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Introduction

The aim of this note is to give a survey on recent development of the Gross-
Zagier formulas and their applications. The formulas relate the central
derivatives (or central values) of certain L-series and the heights (or peri-
ods) of so called CM points on Shimura varieties. The applications include
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the Birch and Swinnerton-Dyer conjecture for modular elliptic curves and
the Andre-Oort conjecture for quaternion Shimura varieties.

Historically, the CM-points on modular curves were first used by Heegner
[43] in his work on the class number problem for imaginary quadratic fields.
Their significance in the arithmetic of the Jacobians of modular curves was
first recognized by Birch. In [5, 59], these CM-points were used by Birch
and Mazur to construct rational points of infinite order in the Jacobians.
In [6], these points were studied numerically by Birch and Stephens who
derived, on the basis of extensive numerical evidence, a number of striking
conjectures relating these points to the behavior of related Rankin L-series.
These conjectures were proved, almost before they could be precisely stated,
in a landmark work of Gross and Zagier [40]. The work of Gross and Zagier
has a number of striking applications:

1. The existence of the modular elliptic curve E over Q whose L-function
L(s, E) vanishes to order at least 3 at s = 1. This provides the basis of
Goldfeld’s solution [33] of the celebrated Gauss class number problem.

2. The criterion for the Heegner point on modular elliptic curve to be of
infinite order in terms of L-functions. This has been used by Kolyvagin [53]
to prove the rank-order equality predicted by the Birch and Swinnerton-Dyer
conjecture when the order of vanishing is less than or equal to 1.

In [35], Gross proposed a program to extend the Gross-Zagier formula to
modular abelian varieties of GL2 type over totally real fields with anticyclo-
tomic characters. On the other hand, in [60], Mazur discussed various ques-
tions and conjectures involving CM points, p-adic heights, and two-variable
p-adic L-functions attached to elliptic curves. The present note will mainly
focus on the recent progress in programs outlined by Gross and Mazur, in-
cluding work of Vatsal and Cornut on nonvanishing of Heegner points and
Heegner periods, and work of Bertolini and Darmon on Euler systems for
anti-cyclotomic Zp-extensions. In the following we will discuss the details of
the content of this paper.

The first four sections of the paper provide the standard background
about elliptic curves and L-series. We will start with elliptic curves defined
by Weierstrass equations, and address two arithmetic questions: to compute
the Mordell Weil group (Lang’s conjecture) and to bound the discriminant
in terms of the conductor (Szpiro’s conjecture). Then we assume that the
L-series of elliptic curves have good analytic properties as predicted by the
generalized Taniyama-Shimura conjecture. In other words, we always work
on modular elliptic curves (or more generally, abelian varieties of GL2-type).
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Of course, over Q, such a conjecture has been proved recently by Wiles
and completed by Taylor, Diamond, Conrad, and Brueil. Both arithmetic
questions addressed earlier have their relation with L-series: the rank of
the Mordell-Weil group is equal to the order of vanishing of L-series at the
center (by the Birch and Swinnerton-Dyer conjecture); the discriminant is
essentially the degree of the strong modular parameterization. The theory
of complex multiplications then provides many examples of modular elliptic
curves and abelian varieties of GL2-type, and the foundation for the theory
of Shimura varieties.

The next two sections contain basic facts about Shimura curves, CM-
points, and the Gross-Zagier formula for central derivatives. In particular we
define Shimura curves of type (N,K) as substitutions (over totally real fields)
of modular curves X0(N) considered by Gross and Zagier. All quotients of
the Jacobians of such curves are abelian varieties of GL2-type. Conjecturally,
all abelian varieties of conductor N of GL2-type over totally real fields F are
parameterized by these curves if either [F : Q] is odd or N is not a square.
Kolyvagin’s work can also be generalized in this case to obtain the BSD
conjecture when L-series have minimal vanishing allowed by sign.

The last two sections are devoted to study the Birch and Swinnerton-
Dyer conjecture for L-series twisted by characters. We start with Goldfeld’s
conjecture about the average rank of quadratic twists, and Mazur’s philoso-
phy on the non-vanishing of L-series when characters are unramified outside
a fixed finite set of places. Then we come to the Gross-Zagier formula in this
general setting which gives an interplay between vanishing of L-series and
vanishing of CM-points.

In the classical case, many non-vanishing analytic results have been proved
directly by Waldspurger, Bump-Friedberg-Hoffstein, Murty and Murty for
quadratic characters, and by Rohrlich for cyclotomic characters. Very re-
cently, the non-vanishing in anticyclotomic case can be proved indirectly by
Vatsal and Cornut using equidistribution of Heegner points (or periods).

Another interesting application of the central value formula is the equidis-
tribution of the toric orbits of CM-points on quaternion Shimura varieties
which has a direct relation to the Andre-Oort conjecture. Here the recent
result of Cogdell, Piatetski-Shapiro, and Sarnak on sub-convexity bound of
the central value plays a central rule. It should be mentioned that our central
value formula should be considered as a continuation of the previous work
of many authors including Waldspurger, Kohnen-Zagier, Katok-Sarnak, and
Gross.
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This paper grew out of notes for lectures I gave at the Columbia Univer-
sity, the Morningside Center of Mathematics in Chinese Academy of Sciences,
and the joint conference of Harvard-MIT on current development of mathe-
matics. I would like to thank the auditors for their interests and suggestions.
My special gratitude is due to Ye Tian and Ran An for taking notes. I would
also like to thank Goldfeld and Yau for their advice and encouragement.

1 Elliptic curves: geometry

In this section, we review the standard facts about the geometry of elliptic
curves. The basic reference are books by Hartshorne [42], and Katz-Mazur
[50], and Silverman [77]. We will discuss Weierstrass equations, j-invariants,
twists, level structures, and complex realizations.

Weierstrass equation

By an elliptic curve over a field F , we mean a smooth and projective curve
E over F of genus 1 with a fixed F -rational point O. Then E has a unique
algebraic group structure with unit element O.

It is well known that E can be embedded into P2 as a cubic curve defined
by a so called Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.(1.1)

The origin O corresponds to the point at infinity (x : y : z) = (0 : 1 : 0) of
the curve. Different Weierstrass equations are related by transformations:

x −→ u3x+ v, y −→ u2y + αx + β(1.2)

with u, v, α, β ∈ F . The group law on the set E(F ) of rational points over F
(or more generally, any extension of F ) is defined by

P +Q+R = 0(1.3)

if P,Q,R are colinear.
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Case where char(F ) 6= 2, 3.

In this case, E can be defined by a simpler Weierstrass equation like

y2 = x3 + ax+ b, ∆ := 4a3 + 27b3 6= 0.(1.4)

The numbers a and b are completely determined by E up to transformations:

a −→ au4, b −→ bu6(1.5)

with u ∈ F×. Thus the set of isomorphic classes of elliptic curves over F is
identified with the open subset of F 2 of pairs (a, b) such that ∆ 6= 0 modulo
the action of F× defined in (1.5). The group law can be described as follows:
for two distinct points P = (x, y) and P ′ = (x′, y′), the x-coordinate of
P +Q = (x′′, y′′) is given by

x′′ =

(
y′ − y
x′ − x

)2

− x− x′.(1.6)

Taking the limit as P ′ −→ P we obtain the x-coordinates of 2P = (x′′, y′′):

x′′ =
(3x2 + a)2

4x3 + 4ax+ 4b
− 2x.(1.7)

j-invariant and classification.

For every elliptic curve E, there is a well defined j-invariant j(E) ∈ F such
that two elliptic curves have the same j-invariants if and only if they are
isomorphic over the algebraic closure F̄ of F . If E is given by equation (1.1),
then j is a rational function of the coefficients. When the characteristic of F
is not 2, 3 and E is given by equation (1.4), we have an expression

j(E) = 1728
4a3

4a3 + 27b2
.(1.8)

Conversely, for any given j ∈ F , there is an elliptic curve with invariant j. In
other words, the set of isomorphic classes of elliptic curves is identified with
F when F is algebraically closed. Moreover, one can show that the coarse
moduli of elliptic curves is identified with the affine line A1 over SpecZ. In
other words, for an elliptic curve E over an arbitrary base scheme S, by
which we mean a smooth and projective morphism E −→ S with a fixed
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section O such that each fiber is of genus 1, the j-invariant j(E) defines an
element in Γ(OS)×.

But the affine line A1 is not a fine moduli space of elliptic curves over
F even when F is algebraically closed, in the sense that there is a universal
elliptic curve E over A1

F such that for any elliptic curve E/S, E is isomorphic
to the pull-back j∗E via the j-invariant map. The main problem is that
elliptic curves have non-trivial automorphisms −1.

Twists

For general F , j does not even determine E up to isomorphism. We call
two elliptic curves over F twists of each other, if they have the same j-
invariants. In fact, the set of twists of a given elliptic curve E, is bijective to
H1(GF ,Aut(EF̄ ) where GF = Gal(F̄ /F ). In the following we write this set
more precisely in the case where char(F ) 6= 2, 3 where E can be defined by
an equation (1.4).

If j(E) 6= 0, 1728, by equation (1.5), all twists are given by

E(d) : dy2 = x3 + ax+ b.

In Weierstrass equation form it is given by

E(d) : y2 = x3 + ad2x+ bd3.

Two twists E(d) and E(d′) are isomorphic over F if and only if d/d′ is a square
over F .

If j(E) = 0, then twists are given by equation

E(d) : y2 = x3 + d

where d ∈ F×. Two twists E(d) and E(d′) are isomorphic if and only if d/d′

is a sixth power in F .
Similarly, if j(E) = 1728, then twists are given by equation

E(d) : y2 = x3 + dx

where d ∈ F×. Two twists E(d) and E(d′) are isomorphic if and only if d/d′

is a fourth power in F .

6



Level structure

To obtain the right moduli space of elliptic curves, one introduces the level
structures. Let N be a positive integer. By a full-level structure on an elliptic
curve E over a base S, we mean an isomorphism of group schemes

φ : (Z/NZ)2
S −→ E[N ]

where (Z/NZ)2
S denotes the constant group scheme with fiber (Z/NZ)2 and

E[N ] denote the subscheme of E of N -torsion points. In other words, a full
level N -structure on E is a pair of two N -torsion points

P = φ(1, 0), Q = φ(0, 1)

of E(S) which are linearly independent over Z/NZ. The Weil pairing of a
full level N -structure will give a root of unity

ζN = 〈P,Q〉 ∈ µN(S)

of order N over each geometric fiber at a point. Thus the existence of a
full level N -structure implies that N is invertible over S. One can show
that when N ≥ 3, the fine moduli space of elliptic curves with full level N -
structure exists over SpecZ[1/N ]. This means that there is an elliptic curve
EN −→MN over a Z[1/N ] scheme MN with a full level N -structure (P ,Q)
such that for any scheme S, the set

{(f ∗(EN), f∗(P), f∗(Q)), f ∈MN(S)}

are representatives of isomorphic classes of elliptic curves over S with full
level N -structure. Let ζN be the Weil pairing of P and Q. Then MN has a
natural morphism to SpecZ[1/N, ζN ]. One can show that the last morphism
has smooth and connected fibers.

Cases where k = C.

For an elliptic curve E defined over C, the set of complex points E(C) is a
complex torus. More precisely the integration on E(C) of the form dx/y will
define an isomorphism

E(C) ' C/Λ
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where Λ is the group of periods of dx/y over loops of E(C). Conversely, for
any torus C/Λ, there is an embedding

C/Λ −→ P
2, z −→ (℘(z), ℘′(z), 1)

where ℘(z) is the following Weierstrass ℘-function:

℘(z) =
1

z2
+

∑
λ∈Λ,λ6=0

(
1

(z − λ)2
− 1

λ2

)
.

The image of this embedding is an elliptic curve with equation

y2 = 4x3 − 60G4(Λ)x− 140G6(Λ)

where G2k(Λ) is defined by

G2k(Λ) =
∑

λ∈Λ,λ6=0

1

λ2k
.

Thus, the study of complex elliptic curves up to isomorphisms is identical
to that of the complex torus, and to that of lattices in C. For example one
can show that every elliptic curve E is isomorphic to Eτ := C/Z + Zτ with
τ in the upper-half plane

H = {z ∈ C, Imz > 0} ,

and uniquely determined up to the following action by SL2(Z):

γτ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ SL2(Z).

Thus, the coarse moduli of elliptic curves is also identified with SL2(R)\H.
The j-invariant defines a map SL2(R)\H −→ C which is continuous, bijec-
tive, and holomorphic except when j = 0, 1728.

Moreover, for a positive integer N and a primitive root ζN in C, every
elliptic curve over C with full level N structure with Weil pairing ζN is
isomorphic to Eτ with full level structure given by

P = 1/N, Q = τ/N, mod Z+ Zλ,
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where τ is unique up to the action by

Γ(N) := ker(SL2(Z) −→ GL2(Z/NZ)).

Thus the moduli of elliptic curves with full level N -structure is identified
with

µ∗N × Γ(N)\H
where µ∗N is the set of N -th primitive roots of unity.

2 Elliptic curves: arithmetic

In this section, we want to study the arithmetic structure of elliptic curves.
The basic references are Silverman’s books [77, 78]. We will start with the
Mordell-Weil theorem, and its sketched proof, and question of computing its
generators: Lang’s conjecture. The torsion part has been uniformly bounded
by the work of Mazur and Merel. Then we come to the question of integral
models and Faltings’ theorem on finiteness of elliptic curves with bounded
bad reductions. The effective form of this theorem is given by Szpiro’s con-
jecture which has a lot of consequences including the abc-conjecture and
new proved Fermat last theorem. The section will end up by introducing the
Selmer group, the Tate-Shafarevich group, and the Goldfeld-Szpiro conjec-
ture.

Let E be an elliptic curve defined over a number field F . One of the main
objects of study of modern number theory is the group E(F ) of rational
points on E. Its structure is given by the Mordell-Weil theorem which was
conjectured by Poincaré when F = Q:

Theorem 2.1 (Mordell-Weil). The group E(F ) is finitely generated. Thus
one has an isomorphism

E(F ) ' Zr ⊕ E(F )tor

where r is a nonnegative integer.

In the following we want to describe the proof of the Mordell-Weil theorem
which will be useful for the further discussion of the Birch and Swinnerton-
Dyer conjecture. The proof uses infinite decent, a technique used in Fermat’s
own proof of his last theorem for the exponent 4. In our case, this technique
is a combination of Kummer’s theory and Neron-Tate height theory. More
precisely, the proof has two steps:
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1. Weak Mordell-Weil Theorem: For any positive integer m, the group
E(F )/mE(F ) is finite.

2. There is a quadratic function

‖ · ‖ : E(F ) −→ R

such that for any number C, the set

E(F )C := {P ∈ E(F ) : ‖P‖ < C}

is finite.

These two steps will imply that E(F ) is generated by any finite set E(F )C
when it contains a set of representatives of E(F )/2E(F ).

Weak Mordell-Weil

For the first step, we fix an open subscheme U of SpecOF such that

1. m is invertible on U , and

2. E has smooth model EU over U .

Let GU = Gal(FU/F ) be the Galois group of the maximal extension of F
unramified over U . Then we have exact sequences

0 −→ E[m] −→ E(FU)
m·−→ E(FU) −→ 0,

0 −→ E(F )/mE(F ) −→ H1(GU , E[m]) −→ H1(GU , E(FU))[m] −→ 0.

Now the Weak Mordell theorem follows from the fact that H1(GU , E[m]) is
finite.

Heights

For the second step, we use a Weierstrass equation to get a projection

x : E −→ P
1.

On P1(F ) we define a height function by

h(a, b) =
∑
v

log max(|a|v, |b|v)
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where v runs through the set of places of F and | · |v is an absolute value on
the completion Fv such that d(ax) = |a|vdx for any Haar measure on Fv. For
any P ∈ E(F ), we define h(P ) = h(x(P )). Then one can show that for any
P ,

h(2P ) = 4h(P ) +O(1)

where O(1) denotes a bounded function on E(F ). It follows that the following
limit

lim
n→∞

4−nh(2nP )

converges and defines a quadratic norm ĥ on E(F ). The function we need
for step 2 is then

‖P‖ = ĥ(P )1/2.

Effectivity

The theorem gives a beautiful description about the structure of E(F ). How-
ever, its proof does not provide an effective way to find all solutions, even
though people believe there should be one as the following conjecture pre-
dicts:

Conjecture 2.2 (Lang [57]). Let E be an elliptic curve defined over a
number field F of rank r. Then there exists a basis P1, · · · , Pr for the free
part of E(F ) satisfying

ĥ(P ) ≤ Cε,FNF/Q(∆E)1/2+ε

for all 1 ≤ i ≤ r. Here ∆E is the minimal discriminant (explained later),
Cε,F is a constant depends on F and ε.

Of course, the subgroup of torsion points E(F )tor can be found easily.
Actually it has a uniform bound by the following very deep result of Mazur
and Merel:

Theorem 2.3 (Mazur-Merel, [62]). The subgroup E(F )tor has order bounded
in terms of [F : Q].

When F = Q, Mazur even proved that #E(Q)tor ≤ 16.
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Integral models

Let S = SpecOF . Then E can be extended to a scheme ES over S such that
ES is regular and ES is minimal with respect to this property. The morphism
ES −→ S may be singular but the smooth part E ′S of ES carries a group
structure which is called the Neron model of E. A precise way to get ES is
to blow-up an extension ẼS of E by a Weierstrass equation with coefficients
in OF with minimal discriminant ideal ∆. Thus Es is singular if and only if
ords(∆) > 0. One has the following well known result:

Theorem 2.4 (Faltings [25]). For any finite set Σ of primes in OF , there
are only finitely many elliptic curves with good reduction outside of Σ.

An elliptic curve E over F is called semistable, if all the singularities in
the minimal model are ordinary double points. Let NE be the conductor of
E. In this case, N is simply the product of primes appearing in ∆. Then we
have the following famous conjecture

Conjecture 2.5 (Szpiro [81]). For any positive constant ε, there is a con-
stant Cε,F such that for any semistable elliptic curve E over F ,

N(∆E) ≤ Cε,FN(NE)6+ε.

It is known that this conjecture implies the abc-conjecture, and Fermat’s
last theorem recently proved by Wiles.

To get a better understanding of the Mordell-Weil group, one must also
look at the set of solutions at local fields E(Fv). When Fv ' C, this group
is a complex torus described in the last section. When Fv ' R, E(Fv) is
isomorphic to R/Z or R/Z × Z/2Z depending on whether E[2](R) has 2 or
4 points.

Local points

Now let v be a nonarchimedean place of F . Let Fv denote the completion
of F at v and let kv denote the residue field at v. Then we have an exact
sequence of the reduction map

0 −→ E0(Fv) −→ E(Fv) = ES(OF ) −→ ES(kv) −→ 0,

where E0(Fv) is the subgroup of E(Fv) reduced to O at the special fiber.
Since ES is regular, the kernel of reduction is isomorphic to mF,v, the maximal
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ideal in OF,v. Thus topologically, E(Fv) is just a union of the open unit discs
indexed by ES(kv). The size of the group ES(kv) is close to qv+1 = #P1(kv),
where qv is a cardinality of kv. In fact, let av denote the difference

av := qv + 1−#ES(kv).

Then we have the following well known estimate:

Theorem 2.6 (Hasse).
|av| ≤ 2

√
qv.

It is also well known that the elliptic curve E/kv over a finite field up to
isogenous is uniquely determined by av.

Selmer group and Tate-Shafarevich group

As we see from the proof of the Mordell-Weil group, to compute E(F ), it
suffices to compute its image in an easier group H1(FU , E[m]). One actually
can replace H1(FU , E[m]) by a smaller Selmer group S(E)[m] consisting of
elements in H1(F,E[m]) whose restriction on H1(Fv, E[m]) comes from some
local points in E(Fv). Let X(E)[m] denote the quotient of S(E)[m] by
E(F )/mE(F ). Then we have an exact sequence

0 −→ E(F )/mE(F ) −→ S(E)[m] −→X(E)[m] −→ 0.

One can show that X[m] is the subgroup of m-torsions in a so called Tate-
Sharfarevich group X: the group of locally trivial E-torsors over F . Thus the
computation of E(F )/mE(F ) is reduce to compute the elements in S(E)[m]
and check if its image in X(E) is trivial. The group X(E) should be finite as
conjectured by Birch and Swinnerton-Dyer. If we assume this conjecture and
take m prime to the order of X(E), then every element in S(E)[m] comes
from a global point in E(F )!

Interestingly, modulo the Birch and Swinnerton-Dyer conjecture and Rie-
mann Hypothesis, Goldefeld and Szpiro have proved that Szpiro’s Conjecture
2.5 is equivalent to the following:

Conjecture 2.7 (Goldfeld-Szpiro [31]). For any constant ε > 0, there is
a constant Cε(F ) such that

#X(E) ≤ Cε(E)NF/Q(N)1/2+ε.
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3 L-functions and modular forms

In this section we want to study L-functions and modular forms, and their
relation to the arithmetic questions addressed in the last section. The basic
references are Tate’s papers [83, 84], Silverman’s books [77, 78], Koblitz’s
book [52], and Shimura’s book [75], and my paper [95]. We will start with
a definition of L-series using integral models of elliptic curves or the Galois
representations on Tate modules. The Taniyama-Shimura conjecture, or the
modularity conjecture implies the analytic continuations already conjectured
by Hasse. Then we state the Birch and Swinnerton-Dyer conjecture (in its
weak form) and known evidences over Q and totally real fields.

Let E be an elliptic curve defined over a number field F . With notations
as in the previous section, the global L-series L(s, E) of E is formally defined
by the Euler product:

L(s, E) =
∏
v:bad

(1− avq−sv )−1 ·
∏
v:good

(1− avq−sv + q1−2s
v )−1.

where av = 0, 1, or −1 when ES has bad reduction at v.
Another way to define L-series is by Galois representation which avoids

using integral models. Let ` be a prime and let T`(E) denote the projective
limit lim`n E[`n]. Then T`(E) has an action by Gal(F̄ /F ). Now for any
finite place v not dividing `, let Dv denote the decomposition group of some
extension w of v to F̄ , and let Iv denote the inertia group of Dv then Dv/Iv
is generated by some Frobenius element Frobv:

Frobvx ≡ xqv mod w, ∀x ∈ OQ̄.

Now the L-series at the place v can be defined to be

Lv(s, E) = (1− q−sv Frobv|T`(E)Iv)−1.

One can show that Ls(s, E) does not depend on the choice of `. The global
L-function can be written as

L(s, E) :=
∏
v

Lv(s, E).

The factors Lv(s, E) is a faithful invariant of the isogeny class of E:

Theorem 3.1 (Faltings [25]). Two elliptic curves E1 and E2 over F are
isogenous if and only if they have the same L-factors at almost all places.
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The theorem of Hasse implies that the L-series L(s, E) is absolutely con-
vergent for Re(s) > 3/2. Actually one expects much more to be true

Conjecture 3.2 (Modularity conjecture). The L-series L(s, E) can be
analytically continued to the whole complex plane. Moreover,

L(s, E) = L(s− 1/2,Π)

for some automorphic representation Π for GL2(AF ) with the same conductor
as E.

We will not explain the meaning of Π but we will discuss the functional
equation of L(s,Π). One defines the conductor of E (denotedN) as a measure
of the singularity in the isogeny class of E by

ordv(N) = ordv(∆) + 1−mv.

Here mv denotes the number of connected components in E/kv. The conjec-
ture implies that L(s, E) has a functional equation:

L∗(s, E) := (Γ-functions)L(s, E) = ε(E)NF/Q(N)1−sL∗(2− s, E)

where ε(E) = ±1 is called the sign of E or L(s, E). Notice that L(1, E) = 0
if ε(E) = −1. Our main concern in this paper is the following:

Conjecture 3.3 (Birch and Swinnerton-Dyer). Let E be an elliptic curve
defined over a number field F . Let R denote the regulator of E, i.e., the vol-
ume of free part of E(F ) with respect to the Neron-Tate height pairing. Let
Ω be the volume of

∏
v|∞E(Fv) with respect to the Neron differentials of E.

Then

1. ords=1L(s, E) = rankE(F ).

2. |X(E)| <∞.

3. lims→1 L(s, E)(s− 1)−rankE(F ) = c · Ω(E) ·R(E) · |X(E)| · |E(F )tor|−2.

Here c is an explicitly positive integer depending only on Ev for v dividing
N .

If we assume both the Birch and Swinnerton-Dyer conjecture, then we
have an effective way to compute E(F ). Indeed, the rank can be effectively
bounded by 2-torsions of the Selmer group and therefore bounded in terms of
discriminant. The last formula in the Birch and Swinnerton-Dyer conjecture
thus gives a way to compute R(E) for every given rank. Since the minimal
height of a nontorsion point in E(F ) can be estimated effectively, one thus
has an estimate for the longest generator via Minkowski’s successive minima.
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Case where F = Q

In this case, the conjecture of modularity is completely solved.

Theorem 3.4 (Wiles, Taylor, Diamond, Conrad, Bruil [85, 91, 11]).
Let E be an elliptic curve over Q with L-series

L(s, E) =
∑

ann
−s.

Let f be a function on the upper-half complex plane defined by

f(z) =
∞∑
n=1

ane
2πinz, Imz > 0.

Then f(z) is a cusp form for the group

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Here N is the conductor of E. In other words the form f(z)dz is invariant
under the action of Γ0(N).

Thus, up to certain gamma factors, L(s, E) has a functional equation

L∗(s, E) : =

∫ ∞
0

f(yi)ys−1dy = (2π)−sΓ(s)L(s, E)

= ε(s, E) · L∗(2− s, E)

where ε(s, E) = ε(E)N1−s with ε(E) = ±1, the sign of E.
This theorem has the following geometric description. Let X0(N) denote

the modular curve
Γ0(N)\H ∪ {cusps}

which is actually defined over Q.

Theorem 3.5. Let E be an elliptic curve defined over Q with conductor N .
Then there is a nonconstant morphism

π : X0(N) −→ E

defined over Q.
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We may choose a morphism π such that π does not factor through any
endomorphism of E of degree > 1 and such that π(∞) = 0. We call such a
morphism a strong parameterization. The strong parameterization is unique
up to compositions with automorphisms of E. Then one can show that the
Szpiro’s conjecture is equivalent to the following:

Conjecture 3.6. There are constants α and β such that for any elliptic
curve E defined over Q with a strong parameterization π : X0(N) −→ E,
one has

deg π ≤ α ·Nβ.

Example

Let E be the curve defined by

E : y2 = 4x3 − 4x+ 1.

Then E(Q) ' Z and is generated by (0, 1). The sign of E is ε(E) = −1.
One can compute the coefficients of

L(s, E) =
∞∑
n=1

ann
−s

as follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a(n) 1 -2 -3 2 -2 6 -1 0 6 4 -5 -6 -2 2 6

The corresponding modular form is given by

f(z) = q − 2q2 − 3q3 + 2q4 − q5 + 6q6 − q7 + 6q9 + · · · , (q = e2πiz).

The modular parameterization of this curve is given by the function

φ : H −→ C,

where

φ(τ) = 2πi

∫ τ

i∞
f(τ ′)dτ ′ = q − q2 − q3 +

1

2
q4 − 2

5
q5 + · · · .

Concerning the Birch and Swinnerton-Dyer conjecture one has the fol-
lowing:
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Theorem 3.7 (Gross-Zagier-Kolyvagin [53]). Let E be an elliptic curve
defined over Q. Assume that ords=1L(s, E) ≤ 1. Then the Sharfarevich-Tate
group X(E/Q) is finite, and

ords=1L(s, E) = rankZE(Q).

Very little is known when ords=1L(s, E) > 1. But if the Tate-Sharfarevich
group is finite, then we will have the right parities. More precisely, the
following has been proved recently:

Theorem 3.8 (Nekovar [66]). Let p be a prime such that E has good and
ordinary reduction. Let X(E) denote the inverse limit of S(E)[p∞]. Then

rankZpX(E) ≡ ords=1L(s, E) mod 2.

Notice that we only stated results for the first two parts of the BSD
conjecture and not much is known for the third part. But when E is a CM-
elliptic curve, a lot has been proved by Coates-Wiles [14], Rubin [71], and
Greenberg [32].

Case where F is totally real

Now we assume that F is totally real, by which we mean that all embeddings
of F into C are real. By conjecture 3.2, every elliptic curve E over F is
modular, which means that there is a Hilbert new form f over F of weight
(2, · · · , 2), with conductor N , and with trivial central character, such that
for each finite place v not dividing N ,

av(E) := qv + 1−#E(kv) = av(f)

where av(f) is the eigenvalue of the Hecke operator Tv which acts on f :

Tv(f) = av(f)f.

See [27, 79] for some progress about modularity conjecture over totally real
fields by Fujiwara and Skinner-Wiles. Then we have the following:

Theorem 3.9 ([95]). Let E be a modular elliptic curve over F . Assume
the following holds:

1. [F : Q] is odd or the conductor N of E is not a square;
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2. ords=1L(s, E) ≤ 1.

Then:
ords=1L(s, E) = rankZE(F )

and X(E/F ) is finite.

For later use, let’s recall the definition of a Hilbert newform of weight
(2, · · · , 2) and conductor N . Let’s first fix an isomorphism

GL2(F∞) ' GL2(R)g.

Then the subgroup GL2(F )+ with totally positive determinants acts on the
product Hg of g-copies of the upper half plane. Let X0(N) denote the fol-
lowing complex manifold

GL2(F )+\Hg ××GL2(F̂ )/U0(N)Z(F̂ ),

here Z(F̂ ) is the center of GL2(F̂ ), U0(N) is subgroup of GL2(ÔF ) of matrices
congruent to upper triangular matrices modulo N . In this way, a cusp form
f of weight (2, · · · , 2), level N , and trivial central character, is a function on

Hg ×GL2(AF,f )

such that fdz1 · · · dzg comes from a holomorphic g-form on X0(N) which is
finite near each cusp of X0(N). We call a newform of level N if f is not a
form of smaller level, and f is an eigenform for the Hecke operator Tv for
each finite place v not dividing v:

Tvf(g) =
∑

x (mod π)

f

(
g

(
π x
0 1

))
+ f

(
g

(
1 0
0 π

))

where π is a uniformizer of Fv. The following is well known from the multi-
plicity one result of new forms:

Theorem 3.10. Let f be be a newform of weight (2, · · · , 2), level U0(N), and
trivial central character. Let L be the subfield of C generated by eigenvalues
λv(f) under Tv for v not dividing v. Then L is a totally real number field.
Moreover for any embedding σ : L −→ C there is a unique newform fσ up to
constant multiple such that the eigenvalues of fσ under Tv are given by λσ.
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One may define the L-series L(s, f) by Mellin-transform such that L(s, f)
has Euler product whose local factor at v not dividing N is given by

(1− λvq−sv + q1−2s
v )−1.

The theory of automorphic forms gives for each such newform f a unique
cuspidal representation Π of GL2(AF ) with the same L-series

L(s− 1/2,Π) = L(s, f).

In the case F = Q, the modularity is equivalent to a nonconstant map
X0(N) −→ E over Q. In the general case, this is not true. But when the
first condition of Theorem 3.9 is satisfied, then E can be parametrized by a
Shimura curve. We will come back to this point later.

Abelian variety of GL(2) type

From the modular form point of view, all results above can be generalized to
abelian varieties of GL(2) type, by which we mean that an abelian variety A
such that End(A)⊗Q contains a totally real field L of degree equal to dimA.

By an automorphic representation Π of GL2(AF ) with values in L, we
mean a collection of automorphic representations Πσ indexed by embeddings
σ : L −→ R such that the coefficients of local factors Lv(s,Π

σ
v ) are images

under the embeddings of the coefficients of a formal local L-functor Lv(s,Πv)
with coefficients in L.

Conjecture 3.11. Let A be a simple abelian variety defined over F with an
endomorphism by an order in a number field L of degree dimA. Then there
is an automorphic representation Π of GL2(AF ) with value in L such that

L(s, A) =
∏

σ:F−→R

L(s− 1/2,Πσ).

Moreover when F is totally real, one may take Π to be the Hilbert cups form
of weight (2, · · · , 2), level N , and trivial central character.

Now we assume that the conjecture is true for an abelian variety A and
an automorphic representation Π. Then A(F )⊗R is an vector space over L.
Thus it is a direct sum ⊕A(σ) of eigen subspaces corresponding to embed-
dings σ of F into R. Notice that for every σ,

dimLA(F )⊗Q = dimRA(σ).
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Conjecture 3.12. Assume that the above conjecture is true for an abelian
variety A and an automorphic representation Π with value in L. Then

ords=1L(s,Πσ) = dimLA(F )⊗Q.

Modular forms of high weights

For N a product of two relatively prime integers ≥ 3, one can show that the
universal elliptic curve over the non-cuspidal locus of X(N)Z can be extended
uniquely to a regular semistable elliptic curve E(N) over X(N). The Kuga-
Sato variety Y = Yk(N) will be defined to be a canonical resolution of the
2k − 2-tuple fiber product of E(N) over X(N).

Let f =
∑

n≥1 anq
n ∈ Snew

2k (Γ0(N)) be a normalized eigenform of weigh
2k on Γ0(N) with coefficients in Q. Let M = M(f) be the Grothendieck
motive over Q constructed by P. Deligne [20], U. Jannsen [47] and A. J.
Scholl [73, 74]. The `-adic realization M` is a two dimensional representation
of Gal(Q̄/Q) corresponding to f and appears as a factor in the cohomology
group

H2k−1
ét (Y ⊗ Q̄,Q`)(k)H ,

where Y = Y (N ′)⊗Q for multiple N ′ of N such that N ′ is a product of two
relatively prime integers ≥ 3, and H is the covering group Γ0(N)/Γ(N ′).

For any number field F , let Chk(YF )0 be the group of homologically trivial
cycles of codimension k in YF modulo the rational equivalence. Let Ch(F )f
be the f -typical component of

Chk(YF )H0 ⊗Q`

under the action by Hecke operators. The `-adic Abel-Jacobi map

ΦF : Chk(YF )0 ⊗Ql → H1
cont(F,H

2k−1
ét (Y ⊗ Q̄,Ql)(k)

induces a map

ΦF,f : Ch(f)` → H1
cont(F,M(f)`).

Conjecture 3.13 (Beilinson and Bloch). The morphism ΦF,f is always
injective and the dimension of ImΦF,f is equal to the order of L(s, f ⊗ F ) at
s = k.
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The following was proved by combining results of Nekovar [64, 65] and a
Gross-Zagier formula:

Theorem 3.14 ([94]). Assume the following conditions:

1. k > 1,

2. ΦK,f is injective for every imaginary quadratic field K,

3. ords=kL(s, f) ≤ 1, and that ` does not divide 2N .

Then the following equality holds:

rankQlIm(Φf,Q) = ords=kL(s, f).

4 Complex multiplications

In this section, we study elliptic curves with complex multiplications. The
basic references are Shimura’s books [75, 76] and Silverman’s book [78]. The
main results include the algebraicity of j-invariants which will be used to
construct algebraic points on Shimura varieties, and the computation of L-
functions which provides examples of modular elliptic curves in terms of theta
series.

By an elliptic curve with complex multiplication we mean an elliptic curve
E over C such that End(E) 6= Z. In this case, End(E) is isomorphic to an
order in an imaginary quadratic field K:

End(E) ' Oc = Z+ cOK

for some c ∈ N. Fix an isomorphism ι : K ' End(E)⊗Q. Then the action
of End(E) on Lie(E) gives an embedding K −→ C. Thus we may view K
as a subfield of C by this manner.

It is easy to see that E(C) may be taken as C/Λ with Λ an invertible
Oc-module. Two elliptic curves Ei = C/Λi (i = 1, 2) with the same endo-
morphism ring Oc are isomorphic if and only if Λ1 and Λ2 are in the same
class in Pic(Oc). Thus we have a bijection:

j[c] := {j(E) : End(E) = Oc} −→ Pic(Oc).

Notice that the group Gal(C/Q) is stable on the set j[c]. It follows that all
j(E) in j[c] are algebraic. In other words, any CM elliptic curve E/C will
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be defined by some Weierstrass equation with coefficients in a number field.
Moreover if E is defined over some field L ⊂ C, then all elements in End(E)
is defined over L ·K, the composition of L and K. Indeed, if we let v be a
generator of Lie(E/L) and ι(a) ∈ End(E) then

d(ι(a))v = av.

Applying both sides under σ ∈ Gal(C/LK) then we have

d(ι(a)σ)v = av.

Thus we must have ι(a)σ = a.
The main theorem of complex multiplication will show the following more

precise information:

1. all j(E) are defined over some abelian extension of K corresponding to
End(E);

2. if E is defined over some field L then Etor(C) will be defined over L·Kab,
where Kab denotes the maximal abelian extension of K in C.

The Main Theorem

To state the Main Theorem of Complex Multiplication, we recall the key
principles of class field theory. Let AK be the ring of adeles of K, that is
the subring of

∏
vKv of the product of all local fields, consisting of elements

of (xv) such that for all but finitely many v, xv is integral. The field K
is embedded into AK diagonally. Let A×K denote the group of invertible
elements. Then class field theory gives an Artin map with dense image:

A
×
K −→ Gal(Kab/K), x −→ [x,K],

such that the kernel consists of K× · K∞. More precisely, for any finite
extension L/K in Kab and any finite place v of K unramified in L, the
composition map

K×v −→ A
×
K −→ Gal(L/K)

will be given by x −→ Frobordv(x)
v , i.e., for any place w over v, and any

a ∈ OL,

a[x,K] ≡ a|x|
−1
v mod ℘w
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where ℘w is the maximal ideal of OL corresponding to w.
The group A×K also acts on the set of lattices in K in the following manner:

for any lattice Λ ∈ K, and any s ∈ A×K , the lattice sΛ is defined to the
unique lattice in K whose completion at a finite place v of K is given by
svΛv, where Lv is the completion of L at v. The multiplication of s does not
give an isomorphism from Λ to sΛ but given an isomorphism

s : K/Λ −→ K/sΛ

as both sides are direct sums of local quotients Kv/Λv and Kv/svΛv.

Theorem 4.1 (The Main Theorem of Complex Multiplication). Let
E be an elliptic curve with CM by some order in K. Let σ ∈ Aut(C/K),
x ∈ A×K,f such that

[x,K] = σ|Kab .

Then for any complex isomorphism

f : C/Λ ' E(C),

where Λ is a lattice in K, there is a unique complex analytic isomorphism

f ′ : C/x−1Λ ' Eσ(C)

such that the restriction of the map

σ : E(C) −→ Eσ(C)

on torsion points is given by

x−1 : K/Λ −→ K/x−1Λ.

Algebraicity of j-invariants

The first consequence of Theorem 4.1 is a precise description of the action of
Gal(C/K) on j[c]. More precisely, the map

C/Λ −→ [Λ] ∈ Pic(Oc)

gives a bijection between j[c] and Pic(Oc) and thus admits an action by
Pic(Oc). The action of Gal(C/K) on j[c] is given by the inverse of the
following composition:

Gal(C/K) −→ Gal(Kab/K) −→ K×\A×/K×∞ · Ôc = Pic(Oc).

We call the extension K[c] of K in Kab fixed by Ôc the ring class field of K
of conductor c. Thus we have shown the following:
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Corollary 4.2. For every j ∈ j[c], the field K(j(E)) = K[c] is the ring class
field of K of conductor c, and all j ∈ j[c] are conjugate to each other under
the Galois group Gal(K[c]/K).

Galois action on torsion points

To understand the action on torsion points we assume that E is defined over
some number field L containing K. We recall that we still have the Artin
map

A
×
L −→ Gal(Lab/L), x −→ [x, L],

with kernel generated by L× and the connected component of A×L . Let

A
×
L = A×L,f · A

×
L,∞

be the decomposition of A×L into finite or infinite ideles.
Let σ ∈ Gal(C/L). Let x ∈ A×L such that

[x, L] = σ|Lab .

Then Eσ ' E. So we may replace Eσ by E in Theorem 4.1. Two parame-
terizations f and f ′ are related by the multiplication of a unique α(x) ∈ K×.
Obviously, x −→ α(x) is a homomorphism from A

×
L to K×. For x ∈ L×,

[x, L] = 1. Thus the corollary implies that α(x) = NL/K(x). In other words,
α can be extended to a Hecke character ψE/L on A×L by

ψE/L(x) = αE/L(x)NL/K(x−1)∞.

Notice that ψ has the following properties:{
ψE/L(x) ∈ K× if x ∈ A×L,f
ψE/L(x) = NL/K(x)−1 if x ∈ A×L,∞.

(4.1)

Corollary 4.3. Let E be an elliptic curve defined over a number field L such
that End(E) is some order Oc in an imaginary quadratic field K. Assume
that L contains K. Then for any σ ∈ Gal(C/L), x ∈ A×L such that σ|Lab =
[x, L], and any analytic isomorphism

f : C/Λ −→ E(C),

where Λ is a lattice in K, the restriction of [x, L] on K/Λ ⊂ E(Lab) is given
by

ψ(x)NL/K(x)−1 : K/Λ ' K/Λ.
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L-series

Now lets compute the L-series from the above corollary by noticing that
T`(E) ' Λ⊗Z` for the uniformization C/Λ ' E(C). Thus the Galois action
of Gal(L̄/L) on T`(E) ' Λ` is given by the following composition:

Gal(L̄/L) −→ A
×
L,f/K

× ψ(x)NL/K(x)−1
`−→ O×c,`.

The above corollary implies the following:

Theorem 4.4 (Deuring). Let E/L be an elliptic curve with complex mul-
tiplication by some order in K. Assume that K is included in L. Let
ψE/L : A×L −→ C

× be the Grossencharcter attached to E/L. Then

L(E/L, s) = L(s, ψE/L) · L(s, ψ̄E/L).

The correspondence
E −→

{
ψE/L, ψ̄E/L

}
is bijective between the set of isogeny classes of elliptic curves over L and the
set of conjugate classes of Grossencharacters of L satisfying (4.1).

Recall that the Hecke character ψ : L×\A×L has the decomposition ψ =
⊗ψv, where ψv is the composition

L×v −→ A
×
L −→ C

×.

The L-function L(s, ψ) is defined as the product

L(s, ψ) =
∏
v

L(s, ψv),

where the local L-function is defined as follows:

L(s, ψv) =

{
(1− ψ(πv)q

−s
v )−1 if ψv is unramified,

1 otherwise,

where πv is the local parameter of Lv. One immediate consequence of this
theorem is the holomorphic continuation of L(s, E) and the functional equa-
tion which were proved in Tate’s thesis [82]. Actually, the theorem tell us
that E is modular in the sense of conjecture 3.2 with L(s, E) = L(s−1/2,Π)

26



where Π is an automorphic representation of GL2(AL) induced from the fol-
lowing character χ on the subgroup of upper triangular matrices:

χ

((
a b
0 d

))
= ψ(a)ψ̄(d)|a/d|1/2.

Now we want to consider the case where K is not included into L. Let
E/L be an elliptic curve with complex multiplication by some order in K.
Let ψE/L′ be a Grossenchacter attached to E/L′. Then one can show that
the restriction of ψ on A×L satisfies the following:

ψ(x) = ε(x)|x|−1(4.2)

where ε is a quadratic character of A×L corresponding to the extension L′/L.

Theorem 4.5 (Deuring). With notation as above, one has the following

L(E/L, s) = L(s, ψE/L′).

The correspondence
E −→

{
ψE/L′ , ψ̄E/L′

}
is bijective between the set of isogeny classes of elliptic curves over L and the
set of conjugate classes of characters of A×L′ satisfying (4.1) and (4.2).

Again it follows from Tate’s thesis, L(s, E) has holomorphic continuation
and functional equation. Moreover, E is modular with L(s, E) = L(s −
1/2,Π) where Π is the representation of GL2(AL) which is a theta lifting
from the character ψ of GL1(AL′).

Abelian varieties with complex multiplications

A natural generalization of a CM elliptic curve is a CM abelian variety A,
which means that End(A) ⊗ Q contains a subfield of degree 2 dim(A). One
may show that these abelian varieties are defined over number fields and that
their L-functions are products of the complex conjugations of automorphic
representations over GL(2) of the base field (these are either principal or
theta liftings).
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5 Shimura curves

In this section, we study Shimura curves as generalization of modular curves.
The basic references are papers by Deligne [19], Boutot-Carayol [10], Carayol
[13], and myself [95]. We will start with constructions of quaternion algebras
over F , Shimura curves, and Shimura curves X of type (N,K), a direct
generalization of the modular curve X0(N). The main result of Shimura is
that these curves are defined over F . When F = Q, we give some moduli
interpretations for these curves. Then we come to Hecke’s theory and Eichler-
Shimura theory. The main consequence is that the Jacobian of X provides
abelian varieties of GL2-type over F of conductor N . It is conjectured that
every abelian variety of conductor N of GL2-type is a quotient of Jac(X)
and thus parameterized (admissibly) by X.

Quaternion algebra

Let F be a number field. Let B be a quaternion algebra over F by which
we mean a simple algebra over F of rank 4. It is isomorphic to the following
Ba,b over F generated by two elements x and y such that

a := x2 ∈ F, b := y2 ∈ F, xy + yx = 0.

For example, B1,1 = M2(F ). For any place v of F , Bv = B ⊗ Fv is either
isomorphic to M2(Fv), the matrix algebra of rank 2, or the division algebra
Dv of rank 2 over Fv. If v is an archimedean place, Dv exists only if Fv ' R
where Dv can be taken as the usual Hamiltonians:

Dv = B−1,−1.

If v is a nonarchimedean place, then we may take

Dv = Ba,b

where a, b are chosen such that Fv(
√
a) is ramified over Fv , and Fv(

√
b) is

unramified over Fv.
Let Σ be the set of all places over which B is non-split. Then Σ is a

finite subset with even cardinality. Moreover the correspondence B −→ Σ
is bijective between the set of isomorphism classes of B and the set of finite
subsets of places of even cardinality. For example, B 'M2(F ) if and only if
Σ ' ∅. See Vignéras’ book [88] for basic facts about quaternion algebras.
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Shimura curves

Now we assume that F is totally real and that B is split at a fixed place
τ of F and non-split at the rest of archimedean places. We view F as a
subfield of C via τ . Let G denote the algebraic group B× over F . Then
group G(Fτ ) ' GL2(R) acts on H± = C − R. Now for any open subgroup
U of G(Af ) which is compact modulo the center Z(Af ), we have a Shimura
curve

SU = G(F )\H± ×G(F̂ )/U.

Shimura proved that these were the complex points of an algebraic curve SU
defined over F . Moreover the isomorphic class of curve SU over F depends
only on the finite subset Σ \ {τ}.

This curve is compact if F 6= Q. Notice that the curve SU may not be
connected. The map to its set of connected components is identified with
the norm map

det : G(Q)\H±×G(Af )/U −→ F×\{±1}×A×F,f/ detU ' F×+ \A×f / detU.

Each connected component is defined over the field an abelian extension FU
of F corresponding to the subgroup det(U) of F̂ via the class field theory:

Gal(FU/F ) ' F×+ \A×F,f/ det(U).

The action of Gal(FU/F ) on the set of connected components is the inverse-
multiplication of A×F .

Shimura curves of (N,K)-type

One special case is the Shimura curves with minimal level which corresponds
to the case U is a maximal compact subgroup of G(Af ) modulo the center.

In this case, there is a maximal order OB of B such that U = Z(Af ) · Ô×B .
A more general case is the Shimura curve with a level U0(N) structure,

where N is an ideal of OF which is invertible at all places where B is ramified.
In this case, U = Z(Af )

∏
Uv where Uv is maximal at the place where v is

ramified in B. If v is not ramified in B, then there is an isomorphism Bv '
M2(Fv) such that Uv corresponds to the subgroup of matrices of GL2(Ov)
which are triangular when modulo N . It is well known that all Shimura
curves with level U0(N) structure are all isomorphic to each other, and that
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every geometric component of SU is defined over the narrow class field HF

of F since detU = Ô×F · (A
×
F,f )

2.
In case F = Q, the Shimura curves with U0(N)-structure is the usual

X0(N).
An even more general case is the Shimura curve of type (N,K) where

1. K is a totally imaginary quadratic extension of F embedded into B;

2. N is an ideal of OF which is prime to the relative discriminant of K/F .

Then we take U = Z(Af ) · R̂× where R is an order of B containing OK with
relative discriminant N . The existence of such a Shimura curve is equivalent
to the following condition: B is ramified at a finite place v if and only if v is
inert in K and ordv(N) is odd. Moreover such a Shimura curve is unique up
to isomorphism once it exits. The Shimura curve with U0(N) level structure
corresponding to the case where for each finite place v dividing N , either
ordv(N) = 1 or v is split in K.

Moduli interpretation

If F = Q, then SU parameterize elliptic curves or abelian surfaces as follows.
Fix one maximal order OB of B.

Theorem 5.1. Assume that F = Q and U is included in Ô×B. For U suffi-
ciently small, the curve SU represents the functor

MU : Sch/C −→ Set

defined as follows: for any S ∈ Sch/C, MU(S) is the set of isomorphic
classes of the triple (A, ι, κ̄) so that

1. A is an abelian variety over S of relative dimension 2;

2. ι : OB −→ End(A) is an action of OB on A;

3. κ̄ is a level U structure over A which means a class modulo U of iso-
morphisms:

κ : ÔB −→ T̂(A).
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When B = M2(Q), OB = M2(Z), then for every object (A, ι, κ) as in the
theorem, A has a canonical splitting

A = E ⊕ E, E = ι

((
1 0
0 0

))
A,

such that ι is given by usual matrix multiplication. The level structure κ is
induced by a level structure κE of E. Thus, we have the following:

Theorem 5.2. Assume that F = Q, B = M2(Q), and U is included in
M2(Z). For U sufficiently small, the curve SU represents the functor

MU : Sch/C −→ Set,

defined as follows: for any S ∈ Sch/C, MU(S) is the set of isomorphic
classes of the triple (E, κ̄) so that

1. A is an elliptic curve over S;

2. κ̄ is a level U structure over E which means a class modulo U of iso-
morphisms:

κ : Ẑ2 −→ T̂(E).

Example

The algebraic curve structure over Q of X0(N) is defined by the modular
interpretation that X0(N) parameterizes the set of isogenies E1 −→ E2 with
kernels isomorphic to Z/NZ. A point x ∈ X0(N) will represent the object

[N ] : C/Z+ Zτ −→ C/Z+ ZNτ

where τ ∈ H maps to x. For all but finitely many x ∈ H, the minimal
subfield of C which defines x is Q(j(τ), j(Nτ)) where j : H −→ C is the
usual j-function:

j(τ) = 1728g3
2/∆ = q−1 + 744 + 196884q + 21493760q2 + · · ·

When F 6= Q, SU does not have a natural modular interpretation. In-
stead, one needs to fix an auxiliary totally imaginary quadratic extension K
of F and consider the group G′ = G ×F× K× and embed SU into S′U ′ , the
Shimura curve corresponding to G′. We will not give a description here since
it is rather involved.
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Hecke’s operators

Let SU be a Shimura curve defined as above. Let OB be a maximal order of
B such that U is included in Z(F̂ )Ô×B . Let m be an ideal of OF such that at
every prime ideal ℘ of m, U is maximal and B is split. Let Gm denote the
set of elements of ÔB which has component 1 at the the place not dividing
m, and such that det(g) generates detm in ÔF . The Hecke correspondence
T(m) on SU is defined by the formula:

T(m)x =
∑

γ∈Gm/G1

[(z, gγ)],

where (z, g) is a representative of x in H × G(AF,f ), and [(z, gγ)] is the
projection of (z, gγ) on X. One can show that T(m) is actually an algebraic
correspondence on SU , i.e, defined by some divisor on SU × SU over F .

As in the modular curves or Hilbert modular varieties case, we may define
the notion of modular forms on SU . Here we are only interested in forms
of weight 2, namely functions on H × G(AF,f ) such that f(z, g)dz gives a
holomorphic 1-form on the compactification of SU . One may define the Hecke
operator T(m) on forms by the following formula:

T(m)f(x) =
∑

γ∈Gm/G1

f([z, gγ]).

Theorem 5.3 (Jacquet-Langlands). Let f be a cusp form on SU of weight
2 which is an eigenform of the Hecke operators T(m). Then there is a unique
newform φ for PGL2(AF ) of weight (2, · · · , 2), with conductor N prime to
m with the same eigenvalues of the Hecke operators. Moreover at each place
v over which B is ramified, ordv(N) is odd.

We call f −→ φ a Jacquet-Langlands correspondence. We have the fol-
lowing converse:

Theorem 5.4. Assume that f is a newform for PGL2(AF ) of weight (2, · · · , 2)
with level U0(N) such that ordv(N) is odd when v is ramified in B. Then
the Jacquet-Langlands correspondence of f exists and is unique on a Shimura
curve SU of type (N,K).
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Modular parameterization

In order to construct some points in the Jacobian JU := Jac(SU) of SU we
need to define a map from SU to JU . In the modular curve case, one uses the
cusp ∞ to send x ∈ SU to the class of x−∞ in JU . In the general case, we
use the Hodge class ξ ∈ Pic(SU)⊗Q: the unique class whose degree is 1 on
each connected component and such that

T(m) = deg(T(m))ξ,

for all integral ideals m prime to the level of SU . Now each divisor x on SU
defines a point π(x) := [x−deg(x)ξ] in JU . Notice that ξ can be analytically
defined as follows. Write SU(C) as a union

∐
iXi of connected components

of the form
Xi = Γi\H

∐
{cusps},

where Γi ⊂ B×+/F
× ⊂ PGL2(R). Then one has Pic(SU)(C) =

∏
Pic(Xi).

The restriction of ξ on Xi is given by the formula:

ξi =

{
[Ω1

Xi
] +

∑
p∈Xi

(1− u−1
p )[p] + [cusps]

}/
vol(Xi)

where for any non-cuspidal point p ∈ Xi, up denotes the cardinality of the
group of stabilizer of p̃ in Γi, where p̃ is a lifting of p inH. Now we can map SU
to its Jacobian (modulo torsion) by sending x ∈ X to the class of x−deg(x)ξ,
where deg(x) is the multi-degree of x on the connected components. We take
this as a certain standard embedding:

Definition 5.5. A morphism π from a Shimura curve SU to an abelian va-
riety is called admissible if π(ξ) = 0. Let Hom(X,A) denote the group of
admissible parameterizations.

Now we have the following reformulation of Theorem 5.4.

Theorem 5.6. Let X be a Shimura curve of type (N,K). Let f be a new-
form for PGL2(AF ) of weight (2, · · · , 2) with level structure U0(N) such that
ordv(N) is odd when v is not split in B. Then there is a unique abelian
variety A over C up to isogeny, and an admissible parameterization

π : X −→ A
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such that
π∗(Ω1

A) = ⊕Cfσ(z)dz.

Moreover any such A is of GL2-type with multiplication by the subring Oφ in
C generated by Hecke eigenvalues for f .

Indeed, A can be constructed simply by integrations of forms fσ. Now
the Eichler-Shimura theory gives the following:

Theorem 5.7. The abelian variety in Theorem 5.6 is defined over F as a
quotient of Jac(X) with L-function

L(s, A) =
∏

σ:Oφ−→C

L(s, φσ).

Moreover Hom(X,A)⊗Q is a free module of rank 1 over End(A)⊗Q.

Conversely, we have the following modularity conjecture:

Conjecture 5.8. Let A be a simple abelian variety A over F of GL2-type
with conductor N . Then Hom(X,A) ⊗ Q is a free module of rank 1 over
End(A)⊗Q.

6 CM-points and Heegner points

In this section, we state a Gross-Zagier formula given in [95, 96]. The original
formulation for the modular curve X0(N) is in [40]. We will start with an
adelic description of CM-points. Then we state our Gross-Zagier formula, and
survey three related results in the classical case: the work of Gross-Kohnen-
Zagier [38] on positions of Heegner points when the quadratic fields vary,
the work of Kolyvagin [53] which actually gives an effective way to compute
E(Q), and the work of Goldfeld [29] on Gauss’ class number problem.

CM-points

Let K be a fixed imaginary quadratic extension of F which is embedded into
B. Let T denote the torus of G defined by K× ⊂ B×. A point x ∈ SU is
called a CM-point by K if it is represented by (z, g) ∈ H± × G(Af ) with z
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fixed by a torus of G(F ) isomorphic to K×/Q×. Let z0 be the unique point
in H fixed by T (F ). Then the set CU of CM-points by K is identified with

CU = G(F )+\G(F )+z0 ×G(F̂ )/U = T (F )\G(F̂ )/U.

All points of CU are defined over the maximal abelian extension Kab of K.
The Galois action of Gal(Kab/K) on CU is given by class field theory

T (Af ) −→ Gal(Kab/K),

and the inverse multiplication of T (Af ) from the left hand side. The projec-
tive limit C of CU is identified with

C = T (Q)\G(Af ).

It admits both a Galois action of T (F̂ ) and a Hecke action of G(F̂ ).
We may also give a modular interpretation of CM-points. In particular

when F = Q, a point on SU representing (A, ι, κ) has CM by K if and only
if EndB(A) ⊗ Q ' K. If this is the case, then the action of K on Lie(A)
gives an embedding K −→ C. Moreover, since B ⊗K 'M2(K), A must be
isogenous to a product E ⊕ E of elliptic curves with CM by K. The main
theorem of complex multiplication still works here.

A CM-point on a Shimura curve X of type (N,K) is called a Heegner

point if it is represented by [z, g] where z is fixed by T (F ) and g ∈ T (F̂ ).
As we see from above, all these Heegner points are defined over the Hilbert
class field H of K and all conjugates of x = [z, 1].

Let f be a newform of level N . Then we have a parameterization π ∈
Hom(X,A)⊗Q. Define

yK := u−1
x

∑
σ∈Gal(H/K)

π(xσ) ∈ A(K)⊗Q

and let yf ∈ A(K) ⊗ C be the f -isotypical component of z. Then we have
the following:

Theorem 6.1 ([95]). Let LK(s, f) denote the product L(s, f)L(s, ε, f) where
L(s, ε, f) is the L-function of f twisted by ε. Then LK(1, f) = 0 and

L′K(1, f) =
(8π2)g

d2
F

√
dK

[U0(1) : U0(N)]‖f‖2‖yf‖2,

where
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1. ‖yf‖2 is the Neron-Tate height of zf ;

2. dF is the discriminant of F , and dK is the norm of the relative dis-
criminant of K/F ;

3. ‖f‖2 is inner product with respect to the standard measure on

Z(AF )GL2(F )\GL2(AF ).

When F = Q and every prime factor of N splits in K, this is due to Gross
and Zagier [40]. In this case, a point x on X0(N)(C) is a Heegner point of
order OK if x represents an isogeny

φ : E1 −→ E2

such that
End(E1) ' End(E2) ' OK .

Fix one embedding K −→ C. Then one has ideals a ⊂ b such that

E1 ' C/a, E2 ' C/b.

The morphism φ is then induced by the natural morphism

C/a −→ C/b.

Now the kernel is
Z/NZ ' b/a ' OK/n

where n = a · b. Obviously the existence of a Heegner point of order OK is
equivalent to the existence of such n which is equivalent to the following so
called Heegner condition:

Every prime factor p of N is either split or ramified in OK.
Once the Heegner condition is satisfied, there will be 2shK Heegner points,

where s is the number of prime factors of N split in OK , and hK is the class
number of K. More precisely, the map

x −→ ([a], n)

defines an bijection between the Heegner points of OK and the pairs of an
ideal class [a] ∈ Pic(OK) and an ideal n of OK such that NOK = n · n̄.
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By the theory of complex multiplication, all Heegner points are defined
over the Hilbert class field H of K. The action of Gal(H/K) ' Pic(OK) is
given by the inverse multiplication of Pic(OK).

For the proof of Theorem 3.9, we assume that L(s, E) has order less than
or equal to 1. By some anaytic result, there is a K such that LK(s, E) has
order equal to 1 at s = 1. It follows from the above theorem that zf has
infinite order. Then Theorem 3.9 follows from Kolyvagin’s method.

Position of Heegner points

Let E be an modular elliptic curve defined over a totally real field F such
that L(s, E) has order 1 at s = 1. Then by Theorem 3.9,

E(F )⊗Q ' Q.

Thus all Heegner points yK are proportional. When F = Q, even before
Kolyvagin, the ratios of these yK has been studied by Kohnen, Gross, Zagier:

Theorem 6.2 (Gross-Kohnen-Zagier [38]). Assume that F = Q, and
that ords=1L(s, E) = 1. Let f =

∑
anq

n ∈ S2(Γ0(N)) correspond to E
and let g =

∑
n cnq

n ∈ S3/2(Γ0(4N)) be its Shimura lifting. Then for any
imaginary quadratic extension K of discriminant D, yK 6= 0 ∈ E(Q)⊗Q if
and only if cD 6= 0, and in the case

yK/cD ∈ E(Q)Q

is independent of K.

Recall that the Fourier coefficients of f and g are related by the following
formula:

a(n)c(−d) =
∑
r|n

(
d

r

)
c(−dn2/r2)

where n ∈ N and d < 0 a fundamental discriminant.

Example

We still consider the elliptic curve

E : y2 − y = x3 − x
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p 3 7 11 47 67 71 83 107 127 139 151 211 223
cp 1 1 1 1 6 1 1 0 1 0 2 3 3

d 4 40 84 95 104 111 115 120 123 136 148
cd 1 2 1 0 0 1 6 2 3 4 3

Effectivity on Mordell group

Using his theory of Euler systems, Kolyvagin has finally proved the following:

Theorem 6.3 (Kolyvagin [53]). If yK has infinite order, then [E(Q) :
ZyK ] is finite.

Moreover the work of Kolyvagin allows us to compute E(Q) and check
effectively the following:

• the sign of the functional equation of L(s, E);

• a Heegner point yK ∈ E(Q);

• the set E(Q)/ZyK when yK is of infinite order.

Gauss class number problem

For certain elliptic curve E of odd sign, one can show that the Heegner point
is torsion. It follows that L(s, E) vanishes at s = 1 with order ≥ 3. It follows
from a result of Goldfeld [29] that:

Theorem 6.4. For any ε > 0, there is an effective computational constant
κ(ε) > 0 such that

h(D) > κ(ε)(log |D|)1−ε.

Forms of high weight

For an elliptic curve E with a CM by
√
D, let Z(E) denote the divisor class

on E ×E of Γ−E × {0} −D{0} ×E, where Γ is the graph of
√
D. For k a

positive integer, then Z(E)k−1 is a cycle of codimension k − 1 in E2k−2. Let
Sk(E) denote the cycle

c
∑

g∈G2k−2

sgng∗(Z(E)k−1),
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where G2k−2 denotes the symmetric group of 2k − 2 letters which acts on
E2k−2 by permuting the factors, and c is a real number such that the self-
intersection of Sk(E) on each fiber is (−1)k−1.

For N ′ a product of two relatively prime integers ≥ 3, recall that the
Kuga-Sato variety Y = Yk(N

′) is defined to be a canonical resolution of the
2k − 2-tuple fiber product of the universal elliptic curve E(N ′) over X(N ′).
If y is a CM-point on X(N ′), the CM-cycle Sk(y) over x will be defined to
be Sk(Ey) in Y .

For N a factor of N ′, if x a CM-divisor on X0(N)Z, the CM-cycle Sk(x)
over x will be defined to be

∑
Sk(xi)/

√
deg p, where p denotes the canonical

morphism from X(N ′) to X0(N), and
∑
xi = p∗x. One can show that

Sk(x) has zero intersection with any cycle of Y supported in the special fiber
of YZ, and that the class of Sk(x) in H2k(Y (C),C) is zero. So there is a
green’s current gk(x) on Y (C) such that ∂∂̄

πi
gk(x) = δSk(x). The arithmetic

CM-cycle Ŝk(x) over x, in the sense of Gillet and Soulé [28], is defined to be
(Sk(x), gk(x)).

If x and y are two CM-points on X0(N), then the height pairing of the
CM-cycles Sk(x) and Sk(y) will be defined to be

〈Sk(x), Sk(y)〉 := (−1)kŜk(x) · Ŝk(y).

Let K be an imaginary quadratic field with the discriminant D, such that
every prime factor of N is split in K. Let H denote the Hilbert class field
of K. Let σ be a fixed element Gal(H/K), and A the ideal class in OK
corresponding to σ via the Artin map.

Set sK =
∑

σ∈G sk(x
σ) where s′k(x

σ) is the image of sk(x
σ) in V ′. Let

f ∈ Snew
2k (Γ0(N)) be a normalized eigenform and let sK,f be the f -isotropic

component of sK .

Theorem 6.5 ([96]).

L′K(k, f) =
24k−1π2k(f, f)

(2k − 2)!u2h
√
|D|
〈sK,f , sK,f〉.

p-adic formulas

In [67], when F = Q and all prime factors of N split in K, Perin-Riou
obtained a formula relating the first derivative of the two variable p-adic
L-function of E/K to the p-adic height of the Heegner point PK ∈ E(K).

39



This formula has been refined or extended by Rubin [72] for elliptic curves
with complex multiplications, and by Nekovar [64, 65] to high forms with
high weight.

7 L-functions with characters

In this section we study L-functions and Mordell-Weil groups twisted by var-
ious characters. The main reference is Mazur’s paper [60]. We will start with
basic definitions and the BSD conjecture in this context. The first family of
characters considered here are L-functions with quadratic twists. This is the
horizontal case called by B. Mazur. We will explain Goldfeld’s conjecture on
the average order of vanishing, and work of Waldspurger, Bump-Friedberg-
Hoffstein, and Murty and Murty. The second family are L-series twisted by
characters with bounded ramifications. This is the vertical case called by
Mazur. We will state a generalization of a conjecture by Mazur on nonva-
nishing of L-series. A lot has been proved in the case F = Q: the work of
Rohrlich and Kato, and the work of Bertolini-Darmon and very recent work
of Vatsal and Cornut. A better way to understand Mazur’s conjecture is in
context of p-adic L-functions and Iwasawa theory which unfortunately will
not be covered here.

Now, we fix an elliptic curve E over a number field F and study E(L) for
some finite or infinite abelian extension L of F . When L/F is finite, by the
Mordell-Well theorem, E(L) is finitely generated and we have the following
decomposition

E(L)⊗ C = ⊕E(χ)

where χ : Gal(L/F ) −→ C
× ranges through all characters, and E(χ) is the

χ-eigen subspace in E(L)⊗C. On the other hand, the L-series series has the
decomposition

L(s, E/L) =
∏
χ

L(s, χ, E)

where L(s, χ, E) is the twist of L(s, E) by a character χ. More precisely,
assume that L(s, E) has conductor N with good local factors at v - N ,

(1− avq−sv + q1−2s
v )−1,

and that χ has conductor c, then L(s, χ, E) has a local term at v - cN given
by

(1− avχ(Frobv)q
−s
v + χ(Frobv)

2q1−2s
v )−1.
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Again, to understand the bad factors, one can look at the representation of
Gal(F̄ /F ) on T`(E) twisted by the character χ to obtain

det(1− Frob(v)|T`(E)(χ)Iv )−1,

where T`(E)(χ) denotes the usual Tate module with action twisted by χ.
Notice that both E(χ) and L(s, χ, E) depends only on the composition χ :
Gal(F̄ /F ) −→ C

×. The Birch and Swinnerton-Dyer conjecture for E/L can
be refined as follows:

Conjecture 7.1. For any character χ of Gal(F̄ /F ), one has

dimE(χ) = ords=1L(s, χ, E).

Here we already assume the holomorphic continuation of L(s, χ, E) and
the functional equation:

L(s, χ, E) = ε(s, χ, E) · L(2− s, χ−1, E)

Quadratic characters

The first example we want to consider is the case of quadratic twists. To be
more precise, we fix one elliptic curve E as above and consider the quadratic
characters χ : Gal(F̄ /F ) −→ {±1}. Obviously, χ is uniquely determined by
a unique element d ∈ F×/(F×)2 such that χ factors through Gal(K/F ) for
some K = F (

√
d). It is not difficult to show that

L(s, χ, E) = L(s, E(d))

where
E(d) : y2 = x3 + ad2x+ bd3.

Thus the study of the family of E(χ) and L(s, χ, E) is the same as the study
of the Mordell-Weil groups and L-series of the family of twisted elliptic curves
E(d), or in other words, the family of elliptic curves over F with the same
j-invariant as E when j 6= 0, 1728.

It is interesting thing to the following simple rule of changes of signs of
E(d). Assume that d is prime to N (the conductor of E), the conductor of
E, then we have

sgn(E) · sgn(E(d)) = (−1)Σ,
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where Σ is a finite set of places of F , consisting of places dividing ∞ or N
which are non-split in K. If we order χ by the norm of its conductor, then
there are about 50% of E(d) having sign +1 and 50% having sign −1. It is
conjectured that the rank r of E(d)(F ) can be as large as possible but the
case r > 1 occurs 0% of the time. Thus 1/2 of elliptic curves have rank
1, and 1/2 of elliptic curves have rank 0. Modulo the BSD conjecture, one
should have the same estimate for the analytic rank:

Conjecture 7.2 (Goldfeld[30]). If we order χ by the norm of its conduc-
tor, then at s = 1, 50% of L(s, E(d)) have order 0 and 50% have order 1.

This conjecture is still open. Recently, the following results were proved
by Waldspurger [89, 90], Bump-Friedberg-Hoffstein [12], Murty-Murty [63]:

Theorem 7.3. Let Σ be a finite set of places of F and let d̄v be a class of
F×v /(F

×
v )2 for each v ∈ Σ. Then there is a d ∈ F× such that d ∈ d̄v for each

v ∈ Σ and that
ords=1L(s, E(d)) ≤ 1.

Theorem 7.4. The sequence of L(1, E(d)) is proportional to the coefficients
of Shimura’s lifting of a form corresponding to E.

See also Kazta-Sarnak [51] for some interpretation in terms of random
matrices, and Ono-Skinner [68] for examples of positive density results.

While much is understood about the 50% of those elliptic curves having
rank 0 since the estimate of Mazur and Merel, but what can we say about
the 50% of those elliptic curves having rank 1? For example,

Does there exist a generic way to construct a solution when the rank is
1?

This is probably the main motivation of the work of Gross-Zagier.

Example

Let E be the elliptic curve of conductor 37 defined by

E : y2 = 4x3 − 4x+ 1

and let E(d) be its quadratic twists:

E(d) : y2 = 4x3 − 4d2x+ d3.
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We consider the 22 fundamental discriminants satisfying −150 < d < 0
and

Σ = {∞, 37}.
The following 18 of them E(d) have rank 0:

-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -111, -115, -120, -123, -127, -132,
-136, -148.

The following 4 of them E(d) have rank ≥ 2:

-95, -104, -107, -139.
Also, for the following fundamental d’s between 0 and −150 with

Σ(d) = {37},

the curve E(d) has rank 1:

-8, -15, -19, -20, -23, -24, -31, -35, -39, -43, -51, -52,
-53, -55, -56, -59, -68, -79, -87, -116, -119, -131, -143

The following table gives the x-coordinates of generators of E(d):
d -8 -15 -19 -20 -23 -24 -31 -35 -39
x -4 -5 -2831/324 -15 46 -20 310/9 -55/4 -26

Characters with bounded ramifications

Now let Σ be a fixed finite set of finite places of F . One considers the
family of characters χ unramified outside of Σ, i.e., the characters factor
through Gal(F ab

Σ /F ) where F ab
Σ denotes the maximal abelian extension of

F unramified outside of Σ. It can be shown that the group Gal(F ab
Σ /F ) is

topologically finitely generated.
In the following we would like to define the so called minimal order of

L(s, χ, E). It is well known that L(s, χ, E) = L(s,M) for

M := Ind
GQ
GF

(T`(E)(χ)).

Let ⊕Mi be semi-simplification of M as GQ-modules where Mi are irre-
ducible. Then we have the decomposition

L(s, χ, E) = L(s,M) =
∏
i

L(s,Mi),
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and each Mi has functional equation

L(s,Mi) = ε(s,Mi)L(2− s,M∨
i )

where
M∨

i = Hom(M,Z`(1)).

We define the minimal order of L(s, χ, E) to be

m(χ,E) := #{i : Mi 'M∨
i , ε(1,Mi) = −1}

Then of course,
ords=1L(s, χ, E) ≥ m(χ,E).

One expects ords=1L(s, χ, E) and E(χ) to be as small as possible:

Conjecture 7.5 (Generalized Mazur Conjecture). For all but finitely
many characters χ unramified outside of Σ,

ords=1L(s, χ, E) = m(χ,E).

When F = Q, m(χ,E) = 0 unless χ is quadratic with sign −1. In this
case the conjecture is true:

Theorem 7.6 (Rohlich [69, 70]). Assume that F = Q. For all but finitely
many χ unramified outside of Σ,

L(1, χ, E) 6= 0.

Theorem 7.7 (Kato [48]). Assume that F = Q. Let χ be a character such
that L(1, χ, E) 6= 0 then E(χ) = 0.

Anticyclotomic characters

Let E be defined over a number field F , K a quadratic extension of F , and
χ a character of Gal(Kab/K). We want to consider the L-series

L(s, χ, E) := L(s, χ, EK)

where EK denote the base change of E to K. Then the group of such char-
acters has an involution defined by

χ −→c χ, cχ(σ) = χ(cσc−1),
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where c ∈ Gal(Kab/F ) extends the conjugation on K/F . Since L(s, χ) =
L(s,c χ) one obtains

L(s, χ, E) = ε(s, χ, E) · L(2− s, cχ−1, E).

Definition 7.8. A quasi-character χ is called anticyclotomic (resp. cyclo-
tomic) if

cχ = χ̄ (resp.cχ = χ).

If χ is cyclotomic, then χ is factored by a character χF of Gal(F ab/F )
and

L(s, χ, E) = L(s, χF , E) · L(s, χF , E
(d)).

Almost every character χ can be written as a product of a cyclotomic char-
acter χ+ and an anticyclotomic character χ−.

From now on, we assume that χ is anti-cyclotomic. In this case, the
functional equation will read as

L(s, χ, E) = ε(s, χ, E)L(2− s, χ, E).

Let s = 1. One obtains that

ε(χ,E) := ε(1, χ, E) = ±1.

Moreover, if we further assume that the discriminant dK/F of K/F , the con-
ductor NE of E, and the conductor c(χ) of χ are all coprime, then the sign
does not depend on χ.

When F = Q we may compute m(χ,E) as follows. Notice that

IndQK(T`(E)(χ)) = T`(E)⊗ IndQK(χ),

which is irreducible if E does not have CM by K. Otherwise

T`(E) = IndQK(ψ), IndQKT`(E)(χ) = IndQK(χψ)⊕ IndQK(χψ̄),

where ψ is an anticyclotomic character of Gal(Kab/K) with values in K×` .
Notice that L(s, χφ) and L(s, χ̄φ) have the same sign and dimE(χ) is even
as E(χ) is a free module of K ⊗Q C = C2.

Definition 7.9. We say (χ,E) is in the exceptional case if E has CM by K
and both L(s, χψ) and L(s, χ̄ψ) have an odd sign in their functional equations.
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Thus we have the following:

Lemma 7.10. When F = Q and χ is anticyclotomic, the values of m(χ,E)
are given as follows:

m(χ,E) =


2 if (χ,E) is exceptional,

1 if sgn(χ,E) = −1,

0 otherwise.

Ring class characters

By class field theory, there is one-to-one correspondence between the set of
finite characters of Gal(Kab/K) and the set of finite characters of A×K/K

×.

A character χ on A×K is anti-cyclotomic iff χ(x̄) = χ(x). Or in other words,
χ-factors through A×K/NK/F (AK)K×. Thus a character is anti-cyclotomic if
and only if its restriction on A×F is either trivial or equal to the quadratic
character corresponding to the extension K/F .

Definition 7.11. A character of Gal(Kab/K) is called a ring class character
if the corresponding character on A×K factors through A×K/A

×
F .

In the rest of this section, we restrict ourselves to an imaginary quadratic
extension K/Q. Then any ring class character factors through A×K/Ô×c for
some positive integer c, where Oc is an order of K of conductor c defined by

Oc = Z+ Zcτ, if OK = Z+ ZτK .

Then one can show that j(Oc) = j(cτK) is an algebraic integer. One defines
Hc, the ring class field of K of order c, to be K(j(cτK)). Class field theory
establishes an isomorphism of groups

Gal(Hc/K) ' Pic(Oc)

where Pic(Oc) denotes the group of invertible Oc-ideal classes. The minimal
c is the conductor of χ.

Assume that dK , N are coprime, and let χ be a ring class character of
conductor c prime to dKN . Then the sign of the functional equation is given
by

ε(χ,E) = ε(N) = (−1)Σ,
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where Σ is the set places p where N is a norm from K ⊗Qp.
The combination of the Gross-Zagier formulas explained in the next sec-

tions [96], the work of Vatsal [86, 87], Cornut [13] on nonvanishing of Heegner
points, and the work of Bertolini-Darmon [2, 3] on Euler system gives the
following:

Theorem 7.12. Assume the following:

1. F = Q,

2. E is not exceptional,

3. for each prime p dividing N , either p is split in K, or p is innert in K
and ordp(N) = 1,

4. Σ does not contain any prime dividing N and discriminant d of K/Q.

Then for all but finitely many characters of χ unramified outside of Σ,

ords=1L(s, χ, E) ≤ 1.

Theorem 7.13. Assume the following:

1. F = Q,

2. E is not exceptional,

3. each prime p dividing N , either p is split in K, or p is innert in K and
ordp(N) = 1,

4. χ has conductor prime to Nd,

5.
ords=1L(s, χ, E) ≤ 1.

Then
ords=1L(s, χ, E) = dimE(χ).
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8 CM-points with characters

In this section we want to describe some Gross-Zagier formulas for L-functions
with characters proved in [96]. We will first define the conductors and ori-
entations of CM-points on Shimura curves or varieties of (N,K)-type using
Gross’ idea of optimal embedding. Then the Gross-Zagier formulas give re-
lations between central derivatives (resp. central values) of L-series and the
heights (resp. periods) of these CM-points with the same conductor as anti-
cyclotomic characters. Since the formulas were originally proved on towers
of Shimura curves, consequently the constants in the Gross-Zagier formulas
on Shimura curves of (N,K) have not yet been well computed in this con-
text. We then state a generalized Mazur’s conjecture and BSD conjecture
on non-vaninshing of these CM-points. When F = Q, these conjectures are
theorems of Bertolini-Darmon, Vatsal, and Cornut. At the end of this section
we will give some application of central value formula to equidistribution of
toric orbits of CM-points on quaternion Shimura varieties. These equidistri-
bution results are motivated by the Andre-oort conjecture and are proved by
using the subconvexity bound of Cogdell, Piatetski-Shapiro, and Sarnak.

CM-points of type (N,K)

Now let’s fix a Shimura curve X of type (N,K) which is the generalization
of X0(N). Then the set of CM-points on X is given by

CU = G(F )+\GL2(F )+z0 ×G(F̂ )/U = T (F )\G(F̂ )/U,

where U = Z(F̂ )R̂× with R an order of B containing OK of relative discrim-
inant N . Thus, the set of CM-points admits an action by Hecke operators
T(m) for m prime to N , and Galois actions of Gal(Kab/K) via class field

theory and multiplication of T (F̂ ) from the left hand side.

For a CM-point z represented by g ∈ G(F̂ ), let φg denote the homomor-
phism

K −→ B̂, z −→ g−1zg.

The order
End(z) := φ−1

g (R),

which does not depend on the choice of g, and is called the order of z. The
ideal c of OF , such that

End(z) = OF + cOK
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is called the conductor of z. For each prime ℘ not dividing c, the homomor-
phism φg defines an orientation in

U℘ := Hom(OK,℘, R℘)/R×℘ .

This set has only one element if ℘ does not divide N ; otherwise it has two
elements: the positive orientation defined by our fixed embedding K −→ B,
and the negative orientation defined by the conjugate of the positive one.

The curve X admits an action by the group

W :=
{
b ∈ B̂× : b−1R̂×b = R̂×

}
/R̂×.

This group has 2s elements, where s is the number of prime factors of N . The
action of W on CM-points does not change orders, and the induced action
on the set of orientations

∏
℘|N U℘ is free and transitive.

Let Yc denote the subset of CM-points of conductor c with positive ori-
entations. Then Yc is stable under the action of Gal(K̄/K) and each point
is defined over the ring class field Hc of K of conductor c. More precisely, Yc
is identified with

K×\K̂×gcR̂×/R̂× ' K×\K̂×/Ô×c
where gc is some fixed element. The Galois action of Gal(Hc/K) on Yc is
given by the inverse of the Artin map

Gal(Hc/K) ' K×\K̂×/Ô×c .

Let f be a Hilbert newform for PGL2(AF ) of weight (2, · · · , 2) with level
U0(N). Let A be an abelian variety over F corresponding to f . Then we
have an admissible parameterization

π : X −→ A.

Let χ be a ring class character of Gal(K̄/K) of conductor c prime to N and
dK/F . Then we can define a point

yχ :=
∑

σ∈Gal(Hc/K)

χ−1(σ)π(yσc ) ∈ A(χ)

where yc is represented by gc.
We have the following generalization of the Gross-Zagier formula:
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Theorem 8.1. Let yf,χ be the f -typical component of yχ. Then L(1, χ, f) =
0 and

L′(1, χ, f) = κ · ‖yf,χ‖2 · ‖f‖2.

Here c is a positive constant.

Notice that κ has been computed in terms of quasi-newforms and χ-
newforms in [96] but has not yet been explicitly computed in the context of
Shimura curves of (N,K)-type. But it is known that κ is a product of local
constants κv at places dividing ∞, N , d, c(χ), and that κv depends only on
the local components of representations at v of χ and Π corresponding to f .

One consequence of this theorem is the following restatement of the Birch
and Swinnerton-Dyer conjecture and Mazur’s conjecture of the last section:

Conjecture 8.2 (Birch and Swinnerton-Dyer conjecture). Assume that
yf,χ is nonzero in A(χ). Then the f -typical component A(χ)f of A(χ) has
dimension equal to 1.

Conjecture 8.3 (Generalized Mazur Conjecture). For all but finitely
many characters unramified outside of an fixed finite set Σ of places of F ,

yf,χ 6= 0

in A(χ)f .

A lot have been proved in case A = E is an elliptic curve defined over
F = Q.

Theorem 8.4 (Cornut [18], Vatsal [86]). Assume the following:

1. F = Q,

2. E is not exceptional,

3. for each prime p dividing N , either p is split in K, or p is innert in K
and ordp(N) = 1,

4. Σ does not contain any prime dividing N and discriminant d of K/Q.

Then for all but finitely many characters of χ unramified outside of Σ,

yχ 6= 0 in E(χ).
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Theorem 8.5 (Bertolini-Darmon [2]). Assume the following

1. F = Q,

2. E is not exceptional,

3. for each prime p dividing N , either p is split in K, or p is innert in K
and ordp(N) = 1,

4. χ has conductor prime to Nd,

5. yχ 6= 0 in E(χ)

Then
dimE(χ) = 1.

Central values

Now we would like to have a similar formula for the central value L(1, χ, E)
when the sign of the functional equation of L(s, χ, E) is +1. We actually will
consider a much more general case L(s, χ, f) where f is a Hilbert newform
form for PGL2(AF ) with level N , which is holomorphic in g − d variables of
weight 2 and nonholomorphic in d variables of weight 0. Again, we assume
that the conductor N of f , the discriminant d of K/F and conductor c of χ
are all coprime to each other. The Gross-Zagier formula is then an expression:

L(1, χ, f) = c · ‖x‖2,

where c is a positive constant and x is a periodic integral of some forms on
certain Shimura varieties described as follows.

Quaternion Shimura varieties

Let Σ be the set of places of F consisting of archimedean places where f
has weight 2 and nonarchimedean places v where εv(N) = −1. Since the
functional equation L(s, χ, f) has sign +1, Σ has even cardinality. Then
there is a unique quaternion algebra B over F which is ramified exactly over
Σ. Let G denote B× as an algebraic group over F . Let S denote the subset
of archimedean places in Σ. Let d denote the cardinality of S. Then there is
an isomorphism

B ⊗ R 'M2(R)d ⊕Hg−d
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over F⊗R. Further, the group G(F )+ of elements in G(F ) of positive norms,
act on the product Hd of d copies of the Poincare upper-half plane. Now for
each open subgroup U of G(Af ) which is compact modulo the center Z(F̂ ),
one has a Shimura variety

SU := G(F )+\Hd ×G(Af )/U.(8.1)

By Shimura’s theory [19], every variety MU is actually defined over the
following reflexive field:

E = Q

(∑
σ∈S

σ(x) : x ∈ F

)
.(8.2)

The action of Gal(Ē/E) on the set of connected components

ZU := F+\Af/ detU(8.3)

is a composition of the following maps:

• the reciprocity law:

Gal(Ē/E) −→ E×\A×E,f ;

• an algebraic map of algebraic groups over F :

r : E× −→ F×,

which induces a map of corresponding ideles;

• the left multiplication of A×f on ZU .

To define r, we let Hom∗(F,C) denote all embeddings of F into C which
is a left Gal(C/Q)-set. The stabilizer of S is exactly Gal(C/E). Then r is
given such that for any x ∈ E and any embedding σ : F −→ C,

σ(r(x)) =
∏

τ :σ∈τS

τ(x)(8.4)

where τ runs through a set of representatives of the quotient Gal(C/Q)/Gal(C/E).
As in the case of Shimura curves, there are also Shimura varieties X

of type (N,K). More precisely, let K be an totally imaginary quadratic
extension of F embedded into B. Let R be an order of B containing OK
with discriminant N . Shimura variety is obtained by taking U = F̂× · R̂×.
The following is a consequence of Jacquet-Langlands theory:
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Theorem 8.6. There is a one to one correspondence f −→ f̃ between the
set of newforms f on PGL(AF ) of conductor N , weight (0, · · · , 2, · · · ), and

the set of newforms on X of weight (0, · · · , 0) such that f and f̃ have the
same eigenvalues under the Hecke operators Tv when v prime to N .

CM-points

Let T denote the subgroup K× of G. Then T has a fixed point z0 in Hd. A
point x on SU is called a CM-point by K, if it is represented by (z, g) with
z ∈ G(F )+ · z0 ⊂ Hd and g ∈ G(Af ). Thus, the set of CM-points by K on
SU is identified with

CU :=G(F )+\G(F )+ · z0 ×G(Af )/U(8.5)

=T (F )\G(Af )/U.

Similarly, the set of CM-points CU is defined over a reflexive field:

ET = Q

(∑
σ∈S

σ(x) : x ∈ K×
)
,

where each place σ ∈ S is lifted to an embedding σ : K −→ C such that the

image of each x ∈ K× in Gσ(R)+ ' GL2(R)+ is conjugate to

(
a b
−b a

)
if

σ(x) = a+ bi. The action of Gal(ĒT/ET ) on CU is given by the exact same
formulation as above.

Just as in the case of Shimura curves, we may also define a CM-point y0

on the Shimura variety X of (N,K)-type of conductor c, and define a certain
period yf,χ for a character χ as follows: Let f be a newform for PGL2(AF )

of level U0(N) corresponding to a form f̃ of weight 0 on X. Then we define

yf,χ :=
∑

t∈K×\K̂×/F̂×Ô×c

χ(t)−1f̃(ty0) ∈ C.

The Gross-Zagier formula (for the central value) we want to prove is the
following:

Theorem 8.7. With notation as above,

L(1, χ, f) = c · |yf,χ|2

where c is a positive constant.
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When F = Q, N is prime, and χ is unramified, this formula is due to
Gross [37] and generalized by Hatcher [41] to modular form of high weights.
In his thesis at Columbia, H. Xue [92] has obtained a full generalization to
forms of high weight.

Some related formula have been also obtained by Waldspurger [89], Kohnen-
Zagier [55], and Katok-Sarnak [49].

Nonvanishing of periods

In view of the BSD-conjecture and Mazur’s conjecture one should have the
following:

Conjecture 8.8 (Generalized Mazur’s conjecture). Let Σ be a finite
subset of F . Then for all but finitely many ring class characters χ unramified
outside of Σ, one has

yf,χ 6= 0.

Conjecture 8.9 (Birch and Swinnerton-Dyer conjecture). Assume that
f is holomorphic and corresponds to an abelian variety A, and that yf,χ 6= 0.
Then A(χ) is finite.

Mazur’s original conjecture is for the classical case and has been proved
by Vatsal:

Theorem 8.10 (Vatsal [86]). Assume the following:

1. F = Q,

2. f is holomorphic of weight 2,

3. for every p | N , either p is inert in K and ordp(N) = 1, or p is split
in K.

Then Mazur’s conjecture is true.

Let E be the elliptic curve corresponding to f . Then we have following
result concerning the Birch and Swinnerton-Dyer conjecture

Theorem 8.11 (Bertolini-Darmon [3]). Assume the following:

1. F = Q,
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2. f is holomorphic of weight 2,

3. for every p | N , either p is inert in K and ordp(N) = 1, or p is split
in K,

4. yf,χ 6= 0.

Then E(χ) is finite.

Equidistribution

Now we assume that χ is unramified. If we assume GRH, then we have the
estimate (for any δ < 1/2):

|L(s, χ, f)| << N(D)1/2−δ(8.6)

for any unramified χ. By a well known estimate of Siegel:

h(T ) := #T (F )\T (Af )/T (ÔF ) >> N(D)1/2−ε.

Theorem 8.7 then implies that

h(T )−1 |yf,χ| << N(D)−δ/2+ε.(8.7)

For the trivial character χ0, the estimate on L-series with δ = 1/100 has
been proved recently by Cogdell, Pieteski-Shapiro, and Sarnak [17]. Thus,
one has the following

Theorem 8.12. Let U be a maximal open subgroup of G(Af ) which is com-
pact modulo the center. Let xn be any sequence of CM-points on SU associated
to maximal tori Tn of G. Then the orbits Tn(Af )xn are equidistributed.

This is a generalization of a result of W. Duke [24] where SU = SL2(Z)\H.
A proof using Duke’s original method is also announced by Paula Cohen [18].

Now let Γ be a subgroup of T (F )\T (Af )/T (ÔF ) of index i(Γ). Consider
all characters which are trivial on Γ. Then each χ is unramified, and fχ = f .
Then it follows that

#Γ−1

∣∣∣∣∣∑
γ∈Γ

f(γ)

∣∣∣∣∣ = i(Γ)

∣∣∣∣∣∣#Γ−1
∑
χ|Γ=1

h(T )−1`χ(f)

∣∣∣∣∣∣ ≤ i(Γ)d
−δ/2+ε
K .

We have the following:
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Theorem 8.13. Assume the following subconvexity bound: for a fixed δ > 0,

L(1/2, χ, f) << N(D)1/2−δ

for any unramified character χ. Let U be a maximal open subgroup of G(Af )
which is compact modulo the center. Let xn be any sequence of CM-points on
MU associated to maximal tori Tn of G. Let Γn be subgroups of Ti(F )\Ti(Af )
of index i(Γn) such that

i(Γn) << d(Tn)δ/2−ε

where d(Tn) is the absolute value of the discriminant of quadratic fields defin-
ing Tn. Then the orbits Γnxn are equidistributed.

The interesting case is when Γn is the image of the reciprocity law:

Gal(ĒTn/ETn) −→ Tn(F )\Tn(Af ).

The theorem shows that the Galois orbits of xn over any fixed field are
equidistributed once the Galois orbit is sufficiently big in comparison with the
toric orbit. It thus provides evidence for the following Andre-Oort conjecture
for quaternion Shimura varieties:

Conjecture 8.14 (Andre-Oort). Let xn be a sequence of CM-points on
a quaternion Shimura variety SU . Assume that no infinite subsequence is
included in a Shimura subvariety of SU . Then the sequence xn is Zariski
dense in SU .

Actually one expects much more:

Conjecture 8.15 (Andre-Oort). Let xn be a sequence of CM-points on
a quaternion Shimura variety SU . Assume that no infinite subsequence is
included in a Shimura subvariety of SU . Then the sequence of Galois orbits
of the sequence xn is equidistributed.

Notice that the subconvexity bound holds for the case F = Q by recent
work of Kowalski, Michel, and Vanderkam [56, 61]. Thus, we do have equidis-
tribution of Galois orbits of CM-points on Modular curves and Shimura
curves.
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[88] M. -F. Vignéras, Arithmétique des alg’ebres de quaternions, Lect. Notes
in Math. 800, Springer-Verlag, New York, 1980

[89] J. -L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes
en leur centre de symtrie, Compositio Math. 54 (1985), 173–242.

[90] J. -L. Waldspurger, Correspondences de Shimura et quaternions, Forum
Math., 3 (1991), 219-307.

[91] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math.
141 (1995), 443-551.

[92] H. Xue, Central values for twisted Rankin L-functions, Thesis at
Columbia. (2002)

[93] S. Zhang, Admissible pairings on curves, Invent. Math. 112 (1993), 171-
193.

[94] S. Zhang, Heights of Heegner cycles and derivatives of L-series, Invent.
math. 130 (1997), 99-152.

63



[95] S. Zhang, Heights of Heegner points on Shimura curves, Annals of Math-
ematics (2), 153 (2001), 27-147.

[96] S. Zhang, Gross-Zagier formula for GL2, Asian J. Math., 5 (2001), 183-
290.

64


