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ARG TR T M A A K E AR S H AR ) — e g5 ) 35 IE T Abel-Jacobi BRES. 231k
LR NS ) = Fh B S R s, DA AN SR B A — AN 38 88 T — 3 Bogomolov
RN, AN 2B S mEHE1F R T Gross-Schoen M1 Ceresa [1%5% 1] Northcott P4 i 1]
M. B JEIX AN TR 2023 )R U7 R L RS AR . FR CASCRR S A 1L RS AR R,
L2 W U RERS 25 T FR I SR 1 1 2 ) BRI

LR AHEALEZEANRE. &g > 12— NEE M, 25%8 g ML=, M, 2
Deligne-Mumford W23 [0, KA RTN

lg/2]
A =M\ M, = [ A
i=0
B C— M, 27EM, LI LR, o £HXEE. £ Pic(M,) = Ch'(M,) ¥, BAITE
LA 25

L ARB T 6 = (A, 6 = [A] = X, 65

2. Hodge Z: A, := ¢;(det m,w™);

3. FHXTXHEZ KT Deligne BLXF: pi= c1((w,w)).

M g > 3 I, ¥ Harer ') Al Arabella il Cornablel| Pic(M,) B A := A\ Fl A, Al W g = 2,
) M 20, F H Pic(M,) A Ak 64h, FAiTH LT Riemann-Roch 1 Noether 2 k5K
X L.

Ap = w4+, 12 =pu+6.

Noether 270 H PL R [ M) 45 H:

a: (w,w) — det(m,w)®2.

M, EZFERIERT AL, £1 & SCR 2 mE—1), W Mumford 2 FI Moret-Bailly 9.

FATHIEE— H bp 2 Bl — L8 5¢ Tax Le 28 M F {30 B f A A . I a3 o FH DA O T it 28
4 gt 5L

1. Abel-Jacobi: X2 ZEA] LUk N EATH) Jacobi fEH;

2. Poincaré: XL n] LAgE be-F 4504k

3. Mumford: X426 il 25 AT DLAS & Hbik A5 75 [a] .

BATHIEE A H bra fk A~ S -

1. ®HE: — Bogomolov J 8 IIERH;

2. BAE =LA AE: Gross-Schoen HEER Ceresa 5] Northcott P

2 Arakelov EE

il Abel-Jacobi WUff, H—ANEY ¢ € Pic'(C) Ja, BAMNEEUR LI5#0 g > 1 ey
th4k C # TR A ZIH Jacobi f% Jac(C)

ig : C — Jac(C), xw— (x—¢&) € Jac(C).
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1 Jac(C) &, FAEH MR MIE EWAM AL Kahler JE3 h. b MIFLEILH T C E Arakelov &
B dpa . GRS, AT dua W 1 3016 4l 1- BREENEA A

Hop i ROREBURAL, oa, ... 0y 7 HY(C,we) H—4HIEREE, H:

i _
Q/CCki/\Oéj—(Sij.

& dua TER JUA RN Bergman JE .
FETREAERE, Arakelov 7EHIZL C x C EMIE TEMN O(A) EREE || - ||a, HAHKH] Green i
B ga(z,y) == —log ||1||a(z,y) TEN C LRI A0 2 T FIPE 5T
020,
—9(z,y) = dpu(x) — 6, (x).

i
EAFEREAENALRIRBIZGH T we BMEE, HMIZEFHIXYE duy BIELL. X2 Arakelov & & [
HERMEZ —, I TAH T Arakelov AR FIS FFERE A =X
i we £ Arakelov JEH0E X T2 128 € L1 Hermite 28 wa = (w, || - [|4). R4 Delignel®,
BABETIF B EE BN (wa,wa).
T Hodge 2k Ao = det H°(C, wc), Faltings i 7 28] HO(C,we) B0 L2- 5%k, B

(00 B) 12 1= ;/Com@.

T HYE [ det HO(C,w) = H(Jac(C),w), EANERYS H(Jac(C),w) L #Y L2 Ju$—2. Faltings
(1) 6 BT LA o BT IX A FE B AL A TE ek e XL

dp = —log|la| L2 a.

ZE N det mowa, (wa,wa) DEEANREIEHBILT. X det mowa, THOLRZRBEMW, FAERA
S - o A A B8 100 ) ST ORI R BRI f 2 X — D, b D R2EHEALFE A,
BETOEE D* = D\ {0} b, X, = f71(t) &5k g BOLIElhZ, Xo = F71(0) &2FFEm, LA
KT F D B det mowa BI—ANEH o,

log ||lo(t)||F ~ — log(—log|t]), t—0, (2.1)

by (T)
2

Hrp by (1) 72 Xo FIXHEE T M2 — Betti 20 b L EFE A2 Siegel BL73[A] I Faltings 15 5 iR
BRI, EAI1E Faltings X} Tate 5548, Shafarevich 5548 A1 Mordell 45 48 FIE R A & 45 T S8 1E H .

NPT, A OLSE R, RO E A T L BB ARG, o T B IR f : X — D, 5T (w, w)
£ D _EWARSTT 7, de Jong® UERH T DL R #L 2 2K

log||7||a ~ —erloglt|, t—0, (2.2)
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HA T2 X PXHEE, er 27ECHR [30] F @ X1 e- AR, HAE —e(T) & 3CHR [26] & X1 r- A
. Mk, de Jong IEH T BATT 6 eRELIHNT A

dp(X¢) ~ —(Or + €er) log [t| — 6b1(T") log(—log |t|), t— 0,

Hor op /& Xo FSH B BRI, Faltings 10 o b gt By B2 2 5. 75 S WA 11018 S LR ICE
Z VRIS BN S5 k.

TEHF 7T Bogomolov J5 48 201 if, FRATIHE 2 AE B HURAE 5L M2k ERILT Arakelov & &2k A
AR S K A2k L. 7R IE B — 2 Bogomolov & 48 24 i), BT EE LY R T w, Al (we, wa) 1
fi&. 20 5 TR RN LSRR, BERNE A 42 w |5 Deligne-Mumford AR 2
(i) A 255 KA AH TG IC 1) S 27 B R 34 I T 7 1 ) 2 0 .

=

3 Poincaré E=

HRYE Poincaré 5 B, AN FF B A Y X HH 22
L EAMAN 1 1 Poincaré & &:

Pl

fh i C #87T PLEE Poincaré 2 F1H H HAE AL,

dxdy

y
FER Sy JUT o e R B RR O L it 28 B2 . FRATT AT BLKE IX AN s A 8 2R e ith 26 D' e 3 4
Csm, e — HAUH R A FRIFEE. fEIZ % € — M, (C) Mok /iEs ¢™(C) Lk, w MA44E B
Poincaré & E Cng(C) | BEA XL log-log #F sl X AL B M 2 sLPr 2 IR/, BRI, fERER
Wi M, FBRATE — A Hermite ZEM (w,w)p.

TR U U, FRE ik © s T —H XUl i e G IR AR, R AR S IEER 4 XS
(oF,07). I'(C,we) & T(C,00(X)) BIF5, Huxw a W MR X T S HE&X A (ot 07),
1 Resy+a + Res,-a = 0. % F ot € &, AT RIS ¢ = 2™ @HV=10) 5 dyp i BiR ARG
. B o HRIER: o = f9, Hrp f 2 C ERBIE R, JAER ALK g- FETTFI2

dpp = vol(C)™* -

ag,o+ (f) + 40,0 (f) =0.

fHIVEECH [|a||? = (29 — 2)72Gf A f)/du = cy?|f|?, Horh e 2 — N IEF 3L

ILAEFRA K48 FH Deligne HIARKIE X (we, we) ERIEER. FRATFE ZIN— L84 R 2R, B
DI, B o F B 2 w 7E C _EWRASE B, ef1fERNR A A RE, FEHENNE S
AZZH. W o, B TTER T w B—NERM. (o, B) HITEEH 2

log || (. B)|» = (29 — 2) /C log [lal|dpep + log || (div).

XA RS, 4 C AR, RANEBE T - MEELLN (wp,wp). RIE Wolpert 23],
c1((wp,wp)) 5 My(C) L[ Weil-Peterson ZEKIEL, BlEIE Q) = mw® LHIEE

<a7/8>WP = _/C(a/\ﬂ_)/d,up.
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PLEFRATE X M, 1 delta BRECH Spr = —log||a r2— p. f FH Deligne f¥] Riemann-Roch [®
XA delta AN AT LLH Qullen [ Laplace 17513 k3RIA, tH A LLA Selberg [ zeta BAURERIL:

H H _ elsHREm),

v k=1
H R AE X HIfE . B dEE WL v ERTH, () Ay K. Z(X, s) AEAEIE 4 3
WA, 78 s = 1A — . A RIEA:

5PF(Xt) = —610g Z,(X, 1)
15 S W, Freixas!M,
TE3CHR [26] W, BATEIS B — AN AR IERIE g = 1, B e NIE. 7F Riemann i TH
ERRATA TR B A IEN:, JAE AN Poincaré & dup ) Green AL gp(x, y) A HHHA X

@gpu y) = du(z) — 6,(z).

SIEE 3.1 fFAE—DHE ~(O) (X0 Tl AR 2 BUER o € C, TATH T RIARX
log ||dz||a(x) — log ||dz||p(z) = +(C) + (29 — 2) /Cgp(% y)dpa(y).
IeAh, JATH
€(0) = 4lg =110 + 40~ 17 [ _on(e.)dna(@)dna(y).
SR CER B, 5
7 = log [dz/].1 — lo ] o

WA 2 f = (29 —2)(dup — dpa). F f — (29— 2) [ gp (@, y)dpa(y) RHE XIFH T 5E— 55
P58 A, AL wp = wa(f). Bk

€(C) = wp —wi = (wp —wa)(wa +wp)
_2@_1X/f@WA+dMJ

IUAETRA TR 58— & 73 N A5 21 58 —#873 BIV AT 56 BAIE . O

1E'5 %5 Deligne (115 27 FOTE BB 5 a7 - 4 B 50 B0 0F 70 BT (10— U ik v 281 75 B R A Ay
b, FAHRH w LB Poincaré & & Deligne-Mumford SRS/ 134725, RN EATERH/IME T
Kiher-Einstein #f8. B, 5 T308 K IR 58 g Kk C, ATBE TG (X, L2) 4
WHES L, b X & C 1 O EMIERER, £ & X B we BIIE Hermite 28 M. PL wz A8
X /O WIXHBA4E, HE SR £ FiiZg . 05, TATE L FARCON Kihler-Einstein #5811 5 &
2RI\

KE(L) = (£, 2w; — L).

EIE 3.1 (S WCHk [27,28])  TEWEUAEUER L5, L ERIRE deg KE(L) tA7E £ = wp Wik
B MA.

PATREAIE I HEIR 2 —
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4 FEHES

MRAE Mumford 2%, X T3 K FATE 4% > 2 Wiag ik C, LLEREH n > 5, I\ C —
P(H®(C,wp)) /& Chow F2 €. XK Chow F2E AN T Deligne-Mumford FaE . W K = C,
AR SCHR [29], HO(C,wg) 1R ST AFAEME— ) Hermite £544), i3 HAE wit = O(1)|c LiF
TR || - (g A TETR, R X TARTIEREE 51,.. ., s, BEK

ZHS WP =No=(2n—1)(g—1)

& C FH R

MAETRAMR R K 22— N8 T8 n > 3, /MNFZEES E,, HITEAN SpecOr LRI
HRM Ex—H(C,w™) I Hermite ZL . | P(€) & P(H(C,w)) MBI FE/E O(1) LA
Fubini-Study F&. & Ce /& P(E) H C WM, L£2 52 we FIIEH, 113 L2 257 Fubini-Study fE
I O(1) MRS, RERATH Q- M:
(cp,Lp)  deté
2degwy?  dim HO(C,wp)

GITn (,Cg) =

PAVFESCHER [29] HELIUERH T, XA ETE Ce & Chow KR M), H Lo LI B R T
IR H e/ ME. R YE Mumford 29, Chow &2 MEZ )T Deligne-Mumford &2 PE.
AT 5 Poincaré =M EEE KE ST LR, FRATE degdet £ B NN Lo 1 Quillen &

(Cg,Ly) det HY(Ce, L) — T(LE)
2w, dim HO(C, w?) ’

Hod 7(L2) 2 L2 WfENT 5. IAEFRATE ] Deligne Y Riemann-Roch 15 3|

GIT,(Le) ==

(L2, L8) (L8 L2 —we.) —T(L2)
in(g—1)  2@2n—1)(g=1)
T A(g-1en-1) (KE(Lg) + 27(L2)n ™).

GIT,(Le) =

EIE 3.1 BOIERR R BRI R K BUE LR R SRR DI, AR 3 R 0 iy
JRHB e F A

deg KE(L) — deg KE(wp) = » (KE(L,) — KE(wp,)),

v

HApxtF8A v, KE(L,) Fl KE(wp,,) AR — B (wo, we). FILEATE X

KE(E”) - KE(wP,1)) = — ].Og HHKiE([:”)

I HKE(UJP,U)

AT ELE X T RHANRAE o, KE(Z ) = KE(wp,), 3 LA B R ALY £ w;i S
% v %%Bﬁﬁia iﬁ »Cy = Wpy (901)) %B/ KE(SOU) Ejﬁﬂi Mabuchl ;ﬁ .LH: KE(QDv) 0’ E%/J\’fﬁ 0 ’fﬂ
TEH BRA L 3.
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X AR EERAEAL o, TATEERIN T n > 5 K, L0 LT —2 X, FEAE P(E,) Kk

N, B g, = HO(X,, £r). WIEATH
n

4(9g—1)(2n —1)
& BIARHE Mumford 2%, wg ., Ml wp, B FEMELER. WL GIT(w, p,) PR/ ER®RE
KE(Le,) > KE(wp,,) = 0, 555 ML HAUY Lo wp, AREEER. O

ok, BATFEE — L@ A P = M AKRIE L wp A det mowpre MIARYE. 1X 52 % Donaldson
FESCHR [7) H 2SR A, BP T4 RE 2  t Ze7E /6N Riemann i EW 84 F Poincaré fE&E.

oG, WATHEE W ERPEEE S AL (we,we) BB R RS Poincaré B &) 3 EE—
. Rk, FRAE € EA AW KPP R EL N wp, = (w, || ||Bn). BA TR T HAED
St EWAT R, BRI, RSN 1 C — M, ITH A RS esine ¢ € Bk € — @, ¥ Esing
RSN T ] @ .= @\ Csing = @\ Csine, ¥f goine JLISNR T CIne ) Green B¥L, EAE €™ b4
Ab AN IE.

B8 4.1 XIULFRIN, BEE n — oo, PHTEELMN wp, £E C\ €8 E4Z DL B ISR wp:
XFTAEA € > 0, FEAEMMIT € B n(e), MAFXTAEM n > n(e) Al C™ ERERE A «,

GITn(Egv) — GIT(me,U) =

(KE(Le,) — KE(wpn.v))-

BAEX T RANRE 2k ©, Tl P B =5 2E L2 W75
<S>t>B7L2,n = / <87t>B7nd,uB,na s,t € HO(Ca (.Uc>,
C

H dpp,, M wp, MHIFESAOEBER BUTHIAE, BAEE] T det mew ERIEER || - |52,
L g® RIBF A M, L) Green %L, B TE M, (C) b HATATHL 5 #/2& IE1.

B 4.2 XAFHRIN, BEE n — oo, PEIEEAMN mowp 12, 1 M, (C) B3 PUT & sk 3)
mewrz2: AR € > 0, fFFEKIT € 1) n(e), AR TAEMF n > n(e) A M, (C) ERAERE A s,

log I s,z (z)| < eg®(s).
|- 122

5 Adelic BEE

13 F B R AN 24T, LRI LASH s SCEE SRR K A3 1 11 i 2R A Arakelov JE & 126,
H, SR T80 L 28 O, Bogomolov 5 A& T adelic H A (we,we)q MIEME. XAMIE T
R ET R Y R R e/M,. 1ENNH, 3B EIUEY] T —2 Bogomolov 548, FEATTH, FRoA] [R]85 22 ¥t
A AR, OB AL A X BT DR A% I Tl BR A AR adelic &

TR, ATHEE (C, &) BIBLAE M, ¢, Hp C 24, ¢ 21 (29 — 2)¢ = we FIHEZ
W WM, ¢ 75 M, BB R EATFEE, HRECN (29 — 2)%9. id € — M, Az 4k, J AH Jacobi
1%, WATHEIN i : € — J. 7E J xo, . J L, A Poincaré A P. % PA NP IEX AL J - RIBR S,
M 2P = m*PA — piPA — py PR VERER] P2 RAHXS FE3l BRI
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TAVKXZ W 7 2§ — My LEE R 2]*P2—=(P2)* fiH] Tate HILfE PS> LHiE—
adelic & #. il X AN [ € 1 [ R, AT FE AL M. [ E/E M, b Hermitian 3230 2k A
N W Pg = PA +7r*/\/ fE g ERFMK. Bk, TR e e N, HiRA j: § — PV flifG
J*O(1) = (P&)™. % j: 3 — 3o 793 W Zariski AL BUE, X TAEM n e N, ®A12 £, d, — Jo
?ﬂU\TEé\Hﬁ%Eﬂ‘E’JE%MJC

g2 g2,

WA 3, #5523 L. JATEE XL PY = L f2P8 £ § LIX AR PA + 4 m N IXEHE
9, ERIAMTEL R & —A Cauchy 751, MTIFE Zariski-Riemann 4[] J X T A adelic £
WA HARBR P2 & —A nef A, AKHT N FIE] PN BTG N RS, © R[S 2] P2 (PR
HIME— adelic 6. IAEFRATTA] LAYE Poincaré M\ _FFC 4% adelic & &

1
Po 1= 5 (m" Py = piPy = pPy)-
%t -F Bogomolov f& R8N, FATH i*PA KRFRIE w. H R, i@ T ML Néron-Tate =%,
i1 P2 = 2g¢ — (€, €). HIlt,
— _ 1 y* A 1 * A % yA
= <1 g)z P 4 — (I"P2,i"P7),
(w0, w) = (1 _ ;) (P, P,
PAEFRATE X adelic £ EZEM
Wo = <1 — ;>z’*7>$ + 4;2<z’*7>$,z’*7>$>.
L, BATE My EA—A adelic HZA: (wo,wa) = (1 — ) (P2, PL).
PLUF & R FaX S W IR 56 — AN B2
EIE 5.1 GEHEPY) M (e, wa) A& nef HKH.
Htl, ZHTEAE 7 4t — Bogomolov A& A8 DL A

B 5.2 (IR fFEWE 1, o > 0, X TAER (C, o), Horh C 2 E FEQ L1
#H g 2, o € Pic'(0),

#{l‘ € C(@), hNT(.T — Oé) < Cl(hFal(C) + hNT((Qg . 2)04 — (.UC))} < Ca.

Y a € C(Q) I, IAMARZERES hnr((29 — 2)a — we) TUIRRA 2 H Kithne WE. 155 #3208
R4 DUIRECRE 22 40 22 ST

6 _E /\EE

XF T AR k ERIHiZE C F12K ¢ € Pic'(C), Gross fll Schoen™ fE =& C° ki 7 —4
[F] 87 FLI Chow 8 GS(C) := A¢(C) € Ch*(C®). 4 k &I, Gross il Schoen #5H GS(C) )
Beilinson-Bloch & ERLX (A (C), Ae(C))p. LEICHR [30] H, FRATEM T IXAH S Ceresa

Ce(C) := i¢(C) — [~1]"i¢(C) € Chy(Jac(C))
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1 i B2 LA R SRR [26] A iE AR S B (we, we)o B BT 2. A2 AT e 58 B Rl ) A [12] o,
XAE CEWY BB M, B AEN—ARNH, FATIER T Gross-Schoen ##1 Ceresa #E 1
Northeott 5T, FEASTT Hh, FATBIBUX T AE.

AT E—F7k9iE ) adelic Poincaré A\ P, JTUAKG HAL R 2 # 2L UL 4ERR © <o, . C _EAFHIZEMN

Qa = (Z X i)*Pa = O(p;ga +p;£a - Aa)7

HAThR o BRI FEE. WBLABMNE—N=ZFEEMRLN: L, = (D4, Qu, Qo). EANMNEEET
Gross-Schoen 5511 Ceresa £% ] Beilinson-Bloch /&% .
b b, ANFEERE R, XANANTRESI M, ER— Q- &M, HiRRA

6(2g +1)
g—1

X R B (1) 22 R AR M, (C) EEE R 5% g I I A S T8] boE T — 28R 3 o A1 X, de
Jong Fl Shokrieh 4 BIF 7 T iX L R B7E — 45 BRI AT Sy, 1T R 500 (21 7 vy 4 55 oot B 1) 1) B
Fo T EATRIEHLAT A, R, M, (C) EREREL ¢ thH Kawazumi 57 K.

I L, B B R A T R 24 AR AOAS (R ) 7 0. g 1 96 T3 nef PERIR M)
SE ). FRATIEE SCHR [12] HER T 3 — e e £, BOBUR ORI, ik, BATH LR AR

EIE 6.1 X THEA g >3, A1F Q LWAES Zariski JF 7% U, A NAFAEIEE € A ¢, 15X T
fE17 s € U(Q),

2g+1
2g — 2

<Q7 97 Q> = <w7w> =

det m,w.

<GS(GS), GS(GS»B 2 thal(s) —C,
(Ce(Cy), Ce(Cy))p = €hpal(s) — ¢,

Horf hpa A& M, (Q) -1 Faltings =12,
TS5 A SR [25) ISR, ATA LR 458,
T 6.2 XTEA g >3, A1 Q FAE% M, 1 Zariski JF 7% U, (13X L4 H, D € R,

#{s € U(Q), degs < D, {GS(C,),GS(C,))s < H} < o0,
#{s € U(Q), degs < D, {Ce(C,),Ce(C,))s < H} < o0,

HHXFAEMT s € U(C) \ U(Q), GS(€,) Fl Ce(C,) #BAAEFEM.

Bt R PEHFREAFLERAGHFAREZEFFRLR. LT KF R EH I A FHAMN K fa4ed 6945 %1%
HERL. ALRBE— PO TERMERAE 2023512 A 14 £ 17 B A2+ L KFi5 9 0 TF4569. R R P L kFk
BRI A TR E AR R4
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Calculus on arithmetic moduli of curves

Shouwu Zhang

Abstract We survey three constructions of metrized line bundles on the moduli of curves by means of Abel-
Jacobi maps, uniformizations, and projective embeddings. We also describe two arithmetic applications: one to
the uniform Bogomolov conjecture by Xinyi Yuan and the other to the Northcott property for Gross-Schoen cycles

and Ceresa cycles.
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