
中国科学 : 数学 2024年 第 54卷 第 12期 : 2059∼ 2068

SCIENTIA SINICA Mathematica

论 文

英文引用格式: Zhang S. Calculus on arithmetic moduli of curves (in Chinese). Sci Sin Math, 2024, 54: 2059–2068, doi:

10.1360/SSM-2024-0167

c⃝ 2024 《中国科学》杂志社 www.scichina.com mathcn.scichina.com

曲线算术模空间上的微积分

献给中山大学建校百年暨中山大学数学学科建设 100周年

张寿武

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

E-mail: shouwu@princeton.edu

收稿日期: 2024-05-22; 接受日期: 2024-08-26; 网络出版日期: 2024-09-14

摘要 本文通过 Abel-Jacobi映射、Poincaré单值化和Mumford稳定投影嵌入给出曲线模空间上的

度量化线丛的三种构造. 我们还描述了两个算术应用: 一个是袁新意关于一致 Bogomolov猜想的应

用, 另一个是我们与高紫阳合作关于 Gross-Shoen闭链和 Ceresa闭链的 Northcott性质的应用.
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1 引言

在解析几何和线性代数中, 我们学习了二元二次方程在线性变换下的分类. 在复数域上只有一

类; 在实数域上有三类: 椭圆型、双曲型和抛物型; 在有理数域上, 则有无穷多类; 这实际上是经典数

论的主要课题. 当我在中山大学读本科时, 我偶然在数学系资料室读到一篇 1950年代中国数学会访

问苏联代表团的报告, 报告中提到, 对于复数域上的高次方程的分类, 我们需要多个参数, 这些参数

构成了代数曲线的模空间. 后来在中国科学院数学研究所读硕士时, 我意识到这些模空间的研究是

自 Bernhard Riemann的 1851年的博士论文开始的, 并在 19世纪末 20世纪初成为复分析和微分几

何的一个重要课题.

代数曲线的算术模空间则是由Deligne和Mumford[6] 在 1969构造的. 1974年, 作为代数曲面上

的交点理论的算术类比, Arakelov[1] 引入了整数上曲线的相交理论,并将高度重新解释为Hermite线

丛的度. 10年后, Faltings[8] 完备了这个理论.此外,作为他证明Mordell猜想[9] 的关键因素, Faltings

还引入了与 Hodge丛相关的新的高度函数. 几年后, Deligne [5] 发展了 Hermite线丛相对相交理论,

为曲线的算术模空间的研究提供了良好的框架. 这些研究统一了已知的代数、分析和几何理论.

http://doi.org/10.1360/SSM-2024-0167
www.scichina.com
mathcn.scichina.com
mailto:shouwu@princeton.edu


张寿武: 曲线算术模空间上的微积分

本文总结了关于曲线模空间的算术相交理论的一些结果, 包括通过 Abel-Jacobi映射、参数化

和投影嵌入给出的三种度量化线丛的构造, 以及两个算术应用: 一个是袁新意关于一致 Bogomolov

猜想的应用, 另一个是我们与高紫阳合作关于 Gross-Schoen闭链和 Ceresa闭链的 Northcott性质的

应用. 最后这个课题是我 2023年底访问中山大学时开始的. 我以此文献给中山大学百年校庆, 并借

此机会谢谢母校给予我的美好的学习环境.

以下介绍本文的主要内容. 设 g > 1 是一个整数, Mg 是亏格为 g 的曲线的模空间, Mg 是

Deligne-Mumford紧化空间, 其边界除子为

∆ := Mg \Mg =

[g/2]∪
i=0

∆i.

设 π : C −→ Mg 是在Mg 上的稳定曲线的范族, ω是相对对偶层. 在 Pic(Mg) = Ch1(Mg)中, 我们有

以下的类:

1. 边界除子类: δi := [∆i], δ = [∆] =
∑

i δi;

2. Hodge类: λn := c1(detπ∗ω
n);

3. 相对对偶层的 Deligne配对: µ := c1(⟨ω, ω⟩).
当 g > 3时, 根据 Harer [17] 和 Arabella和 Cornable [2], Pic(Mg)由 λ := λ1 和 ∆i 生成. 如果 g = 2,

则Mg 是仿射的, 并且 Pic(Mg)由 ∆i 生成. 此外, 我们有以下 Riemann-Roch和 Noether公式来关

联这些类:

λn =
n(n− 1)

2
µ+ λ, 12λ = µ+ δ.

Noether公式由以下同构给出:

α : ⟨ω, ω⟩ −→ det(π∗ω)
⊗12.

Mg 上该同构在可以乘以 ±1的意义下是唯一的, 见Mumford [20] 和Moret-Bailly [19].

我们的第一个目标是回顾一些关于这些线丛上的规范度量的构造. 这些构造使用以下关于曲线

的经典结果:

1. Abel-Jacobi: 这些曲线可以嵌入它们的 Jacobi簇中;

2. Poincaré: 这些曲线可以被上半平面均匀化;

3. Mumford: 这些曲线可以稳定地嵌入射影空间中.

我们的第二个目标是描述两个应用:

1. 袁新意: 一致 Bogomolov猜想的证明;

2. 我们与高紫阳的合作: Gross-Schoen闭链和 Ceresa闭链的 Northcott性质.

2 Arakelov度量

通过 Abel-Jacobi映射, 选择一个基类 ξ ∈ Pic1(C)后, 每个复数域上的亏格为 g > 1的光滑投影

曲线 C 都可以嵌入到其 Jacobi簇 Jac(C)中:

iξ : C −→ Jac(C), x 7→ (x− ξ) ∈ Jac(C).

2060



中国科学 : 数学 第 54卷 第 12期

在 Jac(C)上, 存在着代表典范主极化的不变 Kähler形式 h. h的拉回给出了 C 上 Arakelov度

量 dµA
[1]. 放缩后, 我们可假设 dµA体积为 1. 我们有用全纯 1-形式表达的显式公式:

dµA =
i

2g

g∑
i=1

αi ∧ ᾱi,

其中 i代表虚数单位, α1, . . . , αg 是 H0(C,ωC)的一组正交基, 即:

i

2

∫
C

αi ∧ ᾱj = δij .

度量 dµA在微分几何中也称为 Bergman度量.

基于这个度量, Arakelov在曲线 C ×C 上构造了线丛 O(∆)上的度量 ∥ · ∥∆, 其相关的 Green函

数 gA(x, y) := − log ∥1∥A(x, y)作为 C 上的分布满足下列性质:

∂x∂̄x
πi

g(x, y) = dµ(x)− δy(x).

这个度量在对角线的限制给出了 ωC 上的度量, 其曲率再次与 dµA 成正比. 这是 Arakelov度量的最

重要特性之一, 因为它给出了 Arakelov相交理论的伴随公式.

所有 ωC 上的 Arakelov范数定义了泛曲线 C上的 Hermite线丛 ωA=(ω, ∥ · ∥A). 根据 Deligne[5],

我们还可得到度量化线丛 ⟨ωA, ωA⟩.
对于 Hodge线 λC = detH0(C,ωC), Faltings使用了空间 H0(C,ωC)上的 L2-范数, 即

⟨α, β⟩L2 :=
i

2

∫
C

α ∧ β̄.

通过典范同构 detH0(C,ω) = H0(Jac(C), ω),这个度量与H0(Jac(C), ω)上的L2-范数一致. Faltings

的 δ函数可以用 α关于这两个度量化线丛的范数来定义:

δF = − log ∥α∥L2→A.

线丛 detπ∗ωA, ⟨ωA, ωA⟩上的度量不能延拓到边界. 对 detπ∗ωA, 情况只是轻微的, 因为它只有

对数 -对数奇点 [3, 8, 10]. 例如, 对于光滑流形上的光滑映射 f : X −→ D, 其中 D是复数单位圆盘, 使

得在无心圆盘 D∗ = D \ {0}上, Xt = f−1(t)是亏格为 g 的光滑曲线, X0 = f−1(0)是半稳定的, 以

及对于 D上的 detπ∗ωA的一个截面 σ,

log ∥σ(t)∥F ∼ −b1(Γ)

2
log(− log |t|), t → 0, (2.1)

其中 b1(Γ)是 X0 的对偶图 Γ的第一个 Betti数. 由此定义的高度是 Siegel模空间上 Faltings高度函

数的限制.它们在 Faltings对 Tate猜想、Shafarevich猜想和Mordell猜想的证明中发挥了关键作用.

对于 µ, 情况更为严重, 因为它有对数奇点. 更准确地说, 对于上述的族 f : X −→ D, 对于 ⟨ω, ω⟩
在 D上的生成元 τ , de Jong [3] 证明了以下渐近公式:

log ∥τ∥A ∼ −ϵΓ log |t|, t → 0, (2.2)
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其中 Γ是 X0 的对偶图, ϵΓ 是在文献 [30]中定义的 ϵ-不变量, 其负值 −ϵ(Γ)是文献 [26]定义的 r-不

变量. 因此, de Jong证明了以下 δ函数的渐近公式:

δF (Xt) ∼ −(δΓ + ϵΓ) log |t| − 6b1(Γ) log(− log |t|), t → 0,

其中 δΓ 是 X0 的对偶图的长度. Faltings [10] 已将此结果扩展到多圆盘. 请参阅他们的论文以获取更

多详细信息和参考文献.

在研究 Bogomolov猜想 [26] 时, 我们在定义在离散赋值域上的曲线上发现了 Arakelov度量线丛

的非阿基米德类比. 在证明一致 Bogomolov猜想 [24] 时, 袁新意在模空间上扩展了 ωa 和 ⟨ωa, ωa⟩的
构造. 请参见第 5节中我们的综述. 现在我们有个问题: 什么是 ω 上与 Deligne-Mumford算术模空

间整结构相匹配的正确度量? 这是下面两节的主要话题.

3 Poincaré度量

根据 Poincaré定理, 每个开或闭的双曲黎曼曲面 C 都可以由 Poincaré上半平面 H单值化, 因

此具有面积为 1的 Poincaré度量:

dµP = vol(C)−1 · dxdy
y2

.

在微分几何中, 此度量也称为常比例曲率度量. 我们可以将这个定义扩展到稳定曲线的光滑部分

Csm, 它是一组双曲曲线的有限并集. 在泛族 C −→ Mg(C)的光滑局部 Csm(C)上, ω 每个纤维上的

Poincaré度量在 Csing(C)上具有对数 log-log奇点. 这种形式的曲率流实际上是正的. 因此, 在算术

模空间Mg 上我们有一个 Hermite线丛 ⟨ω, ω⟩P .
更确切地说, 稳定曲线 C 定义了一组双曲曲线的有限并集, 并将其尖点的并集 Σ 分成点对

(σ+, σ−). Γ(C,ωC)是 Γ(C,ΩC(Σ))的子集, 其元素 α满足如下性质: 对于 Σ中的每对点 (σ+, σ−),

有 Resσ+α + Resσ−α = 0.对于 σ+ ∈ Σ, 我们有局部坐标 q = e2πi(x+
√
−1y), 使得 dµP 由上述公式给

出. 此时 α有表达式: α = f dq
q
, 其中 f 是 C 上的模形式, 其在尖点处的 q-展开满足

a0,σ+(f) + a0,σ−(f) = 0.

f 的范数为 ∥α∥2 = (2g − 2)−1(if ∧ f̄)/dµ = cy2|f |2,其中 c是一个正常数.

现在我们将使用 Deligne的公式来定义 ⟨ωC , ωC⟩上的度量. 我们需要加一些额外的要求. 更确

切地说, 假设 α和 β 是 ω 在 C 上的两个有理截面, 它们在每个尖点上都不为零, 并且它们的零点是

不交的. 则 α, β 贡献了 ω的一个截面. ⟨α, β⟩的范数满足

log ∥⟨α, β⟩∥P = (2g − 2)

∫
C

log ∥α∥dµP + log ∥β∥(divα).

这个积分是收敛的. 当 C 变化时, 我们得到了一个度量化线丛 ⟨ωP , ωP ⟩. 根据 Wolpert [23],

c1(⟨ωP , ωP ⟩)与Mg(C)上的Weil-Peterson度量成正比, 即定义在 Ω1
Mg

= π∗ω
2上的度量

⟨α, β⟩WP := −
∫
C

(α ∧ β̄)/dµP .
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现在我们定义Mg 上的 delta函数为 δPF = − log ∥α∥L2→P .使用 Deligne的 Riemann-Roch [5],

这个 delta不变量可以用 Qullen的 Laplace行列式来表达, 也可以用 Selberg的 zeta函数来表达:

Z(X, s) =
∏
γ

∞∏
k=1

(1− e(s+k)ℓ(γ)),

其中乘积是在X 的简单、封闭、非定向测地线 γ上进行的, ℓ(γ)为 γ的长度. Z(X, s)可亚纯延拓到

整个复平面, 在 s = 1处有一单零点. 我们有表达式:

δPF(Xt) = −6 logZ ′(X, 1).

详情请参见 Freixas [11].

在文献 [26]中, 我们通过找到一个明确的公式发现除非 g = 1, 否则 ϵΓ 为正. 在 Riemann曲面

上我们不指望这种正性, 尽管我们对 Poincaré度量 dµP 的 Green函数 gP (x, y)有明确公式:

∂x∂̄x
π

gP (x, y) = dµ(x)− δy(x).

引理 3.1 存在一个常数 γ(C)使得对于带有局部坐标 z的任意 x ∈ C, 我们有如下表达式

log ∥dz∥A(x)− log ∥dz∥P (x) = γ(C) + (2g − 2)

∫
C

gP (x, y)dµA(y).

此外, 我们有

ϵ(C) = 4(g − 1)γ(C) + 4(g − 1)2
∫
C2

gP (x, y)dµA(x)dµA(y).

证明 设 f 是 C 上的一个光滑函数, 定义为

f = log ∥dz∥A − log ∥dz∥P .

那么 ∂∂̄
πi
f = (2g − 2)(dµP − dµA). 因此 f − (2g − 2)

∫
C
gP (x, y)dµA(y)是常数. 这证明了第一部分.

对于第二部分, 我们使用 ωP = ωA(f). 因此

ϵ(C) = ω2
P − ω2

A = (ωP − ωA)(ωA + ωP )

= 2(g − 1)

∫
C

f(dµA + dµP ).

现在我们将第一部分带入得到第二部分即可完成证明.

在写给 Deligne的信 [27] 和在波恩马克斯 ·普朗克数学研究所的一次演讲中 [28], 在阿基米德位

上, 我们提出 ω上的 Poincaré度量是 Deligne-Mumford算术结构的更好类比, 因为它们都最小化了

Käher-Einstein势能. 更确切地说, 对于数域 K 上任何亏格 g 的曲线 C, 我们考虑了所有 (X , L̄)组
成的集合 L, 其中 X 是 C 在 OK 上的正规模型, L̄是 X 上延拓 ωC 的正 Hermite线丛. 以 ωL̄ 代表

X/OK 的对偶纤维, 其度量由 L̄的曲率给出. 然后, 我们定义如下称为 Kähler-Einstein势能的度量

线丛:

KE(L̄) = ⟨L̄, 2ωL − L̄⟩.

定理 3.1 (参见文献 [27,28]) 在恰当缩放度量 L̄后, L上的函数 degKE(L̄)恰在 L̄ = ωP 时达

到极小值.

我们将证明推迟到下一节.
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4 平衡度量

根据 Mumford [20], 对于环 K 上任意亏格 > 2 的稳定曲线 C, 以及整数 n > 5, 嵌入 C −→
P(H0(C,ωn

C))是 Chow稳定的. 这表明 Chow稳定性等价于 Deligne-Mumford稳定性. 如果K = C,
那么根据文献 [29], H0(C,ωn

C)在数乘意义下存在唯一的 Hermite结构, 使得其在 ωn
C = O(1)|C 上诱

导度量 ∥ · ∥ωn
C
是平衡的, 即满足: 对于任何正交基 s1, . . . , sNn

, 函数∑
i

∥si(x)∥2 = Nn = (2n− 1)(g − 1)

是 C 上常函数.

现在我们假设 K 是一个数域, 对于每个 n > 3, 我们考虑集合 En, 其元素为 SpecOK 上的带

有同构 EK
∼−→H0(C,ωn) 的 Hermite 线丛. 则 P(E) 是 P(H0(C,ωn

C)) 的整模型, 并在 O(1) 上带有

Fubini-Study度量. 设 CE 是 P(E)中 C 的闭包, Ln
E 是 ωC 的延拓, 使得 Ln

E 是带有 Fubini-Study度

量的 O(1) 的限制. 然后我们有 Q-丛:

GITn(LE) :=
⟨Ln

E ,Ln
E⟩

2 degωn
C

− det E
dimH0(C,ωn

C)
.

我们在文献 [29]中已经证明了, 这个丛的度在 CE 是 Chow半稳定的, 且丛 LE 上的度量就是平衡度

量时取到其最小值. 根据Mumford [20], Chow半稳定性等价于 Deligne-Mumford半稳定性.

为了与 Poincaré度量的能量 KE进行比较, 我们将 deg det E 替换为线丛 LE 的 Quillen度量:

GITn(LE) :=
⟨Ln

E ,Ln
E⟩

2ωn
C

− detH0(CE ,Ln
E)Q − τ(Ln

E)

dimH0(C,ωn
C)

,

其中 τ(Ln
E)是 Ln

E 的解析挠度. 现在我们使用 Deligne的 Riemann-Roch得到

GITn(LE) =
⟨Ln

E ,Ln
E⟩

4n(g − 1)
− ⟨Ln

E ,Ln
E − ωLE ⟩ − τ(Ln

E)

2(2n− 1)(g − 1)

=
n

4(g − 1)(2n− 1)
(KE(LE) + 2τ(Ln

E)n
−1).

定理 3.1 的证明 这显然可约化为每个 K 赋值上的局部问题. 更确切地说, 我们将势能分解为

局部能量的和:

degKE(L̄)− degKE(ωP ) =
∑
v

(KE(L̄v)−KE(ωP,v)),

其中对于每个 v, KE(L̄v)和 KE(ωP,v)具有相同的一般纤维 ⟨ωC , ωC⟩. 因此我们定义

KE(L̄v)−KE(ωP,v) = − log
∥ · ∥KE(L̄v)

∥ · ∥KE(ωP,v)

.

我们需要证明对于每个赋值 v, KE(L̄v) > KE(ωP,v), 并且等号成立当且仅当 L̄vω
−1
P,v 为常数度量. 如

果 v是无限位, 设 Lv = ωP,v(φv). 那么 KE(φv)就是Mabuchi函数. 因此 KE(φv) > 0, 最小值 0仅

在常函数时达到.
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对于非阿基米德位 v, 我们注意到对于 n > 5充分大, Ln
v 定义了一些 Xv 到射影空间 P(Ev)的嵌

入, 其中 Ev = H0(Xv,Ln
v ). 则我们有

GITn(LEv
)−GIT(ωn,B,v) =

n

4(g − 1)(2n− 1)
(KE(LEv

)−KE(ωB,n,v)).

注意到根据 Mumford [20], ωB,n,v 和 ωP,v 具有相同的整结构. 现在 GIT(ωn,B,v) 的最小性意味着

KE(LEv
) > KE(ωP,v) > 0, 等号成立当且仅当 LEv

ω−1
P,v 为常数度量.

接下来, 我们提出一些通过带平衡度量的丛来逼近 ωP 和 detπ∗ωL2 的想法. 这受到 Donaldson

在文献 [7]中的结果的启发, 即平衡度量的曲率在每个光滑 Riemann曲面上收敛到 Poincaré度量.

首先, 我们调整 ωn 上的平衡度量使得其在 ⟨ωC , ωC⟩上诱导度量与 Poincaré度量的诱导度量一

致. 因此, 我们在 C上有一个明确定义的平衡度量线丛: ωB,n = (ω, ∥ · ∥B,n). 以下猜想描述了其在边

界上的行为. 更确切地说, 考虑态射 π : C −→ Mg 沿其奇异部分 Csing ⊂ C的吹胀 C̃ −→ C, 设 C̃sing

为例外除子. 则 Csm := C \ Csing = C̃ \ C̃sing.设 gsing 是例外除子 C̃sing 的 Green函数, 它在 Csm 上处

处为正.

猜想 4.1 对边界拓扑, 随着 n → ∞, 平衡度量线丛 ωB,n在 C \ Csing 上按以下意义收敛到 ωP :

对于任何 ϵ > 0, 存在依赖于 ϵ的 n(ϵ), 使得对于任何 n > n(ϵ)和 Csm上的任意点 x,∣∣∣∣log ∥ · ∥B,n

∥ · ∥P
(x)

∣∣∣∣ < ϵgsing(x).

现在对于每个稳定曲线 C, 我们通过平衡度量得到在 L2-范数的序列:

⟨s, t⟩B,L2,n :=

∫
C

⟨s, t⟩B,ndµB,n, s, t ∈ H0(C,ωC),

其中 dµB,n是由 ωB,n的曲率诱导的体积形式. 取行列式后, 我们得到了 detπ∗ω上的度量 ∥ · ∥B,L2,n.

令 g∆是边界 ∆ ⊂ Mg 上的 Green函数, 它在Mg(C)上的任何地方都是正的.

猜想 4.2 对边界拓扑, 随着 n → ∞, 平衡度量线丛 π∗ωB,L2,n 在Mg(C)上按以下意义收敛到
π∗ωL2 : 对于任何 ϵ > 0, 存在依赖于 ϵ的 n(ϵ), 使得对于任何 n > n(ϵ)和Mg(C)上的任意点 s,∣∣∣∣ log ∥ · ∥B,L2,n

∥ · ∥L2

(x)

∣∣∣∣ < ϵg∆(s).

5 Adelic度量

使用图上的调和分析, 已经可以对定义在非阿基米德域上的曲线构造 Arakelov度量 [26]. 作为应

用, 已证明对于数域上的曲线 C, Bogomolov猜想等价于 adelic自交 ⟨ωC , ωC⟩a 的正性. 这个构造已

由袁新意 [24] 扩展到 C/Mg. 作为应用, 袁新意证明了一致 Bogomolov猜想. 在本节中, 我们回顾袁新

意 [24] 的工作, 其关键是构造相对阿贝尔簇上的丰沛对称丛上的不变 adelic度量.

为了简单起见, 我们考虑 (C, ξ)的模空间Mg,ξ, 其中 C 是曲线, ξ是使得 (2g − 2)ξ = ωC 的直线

丛. 则Mg,ξ 在Mg 上是有限且平坦的, 其次数为 (2g − 2)2g. 记 C −→ Mg,ξ 为泛曲线, J为其 Jacobi

簇, 则我们有嵌入 i : C −→ J. 在 J×Mg,ξ
J上, 有 Poincaré丛 P. 令 P∆ 为 P 在对角线 J上的限制,

则 2P = m∗P∆ − p∗1P∆ − p∗2P∆.注意到 P∆是相对丰沛且对称的.
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我们将对泛族 π : J → Mg 及固定同构 [2]∗P∆ ∼−→(P∆)4 使用 Tate 算法在 P∆ 上构造一个

adelic 度量. 通过这个固定的同构, 我们等同这两个线丛. 固定在 M̄g 上 Hermitian 丰沛线丛

N . 则 P∆
0 := P∆ + π∗N 在 J 上是丰沛的. 因此, 对于某个 e0 ∈ N, 有嵌入 j : J −→ PN 使得

j∗O(1) = (P∆
0 )e0 . 令 j : J −→ J0 为 J的 Zariski闭包. 现在, 对于任何 n ∈ N, 我们令 fn : Jn −→ J0

为以下复合映射的正规化

J
[2n]−→ J

j→ J0.

则所有 Jn 都是 J的紧化. 我们还定义线丛 P∆
n = 1

4n
f∗
nP∆

0 .在 J上这个丛是 P∆ + 4−nπ∗N . 这些在

Jn上的丛在边界拓扑中是一个 Cauchy序列, 从而在 Zariski-Riemann空间 Ĵ上定义了一个 adelic线

丛. 其极限 P∆
a 是一个 nef丛, 不依赖于 N 和到 PN 中初始嵌入的选择. 它是使得 [2]∗P∆

a
∼−→(P∆

a )4

的唯一 adelic线丛. 现在我们可以在 Poincaré丛上配备 adelic度量:

Pa :=
1

2
(m∗P∆

a − p∗1P∆
a − p∗2P∆

a ).

对于 Bogomolov猜想的应用, 我们用 i∗P∆ 来表达 ω. 更准确地, 通过观察 Néron-Tate高度, 我

们有 i∗P∆ = 2gξ − π∗⟨ξ, ξ⟩.由此,

ω =

(
1− 1

g

)
i∗P∆ +

1

4g2
⟨i∗P∆, i∗P∆⟩,

⟨ω, ω⟩ =
(
1− 1

g

)
⟨i∗P∆, i∗P∆⟩.

现在我们定义 adelic度量线丛

ωa =

(
1− 1

g

)
i∗P∆

a +
1

4g2
⟨i∗P∆

a , i∗P∆
a ⟩.

由此, 我们在Mg 上有一个 adelic直线丛: ⟨ωa, ωa⟩ = (1− 1
g
)⟨i∗P∆

a , i∗P∆
a ⟩.

以下是关于这些丛的正性的第一个主要结果:

定理 5.1 (袁新意 [24]) 丛 ⟨ωa, ωa⟩是 nef且大的.

由此, 袁新意证明了统一 Bogomolov猜想的以下版本:

定理 5.2 (袁新意 [24]) 存在常数 c1, c2 > 0, 使得对于任何 (C,α), 其中 C 是定义在 Q̄上的亏
格为 g的曲线, α ∈ Pic1(C),

#{x ∈ C(Q̄), hNT(x− α) 6 c1(hFal(C) + hNT((2g − 2)α− ωC))} < c2.

当 α ∈ C(Q̄)时, 这个不等式没有 hNT((2g − 2)α− ωC)项的版本已由 Kühne证明. 请参阅袁新

意 [24] 以获取更多细节和参考文献.

6 三重积度量

对于定义在域 k上的曲线 C 和类 ξ ∈ Pic1(C), Gross和 Schoen [14] 在三重积 C3 中构造了一个

同调平凡的 Chow链 GS(C) := ∆ξ(C) ∈ Ch2(C3).当 k 是数域时, Gross和 Schoen给出 GS(C)的

Beilinson-Bloch高度配对 ⟨∆ξ(C),∆ξ(C)⟩B. 在文献 [30]中, 我们证明了这个高度与 Ceresa链

Ce(C) := iξ(C)− [−1]∗iξ(C) ∈ Ch1(Jac(C))
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的高度以及文献 [26]中构造的相交数 ⟨ωC , ωC⟩a 有明确的联系. 在我们和高紫阳最近的工作 [12]中,

这个构造已经被扩展到模空间Mg,ξ 上. 作为一个应用, 我们证明了 Gross-Schoen链和 Ceresa链的

Northcott性质. 在本节中, 我们回顾这项工作.

我们从上一节构造的 adelic Poincaré丛 Pa开始将其拉回到曲线的纤维积 C×Mg,ξ
C上得到线丛

Qa = (i× i)∗Pa = O(p∗1ξa + p∗2ξa −∆a),

其中下标 a表示可容度量. 那么我们有一个三重积线丛: La := ⟨Qa,Qa,Qa⟩.这个丛的高度计算了
Gross-Schoen链和 Ceresa链的 Beilinson-Bloch高度.

实际上, 不考虑度量, 这个丛下降到Mg 上的一个 Q-线丛, 其可表示为

⟨Q,Q,Q⟩ = 2g + 1

2g − 2
⟨ω, ω⟩ = 6(2g + 1)

g − 1
detπ∗ω.

这些度量的差异因此在 Mg(C) 上或者在亏格 g 的极化图的模空间上定义了一些函数 φ 和 λ. de

Jong和 Shokrieh [4] 研究了这些函数在一维基上的渐近行为, 而宋寅翀 [21] 在高维基所对应的图上研

究了它们的渐近行为. 注意到, Mg(C)上的函数 φ也由 Kawazumi独立发现.

丛 La 的度量直线丛也由袁新意
[24] 以稍微不同的方式构造. 他还提出了关于其 nef性和大性的

疑问. 我们在文献 [12]中证明了其一般纤维 L̃a的体积是大的. 因此, 我们有以下不等式:

定理 6.1 对于每个 g > 3, 存在 Q上的非空 Zariski开子簇 U , 以及存在正数 ϵ和 c, 使得对于

任何 s ∈ U(Q̄),

⟨GS(Cs),GS(Cs)⟩B > ϵhFal(s)− c,

⟨Ce(Cs),Ce(Cs)⟩B > ϵhFal(s)− c,

其中 hFal是Mg(Q̄)上的 Faltings高度.

通过结合文献 [25]中的结果, 我们有以下结论.

定理 6.2 对于每个 g > 3, 存在 Q上非空Mg 的 Zariski开子簇 U , 使得对于任何 H,D ∈ R,

#{s ∈ U(Q̄), deg s < D, ⟨GS(Cs),GS(Cs)⟩B < H} < ∞,

#{s ∈ U(Q̄), deg s < D, ⟨Ce(Cs),Ce(Cs)⟩B < H} < ∞,

并且对于任何 s ∈ U(C) \ U(Q̄), GS(Cs)和 Ce(Cs)都是非挠的.
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8 Faltings G. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent Math, 1983, 73: 349–366

9 Faltings G. Calculus on arithmetic surfaces. Ann of Math (2), 1984, 119: 387–424

10 Faltings G. Arakelov geometry on degenerating curves. J Reine Angew Math, 2021, 771: 65–84

11 Freixas Montplet G. An arithmetic Riemann-Roch theorem for pointed stable curves. Ann Sci Éc Norm Supér (4),
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13 Gillet H, Soulé C. Arithmetic intersection theory. Pub Math IHÉS, 1990, 72: 94–174
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