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Abstract. In this paper, based on an idea of Tian we establish a new sufficient condition for a
positive integer n to be a congruent number in terms of the Legendre symbols for the prime factors
of n. Our criterion generalizes previous results of Heegner, Birch–Stephens, Monsky, and Tian, and
conjecturally provides a list of positive density of congruent numbers. Our method of proving the
criterion is to give formulae for the analytic Tate–Shafarevich number L(n) in terms of the so-called
genus periods and genus points. These formulae are derived from the Waldspurger formula and the
generalized Gross–Zagier formula of Yuan–Zhang–Zhang.
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1. Introduction. A positive integer n is called a congruent number if it is the
area of a right-angled triangle, all of whose sides have rational lengths. The congruent
number problem, the oldest unsolved major problem in number theory, is the question
of finding an algorithm for deciding in a finite number of steps whether or not a given
integer is a congruent number. In this paper, based on an idea of Tian [26] we will
establish a new sufficient condition for n to be congruent in terms of the Legendre

symbols
(

p
q

)
, with p and q running over the prime factors of n.

This type of criterion was first given by Heegner [10] and Birch–Stephens [1] for
some n with a single odd prime factor, and by Monsky [18] for some n with two
odd prime factors, and finally Tian [26] saw how to extend it to some n with an
arbitrary number of prime factors. Our criterion generalizes all of these works, and
we believe that it has potential applications to the following distribution conjecture
of congruent numbers: all n ≡ 5, 6, 7 (mod8) are congruent and all but density 0
of n ≡ 1, 2, 3 (mod8) are not congruent. Note that in [29], Tunnell gave a necessary
condition for n to be congruent in terms of the numbers of solutions of some equations
n = Q(x, y, z) with positive definite quadratic forms Q(x, y, z) over Z. Tunnell’s
criterion is also sufficient if the rank part of the BSD conjecture is assumed.

In the following, we would like to describe our main results. Let us first consider
the elliptic curve

En : ny2 = x3 − x,

where n is assumed to be a square-free positive integer throughout this paper. Then
it is well known that n is congruent if and only if En(Q) has a positive rank. This is
equivalent to the vanishing of L(En, 1) under the rank part of the Birch-Swinnerton-
Dyer (BSD) conjecture

rank En(Q) = ords=1L(En, s).
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By Birch–Stephens [1], the root number

ε(En) =

{
1 if n ≡ 1, 2, 3 (mod8),

−1 if n ≡ 5, 6, 7 (mod8).

It follows that ords=1L(En, s) is even (resp. odd) if and only if n ≡ 1, 2, 3 (mod8)
(resp. n ≡ 5, 6, 7 (mod8)). The density conjecture of congruent numbers is a con-
sequence of the rank part of the BSD conjecture and the folklore conjecture that
ords=1L(En, s) ≤ 1 for all but a density zero subset of the set of square free positive
integers.

By the works of Coates–Wiles [4], Rubin [22], Gross–Zagier [9] and Kolyvagin
[17], the rank part of the BSD conjecture holds and the Tate-Shafarevich group is
finite whenever L(En, s) has a zero of order at most 1 at s = 1. Thus we define an
invariant L(n) of En as follows:

L(n) :=

⎧⎪⎨⎪⎩
[
L(En, 1)/(2

2k(n)−2−a(n)Ωn,∞)
]1/2

if ords=1L(En, s) = 0,[
L′(En, 1)/(2

2k(n)−2−a(n) · Ωn,∞Rn)
]1/2

if ords=1L(En, s) = 1,

0 if ords=1L(En, s) > 1.

Here
• k(n) is the number of odd prime factors of n;
• a(n) = 0 if n is even, and 1 if n is odd;
• the real period

Ωn,∞ =
2√
n

∫ ∞

1

dx√
x3 − x

;

• Rn is twice of the Néron–Tate height of a generator of En(Q)/En(Q)tor (in
the case of rank one).

The definition is made so that, in the case ords=1L(En, s) ≤ 1, the full BSD conjecture
asserts that

#X(En) = L(n)2. (1.0.1)

Moreover, the density conjecture ([5] and [14]), applied to the quadratic twist family
En, implies that L(n) is non-zero for a density one subset of the set of all square free
positive integers.

The number L(n) is a priori a complex number defined up to a sign. In this
paper, we show that L(n) is an integer (up to a sign), and give a criterion for when
it is odd in terms of the parities of the genus class numbers

g(d) := #(2Cl(Q(
√
−d)))

of positive divisors d of n. It is clear that g(d) is odd if and only if Cl(Q(
√−d)) has

no element of exact order 4. Thus by Rédei [21], the parity of g(d) can be computed

in terms of the Rédei matrix of the Legendre symbols

(
p

q

)
of prime factors p, q of

d. The choice of the sign of L(n) is not an issue in this paper since we are mainly
interested in its parity. We divide our results naturally into two cases by the root
number ε(En).
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Theorem 1.1. Let n ≡ 1, 2, 3 (mod8) be a positive and square-free integer. Then
L(n) is an integer, and

L(n) ≡
∑

n=d0d1···d�

di≡1 (mod8), i>0

∏
i

g(di) (mod 2).

Here all decompositions n = d0 · · · d� are non-ordered with di > 1 for all i ≥ 0. The
right-hand side is considered to be 1 if n = 1.

The following theorem is clearly predicted by the BSD conjecture and recently
proved by

Theorem 1.2 (Alexander Smith [25], Theorem 4.1 and Corollary 4.2). For
n ≡ 1, 2, 3 (mod8), the following conditions are equivalent:

• rankZ(En(Q)) = 0 and X(En)[2
∞] = 0;

•
∑

n=d0d1···d�

di≡1 (mod 8), i>0

∏
i

g(di) ≡ 1 (mod 2).

Moreover, the full BSD conjecture holds at a positive proportion of the quadratic twist
family En.

Combining Theorems 1.1 and 1.2, we obtain the following special case of the
conjecture of Birch and Swinnerton-Dyer.

Corollary 1.3. For every square-free positive integer n congruent to 1, 2 or 3
modulo 8, we have that L(n) is odd if and only if En(Q) is finite and X(En)[2

∞] = 0.
Moreover, when these statements holds, X(En) finite, and its order is as predicted
by the conjecture of Birch and Swinnerton-Dyer.

Of course, X(En) is finite when L(n) is odd because we then have L(En, 1) �= 0,
and the statement about the order of X(En) then follows from the work of Rubin
([23]) since the corollary proves the 2-primary part of X(En) is in accord with the
conjecture of Birch and Swinnerton-Dyer. There would be great interest in establish-
ing the analogue of this corollary for the family of quadratic twists of every elliptic
curve defined over Q. However, apart from the above result, the analogue of this
corollary is only known at present for the family of quadratic twists of the elliptic
curve E = X0(49) ([6] and [3]), where it is proven by the methods of Iwasawa theory,
which are very different from those used in this paper.

For n ≡ 5, 6, 7, we introduce an integer ρ(n) ≥ 0 by

2ρ(n) = [En(Q) : ϕn(An(Q)) + En[2]],

where ϕn : An → En is a 2-isogeny from An : 2nv2 = u3 + u to En : ny2 = x3 − x
defined by

ϕn(u, v) =

(
1

2

(
u+

1

u

)
,
v

2u

(
u− 1

u

))
.

Theorem 1.4. Let n ≡ 5, 6, 7 (mod8) be a positive and square-free integer. Then
L(n) is an integer. If n ≡ 5, 7 (mod8), then 2−ρ(n)L(n) is even only if∑

n=d0···d�

di≡1 (mod 8), i>0

∏
i

g(di) ≡
∑

n=d0···d�,
d0≡5,6,7 (mod8)
d1≡1,2,3 (mod8)
di≡1 (mod8), i>1

∏
i

g(di) ≡ 0 (mod 2).
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If n ≡ 6 (mod 8), then 2−ρ(n)L(n) is even only if∑
n=d0···d�,

d0≡5,6,7 (mod8)
d1≡1,2,3 (mod8)
di≡1 (mod8), i>1

∏
i

g(di) ≡ 0 (mod 2).

Here all decompositions n = d0 · · · d� are non-ordered with all di > 1.

Our method of proving these theorems is to give formulae of L(n) in terms of
the so-called genus periods and genus points (cf. Theorems 2.2 and Theorem 3.5).
These formulae are derived from the Waldspurger formula in [31] and the generalized
Gross–Zagier formula of Yuan–Zhang–Zhang [33] using an induction argument of Tian
[26].

Remark 1.5. For each residue class in {1, 2, 3, 5, 6, 7 (mod8)}, we believe that
our formulae in Theorems 1.1, 1.4 give a positive density of n with L(n) odd. For
n ≡ 1, 2, 3 (mod8), this is already implied by the BSD formula (1.0.1) modulo 2 and
the work of Heath-Brown [11]. Moreover, (1.0.1) modulo 2 can be checked case by
case. In fact, in [19], the F2-rank of Sel2(En)/En(Q)[2] can be also calculated in terms
of Legendre symbols for every n.

In the following we give some criteria of congruent numbers and non-congruent
numbers extending the work of Tian [26] in terms of a single genus class number.

Corollary 1.6. Let n be a square-free positive integer such that Q(
√−n) has

no ideal classes of exact order 4. For any integer r, let Ar, Br denote the following
properties of n:

Ar(n) : #{p | n : p ≡ 3 (mod4)} ≤ r;

Br(n) : #{p | n : p ≡ ±3 (mod8)} ≤ r.

Then in the following case, n is a non-congruent number:

• n ≡ 1 (mod8) with A2(n) or B2(n),
• n ≡ 2 (mod8) with A0(n) or B2(n),
• n ≡ 3 (mod8) with A1(n) or B1(n).

In the following case, n is a congruent number:

• n ≡ 5 (mod8) with A0(n) or B1(n),
• n ≡ 7 (mod8) with A1(n) or B0(n).

Proof. By Rédei [21], g(d) is even in any of the following cases:

• d = p1 · · · pk ≡ 1 (mod 8), pi ≡ ±1 (mod8), k > 0;
• d = 2p1 · · · pk, pi ≡ ±1 (mod8), k > 0;
• d = p1 · · · pk ≡ 1 (mod 8) , pi ≡ 1 (mod 4), k > 0.

It follows that under any of the conditions of the corollary, the following congruence
holds: ∑

n=d0d1···d�
di≡1 (mod8), i>0

∏
i

g(di) ≡ g(n) (mod 2).

The conclusion follows from Theorem 1.1 and 1.4.
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2. Quadratic periods and genus periods. The goal of this section is to prove
Theorem 1.1. Assume that n ≡ 1, 2, 3 (mod8) is positive and square-free throughout
this section.

2.1. Quadratic periods and genus periods. Let Kn = Q(
√−n) be the

quadratic imaginary extension. For any decomposition n = d1 · d2 with d2 pos-
itive and odd, we have an unramified quadratic extension Kn(

√
d∗2) of Kn where

d∗2 = (−1)(d2−1)/2d2. By the class field theory, the extension gives a quadratic char-
acter

χd1,d2 : Cln −→ {±1}

on the class group Cln of Kn. In the degenerate case d2 = 1, we take the convention
χd1,d2 = 1. Conversely, by Gauss’s genus theory, any quadratic character of Cln comes
from such a decomposition n = d1 · d2.

The Rankin-Selberg L-series of the elliptic curve E : y2 = x3−x twisted by χd1,d2

is given by

L(EKn , χd1,d2 , s) = L(Ed1 , s)L(Ed2 , s).

In the following, we give a formula for L(d1)L(d2) using the Waldspurger formula.
Notice that such formulae concern the quaternion algebra determined by the local
root numbers of the L-function L(EKn , χd1,d2 , s).

Let B be the quaternion algebra over Q ramified exactly at 2 and ∞. In fact, B
is the classical Hamiltonian quaternion algebra (over Q):

B = Q+Qi+Qj +Qk, i2 = j2 = −1, ij = k = −ji.

Let OB be the standard maximal order of B:

OB := O′
B + Zζ, O′

B := Z+ Zi+ Zj + Zk, ζ = (−1 + i+ j + k)/2.

Fix an embedding τ : Kn ↪→ B such that the image of OKn lies in OB . If
n ≡ 1 (mod8), we further specify the embedding by

τ(
√−n) = ai+ bj + ck

where n = a2 + b2 + c2 with a, b, c ∈ Z and 4|c. It is a classical result of Legendre
that we can find integer solutions a, b, c if n is not of the form 4e(8m− 1). The more
specific condition n ≡ 1 (mod8) implies the existence of a solution with 4|c. See [13,
Theorem 5] for example.

By the Jacquet–Langlands correspondence, the newform fE ∈ S2(Γ0(32)) corre-
sponding to the elliptic curve E : y2 = x3 − x defines an automorphic representation
π = ⊗vπv of B×(A). Here A stands for the adéle ring of Q. Let B̂ (resp. Q̂) de-
note the finite part of B(A) (resp. A). Note that the central character of π and
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the infinite part π∞ are trivial, so π = ⊗vπv is naturally realized as a subspace of
C∞(B×\B̂×/Q̂×).

Denote by πZ the Z-submodule of π consisting of elements of π which takes
integral values on B×\B̂×/Q̂×. Denote Un = R̂×

n ·K×
n,2, an open subgroup of B̂×.

Here Rn = OKn + 4OB is an order of B of conductor 32. Consider the Un-invariant
submodule πUn

Z of πZ. We will see that πUn

Z is free of rank 1 over Z, as the special case
of χ = 1 in Theorem 2.6. This is an integral example of the multiplicity one theorem
of Tunnell [28] and Saito [24] reviewed in Theorem A.1 and Corollary A.2.

Fix a Z-generator fn of πUn

Z , which is determined up to multiplication by ±1.
Define the quadratic period P (d1, d2) by

P (d1, d2) :=
∑
t∈Cln

fn(t)χd1,d2(t).

Theorem 2.1. The period P (d1, d2) �= 0 only if d2 ≡ 1 (mod 8). In that case,

P (d1, d2) = ±2k−a · wK · L(d1)L(d2),

where 2wK is the number of roots of unity in K, k is the number of odd prime factors
of n = d1d2, and a = 1 if n is odd and a = 0 otherwise.

Now we define the genus period Q(n) by

Q(n) :=
∑

t∈2Cln

fn(t).

Notice that P (d1, d2) and Q(n) are well-defined up to signs.

Theorem 2.2. The number L(n) is an integer and satisfies

L(n) ≡
∑

n=d0d1···d�

di≡1 (mod8), i>0

∏
i

Q(di) (mod 2).

Here in the sums, all decompositions n = d0 · · · d� are non-ordered with di > 1 for all
i ≥ 0.

Now Theorem 1.1 follows from Theorem 2.2 and the following result.

Proposition 2.3. One has

fn

(
(B̂×)2

)
⊂ 1 + 2Z.

Therefore,

Q(n) ≡ g(n) (mod 2).

Theorems 2.1 and 2.2 and Proposition 2.3 will be proved in section 2.3.
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2.2. Primitive test vectors. In this subsection, we give an explicit construc-
tion of the test vector fn, to prepare for the proof of the results in the last subsection.

Resume the above notations related to Kn, B and π. The local components of
the automorphic representation π = ⊗vπv of B×(A) have the following properties:

• π∞ is trivial;

• πp is unramified if p �=∞, 2, i.e., πO×B,p is one-dimensional;
• π2 has a conductor of exponent 4 (cf. [7]), i.e., for a uniformizer λ (for
example, 1 + i) of B at 2,

π
1+λ4OB,2

2 �= 0, π
1+λ3OB,2

2 = 0.

Let U =
∏

p Up be the open compact subgroup of Ô×
B with Up = O×

B,p if p �= 2, and

U2 = Z×
2 (1 + λ4OB,2) = Z×

2 (1 + 4OB,2).

Then πU � πU2
2 is stable under the action of B×

2 , since U2 is normal in B×
2 . By the

irreducibility of π2, we further have πU2
2 = π2.

By definition, πU is a subspace of C∞(B×\B̂×/Q̂×U), the space of maps from

(the finite set) B×\B̂×/Q̂×U to C. The following is a more detailed description.

Theorem 2.4.

(1) The space πU is a 6-dimensional irreducible representation of B×
2 , with an

orthogonal basis

fδ ∈ C∞(B×\B̂×/Q̂×U), δ ∈
{±i± j

2
,
±j ± k

2
,
±k ± i

2

}/
{±1}.

Here for each δ, the function fδ is determined by its restriction to 1 + 2OB,2

and

fδ(1 + 2x) = (−1)Tr(δx), ∀x ∈ OB,2.

(2) The representation πU of B×
2 has an integral structure πU

Z generated by

fi±j :=
1

2
(f i+j

2
± f i−j

2
), fj±k :=

1

2
(f j+k

2
± f j−k

2
), fk±i :=

1

2
(f k+i

2
± f k−i

2
).

Moreover, this Z-basis is orthonormal with respect to the Tamagawa measure
on B×\B×(A)/A×.

(3) Let χ0 be the character of B×(A) associated to the quadratic extension Q(i),
i.e. the composition

B×(A)
det−→ A× � Q× × (Ẑ× × R×

+) −→ Ẑ× −→ (Z/4Z)× � {±1}.
Then π � π ⊗ χ0 and

χ0f i+j
2

= f i−j
2
, χ0f j+k

2
= f j−k

2
, χ0f k+i

2
= f k−i

2
.

To deduce the theorem, we first need the following precise description of
B×\B̂×/Q̂×U .

Lemma 2.5. The following natural maps are bijective:

OB,2/(Z2 + 2OB,2)
∼−→ (1 + 2OB,2)/Z

×
2 (1 + 4OB,2)

∼−→ B×\B̂×/Q̂×U,
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where the first map is defined by x �→ 1 + 2x, and the second one is given by the
natural inclusion B×

2 ⊂ B̂×.
Moreover, under the composition

B×\B×(A)/Q̂× −→ B×\B̂×/Q̂×U
∼−→ OB,2/(Z2 + 2OB,2),

the Tamagawa measure on B×\B×(A)/A× transfers to the Haar measure of (the finite
abelian group) OB,2/(Z2 + 2OB,2) of total volume 2.

Proof. We first prove the bijectivity. The first map is clearly a group isomorphism.
For the second map, we use the class number one property of B, i.e.,

B̂× = B× · Ô×
B = B× · B×

2 · U (2).

Here U (2) denotes the subgroup of U with 2-component 1. It follows that

B×\B̂×/Q̂×U � H\B×
2 /Q

×
2 U2, H = B× ∩ (U (2) ·B×

2 ).

It is easy to see that H is a semi-product of λZ, where λ ∈ OB is an element with
reduced norm 2, and the subgroup

O×
B =

{
±1, ±i, ±j, ±k, ±1± i± j ± k

2

}
.

The group O×
B is a semi-product of μ3 generated by ζ = (−1 + i+ j + k)/2 and

(O′
B)

× = {±1, ±i, ±j, ±k}.
Consider the filtration of B×

2 given by

B×
2 ⊃ O×

B,2 ⊃ 1 + λO×
B,2 ⊃ 1 + 2OB,2,

and its induced filtration

H ⊃ O×
B ⊃ (O′

B)
× ⊃ μ2.

It is straight forward to check that these two exact sequences have isomorphic sub-
quotients. It follows that the map H → B×

2 induces an exact sequence

1 −→ μ2 −→ H −→ B×
2 /(1 + 2OB,2) −→ 1.

In other words, the B×
2 is generated by H and the normal subgroup 1 + 2OB,2 with

intersection H ∩ (1 + 2OB,2) = μ2. Thus

H\B×
2 /Q×

2 U2
∼←− μ2\(1 + 2OB,2/1 + 4OB,2)

∼←− (1 + 2OB,2)/Z
×
2 (1 + 4OB,2).

The other two relations can be verified similarly.
Now we treat the measure. Note that the Tamagawa measure gives

B×\B×(A)/A× total volume 2. Then the induced measure on OB,2/(Z2 + 2OB,2)
also has total volume 2. It suffices to check that the induced measure is uniform.
Equivalently, we need to show that vol(B×\B×gQ̂×U) is constant in g ∈ B̂×. By the
first part of the lemma, we can always take a representative g ∈ 1 + 2OB,2 for the

double coset B×gQ̂×U . The key is that gp = 1 for p �= 2. It follows that

B×\B×gQ̂×U = B×\B×Q̂×Ug,
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whose volume is independent of g since the measure is invariant under the right
translation.

In the lemma, the right multiplication action of B×
2 = H · (1 + 2OB,2) on B̂× in-

duces its action on OB,2/(Z2+2OB,2) given by right conjugation of H and translation
of x, for elements 1 + 2x ∈ 1 + 2OB,2.

Consider the spaceA0 ⊆ C∞(B×\B̂×/Q̂×) of forms perpendicular to forms χ◦det
where χ runs over all characters of Q×\Q̂×, then π ⊂ A0. Let AU

0 be the subspace of
A0 of forms invariant under U , then πU ⊂ AU

0 .
The restriction map

AU
0 −→ C[OB,2/(Z2 + 2OB,2)], f �−→ (φf : x �→ f(1 + 2x))

defines an isomorphism between AU
0 and the space A1 of functions φ on OB,2/(Z2 +

2OB,2) perpendicular to the characters 1 and (−1)Tr on OB,2/(Z2+2OB,2). Here the
trace map

Tr : OB,2/(Z2 + 2OB,2) −→ Z2/2Z2

is induced form the reduced trace. The vector space A1 is decomposed into the direct
sum

A1 =
∑
ψ∈Ψ

Cψ,

where

Ψ =
{
ψ ∈ Hom(OB/(2OB + Z), μ2), ψ �= 1, (−1)Tr}

is a set of quadratic characters ψ of OB,2/(Z2 + 2OB,2).
We have an explicit description of forms inAU

0 corresponding to Ψ. Let ℘ = λOB,2

be the maximal ideal of OB,2. Then the trace map defines a perfect pairing

OB,2 ⊗ ℘−1 −→ Zp, (x, y) −→ Tr(xy).

It induces a perfect pairing

(OB,2/2OB,2)⊗ (℘−1/2℘−1) −→ μ2, (x, y) �→ (−1)Tr(xy).

It is easy to see that Ψ corresponds to the subset Δ̄ of elements δ̄ ∈ ℘−1/2℘−1 with
the following properties:

Tr(δ) = 0 (mod 2), δ �= 0, 1 (mod2).

Note that the set

Δ =

{±i± j

2
,
±j ± k

2
,
±k ± i

2

}
in Theorem 2.4 is contained in ℘−1. Thus we can identify Δ̄ = Δ/{±1}. For each
δ ∈ Δ/{±1}, the corresponding form fδ is given by

fδ(g) = (−1)Tr(δx),
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for any g = bh(1 + 2x)u ∈ B̂× with b ∈ B×, h ∈ H , x ∈ OB,2, and u ∈ Q̂×U. Hence,
the space AU

0 is 6-dimensional with the explicit decomposition

AU
0 =

∑
δ∈Δ/{±1}

Cfδ

into characters of (1 + 2OB,2)/(1 + 4OB,2).

Proof of Theorem 2.4. For (1), it suffices to prove that AU
0 is irreducible as a

representation of G := B×
2 /(1 + 4OB,2). Note that G contains a normal and commu-

tative finite subgroup C = (1 + 2OB,2)/(1 + 4OB,2). Thus any invariant subspace V
of AU

0 is a direct sum

V = ⊕χ∈XVχ

over some multiset X of characters of C. The multiset X is stable under the conju-
gation of G. We have seen that Vχ are all one-dimensional, and X is included into
Ψ, the set of characters induced by elements in Δ. Thus we need only prove that G
acts transitively on Δ by conjugations. In fact, Δ is a principal homogenous space of
O×

B/μ2 under conjugation.

Now we treat (2). Note that for any h ∈ H , x ∈ OB,2, and δ ∈ Δ, we have that
hδh−1 ∈ Δ and

π(h(1 + 2x))fδ = ψδ(x)fhδh−1 = ±fhδh−1 ,

where ψδ ∈ Ψ denotes the character x �→ (−1)Tr(δx) on OB,2/(Z2+2OB,2). Therefore,
the action of B×

2 on fi±j is given by

π(h)fi±j = fhih−1±hjh−1 , π(1 + 2x)fi±j ∈ {±fi+j,±fi−j}.

Similar results hold for fj±k and fk±i. Thus πU
Z is an integral structure on πU . The

orthonormality of the basis is a simple consequence of the previous result on the
measures.

For (3), it is clear that χ0 is invariant under the left action of B× · H and the
right action of U and its restriction on 1 + 2OB,2 is given by χ0(1 + 2x) = (−1)Trx
for any x ∈ OB,2. Thus for any x ∈ OB,2,

χ0f i+j
2
(1 + 2x) = (−1)Tr(x+ i+j

2 x) = (−1)Tr(x i−j
2 )(−1)Tr((1+j)x) = f i−j

2
(1 + 2x).

Theorem 2.6. Let K be an imaginary quadratic field and χ a quadratic character
of K̂×/K×Ô×

K such that L(EK , χ, s) has root number +1 (so that 2 cannot split in
K). Let � be a uniformizer of K2 and χ2 the 2-component of χ. Fix a Q-embedding
τ : K ↪→ B such that OK is contained in OB. Then the vector space

πU,χ2 := {f ∈ πU , π(t)f = χ2(t)f, ∀t ∈ K×
2 }

is one-dimensional. All the possible cases of (K2, χ2(�)) are listed below:

(Q2(
√−3), 1), (Q2(

√−1),±1), (Q2(
√−2m), (−1)m−1

2 ), m ≡ 1, 3, 5, 7 (mod8).
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Let g ∈ B×
2 be such that τ ′2 := g−1τ2g is given by

(−1 +√−3)/2 �−→ ζ,
√−1 �−→ k,

√−2 �−→ i+ j,√−10 �−→ i− 3j,
√−6 �−→ i+ j + 2k,

√−14 �−→ −3i+ j − 2k,

respectively in the above cases. Then the vector f = π(g)f0 lies in πU,χ2 , where

f0 =

⎧⎪⎪⎨⎪⎪⎩
f i−j

2
+ f j−k

2
+ f k−i

2
, if K2 = Q2(

√−3),
fi±j =

1
2

(
f i+j

2
± f i−j

2

)
, if (K2, χ2(�)) = (Q2(

√−1),±1),
f i+j

2
, if K2 = Q2(

√−2m) with m odd.

Moreover, πU,χ2

Z := πU
Z ∩ πU,χ2 = Zf .

Definition 2.7. The automorphic forms f and −f described in the theorem are
called primitive test vectors for (π, χ).

The theorem can be interpreted by the multiplicity one theorem of Tunnell [28]
and Saito [24] reviewed in Theorem A.1 and Corollary A.2. In fact, the space

πÔ2,×
B ,χ2 := {f ∈ πÔ2,×

B , π(t)f = χ2(t)f, ∀t ∈ K×
2 }

is at most one-dimensional by the multiplicity one theorem. The theorem confirms
that it is one-dimensional and constructs an explicit generator of the integral structure.

Proof of Theorem 2.6. It suffices to show that f0 is χ2-invariant under the em-
bedding τ ′2 : K ↪→ B.

First consider the case K2 = Q2(
√−3), where

K×
2 /Q×

2 (1 + 4O2) = O×
2 /Z

×
2 (1 + 4O2)

is cyclic of order 6 and generated by ζ and 1 + 2ζ. Note that

ζ−1iζ = j, ζ−1jζ = k, ζ−1kζ = i.

Thus the subspace of πU of forms fixed by ζ ∈ H is 2-dimensional with basis

f i−j
2

+ f j−k
2

+ f k−i
2
, f i+j

2
+ f j+k

2
+ f k+i

2
.

Moreover, note that ψδ(ζ) = 1 for δ = i−j
2 , j−k

2 , k−i
2 and ψδ(ζ) = −1 otherwise. Thus

πU,χ2 is one-dimensional with basis f i−j
2

+ f j−k
2

+ f k−i
2
.

In the case K2 = Q(
√−1), let � = k − 1, we have that

K×
2 /Q×

2 (1 + 4O2) = �Z/4Z × 〈1 +�, 1 + 2�〉.
Note that 1+2� = 2k−1, and ψδ(k) = 1 if δ = i±j

2 and ψδ(k) = −1 otherwise. Thus
the subspace of πU of forms fixed by 1 + 2� is 2-dimensional with basis

fi+j , fi−j ,

where 1 + � = k acts trivially since k−1ik = −i, k−1jk = −j. Finally, since � =
k − 1 ∈ H and

�−1i� = j, �−1j� = −i,�−1k� = k,
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we have that πU,χ2 is one-dimensional with basis fi±j for χ2(�) = ±1.
For the case K2 = Q2(

√−2n) with n = 1, 3, 5, 7, let � =
√−2n, we have that

K×
2 /Q×

2 (1 + 4O2) is generated by the order 2 element � and order 4 element 1 +�.
The embedding τ ′2 maps 1 + � to k(1 + 2(ζ + i))modZ×

2 (1 + 4OB,2). Note that
kik−1 = −i, kjk−1 = −j and

ψδ(ζ + i) =

{
1, if δ = i+j

2 , i+k
2 , j−k

2 ,

−1, otherwise.

It follows that the subspace of πU fixed by τ ′2(1+�) is one-dimensional with basis f i+j
2
.

We have the following decompositions of τ ′2(�) ∈ B×
2 = H · (1 + 2OB,2)modZ×

2 (1 +
4OB,2):

i+ j ∈ H, i− 3j ≡ (i+ j)(1 + 2k),

i+ j + 2k ≡ (j − i)(1 + 2(ζ − k)), − 3i+ j − 2k = (i− j)(1 + 2(ζ − k)).

Note that ψ i+j
2
(k) = 1 and ψ i+j

2
(ζ) = −1, we know that f i+j

2
is χ2-invariant.

2.3. Proofs of Theorems 2.1, 2.2 and Proposition 2.3 . Resume the nota-
tions in §2.1. Especially, fn is a basis of πUn

Z with

Un = R̂×
n ·K×

n,2, Rn = OKn + 4OB.

We first connect it to the primitive test vectors in §2.2.
Recall that in §2.2, we have introduced

U = Ô2,×
B · U2, U2 = Z×

2 (1 + 4OB,2).

In Theorem 2.6 and Definition 2.7, we have introduced the primitive test vectors for
(π, χ). For the connection, it is easy to verify Un = U ·K×

n,2. Hence, fn is a primitive
test vector for (π, χ) if and only if χ2 = 1.

Proof of Theorem 2.1. Write K = Kn for simplicity. The goal is to treat

P (d1, d2) =
∑
t∈Cln

fn(t)χd1,d2(t).

The tool is the Waldspurger formula.
By Cln = K×\K̂×/Ô×

K , the summation is essentially an integration on K×\K̂×.
Since fn is invariant under the action of K×

2 , the integration is nonzero only if χd1,d2

is trivial on K×
2 . In other words, K2(

√
d∗2) splits into two copies of K2 = Q2(

√−n).
This is equivalent to d∗2 ≡ 1 (mod8). Then d2 ≡ ±1 (mod8). We will exclude the case
d2 ≡ −1 (mod 8) later.

Assume d∗2 ≡ 1 (mod 8). Then χd1,d2 is trivial on K×
2 , and fn is a primitive test

vector for (π, χd1,d2) as described in Theorem 2.6. In particular,

(fn, fn)Pet =

⎧⎪⎨⎪⎩
6, if K2 = Q2(

√−3),
1, if K2 = Q2(

√−1),
2, if K2 = Q2(

√−2m) with m = 1, 3, 5, 7.

Apply the explicit Waldspurger formula in Theorem A.4. We have

|P (d1, d2)|2 =
w2

K

253bπ3
· (fn, fn)Pet
(f ′, f ′)Pet

· L(Ed1 , 1)L(Ed2 , 1),
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where b = 1 if 2 is inert in K and b = 0 otherwise, and f ′ is the normalized new form
in the automorphic representation of GL2(A) associated to E.

We claim that

(f ′, f ′)Pet = Ωd1,∞Ωd2,∞ · |D|
1/2

28π3e
,

where D is the discriminant of K and e = 1 if 2 � D and e = 2 otherwise. Let
φ =

∑∞
n=1 anq

n be the corresponding newform of weight 2. Note that

(φ, φ)Γ0(32) =

∫∫
Γ0(32)\H

|φ(z)|2dxdy

and

(f ′, f ′)Pet =

∫
GL2(Q)\GL2(A)/Q×

|f ′(g)|2dg

are related by

(φ, φ)Γ0(32)

vol(X0(32))
=

(f ′, f ′)Pet
2

, where vol(X0(32)) = 16π.

Let ϕ : X0(32) → E be a modular parametrization of degree 2, and ω the Néron
differential on E, and Ω =

∫
E(R)

ω. Note that

ϕ∗ω = 4πiφ(z)dz, 2−1Ω2 =

∫∫
E(C)

|ω ∧ ω|,

and thus

Ω2 = 32π2(φ, φ)Γ0(32).

By definition,

Ωd1,∞Ωd2,∞ = Ω2/
√
d1d2 = 2e−1Ω2/

√
|D|.

Put all these together, we have the formula for (f ′f ′)Pet.
Hence, we have

|P (d1, d2)|2 = 24+cw2
K

L(Ed1 , 1)

Ωd1,∞
· L(Ed2 , 1)

Ωd2,∞
,

where c = 0 if 8 � D and c = 1 otherwise. It gives the formula of the theorem.
It remains to prove that d2 ≡ −1 (mod8) implies P (d1, d2) = 0. This is a direct

consequence from the formula we just proved, since L(Ed1 , 1) = 0 by considering the
root number in this case.

Proof of Theorem 2.2. Let h2(n) = dimF2 Cln/2Cln. By Gauss’s genus theory,
h2(n) + 1 is exactly equal to the number of prime factors of the discriminant of
Kn, and any character of Cln/2Cln is of the form χd1,d2 for some decomposition
d = d1d2 with d2 positive and odd. Moreover, a repetition χd′1,d

′
2
= χd1,d2 occurs only

if (d′1, d
′
2) = (d2, d1) and n ≡ 3 (mod 8).
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Hence, we have the character formula∑
n=d1d2

′
χd1,d2(t) = 2h2(n)δ2Cl(Kn)(t), t ∈ Cln,

where the sum is over ordered (resp. non-ordered) decompositions d = d1d2 if n ≡
1 (mod 8) (resp. n ≡ 3 (mod 8)), and requires d2 to be odd if n ≡ 2 (mod 8). As a
result, we have ∑

n=d1d2

′
P (d1, d2) = 2h2(n)Q(n). (2.3.1)

The summation follows the same rule as above.
The following lemma shows the symmetry in the case n ≡ 1 (mod8).

Lemma 2.8. Assume n ≡ 1 (mod 8). Then for any decomposition d = d1d2 with
d1, d2 > 0,

P (d1, d2) = P (d2, d1).

Proof. Let χ0 be the character on B̂× corresponding to the extension Q(i) over
Q, defined in Theorem 2.4. The two quadratic characters are related by

χd1,d2 = χd2,d1 · χ0.

In fact, for any t ∈ K̂×, we have

χd1,d2(t)χd2,d1(t) =
σt(
√
d1)√
d1

σt(
√
d2)√
d2

=
σt(i)

i
= χ0(t).

In the notation of Theorem 2.6, the primitive test vector is given by fn = π(g)f0
(up to {±1}) with g ∈ B×

2 and

f0 =
1

2
(f i+j

2
+ f i−j

2
) = f i+j

2
· (1 + χ0

2
).

We claim that χ0(g) = 1 by our special choice of τ : Kn ↪→ B at the beginning.
Assuming χ0(g) = 1, then

P (d2, d1) =
∑
t

f i+j
2
(tg)

1 + χ0(t)

2
χd2,d1(t)

=
∑
t

f i+j
2
(tg)

1 + χ0(t)

2
χ0(t)χd1,d2(t)

=
∑
t

f i+j
2
(tg)

1 + χ0(t)

2
χd1,d2(t)

= P (d1, d2).

It remains to check χ0(g) = 1. Recall that g ∈ B×
2 is an element such that

τ ′2 = g−1τ2g : Kn,2 ↪→ B2 gives τ ′2(
√−1) = k. Recall that the embedding τ : Kn ↪→ B

is defined by

τ(
√−n) = ai+ bj + ck
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where n = a2 + b2 + c2 with a, b, c ∈ Z and 4|c. Thus the equation for g is just

g−1 · 1√
n
(ai+ bj + ck) · g = k.

Here
√
n denotes a square root of n in K2. Explicit computation gives a solution

g0 = ai+ bj + (c+
√
n)k.

For this solution, we have

det(g0) = a2 + b2 + (c+
√
n)2 = 2(n+ c

√
n).

Note that n+ c
√
n ≡ 1 (mod 4) by the condition 4|c, and thus χ0(g0) = 1. It is easy

to see that any other solution is of the form g = g0(u + vk) for u, v ∈ Q2. Then we
have χ0(u+ vk) = 1 and thus χ0(g) = 1.

Lemma 2.9. One has ∑
n=d1d2

ε(d1, d2)L(d1)L(d2) = Q(n),

where ε(d1, d2) = ±1, and the sum is over non-ordered decompositions n = d1d2 such
that d1, d2 > 0 and d2 ≡ 1 (mod8).

Proof. Writing equation (2.3.1) in terms of non-ordered decompositions, we have∑
n=d1d2

P (d1, d2) = 2h2(n)−δQ(n),

where δ = 1 if n ≡ 1 (mod 8) and δ = 0 otherwise. Here in the case n ≡ 1 (mod8), we
have used the symmetry P (d1, d2) = P (d2, d1). Apply Theorem 2.1.

Finally, we are ready to derive Theorem 2.2.

Proof of Theorem 2.2. Since L(1) = 1, the above lemma gives a recursive formula

±L(n) = Q(n)−
∑

n=d1d2

d2≡1 (mod8), d2>1

ε(d1, d2)L(d1)L(d2).

Here the sum is over non-ordered decompositions. This formula determines L(n)
uniquely. In particular, L(n) is an integer.

Now we prove the congruence formula

L(n) ≡
∑

n=d0d1···d�

di≡1 (mod 8), i>0
di>1, i≥0

∏
i

Q(di) (mod 2).

It suffices to prove that the congruence formula (applied to every Q(d1) and Q(d2)
below) satisfies the recursive formula

Q(n) ≡
∑

n=d1d2

d2≡1 (mod8), d2>0

L(d1)L(d2) (mod 2).
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Namely, we need to check that

Q(n) ≡
∑

n=d1d2
d2≡1 (mod 8), d2>0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

d1=d′0d
′
1···d

′
�′

d′j≡1 (mod 8), j>0

d′j>1, j≥0

∏
j≥0

g(d′j )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑

d2=d′′0 d′′1 ···d′′
�′′

d′′k≡1 (mod 8), k>0

d′′k>1, k≥0

∏
k≥0

g(d′′k )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(mod 2).

The right-hand side is a Z-linear combination of

�′∏
j=0

g(d′j)

�′′∏
k=0

g(d′′k).

We consider the multiplicity of this term in the sum. Each appearance of such a term
gives a partition

{d′1, · · · , d′�′ , d′′0 , · · · , d′′�′′} = {d′1, · · · , d′�′}
∐
{d′′0 , · · · , d′′�′′}.

If the set on the left-hand side is non-empty, the number of such partitions is even.
Then the contribution of this set in the sum is zero modulo 2. Thus, we are only left
with the empty set, which corresponds to the unique term g(n) on the right. This
proves the formula.

Proof of Proposition 2.3. The proof easily follows from the explicit result in
Theorem 2.6. In fact, take K = Kn and χ = 1 in the theorem. We see that the
primitive test vector fn = π(g)f0 for some g ∈ B×

2 , where

f0 =

⎧⎪⎪⎨⎪⎪⎩
f i−j

2
+ f j−k

2
+ f k−i

2
, if K2 = Q2(

√−3),
fi+j =

1
2

(
f i+j

2
+ f i−j

2

)
, if K2 = Q2(

√−1),
f i+j

2
, if K2 = Q2(

√−2m) with m odd.

Note that the case (K2, χ2(�)) = (Q2(
√−1),−1) does not occur here. It is immediate

that f0 and f take odd values everywhere in the first and the third cases.
Assume that we are in the case K2 = Q2(

√−1). By Theorem 2.4, χ0f i+j
2

= f i−j
2
.

For any h ∈ B̂×, we have

fn(h
2) = f0(h

2g) =
1

2
f i+j

2
(h2g)(1 + χ0(h

2g)) = f i+j
2
(h2g) = ±1,

which is odd. Here we have used the fact χ0(g) = 1, which has been treated in the
proof of Lemma 2.8.

3. Quadratic points and genus points. This section treats L(n) for n ≡
5, 6, 7 (mod8). The goal is to prove Theorem 1.4. We assume n ≡ 5, 6, 7 (mod8)
throughout this section. The method is to construct rational points using the tower
X = limU XU of modular curves XU .

3.1. Quadratic points and genus points. In the following, we will mainly
work on the elliptic curve A : 2y2 = x3 + x (instead of E : y2 = x3 − x), which
is isomorphic to (X0(32),∞). Fix an identification i0 : (X0(32),∞) → A. We will
introduce a morphism fn : XV → A from a certain modular curve XV to A, and use
this morphism to produce Heegner points on A.
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Test vector. Recall that the open compact subgroup U0(32) of GL2(Q̂) is given
by

U0(32) =

{(
a b
c d

)
∈ GL2(Ẑ) : 32|c

}
.

Define another open compact subgroup

U =

{(
a b
c d

)
∈ U0(32) : 4|(a− d)

}
.

Then U is a normal subgroup of U0(32) of index two.
Denote by f0 : XU → A the natural projection map XU → X0(32). It is finite

and étale of degree 2. Note that the geometrically connected components of XU are
parametrized by SpecQ(i). Then it is easy to figure out that XU

∼= X0(32)Q(i) over
Q, and under this identification f0 is the natural map by the base change. Then

AutQ(XU ) = AutQ(i)(X0(32)Q(i))� {1, ε},

where ε is the Hecke operator given by

(
1
−1

)
, which is also the automorphism

coming from the non-trivial automorphism of SpecQ(i).
For n ≡ 7 (mod 8), let fn : X0(32)→ A be the identity map i0 : X0(32)→ A. For

n ≡ 5, 6 (mod8), define fn : XU → A by

fn :=

{
f0 − f0 ◦ [i], if n ≡ 5 (mod8),

f0 ◦ [i], if n ≡ 6 (mod8).

Denote Kn = Q(
√−n) as before. Embed Kn into M2(Q) by

√−n �−→
( −1 1/4
−4(n+ 1) 1

)
,

(
1/4

−4n
)
,

(
δ 2

−(n+ δ2)/2 −δ
)
,

according to n ≡ 5, 6, 7 (mod8) respectively. Here δ is an integer such that δ2 ≡
−n (mod128) in the case n ≡ 7 (mod 8).

The embeddings look arbitrary, but they are chosen on purpose. For n ≡
5, 6 (mod8), the embeddings makeK×

n,2 normalize U2 in GL2(Q2) at the place 2, which

is the basis of our treatment. For n ≡ 7 (mod 8), the embedding gives Ô×
K ⊂ U0(32),

which makes the easiest calculation.
Similarly, the choices of fn seem artificial and technical here. However, they are

obtained by some prescribed representation-theoretical properties below. Following
[33, §1.2], consider the representation

π = Hom0
∞(X,A) = lim−→

V

Hom0
∞(XV , A)

of GL2(Q̂). Here for any open compact subgroup V of GL2(Q̂),

Hom0
∞(XV , A) = Hom∞(XV , A)⊗Z Q,

where

Hom∞(XV , A) = {f ∈ Hom(XV , A) : f(∞) ∈ A(Q)tor}.
Here ∞ denotes the cusp at infinity of XV .

Proposition 3.1.
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(1) If n ≡ 5, 6 (mod8), the space πGL2(Ẑ
(2))·K×n,2 is one-dimensional and contains

fn.
(2) If n ≡ 7 (mod8), the space πU0(32) is one-dimensional and contains fn.

The proposition (will be proved in next section) explains that fn is an explicit
vector in a one-dimensional space in the framework of the multiplicity one theorem
of Tunnell [28] and Saito [24]. See Theorem A.1 and Corollary A.2. One can also
define an integral structure πZ of π as the subgroup of elements of π coming from
Hom∞(XV , A) for some V . Then one can consider the primitivity of fn under this
integral structure as in §2. However, this is too involved in the current setting, so we
will only consider the behavior of fn in the rational structure π.

CM Points. Note that we have chosen an explicit embedding of Kn in M2(Q),
which induces an action of K×

n on the upper half plane H. Let

Pn = [h, 1] ∈ XU (C)

be the CM point, where h ∈ HK×n is the unique fixed point of K×
n in H. Let

zn = fn(Pn) ∈ A(Kab
n ).

Note that zn is not necessarily defined over the Hilbert class field Hn of Kn.
Denote by H ′

n = Hn(zn) the extension of Hn generated by the residue field of zn.
The following result is a precise description of the field of definition of zn. In the
following, denote by

σ : K×
n \K̂×

n −→ Gal(Kab
n /Kn)

the geometric Artin map, normalized by sending the uniformizers to the geometric
Frobenii. So it is the reciprocal of the usual Artin map.

Proposition 3.2.

(1) Assume that n ≡ 5 (mod 8). Then Gal(H ′
n/Hn) � Z/2Z is generated by σ2

�.
Here � = (

√−n − 1)2 ∈ K×
n,2. The field H ′

n(
√
2) is the ring class field

of conductor 4 over Kn. The Galois group Gal(H ′
n(
√
2)/Hn) � (Z/2Z)2 is

generated by σ1+2� and σ2
�, and H ′

n is the subfield of H ′
n(
√
2) fixed by σ1+2�.

(2) Assume that n ≡ 6 (mod 8). Then Gal(H ′
n/Hn) � Z/4Z is generated by

σ1+�. Here � = (
√−n)2 ∈ K×

n,2. The subfield of H ′
n fixed by σ2

1+� is Hn(i).
The field H ′

n is exactly the ring class field of conductor 4 over Kn.
(3) Assume that n ≡ 7 (mod 8). Then H ′

n = Hn.
(4) For any n ≡ 5, 6, 7 (mod8), 2zn is defined over Hn.

The Proposition 3.2 will be proved in next section. Denote K ′
n = Kn,Kn(i),Kn

according to n ≡ 5, 6, 7 (mod8) respectively. Set Cln = Gal(Hn/Kn) and Cl′n =
Gal(H ′

n/K
′
n). Let σ be the unique order-two element of Gal(H ′

n/Hn) in the case
n ≡ 5, 6 (mod8), and set σ = 1 in the case n ≡ 7 (mod 8). Then the natural map
Cl′n → Cln induces two isomorphisms

Cl′n/〈σ〉 ∼= Cln, (2Cl′n)/〈σ〉 ∼= 2Cln.

The least obvious case is the second isomorphism for n ≡ 6 (mod 8). For that, it
suffices to check that σ = σ2

1+� lies in 2Cl′n. Note that σ1+� /∈ Cl′n, but we use the
relations σ = (σ1+�σ�)2 and σ1+�σ� ∈ Cl′n instead. In fact, an easy calculation
shows σ2

� = 1 (on H ′
n) and σ�(i) = −i, which give the new relations.
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Quadratic point. Fix a set Φ ⊂ Cl′n of representatives of Cl′n/〈σ〉 ∼= Cln. Let
χ : Cln → {±1} be a character. Define the quadratic point Pχ associated to χ by

Pχ :=
∑
t∈Φ

fn(Pn)
tχ(t) ∈ A(H ′

n).

Here χ is also viewed as a function on Φ via the bijection Φ→ Cln.
To give a formula for Pχ, we need to describe another algebraic point on the

elliptic curve. Recall that L(n) and ρ(n) are defined in the introduction of this paper.
We will see that L(n) is a rational number. Define

P(n) := 2−1−ρ(n)L(n)αn ∈ A(Kn)
− ⊗Z Q,

where

A(Kn)
− := {α ∈ A(Kn) : ᾱ = −α} ⊂ A(Kn),

and αn ∈ A(Kn)
− is any point which generates the free part A(Kn)

−/A(Kn)
−
tor if

L(n) �= 0. Note that P(n) = 0 if L(n) = 0. The following theorem will be proved in
appendix.

Theorem 3.3 (Gross-Zagier formula). Let χ : Cln → {±1} be a character. The
point Pχ is non-torsion only if χ is of the form

χd0,d1 , n = d0d1, 0 < d0 ≡ 5, 6, 7 (mod8), 0 < d1 ≡ 1, 2, 3 (mod8),

where χd0,d1 is the unique Hecke character over Kn associated to the extension
Kn(

√
d1) for n ≡ 5, 6 (mod8) or Kn(

√
d∗1) for n ≡ 7 (mod 8). Here d∗1 =

(−1)(d1−1)/2d1 as before.
In that case, in the vector space A(H ′

n(i))⊗Z Q = A(H ′
n(i))⊗Z[i] Q[i],

Pχ = ε(d0, d1)2
h2(n)L(d1)P(d0),

where ε(d0, d1) = ±i if (d0, d1) ≡ (5, 3) (mod8) and ε(d0, d1) = ±1 otherwise.

Genus point. Set Φ0 = Φ ∩ (2Cl′n) as a subset of Cl′n. Then Φ0 ⊂ 2Cl′n is a set
of representatives of (2Cl′n)/〈σ〉 ∼= 2Cln in 2Cl′n. Define

Z(n) :=
∑
t∈Φ0

fn(Pn)
t ∈ A(H ′

n).

To compare Z(d0) for different divisors d0 of n, we introduce the composite field

H′
n := Ln(i) ·

∏
d0|n, d0>0

d0≡5,6 (mod 8)

H ′
d0
⊂ Q.

Here Ln(i) = Q(i,
√
d : d|n). The field seems to be very large, but we will see that

A(H′
n)tor ⊂ A[4] in Lemma 3.18, which is a key property in our treatment. Note that

A(H′
n) is a Z[i]-module. Define P (n) ∈ A(H′

n) inductively by

P (n) := Z(n)−
∑

n=d0d1

d0≡5,6,7 (mod8)
d1≡1,2,3 (mod 8), d1>1

ε(d0, d1)L(d1)P (d0),
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where ε(d0, d1) ∈ μ4 is as in Theorem 3.3. Note that L(d1) ∈ Z by Theorem 1.1. By
definition, it is easy to verify the following congruence formula.

Proposition 3.4. In A(H′
n),

P (n) ≡
∑

n=d0d1···d�

d0≡5,6,7 (mod 8)
d1≡1,2,3 (mod 8)
di≡1 (mod 8), i>1

ε(d0, d1)

⎛⎝∏
i≥1

g(di)

⎞⎠Z(d0)

+ i
∑

n=d0d1···d�

(d0,d1,d2)≡(5,3,2) (mod8)
di≡1 (mod 8), i>2

⎛⎝∏
i≥1

g(di)

⎞⎠Z(d0) mod 2A(H′
n).

The main result of this section is as follows, which is an enhanced version of
Theorem 1.4.

Theorem 3.5. The vector P(n) ∈ A(Kn)
− ⊗Z Q is represented by the point

P (n) ∈ A(H′
n) in the sense that they are equal in A(H′

n)⊗Z Q. Moreover,
(1) The image of 2P (n) under any 2-isogeny from A to E belongs to E(Kn)

−,
i.e. L(n) is integral.

(2) Assume that P (n) ∈ A(Kn)
− + A[4], i.e. 2−ρ(n)L(n) is even. If n ≡

5, 7 (mod8), then∑
n=d0···d�

di≡1 (mod8), i>0

∏
i

g(di) ≡
∑

n=d0···d�,
d0≡5,6,7 (mod 8)
d1≡1,2,3 (mod 8)
di≡1 (mod8), i>1

∏
i

g(di) ≡ 0 (mod 2).

If n ≡ 6 (mod8), then ∑
n=d0···d�,

d0≡5,6,7 (mod 8)
d1≡1,2,3 (mod 8)
di≡1 (mod8), i>1

∏
i

g(di) ≡ 0 (mod 2).

Theorem 3.3, Proposition 3.4 and Theorem 3.5 will be proved in section 3.3.

3.2. Test vectors. Recall that in Proposition 3.2 we have described the field
H ′

n = Hn(zn). The major goal of this section is to prove some results about Galois
actions on zn. We will also prove Proposition 3.1 and Proposition 3.2.

To describe the results about Galois actions on zn, we recall some basic facts
about X0(32) and A, which are basic facts or results proved in [26].

(1) There is an analytic isomorphism

τ : C/(1 + i)Z[i] −→ A(C).

The map τ is unique up to multiplication by μ4 = {±1,±i}. We can adjust
τ such that R/2Z maps onto A(R) and

A[2∞] = Q2(i)/(1 + i)Z2[i] ⊂ Q(i)/(1 + i)Z[i] = A(C)tor.
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(2) Under the uniformization τ , the Galois group GQ = GQ(i) � {1, c} acts on
A[2∞] = Q2(i)/(1 + i)Z2[i] as follows. The induced action of c on Q2(i)/(1+
i)Z[i] is still given by the conjugation i �→ −i, and the induced action of GQ(i)

on Q2(i)/(1 + i)Z[i] is given by multiplying by the composition

GQ(i) → Gal(Q(i)ab/Q(i))
σ−1
Q(i)−→ Q(i)×\Q̂(i)

×

∼= (1 + (1 + i)3Ẑ[i])× → (1 + (1 + i)3Z2[i])
×,

where σQ(i) denotes the Artin map and the last map is the natural projection.
(3) The identification i0 : X0(32) → A (mapping ∞ to 0) identifies the set S =

Γ0(32)\P1(Q) of cusps with A[(1 + i)3] = A(Q(i)). Replacing τ by −τ if
necessary, we can (and we will) assume that the induced bijection

τ :
1

2
Z[i]/(1 + i)Z[i] −→ A[(1 + i)3] = Γ0(32)\P1(Q)

gives

τ(0) = [∞], τ(1/2) = [0], τ(−1/2) = [1/2],

τ(1) = [1/16], τ(±i/2) = [±1/4], τ((1 ± i)/2) = [±1/8].
Now we are ready to state the main result of this subsection.

Theorem 3.6. Resume the notations in Proposition 3.2. The following are true:
(1) Assume that n ≡ 5 (mod8). Then

zσ�
n = zn + τ(

1 + i

2
), zσ1+2�

n = zn, z̄n = −zn + τ(1).

Thus z
σ�2/2
n = z

σ�2
n = zn + τ(1).

(2) Assume that n ≡ 6 (mod8). Then

zσ�
n = zn + τ(−i/2), zσ1+�

n = zn + τ(
1 − i

2
), z̄n = −zn.

Thus z
σ2
1+�

n = zn + τ(1).
(3) Assume that n ≡ 7 (mod 8). Let v2 and v′2 be the two places of Kn above 2

such that v2(
√−n− δ) ≥ 6. Let � ∈ Kn,2 be an element with v2(�) = 1 and

v′2(�) = 0. Then

z̄n + z
σ�5
n = τ(1/2).

Here z̄n denotes the complex conjugate of zn. The results will be treated case by
case in the following. For simplicity, we write K for Kn (so that K2 means the local
field Kn,2 of Kn at 2).

Case n ≡ 5 (mod8). In this case, fn : XU → A is given by fn = f0− f0 ◦ [i], and
the embedding of K into M2(Q) is given by

√−n �−→
( −1 1/4
−4(n+ 1) 1

)
.

The embedding gives (Ẑ+ 4ÔK)× ⊂ U .

Lemma 3.7. Assume n ≡ 5 (mod8).
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(1) The quotient K×
2 /Q×

2 (1+4OK,2) is isomorphic to Z/4Z×Z/2Z, and generated
by the order-four element � = (

√−n−1)2 and the order-two element 1+2�.
(2) The multiplicative group K×

2 normalizes U2.

Proof. We first check (1). Note that K2 is ramified over Q2. Then Q×
2 O

×
K,2 has

index two in K×
2 . Then K×

2 /Q×
2 (1 + 4OK,2) has an index-two subgroup

Q×
2 O×

K,2/Q
×
2 (1 + 4OK,2) = O×

K,2/Z
×
2 (1 + 4OK,2) = (OK,2/4OK,2)

×/{±1} � Z/2Z × Z/2Z.

It follows that K×
2 /Q×

2 (1 + 4OK,2) is isomorphic to Z/4Z× Z/2Z. Now it is easy to
check that � and 1 + 2� generate the group.

For (2), since 1 + 4OK,2 ⊂ U , we see that Q×
2 (1 + 4OK,2) normalizes U2. By (1),

it suffices to check that � and 1 + 2� normalize U2, which can be done by explicit
calculations.

By the lemma, K×
2 normalizes U2, and thus it acts on XU by the right multipli-

cation. The subgroup Q×
2 (1 + 4OKn,2) acts trivially and induces a homomorphism

K×
2 /Q×

2 (1 + 4OKn,2) −→ AutQ(XU ).

We will describe this homomorphism explicitly.
The following result contains a lot of identities in

AutQ(XU ) = AutQ(i)(X0(32)Q(i))� {1, ε} � (A(Q(i))� μ4)� {1, ε}.

Here ε =

(
1
−1

)
∈ GL2(Q) also normalizes U , and its Hecke action on XU gives the

non-trivial element of Gal(XU/X0(32)). In particular, ε acts on AutQ(i)(X0(32)Q(i))
by sending i to −i. Recall that we have also identified

A(Q(i)) =
1

2
Z[i]/(1 + i)Z[i]

with the set S of cusps of X0(32).

Proposition 3.8. Assume n ≡ 5 (mod8).
(1) For any Q ∈ XU (C),

Q� = [i]Qε + τ(
1

2
), Q1+2� = Q+ τ(1).

(2) The order-two element j =

(
1 0
8 −1

)
∈ GL2(Q) normalizes K× such that

jxj = x for all x ∈ K× and normalizes U with the induced action on XU

given by

Qj = [−i]Qε + τ(
1 + i

2
), ∀ Q ∈ XU (C).

Proof. The right translation by an element g ∈ GL2(Af ) switches the two geo-
metric components of XU if and only if the image of g under the composition

GL2(Q̂)
det−→ Q̂× = Q×

+ · Ẑ× −→ (Z2/4Z2)
× ∼= {±1}



GENUS PERIODS, GENUS POINTS & CONGRUENT NUMBERS 743

is −1. For example, all ε =

(
1 0
0 −1

)
, j =

(
1 0
8 −1

)
, and � =

( −2 1/4
−4(n+ 1) 0

)
are such elements, but 1 + 2� is not.

Hence, the actions of �ε, 1 + 2� and jε take the form

Q�ε = αQ +R, Q1+2� = βQ+ S, Qjε = γQ+ T

where α, β, γ ∈ μ4 and R,S, T ∈ S are cusps of X0(32). Here the right sides belong
to

AutQ(i)(X0(32)Q(i)) = Aut(XU/Q(i)) ⊂ AutQ(XU ).

To compute R,S, T , we take Q = [∞]. In terms of the complex uniformization

X0(32)(C) = GL2(Q)+\(H ∪ P1(Q))×GL2(Q̂)/U0(32),

we have

R = [∞, �ε], S = [∞, 1 + 2�], T = [∞, jε].

We need to convert them to expressions of the form [θ] = [θ, 1] with θ ∈ P1(Q). By
the complex uniformization,

S = GL2(Q)+\P1(Q)×GL2(Q̂)/U0(32) = P (Q)+\GL2(Q̂)/U0(32)

= P (Q)+\P (Q̂) ·GL2(Ẑ)/U0(32) = N(Z2)\GL2(Z2)/U0(32)2.

Here P (resp. N) stands for the parabolic (resp. unipotent) subgroup of upper
triangles of GL2, respectively. For the truth of the last identity, we refer to [33,
Lemma 4.6.3 (2)]. We have decompositions in GL2(Q2) as follows:

�ε =

(
1/4 0
0 8

)(−8 −1
1 0

)(−(n+ 1)/2 0
4(n+ 3) 1

)
,

1 + 2� =

(
1 1/2
0 1

)(
1 0
−16 1

)(
4n+ 1 0

8(7n+ 1) 1

)
,

jε =

(
1 0
8 1

)
.

It follows that

R =

[
∞,

(−8 −1
1 0

)
2

]
=

[(−8 −1
1 0

)−1

∞, 1

]
= [0] = τ(1/2).

Similarly, S = [1/16] = τ(1) and T = [−1/8] = τ((1 − i)/2).

To find α, β, γ, we only need check the action on the cusp [0] =

[
∞,

(
0 1
−1 0

)]
.

We have decompositions:(
0 1
−1 0

)
�ε =

(
8 0
0 1/4

)(
1 0
8 1

)(
(n+ 1)/2 0
−4(n+ 3) −1

)
,(

0 1
−1 0

)
(1 + 2�) =

(−2 +1
0 −1/2

)(
7 −3
−2 1

)(
4n− 17 3
8(n− 5) 7

)
,(

0 1
−1 0

)
jε =

(
8 1
−1 0

)
.
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It follows that

[0]�ε = [−1/8] = τ((1 − i)/2), [0]1+2� = [1/2] = τ(−1/2), [0]jε = [0] = τ(1/2).

We then have the equations

τ((1 − i)/2) = ατ(1/2) + τ(1/2),

τ(−1/2) = βτ(1/2) + τ(1),

τ(1/2) = γτ(1/2) + τ((1 − i)/2),

which give α = −i, β = 1 and γ = i.
Therefore, we have

Q�ε = [−i]Q+ τ(1/2), Q1+2� = Q+ τ(1), Qjε = [i]Q+ τ(
1 − i

2
).

For the first and the the third equations, we take a further ε-action on both sides.
Then

Q� = ([−i]Q+ τ(1/2))ε = [i](Qε) + τ(1/2)

and

Qj = ([i]Q+ τ(
1 − i

2
))ε = [−i](Qε) + τ(

1 + i

2
).

It finishes the proof.

The map K×
2 → Aut(XU ) induces an action of K×

2 on Hom(XU , A). Still use π
to denote this action. Now it is easy to have the action on fn = f0 ◦ [1− i].

Corollary 3.9. In Hom(XU , A),

π(�)fn = fn + τ(
1 + i

2
), π(1 + 2�)fn = fn.

Proof. For any Q ∈ XU (C),

(π(�)fn)(Q) = f0([1 − i]Q�).

By the proposition,

[1− i]Q� = [1− i]([i]Qε + τ(1/2)) = [1 + i]Qε + τ(
1 − i

2
) = ([1− i]Q+ τ(

1 + i

2
))ε.

Note that f0 is invariant under ε. Thus

(π(�)fn)(Q) = f0([1− i]Q+ τ(
1 + i

2
)) = f0([1− i]Q) + τ(

1 + i

2
) = fn(Q) + τ(

1 + i

2
).

The second equality is proved similarly.

The corollary is an integral version of Lemma 3.1 for n ≡ 5 (mod 8). Now fn

lies in the space πGL2(Ẑ
(2))·K×2 � π

K×2
2 , which is one-dimensional by Theorem A.1 and

Theorem A.2.
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Now we are ready to prove Theorem 3.6 for n ≡ 5 (mod 8), i.e.,

zσ�
n = zn + τ(

1 + i

2
), zσ1+2�

n = zn, z̄n = −zn + τ(1).

For the first two equalities, the key is that the Galois action of K×
2 on P (via the Artin

map σ) is the same as the Hecke action of K×
2 , by the special form of Pn = [h, 1].

Then by Corollary 3.9,

zσ�
n = fn(P

σ�
n ) = fn(P

�
n ) = (π(�)fn)(Pn) = fn(Pn) + τ(

1 + i

2
) = zn + τ(

1 + i

2
).

The second equality is similarly obtained.

For the third equality, the Hecke action of the element j in Proposition 3.8 (2)
gives the complex conjugation of Pn = [h, 1] by the condition jxj−1 = x for all
x ∈ K×. In fact,

P̄n = [h̄, 1], P j
n = [h, j] = [j(h), 1].

It suffices to check h̄ = j(h). Note that {h, h̄} is the set of fixed points of K× in H±.
By jK×j = K×, we see that {h, h̄} = {j(h), j(h̄)} as sets. Since det(j) = −1 < 0, we
have j(h) ∈ H− and thus j(h) = h̄.

Hence,

z̄n = fn(P̄n) = fn(P
j
n) = fn([−i]P ε

n + τ(
1 + i

2
)) = f0([−1− i]P ε

n + τ(1)).

By [−1− i]P ε
n + τ(1) = ([−1 + i]P ε

n + τ(1))ε, we have

z̄n = f0([−1 + i]Pn + τ(1)) = −f0(Pn) + τ(1) = −zn + τ(1).

This proves the theorem in the current case.

Finally, we prove Proposition 3.2 for n ≡ 5 (mod 8). By the reciprocity law, the

point Pn is defined over the abelian extension of K with Galois group K̂×/K×(K̂× ∩
U). It is easy to see (Ẑ + 4ÔK)× ⊂ U . Then Pn is defined over the ring class field

Hn,4 of K with Galois group K̂×/K×(Ẑ+ 4ÔK)×. We have

Gal(Hn,4/Hn) ∼= K×Ô×
K/K×(Ẑ+ 4ÔK)× = Ô×

K/(Ẑ+ 4ÔK)×

= O×
K,2/(Z2 + 4OK,2)

× = O×
K,2/Z

×
2 (1 + 4OK,2) = (OK,2/4OK,2)

×/{±1}.

As in the proof of Lemma 3.7, the right-hand side is isomorphic to Z/2Z×Z/2Z, and
generated by 1

2�
2 and 1 + 2�. Consider zn = fn(Pn) and H ′

n = Hn(zn) ⊂ Hn,4. By
Theorem 3.6,

z
σ�2/2
n = zn + τ(1), zσ1+2�

n = zn.

It follows that H ′
n is the index-two subfield of Hn,4 fixed by σ1+2�. Note that

√
2 ∈

Hn,4 but
√
2 /∈ H ′

n by σ1+2�(
√
2) = −√2. The equations also indicate that 2zn is

invariant under both σ�2/2 and σ1+2�, and thus it is defined overHn. The proposition
is proved in this case.
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Case n ≡ 6 (mod 8). Now we consider the case n ≡ 6 (mod 8). The exposition
is very similar to the previous case n ≡ 5 (mod 8), and the calculations are slightly
simpler. We still follow the process of the previous case, but only sketch some of the
proofs.

In this case, fn : XU → A is given by fn = f0 ◦ [i], and the embedding of K into
M2(Q) is given by

√−n �−→
(

1/4
−4n

)
.

The embedding still gives (Ẑ+ 4ÔK)× ⊂ U .

Lemma 3.10. Assume n ≡ 6 (mod8).
(1) The quotient K×

2 /Q×
2 (1+4OK,2) is isomorphic to Z/4Z×Z/2Z, and generated

by the order-two element � = (
√−n)2 and the order-four element 1 +�.

(2) The multiplicative group K×
2 normalizes U2.

Proof. The proof is similar to that of Lemma 3.7.

Now we describe the homomorphism

K×
2 /Q×

2 (1 + 4OKn,2) −→ AutQ(XU ).

Proposition 3.11. Assume n ≡ 6 (mod 8).
(1) For any Q ∈ XU (C),

Q� = −Qε + τ(
1

2
), Q1+� = −Qε + τ(

1 − i

2
).

(2) The order-two element ε =

(
1
−1

)
∈ GL2(Q) normalizes K× such that

εxε = x for all x ∈ K×.

Proof. Follow the strategy of Proposition 3.8. The Hecke operators �ε and (1 +
�)ε do not switch the two geometric components of XU . We have the decompositions

�ε =

(
1/4 0
0 8

)(
0 1
−1 0

)(
n/2 0
0 −1

)
,

(1 +�)ε =

(
1 1/4
0 1

)(−1 0
8 −1

)( −(1 + n) 0
−8(1 + n/2) 1

)
.

It follows that �ε and (1 + �)ε maps [∞] to [0] and [1/8], respectively. Thus their
action on XU takes the form

Q�ε = αQ + τ(1/2), Q(1+�)ε = βQ+ τ((1 + i)/2)

for some α, β ∈ μ4. Use the decompositions(
0 1
−1 0

)
�ε =

(−8 0
0 −1/4

)(
n/2 0
0 −1

)
,(

0 1
−1 0

)
(1 +�)ε =

(
4 −1
0 1/4

)(
1 0
−4 1

)( −(1 + n) 0
−8(1 + n/2) 1

)
.
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Setting Q = [0] = τ(1/2), we have the equations

τ(0) = ατ(1/2) + τ(1/2), τ(i/2) = βτ(1/2) + τ((1 + i)/2).

It follows that α = −1 and β = −1. Hence, we have

Q�ε = −Q+ τ(
1

2
), Q(1+�)ε = −Q+ τ(

1 + i

2
).

Further actions by ε give the results.

We have the following integral version of Lemma 3.1 for n ≡ 5 (mod8).

Corollary 3.12. Assume n ≡ 6 (mod 8). In Hom(XU , A),

π(�)fn = fn + τ(− i

2
), π(1 +�)fn = fn + τ(

1 − i

2
).

Proof. The proof is similar to that of Corollary 3.9.

Now we can prove Theorem 3.6 and Proposition 3.2 for n ≡ 6 (mod 8) similarly.
For example, the proof of z̄n = −zn is given by:

z̄n = fn(P̄n) = fn(P
ε
n) = f0([i]P

ε
n) = f0(([−i]Pn)

ε) = f0([−i]Pn) = −zn.

Case n ≡ 7 (mod8). Now we consider the case n ≡ 7 (mod8). Then 2 is split
over K. It is the simplest case since fn : X0(32) → A is just the identity map
i0 : X0(32) → A. The theory does not involve the more complicated curve XU . For
example, Proposition 3.1 is true in this case since dim πU0(32) = 1 by the newform
theory.

The embedding of K into M2(Q) is given by

√−n �−→
(

δ 2
−(n+ δ2)/2 −δ

)
,

where δ ∈ Z satisfies δ2 ≡ −n (mod128). It is easy to check that the embedding gives

Ô×
K ⊂ U0(32). Then Proposition 3.2 is automatic in this case.

The following is devoted to prove Theorem 3.6 in this case. Recall from the
theorem that v2 and v′2 are the two places of Kn above 2 such that v2(

√−n− δ) ≥ 6,
and that � ∈ Kn,2 is an element with v2(�) = 1 and v′2(�) = 0.

Proposition 3.13. Assume n ≡ 7 (mod 8). Let

W =

(
0 1
−32 0

)
, j =

(
1
−δ −1

)
be elements of GL2(Q). Then

(1) The element W normalizes U0(32), and

QW = −Q+ τ(1/2), ∀ Q ∈ X0(32)(C).

(2) One has j2 = 1, jxj = x̄ for any x ∈ K, and j�5 ∈W · U0(32)2. Therefore,

Qj�5

= −Q+ τ(1/2), ∀ Q ∈ X0(32)(C).
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Proof. For (1), consider the Atkin–Lehner operator π(W ). Note that π(W )fn =
−fn in the Q-space π since A has root number 1. It follows that, in the Z-module
Hom(X0(32), A), the sum π(W )fn + fn is a torsion point of A. To figure out the
torsion point, evaluate at [∞]. We have

(π(W )fn + fn)([∞]) = fn([∞]W ) + fn([∞]) = τ(1/2).

This proves (1).
For (2), consider the Q2-algebra K2

∼= Kv2×Kv′2
= Q2×Q2. Let α ∈ Z×

2 be such
that

(α,−α) = √−n �−→
(

δ 2
−(n+ δ2)/2 −δ

)
.

Then 64|(α− δ) and 2‖(α+ δ). We may take � = (2, 1). Then

�5 = (32, 1) =
31

2α
(α,−α) + 33

2
(1, 1)

corresponds to the matrix

31

2α

(
δ 2

−(n+ δ2)/2 −δ
)
+

33

2

(
1

1

)
=

1

2α

(
31δ + 33α 62

−31(n+ δ2)/2 −31δ + 33α

)
.

It is now straight forward to check W−1j�5 ∈ U0(32).

Now it is easy to obtain Theorem 3.6 for n ≡ 7 (mod 8) which asserts

z̄n + z
σ�5
n = τ(1/2).

In fact, the proposition gives

P j�5

n = −Pn + τ(1/2).

As before, j computes the complex conjugate of Pn. Then the above becomes

(P̄n)
�5

= −Pn + τ(1/2).

The Hecke action is defined over Q and thus commutes with the complex conjugation.
This finishes the proof.

3.3. Proofs of Theorem 3.3, Proposition 3.4 and Theorem 3.5. In this
section, we prove our main theorems in the case n ≡ 5, 6, 7 (mod8).

Proof of Theorem 3.3. We first prove the following result, which gives the first
statement of the theorem.

Lemma 3.14. Let χ : Cln → {±1} be a character satisfying the following condi-
tions:

(1) The root number of L(AKn , χ, s) is −1;
(2) If 2 is not split in Kn, then the 2-component χ2 : K×

n,2 → {±1} of χ is trivial.
Then χ is exactly of the form

χd0,d1 , n = d0d1, 0 < d0 ≡ 5, 6, 7 (mod8), 0 < d1 ≡ 1, 2, 3 (mod8),

where χd0,d1 is the unique Hecke character over Kn associated to the extension
Kn(

√
d1) for n ≡ 5, 6 (mod8) and Kn(

√
d∗1) for n ≡ 7 (mod 8).
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Proof. The character χ corresponds to an extension over Kn of degree dividing 2
and inside the genus field Ln of Kn, which must be of form Kn(

√
d) = Kn(

√
−n/d)

for some integer d|n with
√
d ∈ Ln.

First, the L-function L(AKn , χ, s) = L(Ad, s)L(An/d, s) has root number −1 if
and only if exactly one element of {|d|, n/|d|} is congruent to 1, 2, 3 modulo 8 and the
other one is congruent to 5, 6, 7 modulo 8. Thus we may assume that the extension
corresponding to χ is of the form Kn(

√±d1) ⊂ Ln, 0 < d1 ≡ 1, 2, 3 (mod8), such that
d0 := n/d1 ≡ 5, 6, 7 (mod8).

If n ≡ 7 (mod8), then 2 is split in K and the second condition is empty. Note
that

√
d∗1 ∈ Ln but

√−d∗1 /∈ Ln. Thus χ is exactly of desired form.
If n ≡ 5 (mod 8), then 2 is ramified in Kn. Both

√
d1 and

√−d1 are in Ln. We
have (d0, d1) ≡ (5, 1), (7, 3) (mod8). The restriction that χ2 is trivial implies that the
extension corresponding to χ is Kn(

√
d1) in the first case or Kn(

√−d0) in the second
case. Then Kn(

√
d1) is a uniform way to write down the field.

If n ≡ 6 (mod8), then 2 is ramified inKn. We have (d0, d1) ≡ (6, 1), (7, 2) (mod8).
Then the extension corresponding to χ is Kn(

√
d1) in the first case or Kn(

√−d0) in
the second case, and Kn(

√
d1) is still a uniform way.

Now we prove Theorem 3.3. It is an example of Theorem A.9, an explicit version
of the Gross–Zagier formula proved by Yuan–Zhang–Zhang [33]. Recall that

Pχ =
∑
t∈Φ

fn(Pn)
tχ(t).

The summation on Φ is not canonical, so the expression is not the exact case to apply
the formula. However, by Proposition 3.2, 2zn = 2fn(Pn) is defined over Hn and thus

2Pχ =
∑
t∈Φ

(2fn(Pn))
tχ(t) =

∑
t∈Cln

(2fn(Pn))
tχ(t).

This is the situation to apply the Gross–Zagier formula (to the test vector 2fn).
First, we see that the point Pχ is non-torsion only if χ satisfies the two conditions

of Lemma 3.14. The first condition holds by considering the Tunnell–Saito theorem
(cf. Theorem A.1). See the remarks after [33, Theorem 1.2] for example. For the

second condition, assume that 2 is not split in K = Kn. By Cln = K×\K̂×/Ô×
K , the

summation for 2Pχ is essentially an integration on K×\K̂×. By Proposition 3.1, fn
is invariant under the action of K×

2 up to torsions, so the integration is non-torsion
only if χ is trivial on K×

2 .
Hence, Lemma 3.14 implies the first statement of the theorem. Next, assume

χ = χd0,d1 as in the theorem. Denote P (d0, d1) = Pχd0,d1
. We first have the following

basic result.

Lemma 3.15. If (d0, d1) ≡ (5, 3) (mod 8), then 4P (d0, d1) ∈ A(Q(
√
d0))

− =
[i]A(Q(

√−d0))−. Otherwise, 4P (d0, d1) ∈ A(Q(
√−d0))−.

Proof. Recall that

2P (d0, d1) =
∑
t∈Cln

(2zn)
tχd0,d1(t).

Then 2P (d0, d1) is invariant under the action of ker(χd0,d1) = Gal(Hn/Kd0,d1). Then
2P (d0, d1) is defined overKd0,d1 . HereKd0,d1 = Kn(

√−d1) if (d0, d1) ≡ (5, 3) (mod8),
and Kd0,d1 = Kn(

√
d1) otherwise.
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First, assume that d1 �= 1, so that [Kd0,d1 : Q] = 4. Consider the action of
Gal(Kd0,d1/Q) on 2P (d0, d1). The group Gal(Kd0,d1/Q) has two explicit elements:
the complex conjugation c and the unique nontrivial element τ of Gal(Kd0,d1/Kn).
By definition, χ takes −1 on any lifting of τ in Cln. It follows that

(2P (d0, d1))
τ = −2P (d0, d1).

On the other hand, the complex conjugate

(2P (d0, d1))
c =

∑
t∈Cln

(2z̄n)
1/t =

∑
t∈Cln

(2z̄n)
t.

By Theorem 3.6, if n ≡ 5, 6 (mod8), then 2z̄n = −2zn. It follows that (2P (d0, d1))
c =

−2P (d0, d1). If n ≡ 7 (mod 8), we only have 2z̄n = −2zσ�5
n + τ(1), which gives

(2P (d0, d1))
c = −2χd0,d1(σ�)P (d0, d1) + |Cln|τ(1).

Here

χd0,d1(σ�) = −1 ⇐⇒ σ�(
√
d∗1) = −

√
d∗1 ⇐⇒ (d0, d1) ≡ (5, 3) (mod 8).

In summary, if (d0, d1) �≡ (5, 3) (mod 8) (and d1 �= 1), then

(4P (d0, d1))
τ = −4P (d0, d1), (4P (d0, d1))

c = −4P (d0, d1).

It follows that 4P (d0, d1) is invariant under cτ , and thus defined over

Kcτ
d0,d1

= Q(
√
−d0,

√
d1)

cτ = Q(
√
−d0).

The action of τ further gives 4P (d0, d1) ∈ A(Q(
√−d0))−. If (d0, d1) ≡ (5, 3) (mod8),

then

(4P (d0, d1))
τ = −4P (d0, d1), (4P (d0, d1))

c = 4P (d0, d1).

It follows that 4P (d0, d1) is invariant under c, and thus defined over

Kc
d0,d1

= Q(
√
d0,

√
−d1)c = Q(

√
d0).

The action of τ further gives 4P (d0, d1) ∈ A(Q(
√
d0))

−.
In the last case d1 = 1, we have Kd0,d1 = Kn. Then (4P (d0, d1))

c = 4P (d0, d1)
implies 4P (d0, d1) ∈ A(Q(

√−d0))−.
Go back to the proof of the theorem. Now we are ready to prove the formula

Pχ = ε(d0, d1)2
h2(n)L(d1)P(d0) ∈ A(H ′

n(i))⊗Z Q.

The formula is equivalent to

2ε̄(d0, d1)Pχ = 2h2(n)+1L(d1)P(d0).

By Lemma 3.15, this is an identity in A(Kd0)
− ⊗Z Q.

We first claim that the equality is true up to a multiple in Q×. In fact, if
L′(AKn , χ, 1) = L′(Ad0 , 1)L(Ad1 , 1) is zero, then the right-hand side is zero by
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definition, and Pχ is zero since the canonical height ĥ(Pχ) = 0 by the Gross–
Zagier formula (in either [33, Theorem 1.2] or the explicit version Theorem A.9). If
L′(AKn , χ, 1) �= 0, then by the theorems of Gross–Zagier and Kolyvagin, E(Kd0)

−⊗ZQ
is one-dimensional, and the thus two sides of the equality are proportional.

To finish the proof, it suffices to check that the two sides of the equality have the
same canonical heights. One can do the whole computation on A, but we will carry
it out on E to be compatible with our original framework.

Let ϕ : A→ E be the isogeny of degree 2. The desired formula becomes

Rχ = ε(d0, d1)2
h2(n)L(d1)R(d0) ∈ E(H ′

n(i))⊗Z Q.

Here Rχ = ϕ(Pχ) and R(d0) = ϕ(P(d0)). The vector R(d0) ∈ E(Kd0)
− ⊗Z Q has

an independent description. If L(d0) = 0, then R(d0) = 0. If L(d0) �= 0, then the
theorems of Gross–Zagier and Kolyvagin imply that E(Kd0)

− is of rank one. In this
case, R(d0) = 2−1L(d0)βd0 ∈ E(Kd0)

−
Q , where βd0 ∈ E(Kd0)

− is any Z-basis of the

free part of E(Kd0)
−.

The height identity we need to check is

ĥ(Rχ) = 4h2(n)−1L(d1)2L(d0)2ĥ(βd0).

Assuming L′(EKn , χ, 1) �= 0. By the definitions of L(d1) and L(d0) in the introduction,
the identity becomes

ĥ(Rχ) = L′(EKn , χ, 1)/(2
2k(n)−2h2(n)−2−a(n)Ωd0,∞Ωd1,∞).

Apply Theorem A.9, the explicit Gross-Zagier formula in the appendix, for
(EKn , χd0,d1) and the morphism ϕ◦fn. The proof is finished by computations similar
to that in the proof of Theorem 2.1.

In the proof, we also see that L(n) ∈ Q. For example, the height formula

ĥ(Rχ) = 4h2(n)−1L(d1)2L(d0)2ĥ(βd0)

actually implies that L(d1)L(d0) ∈ Q. Setting d1 = 1, we see that L(n) ∈ Q.

Proof of Proposition 3.4. Here we prove Proposition 3.4 which asserts that

P (n) ≡
∑

n=d0d1···d�

d0≡5,6,7 (mod8)
d1≡1,2,3 (mod8)
di≡1 (mod 8), i>1

ε(d0, d1)

⎛⎝∏
i≥1

g(di)

⎞⎠Z(d0)

+ i
∑

n=d0d1···d�

(d0,d1,d2)≡(5,3,2) (mod8)
di≡1 (mod8), i>2

⎛⎝∏
i≥1

g(di)

⎞⎠Z(d0) mod 2A(H′
n).

It suffices to prove that the above formula (applied to every P (d0) below) and
the formula in Theorem 1.1 (applied to every L(d1) below) satisfies

Z(n) ≡
∑

n=d0d1

d0≡5,6,7 (mod8)
d1≡1,2,3 (mod8)

ε(d0, d1)L(d1)P (d0) mod 2A(H′
n).



752 Y. TIAN, X. YUAN, AND S.-W. ZHANG

We first treat the case n ≡ 5, 7 (mod8). Then the formula simplifies as

P (n) ≡
∑

n=d0d1···d�

d0≡5,7 (mod8)
d1≡1,3 (mod8)

di≡1 (mod8), i>1

ε(d0, d1)

⎛⎝∏
i≥1

g(di)

⎞⎠Z(d0) mod 2A(H′
n).

We need to check that

Z(n) ≡
∑

n=d0d1

d0≡5,7 (mod8)
d1≡1,3 (mod8)

ε(d0, d1)

⎛⎜⎜⎜⎝ ∑
d1=d′0d

′
1···d

′
�′

d′j≡1 (mod8), j>0

∏
j≥0

g(d′j)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
d0=d′′0 d

′′
1 ···d

′′
�′′

d′′0≡5,7 (mod 8)

d′′1≡1,3 (mod 8)

d′′k≡1 (mod 8), k>1

ε(d′′0 , d
′′
1 )

∏
k≥1

g(d′′k)Z(d′′0 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
mod 2A(H′

n).

The right-hand side is a Z-linear combination of

ε(d0, d1)ε(d
′′
0 , d

′′
1)

�′∏
j=0

g(d′j)

�′′∏
k=1

g(d′′k)Z(d′′0 ).

Consider the multiplicity of this term in the sum. Each appearance of such a terms
gives a partition

{d′1, · · · , d′�′ , d′′2 , · · · , d′′�′′} = {d′1, · · · , d′�′} ∪ {d′′2 , · · · , d′′�′′}.
If this set is non-empty, the number of such partitions is even, and thus the contribu-
tion is zero in the congruence equation. Moreover, if d′0 ≡ 1 (mod 8) or d′′1 ≡ 1 (mod8),
then we can also put it into the partition and deduce that the contribution of such
terms is still zero.

Note that the contribution by d0 = d′′0 = n, d1 = 1 is the single term Z(n).
Therefore, it is reduced to check

0 ≡
∑

n=d0d1

d0≡5,7 (mod8)
d1≡3 (mod 8)

ε(d0, d1)g(d1)
∑

d0=d′′0 d
′′
1

d′′0≡5,7 (mod8)

d′′1≡3 (mod8)

ε(d′′0 , d
′′
1)g(d

′′
1 )Z(d′′0 ) mod 2A(H′

n).

Rewrite it as

0 ≡
∑

n=d′′0 d
′′
1 d1

′
ε(d′′0d

′′
1 , d1)ε(d

′′
0 , d

′′
1)g(d1)g(d

′′
1 )Z(d′′0 ) mod 2A(H′

n).

Here the sum is over ordered decompositions n = d′′0d
′′
1d1 which satisfy the original

congruence conditions (with d0 = d′′0d
′′
1 ). The ordered decomposition n = d′′0d

′′
1d1
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corresponds to the ordered decomposition n = d′′0d1d
′′
1 uniquely. One checks in this

case

ε(d′′0d
′′
1 , d1)ε(d

′′
0 , d

′′
1 ) = ±ε(d′′0d1, d′′1 )ε(d′′0 , d1).

Then the sum is divisible by 2.
Now we treat the case n ≡ 6 (mod8). We need to check

Z(n) ≡
∑

n=d0d1

d0≡6,7 (mod8)
d1≡1,2 (mod8)

⎛⎜⎜⎜⎝ ∑
d1=d′0d

′
1···d

′
�′

d′j≡1 (mod8), j>0

∏
j≥0

g(d′j)

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
d0=d′′0 d

′′
1 ···d

′′
�′′

d′′0 ≡5,6,7 (mod 8)

d′′1 ≡1,2,3 (mod 8)

d′′k≡1 (mod8), k>1

ε(d′′0 , d
′′
1 )

∏
k≥1

g(d′′k)Z(d′′0 ) + i
∑

d0=d′′0 d
′′
1 ···d

′′
�′′

(d′′0 ,d
′′
1 ,d

′′
2 )≡(5,3,2) (mod8)

d′′k≡1 (mod 8), k>2

∏
k≥1

g(d′′k)Z(d′′0 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
mod 2A(H′

n).

Split the outer sum d = d0d1 into the case (d0, d1) ≡ (6, 1) (mod8) and the case
(d0, d1) ≡ (7, 2) (mod 8). We obtain three triple sums, since the conditions (d0, d1) ≡
(7, 2) (mod 8) and (d′′0 , d

′′
1 , d

′′
2) ≡ (5, 3, 2) (mod8) do not hold simultaneously. Similar

to the case n ≡ 5, 7 (mod8), the contribution of the terms with some d′j ≡ 1 (mod8)
or some d′′k ≡ 1 (mod8) is divisible by 2. In particular, for the case d1 ≡ 1 (mod8),
we are only left with d1 = 1. Then it is reduced to check

0 ≡
∑

n=d0d1

d0≡7 (mod8)
d1≡2 (mod8)

⎛⎜⎜⎜⎜⎜⎜⎝g(d1)Z(d0) +
∑

d0=d′′0 d
′′
1

d′′0≡5 (mod8)

d′′1≡3 (mod8)

i g(d1)g(d
′′
1 )Z(d′′0)

⎞⎟⎟⎟⎟⎟⎟⎠
+

∑
n=d′′0 d

′′
1

d′′0≡7 (mod 8)

d′′1≡2 (mod 8)

g(d′′1 )Z(d′′0 )+ i
∑

n=d′′0 d
′′
1 d
′′
2

(d′′0 ,d
′′
1 ,d

′′
2 )≡(5,3,2) (mod8)

g(d′′1 )g(d
′′
2)Z(d′′0 ) mod 2A(H′

n).

This is true by obvious cancellations, which finishes the proof of the proposition.

Torsion points. To prepare the proof of Theorem 3.5, we present some results
on torsion points of A. They will be the key to lower multiples of algebraic points.

Denote F = Q(i). Recall that we have fixed an identification A(C) ∼= C/(1+i)OF ,
which givesA(C)tor = A(F ab)tor ∼= F/(1+i)OF . Under the identification, the complex
conjugation on A(F ab)tor is given by the conjugation i �→ −i on F , The induced
action of the Galois group Gal(F ab/F ) on F/(1+ i)OF is given by multiplying by the
composition

Gal(F ab/F )
σ−1
F−→ F×\F̂× ∼= (1 + (1 + i)3ÔF )

×.
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Lemma 3.16. Over F , the elliptic curve AF is isomorphic to EF . Moreover,

Q(A[4]) = Q(
√
2, i), A(Q(i)) = A[(1 + i)3].

Proof. The results can be checked by explicit computations, but we include a
theoretical proof. For the first statement, consider the two 2-isogenies

ϕF : AF −→ EF , [1 + i] : AF −→ AF .

One checks that these two morphisms have the same kernel {0, τ(1)}. It follows that
there is an isomorphism AF → EF carrying [1 + i] to ψF .

Now we treat Q(A[4]). It is easy to have F = Q(A[2]) ⊂ Q(A[4]), and thus
Q(A[4]) = F (A[4]). The Galois action of Gal(F ab/F ) on A[4] is given by

s4 : (1 + (1 + i)3ÔF )
× −→ (1 + (1 + i)3OF2)/(1 + 4OF2).

The field F (A[4]) is given by the subfield of F ab fixed by ker(s4) = (1+4ÔF )
×, which

is the ring class field of F of conductor 4. The norm map

(1 + (1 + i)3OF2)/(1 + 4OF2) � (1 + 4Z2)/(1 + 8Z2)

implies that F (A[4]) is equal to the ring class field Q(ζ8) of Q.
For A(Q(i)), we first see that it is torsion since A1(Q) � A−1(Q) are torsion. We

also have A(Q(i))[p] = 0 for any odd prime p. In fact, we can show that any non-
trivial element of A[p] has a residue field ramified above p and cannot be defined over
Q(i). This argument will be used in Lemma 3.18 in a more complicated situation, so
we omit it here.

Finally, we show that A(Q(i))[2∞] = A[(1 + i)3]. Note that the stabilizer of any
element x4 of A[4] \ A[(1 + i)3] is still ker(s4). Then the residue field F (x4) is still
Q(ζ8), and thus x4 /∈ A(Q(i)). It follows that A[4](Q(i)) = A[(1 + i)3].

Lemma 3.17. Let κ ∈ Gal(Q(ζ8)/Q) be the element sending ζ8 to ζ58 . Then

(κ+ 1)A[4] = A[4][κ+ 1] = A[2], (κ+ 1)E[4] = E[4][κ+ 1] = E[2].

Here (κ+1)A[4] and A[4][κ+ 1] are respectively the image and the kernel of the map

κ+ 1 : A[4] −→ A[4], x �−→ xκ + x.

Proof. The results for A and E are equivalent since they are isomorphic over
F = Q(i). Note that κ acts on Q(ζ8) ⊂ F ab as σF,2(±1 ± 2i) = σF,2(±2 ± i). In
terms of the CM theory, κ acts on A[4] ∼= OF /4OF by multiplication by −1 ± 2i ∈
1 + (1 + i)3OF2 . Then κ+ 1 acts by multiplication by ±2i. The results are true.

Lemma 3.18. The torsion subgroup A(H′
n)tor = A[(1 + i)3] if n is odd, and

A(H′
n)tor = A[4] if n is even.

Proof. We prove the results by three steps.

Step 1. The group A(H′
n)[p] = 0 for any odd prime p. Let ℘ be a prime ideal of F

above p. The action of the Galois group on A[℘] gives a homomorphism

Gal(F ab/F ) −→ AutOF (A[℘]) = (OF /℘)
×.

This map is surjective since it is given by

s℘ : (1 + (1 + i)3ÔF )
× −→ O×

F℘
−→ (OF /℘)

×.

As a consequence, we have the following two properties:
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(1) For any nonzero x ∈ A[℘], the residue field F (x) = F (A[℘]) has degree
N(℘)− 1 ≥ 4 over F .

(2) The prime ℘ is totally ramified in F (x).
On the other hand, we claim that the ramification index of ℘ in H′

n is at most 2.
In fact, H′

n is the composite of Ln(i) and H ′
d0

for different d0, where the extensions
Ln(i)/Kn and H ′

d0
/Kd0 do not involve ramification above p. If follows that we only

need to consider the ramification index of p in the composite of Kn and Kd0 for
different d0, which is at most 2.

Combining the claim and the properties (1) and (2), we see that F (x) cannot
be contained in H′

n. In other words, A(H′
n)[℘] = 0. Then A(H′

n)[p] = 0. Hence,
A(H′

n)tor = A(H′
n)[2

∞].

Step 2. For any n ≡ 5, 6, 7 (mod8), A(H′
n)[2

∞] ⊂ A[4]. Note that A(H′
n)[2

∞] is a
finite OF -module, so it must be of the form A[(1 + i)e] for some positive integer e.
Thus it suffices to prove |A(H′

n)[2
∞]| ≤ 16.

The idea is to use the reduction map to obtain the bound. Take a prime number
p � (2n), and let v be a place of H′

n above p. Denote by k(v) the residue field of v.
The reduction map gives an injection

A(H′
n)[2

∞] −→ A(k(v))[2∞].

We will choose p carefully to get an easy bound on the right-hand side. In fact, we
choose p satisfying the following properties:

(1) p ≡ 3 (mod 8).
(2) p is inert in Kd0 for any positive factor d0 of n with d0 ≡ 5, 6 (mod8).
Assuming the existence of such p, we first see how it implies the desired bound.

The proof consists of two steps. The first step is to show that k(v) = Fp2 . Denote
by w the restriction of v to Ln(i), and vd0 the restriction of v to H ′

d0
. It is easy to

see that the residue field k(w) = Fp2 . To prove k(v) = Fp2 , it suffices prove that
k(vd0) ⊂ Fp2 for any d0 ≡ 5, 6 (mod8). Note that p is inert in Kd0 . Then it suffices
to check that pOKd0

is totally split in H ′
d0
. By Lemma 3.2, H ′

d0
is contained in the

ring class field Hd0,4 of conductor 4. We claim that pOKd0
is totally split in Hd0,4.

In fact, by the class field theory, it is equivalent to the easy fact that the image of p
under the composition

K×
d0,p

−→ K̂×
d0
−→ K×

d0
\K̂×

d0
/(Ẑ+ 4ÔKd0

)× = Gal(Hd0,4/Kd0)

is trivial.
The second step is to show that |A(Fp2 )[2∞]| ≤ 16. This is done by explicit

computation. In fact, by the choice p ≡ 3 (mod8), we see that A has supersingular
reduction at p. Then the eigenvalues of the absolute Frobenius ϕp on the Tate modules
of A are ±√−p, so the eigenvalues of ϕ2

p are −p,−p. It follows that

|A(Fp2)| = p2 + 1− (−p− p) = (p+ 1)2.

By the choice p ≡ 3 (mod 8), we have |A(Fp2)[2∞]| = 16. This finishes the second
step.

Finally, we check the existence of the prime p satisfying the two conditions. The
second condition is equivalent to (−d0/p) = −1, which becomes (d0/p) = 1 by the
first condition. Then we choose p satisfying:

(a) p ≡ 3 (mod 8).
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(b) (�/p) = 1 for any prime factor � of n with � ≡ 1 (mod 4).
(c) (�/p) = −1 for any prime factor � of n with � ≡ −1 (mod4).

It is easy to check that it gives (d0/p) = 1 for any d0 ≡ 5, 6 (mod8). Now the existence
of p satisfying (a), (b) and (c) is just a combination of the quadratic reciprocity law,
the Chinese remainder theorem, and Dirichlet’s density theorem.

Step 3. If n is odd, then A(H′
n)[2

∞] = A[(1 + i)3]. We will prove
√
2 /∈ H′

n, which
implies A(H′

n)tor = A[(1 + i)3] by Lemma 3.16.
To prove

√
2 /∈ H′

n, note that H′
n is the composite of Ln(i) and H ′

d0
for some

d0 ≡ 5 (mod 8). Let v be a place of H′
n above 2, and vd0 the restriction to H ′

d0
. It

suffices to show
√
2 /∈ (H′

n)v. Consider the ramification of v above 2. Note that (H′
n)v

is the composite of Q2(i) and (H ′
d0
)vd0 for all related d0. By Proposition 3.2, (H ′

d0
)vd0

is unramified over Nd0,4 = (Md0,4)
σ1+2�d0 , where �d0 = (

√−d0 − 1)2 and Md0,4 is
the ring class field of Q2(

√−d0) of conductor 4.
We claim thatNd0,4 is independent of d0. In fact, fix an isomorphismQ2(

√−d0) ∼=
Q2(

√−5), which induces an isomorphism Md0,4
∼= M5,4. Note that 1 + 2�d0 and

1 + 2�5 have the same image in K×
5,2/(Z2 + 4OK5,2)

×, so their actions on M5,4 are
the same. It follows that Nd0,4 = N5,4.

Note that i ∈ N5,4 and
√
2 /∈ N5,4. Therefore, (H

′
n)v is unramified over N5,4. To

prove
√
2 /∈ (H′

n)v, it suffices to prove that N5,4(
√
2) = M5,4 is ramified over N5,4.

This is clear since Gal(M5,4/N5,4) is generated by σ1+2�5 with 1 + 2�5 ∈ O×
K5,2

.

Proof of Theorem 3.5: representative. By definition, Φ0 ⊂ Φ. Recall that

Pχ =
∑
t∈Φ

fn(Pn)
tχ(t).

Summing over all characters χ : Cln ∼= Cl′n/〈σ〉 → {±1}. We have∑
χ:Cln→{±1}

Pχ =
∑
t∈Φ

fn(Pn)
t

∑
χ:Cln→{±1}

χ(t).

As in the case n ≡ 1, 2, 3 (mod8), apply the character formula∑
χ:Cln→{±1}

χ(t) = 2h2(n)δ2Cln(t), t ∈ Cln.

Here h2(n) = dimF2 Cln/2Cln. Then we obtain∑
χ:Cln→{±1}

Pχ = 2h2(n)
∑
t∈Φ0

fn(Pn)
t = 2h2(n)Z(n).

This is an equality in A(H ′
n).

By Theorem 3.3, the equality gives∑
n=d0d1

d0≡5,6,7 (mod8)
d1≡1,2,3 (mod 8), d1>0

ε(d0, d1)2
h2(n)L(d1)P(d0) = 2h2(n)Z(n) ∈ A(H ′

n(i))⊗Z Q.

We end up with ∑
n=d0d1

d0≡5,6,7 (mod8)
d1≡1,2,3 (mod8), d1>0

ε(d0, d1)L(d1)P(d0) = Z(n) ∈ A(H ′
n(i))⊗Z Q.
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Then we have

P(n) = Z(n)−
∑

n=d0d1

d0≡5,6,7 (mod 8)
d1≡1,2,3 (mod8), d1>1

ε(d0, d1)L(d1)P(d0).

It follows that P(n) and P (n) satisfy the same iteration formula (in different groups).
Therefore, P (n) represents P(n). This proves the first statement of the theorem.

Proof of Theorem 3.5: part (1). Here we prove part (1) of the theorem. Let
R(n) (resp. R(d0, d1)) be the image of P (n) (resp. P (d0, d1) = Pχd0,d1

) under the
2-isogeny from A to E. Then R(n) ∈ E(H′

n) and R(d0, d1) ∈ E(H ′
n). We need to

prove that 2R(n) ∈ E(Kn)
−.

Note that in Lemma 3.15 we have already checked 4P (n, 1) ∈ A(Kn)
− and thus

4R(n, 1) ∈ E(Kn)
−. To relate to 2R(n), we have the following simple connection.

Lemma 3.19.

4P (n, 1) = ±22+h2(n)P (n), 4R(n, 1) = ±22+h2(n)R(n).

Proof. By Theorem 3.3,

P (n, 1) = ±2h2(n)P (n) ∈ A(H′
n)⊗Z Q.

Then

P (n, 1)∓ 2h2(n)P (n) ∈ A(H′
n)tor = A(H′

n)[4].

Here the last identity follows from Lemma 3.18.

Before proving part (1) of the theorem, we introduce some notations on fields.
Recall that Hn is the Hilbert class field of Kn = Q(

√−n) and H ′
n = Hn(fn(Pn)).

Recall that K ′
n = Kn,Kn(i),Kn for n ≡ 5, 6, 7 (mod8) respectively. Let Ln ⊂ Hn

be the genus field of Kn; that is, Ln is subfield of Hn fixed by the subgroup 2Cln of
Cln = Gal(Hn/Kn). Define L′

n = Ln, Ln(i), Ln for n ≡ 5, 6, 7 (mod8) respectively.
Then L′

n = LnK
′
n. Set K ′′

n = Kn(E[4](L′
n)), i.e. K ′′

n = Kn(i),Kn(
√
2, i),Kn for

n ≡ 5, 6, 7 (mod8) respectively.

First, we prove 2R(n) ∈ E(K ′′
n). Consider the image of 4R(n, 1) = ±2h2(n)+2R(n)

under the (injective) Kummer map

δ : E(K ′′
n)/2

h2(n)+2E(K ′′
n) −→ H1(K ′′

n , E[2h2(n)+2]),

and the inflation-restriction exact sequence

1 −→ Hom(Gal(L′
n/K

′′
n), E[4](K′′

n)) −→ H1(K′′
n , E[2h2(n)+2]) −→ H1(L′

n, E[2h2(n)+2]).

(Note that E[2∞](L′
n) = E[4](K ′′

n).) The image of δ(2h2(n)+2R(n)) in
H1(L′

n, E[2h2(n)+2]) is 0, since it is 0 in E(L′
n)/2

h2(n)+2E(L′
n). Then δ(2h2(n)+2R(n))

lies in Hom(Gal(L′
n/K

′′
n), E[4](K ′′

n)), which has exponent 2 since Gal(L′
n/K

′′
n) has

exponent 2. It follows that δ(2h2(n)+3R(n)) = 0. Thus

2h2(n)+3R(n) ∈ 2h2(n)+2E(K ′′
n), 2R(n) ∈ E(K ′′

n) + E[2∞](L′
n) = E(K ′′

n).
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Second, we prove 2R(n) ∈ E(Kn)
− for n ≡ 7 (mod8). This is the simplest case,

but it illustrates the key idea. In this case, we already have 2R(n) ∈ E(Kn), and we
need to prove 2R(n) = −2R(n). By Lemma 3.15 and Lemma 3.19,

2h2(n)+2(R(n) +R(n)) = ±(4R(n, 1) + 4R(n, 1)) = 0.

Then R(n) +R(n) ∈ E(Kn)[2
∞] = E[2] is killed by 2. The result follows.

Third, we prove 2R(n) ∈ E(Kn)
− for n ≡ 5 (mod8). It suffices to prove

2R(n) ∈ E(Kn), since the process from E(Kn) to E(Kn)
− is the same as the case

n ≡ 7 (mod8). We already know 2R(n) ∈ E(Kn(i)). Denote by ξ ∈ Gal(Kn(i)/Kn)
the unique non-trivial element, and take a lifting of ξ to Gal(H′

n/Kn), which we still
denote by ξ. By Lemma 3.15 and Lemma 3.19,

2h2(n)+2(P (n)ξ − P (n)) = ±(4P (n, 1)ξ − 4P (n, 1)) = 0.

Then P (n)ξ − P (n) ∈ A(Kn(i))[2
∞] = A[(1 + i)3]. Note that A[(1 + i)3] is exactly

killed by 2ϕ : A→ E. We have 2R(n)ξ − 2R(n) = 0, and thus 2R(n) ∈ E(Kn).
For the case n ≡ 6 (mod 8), we need the following simple result.

Lemma 3.20. For any n ≡ 5, 6, 7 (mod8), R(n) ∈ E(Ln(i)).

Proof. By the recursion formula, it suffices to prove ϕ(Z(n)) ∈ E(L′
n) for any

n ≡ 5, 6, 7 (mod8). By Theorem 3.6, ϕ(zn) is invariant under the action of σ. Here
σ is described right after Proposition 3.2. If n ≡ 5, 7 (mod8), then ϕ(zn) is defined
over Hn, and thus ϕ(Z(n)) is defined over Ln. If n ≡ 6 (mod 8), then ϕ(zn) is defined
over Hn(i), and thus ϕ(Z(n)) is defined over Ln(i).

Finally, we prove 2R(n) ∈ E(Kn)
− for n ≡ 6 (mod8). We already know 2R(n) ∈

E(Kn(
√
2, i)). It suffices to prove 2R(n) ∈ E(Kn(i)), since the process from E(Kn(i))

to E(Kn)
− is the same as that for the case n ≡ 5 (mod 8).

Let κ ∈ Gal(Kn(
√
2, i)/Kn(i)) be the unique non-trivial element, and take any

lifting of κ in Gal(Ln(i)/Kn(i)), still denoted by κ. We need to show that (2R(n))κ =
2R(n). Note that κ2 = 1 since Gal(Ln(i)/Kn(i)) has exponent 2. By Lemma 3.15
and Lemma 3.19,

2h2(n)+2(R(n)κ −R(n)) = ±(4R(n, 1)κ − 4R(n, 1)) = 0,

so R(n)κ − R(n) lies in E[4][κ + 1] = {x ∈ E[4] : xκ + x = 0}. By Lemma 3.17,
E[4][κ + 1] = E[2]. It follows that 2(R(n)κ − R(n)) = 0. The proof of part (1) is
complete.

Proof of Theorem 3.5: part (2). We start with some Galois-theoretic prepa-
ration. Denote by

r : Q×\A× −→ Gal(Qab/Q)

the Artin map over Q. Then c = r∞(−1) is the complex conjugation. Define β1, β2 ∈
Gal(Qab/Q) by

β1 = r∞(−1)r2(−2), β2 = r∞(−1)r2(6).
Let β′

1, β
′
2 ∈ Gal(Q/Q) be any liftings of β1, β2.

In the following, we take the convention that (γ + 1)R means γ(R) + 1 for any
γ ∈ Gal(Q/Q). The key of the proof is the following lemma.

Lemma 3.21.
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(1) For any n ≡ 5 (mod 8),

Z(n)β
′
1+1 = Z(n)β

′
2+1 ∈ g(n) τ(

1 − i

2
) + Z τ(1).

(2) For any n ≡ −2 (mod16),

Z(n)β
′
1+1 ∈ g(n) τ(

i

2
) + Z τ(1).

(3) For any n ≡ 6 (mod 16),

Z(n)β
′
2+1 ∈ g(n) τ(

i

2
) + Z τ(1).

(4) For any n ≡ 7 (mod 8),

Z(n)β
′
1+1 = Z(n)β

′
2+1 = g(n) τ(

1

2
).

Proof. Recall that after Proposition 3.2 we have introduced σ ∈ 2Cl′n which gives

Cl′n/〈σ〉 ∼= Cln, (2Cl′n)/〈σ〉 ∼= 2Cln.

Note that the genus field Ln is the subfield of Hn fixed by 2Cln. It follows that the
subfield of H ′

n fixed by 2Cl′n is Ln, Ln(i), Ln according to n ≡ 5, 6, 7 (mod8).
The field Ln(i) = Q(i,

√
d : d|n) is a subfield of Qab. It is easy to check that the

action of the involved β′
j on Ln(i) is the same as that of σ� ◦ c in all the four cases of

the lemma. For example, if n ≡ 5 (mod 8), then σ� acts on Ln(i) as r2(NKn/Q(�)) =
r2(n+ 1) = r2(−2). As a consequence, we claim that

Z(n)β
′
j − Z(n)σ�◦c ∈ Z τ(1)

in all four cases.
In fact, denote α = σ� ◦ c ◦ β′−1

j , viewed as an element of Cl′n = Gal(H ′
n/K

′
n). It

suffices to show

Z(n)α − Z(n) ∈ Z τ(1).

Since α acts trivially on Ln(i), we see that α ∈ 2Cl′n. Recall the definition

Z(n) =
∑
t∈Φ0

ztn, Z(n)α =
∑

t∈αΦ0

ztn.

Here Φ0 is a set of representatives of 2Cln = (2Cl′n)/〈σ〉 in 2Cl′n. Then αΦ0 is also
a set of representatives of 2Cln in 2Cl′n. Write Φ0 = {ti : i = 1, · · · , g(n)}. Then
αΦ0 = {σiti : i = 1, · · · , g(n)}, where each σi ∈ 〈σ〉. By Theorem 3.6, we see that
zσn = zn or zσn = zn + τ(1). It follows that

Z(n)α − Z(n) =
∑
ti∈Φ0

(zσi
n − zn)

ti ∈ Z τ(1).

Therefore, the result for Z(n)β
′
j+1 becomes that for Z(n)σ�◦c+1, which can be

checked easily by Theorem 3.6 for n ≡ 5, 6 (mod8). In the case n ≡ 7 (mod8),
H ′

n = Hn and thus Z(n) is already defined over Ln. Then

Z(n)β
′
j = Z(n)σ�◦c = Z(n)σ�5◦c.



760 Y. TIAN, X. YUAN, AND S.-W. ZHANG

Here the last identity holds since the Galois group Gal(Ln(i)/Q) has exponent 2.

Then the result for Z(n)β
′
j+1 still follows from Theorem 3.6.

Now we prove part (2) of Theorem 3.5. Assume that P (n) = P + t for some
P ∈ A(Kn)

− and t ∈ A[4]. Define β ∈ Gal(Qab/Q) by

β =

{
r∞(−1)r2(−2) if n ≡ 5, 7 (mod8) or n ≡ −2 (mod16),

r∞(−1)r2(6) if n ≡ 6 (mod16).

Let β′ ∈ Gal(Q/Q) be any liftings of β. Explicit calculation shows that β acts on Kn

by
√−n �→ −√−n. It follows that P (n)β + P (n) = tβ + t.

We first treat the case n ≡ 5, 7 (mod8). Then t ∈ A(H′
n)[4] = A(Q(i)) by Lemma

3.18. Note that β acts on Q(i) trivially. Then P (n)β + P (n) = 2t ∈ Zτ(1). Apply
β′ + 1 to both sides of Proposition 3.4. By Lemma 3.21, we have

⎛⎜⎜⎜⎜⎜⎜⎜⎝
i
n−1
2

∑
n=d0d1···d�
d0≡5 (mod 8)
d1≡1,3 (mod8)

di≡1 (mod 8), i>1

∏
i

g(di)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
τ(

1 − i

2
)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

n=d0d1···d�

d0≡7 (mod 8)
d1≡1,3 (mod8)

di≡1 (mod8), i>1

∏
i

g(di)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
τ(

1

2
) ∈ 2A(H′

n)
β′+1 + Zτ(1).

It follows that the contribution from 2A(H′
n)

β′+1 is torsion, which is contained in

2A(H′
n)tor = 2A(Q(i)) = Z τ(1).

Then the left-hand side lies in Z τ(1). Thus the coefficients in both of the brackets
must be even.

Now we treat the case n ≡ 6 (mod8). In this case we can only have the weaker
result

P (n)β + P (n) ∈ (β + 1)A[4] = A[2]
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by Lemma 3.17. Apply β′ + 1 to Proposition 3.4 again. We get

⎛⎜⎜⎜⎜⎜⎝
∑

n=d0d1···d�
d0≡6 (mod8)

di≡1 (mod8), i>0

∏
i

g(di)

⎞⎟⎟⎟⎟⎟⎠ τ(
i

2
) +

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

n=d0d1···d�
d0≡7 (mod 8)
d1≡2 (mod 8)

di≡1 (mod 8), i>1

∏
i

g(di)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
τ(

1

2
)

+

⎛⎜⎜⎜⎜⎜⎝i
∑

n=d0d1···d�

(d0,d1,d2)≡(5,3,2) (mod 8)
di≡1 (mod 8), i>2

∏
i≥1

g(di)

⎞⎟⎟⎟⎟⎟⎠ τ(
1− i

2
) ∈ 2A(H′

n)
β′+1 +A[2].

The contribution of 2A(H′
n)

β′+1 is a torsion point, and thus lies in 2A[4] = A[2]. Then
the left-hand side lies in A[2]. It follows that the first two coefficients have the same
parity, which is the same as the assertion of the theorem in this case. This finishes
the proof of Theorem 3.5.

Appendix A. Explicit Formulae. In this appendix, we prove an explicit Wald-
spurger formula and an explicit Gross–Zagier formula in the case that the character
χ on the quadratic extension is unramified. The results are derived from the original
Waldspurger formula (cf. [33, Theorem 1.4]) and the Yuan–Zhang–Zhang version of
the Gross–Zagier formula proved in [33, Theorem 1.2].

All global L-functions in this section are complete L-functions with archimedean
components normalized to have center s = 1/2. To avoid confusion, we use L(s, 1F )
to denote the complete Dedekind zeta functions of a number field F , which is the
product of the usual Dedekind zeta function ζF (s) with the gamma factors.

A.1. Theorem of multiplicity one. As in [33, Chapter 1], the Waldspurger
formula and the Gross–Zagier formula can be interpreted as identities of certain one-
dimensional spaces of functionals. In this section, we briefly recall the local results
about this space of functionals.

Let F be a local field and B a quaternion algebra over F . Then B is isomorphic to
either M2(F ) or the unique division quaternion algebra over F . The Hasse invariant
ε(B) = 1 if B �M2(F ), and ε(B) = −1 if B is the division algebra.

LetK be either F⊕F or a quadratic field extension over F , with a fixed embedding
K ↪→ B of algebras over F . Let η : F× → C× be the (quadratic or trivial) character
associated to the extension K/F .

Let π be an irreducible admissible representation of B× with central character
ωπ, and let χ : K× → C× be a character of K× such that

ωπ · χ|F× = 1.

Define the co-invariant space

(π ⊗ χ)K× := {� ∈ HomC(π,C) : �(π(t)v) = χ−1(t)�(v), ∀ v ∈ π, t ∈ K×}.

The following result asserts that the dimension of this space is determined by the
local root number of the Rankin–Selberg L-function L(12 , π, χ).
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Theorem A.1 (Tunnell [28], Saito [24]). The dimension dim (π ⊗ χ)K× ≤ 1,
and the equality holds if and only if

ε(B) = χ(−1)η(−1)ε(1
2
, π, χ).

We also consider the invariant subspace

(π ⊗ χ)K
×

= {v ∈ π : π(t)v = χ−1(t)v, ∀ t ∈ K×}.

Corollary A.2. One has

dim (π ⊗ χ)K
× ≤ dim (π ⊗ χ)K× .

If K is a field, then the equality holds.

Proof. Denote by π∨ the contragredient of π. The natural inclusion π ↪→
HomC(π

∨,C) induces an injection

(π ⊗ χ)K
× −→ (π∨ ⊗ χ−1)K× .

It follows that

dim (π ⊗ χ)K
× ≤ dim (π∨ ⊗ χ−1)K× = dim (π ⊗ χ)K× .

Here the last equality follows from the theorem since ε(12 , π
∨, χ−1) = ε(12 , π, χ). This

proves the first assertion.

For the second assertion, assuming dim (π ⊗ χ)K× = 1, we need to construct a

nonzero element of (π ⊗ χ)K
×

. Take � ∈ (π ⊗ χ)K× and v ∈ π such that �(v) �= 0.
Since K is a field, the quotient K×/F× is compact. Fix a Haar measure on K×/F×.
Then

w =

∫
K×/F×

χ(t)π(t)vdt

is an element of π. Furthermore,

�(w) =

∫
K×/F×

χ(t)�(π(t)v)dt =

∫
K×/F×

�(v)dt = vol(K×/F×) �(v) �= 0.

It follows that w �= 0, which finishes the proof.

A.2. Explicit Waldspurger formula. Let F be a number field and A its ring
of adeles. Let B be a quaternion algebra over F and G the algebraic group B× over
F . Denote by Z ∼= F× the center of G. Let π be a unitary cuspidal automorphic
representation of G(A) and ωπ its central character. Let K be a quadratic field
extension over F , T the algebraic group K× over F , η its associated quadratic Hecke
character on A×. Let χ : K×\A×

K → C× be a Hecke character of finite order. Assume
that

• ωπ · χ|A× = 1.
• For each place v of F , ε(1/2, πv, χv) · ηv(−1)χv(−1) = inv(Bv).
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It follows that the global root number ε(1/2, π, χ) of L(s, π, χ) is +1 and there is
an F -embedding K ⊂ B, which we fix once for all and via which T is viewed as a
sub-torus of G. By Theorem A.1, the space

(π ⊗ χ)T := {� ∈ HomC(π,C) : �(π(t)f) = χ−1(t)�(f), ∀ f ∈ π, t ∈ T (A)}

is one-dimensional.
Let Pχ : π → C be the period functional defined by

Pχ(f) =

∫
T (F )Z(A)\T (A)

f(t)χ(t)dt, ∀f ∈ π.

Here the Haar measure is normalized by vol(Z(A)T (F )\T (A), dt) = 2L(1, η). Note
that Pχ is a natural element of (π ⊗ χ)T . The Waldspurger formula tells when it is
non-zero.

Theorem A.3 (Waldspurger formula, [33], Theorem 1.4). For any non-zero pure
tensor f = ⊗vfv ∈ π,

|Pχ(f)|2
(f, f)Pet

=
1

2

L(1/2, π, χ)

L(1, π, ad)L(2, 1F )−1
· β(f).

The notations are explained as follows:
(1) β(f) =

∏
v βv(fv) is a product over all places v of F and for each v,

βv(fv) :=
L(1, ηv)L(1, πv, ad)

L(2, 1v)L(1/2, πv, χv)

∫
Z(Fv)\T (Fv)

(πv(tv)fv, fv)v
(fv, fv)v

χv(tv)dtv,

where ( , )v is any non-trivial B×
v -invariant Hermitian pairing on πv. The

Haar measures are normalized by ⊗vdtv = dt and vol(Z(A)T (F )\T (A), dt) =
2L(1, η).

(2) (f, f)Pet is the Peterson norm of f ∈ π defined by

(f, f)Pet =

∫
G(F )Z(A)\G(A)

|f(g)|2dg,

where the Haar measure dg is the Tamagawa measure such that the volume
of G(F )Z(A)\G(A) is 2.

The goal of this subsection is to give an explicit form of Waldspurger’s formula
under the following assumptions:

(a) F is totally real and K is quadratic and totally imaginary over F ;
(b) χv is unramified for each place v �∞;
(c) for any v|∞, the Jacquet-Langlands correspondence πJL

v is a discrete series of
weight kv on GL2(R) with kv ≥ 2 even integer.

It follows that the central character ωπ of π is unramified everywhere.
Let OF be the ring of integers in F and Ov be the ring of integers in Fv for any

finite place v of F . For any a ∈ A×, let |a| denote its adelic absolute valuation such
that dax = |a|dx for any Haar measure dx on A×. We view F×

v and the finite part
A×

f of F as subrings of A×.

Let N,D, d ∈ A×
f be such that for any finite place v of F , Nv generates the con-

ductor of πJL
v of π, Dv generates the relative discriminant of Kv/Fv, and dv generates
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the different of Fv. For each v � ∞, let Rv be an order of Bv := B ⊗F Fv with
discriminant NvOv such that Rv ∩Kv = OKv . Such an order exists and is unique up
to conjugacy of K×

v . Recall that a Gross-Prasad test vector f ∈ π for the pair π and
χ is a pure tensor f = ⊗vfv defined as follows (see [8]).

(1) If v is finite with ordv(Nv) ≤ 1 or Kv/Fv is unramified, then π
R×v
v is of

dimension one and fv ∈ π
R×v
v is a non-zero vector.

(2) If v is finite with ordv(Nv) ≥ 2 and Kv/Fv is ramified, then the space

(πv ⊗ χv)
K×v = {fv ∈ πv : πv(t)fv = χ−1

v (t)fv, ∀ t ∈ K×
v }

is one-dimensional by Theorem A.2. The vector fv is any non-zero element
in this space.

(3) If v is real, let fv be any non-zero element of the one-dimensional space

(πv ⊗ χv)
K×v .

Thus a Gross-Prasad test vector for (π, χ) is unique up to scalar.

Let πJL be the Jacquet-Langlands correspondence of π on GL2(A). The Hilbert
newform f ′ ∈ πJL is the unique form of level U1(N) such that SO2(R) ⊂ GL2(Fv)

acts by the character

(
cos θ sin θ
− sin θ cos θ

)
�→ e2πikvθ for each v|∞, and such that

L(s, πJL) = 2[F :Q] · |d|s− 1
2 ·

∫
F×\A×

f ′

(
a

1

)
|a|s− 1

2 d×a,

where the measure d×a is chosen such that

Ress=1

∫
|a|≤1,a∈F×\A×

|a|s−1d×a = Ress=1L(s, 1F ).

Theorem A.4 (Explicit Waldspurger Formula). Assume the conditions (a), (b)
and (c). Let f ′ be the newform of πJL and f a Gross-Prasad test vector. Then

1

(f, f)Pet
·
∣∣∣ ∑
t∈K̂×/K×F̂×Ô×K

f(t)χ(t)
∣∣∣2

= κ2 · [O×
K : O×

F ]
2 · 2[F :Q] · L

((N,D)∞)(1/2, π, χ)

(f ′, f ′)Pet|Dd2|1/2 ·
∏
v|∞

(4π)−(kv+1)Γ(kv)

·
∏

v|N inert

(1− q−1
v )(1 + q−1

v )−1 ·
∏

v||N ramified

2(1 + q−1
v )−1 ·

∏
v2|N ramified

2(1− q−1
v ),

where κ = 1 or 2 is the order of the kernel of the natural morphism from the ideal
class group of F to that of K, and (N,D) is the set of places v such that both ordv(N)
and ordv(D) are positive.

Here as before, (f ′, f ′)Pet and (f, f)Pet denote the Peterson norms with respect
to the Tamagawa measures on Z\GL2 and Z\G respectively. To deduce the explicit
formula, we first calculate the local factors.
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Proposition A.5. Let (π, χ, f) as above. Let ev be the ramification index of Ev

over Fv. Then we have

|Dd|−1/2
v β(fv) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ev(1− q−ev
v )

L(1, πv, ad)

L(1/2, πv, χv)
, if v|N non-split,

L(1, 1v)

L(2, 1v)
, if v||N split,

L(1, 1v)L(1, πv, ad)

L(2, 1v)
, if v2|N split,

1, otherwise.

Remark A.6. For each place v � ∞, note that the central character ωv of πv is
unramified and then ωv = μ2

v for some unramified character μ. So we may assume
that πv is of trivial central character. Let ιi, i = 1, 2 be two embeddings of Kv in
B(Fv) then they are conjugate by an element γ ∈ G(Fv). Let R1 be the order above
and f1 a test vector, then γR1γ

−1 is an order and f2 = πv(γ)(f1) is a test vector
under ι2. We have that βv(f1) = βv(f2).

Proof. We are in the local situation, omitting the subscript v, let K denote the
quadratic extension of local field F . Denote n = ordv(N). Reduce to compute the
toric integral

β0 =

∫
F×\K×

〈π(t)f, f〉
〈f, f〉 χ(t)dt.

If n > 0 and K is nonsplit, then f is χ−1-eigen and β0 = vol(F×\K×). For the other
cases, the order R in the definition of V (π, χ) is an Eichler order of discriminant n.

We fix the following embedding of K so that R = R0(n) :=

(
O O
pn O

)
and we can

take the test vector as the new vector W0. If K = F 2 is split, embed K into M2(F )

by (a, b) �−→
(
a

b

)
. If K is a field, take τ ∈ OK such that OK = O[τ ] and such

that if K/F is ramified then τ is a uniformizer. Let Trτ,Nτ ∈ F denote the trace and
norm of τ , respectively. Embed K into B by

a+ bτ �−→
(
a+ bTrτ bNτ
−b a

)
.

Assume K = F 2. We write K× = F×K1 with the image of K1 in GL2(F ) equal

to

(∗
1

)
. Denote by χ1 the restriction of χ to K1, then

β0 = (W0,W0)
−1

∫∫
(F×)2

W0

[(
ab

1

)]
W0

[(
b

1

)]
χ1(a)d

×bd×a

= (W0,W0)
−1|Z(1/2,W0, χ1)|2.

Now Z(1/2,W0, χ1) = χ1(d)
−1L(1/2, π ⊗ χ1) and

β0 = (W0,W0)
−1L(1/2, π, χ).
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Now consider the case that K is a field and π is unramified. Let

Ψ(g) :=
(π(g)W0,W0)

(W0,W0)
, g ∈ GL2(F ).

Then

β0 =
vol(K×/F×)

#K×/F×O×
K

∑
t∈K×/F×O×K

Ψ(t)χ(t).

If K/F is unramified, then

β0 = vol(K×/F×) = |d|1/2

while if K/F is ramified,

β0 = |Dd|1/2(1 + Ψ(τ)χ(τ)).

Using MacDonald formula for the matrix coefficient Ψ(τ), we obtain

β(f) = |Dd|1/2.

Proof of Theorem A.4. The proof is just a calculation of the right-hand side of
the formula in Theorem A.3. Apply the expression of β(fv) in Proposition A.5. We
also need the a special value formula for L(1, π, ad), which will be proved in Theorem
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A.10 in the next subsection. Then the formula gives∣∣∣|Dd|−1/2Pχ(f)
∣∣∣2

(f, f)Pet

=
L(∞)(1/2, π, χ)

(f ′, f ′)Pet|Dd2|1/2
(
2

π

)[F :Q]

(4π)−
∑

v kv

∏
v

Γ(kv)

·
∏

v�∞ βv(fv)|Dd|−1/2
v

LN (1, π, ad)
∏

v|N (1 + q−1
v )

∏
v‖N (1− q−2

v )

=
L(∞)(1/2, π, χ)

(f ′, f ′)Pet|Dd2|1/2
∏
v|∞

(
21−2kvπ−(kv+1)Γ(kv)

)

·
∏
v||N

βv(fv)|Dd|−1/2
v

(1 + q−1
v )

·
∏
v2|N

βv(fv)|Dd|−1/2
v

Lv(1, πv, ad)(1 + q−1
v )

·
∏

v�N∞

βv(fv)|Dd|−1/2
v

=
L(∞)(1/2, π, χ)

(f ′, f ′)Pet|Dd2|1/2
∏
v|∞

(
21−2kvπ−(kv+1)Γ(kv)

)
·
∏
v|c

βv(fv)|Dd|−1/2
v

·
∏

v||N nonsplit

βv(fv)|Dd|−1/2
v

(1 + q−1
v )

·
∏

v2|N nonsplit

βv(fv)|Dd|−1/2
v

Lv(1, πv, ad)(1 + q−1
v )

,

=
L(∞)(1/2, π, χ)

(f ′, f ′)Pet|Dd2|1/2
∏
v|∞

(
21−2kvπ−(kv+1)Γ(kv)

)
·

∏
v|N inert

(1− q−1
v )(1 + q−1

v )−1 ·
∏

v||N ramified

(1 + q−1
v )−1 ·

∏
v2|N ramified

(1 − q−1
v )

·
∏

v|N ramified

2L(1/2, πv, χv)
−1.

It follows that∣∣∣|Dd|−1/2Pχ(f)
∣∣∣2

(f, f)Pet
=

L((N,D)∞)(1/2, π, χ)

(f ′, f ′)Pet|Dd2|1/2

⎛⎝∏
v|∞

21−2kvπ−(kv+1)Γ(kv)

⎞⎠
·

∏
v|N inert

(1− q−1
v )(1 + q−1

v )−1 ·
∏

v||N ramified

2(1 + q−1
v )−1 ·

∏
v2|N ramified

2(1− q−1
v ).

To finish the proof, we need the following simple result.

Lemma A.7. Let F be a totally real field, K a totally imaginary quadratic exten-
sion over F , and η the associated quadratic character of A×. Then

2L(1, η)|Dd|−1/2

#(K̂×/K×F̂×Ô×
K)

= κ−1 · [O×
K : O×

F ]
−1 · 2[F :Q].

Here κ = 1 or 2 is the cardinality of the kernel of natural morphism from the ideal
class group of F to that of K.

Proof. It follows from the exact sequence

1→ (F̂× ∩K×Ô×
K)/F×Ô×

F → F̂×/F×Ô×
F → K̂×/K×Ô×

K → K̂×/K×F̂×Ô×
K → 1,
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that

#K̂×/K×F̂×Ô×
K =

hK

hF
· κ,

where we use the fact that K̂×/K×Ô×
K is isomorphic to the ideal class group of K

and similarly for F . By the ideal class number formula:

L(1, η)|Dd|−1/2 = L(0, η) =
hK

hF
· [O×

K : O×
F ]

−1 · 2[F :Q]−1.

Thus we have that

L(1, η)|Dd|−1/2

#K̂×/K×F̂×Ô×
K

= κ−1 · [O×
K : O×

F ]
−1 · 2[F :Q]−1.

Go back to proof of Theorem A.4. Note that

Pχ(f) =
2L(1, η)

#K̂×/K×F̂×Ô×
K

∑
t∈K̂×/K×F̂×Ô×K

f(t)χ(t).

We have that

|Dd|−1/2Pχ(f) = 2[F :Q]κ−1[O×
K : O×

F ]
−1

∑
t∈K̂×/K×F̂×Ô×K

f(t)χ(t).

Thus we obtain the desired explicit formula in Theorem A.4.

A.3. Explicit Gross-Zagier formula. We first recall the main theorem of [33].
Let F be a totally real number field and A its ring of adeles. Let X be the Shimura
curve over F associated to an incoherent quaternion algebra B overA with ramification
set Σ (containing all infinite places). Let ξ be the Hodge bundle on X , and let J be
its Jacobian. Let A be a simple abelian variety defined over F parameterized by X .
Then

πA := Hom0
ξ(X,A) = Hom0(J,A),

is a representation of B× over Q whose infinite components are all trivial. It is known
that M := EndB×(πA) = End0(A) is a number field of degree dimA over Q. Let ( , ) :
πA × πA∨ →M be the perfect B×-pairing given by (f1, f2) = vol(XU )

−1(f1,U ◦ f∨
2,U ),

where the composition uses the canonical isomorphism J∨
U
∼= JU and the volume using

the measure dxdy/(2πy2) on H. Let

〈 , 〉M : A(F̄ )Q ⊗M A∨(F̄ )Q −→M ⊗Q R

be the M -bilinear height pairing whose trace to R is the usual height pairing.
Let K be a totally imaginary quadratic extension of F with a fixed embedding

KA ↪→ B over A. Let χ : K̂×/K× → L× be a Hecke character of finite order valued
in a number field L ⊃ M , and also viewed as a Galois character via the class field
theory. Assume that

• ωπA · χ|A× = 1.
• ε(1/2, πv, χv) · χvηv(−1) = inv(Bv) for each place v of F .
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Then the global root number is −1. By Theorem A.1, these conditions imply that
(πA ⊗ χ)K×

A

is one-dimensional.

Denote

A(χ) = (A(Kab)Q ⊗M L)Gal(Kab/K).

Let h0 ∈ H be the unique fixed point of K×. It defines a point P = ([h0, 1]U )U ∈ X .
Define the period map Pχ : π → A(χ) by

Pχ(f) =

∫
t∈K̂×/K×F̂×

f(P )σt ⊗M χ(t)dt,

where we use the Haar measure such that the volume of K̂×/K×F̂× is 2L(1, η). The
Gross-Zagier formula of Yuan-Zhang-Zhang is as follows.

Theorem A.8 (Yuan-Zhang-Zhang [33]). For any pure tensors f1 ∈ πA and
f2 ∈ πA∨ with (f1, f2) �= 0,

〈Pχ(f1), Pχ−1(f2)〉L
(f1, f2)

=
L′(1/2, πA, χ)

L(1, πA, ad)L(2, 1F )−1
· β(f1 ⊗ f2)

as an identity in L ⊗Q C. Here 〈 , 〉L : A(χ) × A(χ−1) → L ⊗Q R is the L-linear
Néron–Tate height pairing induced by the M -linear Néron–Tate height pairing 〈·, ·〉M
above.

Note that we can define Gross-Prasad test vectors as in the last subsection. Then
the explicit version of the formula is as follows.

Theorem A.9 (Explicit Formula of Gross-Zagier). Assume that χ is an unram-
ified character of finite order. Let f ∈ πA be a Gross-Prasad test vector. Then

1

(f, f)
· ĥ

⎛⎝ ∑
t∈K̂×/F̂×K×Ô×K

f(P )tχ(t)

⎞⎠
= κ2 · [O×

K : O×
F ]

2 · 2[F :Q]+1 · L′((N,D)∞)
(1/2, π, χ)

(f ′, f ′)Pet|Dd2|1/2(4π)3[F :Q]

·
∏

v|N inert

(1− q−1
v )(1 + q−1

v )−1 ·
∏

v||N ramified

2(1 + q−1
v )−1 ·

∏
v2|N ramified

2(1− q−1
v ).

Here κ = 1 or 2 is the order of the morphism from the ideal class group of F to that
of K, and (N,D) denotes the set of finite places v of F such that both ordv(N) and
ordv(D) are positive.

The deduction of the theorem is almost the same as that of Theorem A.4, so we
omit it here. One can obtain the original Gross–Zagier formula under the Heegner
hypothesis from the above formula.

A.4. Special value formula of adjoint L-function. In the proof of Theorem
A.4 and Theorem A.9, we have used the following formula.

Theorem A.10. Let F be a totally real field and dF the absolute discriminant of
F . Let σ be a unitary cuspidal automorphic representation of GL2(A), N ⊂ OF its



770 Y. TIAN, X. YUAN, AND S.-W. ZHANG

conductor, and f the newform in σ. Assume that σv is discrete series of weight kv
for every v|∞. Then

LS′(1, σ, ad)

|dF |1/2 · (f, f)Pet · L(2, 1F ) = 2[F :Q]−1+
∑

v|∞ kv
∏
v|N

(1 + q−1
v ),

where S′ is the set of finite places v of F with conductor n(σv) ≥ 2. Equivalently,

L(N∞)(1, σ, ad)

|dF |1/2 · (f, f)Pet · ζF (2) =
(4π)

∑
v kv

2
∏

v Γ(kv)
·
∏
v|N

(1 + q−1
v )

∏
v‖N

(1− q−2
v ).

This formula can be found in the literature (probably under slightly different
assumptions). We sketch a proof here for the readers. Set G = GL2 over F . Let N

the unipotent subgroup of G consisting of matrices

(
1 a

1

)
in G, and U =

∏
v Uv be a

maximal compact subgroup of G(A). We follow [33, §1.6] to normalize the non-trivial
additive character ψ : F\A → C× and Haar measures on A, A× and G(A) and their
local components.

The proof of Theorem A.10 starts with the residue of an Eisenstein series. For
any Φ ∈ S(A2), define the Eisenstein series

E(s, g,Φ) :=
∑

γ∈P (F )\G(F )

P (s, γg,Φ),

where

P (s, g,Φ) = | det g|s
∫
A×

Φ([0, b]g)|b|2sd×b.

Lemma A.11. The Eisenstein series E(s, g,Φ) has meromorphic continuation to

the whole s-plane with only possible poles at s = 1, 0. In particular, if let Φ̂ denote
the Fourier transformation of Φ then

Ress=1E(s, g,Φ) =
1

2
Φ̂(0) ·Ress=1L(s, 1F ).

Proof. By the Poisson summation formula,

E(s, g,Φ) = | det g|s
∫
F×\A×

⎛⎝ ∑
ξ∈F 2\{0}

Φ(aξg)

⎞⎠ |a|2sd×a
= | det g|s

∫
|a|≥1

⎛⎝ ∑
ξ∈F 2\{0}

Φ(aξg)

⎞⎠ |a|2sd×a
+ | det g|s−1

∫
|a|≥1

⎛⎝ ∑
ξ∈F 2\{0}

Φ̂(g−1ξta)

⎞⎠ |a|2−2sd×a

+ | det g|s−1Φ̂(0)

∫
|a|≤1

|a|2s−2d×a

− | det g|sΦ(0)
∫
|a|≤1

|a|2sd×a.
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Thus E(s, g,Φ) has meromorphic continuation. Furthermore,

Ress=1E(s, g,Φ) = Φ̂(0) · lim
s→1

(s− 1)

∫
|a|≤1

|a|2s−2d×a =
1

2
Φ̂(0) · Ress=1L(s, 1F ).

Let σ be as in Theorem A.10. Take any f1, f2 ∈ σ. Let W1,W2 ∈ W(σ, ψ) be the
Whittaker functions associated to them. Namely, for i = 1, 2,

Wi(g) =

∫
N(F )\N(A)

fi(ng)ψ(n)dn,

where the Haar measure on N(A) is the one on A via the isomorphism N(A) ∼= A.
As in [12], consider the integral

Z(s, f1, f2,Φ) :=

∫
G(F )\G(A)/Z(A)

f1(g)f2(g)E(s, g,Φ)dg.

By unfolding the Eisenstein series, we obtain

Z(s, f1, f2,Φ) =

∫
N(A)\G(A)

| det g|sW1(g)W2(g)Φ([0, 1]g)dg.

It is a product of local factors. The theorem will be obtained as the residue at s = 1
of this expression.

For each place v of F and Φv ∈ S(F 2
v ), denote the local factor

Z(s,W1,v,W2,v,Φv) :=

∫
N(Fv)\G(Fv)

| det g|sW1,v(g)W2,v(g)Φv([0, 1]g)dg,

which has meromorphic continuation to the whole s-plane. Moreover, for any v � ∞,
the fractional ideal of C[qsv, q

−s
v ] generated by all Z(s,W1,v,W2,v,Φv) with Wi,v ∈

W(σv, ψv) and Φv ∈ S(F 2
v ) is the same as that generated by L(s, σv × σ̃v).

To take the residue, we need to compute Z(1,W1,v,W2,v,Φv). The following
result asserts that it is essentially the inner product on W(σv, ψv) given by

〈W1,v,W2,v〉 =
∫
F×v

W1,v

(
a

1

)
W2,v

(
a

1

)
d×a.

Lemma A.12. For each v,

Z(1,W1,v,W2,v,Φv) = Φ̂v(0) · 〈W1,v,W2,v〉.

Proof. This is a result of [12]. For any place v of F , let d′k be the Haar measure
on Uv determined by the following measure identity on G(Fv):

dg = |b|dxd×ad×bd′k, g = a

(
1 x

1

)(
1

b

)
k ∈ G(Fv).

By [12, p. 51],

Z(1,W1,v,W2,v,Φv) =

∫
F
×
v

W1,v

(
a

1

)
W2,v

(
a

1

)
d×a ·

∫∫
F
×
v ×Uv

Φv([0, b]k)|b|
2d×bd′k.
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By [12, Lemma 2.3], ∫∫
F×v ×Uv

Φ([0, b]k)|b|2d×bdk = Φ̂v(0).

The result follows.

Now we are ready to finish the proof of Theorem A.10. Let Φ = ⊗vΦv ∈ S(A2)

be any element with Φ̂(0) �= 0, and let f1, f2 be pure tensors. Take the residues at
s = 1 on the two sides of

Z(s, f1, f2,Φ) =
∏
v

Z(s,W1,v,W2,v,Φv).

Applying Lemmas A.12, we have

(f1, f2)Pet · Ress=1E(s, g,Φ) = Φ̂(0) · Ress=1L(s, σ × σ̃) ·
∏
v

〈W1,v,W2,v〉
L(1, σv × σ̃v)

.

We will see that the product on the right-hand side converges absolutely. Applying
Lemma A.11, we have

L(1, σ, ad)

(f1, f2)Pet
=

1

2

∏
v

L(1, σv × σ̃v)

〈W1,v,W2,v〉 .

Let f1 = f2 = f be the newform and W ◦ = ⊗vW
◦
v the corresponding new vector.

Then

L(1, σ, ad)

(f, f)Pet
=

1

2

∏
v

L(1, σv × σ̃v)

〈W ◦
v ,W

◦
v 〉

.

The proof is complete by the following result on the local factor.

Lemma A.13.

L(1, σv × σ̃v)L(2, 1Fv)
−1|dv|1/2

〈W ◦
v ,W

◦
v 〉

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, n(σv) = 0, v �∞,

1 + q−1
v , n(σv) = 1, v �∞,

(1 + q−1
v )L(1, σv, ad), n(σv) ≥ 2, v �∞,

2kv+1, v|∞.

Proof. The result follows directly from the explicit form of the Kirillov model for
the new vector. Note that the new vector W ◦

v for v|∞ is equal to

W ◦
v (g) = |y|k/2e2πi(x+iy)eikθ1R×+

(det g),

where g = a

(
y x

1

)
kθ ∈ GL2(R), which matches with 1

2L(s, σ∞) so that the corre-

sponding Hilbert form is the (normalized) newform.
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