
Distributions in Algebraic Dynamics

Shou-Wu Zhang

June 10, 2006

Contents

0 Introduction 2

1 Kähler and algebraic dynamics 4
1.1 Endomorphisms with polarizations . . . . . . . . . . . . . . . 5
1.2 Preperiodic subvarieties . . . . . . . . . . . . . . . . . . . . . 11
1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Classifications 18
2.1 Positivity of the first Chern class . . . . . . . . . . . . . . . . 18
2.2 Uniruledness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Dynamic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Canonical metrics and measures 30
3.1 Canonical forms and currents . . . . . . . . . . . . . . . . . . 30
3.2 Equidistribution of backward orbits . . . . . . . . . . . . . . . 39
3.3 Hyperbolicity and holomorphic curves . . . . . . . . . . . . . . 41

4 Arithmetic dynamics 46
4.1 Preperiodic points and small points . . . . . . . . . . . . . . . 46
4.2 Metrized line bundles and heights of subvarieties . . . . . . . . 53
4.3 A generic equidistribution theorem . . . . . . . . . . . . . . . 58

1



0 Introduction

Complex dynamic system is a subject to study iterations on P1 or PN with
respect to complex topology. It originated from the study of Newton method
and the three body problem in the end of 19th century and is highly developed
in 20th century. It is a unique visualized subject in pure math because of
the beautiful and intricate pictures of the Julia sets generated by computer.
The subject of this paper, algebraic dynamics, is a subject to study iterations
under Zariski topology and is still in its infancy. If the iteration is defined
over a number field, then we are in the situation of arithmeticaldynamics
where the Galois group and heights will be involved. Here we know very
little besides very symmetric objects like abelian varieties and multiplicative
groups.

The development of arithmetical dynamics was initiated by Northcott in
his study of heights on projective space [47], 1950. He showed that the set
of rational preperiodic points of any endomorphism of PN of degree ≥ 2 is
always finite. The modern theory of canonical heights was developed by Call
and Silverman in [11]. Their theory generalized earlier notions of Weil heights
on projective spaces and Néron-Tate heights on abelian varieties. Thus many
classical questions about abelian varieties and multiplicative groups can be
asked again for dynamical system, such as the size of rational points, preperi-
odic points, and their distributions. See §4.1.5 and §4.1.6 for some standard
conjectures, such as Lehmer’s conjecture and Lang’s conjecture. In [62],
we developed a height theory for subvarieties and an intersection theory for
integrable adelic metrized line bundles, based on Gillet and Soulé’s intersec-
tion theory [26]. Thus many question about points can be asked again for
subvarieties. Two questions we considered in [62] are the Manin-Mumford
conjecture and the Bogomolov conjecture. See Conjecture 1.2.1 and 4.1.1.

This note in a large sense is an extension of our previous paper. Our
first goal is to provide a broad background in Kähler geometry, algebraic
geometry, and measure theory. Our second goal is to survey and explain the
new developments. The following is a detailed description of the contents of
the paper.

In §1, we will give some basic definitions and examples of dynamics in
Kähler geometry and algebraic geometry, and study the Zariski properties
of preperiodic points. Our dynamic Manin-Mumford conjecture says that a
subvariety is preperiodic if and only if it contains many preperiodic points.
One question we wish to know (but we don’t yet) is about the positivity of

2



a canonical (1,1) class on the moduli of cycles on a Kähler variety.
In §2, we will study the classification problem about Kähler dynamics.

In surfaces, the problem can be completely solved. In the smooth projective
case, we will prove that the dynamics can only be either a quotient of a
complex torus or uniruled. In the general case, we will give a factorization
result with respect to rational connectedness.

In §3, we will study the measure theoretic properties of dynamics. We will
first construct invariant metrics and measures on bundles and subvarieties.
We will conjecture several properties about these invariant measures: they
can be obtained by iterations of smooth measures, or by probability measures
of backward orbits of general points. We also conjecture that the Kobayashi
pseudo-metrics vanish. We will prove some special of these properties using
work of Yau [59] and Briend-Duval [9].

In §4, we will study dynamics over number fields. We will first propose
a dynamic Bogomolov conjecture and an equidistribution conjecture for dy-
namically generic small points. Following Chambert-Loir [16], we can make
an equidistrubution conjecture on Berkovich’s p-adic analytic spaces. Finally,
we will prove the equidistribution conjecture and Bogomolov conjecture are
essentially equivalent to each other using a recent work of Yuan [60] on arith-
metic bigness.

What should be, but is not, discussed in this article

Because of limitations of our time and knowledge, many interesting and im-
portant topics will not be treated in this article.

• First is the “real theory of dynamics”. We prove some properties about
distribution of backward orbits but we say nothing about the forward
orbits. Also we have zero knowledge about support of the canonical
measure (which is actually crucial in our arithmetic theory). We have
to learn from “real or p-adic experts of dynamical system” for what we
should do in the next step. We refer to Katok and Hasselblatt’s book
[32] for dynamics on manifolds, and Milnor’s book [41] for P1, and
Sibony’s article [54] for PN , and Dinh-Sibony [21] for general complex
variety respectively.

• The second is about the dynamics of correspondences and automor-
phisms of positive entropy. There are many beautiful examples that
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have been discovered and studied. For classification and complex the-
ory of automorphisms of surfaces, in particular K3 surfaces, we refer to
Cantat [15, 14] and McMullen [40, 39]. For arithmetic theory, we refer
to work of Autissier [2] for Hecke correspondences, and Silverman [55]
and Mazur [38] for involutions on K3 surfaces, and Kawaguchi [33] for
some generalizations.

• The last topic is about the moduli of dynamical system. We will discuss
classification problem for which variety to have a dynamical system,
and construction of dynamical system for moduli of subvarieties, but
we will not study all polarized endomorphisms on a fixed variety. As the
moduli of abelian varieties play a fundamental role in modern number
theory and arithmetic geometry, it will be an interesting question to
construct some interesting moduli spaces for dynamics. We refer to
Silverman’s paper [56] for the moduli of dynamics on P1.
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1 Kähler and algebraic dynamics

In this section, we will first give some basic definitions of polarized dynamics
in Kähler geometry and algebraic geometry, and some basic categorical con-
structions, such as fiber product and quotients. Then we will propose our
first major conjecture: a dynamic Manin-Mumford conjecture. Finally we
will list some examples, including abelian varieties, projective spaces, and the
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Chow variety of 0-cycles. The main tools in this section are Serre’s theorem
on a Kähler analogue of the Weil conjecture, Deligne’s theory on intersec-
tions of line bundles, and a conjectured Kähler analogue of the positivity of
Deligne’s pairing on the Chow variety.

1.1 Endomorphisms with polarizations

Kählerian dynamical system

Let us first recall some definitions about Kähler manifolds. See [27] for
details. Recall that a Kähler manifold is a complex manifold X with a
differential form ω of type (1, 1) such that dω = 0 and that locally if we write

ω = i
∑

hi,jdzi ∧ dz̄j

then (hi,j) is a positive definite hermitian matrix. The form ω here is called
a Kähler form and its class

[ω] ∈ H1,1(X,R) := H1,1(X,C) ∩H2(X,R)

is called a Kähler class.
By a Kähler variety X with a Kähler form ω we mean an analytic variety

which admits a finite map f : X →M to a Kähler manifold M with a Kähler
form η such that f ∗η = ω.

Let φ : X −→ X be an endomorphism of a compact Kähler variety. Then
φ acts on H1,1(X,R) by the pull-back φ∗. We say that φ is polarizable by a
Kähler class ξ if

φ∗ξ = qξ

for some integer q > 1. A polarized Kähler dynamical system is by definition
a triple (X,φ, ξ) as above. The number dimX · log q is called the entropy of
the dynamical system, and log q is called entropy slop. One immediate fact
about polarized endomorphisms is the following:

Lemma 1.1.1. Let φ : X −→ X be a polarized endomorphism. Then φ is
finite with degree deg φ = qdimX .

Proof. Indeed, for any subvariety Y in X, one has the formula

deg(φ|Y )

∫
φ(Y )

ωdimY =

∫
Y

φ∗ωdimY = qdimY

∫
Y

ωdimY 6= 0.
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Here deg(φ|Y ) is defined to be 0 if dimφ(Y ) < dimY . The above equation
implies that deg(φ|Y ) 6= 0. Taking Y = φ−1(x), we get that Y is finite. Thus
φ is finite. Taking Y = X, we get that deg(φ) = qdimX .

A deep property of it is the following Kähler analogue of Weil’s conjecture
about eigenvalues of φ∗ on cohomology:

Theorem 1.1.2 (Serre [53]). Let φ : X → X be a polarizable endomor-
phism of degree qn. Then the eigenvalues of φ∗ on each cohomology H i(X,R)
have absolute value qi/2.

Proof. Consider the cup product

H i(X,C)×H2n−i(X,C) −→ H2n(X,C) ' C.

Here the last map is given by integration. Let ξ be a Kähler class such
that φ∗ξ = qξ. Notice that ξn is a generator of H2n(X,C). So that φ∗ on
H2n(X,C) is given by multiplication by qn. Now let g denote the endomor-
phism on H∗(X,C) = ⊕iH

i(X,C) that has restriction q−i/2φ∗ on H i(X,C).
Then the above product is invariant under g, and so is the class ξ. Now we
use the Hard Lefshetz theorem ([27], page 122) to give a decomposition of
H i(X,C). For i ≤ n, let Pi(X) denote the kernel of the map

H i(X,C) −→ H2n−i+2(X,C), α −→ ξn−i+1 ∧ α.

Then H∗(X,C) is a direct sum of ξjPi with i ≤ n, i + 2j ≤ 2n. Obviously,
this decomposition is invariant under the action by g, and so it suffices to
show that the eigenvalues of g on Pi have absolute value 1. Moreover by the
Hodge index theorem (or Hodge and Riemann bilinear relations, [27], page
123) the pairing on Pi defined by

Pi × Pi −→ C, (α, β) =

∫
αC(β)κn−i

is positively definite. Here C is an operator on H∗(X,C) such that on the
Hodge component Hp,q with p+ q = i, it is given by

α 7→ (−1)(n−i)(n−i−1)/2
√
−1

p−q
ᾱ.

It is easily checked that g is unitary with respect to this pairing. It follows
that g has eigenvalues with norm 1. Thus the eigenvalues of φ∗ have norm
qi/2 on H i(X,C).
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Endomorphisms with positive entropy

We say that a finite endomorphism φ of a compact Kähler variety has positive
entropy if there is a semi-positive class ξ ∈ H1,1(X,R) such that

φ∗ξ = qξ

with q > 1. The notion of “positive entropy” here is equivalent to the same
notion in the topological sense and to the statement that φ∗ on H1,1(X,R)
has an eigenvalue of absolute value greater than 1. See Dinh-Sibony’s paper
[22] for details. The proof of Corollary 2.2 of that paper also shows that
φ∗ on Hp(X,Z) has eigenvalues with absolute values bounded by the p-th
power of the absolute value of the eigenvalues on H1,1(X,R). Notice that
all eigenvalues on H i(X,Z) are algebraic integers with product a positive
integer. Thus if φ does not have positive entropy then all of its eigenvalues
on H∗(X,Z) are roots of unity. Thus (φ∗)N for some fixed N has eigenvalues
equal to 1. This implies in particular that φ is the identity on H2n(X,Z).
Thus φ is a biholomorphic map. We conclude that if φ has zero entropy
then φ is an automorphism. Notice that this statement is true for dynamical
system on a compact manifold. See Theorem 8.3.1 in Katok-Hasselblatt’s
book [32].

The category of dynamical system

We can define a morphism f : φ → ψ of two endomorphisms φ : X −→ X
and ψ : Y → Y as usual by a morphism f : X → Y such that f ◦ φ = ψ ◦ f :

X

f

��

φ // X

f

��
Y

ψ // Y

If φ and ψ are polarized by classes ξ and η with the same entropy slope,
then φ is polarized by all positive classes ξ + cf ∗η where c ∈ R. Especially,
if f is finite and ψ is polarized by η, then φ is polarized by f ∗η.

If f is proper and flat with relative dimension d, and φ is polarized by
a class ξ with entropy slope log q, then we claim that ψ is polarized by the
form

η :=

∫
X/Y

ξd+1
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with the same entropy slope log q as φ provided that η is a Kähler class on
Y . See Conjecture 1.2.3 and Remark 1.2.4. below. Indeed, for any point
y ∈ Y , in the diagram

Xy

��

φy // Xψ(y)

��
y // ψ(y)

the morphism φy has degree qd as
∫
Xy
ξd > 0, and

deg(φy)

∫
Xψ(y)

ξd =

∫
Xy

φ∗ξd = qd
∫
Xy

ξd.

It follows that

(ψ∗η)(y) =

∫
Xψ(y)

ξd+1 =
1

deg φy

∫
Xy

φ∗ξd+1 = q

∫
Xy

ξd+1 = qη.

Especially, if f is finite and flat, then φ is polarized if and only if ψ is
polarized. One application is the normalization f : X̃ −→ X: obviously φ
induces an endomorphism φ̃ of X̃ which is polarized by the class f ∗ξ.

We say two endomorphisms φ, ψ : X −→ X are equivalent if there are
positive numbers m,n such that φm = ψn. We will mainly study the prop-
erties of endomorphisms depending only on their equivalence classes. Thus
it makes sense to define the entropy class for the equivalence class of an
endomorphism φ to be

Q log(deg φ)

as a Q-line in R.
Notice that the product of two polarized endomorphisms may not be

polarizable. If we allow to replace them by equivalent ones, then a sufficient
condition is that they have the same entropy class. More precisely, let φ :
X −→ X and ψ : Y −→ Y be two endomorphisms of compact Kähler
varieties polarized by ω ∈ H1,1(X) and η ∈ H1,1(Y ). The following two
statements are equivalent:

1. the endomorphism

φ× ψ : X × Y −→ X × Y

is polarizable by π∗1ω + π∗2η where πi are projections from X × Y to X
and Y ;
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2. φ and ψ have the same entropy slope.

If f1 : φ1 → ψ and φ2 → ψ are two morphism from two dynamic systems
X1, X2 to a variety Y . Then we can form the fiber product

φ1 ×Y φ2 : X1 ×Y X2 −→ X1 ×Y X2.

If they have the same entropy slope, then the product is again a polarized
dynamical system in an obvious way.

Algebraic dynamical system

We now consider an endomorphism φ : X −→ X of a projective varieties.
We may define algebraic polarization by replacing (1,1)-classes by line bun-
dles. Let Pic(X) denote the group of line bundles on X which is isomor-
phic to H1(X,OX) and let Pic0(X) denote the subgroup of line bundles
which are algebraically equivalent to 0, and let NS(X) denote the quotient
Pic(X)/Pic0(X) which is called the Neron-Severi group. Then the exact
sequence

0 −→ Z −→ OX −→ O×
X −→ 0

induces the following natural isomorphisms:

NS(X) ' H1,1(X,C) ∩H2(X,Z), Pic0(X) ' H1(X,OX)/H1(X,Z).

Recall that a line bundle L is ample if some positive power Lm is isomor-
phic to the pull-back of the hyperplane section bundle for some embedding
i : X −→ PN . By Kodaira’s embedding theorem, L is ample if and only if
its class in NS(X) ⊂ H1,1(X,R) is a Kähler class.

Let φ : X −→ X be an endomorphism of a projective variety. Then φ
acts on Pic(X). We say that φ is polarizable by a line bundle L (resp. R-line
bundle L ∈ Pic(X)⊗ R) if

φ∗L ' Lq

for some q > 0.
An endomorphism φ : X −→ X of projective variety polarized by a line

bundle L will be polarized by an integral Kähler classes: we just take

ξ = c1(L) ∈ H1,1(X,Z).

We want to show the converse is true:
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Proposition 1.1.3. Let φ : X −→ X be an endomorphism of smooth pro-
jective variety with a polarization by a Kähler class ξ such that ξ is integral,
and that φ∗ξ = qξ with q integral and > 1. Then there are line bundles L
with class ξ such that

φ∗L ' Lq.

Proof. Let Picξ(X) denote the variety of line bundles on X with class ξ.
Then we have a morphism

λ : Picξ(X) −→ Pic0(X), λ(L) = φ∗L ⊗ L−q.

Notice that Picξ(X) is a principal homogenous space of Pic0(X). The induced
homomorphism on H1’s is an endomorphism on H1(X,Z) given by λ := φ∗−
q. By Proposition 1.1.2, all eigenvalues of φ∗ on H1(X,Z) have eigenvalues
with absolute values q1/2. It follows from the assumption that λ is finite and
thus surjective. In particular we have an L ∈ Picξ(X) such that λ(L) = 0.
In other words φ∗L = Lq.

Category of algebraic dynamical system

In the same manner as in Kähler case, we may define the morphism f : φ→ ψ
between two endomorphism of projective varieties X, Y . If φ and ψ are both
polarized by line bundles L and M with the same entropy slope, then φ
is also polarized by any positive class of the form L ⊗ f ∗Mn. If f is flat
of relative dimension d, and φ is polarized by a line bundle L, then ψ is
polarized by the following Deligne’s pairing ([19], See also [63]):∫

X/Y

L<d+1> := 〈L, · · · ,L〉.

For convenience to reader, let us recall the definition. Let π : Z −→ C
be a flat family of projective varieties of pure relative dimension d. Let
L0, · · · Ld be line bundles on Z. The Deligne pairing 〈L0, · · · ,Ld〉 is a line
bundle on C which is locally generated by a symbol 〈`0, · · · `d〉 modulo a
relation, where `i are sections of Li such that their divisors div(`i) have
empty intersection on fibers of f . The relation is given as follows. If α is
a function, and i is an index between 0 and d such that div(α) has disjoint
intersection Y :=

∏
j 6=i div(`j) then Y is finite over C, and

〈`0, · · · , α`i, · · · , `d〉 = NY (α)〈`0, · · · , `d〉.
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Here NY (α) is the usual norm map NY : π∗OY −→ OC .
We may also define the polarized product or fiber product for polarized

endomorphisms with the same entropy slope in the same manner as in Kähler
case.

1.2 Preperiodic subvarieties

Let φ : X −→ X be an endomorphism of Kähler variety with a polarization.
Let Y be an analytic subvariety of X. We say that Y is periodic if for
some k > 0, φk(Y ) = Y , and preperiodic if for some m, φm(Y ) is periodic.
Equivalently, Y is preperiodic if the orbits of Y under φ is finite. When
X is projective, it shown by Fakhruddin ([23], Corollary 2.2) that for some
`,m ≥ 1 such that the system (X,φ,Lm) can be extended to an dynamic
system of PN , where N = dim Γ(X,Lm).

If Y is periodic, say φk(Y ) = Y . Then the restriction of φk on Y is
still polarized with entropy slope k log q. Our aim of this paper is to study
the distribution properties of the set Prep(X) of preperiodic points of X in
various topology. In this section we mainly focus on Zariski topology. Our
first basic conjecture is the following:

Conjecture 1.2.1 (Dynamic Manin-Mumford). A subvariety Y of X is
preperiodic if and only if Y ∩ Prep(X) is Zariski dense in Y .

Dynamic topology

For a better understanding the natural of the dynamic Manin-Mumford con-
jecture, it is helpful to introduce the following so called dynamic topology on
a dynamical system (φ,X, ξ) in which all closed sets are preperiodic subvari-
eties. To see it is really a topology, we check that the intersections of prepe-
riodic subvarieties are still preperiodic. In this topology, the set of minimal
subvarieties are exactly the set of preperiodic points. The conjecture 1.2.1 is
equivalent to the following two statements:

1. The preperiodic points on any preperiodic subvariety are Zariski dense;
When X is projective, this is actually a Fakhruddin [23], Theorem 5.1.

2. On Prep(X), dynamic topology = Zariski topology.

The Zariski closure of preperiodic points in a preperiodic subvariety is
again preperiodic. Thus for the first statement it suffices to consider periodic
points in the periodic subvariety.
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Conjecture 1.2.2. Let Y be a periodic subvariety of dimension r: φmY = Y
for some m > 0. Then as k −→∞,

#{y ∈ Y, φkm(x) = x} = qrkm(1 + o(1)).

By Serre’s Theorem 1.1.2, the conjecture is true if Y is smooth, polariz-
able, and if most of fixed points have multiplicity one. Indeed, in this case
without loss of generality we may simply assume that Y = X and that a = 1.
For any fixed point x of φk the multiplicity mk(x) is defined to be the length
of the dimension of the maximal quotient of the local OX,x where the action
of (φk)∗ is trivial:

mk(x) := dimCOX,x/((φ
k)∗ − 1)OX,x.

We define mk(x) = 0 if x is not a fixed point of φk. Then by Lefshetz fixed
point theorem ([27], page 421), the left hand side is

(1.2.1)
∑
x

mk(x) =
∑
i

(−1)itr((φk)∗ : H i(X,C)).

By Theorem 1.1.2, the right hand has estimate qkn if φ is polarizable.
A consequence of Conjecture 1.2.2. is that the set of pre-periodic points

of X is countable. This is the true for general preperiodic subvarieties proved
Corollary 1.2.7.

Dynamical systems of subvarieties

In this following, we will introduce some dynamical system on the Chow
variety. Notice that the Chow variety is not of finite type; it is a union of a
countably many subvarieties of finite type. Later on, we will construct some
dynamic systems on subvarieties of Chow variety of finite type which are
conjectured to be the Zariski closure of periodic subvarieties.

Let us start with a compact Kähler variety X with a Kähler class ξ.
Let C(X) denote the variety of cycles on X with pure dimension [4]. Then
C(X) is a union of countably many Kähler varieties. We call C(X) the Chow
variety of X as when X is projective, C(X) is simply the usual Chow variety
of X.

We may equip C(X) with the structure of a Kähler variety as follows. Let

(i, π) : Z(X) −→ X × C(X)
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be the universal family of cycles. For each d between 0 and n let πd : Zd(X) →
Cd(X) denote the moduli of cycles of pure dimension d. Then for any Kähler
class ξ of X, we define

ηd :=

∫
Zd(X)/Cd(X)

(i∗ξ)d+1 ∈ H1,1(Cd(X)).

Conjecture 1.2.3. The class ηd is a Kähler class on Cd(X).

Remarks 1.2.4. .

1. This conjecture implies that for any flat morphism of compact Kähler
manifold f : X → Y and any Kähler class ξ on X, the class η =∫
X/Y

ξd+1 is a Kähler on Y . Indeed, in this case we have an embedding

Y −→ Cd(X) for d the relative dimension of f .

2. The conjecture is true when both X and Y are projective varieties and
when ξ, the first Chern class of an ample line bundle on X. Indeed, in
this case replacing L by a power we may assume that L = i∗O(1) for
some embedding X −→ Pn(C); then η = j∗O(1) for some embedding
j : Y −→ PN(C). See [63].

If φ : X −→ X is an endomorphism polarized by a positive classes ξ then
φ induces an endomorphism

φd : Cd(X) −→ Cd(X), φd(Z) = φ∗(Z) = deg(φ|Z) · φ(Z).

It clear that φd is polarized by ηd:

φ∗(ηd) = qd+1 · ηd.

In the following, we want to construct countably many subvarieties C(d, γ, k)
of Cd(X) of finite type and endomorphisms φd,γ,k with polarizations such that
every periodic subvarieties are represented by points in C(d, γ, k).

First we may decompose Cd(X) further as a union of closed subvarieties
C(d, δ) representing cycles with degree δ.

Recall that for an integral subvariety Z,

φ∗(Z) = deg φ|Z · φ(Z).
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The class γ′ := [φ(Z)]. Compute the degree to obtain

deg(φ(Z)) = qd
deg(Z)

deg φ|Z
.

If furthermore Z is fixed by some positive power φk of φ, then the above
implies that

deg φk|Z = qkd.

For each positive integer k, let C(d, δ, k) denote the subvariety of C(d, δ)
of cycles Z of degree δ such that

q−kd`(φk`∗ Z), ` = 1, 2, · · ·

are all integral. Then we can define an endomorphism

φd,δ,k : C(d, δ, k) −→ C(d, δ, k), Z −→ q−kd(φk∗Z).

Proposition 1.2.5. The endomorphism φd,γ,k are all polarized with respect
to the bundle ηd with entropy slope k log q:

φ∗d,δ,kηd = qk · ηd.

Proof. By integration over fibers over Z for the form ξd+1, we have

(1.2.2) φ∗d,δ,kηd =
q(d+1)k

qdk
· ηd = qkηd.

In view of Conjecture 1.2.1 for C(d, δ, k) we have the following:

Conjecture 1.2.6. The variety C(d, δ, k) is the Zariski closure of points in
C(X) representing periodic cycles Y of X such that the following identities
hold:

dimY = d, deg Y = δ, φk(Y ) = Y.

When X is projective, this conjecture is a theorem of Fakhruddin [23].
Notice that each periodic subvariety represents a fixed point in some φ∗d,γ,k.

Thus they are finite in each C(d, γ, k). In other words, the set of preperiodic
subvarieties of X is countable.
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Corollary 1.2.7. Let φ : X −→ X be an endomorphism of a compact Kähler
manifold with a polarization. Then the set of preperiodic subvarieties of X
is countable.

From the known example, it seems that all irreducible preperiodic subva-
riety of X have the bounded geometry, i.e., lie in a finite union of components
of the Chow variety C(X). The following is a reformulation of the question:

Question 1.2.8. Does there exist a number δ such that∫
Y

ξd ≤ δ,

for any irreducible preperiodic subvariety Y of dimension d?

If X is polarized by line bundles, then we may replace above integrals
by Deligne’s pairing in §1.1. Thus we will naturally defined line bundles on
Cd(X) denoted by

L〈d+1〉 := 〈i∗L, · · · , i∗L〉 = Deligne pairing of d+ 1 L’s

whose Chern class is equal to∫
Zd(X)/Cd(X)

c1(L)d+1.

1.3 Examples

In this subsection we want to give some examples of endomorphisms with
polarizations.

Complex torus

Our first example is the complex torus X = Cn/Λ where Λ is a lattice in Cn

with Kähler class
ξ = i

∑
dzi ∧ dz̄i,

and φ is given by multiplication by an integer m > 1. Then we have

φ∗ξ = qξ, q = m2.

In this case the preperiodic points are exactly the torsion points:

Prep(X) = Λ⊗Q/Λ.
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The conjecture 1.2.2 is trivial: the set of fixed points by φk is the set of
torsion points X[mk − 1] which has cardinality

(mk − 1)2n = qnk +O(q(n−1)k).

The preperiodic subvarieties are translations of abelian subvarieties by tor-
sion points. When X is an abelian variety, the dynamic Manin-Mumford
conjecture is the original Mumford-Manin conjecture and proved firstly by
Raynaud [51]: Let Y be a subvariety of X which is not a translate of an
abelian subvariety. Then all the torsion points on Y are included in a proper
subvariety. There are other proofs ( [64, 18]), but all of them uses heavily
the algebraic property (or even arithmetic property) of X. Thus can’t be
generalized directly to general complex torus.

Projective spaces

Let X = Pn, and φ : X −→ X be any map of degree d > 1 defined by n+ 1-
homogenous polynomials of degree q with no non-trivial common zeros. By
Fakhruddin’s result ([23],Corollary 2.2), any polarized dynamic system is a
subsystem of a certain system on Pn. Conjecture 1.2.2 looks easy but I
don’t know how to prove. In the simplest case φ(x0, · · ·xn) = (xm0 , · · · , xmn )
where m 6= ±1, the preperiodic points are exactly the points where the
coordinates xi are either 0 or roots of unity. This is multiplicative group
analogous situation of abelian varieties: Pn is the union of multiplicative
groups defined by the vanishing of some coordinates. The Manin-Mumford
conjecture is true! See Lang [36], page 207, Ihara-Serre-Tate for n = 2, and
Laurent [37] for general case. On each multiplicative group, the conclusions
are the same as in abelian varieties case.

The next nontrivial work is when X = P1 × P1, φ = (φ1, φ2). The
conjecture is true when Julia sets of φi are very different ([42]). Any curve
C in P1 × P1 which is neither horizontal or vertical contains at most finitely
many preperiodic points.

Weighted projective spaces

Fix an n + 1-tuple of positive integers r = (r0, · · · , rn). Then we have an
action of C× on Cn+1 \ {0} by

(z0, · · · , zn) 7→ (tr0z0, · · · , trnzn), (t ∈ C×).
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The quotient is called a called a weighted projective space and denoted by Pnr .
Notice that Pnr is a projective space and can be defined by Proj C[z0, · · · , zn]r
where Z[z0, · · · , zn]r is the graded algebra Z[z0, · · · , zn] with weighted degree
deg zi = ri. Any endomorphism of Pnr is given again given by homogenous
polynomials with nontrivial zeros and with same degree, say q, and is polar-
ized by the the bundle O(1). Notice that Pnr is general a singular variety and
is a quotient of Pn by the diagonal action the product of roots of ri-th roots
of unity:

µr0 × · · ·µrn .

Thanks to N. Sibony who shows this example to me!

Dynamical projective bundles

Let φ : X −→ X be an endomorphism of compact Kähler variety polarized
by a Kḧler class ξ of entropy slope log q. Let Li (i = 1, · · · , n) be line bundles
on X such that

ψi : φ∗Li ' Lqi .

Define a vector bundle V as follows:

V = L0 ⊕ L1 ⊕ · · · ⊕ Ln1 .

and define Y to be the corresponding projective bundle:

Y = P(V).

Then ψi induces embeddings of vector bundles

φ∗V −→ SymqV .

Thus we have an endomorphism

f : P(V) −→ P(V)

such that
f ∗OP(V)(1) = OPX(V)(q).

Then f is polarizable by bundles c1(OP(V)(1)) + mξ which is positive on
P(V) when m >> 0. We don’t know if conjecture 1.2.1 is true or not on
Y = PX(V) if it already true on X. A typical example is when X = A is an
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abelian variety, φ = [n] for some n > 1, q = n2, and Li (i = 1, · · · , n) are
line bundles such that Li are ample and symmetric:

[−1]∗Li ' Li.

Another case is when Li are torsion bundles. Then we will have [n]∗Li '
Ln2

i if Ln−1
i = OX for all i. This case corresponds to the almost split semia-

belian variety. The conjecture 1.2.1 is true by Chambert-Loir [17].

Chow variety of 0-cycles

Let φ : X −→ X is an endomorphism with a polarization. Let δ be a
positive number. Then the Chow variety C(0, δ) of zero cycles of degree
δ has an endomorphism φ0 which is polarized by classes η0. Recall that
η0 is defined as π∗i

∗ξ, where (i, π) is the embedding of universal δ-cycles
Z(0, δ) −→ C(0, δ)×X.

Here are situation of curves: If X = P1, then Cδ = Pδ. If C is an elliptic
curve, then Cd is a Pδ−1 bundle over E.

2 Classifications

In the following we want to discuss some classification problems for dynami-
cal system. We will first study the first Chern class for smooth dynamics and
classy them when the first Chern class vanishes using a result of Beauville.
Then we show that the smooth dynamics is uniruled in the remaining case
using results of Miyaoka-Mori on a criterion on uniruledness and Bouchson-
Demailly-Paum-Peternell on a criterion on pseudo-effectiveness. Using a re-
sult of Miyaoka-Mori and Campana, we will also give a fiberation decom-
position with respect to the rational connectedness for general dynamics.
Finally we give a full classification for which surface admits a polarized en-
domorphism using work of Fujimoto and Nakayama.

2.1 Positivity of the first Chern class

First notice that for any dynamical system X, the canonical class can’t be
positive when X is smooth.

Proposition 2.1.1 (Fakhruddin [23], Theorem 4.2 for X projective).
Let φ : X −→ X be an endomorphism of a compact Kähler manifold with a
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polarizations by a class ξ. Let KX be the canonical class of X. Let Rφ be the
ramification divisor of φ. Then the following statements hold:

1.
(1− q)ξn−1 ·KX = ξn−1 ·Rφ.

2. The Kodaira dimension of X is ≤ 0.

3. If c(X) = −c1(KX) = 0 in H1,1(X,Z), then X has an etale cover by
complex torus:

X ' T/G, T = Cn/Λ,

where Λ is a full rank Lattice in Cn, and G is a finite group acting on
T without fixed points. Moreover the endomorphism φ is induced by a
linear endomorphism φ̃ on Cn as a C-vector space.

Proof. By definition of ramification divisor,

KX = φ∗KX +Rφ.

Thus

ξn−1 ·Rφ =ξn−1 ·KX − ξn−1 · φ∗KX

=ξn−1 ·KX − q1−nφ∗(ξn−1 ·KX)

=ξn−1 ·KX − q · ξn−1 ·KX = (1− q)ξn−1 ·KX .

This proves the first part of the proposition.
If the Kodaira dimension of X is positive, then some multiple of KX is

effective and nonzero; then ξn−1KX > 0. As Rφ is effective and q > 0, we
thus have a contradiction! So we have proved the second part.

If c1(X) = −c1(KX) = 0, then both sides are zero in the equation in
part 1. Thus Rφ = 0 and φ is unramified. In this case φ is induced from

an unramified automorphism φ̃ of the universal covering X̃. Now we apply
a theorem of Beauville ([5], Theorem 1, page 759) that X̃ is isomorphic to
Ck ×M where M is a simply connected Kähler manifold and the pull-back
ξ̃ on X̃ of ξ is a sum ξ̃ = κ+ η, where κ is a flat Kähler class on Ck,

κ =
√
−1

k∑
j=1

ajdzjdz̄j,
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and η is a class on M . Since all morphisms from M to Ck are constant, the
morphism φ̃ has the form

φ̃(z,m) = (u(z), vz(m)).

Here u(z) is an automorphism of Ck and vz is an automorphism of M for

each given z ∈ Ck. Now we apply the equality φ̃∗ξ̃ = qξ̃ to conclude that
v∗zη = qη. As M is compact and q > 1 and η is positive, this is impossible

unless M is a point. Thus we have shown that X̃ = Ck. By the same theorem
in [5], X is then an unramified quotient of a complex torus T = Cn/Λ and

Λ is invariant under the action by φ̃.
To show the last statement, we need only to show that the induced endo-

morphism ψ on T = Cn/Λ has a fixed point. We will use the Lefshetz fixed
point theorem. Notice that ψ is again polarized. Thus the eigenvalues λi of
ψ∗ on H1(T,Z) are greater than 1 by Theorem 1.1.2. Notice that H i(X,Z)
is the i-th exterior power of H1(X,Z), thus the eigenvalues of ψ∗ are given
by λj1 · · ·λji of i distinct elements in λi’s. Thus the number of fixed points
with multiplicity is given by∑

i

(−1)itr(ψ∗, H i(X,Z)) =
∑

j1,··· ,jk

(−λj1) · · · (−λjk) =
∏

(1− λi).

As |λi| > 1, the above number is nonzero. Thus ψ has a fixed point. After

changing coordinates, we may assume that ψ and φ̃ fix the origin.

2.2 Uniruledness

By Proposition 2.1.2, the classification of smooth dynamical systems is re-
duced to the case where X has Kodaira dimension −∞. If n = dimX = 1,
then X is simply P1. Later on we will discuss the case of surfaces. In gen-
eral, it is conjectured that a Kähler manifold with Kodaira dimension −∞
is always uniruled, i.e., covered by rational curves. The conjecture is true
for projective varieties of dim ≤ 3 by Mori [44], and non-algebraic Kähler
manifolds of dimensions ≤ 3 with possible the exception of simple three-
folds by Peternell [48]. In the following we want to prove the uniruledness in
the smooth and projective case using a ruledness criterion of Miyaoka-Mori
[43] and a pseudo-effectiveness criterion of Bouchson, Demailly, Paum, and
Peternell [52].
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Proposition 2.2.1. Let φ : X −→ X be an endomorphism of a projective
manifold with a polarization by line bundles L. Assume that c1(X) 6= 0.
Then X is uniruled.

Proof. Let ξ be the corresponding Kähler class of L. By the first part of
Proposition 2.1.1, ξn−1KX ≤ 0. If KX · ξn−1 < 0, then since L is ample, KX

has negative intersection with strongly movable curves as in [?]. By Theorem
0.2 in [52], KX is not pseudo-effective, i.e., c1(KX) is not in the closure of the
cone in H1,1(X,R) generated by effective divisors. By Corollary 0.3 in [52],
X is uniruled.

It remains to treat the case where ξn−1KX = 0. Since KX 6= 0, this case
can’t happen by the following proposition.

Proposition 2.2.2. Let X be a projective variety of dimension n, and let
ξi ∈ NS(X) be divisor classes such that

1. ξ1 is pseudo-effective;

2. ξi (i > 1) are ample;

3.
∏

i ξi = 0.

Then ξ1 = 0.

Proof. There is nothing need to prove if n ≤ 1. If n = 2, we will use Hodge
index theorem: since ξ1 · ξ2 = 0, one has ξ2

1 ≤ 0, and the equality holds only
when ξ1 = 0. On the other hand, we may take N a positive integer such
that Nξ2 + ξ1 is ample thus has non-negative intersection with ξ1 as ξ1 is
pseudo-effective. Thus we have

ξ2
1 = (ξ1 +Nξ2)ξ1 ≥ 0.

Combining with Hodge index theorem, we have ξ1 = 0.
Now we assume that n ≥ 3 and we want to reduce to the case n = 2 and

to use the following Lefshetz Theorem in hyperplane section ([27], page 156):
Let Di be smooth divisors Di (i = 3, · · ·n) representing positive multiples of
ξi such that the partial products Yk :=

∏n
i=k+1Di are smooth subvarieties of

X of dimension k. Then for each k, the restriction map

H2(Yk,Q) −→ H2(Yk−1,Q)
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is isomorphism when k ≥ 4, and injective when k = 3.
By induction we can show that the restriction of ξ1 on Yk is pseudo-

effective. It is sufficient to show that the any effective divisor A of Yk+1

will have the restriction [A] · Yk represented by an effective divisor. Indeed,
write A = B + mDk with B properly intersecting Dk, then [A] · Yk will be
represented by [B ·Dk] +m[D′

k] where D′
k is some effective representative of

ξk on Yk, which always exists as ξk is ample.
Now on the surface Y2, ξ1 and ξ2 satisfies the conditions of the Proposition,

so we must have that ξ1 = 0 on Y2. Now we apply the Lefshetz Theorem on
hyperplane section to conclude that ξ1 = 0 on X.

Remark 2.2.3. The above proposition can be considered as a supplement to
Theorem 2.2 in [52] which says that a class α ∈ NS(X)R is pseudo-effective if
and only if it is in the dual of the cone SME(X) of strongly movable curves.
Our proposition just says that the pairing of α on SME(X) is strictly positive
if α 6= 0.

Rationally connected factorization

Let us discuss some factorization results of Miyaoka and Mori [43] (see also
Campana [12]). Let X be a projective variety. Then their result says that
there is a rational morphism f : X −→ Y classifying the rational connected
components, i.e., the following conditions hold:

1. f is dominated with rationally connected fiber;

2. there is a Zariski open subset X∗ over which f is regular and proper;

3. for a general point x of X, the fiber of f over x is the set R(x) of points
y which can be connected to x by a finite chain of rational curves. Here
the “general” means outside of a countably many proper subvarieties.

We may pick up a canonical f : X −→ Y as follows: let Y be the
Zariski closure of points [R(x)] in the Chow variety C(X) corresponding to
the general points of X. Let

(ρ, π) : X̃ −→ X × Y
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the universal family of cycles parameterized by Y . Then the morphism ρ :
X̃ −→ X is birational. We define f = π ◦ i−1 as a rational morphism.

X̃
ρ //

π

��

X

f��~~
~~

~~
~~

Y

If X has an endomorphism φ : X −→ X with polarization by φ, then φ
takes rational curves to rational curves, thus take R(x) to R(φ(x)). In other

words, φ induces an endomorphism ψ on Y and an endomorphism φ̃ on X̃
with commutative diagrams

X̃
φ̃ //

π

��

X̃

π

��
Y

ψ // Y

X̃
φ̃ //

ρ

��

X̃

ρ

��
X

φ // X

.

Proposition 2.2.4. Both endomorphisms φ̃ and ψ are polarizable.

Proof. Let M Deligne’s pairing on Y :

M :=

∫
X̃/Y

ρ∗L<d+1>

where d is the relative dimension of π. Then M is an ample line bundle and
ψ∗M = Mq. In other words ψ is polarized by M. For the polarization of φ̃,
we notice that ρ∗L is ample on each fiber of π with property

φ̃∗ρ∗L = ρ∗φ∗L = ρ∗Lq.

Thus for some positive number N ,

L̃ := ρ∗L ⊗ π∗MN

will be ample with property
φ̃∗L̃ = L̃q.

Thus we obtain a polarization for φ̃.

Remarks 2.2.5. Here are some obvious questions about the classifications of
general dynamical system:
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1. extend Proposition 2.1.1 and 2.2.1 to general Kähler variety. We may
replace them by a bi-rationally equivalent dynamic system if they are
helpful;

2. classify dynamical system in two extreme case: non-uniruled case, and
rationally connected case. It is not true that every rationally con-
nected varieties carries an endomorphism of degree ≥ 2. For example,
Beauville [6] showed that any smooth hypersurfaces in projective space
with dimension ≥ 2 and degree ≥ 3 does not admit any endomorphism
of degree ≥ 2.

Remark 2.2.6. For algebraic endomorphism φ : X −→ X with a polarization,
we are in the opposite situation of general type: X and the finite étale
coverings do not admit a rational map to a positive dimensional variety of
general type. See Harris-Tschinkel [31] and Campana [13] for a detailed
discussion of the geometry and arithmetic of these varieties of special type in
contrast to varieties of general type.

2.3 Dynamic surfaces

In the following we would like to classify the dynamic systems on surfaces.

Proposition 2.3.1. Let φ : X −→ X be an endomorphism of a Kähler
surface. Then φ is polarizable if and only if X is one of the following type:

1. complex torus;

2. hyperelliptic surfaces, i.e., the unramified quotients of the product of
two genus 1 curves;

3. toric surfaces, i.e., the completions of G2
m with extending action by G2

m;

4. a ruled surface PC(E) over an elliptic curve such that either

(a) E = OC ⊕M with M torsion or of positive degree;

(b) E is not decomposable and has odd degree.

Proof. By a result of Fujimoto and Nakayama ([25], Theorem 1.1), the only
non-algebraic Kähler surfaces admitting endomorphisms of degree ≥ 2 are
complex tori. So we will only consider algebraic ones. By proposition 2.1.1,
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we need only consider unramified quotients of abelian surfaces and algebraic
surfaces with negative Kodaira dimension. So we have the first two cases
listed above, plus rational surfaces and irrational ruled surfaces.

By a result of Noboru Nakayama ([46], Theorem 3), a rational surface X
has an endomorphism φ of degree ≥ 2 if and only if it is toric. We may take
φ to be the “square morphism” on X, i.e., the morphism on X satisfies the
equation φ(tx) = t2φ(x) for any t ∈ G2

m and x ∈ X. For polarization, we
may simply take L to be the divisor of the complement of G2

m in X:

φ∗L = L2.

It remains to work on P1-bundle π : X −→ C over a curve of genus 6= 0.
We will use an idea of Nakayama ([46], proof of Proposition 5). We need to
check when such an X has a polarizable endomorphism φ. Notice that any
such φ will take rational curves to rational curves. Thus φ will dominate an
endomorphism g of C:

X
φ //

π

��

X

π

��
C

g // C

Let g∗X = X ×g C, then φ is the decomposition X
α−→ g∗X

β−→ X, α is
a morphism over C, and β is the projection. Let L be an ample line bundle
on X such that

(2.3.1) φ∗L ' Lq

It follows that α has degree q. Since deg φ = q2, it follows also that deg β = q,
and that C must have genus 1.

Lemma 2.3.2. Let g : C −→ C be a morphism of curve of genus 1 of degree
q > 1. Then any endomorphism φ : X −→ X of ruled surface over C is
induced by a homomorphism g : C −→ C of degree q, and a homomorphism
of vector bundles

g∗E −→ SymqE ⊗ N

with N a line bundle on C. Moreover for φ to be polarized if and only if
degN = 0.
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Proof. The first statement is well known. It remains to study when such φ
is polarizable. Let L0 be the O(1)-bundle corresponding to E . Then we can
write

L = Lm0 ⊗ π∗N0.

Here N0 is some line bundle on C. The equation φ∗L = Lq is equivalent to

(φ∗L0 ⊗ L−q0 )m = π∗(g∗N0 ⊗N−q
0 ).

This equality shows that φ∗L0⊗L−q0 has degree 0 on all fiber. It follows that
for some bundle N on C,

(2.3.2) φ∗L0 ' Lq0 ⊗ π∗N , g∗N0 ' N q
0 ⊗Nm.

Since deg g = q, the second equation gives degN = 0.
Conversely, if φ is induced by a homomorphism as in lemma with degN =

0, then we may find a line bundle N0 on C of degree 1 such that g∗N0 ' N q
0 ⊗

N . Then we can check that L := L0 ⊗ π∗N0 will give the right polarization
for φ.

After twisted by a line bundle on C, any vector bundle of rank 2 on C is
one of the following three types:

1. there is a splitting, E ' OC ⊕M with degM≥ 0;

2. there is a non-split exact sequence

0 −→ OC −→ E −→ OC −→ 0.

3. there is a non-split exact sequence

0 −→ OC −→ E −→M −→ 0

where degM = 1.

In case (1), since C has genus 1 there is a point O such thatM = OC(d·O)
if d = degM > 0. We give C an elliptic curve structure such that O is the
unit element. Let a ≥ 2 be a fixed integer. Then the multiplication by a
gives

[a]∗M'Mb, b =

{
a2, if degM 6= 0,

a, if degM = 0.
.
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If M is torsion of order t, then we may take a = t + 1, then we can
replace b by a2. Thus in the case either degM > 0 or M is torsion, we have
a morphism of bundles on C:

[a]∗E ' OC ⊕Ma2 −→ Syma2E .

This induces a morphism φ : X −→ X such that φ is compatible with
multiplication [a] on C. By lemma, this homomorphism has polarization.

We want to show that when M is a non-torsion degree 0 bundle, then
any homomorphism φ : X −→ X is not polarizable. Otherwise, we will have
a morphism g : C −→ C of degree q > 1 and a homomorphism of vector
bundles:

g∗E −→ SymqE ⊗ N

where N is of degree 0. Let x be the section of E corresponding to the
embedding 1 ∈ OC ⊂ E . Then the above equation gives

OC ⊕ g∗M−→
q∑
i=0

xq−iMi ⊗N .

Since M is not torsion, the bundles in the right hand side are not isomorphic
to each other. Since all of them have degree 0, we have i and j such that the
above homomorphism is given by two isomorphisms:

OC 'Mi ⊗N , g∗M = Mj ⊗N .

Since this homomorphism defines morphism X −→ X, one must have that
{i, j} = {0, q}. Thus in any case, we have

g∗M = M±q.

Let O be a fixed point of g. Then we may consider C as an elliptic curve
with origin O. Write M = O(P − O). Then g∗M = O([g∨O] − [O]) and
Mq = O([qP ]− O), where g∨ is the conjugate of g: gg∨ = deg g = q. Thus
the above equation gives

g∨P = ±qP, (g∨ ∓ q)P = 0.

This implies again that P is torsion. Thus we have a contradiction.
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In case (2), the bundle g∗E is still non-split so it is isomorphic to E . In
other words g∗X is isomorphic to X. Indeed, the extension

0 −→ OC −→ E −→ OC −→ 0

is given by a nonzero element t in H1(C,OC). The g∗E will corresponding
g∗t in H1(C,OC). As H1(C,OC) ' k, g∗t = at with a ∈ k×, there is an
homomorphism g∗E ' E over C.

Thus, φ induces (and is induced by) a C-endomorphism of X of degree
q > 1. Now we want to apply a result of Silverman about the moduli space
of endomorphisms of P1 [56]. For a positive integer d, let Ratd denote the
space of endomorphisms of P1. We only take the base C here. Then Ratd
has a natural action by Aut(P1) as follows:

(h, f) 7→ f ◦ h ◦ f−1, h ∈ Ratd, f ∈ Aut(P1).

Let SL2 −→ Aut(P1) be the Mobius transformation. Then by Theorem 1.1
and Theorem 3.2 in [56], the quotient Md := Ratd/SL2 exists as affine variety
over C. In order to apply this to our situation, we give a slightly different
interpretation of Md: Md is a fine moduli space of triples (V, h, `) where V is
a vector space of dimension 2, and φ is an endomorphism of the projective
line P(V ), and ` is an isomorphism detV ' C.

In case (2), since we have an isomorphism ` : det E ' OX , the morphism
α induces an morphism C −→Mq. As C is projective and Mq is projective,
we must have that this morphism is constant. Thus E must be an trivial
vector on C. We get a contradiction!

In case (3), we claim that X ' Sym2C, thus, X has an endomorphism by
multiplication by 2. First there is a section O so that M = OC(O). In this
way, C becomes an elliptic curve with origin O. Let us consider the following
maps

C × C
[2]×[2] //

f
��

C × C

f
��

Sym2C
φ //

π

��

Sym2C

π

��
C

[2] // C

(x, y)

��
(x) + (x)

��
x+ y

.

Let p1, p2 be two projections of C × C to C. Let N = π∗1OC(O) + π∗2O(O)
be a line bundle on C × C, and L the descent bundle of N on Sym2C.
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The bundle L is ample, with fiber on (P ) + (Q) canonically isomorphic to
O(O)|P ⊗O(O)|Q up to the order of tensor product. The multiplication on
C × C by an integer a induces an endomorphism φ on Sym2C. As [a]∗N '
N a2

, φ∗L ' La2
.

We claim the following:

1. L has degree 1 on the fiber of π thus V := π∗L is a rank 2 bundle on
C;

2. Γ(L) = Γ(M) is one dimensional, say generated by `, such that div(`) =
s∗C, where s(P ) = (P ) + (O).

3. s∗L ' O(O).

This claim will implies that X ' P(V) and that V is not decomposable
and fits in an exact sequence:

0 −→ OC −→ V −→ OC(O) −→ 0.

This of course implies that V ' E and X ' Sym2C.
It remains to prove our claim. For item (1) we need to check the degree

of L on the fiber Sym2(C × C)O over O ∈ C. The pull-back of this fiber on
C × C is the image of the following map

δ : C −→ C × C, p 7→ (p,−p).

It follows that

L · Sym2(C)0 =
1

2
π∗L · π∗Sym2(C)0 =

1

2
N · δ(C)

=
1

2
deg δ∗(N ) =

1

2
degO(O)⊗ [−1]∗O(O) = 1.

For item (2) we see that Γ(N ) is equal to the symmetric part of Γ(L). It is
easy see that

Γ(N ) = p∗1Γ(O(O))⊗ p∗2Γ(O(O)) = Cp∗1α⊗ p∗2α

where α is the canonical section of O(O) with divisor O. It is clear that the
section p∗1α ⊗ π∗2α is symmetric thus descents to section ` on L with divisor
div(`) = s∗C. For the last part, for any point P ∈ C, we see that

s∗L ' O(O)|O ⊗O(O) ' O(O).

This completes the proof of the claim.
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3 Canonical metrics and measures

We will fix an endomorphism φ : X −→ X of a Kähler variety with a
polarization by a Kähler class ξ. Our aim in this section is to study the
distributional properties of the set Prep(X) of all preperiodic points on X.
We will first construct a canonical current ω to represent ξ. The class ω
is integrable in the sense that the restriction of ωd on any subvariety Y of
dimension d defines a measure. By a result of Bedford-Taylor and Demailly
[20], the support of the measure is Zariski dense. Then we conjecture some
properties about this invariant measure. First of all this measure can be
obtained from any smooth measure by iterations. Second, this measure can
be constructed from the probability measures of the backward images of a
general point. We will prove some of these properties in the special cases
using the work of Yau [59] and Briend-Duval [9]. Some of our results follows
from some very general results of Dinh-Sibony [21], Corollary 5.4.11 and The-
orem 5.4.12. We present here a self-contained treatment for the simplicity.
Also our treatment is completely global and thus easily extended to p-adic
Berkovich spaces.

Finally, with hope to initiate a dynamic Nevanlinna theory of holomorphic
curves, we construct a canonical order function in on a Kähler dynamical
system. As an application we will show that the Fatou set is Kobayashi
hyperbolic.

One question remain unsolved: the positivity of a canonical current on
the Chow variety.

3.1 Canonical forms and currents

First we will try to find canonical representatives for the classes in H1,1(X).
Let Z1,1(X) denote the space of ∂ and ∂̄ closed currents on X which have
the form ω+ ∂∂̄

πi
g with ω smooth and g continuous. Then there is a class map

c : Z1,1(X) −→ H1,1(X).

Notice that φ∗ acts on both spaces and this class map is a homomorphism of
φ∗-modules. The kernel of c is the space of forms ∂∂̄

πi
g for continuous functions

g.

Proposition 3.1.1. The class map c of φ∗-modules has a unique section,
i.e., there is a unique φ∗-subspace H1,1(X) of Z1,1(X) such that c induces an
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isomorphism
H1,1(X) ' H1,1(X).

The space H1,1(X) is called the space of canonical forms. Moreover, if ξ is
an eigenclass of φ∗ with eigenvalue λ which is represented by a smooth form
ω0 then the canonical lifting is the limit

ω := lim
k→∞

(λ−1φ∗)kω0.

Proof. Let C(X) denote the space of continuous functions on X. Then we
have an exact sequence

0 −→ C −→ C(X) −→ Z1,1(X) −→ H1,1(X) −→ 0

where the map C(X) −→ Z1,1(X) is given by ∂∂̄
πi

. Let P (T ) be the charac-
teristic polynomial of φ∗ acting on H1,1(X). We want to show that for P (φ∗)
is invertible over C(X). In this way, we may take H1,1(X) = kerP (φ∗). In
other words, every element κ in H1,1(X) has a lifting η such that P (φ∗)η = 0.
Indeed, if η0 is one lifting of κ in Z1,1(X) then P (φ∗)η0 is in the image of
C(X). Thus we have a g ∈ C(X) such that

(3.1.1) P (φ∗)η0 =
∂∂̄

πi
g.

It is easy to see that κ has a lifting in the kernel of P (φ∗) with the following
form:

(3.1.2) η = η0 +
∂∂̄

πi
P (φ∗)−1g.

It remains to show that P (φ∗) is invertible over C(X). We write P (T ) =∏
i(T − λi) where λi are eigenvalues of φ∗ on H1,1(X). By Theorem 1.1.2,

all |λi| > 1. It follows that λ−1
i φ∗ is a compact operator on C(X). Indeed,

‖λ−1
i φ∗α‖sup ≤ |λi|−1‖α‖sup, α ∈ C(X).

It follows that P (φ∗) has inverse on C(X):

P (φ∗)−1α :=
∏
i

∑
k

−λi(λ−1
i φ∗)kα.

This proves the first part of the proposition.
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For the second part, let g be a smooth function such that

(1− λ−1φ∗)ω0 +
∂∂̄

πi
g = 0.

Then

(λ−1φ∗)jω0 − (λ−1φ∗)j+1)ω0 +
∂∂̄

πi
(λ−1φ∗)jg = 0.

Add the above equality from j = 1 to j = k − 1 to obtain

(λ−1φ∗)kω0 = ω0 +
∂∂̄

πi

k∑
j=1

(λ−1φ∗)jg.

It is easy to see from this expression that (λ−1φ∗)kω0 has limit as the canonical
lifting of ξ:

ω = ω0 +
∂∂̄

πi
(1− λφ∗)−1g.

We have an analogue for algebraic polarizations. Let φ : X −→ X
be an endomorphism with a polarization. Let P̂ic(X) denote the group of
(continuously) metrized line bundles on X. Then we have a class map

γ : P̂ic(X) −→ Pic(X).

Again φ∗ acts on both groups and this map is a homomorphism of φ∗-
modules.

Proposition 3.1.2. The class map γ has a projective section, i.e., there is a
unique φ∗-submodule Pic(X) of P̂ic(X) such that the map γ induces an exact
sequence

0 −→ R −→ Pic(X) −→ Pic(X) −→ 0.

Here R maps r ∈ R to the metrized line bundle (OX , ‖1‖ = e−r). The metrics
in Pic(X) are called canonical metrics.

Proof. By Proposition 3.1.1, for any line bundle L there is a unique metric
up to a constant with curvature in H1,1(X).
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Remarks 3.1.3. The proof of the above proposition applies to Hp,p(X) and
Green’s currents for codimension p-cycles if we can show that λ−1φ∗ is com-
pact on the space Cp−1,p−1(X) of continuous (p, p)-forms on X. For example,
if φ is polarized by a Kähler class ξ which has a lifting ω which is continuous
and positive pointwise, then we may equip Cp−1,p−1(X) with norm by ω. In
this we way we have

‖φ∗α‖(x) = qp−1‖α‖(φ(x)), α ∈ Cp,p(X).

Then by Theorem 1.1.2, the eigenvalue λ on Hp,p(X,C) has absolute value
qp and again

‖λ−1φ∗α‖sup ≤ q−1‖α‖sup.

In the following we want to study the volume forms defined by polariza-
tions by ξ. Let ω denote its canonical form in H1,1(X). If ω is a continuous
form then we will have a volume form

dµY = ω|dimY
Y /vol(Y ).

Here

vol(Y ) = ξdimY · [Y ] =

∫
Y

ωdimY
0 .

Only require ω is be a current, then the above definition does not make sense.
In the following we will use limit process to show that the above definition
still give a measure. Let’s study slightly a more general situation.

Let d = dimY and pick up d classes η1, · · · , ηd so that

1. ηi are semi-positive;

2. φ∗ηi = λiηi with λ > 1.

Let ωi0 be semipositive, smooth forms for ηi. Let ωik = λ−ki (φ∗)kωi0.

Proposition 3.1.4. With notation as above then the following hold:

1. ωik converges to the canonical lifting ωk of ηk as a current,

2. the volume form ω1k · · ·ωdkδY is weakly convergent with a limit measure

ω1 · · ·ωdδY := lim
k→∞

ω1k · · ·ωdkδY

on Y which is independent of the choice of initial forms ωi0.
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Integrable forms and metrics

We want to show that the proposition follows a more general theory about
integrable metrics [62]. More precisely, a class ω = ω0 + ∂∂̄

πi
g ∈ Z1,1 is called

semi-positive if g = limn gn is the limit in C(X) of a sequence of smooth
functions gn such that ω0 + ∂∂̄

πi
gn are smooth positive forms. A class ω is

called integrable if ω is the difference ω1 − ω2 of two semi-positive classes.
Let S1,1(X) denote the space of integrable forms. A function g is called an
Green’s function if there is a divisor D =

∑
i aiDi on X with real coefficients

such that g is continuous on X \ D with logarithmic singularity near D:
if locally Di is defined by equations fi = 0 near a point x, then g has an
asymptotic formula near x:

(3.1.3) g =
∑

ai log |fi|+ h

where h is a continuous function. Let G(X) denote the apace of Green’s
functions.

Proposition 3.1.5. Let X be a compact Kähler variety and let Y be a sub-
variety of dimension d. There is a unique integration paring

G(Y )× S1,1(X)d −→ C,

(g, ω1, · · · , ωd) 7→
∫
Y

gω1 · · ·ωd

such that the following properties are verified:

1. the pairing is linear in each variable;

2. if each ωi is semi-positive and is a limit of smooth forms ωik on X, then
the above pairing is the limit of the usual integral pairings of smooth
forms.

Proof. Write ωi = limωik with ωik smooth and positive. Thus we have
ωik = ωi0 + ∂∂̄

πi
hik with hik smooth and convergent to hi. First we want to

show that the functional

g 7→
∫
Y

gω1k · · ·ωdk
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is convergent on the restriction of g ∈ G∞(X) on Y , the space of functions
whose local asymptotic formula (3.1.3) has smooth h. Let g be a smooth
function on X, the difference of the integrations is given by∫

Y

g(ω1k · · ·ωdk − ω1` · · ·ωd`)

=

∫
Y

g

d∑
i=1

ω1k · · ·ωi−1,k(ωi,k − ωi,`)ωi+1,` · · ·ωd,`.

From our expression of ωik,

ωik − ωij =
∂∂̄

πi
(hik − hi`).

It follows that ∫
Y

g · (ω1k · · ·ωdk − ω1` · · ·ωd`)

=

∫
Y

d∑
i=1

ω1k · · ·ωi−1,k(hi,k − hi,`)ωi+1,` · · ·ωd,`
∂∂̄

πi
g.

Since g is smooth, we have a formula

∂∂̄

πi
g =

∑
aiδDi − α

where α is a smooth (1,1)-form. Let M be a positive number such that

ω′i,0 := ωi0 −
1

M
α

is positive point wise. Then the above sum can be written as∫
Y

g · (ω1k · · ·ωdk − ω1` · · ·ωd`)

=
∑
j

aj

∫
Dj

d∑
i=1

ω1k · · ·ωi−1,k(hi,k − hi,`)

+M

∫
Y

d∑
i=1

ω1k · · ·ωi−1,k(hi,k − hi,`)ωi+1,` · · ·ωd,`(ω′i0 − ωi0).
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Replacing hi,k− hi,` by its L∞-norm and ω′i0−ωi0 by ω′i0 +ωi0, then we have
the following estimate:∣∣∣∣∫

Y

g · (ω1k · · ·ωdk − ω1` · · ·ωd`)
∣∣∣∣

≤
∑
i

(∑
j

|aj|(η1 · · · η̂i · · · ηd[Di]) + 2M(η1 · · · ηd[Y ])

)
‖hik − hi`‖sup,

where ηi are the classes of ωi in H1,1(X,R). This shows that ω1k · · ·ωdkδY
converges as a distribution, say ω1 · · ·ωdδY . To show this limit can be ex-
tended into continuous green’s function, we need only consider continuous
function g ∈ C(X), or equivalently to show that the limits is actually a
measure. It suffices to show the following:

1. the functional on C∞(X), g −→
∫
Y
gω1 · · ·ωd is continuous with respect

to supreme norm and

2. the restriction of C∞(X) on Y is dense in C(Y ).

The first property is clear since ω1k · · ·ω1,d is semi-positive with volume
η1 · · · ηd|Y . For a smooth function f on X:∣∣∣∣∫

Y

g · ω1 · · ·ωd
∣∣∣∣ = lim

k

∣∣∣∣∫
Y

gω1k · · ·ωdk
∣∣∣∣ ≤ ‖g‖sup(η1 · · · ηd[Y ]).

For the second property, we use Stone-Weierstrass theorem: C∞(X) is dense
in C(X) which is surjective on C(Y ) by restriction map.

Finally, we want to show the independence on ωik. This can be done
by the same argument as above. Indeed, let ω′ik be different smooth and
positive forms convergent to ωi, which induce a differential sequence of forms
ω′1k · · ·ω′dk. The same argument as above can be used to show that∣∣∣∣∫

Y

g · (ω′1k · · ·ω′dk − ω1k · · ·ωdk)
∣∣∣∣ ≤ C

∑
i

‖αik‖sup

where C is a constant depend only on f , and αik are smooth functions such
that

ω′ik − ωik =
∂∂̄

πi
αik.

It is easy to show that αik −→ 0. Thus two limits are same.
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For any open connected subset (in complex topology) set U of a subva-
riety Y of X of dimension d and the current ω1 · · ·ωd defined by integrable
forms ω1, · · · , ωd, the support of ω1 · · ·ωd is defined as smallest closed subset
SuppU(ω1 · · ·ωd) of Y in complex topology such that∫

Y

fω1 · · ·ωd = 0

whenever f ∈ C0(U) vanishes on SuppU(ω1 · · ·ωd). WhenX is projective, the
above proposition shows that SuppY (ω1 · · ·ωd) is not included into any proper
subvariety. Otherwise, SuppY (ω1 · · ·ωd) will be included in the support of
an effective divisor D. Then we can take g to be the Green’s function for D.
The integral will be infinite! This contradicts to our proposition.

For general Kähler variety, Chambert-Loir pointed to the following a re-
sult of Bedford-Taylor and Demailly:

Theorem 3.1.6 (Bedford-Taylor-Demailly). The set SuppU(ω1 · · ·ωd) is
either empty or Zariski dense in U .

Proof. When Y is smooth, this is simply a result of Bedford-Taylor and
Demailly [20], Corollary 2.3. In general case, let π : Ỹ −→ Y be a resolution
of singularity. Then we can define the pull-back of forms in Z1,1 by the usual
way: if ω = ω0 + ∂∂̄

πi
g then

π∗ω = π∗ω0 +
∂∂̄

πi
g ◦ π.

If ω is integrable, then it is easy to show that π∗ω is integrable. For any
continuous function f on Y , and any integrable currents ω1, · · · , ωd, it is
easy to check that∫

Ỹ

π∗f · π∗ω1 · · ·π∗ωd =

∫
Y

f · ω1 · · ·ωd.

It follows that

π−1SuppU(ω1 · · ·ωd) ⊂ Suppπ−1U(π∗ω1 · · ·π∗ωd).

Thus we are reduced to the smooth case.

37



Remark 3.1.7. The same proof as in Proposition 3.1.5 can be used to show
the following weaker form of Theorem 3.1.6: Assume that X is projective,
then the measure ω1 · · ·ωd|Y on Y does not support on any proper subvariety.
Let D be a any divisor of Y , and g be a Green’s function for D, i.e., a function
on Y with logarithmic singularity such that

∂∂̄

πi
g = δD − h

where h is a smooth (1, 1) form on Y . We need to show that the integral∫
Y

ω1 · · ·ωd

makes sense and is finite which then implies that the support of the measure
is not supported on D.

Metrics on Chow varieties

In the following we want to introduce the canonical forms or metrics for the
Chow varieties and show their compatibility with the induced endomorphism
φ∗ and φd,δ,k. One basic question in this theory is about the fiber pairing of
integrable metrics on X.

Question 3.1.8. Let X be a compact Kähler variety. How could one construct
an integration pairing

S1,1(X)d+1 −→ S1,1(Cd(X)),

(ω0, · · · , ωd) 7→
∫
Zd(X)/Cd(X)

ω0 · · ·ωd?

When X is algebraic, this question has a positive answer, see [63]. Mim-
icking what has been done in the projective case, our first step to answer this
question is to restrict to smooth forms ω′i in the same class of ωi and to try
to show that the above integral defines some integral forms. If ωi = ω′i+

∂∂̄
πi
hi
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then we compute the difference formally by:∫
Zd(X)/Cd(X)

ω0 · · ·ωd −
∫
Zd(X)/Cd(X)

ω0 · · ·ωd

=

∫
Zd(X)/Cd(X)

d∑
i=0

ω1 · · ·ωi−1(ωi − ω′i)ω
′
i+1 · · ·ω′d

=

∫
Zd(X)/Cd(X)

d∑
i=0

ω1 · · ·ωi−1
∂∂̄

πi
hiω

′
i+1 · · ·ω′d

=
∂∂̄

πi

∫
Zd(X)/Cd(X)

hi

d∑
i=0

ω1 · · ·ωi−1ω
′
i+1 · · ·ω′d

Our proposition 3.1.5 shows the last integral is well defined at each point.
But then one has to prove that this integral defines a continuous function on
Cd(X).

Let φ : X −→ X be an endomorphism of a compact Kähler variety with
a polarization by a positive class ξ which is represented by a canonical form
ω. If Question 3.1.8 has a positive answer, then we will have canonical forms
ωd on the varieties Cd(X) compatible with the action of φ∗. Of course for
the variety C(d, δ, k) which is of finite type, we will have the usual theory of
canonical metrics.

3.2 Equidistribution of backward orbits

Fix an endomorphism φ : X −→ X of a compact Kähler variety with po-
larization. Let dµ0 be a continuous probability measure. Define dµk by the
following inductive formula

dµk =
φ∗dµk−1

deg φ
.

More precisely, for any continuous function f on X,∫
X

fdµkdµk = (deg φ)−k
∫
X

φk∗fdµ0.

Here φk∗f is a function defined by

φk∗f(x) =
∑

φk(y)=x

f(y)
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where the sum is over pre-images of x with multiplicity. Notice that φk∗(f)
is a bounded on X and continuous on a Zariski open subset of X, thus is
measurable with respect to any continuous measure. The following is a simple
consequence of a result of Yau:

Theorem 3.2.1. Let φ : X −→ X be an endomorphism of compact Kähler
manifold with a polarization ξ. Then dµk converges to the canonical measure
on X:

lim
k→∞

dµk = ωn/(ξn[X])

where ω is the canonical form for the class ξ and n = dimX.

Proof. Notice that for a continuous function f on X,∫
fdµk = (deg φ)−k

∫
φk∗(f)dµ0

where φk∗(f) is defined such that

φk∗(f)(x) =
∑

φk(y)=x

f(x)

where the sum is over preimage of x under φk with multiplicity. It is easy to
check that φk∗(f) is bounded and continuous on a Zariski open subset of X.
So the above integral makes sense.

As every continuous measure is a strong limit of smooth volume forms,
we may assume that dµ0 is a smooth volume form. By a theorem of Yau [59],
dµ0 on X is induced from a unique class ω0 in ξ by formula

dµ0 = ωn0 /(ξ
n[X]).

Now we can apply proposition 3.1.4.

We would like to conjecture that this Theorem is true without assumption
on smoothness of X:

Conjecture 3.2.2. Let φ : X −→ X be an endomorphism of a (possibly sin-
gular) compact Kähler variety with a polarization ξ. Let dµ0 be a continuous
probability measure on X. Define dµk by inductive formula

dµk =
φ∗dµk−1

deg φ
.

Then dµk is convergent to the probability measure dµX of the form

ωn/(ξn[X]), (n = dimX.)
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Let φ : X −→ X be an endomorphism of a compact Kähler variety with
a polarization ξ. Let x be a point in X. For any positive integer k, let’s
define a probability measure the k-th preimage:

µx,k = (deg φ)−k
∑

φk(y)=x

δy

where the sum is over the k-th preimage with multiplicity.
By this conjecture, for almost all p the µp,n is convergent to the canonical

measure dµ. Indeed, for any continuous probability measure dµ0, the dµn in
Theorem 3.1.6 can be written as∫

X

fdµn =

∫
X

{∫
X

f(x)dµp,n(x)

}
dµ(p).

In a more precise way we would like to make the following conjecture:

Conjecture 3.2.3. Let x be a point of X and let Y be the Zariski closure
of the complete orbit, i.e., Y is the minimal subvariety of X containing all
φ−k(x) and φk(x) for all k. Then µp,n is weakly convergent to the canonical
measure ωdimY /vol(Y ) on Y , where ωdimY is the canonical measure on Y
defined by the canonical form ω on Y .

It seems that a more natural subvariety than Y for the conjecture is the
backward limit of x: i.e., the minimal subvariety Y ′ containing φ−k(x) for k
sufficiently large. We claim that Y = Y ′. Indeed, for each k ≥ 0 let Yk be the
Zariski closure of the union ∪i≥kφ−k(x). Then Yk is a decreasing sequence of
closed subvarieties of X. Thus Y = Yk = ∩Yk for k sufficiently large. It is
easy to see that Y is periodic, so Y = Y ′.

WhenX = PN ,the conjecture is a theorem by recent work of Briend-Duval
[9] and Briend-Cantat-Shishikura [10]. Indeed by Briend-Cantat-Shishikura,
the full orbit of any x ∈ PN is always a finite union of linear subspace, and
thus isomorphic to Pk if φ is replaced by a power. Then by Briend-Duval
that µm,x is equidistributed on Pk.

3.3 Hyperbolicity and holomorphic curves

Let φ : X −→ X be an endomorphism of a compact Kähler variety with a
polarization. As discussed in §2.3, X should have a fibration over a variety
Y of Kodaira dimension 0 with rationally connected fibers. Thus X should
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be special in the sense of Campana [13]. By Campana, Conjecture 9.2 in [13],
this should be equivalent to hyperbolically special:

Conjecture 3.3.1. Let φ : X −→ X be an endomorphism of a compact
Kähler variety with a polarization. Then the pseudo-metric dX on X van-
ishes.

Here the pseudo-metric is defined in Kobayashi’s hyperbolic geometry
[34]. We can only prove the vanishing of the pseudo-distance under conjecture
3.2.3:

Proposition 3.3.2. Let φ : X −→ X be an endomorphism of a compact
Kähler variety with a polarization. Assume Conjecture 3.2.1 for the endo-
morphism φ× φ for X ×X. Then the pseudo-distance vanishes on X.

Proof. For two positive number a > 0, let T (a) be the open subset ofX×X of
points (x, y) with pseudo-distance satisfies the inequality d(x, y) > a. Since
the pseudo-distance is decreasing under φ:

d(φx, φy) ≤ d(x, y),

we see that φ−1T (a) ⊂ T (a).
If T (a) is not empty, then it has a non-empty interior, and thus sup-

ports continuous probability measure dµ0. By our assumption, the limit
deg φ−kφ∗kdµ0 converges to the canonical measure on X × X. Notice that
the canonical measure dµX × dµX on X ×X is the product measure on X’s.
Thus the support of this measure contains the support of dµX by diagonal
map X → X ×X. It follows that T (a) contains the diagonal elements. This
is a contradiction as the distance of d(x, x) = 0 for any x ∈ X. So we have
shown that d(x, y) = 0 for all x, y ∈ X.

Combined with Theorem 3.2.1, we can prove the conjecture for endomor-
phisms with polarizations:

Corollary 3.3.3. Let φ : X −→ X be an endomorphism of a compact
Kähler manifold with a polarization by a Kähler form. Then the pseudo-
distance vanishes on X everywhere.

One consequence of Conjecture 3.3.1 is the vanishing pseudo-volume form
of Kobayashi which is apparently easy to prove:
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Proposition 3.3.4. The Kobayashi pseudo-measure vanishes.

Proof. Let ΦX denote the Kobayashi pseudo-volume form. Then φ∗ΦX ≤
ΦX . Taking integration of both sides we obtain

deg φ

∫
Φ ≤

∫
Φ.

It follows that
∫

Φ = 0 or Φ = 0 almost everywhere.

Another consequence is the existence of many non-degenerate holomor-
phic maps C −→ X by work of Brody (see Lang [36], Theorem 2.2). Fix
a Kähler form ω0 on X which induces a metric on X. From the proof of
Theorem 2.2. in [36], one see that for any point x ∈ X and any tangent
vector v ∈ TX,x of norm 1, there is a holomorphic map f : C −→ X such
that

df0(∂/∂z) = v, ‖dfz‖ ≤ 1, ∀z ∈ C.

Here dfz is the map TC,z −→ TX,f(x) between two tangent spaces with norms
induced by the Euclidean norm on C and the norm ω0 on X.

Holomorphic curves

Fix a Kähler dynamical system (X,φ, ξ). Let ω be the canonical form. The
remainder of this section is devoted to proving the following:

Theorem 3.3.5. Let C be an affine complex curve; i.e. the complement of
finitely many points in a Riemann surface C̄. Then there is no nonconstant
holomorphic map ψ : C −→ X such that ψ∗(ω) = 0.

Remark 3.3.6. Let F be the complement of the support of ω. As in Sibony
[54] Theorem 1.6.5, one may show that F is the Fatou set of φ, i.e., the
set of points p which has neighborhood U such that f |U is equicontinuous.
Thus our theorem shows that F is Brody hyperbolic which is equivalent to
Kobayashi hyberbolic, as F is the complement of a compact set.

Our main idea for the proof is to use Nevanlinna theory of holomorphic
curves. We refer to Griffiths [28] for basic theory. Let’s fix a holomorphic
map p : C̄ −→ P1 such that p−1C ⊂ C. Replacing C by p−1C we may simply
assume that C has a finite and flat morphism to the affine line C.
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Order function

For each positive number r, let Cr denote the set of points p ∈ C such that
|p(z)| ≤ r. Let ω0 be a closed (1, 1) form in the class. Then we can define
the order function (or characteristic function) for Cr as follows:

Tω0(Cr) =

∫ r

0

dt

t

∫
Ct

ψ∗ω0.

If ω′0 is in the same class as in ω0, i.e., there is a real function g ∈ C∞(X)
such that ω′0 = ω0 + ∂∂̄

πi
g, then

Tω′0(Cr)− Tω0(Cr) =

∫ r

0

dt

t

∫
Ct

∂∂̄

πi
ψ∗g

=
1

πi

∫ r

0

dt

t

∫
∂Ct

∂̄(ψ∗g) =
1

πi

∫ r

0

dt

t

∫
∂Ct

∂̄(p∗ψ
∗g).

Now we use polar coordinate z = teiθ, z̄ = te−iθ, and

∂̄ =
∂

∂z̄
⊗ dz̄ =

1

2

(
∂

∂t
+
i

t

∂

∂θ

)
⊗ (dt− itdθ).

It follows that

Tω′0(Ct)− Tω0(Ct) =
−1

2π

∫ r

0

dt

∫ 2π

0

(
∂

∂t
+
i

t

∂

∂θ

)
p∗ψ

∗gdθ

=
−1

2π

∫ r

0

dt

∫ 2π

0

∂

∂t
p∗ψ

∗gdθ

=
−1

2π

∫ 2π

0

(p∗ψ
∗g(t, θ)− p∗ψ

∗g(0, θ))dθ

In summary we have the formula:

(3.3.1) Tω′0(Cr)− Tω0(Cr) =
−1

2π

∫
∂Cr

ψ∗gp∗dθ + ψ∗g(p∗0)

In terms of supreme norm, we have

|Tω′0(Cr)− Tω0(Cr)| ≤ 2 deg p · ‖g‖sup.
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First Nevanlinna Inequality

Notice that every ω0 is induced from a metric ‖ · ‖0 on the line bundle L
on X. Let s be a nonzero rational section of L. Assume that D = divs
intersects C properly and ψp−1(0) is disjoint with D. Then

ω = δD +
∂∂̄

πi
log ‖s‖0

where δD is the Dirac distribution of D, and ∂∂̄
πi

is computed in sense of
distributions. The same formal computation gives

Tω0(Cr) =
1

π

∫ t

0

dt

t

∫
Cr

(δD +
∂∂̄

πi
log ‖s‖0)

=
1

π

∫ r

0

(Ct ·D)
dt

t
−
∫
∂Cr

ψ∗ log ‖s‖0
dθ

2π
+ log ‖s‖0(p

∗0).

Define the counting function and proximity function by

ND(Cr) =
1

π

∫ r

0

(Ct · ψ∗D)
dt

t

and

ms(∂Ct) = −
∫
∂Cr

ψ∗ log ‖s‖0
dθ

2π
+ log ‖s‖0(p

∗0).

Then the identity we just proved is the First Main Theorem in Nevanlina
theory:

(3.3.2) Tω0(Cr) = ND(Cr) +ms(∂Cr).

If s is regular, then last two terms are bounded from below. Thus we obtain
the Nevanlina inequality:

(3.3.3) ND(Cr) ≤ Tω(Cr) +O(1).

One consequence of this inequality is that C is algebraic if

Tω(Cr) = O(log r).

Indeed, if this equality holds, then by (3.3.3), C · f ∗D will be bounded by
some positive number e. It follows that C is an algebraic curve of degree at
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most e. The converse is also true see Griffiths [28]. In fact, assume that L is
ample on the Zariski closure Y of f(C), and let Y −→ Pm be the embedding
defined by L. Then with respect to a Fubini-Study metric on Pm and its
dual metric on Pm∗, there is a Crofton formula ([28], page 22-23):∫

Pm∗
ND(Cr)dD = Tω0(Cr).

Proof of Theorem 3.3.5

Assume ω0 is semi-positive and apply this the ω′ = d−kφ∗ω0. Then we can
define the order function for the canonical form ω. Write ω = ω0 + ∂∂̄

πi
g. As

ψ∗ω = 0, the above inequality implies the following

|Tω0(Cr)| ≤ 2 deg p‖g‖sup.

Thus the order function of ψ is finite. It follows that ψ can be extended to a
holomorphic map φ̄ : C̄ −→ X. In this case ω will be supported on a finite
number of points. This is impossible as there is no continuous function g
such that ∂∂̄

πi
g gives a Dirac measure on points, see Theorem 3.1.6.

4 Arithmetic dynamics

In this section we will study (polarized) endomorphisms defined over a num-
ber field. We will first propose a conjecture about the equidistribution of the
Galois orbits of a dynamically generic sequence of preperiodic points. This
equidistribution conjecture implies the dynamic Manin-Mumford conjecture
assuming the Zariski density conjecture of support of canonical measures.
Then we will define the canonical heights and generalize these conjectures
to small points. Following Chambert-Loir, we also propose an equidistrubu-
tion conjecture on Berkovich’s p-adic analytic spaces. Finally, we will prove
an equidistribution theorem for Zariski generic sequences of small points on
any variety using recent work of Yuan on arithmetic bigness. One immediate
consequence is the equivalence of the dynamic Bogomolov conjecture and the
dynamic equidistrubution conjecture.

4.1 Preperiodic points and small points

Let φ : X −→ X be an endomorphism of a projective variety with a polar-
ization defined over a number field K. In other words, this means that X and
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φ are defined over K, and that there is an ample line bundle L ∈ Pic(X)⊗R
such that φ∗L = Lq for some integer q > 1.

The set Prep(X) of preperiodic points is defined over K̄. Moreover, by a
theorem of Northcott [47], for each number D, the set of preperiodic points
x with degree deg(x) := [K(x) : K] ≤ D is finite. Let Γ denote the absolute
Galois group over K: Γ = Gal(K̄/K). Then Γ acts on the set Prep(X) of
preperiodic points on X.

Let us fix an embedding K̄ ⊂ C and write X(C) for complex points via
this embedding. Let dµ be the probability measure on X(C) defined by the
Chern class c1 of the bundle LC constructed in §3.1.1. Notice that dµ is the
invariant measure on X; i.e., the probability measure dµ defined on X such
that

φ∗dµ = deg φ · dµ.

Conjecture 4.1.1 (Equidistribution of dynamically generic preperi-
odic points). Let xi be a sequence of preperiodic points on X such that no
infinite subsequence is supported in a proper preperiodic subvariety. Then the
Galois orbits of xi are equidistributed with respect to the canonical measure
dµ on X(C).

More precisely, for x ∈ Prep(X), define probability measure

µΓx :=
1

deg x

∑
y∈Γx

δy.

Then the conjecture says the probability measures δΓxn converge weakly to
the invariant measure dµ in the following sense: for a continuous function f
on X(C),

1

deg(xn)

∑
y∈Γxn

f(y) −→
∫
X(C)

f(x)dµ(x)

as n −→∞.

Consequences

In the following let us give some consequences of the conjecture. The first
consequence is the dynamic Manin-Mumford Conjecture 1.2.1.

Proposition 4.1.2. Conjecture 4.1.1 ⇒ Conjecture 1.2.1.
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Proof. Let Y be a subvariety containing a Zariski dense subset of preperiodic
points Prep(X)∩ Y of φ. There is nothing to prove if dimY = 0. Otherwise
Prep(X) ∩ Y is an infinite set. Let Z be the intersection of all preperiodic
subvarieties defined over K of X containing Y . Then Z itself is preperiodic.
As the set of all algebraic subvarieties of X is countable, we may list the set
of preperiodic proper subvarieties of Z in a sequence Z1, · · · , Zn, · · · . Using
induction, we can define a sequence of points xn ∈ Prep(X) ∩ Y such that
xn /∈ ∪ni=1Zi. In this way, the sequence xn will have finite intersection with
any proper preperiodic subvariety of Z. Now we apply the Conjecture 4.1.1
to conclude that the Galois orbits of xn converge to the invariant measure on
Z. As all Galois orbits lie in Y , the invariant measure dµ must be supported
on Y . Now by Theorem 3.1.6, Y = Z. In other words, Y is preperiodic.

Topological interpretation

To understand the nature of the equidistribution conjecture, let’s introduce
the following topologies:

1. Zariski topology: the topology defined by algebraic equations;

2. dynamic topology: the topology defined by preperiodic subvarieties;

3. archimedean topology: the topology defined by inequalities of usual
continuous functions on X(C);

4. distributional topology: Let Meas(X(C)) denote the set of probability
measures on X(C) with weak topology; let’s define a map

D : X −→ Meas(X(C)), y 7→ dµȳ(C).

Here y ∈ X is a point of scheme X, and ȳ denotes the Zariski closure.
Then the distributional topology is the induced topology on X from D.
The Theorem 3.1.6 implies that the map D is injective.

We have the following order of fineness of the topologies:

Distributional > Archimedean > Zariski > Dynamic.

On Prep(X), Conjecture 4.1.1 says that the dynamic topology equals the
distributional topology while Conjecture 1.2.1 says that the Zariski topology
equals the dynamic topology.
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What is proved ?

1. IfX is an abelian variety, and φ = [m] is the multiplication by a positive
number m > 1, the conjecture was proved in [64] and [58].

2. If X = Pn and φ is the morphism (x0, · · · , xm) −→ (xm0 , · · · , xmn ), the
conjecture was proved by Bilu [8]

3. If X is a compactification of an almost split semi-abelian variety, then
the conjecture was proved by Chambert-Loir [17].

Height machinery

In the following, we want to introduce the concept of heights and state a
conjecture about small points.

Let K be a number field. For each place v of K let | · |v be the normalized
places: for any haar measure dxv on Kv,

d(ax)v = |a|vdxv.

For a point x = (x0, · · · , xn) ∈ Pn(Q̄), the naive height hnaive(x) of x is
defined by

hnaive(x) =
1

[K : Q]

∑
v

log max(|x0|v, · · · , |xn|v).

It can be shown that the definition h(x) can be extended to Pn(Q̄). If x is a
rational point represented by an (n + 1)-tuple of integers (x0, · · · , xn) with
no common divisor, then

hnaive(x) = log max(|x0|∞, · · · , |xn|∞).

If we define the complexity c(x) of x as the maximum number of digits of xi,
which measures the time spent to write a number down, then

hnaive(x)− c(x) log 10

is bounded on the set of rational points of Pn. A basic property of hnaive is
the following Northcott Theorem: for any given numbers D and H, the set
of points in Pn with height ≤ H and degree ≤ D is finite.
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Let X be a projective variety over a number field. Let L be a very ample
line bundle. Then there is an embedding i : X → PNK such that i∗O(1) ' L.
In this way we obtain a height function

hL : X(Q̄) −→ R, hL(x) = hnaive(i(x)).

Here are some standard properties of hL:

1. hL up to a bounded function on X(Q̄) does not depend on the choice
of the embedding;

2. hL is additive in the sense that for two very ample line bundles L and
M,

hL⊗M = hL + hM +O(1).

3. hL is bounded from below:

hL(x) ≥ C.

4. (Northcott Theorem) for any positive numbers D, H, the set{
x ∈ X(Q̄), deg(x) < D, hL(x) < H

}
is finite.

5. for two very ample line bundles L and M, the equality hL = hM+O(1)
implies that L ⊗M−1 is a torsion line bundle.

From these properties, we can extend the definition of height function to
every L ∈ Pic(X) ⊗ R by linearity. In other words, we have an embedding
from the R-vector space of R-bundles into the space of functions on X(Q̄)
modulo bounded functions:

Pic(X)⊗ R −→ Funct(X(Q̄),R)/O(1).

This is a homomorphism of R-vector spaces and such that the Northcott
theorem is true if L is numerically positive in Pic(X) ⊗ R. Indeed, if M ∈
Pic(X) is a very ample line bundle in the usual sense, then there is a positive
number ε such that L− εM is positive. Thus the Northcott Theorem for M
implies that for L.
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Now let us go back to our situation: let φ : X −→ X be an endomorphism
of a projective variety over a number field K with a polarization by an R-line
bundle L ∈ Pic(X) ⊗ R. Fix a height function hL. Then we can define the

canonical height ĥL on X(Q̄) by the following formula:

(4.1.1) ĥL(x) := lim
k−→∞

hL(φk(x))

qk
.

The height ĥL defined by this way does not depend on the choice of height
function hL: one may characterize ĥL as the unique height function for L
such that

ĥL(φ(x)) = qĥL(x).

Then ĥL has the following properties:

Proposition 4.1.3. For any x ∈ X(Q̄), ĥL(x) ≥ 0. Moreover, ĥL(x) = 0 if
and only if x is a torsion point.

Proof. Since each L is ample, we may choose an initial height function hL
with positive values. In this way, the above definition formula 4.1.1 implies
that ĥL ≥ 0. If ĥL(x) = 0, then

ĥL(φk(x)) = 0 ∀k.

In other words, every point in the forward orbit of x has height 0. By
Northcott’s theorem, this orbit must be finite. Thus x must be preperiodic.

Conversely, if x is preperiodic say, φk(x) = φ`(x) with k 6= `, then

ĥL(φk(x)) = ĥL(φ`(X)), or qkĥL(x) = q`hL(x). Thus ĥL(x) = 0.

Now we apply the Northcott theorem to give:

Corollary 4.1.4. For any number D, the set of preperiodic points on X with
degree bounded by D is finite.

Remark 4.1.5. There are some conjectures concerning the lengths of orbits
of preperiodic points and heights of non-torsion points:

1. If x is non-preperiodic then a Lehmer type conjecture states that

ĥL(x) ≥ c · deg(x)−1.
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2. If x is a preperiodic point, then the length ord(x) of the orbit of x
should have the bound

ord(x) ≤ c deg(x).

3. (Morton-Silverman [45]) For all positive integers D, N , d with d > 2,
there exists an integer κ(D,N, d) such that for each number field of
degree D over Q, and each finite endomorphism ψ : PNk −→ PNk of
degree dN , the number of preperiodic points ψ in PN(k) is less than
or equal to κ(D,N, d). By Fakhruddin [23], this conjecture implies the
corresponding uniform on torsion points on abelian varieties.

See Fakhruddin [23] for some other interesting questions about rational points
on a dynamical system.

Rational points

From the classification in §2, one sees that for a polarized endomorphism
φ : X −→ X, X is either a quotient of an abelian variety or a rationally
connected variety. Thus it is conjectured that for some finite extension F of
K, the set of rational points X(F ) is Zariski dense in X. Here we would like
to conjecture that this already true for some orbits:

Conjecture 4.1.6. Let φ : X −→ X be an endomorphism of a projective
variety defined over a number field K with a polarization. Then there is a
point x ∈ X(K̄) such that the forward orbit

{x, φ(x), · · · , φk(x), · · · }

is Zariski dense in X.

Small points

In the following we want to extend the dynamic Manin-Mumford Conjecture
1.2.1 and the equidistribution conjecture for small points to

Conjecture 4.1.7 (Dynamic Bogomolov conjecture). A subvariety Y
of X is preperiodic if and only if for any Zariski open subvariety U of Y , and
for any positive number ε > 0, there is a point x ∈ U(Q̄) such that ĥL(x) < ε.
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Conjecture 4.1.8 (Equidistribution of dynamically generic small
points). Fix a complex place of K. Let xi be a sequence of points on X such
that no infinite subsequence is included in a proper preperiodic subvariety,
and that limi→∞ ĥL(xi) = 0. Then the Galois orbits of xi are equidistributed
with respect to the canonical measure on X.

What is proved?

1. If X is an abelian variety, then both conjectures were proved in [64]
and [58].

2. If X is the multiplicative group then Conjecture 4.1.7 was proved in
[61], and the equidistribution Conjecture 4.1.8 was proved by Bilu [8].

3. If X is an almost split semiabelian group, then the Bogomolov conjec-
ture was proved by Chambert-Loir [17].

4.2 Metrized line bundles and heights of subvarieties

In this subsection, we want to associate every metrized line bundle a height
function. By an integral and hermitian model of (X,L) we mean a triple

L̄ := (X̃, L̃, ‖ · ‖v) where

1. X̃ is an projective and flat scheme over SpecOK with generic fiber X;

2. L̃ is a line bundle on X̃;

3. ‖ · ‖v is a collection metrics of Lv := LK,v⊗C on Xv = X⊗v C for each
embedding v : K −→ C. We assume that for an embedding v and its
complex conjugate vc,

‖`‖v(x) = ‖`c‖vc(xc).

Here the bar map is the complex conjugation

Lv c //

��

Lvc

��
Xv

c // Xvc
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Let x be a point in X(Q̄). Then the Zariski closure x̄ of x has a normal-

ization f : SpecOF → X̃ where OF is the ring of integers of some number
field F over K. The invertible OF -module N := f ∗L is equipped with her-
mitian metric on N ⊗σ C for each embedding σ : F → C. Then we define
the degree of L̄ on x̄ by

degL̄x̄ = log
#N/nOF∏
v|∞ ‖n‖v

where n is any nonzero element in N . One can show that

hL̄(x) =
1

[F : Q]
degL̄(x̄).

One immediate advantage of using metrized line bundles is to extend the
definition of heights to arbitrary cycles of X̃ by using intersection theory of
Gillet and Soulé [26]. Indeed, on a subvariety Y of X over K of dimension
d, the intersection number of the metrized line bundles L̄1, · · · , L̄d can be
computed by induction:

ĉ1(L̄1) · · · ĉ1(L̄d) · Y =ĉ1(L̄1) · · · ĉ1(L̄d−1) · [divs]

−
∑
v|∞

∫
Xv(C)

log ‖s‖vc1(L̄1,v) · · · c1(L̄d−1,v)

where s is a nonzero section of Ld on Y .
If Y is a closed subvariety of X, then the height hL̄(Y ) is defined by the

formula

hL̄(Y ) =
degL̄(Ỹ )

(dimY + 1) degL(Y )

where Ỹ is the Zariski closure of Y in X̃.

Integrable metrized line bundles [62]

Consider a projective variety X over SpecK. For a line bundle L on X and
an integral model (X̃, L̃) of (X,Le) over SpecOK , one can define an adelic
metric ‖ · ‖L̃ =

{
‖ · ‖v, v ∈ S

}
on L, where e is a positive integer, S is the

set of places of K, and ‖ · ‖v is a metric on L⊗K Kv on X(Kv). The metrics
constructed this way are called smooth metrics. The metric so obtained will
be invariant under the Galois group Gal(K̄v/Kv).

54



Let L1, · · · ,Ld (d = dimX+1) be line bundles on X. For each positive in-

teger n, let (X̃n, L̃1,n, · · · , L̃d,n) be an arithmetic model of (X,Le1,n1 , · · · ,Led,nd )
on SpecOK . Assume for each i that (L, ‖ · ‖L̃i,n) converges to an adelic

metrized line bundle Li. One might ask whether the number

cn =
c1(L̃1,n) · · · c1(L̃d,n)
e1,n · · · ed,n

in Gillet-Soulé’s intersection theory converges or not.
We showed in [62] that cn converges if all L̃i,n are relatively semipositive,

and that limn→∞ cn depends only on Li. We say that an adelic line bundle

L is integrable if L ∼→ L1 ⊗ L
−1

2 with Li semipositive. It follows that Gillet-
Soulé’s theory can be extended to integrable metrized line bundles. Some
theorems such as the Hilbert-Samuel formula, the Nakai-Moishezon theorem,
and the successive minima inequality remain valid on semi-smooth metrized
line bundles.

Admissible metrized line bundles [62]

Let φ : X → X be an endomorphism of a projective variety with a polar-
ization over K. Thus we have an ample line bundle and an isomorphism
α : Lq ' φ∗L with q > 1. Using Tate’s argument, in [62] we constructed a
unique integrable metric ‖ · ‖ on L such that

‖ · ‖q = α∗φ∗‖ · ‖.

Now for any effective cycle Y of X of pure dimension, we can define an
(absolute) height

hL(Y ) =
c1(L

∣∣
Y
)dimY+1

(dimY + 1) degL(Y )
.

The height hL can be characterized by the property that

hL(φ(Y )) = qhL(Y ).

As Tate did, hL can be defined without an admissible metric. Some situations
are studied by Philippon [49], Kramer [35], Call and Silverman [11], and
Gubler [29]. In this case, if Y is preperiodic: the orbit

{Y, f(Y ), f2(Y ), · · · }
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is finite, then hL(Y ) = 0.
We showed in [62] that the Bogomolov conjecture is equivalent to the

following converse:

Conjecture 4.2.1. Let φ : X −→ X be an endomorphism of a projective
variety over a number field K with a polarization by an ample line bundle L.
Then hL(Y ) = 0 if and only if Y is preperiodic.

This is a theorem [61] for the case of multiplicative group. A consequence
is the generalized Lang’s conjecture which claims that if Y is not preperiodic
then the set of preperiodic points in Y is not Zariski dense. Lang’s conjecture
is proved by Laurent [37] and by Raynaud [51] for abelian varieties.

Measures on Berkovich spaces [30] [16]

Fix a place v of K. Then there is a v-adic analytic space Xan
v – Berkovich

space [7]. If v is complex this is usual Xv(C); if v is real this is Xv(C)/{1, c}
where c is the complex conjugation on Xv(C). For v a finite place, we have
an embedding of topology space |Xv| −→ Xan

v with dense image, where |Xv|
denotes the set of closed points on Xv with v-adic topology, or equivalently,
the set of Galois orbits of X(K̄v) under Gal(K̄v/Kv). Moreover the metrized
line bundles on some model of Xv over OKv will induce some continuously
metrized line bundles on Xan

v whose restriction on |Xv| is the usual metrized
line bundles constructed as above. Thus we will have the notion of integrable
metrized line bundles.

A continuous function f on Xan
v is called smooth if its restriction on |Xv|

is the logarithm of a smooth metric ‖ · ‖v at v of OXan
v

defined by an integral
model:

f = log ‖1‖.
By the work of Gubler [30], the smooth functions are dense in the continuous
functions on Xan

v . In other words, let C∞(|Xv|) denote the space of smooth
functions on |Xv| which may not be closed under multiplication, and let
R(Xv) be the ring of functions on |Xv| generated by smooth functions with
supremum norm. Then C∞(|Xv|) is dense in R(Xv) and Xan

v as a topological
space is the spectrum of R(Xv):

Xan
v = Homcont(R(Xv),R).

Here the right hand side stands for continuous homomorphisms of R-algebras.
In other words, X is the unique compact space such that C(Xan

v ) = R(|Xv|).
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Now we consider the situation of a polarized dynamical system (X,φ,L).
For any subvariety Y of Xv of dimension d and integrable metrized line
bundles L̄1, · · · , L̄d, Chambert-Loir [16] defined the measure

c1(L̄1) · · · c1(L̄d)δY an
v

supported on the image Y an
v which has the usual properties as in the archimedean

case in §3.1
For example, for a subvariety Y of X over K of dimension d and adelic

metrized line bundles L̄1, · · · , L̄d, one can compute the intersection by in-
duction:

ĉ1(L̄1) · · · ĉ1(L̄d) · Y =ĉ1(L̄1) · · · ĉ1(L̄d−1) · [divs]

−
∑
v

∫
Xan
v

log ‖s‖vc1(L̄1,v) · · · c1(Ld−1,v)δY an
v

where s is a nonzero section of Ld on Y .
In this case, the construction of Chambert-Loir as above gives the canon-

ical measures on Xan
v for each integral subvariety δY for each embedding

v : K −→ Cp:
dµY,v := c1(L̄v)dimY · δY an

v
/ degL(X).

One can show an analogue of Proposition 3.1.5, such the support of the
measure is any Zan

v for any subvariety Z of Y .
We want propose a generalization of the equidistribution conjecture:

Conjecture 4.2.2 (v-adic Equidistribution of dynamically generic
small points). Let φ : X −→ X be an endomorphism of a projective variety
over a number field K with a polarization by an ample line bundle L. Let
v be a place of K. Fix an embedding v : Kv −→ Cp and write Xan

v for
the induced analytic space. Let xi be a sequence of points on X such that
no infinite subsequence is included in a proper preperiodic subvariety, and
that limi→∞ ĥL(xi) = 0. Then the Galois orbits of xi are equidistributed with
respect to the canonical measure on Xan

v .

Remark 4.2.3. We would like to consider an adelic version of above equidis-
tribution. Let φ : X −→ X be an endomorphism of a projective variety over
a number field K with a polarization by an ample line bundle L. Let S be a
finite set of places K. For each place v ∈ S, fix an embedding v : Kv −→ Cp

and write Xan
v for the induced analytic space. Let dµv denote the probability
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measure on Xan
v . Let xi be a sequence of points on X such that no infi-

nite subsequence are included in a proper preperiodic subvariety, and that
limi→∞ ĥL(xi) = 0. Then we want to conjecture that the Galois orbits of
xi are equidistributed with respect to the canonical measure on

∏
Xan
v with

respect to the product measures dµv.
In one special case where S is the set of places over a prime p, then we

may reduce the conjecture for the dynamical system on ResK/Q(X) at the
place p. Indeed, by definition ResK/Q(X)(L) = X(K ⊗ L). Thus its fiber
over p is given by X ⊗K (K ⊗Qp) =

∏
v|pXv.

Remark 4.2.4. We still have some topological interpretation of the above
conjecture by introducing the distributional topology on Xan

v . We will still
have a conjecture that the support of dµv is Zariski dense. Also we have the
analogue of Proposition 4.1.2: the v-adic equidistribution conjecture plus the
density of the support of (dµv) will implies the “if” part of conjecture 1.2.1.

Remark 4.2.5. In [50], Szpiro and Tucker gave a formula for canonical heights
for dynamical system on P1 by working on successive blow-ups.

4.3 A generic equidistribution theorem

In this section we want to show that the Bogomolov conjecture is equivalent
to the equidistribution conjecture. This is actually a consequence of the
following equidistribution theorem for Galois orbits of generic sequences of
small points:

Theorem 4.3.1 (Equidisdibution for Zariski generic small points
[57], [64], [16], [60]). Let X be a projective variety over a number field K
of dimension n. Let v be a place of K. Let L̄ = (L, ‖ · ‖v) be a metrized line
bundle on X such that the following hold:

1. L is ample,

2. ‖ · ‖v is semipositive,

3. hL̄(X) = 0.

Let xn be a sequence of points on X such that limhL̄(xn) = 0 and that no
infinite subsequence of xn is included in a proper subvariety. Then the Galois
orbits of xn are equidistributed in Xan

v with respect to the measure

dµ := c1(Lv, ‖ · ‖v)n/ degL(X).
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Corollary 4.3.2. The dynamic Bogomolov conjecture 4.1.7 is equivalent to
the equidistribution conjecture 4.1.8 and 4.2.2.

Proof. By a standard trick, we need only show that any infinite subsequence
xin contains another infinite subsequence whose Galois orbits are equidis-
tributed. With xin replaced by a subsequence we may assume the following:

1. the Zariski closure Y of {Γxin , n = 1, · · · } is an integral subvariety of
X;

2. no infinite subsequence of xin is included into a proper subvariety of Y .

By the Bogomolov conjecture, Y is a preperiodic subvariety of X. By the
assumption of the conjecture 4.2.2, X = Y . Now Theorem 4.3.1 gives the
equidistribution of Galois orbits.

Sketch of proof of Theorem 4.3.1

The theorem was first proved in Szpiro-Ullmo-Zhang [57] when XK is smooth
and the curvature of L̄ is smooth and positive point-wise on X(C), and
extended in [64] when XC is a subvariety of a smooth variety Y and L̄C is the
restriction of a metrized line bundle M with smooth and positive curvature
point-wise. Then Chambert-Loir [16] further extended all of these results to
v-adic Berkovich spaces. The general case stated here is due to Yuan [60] as
a consequence of his theorem of arithmetic bigness of line bundles:

Theorem 4.3.3 (Yuan [60]). Let L̄1 and L̄2 be two arithmetically ample
line bundles on X such that

c1(L̄1)
n+1 − (n+ 1)c1(L̄1)

n · c1(L̄2) > 0.

Then the bundle L̄1 ⊗ L̄−1
2 is big in the following sense:

log #
{
s ∈ Γ(X, (L1 ⊗ L−1

2 )k) : ‖s‖sup ≤ 1
}
≥ ckn+1 + o(kn+1)

where ‖ · ‖sup = supv ‖ · ‖v,sup is the superum norm over all places and c is a
positive number independent of k

Let f be an semi-smooth function on Xan
v . For each t ∈ R, let L̄t denote

the metrized line bundle (L, ‖ · ‖t) with adelic metric ‖ · ‖t = ‖ · ‖e−ft (which
differs from ‖ · ‖ only at v) . Since f is smooth, we have a line bundle OX(f)
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on a model of X induces the metric on OX such that the induced metric has
property ‖1‖v = ef and ‖1‖w = 1 for w 6= v. It is easy to see that there are
two semi-ample line bundles M̄1 and M̄1 such that

O(f) = M̄1 ⊗ M̄−1
2 .

Now we have expression

c1(L̄t) = c1(L̄ ⊗ M̄t
1)− c1(M̄t

2).

Now we apply Yuan’s bigness theorem to the two line bundles on the right
hand side. The quantity in Yuan’s theorem is

(c1(L̄) + tc1(M̄1))
n+1 − (n+ 1)(c1(L̄) + tc1(M̄))n(tc̄1(M2))

=tc1(L̄)n(c1(M̄1)− c1(M̄2)) +O(t2)

=(n+ 1)tc1(L̄)n · c1(O(f)) +O(t2)

=(n+ 1)t

∫
fc1(L̄)n +O(t2)

Thus
∫
fc1(L̄)n > 0 will imply that L̄t is big. In this case there is a

section s of L̄kt with norm ≤ 1. Now let us use this section to compute the
heights of x ∈ X(K̄) when x not in the divisor of s,

hL̄t(x) = −1

k

1

deg x

∑
v

∑
σ:K(x)−→K̄v

log ‖s‖v(σ(x)) ≥ 0.

On the other hand, we can compute the height by the additivity

L̄t = L̄+O(tf)

and the section 1 for O(tf) with norm e−tf :

hL̄t(x) =hL̄(x) + hO(tf)(x)

=hL̄(x) +
t

deg x

∑
σ:K(x)−→K̄v

f(σ(x))

Combining both expressions we obtain that
∫
fc1(L̄)n > 0 implies that

for x in a Zariski dense subset,

t

deg x

∑
σ:K(x)−→K̄v

f(σ(x)) ≥ −hL̄(x).
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Now we apply this inequality to xn in the Theorem 4.3.1 to obtain that

lim inf
n−→∞

t

deg xn

∑
σ:K(xn)−→K̄v

f(σ(xn)) ≥ 0.

For arbitrary f , we may replace f by f −
∫
fdµ + ε (which has positive

integral ε > 0 ) to obtain the following unconditional inequality

lim inf
n−→∞

1

deg x

∑
σ:K(xn)−→K̄v

f(v(xn)) ≥
∫
fdµ.

We may replace f by −f in the above expression to obtain

lim sup
n−→∞

1

deg x

∑
σ:K(xn)−→K̄v

f(σ(xn)) ≤
∫
fdµ.

Thus we have shown that

lim
n−→∞

1

deg x

∑
σ:K(xn)−→K̄v

f(σ(xn)) =

∫
fdµ.

Remark 4.3.4. When dimX = 1, Theorem 4.3.1 has been proved by A.
Chambert-Loir in [17] using a bigness type result of Autissier [1] for arith-
metic surfaces. In the spacial case where X = P1, and L is equipped with the
canonical metric induced from an endomorphism φ of degree > 1, Theorem
4.3.1 has been proved by two different groups of people: M. Baker and R.
Rumely [3] and C. Favre and J. Rivera-Letelier in [24].
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