φ.

This is again an old form and has vanishing first Fourier coefficient. Theorem
14.1 follows by taking the first Fourier coefficient.

16 Spectral decomposition

In this section we want to explain the proof for the central value formula,
Theorem 14.2. The idea is copied from the odd case. Thus, we need to
define a height pairing of CM-cycles. Since there is no natural arithmetic
and geometric setting for heights corresponding to non-holomorphic forms,
we would like to use the local Gross-Zagier formula to suggest a definition
of height. Indeed, by corollary 13.2, modulo some Einstein series of type
Π(‖ · ‖1/2, ‖ · ‖−1/2)⊗ η with η quadratic, the kernel Φ(g) := Φ(1/2, g) has a
Whittaker function satisfying

(16.1) WΦ

(
g∞ ·

(
aδ−1 0

0 1

))
= |c(ω)|1/2|a|〈Taη, η〉∆(g∞),

where g∞ ∈ GL2(F∞) is viewed as a parameter, and a is a finite integral
idele which prime to ND, and the pairing 〈·, ·〉∆ is defined by the multiplicity
function

(16.2) m(ξ, g∞) :=
∏

v|∞
mv(ξ, gv),

with each mv(ξ, g) the Whittaker function of weight kv whose value at

(
a 0
0 1

)

given as follows:

(16.3) mv

(
ξ,

(
a 0
0 1

))
=





4|a|e−2πa, if 1 ≥ ξ ≥ 0, a > 0, kv = 2,

4|a|e2πa(2ξ−1), if aξ ≤ min(0, a), kv = 0,

0, otherwise.
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This suggests a definition of the height pairing for CM-cycles by the above
multiplicity function. This height pairing is no long valued in numbers but
in Whittaker functions. In the case where all kv = 2, then this Whittaker
function is twice the standard one. Thus, we can get a pairing with values
in C. We would like to have a good understanding of decomposition of this
height pairing according to eigenforms on XU . By (12. 8), we need only
decompose the kernel kU defined in (12. 7). This decomposition is actually
very simple: As Whittaker functions on GL2(F∞),

kU(x, y)(g∞) =2[F :Q]+n
∑

φi

Wi(g∞) · φi(x)φ̄i(y)(16.4)

+ 2[F :Q]+n

∫

M
Wm(g∞)Em(x)Ēm(y)dm

where n is the number of places where kv = 0, and the sum is over all
cuspidal eigenforms φi of Laplacian and Hecke operators on G(F )\G(A)/U
such that ‖φi‖∆ = 1, and Wi are standard Whittaker function for φi. Here
the integration is nontrivial only when n = g then M is a measured space
parameterizing an orthogonal basis of Eisenstein series of norm 1. (See §18
for more details). Thus for a cuspidal eigenform φ,

1

|∆|
∫

G(F )\G(A)

k(x, y)φ(y)dy = 2[F :Q]+nWφ(g∞)φ(x).

It follows that for any two CM-cycles α and β on XU , the height pairing has
a decomposition

〈α, β〉 =2[F :Q]+n
∑

φi

Wi(g∞) · (φi, ᾱ)∆(φ̄i, β)∆(16.5)

+ 2[F :Q]+n

∫

M
Wm(g∞)(Em, ᾱ)∆(Ēm, β)∆dm.

This leads to define the following form of PGL2(A) of weight kv at v:

H(α, β) =2[F :Q]+n
∑

φi

φnew
i (g∞) · (φi, ᾱ)∆(φ̄i, β)∆(16.6)

+ 2[F :Q]+n

∫

M
Enew
m (g∞)(Em, ᾱ)∆(Ēm, β)∆dm,
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where φnew
i (resp. Enew

λ ) is the newform of weight (2, · · · , 2, 0, · · · , 0) in the
representation Πi of PGL2(A) corresponding to the representation Π′

i of G(A)
generated by φi (resp. Em) via Jacquet-Langlands theory. With α replaced
by Taα in (16.5), one obtaines the usual relation between height pairing and
Fourier coefficient:

(16.7) |a|〈Taα, β〉∆(g∞) = 2[F :Q]+nWH(α,β)

(
g∞ ·

(
aδ−1 0

0 1

))
.

Let Ψ denote the form 2[F :Q]+n|c(ω)|1/2H(η, η) which has a decomposition:

Ψ =2[F :Q]+n|c(ω)|1/2
∑

i

φnew
i |(φi, η)∆|2(16.8)

+ 2[F :Q]+n|c(ω)|1/2

∫

M
Enew
m |(Em, η)|2 dm.

Since η has a character χ under the action by ∆, we may require that φi

(resp. Em,χ) has character χ under the action by ∆. For a given φnew of level
N , then φi with φnew

i = φnew must be the toric newform as in §14.
The equations (16.1) and (16.7) shows that, modulo certain Eisenstein

series in the space Π(‖ · ‖1/2, ‖ · ‖−1/2)⊗ η with η2 = 1, the forms Φ−Ψ has

vanishes Fourier coefficient at g such that gf =

(
δ−1a 0

0 1

)
with integral a

prime to ND. Thus Φ−Ψ is an old form.
Let φ be the newform as in Theorem 14.2. By Proposition 11.1 and

formula (16. 6), the projection of Φ−Ψ in Π(φ) is given by

L(1/2, χ, φ)

‖φ]‖2
U0(ND)

φ] − 2[F :Q]+n|c(ω)|1/2 · |(η, φχ)∆|2φ.

Thus, we have proven the Gross-Zagier formula, Theorem 14.2, by computing
the first Fourier coefficient of the above form.

17 Lowering levels

Now it is remains to deduce GZF(N) (the Gross-Zagier formulas for level N
in §6-7) from GZF(ND) (formulas in §14). Our plan is as follows:

1. show GZF (N) up to a certain universal function of local parameters.
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2. prove GZF(ND) for Eisenstein series for level ND thus get GZF(N) for
Eisenstein series with the same universal function.

3. prove GZF(N) for Eisenstein series directly by evaluating the periods
thus get the triviality of the universal function.

In this section we are doing the first step.

Proposition 17.1. For each v | D, there is a rational function Qv(t) ∈ C(t)
depending only on χv which takes 1 at t = 0 and is regular for

|t| < |πv|1/2 + |πv|−1/2,

such that both Gross-Zagier formulas in §6-7 are true after multiplying the
left hand side by

C(χ)
∏

ordv(D)>0

Qv(λv),

where C(χ) is a constant depends only χ, and λv the parameter appeared in
the L-function:

Lv(s, φ) =
1

1− λv|πv|s + |πv|2s
.

The idea of proof is to show that, in the comparison of GZF (N) and GZF
(ND), all 4 quantities

φ̂](1),
‖φ]‖2

U0(ND)

‖φ‖2
U0(N))

,
|(η, φχ)∆|2
|iχ(φ̃)|2

,
‖xφ‖2

∆

‖yφ‖2
U0(N)

,

are universal functions described in the Proposition, and that the last two
quantities have the same functions. Here the last two fractions are considered
as ratios since the denominators may be 0.

Lets try to localize the definition of quasi-newform in §11. For each finite
place v, let Πv be the local component of Π(φ) at v. Then Πv is a unitary
representation as Π = ⊗Πv is. Lets fix an Hermitian form for the Whittaker
model W(Πv, ψv) such that the norm of the new vector is 1 for almost all v.
The product of this norm induces a norm on Π which is proportional to the
L2-norm on Π. Now we can define the quasi-newform

(17.1) W ]
v ∈ W(Πv, ψv)
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to be a certain form of level Dv. Recall that the space of forms of level Dv

has a basis consisting of forms

(17.2) Wvi(g) = Wv

(
g

(
π−i

v 0
0 1

))
, 0 ≤ i ≤ ordv(Dv),

where Wv0 = Wv is the newform. Then W ]
v is the unique nonzero form of

level Dv satisfying the following equations:

(17.3) (W ]
v ,Wvi − νi

vW
]
v) = 0, (0 ≤ i ≤ ordv(Dv)),

where νv = 0 if v is not ramified in K; otherwise νv = χv(πK,v). It is not
difficult to show that if we write

W ]
v =

∑
cviWv,i,

then cvi is rational function of quantities

αvi := (Wvi,Wv)/(Wv,Wv).

Notice that quantities αvi does not depend on the choice of pairing (·, ·) on
Whittaker models. On other hand, it is easy to show that φ] has Whittaker
function as product of W ]

v .
It follows that both quantities

φ̂](1), and
‖φ]‖2

U0(ND)

‖φ‖2
U0(N)

=
‖φ]‖2

U0(N)

‖φ‖2
U0(N)

· [U0(1) : U0(D)],

are the products of some rational functions at v of quantities αvi. It remains
to show that αvi are rational functions of λv. Let Uv = GL2(Ov). Then we
have

αvi =(Wv,Wv)
−1vol(Uv)

−1

∫

Uv

(ρ(u)Wvi, ρ(u)Wv)du

=(ρ(tvi)Wv,Wv)/(Wv, Wv),

where tvi is the Hecke operator corresponding the constant function vol(Hvi)
−1

on

Hvi = Uv

(
π−i 0
0 1

)
Uv.
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It is well known that Wv is an eigenform under tvi with eigenvalue a rational
function of λv. This shows that αvi are rational function of λv. Since we have
used only the unitary property of local representation Πv for v | D, the so
obtained rational functions as in theorem for these quantities are regular for
any λv as long as Πv is unitary. In other words, these functions are regular
at λv satisfying

|λv| < |πv|1/2 + |πv|−1/2.

It remains to compare the last two quantities in both odd and even case
respectively. Obviously the ratio of normalizations of measures is given by

|U(N, K)|/|∆|
which equals a product of constants at places dividing D. Thus we may take
the same measure in the comparison. Let’s define a function ζ on CM-points
T (F )\G(Af ) supported on T (A)icU(N, K) such that

ζ(ticu) = χ(t), t ∈ T (Af ), u ∈ U(N, K).

Then the CM-Points in GZF(N) (resp. GZF (ND)) is defined by ζ (resp. η).
The key to proving our result is to compare these CM-cycles.

Recall that for a finite place v, and a compactly supported, and locally
constant function h on G(Fv), one defines the Hecke operator ρ(h) on CM-
cycles by

ρ(h) =

∫

G(Fv)

h(g)ρ(g)dg.

Let U1 and U2 be the compact subgroup of G(Af ) defines as products
Ui =

∏
Uiv and

U1v = (Ocv + cvOK,vλv)
×

U2v = U(N, K)×v .

Lemma 17.2. For each finite place v let hv denote the constant function
vol(U1v)

−1 on G(Fv) supported on U2,vi
−1
c,v . Then

ζv = ρ(hv)ηv.

Before we prove this lemma, let us see how to use this lemma to finish
the proof of our Proposition. First assume we are in the even case. Then we
have

(φ̃, Pχ) = (φ̃, ζ)U(N,K).
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Here the product is taken as pairings between CM-cycles and functions. Let
Ψζ be the form H(ζ, ζ) defined in (16. 6). Then Ψζ has a decomposition

(17.4) Ψζ =
∑

i

φnew
i |(ζ, φi)|2 + Eisenstein series,

where φi is an orthornomal basis of eigenforms on X(N, K). For φnew
i = φ

with level N , φi must be the test form φ̃ as in §7.
Now the equation (16. 7) implies that the Hecke operator the adjoint of

ρ(h) is ρ(h∨) with h∨(g) = h̄(g−1). It follows that,

H(ζ, ζ) = H(ρ(h)η, ρ(h)η) = H(ρ(h∨ ∗ h)η, η).

Since η has character χ under the action by ∆, we may replace h∨ ∗ h by a
function h0 which has character (χ, χ−1) by actions of ∆ from both sides and
invariant under conjugation. Now

Ψζ =
∑

φnew
i (ρ(h0)η, φi)(η, φi) + · · ·

=
∑

φi(η, ρ(h0)φi)(η, φi) + · · · .(17.5)

Since η and ρ(h0)η both have character χ under the action by ∆, we may
replacing φi by functions φi,χ which has character χ under χ. For φnew

i = φnew

with level N , φi,χ must be the toric new form φχ as in §14. Of course,

(17.6) ρ(h0)φχ =
∏

v|D
Pv(λv)φχ

as φχ with Pv some polynomial functions. From (17.4 -6), we obtain

|(ζ, φ̃)|2 =
∏

v|D
Pv(λv) · |(η, φχ)|2.

In the odd case, the proof is same but simpler with H(ζ, ζ) defined as
a holomorphic cusp form of weight 2 with Fourier coefficients given by the
height pairings of 〈Tax, x〉 for two CM-divisors after minus some multiple of
Hodge class. Then we end up with expression:

Ψζ =
∑

i

φi‖xφi
‖2,
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where φi are newforms of level dividing N . The same reasoning as above
shows that

Ψζ = H(ρ(h0)y, y) =
∑

φi · 〈yφi
, ρ(h0)yφi

〉.
Thus we have

‖xφ‖2 = 〈yφ, ρ(h0)yφ〉 =
∏

v|D
Pv(λv)‖yφ‖2.

It remains to prove the lemma. By definition,

ρ(hv)ηv(g) = vol(U1v)
−1

∫

U2v

ηv(gui−1
c,v)du.

If ρ(hv)ηv(g) 6= 0, then
gU1,vi

−1
c,v ∈ T (Fv)U1,v

or equivalently,
g ∈ T (Fv)U1,vic,vU2,v.

By (iii) in the following lemma, we have g ∈ T (Fv)ic,vU2,v. Lets write g =
tic,vug. It follows that

ρ(hv)ηv(g) = χ(t)vol(U1v)
−1

∫

U2v

ηv(ic,vui−1
c,v)du.

By (iii) in the following lemma again, the integral is the same as

∫

U1v

ηv(u)du.

Thus we have
ρ(hv)ηv = ζv.

Lemma 17.3. For v split in B, there is an isomorphism

µ : M2(Fv) −→ EndFv(Kv)

with compatible embedding of Kv and such that

µ(M2(Ov)) = EndOv(OK,v).
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Moreover, let iπn ∈ GL2(Fv) such that

µ(iπn)(OK,v) = Oπn = Ov + πn
vOK,v.

Then

(i) GL2(Fv) =
∐
n≥0

K×
v iπnGL2(Ov),

(ii) iπnGL2(Ov)i
−1
πn

v
∩K×

v = O×
πn ,

(iii) iπnU2,vi
−1
πn ∩K×

v U1,v = U1,v.

Proof. Indeed for any given embedding Kv −→ M2(Fv) such that OK,v maps
to M2(Ov), then F 2

v becomes a Kv-module of rank 1 such that O2
v is stable

under OK,v. Then we find an isomorphism O2
v ' OK,v as OK,v module. This

induces the required isomorphism µ : Bv −→ EndFv(Kv).
Now, for any g ∈ GL2(Fv), let t ∈ g(OK,v) be the elements with minimal

order. Then µ(t−1g)(OK,v) will be an order of OK,v, say Oπn . Thus

µ(t−1g)(OK,v) = Oπn = µ(iπn)(OK,v).

It follows that
g ∈ tiπnGL2(Ov).

The first equality follows.
For the second equality, let t ∈ Kv. Then

i−1
πn tiπn ∈ GL2(Ov)

if and only if
µ(i−1

πn tiπn)OK = OK ,

or equivalently,
µ(tiπn)OK = µ(iπn)OK ,

tOπn = Oπn .

This is equivalent to the fact that t ∈ O×
πn .

It remains to show the last equality. First we want to show

i−1
c,vU1,vic,v ⊂ U2,v.
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To see this, we need to show that

µ(i−1
c,vuic,v)OK,v = OK,v

for each u ∈ U1,v. This is equivalent to

µ(uic,v)OK,v = ic,vOK,v,

or equivalently,
µ(u)Oc,v = Oc,v.

Thus is clear from the fact that u = t(1 + cM2(Ov)) for some t ∈ O×
c .

Now the last equality follows easily: since

iπn
v
U2,vi

−1
πn

v
∩K×

v = Oπn
v

and
iπn

v
U2,vi

−1
πn

v
⊃ U1,v,

it follows that
iπn

v
U2,vi

−1
πn

v
∩K×

v U1,v = U1,v.

18 Continuous spectrum

In this section, we would like to extend GZF(ND) (the Gross-Zagier formula
in level ND, Theorem 14.2 ) to Eisenstein series in the continuous spectrum.
Recall that the space of L2-forms on PGL2(F )\PGL2(A) is a direct sum
of cusp forms, characters, and Eisenstein series corresponding to characters
(µ, µ−1). We say two characters µ1, µ2 are connected if µ1 ·µ±2 is trivial on the
subgroup A1 of norm 1. Thus each connected component is a homogeneous
space of R or R/± 1. See [3] for more details.

We now fix a component containing a character (µ, µ−1). Without loss
of generality, we assume that µ2 is not of form | · |t for some t 6= 0. Then
the space Eis(µ) of L2-form corresponding to this component consists of the
forms

(18.1) E(g) =

∫ ∞

−∞
Et(g)dt
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where Et(g) is the Eisenstein series corresponding to characters (µ| · |it, µ−1| ·
|−it). For the uniqueness of this integration we assume that Et(g) = 0 if t < 0
and µ2 = 1. Now the two elements E1(g) and E2(g) has inner product given
by

(18.2) (E1, E2) =

∫ ∞

−∞
(E1t, E2t)tdt,

where (·, ·)t is some Hermitian form on the space

Πt := Π(µ| · |it, µ−1| · |−it).

This Hermitian norm is unique up to constant multiple as the representation
is irreducible. The precise definition of this norm is not important to us.

Now we want to compute the Rankin-Selberg convolution of E ∈ Eis(µ)
with θ as in §8. Assume that χ is not of form ν ·NK/F . Then θ is a cusp form
and the kernel function Θ is of L2-form as its constant term has exponential
decay near cusp. Thus it makes sense to compute (E, Θ̄).

For φ a function on R (or R+ when µ2 = 1), lets write Eφ for element
in Eis(µ) with form Et(g) = φ(t)Enew

t (g) with Enew
t (g) a newform in Π(µ| ·

|s, µ−1| · |−s) and φ(s) ∈ C, then we still have

(Eφ, Θ̄s) =

∫ ∞

0

L(s, Πt ⊗ χ)φ(t)dt

=

∫ ∞

0

L(s + it, µ⊗ χ)L(s + it, µ−1 ⊗ χ)φ(t)dt.

If s = 1/2, we obtain

(18.3) (Eφ, Θ̄1/2) =

∫
|L(1/2 + it, µ⊗ χ)|2φ(t)dt.

The form Θ has level D. For any a dividing D, lets define

Eφ,a = ρ

(
a−1 0
0 1

)
Eφ.

Then the space of Eisenstein series is generated by Eφ,a. We can define so
called quasi-newforms by the formula

(18.4) E]
φ =

∫ ∞

0

E]
tφ(t)dt.
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One can show that the projection of Φ := Θ̄1/2 on the continuous spectrum

corresponding to µ is E]
φ with φ given by

(18.5) φ(t) =
|L(1/2 + it, µ⊗ χ)|2

‖E]
t‖2

.

Now let us study the geometric pairing in §16. The formula (16.8) shows
that the continuous contribution for representation Πt in the form Ψ is given
by

22g|c(ω)|2Eψ

where

(18.6) ψ(t) = (Et,χ, η).

Here Et,χ is a form toric form of norm 1 with respect to ∆.

Again E]
φ−22g|c(ω)|1/2Eψ will be an old form. Its first Fourier coefficient

vanishes. Thus the Gross-Zagier formula can be extended to Eisenstein series:

Proposition 18.1. Assume that χ is not of form ν◦NK/F with ν a character
of F×\A×. Then

Ê]
t (1)|L(1/2 + it, χ)|2 = 22g|c(ω)|1/2 · ‖E]

t‖2|(Eχ,t, η)|2.

Also the proof of Proposition 17.1 is purely local, thus can be extended
to Eisenstein series:

Proposition 18.2. Assume that χ is not of form ν◦NK/F with ν a character
of F×\A×. Let

λv(t) = µv(πv)|πv|it + µv(πv)
−1|πv|−it, and E∗

t := ‖Et‖ · Ẽt,

then

c(χ)
∏

ordv(D)>0

Qv(λv(t)) =
22g

√
N(D)

∣∣∣∣
(E∗

t , Pχ)

L(1/2 + it, χ)

∣∣∣∣
2

.

Notice that when µ is unramified then R̂ is conjugate to M2(ÔF ). The
form E∗

t is obtained from Et by ρ(j) for a certain j ∈ G(A) satisfying (19.1)
and (19.2) below. Thus the formula does not involve the definition of hermi-
tian forms on Πt.
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19 Periods of Eisenstein series

In this section we want to compute the periods of Eisensetin series appearing
in the GZF(N) (up to a universal function), Propositon 18.2. Our result
shows that all the universal functions are trivial, and thus end up the proof
of GZF(N).

First lets describe the main result. Let µ be a unramified quasi-character
of F×\A×. Let R be a maximal order of M2(F ) containing OK . Let E be
the newform in Π(µ, µ−1). Let j ∈ G(A) such that

(19.1) j∞SO2(R)j−1
∞ = T (R)

and

(19.2) jfGL2(Ô)j−1
f = R.

Then the form E∗(g) := E(gj) is invariant under T (R) · R̂×. Let λ ∈ K be a
non-zero trace free element. Then one can show that ordv(λ/D) for all finite
place v is always even. We thus assume that 4λ/D has square root at finite
place and that Dv = −1 when v | ∞.

Proposition 19.1. Assume that χ 6= µK := µ ◦ NK/F . Then

(E∗, Pχ) = 2−gµ
(
δ−1

√
4λ/D

)
|4λ/D|1/4L(1/2, χ̄ · µK).

Before we go to the proof of this result, let’s see how to use Proposition
19.1 to complete the proof of GZF(N). Combined Propositions 19.1 and 18.2
with µ(x) = |x|it (t ∈ R), we obtain the following

C(χ)
∏

ordv(D)>0

Qv(λv(t)) = 1, ∀t ∈ R.

Notice that each λv(t) is a rational function of pti where p is prime num-
ber divisible by v. Since functions pti for different primes p are rationally
independent, we obtain that for each prime p

∏

ordv(Dp)>0

Qv(λv(t)) = const

where Dp =
∏

v|p Dv.
It is not difficult to show that for each χv we can find a finite character

χ′ of A×K/K×A× such that the following conditions are verified:
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• c(χ′) is prime to N , c(ω);

• χ′ is unramified at all w | p, w 6= v;

• χ′ is not of form ν ◦ NK/F .

If we apply the above result to χ′ then we found that Qv is constant thus is
1. Thus we have shown the following:

Proposition 19.2. All polynomials Qv(t) and C(χ) are constant 1.

Now GZF (N) follows from Proposition 17.1.
We now start the proof of Proposition 19.1 from the following integral:

(E∗, Pχ) =

∫

T (F )\T (Af )

χ−1(x)E∗(x∞xic)dx

where x∞ ∈ Hg is fixed by T (R) and ic ∈ G(Af ) is an element such that

icRi−1
c ∩K = Oc.

Here we pick up a measure dt on T (A) with local decomposition dt = ⊗vdtv
such that T (R) and T (Oc,v) all have volume 1. Write h = icj. It follows that

(E∗, Pχ) =

∫

T (F )\T (A)

χ̄(x)E(xh)dx.

Since E is obtained by analytic continuation from the newform in the
Eisenstein series in Π(µ| · |s, µ−1| · |s) with Re(s) >> 0, we thus need only
compute the periods for quasi-character µ with big exponent. In this case,

E(g) =
∑

γ∈P (F )\G(F )

f(γg)

with
f(g) = µ−1(δ)fΦ,

where Φ = ⊗Φv ∈ S(A2) is the standard element: Φv is the characteristic
function of O2

v if v -∞, and Φv(x, y) = e−π(x2+y2) if v | ∞. It is not difficult
to show that the embedding T −→ G defines an bijective map

T (F ) ' P (F )\G(F ).
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Thus

(E∗, Pχ) =

∫

T (A)

χ−1(x)f(xh)dx.

This is of course the product of local integrals

iχv(fv) =

∫

T (Fv)

χv(x
−1)fv(xhv)dx.

Recall that fv is defined as follows:

fv(g) = µ(δ−1
v · det g)| det g|1/2

∫

F×v
Φ[(0, t)g]µ2(t)|t|d×t.

It follows that

iχv(fv) =

∫

T (Fv)

χv(x
−1)µ(δ−1

v det xhv)| det xhv|1/2

∫

F×v
Φ[(0, t)xhv]µ

2(t)|t|d×tdx

=µ(δ−1
v det hv)| det hv|1/2

∫

K×
v

χ̄vµK(x)|x|1/2
K ΦKv(x)dx

=µ(δ−1
v det hv)| det hv|1/2Z(1/2, χ̄ · µK , ΦKv)

where for x ∈ K×
v ,

ΦKv(x) = Φv[(0, 1)xhv].

Thus the computation of period is reduced to compute the local Zeta func-
tions.

Let v be a finite place. The map x −→ (0, 1)x defines an isomorphism
between K and F 2 with compatible actions by K. Thus we have two lattices
O2

F and Oc in K. The element hf as a class in

K̂×\GL2(Af )/GL2(ÔF )

is determined by the property that

hfM2(ÔF )h−1
f ∩K = Oc.

We may take hf such that

(0, 1)Ochf = O2
F .
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It follows that ΦK,v is the characteristic function of Ôc. Now the Zeta function
is easy to compute:

Z(1/2, χ̄ · µK , ΦK,c) =

∫

Ocv

χ · µK(x)|x|1/2
K d×x.

We get the standard L-function if c = 0.
We assume now that c > 0 thus Kv/Fv is an unramified extension. First

we assume that Kv is a field. We decompose the set Oc into the disjoint
union of Oc,n of subset of elements of order n. Then

Z(1/2, χ̄ · µK , ΦK,c) =
∑
n≥0

µ(πv)
2n|πv|n

∫

Oc,n

χ(x)d×x.

Write OK,v = Ov +Ovλ then

Oc = Ov + πc
vOvλ.

If n ≥ c, then Oc,n = πnO×
K . The integral vanishes as χ has conductor πc. If

n < c then
Oc,n = |πv|nO×

v (1 + πc−n
v OK).

The integration on On,c vanishes unless n = 0 as χ has conductor πc. Thus
the total contribution is

vol(O×
cv

) = 1.

We assume now that Kv/Fv is split. Then Kv = F 2
v and Oc consists of

integral elements (a, b) such that a ≡ b (mod πc
v). Write χ = (ν, ν−1) then ν

has conductor πc
v. It follows that

Z(1/2, χ̄ · µK , ΦK,c) =

∫

(a,b)∈Oc

ν(a/b)µ(ab)|ab|1/2d×ad×b.

For a fixed b ∈ Ov, the condition in a is as follows:
{

a ∈ πcOF , if b ∈ πcOv,

a ∈ b(1 + πc−nOv), if b ∈ πnO×
v with n < c.

Since ν has conductor c, the only case gives nontrivial contribution is when
b ∈ O×

v and a ∈ b(1 + πcOv). The contribution is given by

vol(O×
cv

) = 1.
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To compute det hv, we write K = F + F
√

λ and make the following
embedding K −→ M2(F ):

(19.3) a + bλ 7→
(

a bλ
b a

)
.

Then O2
F corresponding to the lattice

OF +OF

√
λ.

Thus hf satisfies

(0, 1)(Ov +Ov

√
λ) = (0, 1)Ocvhf .

It follows that
disc(Ov +Ov

√
λ) = disc(Ocv) det h2

v.

Thus
det hv =

√
4λ/Dv

for a suitable Dv in its class modulo O×
v such that 4λ/Dv does have a square

root in F×
v . In summary we have shown that

(19.4) iv(fv) = L(1/2, χ̄⊗ µ)µ(δv

√
4λ/Dv)|4λ/Dv|1/4.

It remains to compute the periods at archimedean places v. For equation
(19.1), we may take

hv =

(|λv|1/2 0
0 1

)
.

Then it is easy to see that

ΦK,v(x) = e−π|x|2 .

Assume that µ(x) = |x|t, χ = 1, and notice that the measure on K×
v = C× is

induced from the standard d×x from R× and one from C×/R× with volume
one. Thus the measure has the form drdθ

πr
for polar coordinates reiθ. It follows

that

Z(1/2, χ̄ · µK , ΦKv) =

∫

C×
e−πr2

r2t+1drdθ

πr

=π−1/2−tΓ(t + 1/2)

=µ(2)2−1/2L(1/2, χ̄ · µK).
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The period at v is then given by

(19.5) iv(fv) = 2−1µv(|4λ|1/2)|4λv|1/4L(1/2, χ̄µK).

Let us set Dv = −1 for archimedean places, then we obtain the same
formula as (19.4). The proof of the Proposition is completed.
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