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Syllabus
• Main source of material for the lectures: this very document (to be published and weekly updated on the course

website–please do not print before the course is finished and the label “final version” appears at the top).

• Official course textbook: No one, main official text will be used but in preparing these notes; I will probably make
heavy use of [Rud91] as well as [RS80] and [BB89].

• Other books one may consult are [HN01, Sch01, Bre10, Dou98, LL01, Lax14, Con19, BS18, Yos12, Sim15, Sim10,
HS12].

• Two lectures per week: Tue and Thur, 3:00pm–4:20pm in Fine Hall 110.

• People involved:

– Instructor: Jacob Shapiro shapiro@math.princeton.edu
Office hours: Fine 603, TBA, or, by appointment.

– Assistant: Jui-Hui Chung (juihui@princeton.edu)
Office hours: Fine 216, TBA, or, by appointment.

• HW to be submitted weekly on Friday evening either via email to shapiro@math.princeton.edu or in hard copy to
my mailbox (at my door on Fine 603) or on Gradescope.
Submission by Sunday evening will not harm your grade but is not recommended (i.e. you get an automatic extension
of two days always).
HW may be worked together in groups but needs to be written down and submitted separately for each student.
10% automatic extra credit on HW (up to a maximum of 100%) if you write legibly and coherently.
You may use LaTeX or LyX to submit if you like but it is not a requirement.

• Grade: 40% HW, 20% Midterm, 40% (take home) Final.

• Attendance policy: extra credit to students who attend lectures regularly and ask questions or point out problems.

• Anonymous Ed discussion enabled. Use it to ask questions or to raise issues (technical or academic) with the course.

• If you alert me about typos and mistakes in this manuscript (unrelated to the sections marked [todo]) I’ll grant you
some extra credit. In doing so, please refer to a version of the document by the date of typesetting.

– Thanks goes to: Janine Roshardt (×2)

Semester plan
List of (big) theorems and topics aimed at being included:

• The Banach-Steinhaus theorem, open-mapping theorem, closed-graph theorem.

• Hahn-Banach theorem and convexity.

• Weak topologies and Banach-Alaoglu theorem.

• Duality in Banach spaces.

• Polar decomposition.

• Bounded operators on Hilbert space: spectra.

• Spectral theorem for bounded self-adjoint operators and the functional calculus.

• Spectral theorem for unbounded self-adjoint operators, the Hille-Yosida theorem, semigroups.

• The trace ideals, Schatten classes, etc.

• Fredholm theory: Atkinson’s, Dieudonné’s, Fedosov, Atiyah-Jänich, Kuiper, etc.

• Mathematical quantum mechanics.
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Semester plan by date:

1. Sep 5th: Topological vector spaces.

2. Sep 7th: Topological vector spaces.

3. Sep 12th: Topological vector spaces and Banach spaces.

4. Sep 15th: Banach spaces and Baire category.

5. Sep 19th: Open, Closed mapping theorems.

6. Sep 21st: Hahn-Banach and Duality.

7. Sep 26th: Duality

8. Sep 28th: Banach-Alaoglu and starting Banach algebras.

9. Oct 3rd: Banach algebras.

10. Oct 5th: The holomorphic functional calculus in Banach algebras.

11. Oct 10th: Holomorphic functional calculus and Hilbert spaces.

12. Oct 12th: Hilbert spaces.

13. Oct 24th: Hilbert spaces (existence of bases).

14. Oct 26th: Bounded operators on Hilbert spaces (weak and strong operator topologies).

15. Oct 31st: Bounded operators on Hilbert spaces (weak and strong operator topologies).

16. Nov 2nd: Bounded operators on Hilbert spaces (point, continuous and residual spectrum) and more about C-star
algebras.

17. Nov 7th: Bounded operators on Hilbert spaces (polar decomposition and compact operators).

18. Nov 9th: Bounded operators on Hilbert spaces (compact operators).

19. Nov 14th: Spectral theorem for bounded self-adjoint operators.

20. Nov 16th: Spectral theorem for bounded self-adjoint operators.

21. Nov 28th: Unbounded operators and their spectral theorem.

22. Nov 30th: Unbounded operators and their spectral theorem.

23. Dec 5th: Unbounded operators and their spectral theorem.

24. Dec 7th: Some examples of unbounded operators from quantum mechanics.

1 Soft introduction
Functional analysis is the branch of mathematics that is obtained when one marries together topology (or point set topology)
and linear algebra, both of which are assumed the reader is very well familiar with (as well as measure theory). The first
order of business, is why you should want to combine these two?

Remark 1.1. For notational simplicity we will almost always assume that our vector spaces are over C, sometimes
some statements may be recast for R, certainly some care should be taken for general fields. Hence from now on please
read the phrase “vector space” as “C-vector-space”.
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In a vague sense (and there will be more about this in the homework) all finite dimensional vector spaces are “equivalent”
and hence the question of their topology only becomes interesting when the dimension of the vector space goes to infinity.
To be a bit more explicit, in n ∈ N dimensions, there is only one vector space, and we denote it by Cn. We measure
distances between vectors in Euclidean fashion, which induces a topology, and we have a notion of a standard basis
{ ej }nj=1 which gives us a way to concretely write down matrices and vectors as tables and columns. This class is about
what happens when n goes to infinity. Then, one has to make some additional choices which concern the interplay between
topology (and more concretely, analysis) and the vector space structure, and one has to contend with topological and
analytical questions of convergence that essentially build the heart of what is functional analysis. These types of infinite
dimensional vector spaces usually arise in applications as spaces of functions, which is the reason for the name of the field
“functional analysis”: we will do analysis on functions, whereas so far we have done analysis on numbers.

Remark 1.2 (Motivation for physicists). To motivate a bit more the situation for physicists (see [Gie00]), among many
things we want to understand is the notion of continuous spectrum. After all, the development of quantum mechanics
and functional analysis are intimately related. Consider then the hydrogen atom and its “spectrum”: we know it has
bound states of negative energy and scattering states of positive energy. The bound states are “eigenstates” in the
sense that they obey the eigenequation

Hψ = λψ

for some wave function ψ and (negative) eigenvalue λ < 0. However, what about the scattering states? Do they also
obey a similar equation? How do we characterize that part of the spectrum?

In many physics textbooks we usually read about the position basis as that basis of Dirac delta “functions”

1 =

ˆ
x∈R

|x⟩ ⟨x|dx .

However we know that the Dirac delta is not really a function (but a measure, or a distribution).
Everyone knows the canonical commutation relation, which states that

[x̂, p̂] = iℏ1 .

Taking the trace of this equation leads to a putative contradiction using the cyclic property of the trace:

tr ([x̂, p̂]) = tr (x̂p̂− p̂x̂) = tr (x̂p̂)− tr (p̂x̂)
⋆
= tr (x̂p̂)− tr (x̂p̂) = 0

???
= tr (iℏ1) .

We usually think of p̂ ≡ −iℏ∇ as a self-adjoint operator. It should then be the case that

⟨ψ, p̂φ⟩ = ⟨p̂ψ, φ⟩ .

To prove it one usually invokes integration by parts via

⟨ψ, p̂φ⟩ =

ˆ
x∈R

ψ (x) (−ih)φ′ (x) dx

= −iℏ ψ (x)φ (x)
∣∣∣
x=±∞

+ iℏ
ˆ
x∈R

ψ′ (x)φ (x) dx .

Now one usually says that φ,ψ are wave-functions so they must vanish at infinity, hence the boundary term vanishes
and we indeed find that p̂ is self-adjoint. However, we define the Hilbert space of wave functions as those functions
which are square summable. Ignoring for the moment the much more basic fact that such square-summable functions
need not be differentiable (and so what do we mean by p̂ acting on them?) we also note that being square-summable
does not imply the function vanishes at infinity. Consider for instance

x 7→ x2 exp
(
−x8 (sin (x))2

)
.

This is essentially a shrinking comb. Is p̂ actually self-adjoint???

Let us delve a bit more on the finite-dimensional setting. In what sense do we mean things are equivalent? Surely on
C we may furnish two different topologies T1 and T2 such that (C,T1) and (C,T2) are not homeomorphic1.

1homeomorphism is the appropriate notion of equivalence in the category of topological spaces
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Example 1.3. If we define T1 to be the Euclidean topology on C (associated with the Euclidean distance C ∋ z 7→ |z|)
and T2 to be the topology associated to the French metro metric

d (z, w) :=

{
|z − w| z = αw∃α ∈ R

|z|+ |w| else
(z, w ∈ C) .

(one first shows this is indeed a metric). Then (C,T1) and (C,T2) are not homeomorphic.

Proof. Fix any z ∈ C \ { 0 } and let r < |z|. Then in the French metro metric, Br (z) is an open line segment of
length 2r on the ray defined by z, and centered at z. That ball is by definition, an open ball in the topology T2. If
there were a continuous map f : (C,T1) → (C,T2), it better be the case that f−1 (Br (z)) is open in the Euclidean
topology, but we know it is not.

Of course one could also take for T2 the trivial topology (with only the empty set and the whole set as open) to get a
counter-example, albeit a bit too silly since it is not even Hausdorff.

This example worked in C, which is one dimensional, and we have seen two ways to furnish C with inequivalent
topologies. So what’s all this talk about only needing functional analysis in infinite dimensions?

Enter the concept of topological vector spaces.
Whenever we are doing mathematics with two (or more) mathematical structures (i.e., categories) we need to make

sure they are compatible. A familiar example should be that of a Lie group, which is a group which is also a manifold,
but moreover and crucially, the two structures are compatible in the sense that the group operations respect the manifold
structure: they must be smooth functions on the manifold. We want to achieve the same thing when we combine vector
spaces with topological spaces.

In category theory, to preserve a structure means to be a morphism in a given category. So in the category of topological
spaces, it is the continuous functions which are “topological space morphisms”.

Definition 1.4 (Topological vector spaces). Let X be a vector space furnished with a T1-topology Open (X). X is
a topological vector space iff the two vector space operations, vector addition + : X2 → X, (u, v) 7→ u+ v and scalar
multiplication m : C×X → X, (α, v) 7→ αv, are continuous with respect to Open (X) (and the standard topology on
C).

Remark 1.5. Recall that for a topology to be T1 means that all singletons are closed. Presumably it is not very useful
to talk about topological vector spaces where Open (X) is not T1 [Rud91].

Claim 1.6. In Example 1.3, (C,T1) is a topological vector space (indeed Cn with its standard topology is, for any
n ∈ N) whereas (C,T2) is not.

Proof. We first show that Cn is a topological vector space. Clearly the Euclidean topology has the property that
singletons are closed, and is hence T1. We now want to show that vector addition + : Cn × Cn → Cn is continuous.
Suffice to work with bases, so let ε > 0 and z ∈ Cn and WTS that +−1 (Bε (z)) is open in Cn×Cn. This set, however,
may be written as the (arbitrary) union of open sets:

+−1 (Bε (z)) =
⋃
u∈Cn

Bε (u)× { v ∈ Cn | ∥u+ v − z∥ < ε } . (1.1)

Similarly, we want to show that for · : C × Cn → Cn which maps (α, z) 7→ αz is continuous, which proceeds in a
similar way.

We leave the fact that (C,T2) is not a topological vector space as an exercise to the reader.

Claim 1.7. If X,Y are two topological vector spaces of the same finite dimension then they are both (topologically)
homeomorphic and (linearly) isomorphic, i.e., they are isomorphic in the category of topological vector spaces. Hence
for a given dimension n ∈ N, Cn with its Euclidean topology is the only topological vector space.
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Proof. See Claim 2.16 below.

It is in this sense that to find additional interesting spaces we branch out to infinite dimensions.

Example 1.8. Consider the space ℓp (N → C) of p-summable sequences, i.e.,

ℓp (N) ≡

{
a : N → C

∣∣∣∣∣ ∑
n∈N

|a (n)|p <∞

}
.

It is a vector space (with pointwise addition and scalar multiplication), and we furnish it with a topology which is
associated with a metric, which is associated with the norm

ℓp (N) ∋ a 7→ ∥a∥p ≡

(∑
n∈N

|a (n)|p
) 1
p

.

We observe that for different values of p, the space itself (as a vector space) is very similar and the main thing that
changes is the topology! One may verify ℓp (N) is a TVS, and moreover, it is infinite dimensional. We claim that
ℓp (N) is not homeomorphic to ℓp

′
(N) if p ̸= p′. Note that only if p ≥ 1 are these spaces actually Banach.

Proof. It is clear that ℓp (N) is indeed a vector space, so one merely has to show it is a TVS. This follows similarly to
(1.1). To see that ℓp (N) is infinite dimensional we may observe it has a basis { δn }n ⊆ ℓp (N) where δn (m) ≡ δnm.

The proof that ℓp is not isomorphic to ℓp
′

is somewhat delicate. We will contend ourselves to the fact that if
p < 1 and p′ > 1 then these can’t be isomorphic, as the former is not metrizable and the latter is.

2 Topological vector spaces
We have already seen above in Definition 1.4 the definition of a TVS. Let us get our hands dirty with a few examples and
properties.

Example 2.1 (Some TVS which cannot be realized via norms). The following spaces are examples of topological
vector spaces which cannot be realized as Banach spaces–a complete normed vector space–an important structure
we’ll get to later.

1. For any Ω ∈ Open (Rn), C (Ω → C) (often times we’ll write C (Ω) when the codomain is implicitly understood
as C if not indicated) is the space of all continuous functions Ω → C. It is an infinite dimensional TVS. [TODO:
define the topology on this].

2. For any Ω ∈ Open (C), H (Ω) is the space all holomorphic functions Ω → C. [TODO: define the topology on
this]

Definition 2.2 (Bounded, balanced and absorbing sets). A subset S of a TVS X is said to be bounded if for every
neighborhood N of 0 in X there is some t > 0 such that

S ⊆ sN (s > t) .

S is said to be balanced iff αS ⊆ S for every α ∈ C with |α| ≤ 1. Think of balanced like “star-shaped”, which need
not be convex.

S is said to be absorbing iff for any x ∈ X, there is some t > 0 with x ∈ tS for some t sufficiently large.

Remark 2.3 (Caution!). This notion of boundedness need not necessarily agree with the usual notion of boundedness
in metric spaces (that where there is a sufficiently large R > 0 such that the set is covered by BR (0)), actually (see
Rudin 1.29). When the metric is induced by a norm, however, the two notions will agree [TODO].
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Remark 2.4 (Caution!). It might happen that A + A ̸= 2A. Example: A = { 0, 1 } then A + A = { 0, 1, 2 } whereas
2A = { 0, 2 }.

Recall that a local base at a point ψ ∈ X is a collection of neighborhoods γ (open sets which contain ψ) such that
every neighborhood of ψ contains an element of γ. Clearly a local base induces a base for a topology. Recall a base B for
a topology T is a subset B ⊆ T such that for any U ∈ T and x ∈ U , there exists some B ∈ B such that

x ∈ B ⊆ U .

Hence if for every ψ ∈ X, γψ is a local base at ψ, then ⋃
ψ∈X

γψ

is a base for Open (X). Conversely, if B is a base for Open (X) and ψ ∈ X, then

{B ∈ B : ψ ∈ B }

is a local base at ψ. We re-emphasize that Open (X) is itself determined by a basis B since the other defining property of
a basis is that any U ∈ Open (X) may be written as

U =
⋃
α

Bα

for some {Bα }α ⊆ B.
Now, in a TVS X, for any fixed ψ ∈ X we define the translation map

Tψ : X → X

φ 7→ ψ + φ

whose inverse is T−ψ and for any fixed scalar λ ∈ C, we define the multiplication map

Mλ : X → X

φ 7→ λφ

whose inverse (if λ ̸= 0) is M 1
λ

with which it is clear that Tψ and Mλ (for λ ̸= 0) are homeomorphisms from X → X (in
fact Mλ is a TVS isomorphism because it also respects the linear structure whereas Tψ is merely affine). Since Tψ is a
homeomorphism, the topology Open (X) is translation invariant, i.e., S ∈ Open (X) iff

T−1
−ψ (S) ≡ { φ ∈ X | φ− ψ ∈ S } =: S + ψ ∈ Open (X)

for any ψ ∈ X. Hence it suffices to determine Open (X) by studying any local basis, e.g., that which is defined at the
origin 0X of X. We may thus characterize Open (X) by specifying its local basis at zero: a collection B of neighborhoods
of 0 such that every neighborhood of 0 contains a member of B, and Open (X) is comprised of unions of translates of
members of B.�



�
	Thus, given a local basis B at the origin 0X , we might replace our intuition of “open ε-ball around x” for some ε > 0

from metric spaces, with x+ U where U ∈ B.

Definition 2.5. A metric d on X is translation-invariant iff

d (ψ + η, φ+ η) = d (ψ,φ) (ψ,φ, η ∈ X) .

We give the following special terminology for properties of TVS:

1. X is locally convex iff ∃ a local base B of 0X all of whose elements are convex. I.e., if B ∈ B and x, y ∈ B,

tx+ (1− t) y ∈ B (t ∈ [0, 1]) .

2. X is locally bounded iff 0X has a bounded neighborhood.

3. X is locally compact iff 0X has a neighborhood whose closure is compact.
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4. X is metrizable iff Open (X) arises from some metric d and X is an F -space iff its topology arises via a complete
translation-invariant metric (sometimes called Fréchet space).

5. X is normable iff there is a norm on X which induces a metric which induces Open (X).

6. X has the Heine-Borel property iff every closed and bounded subset of X is compact.

Lemma 2.6. If W ∈ Nbhd (0X) then ∃U ∈ Nbhd (0X) which is symmetric, i.e., U = −U and such that U +U ⊆W .

Proof. Since addition is continuous and 0 + 0 = 0, there are V1, V2 ∈ Nbhd (0) such that V1 + V2 ⊆ W . Indeed, let
a : X2 → X be vector addition. Then a−1 (W ) is open by definition of continuity. Define then

U := V1 ∩ V2 ∩ (−V1) ∩ (−V2)

and observe it has the desired properties: it is clearly symmetric by construction, and

U + U = V1 ∩ V2 ∩ (−V1) ∩ (−V2) + V1 ∩ V2 ∩ (−V1) ∩ (−V2) ⊆ V1 + V2 ⊆W .

Note that this may be iterated to get a symmetric U with U + U + U + U ⊆W .

Theorem 2.7 (Separation property). Let K,C ⊆ X where X is a TVS and such that K is compact, C is closed, and
K ∩ C = ∅. Then ∃V ∈ Nbhd (0X) such that

(K + V ) ∩ (C + V ) = ∅ .

We note that K + V =
⋃
x∈K x + V and each x + V is open (translation invariance), so that K + V is in fact open,

and contains K. By the same reasoning C + V is open, and it is also true that(
K + V

)
∩ (C + V ) = ∅ .

Indeed, this is equivalent to

K + V ⊆ (C + V )
c

but the closure is the smallest closed set which contains K + V .

Corollary 2.8 (Special case). If we take K = { 0X }, we find that in particular that for any closed C which does not
contain the origin, there exists some V ∈ Nbhd (0X) such that

V ∩ (C + V ) = ∅ .

Now, for a given U ∈ Nbhd (0), U c is closed and does not contain zero, and hence, there is some V ∈ Nbhd (0) with
V ∩ (U c + V ) = ∅ which implies V ∩ U c = ∅, i.e., V ⊆ U .

Proof of Theorem 2.7. . Assume WLOG that K ̸= ∅ (otherwise there is nothing to prove, with ∅ + V = ∅). Let
x ∈ K then, and x /∈ C. Then Cc−x ∈ Nbhd (0) so that by the above lemma, we have some symmetric Vx ∈ Nbhd (0)
such that Vx + Vx + Vx ⊆ Cc − x, i.e.,

(x+ Vx + Vx + Vx) ∩ C = ∅ .

Since Vx is symmetric (apply −Vx on both sides of the equation...), this implies that

(x+ Vx + Vx) ∩ (C + Vx) = ∅ .

Since K is compact, there are finitely many { x1, . . . , xn } such that

K ⊆
n⋃
j=1

(
xj + Vxj

)
.
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Define V :=
⋂n
j=1 Vxj so that

K + V ⊆
n⋃
j=1

(
xj + Vxj + V

)
⊆

n⋃
j=1

(
xj + Vxj + Vxj

)
and all of these terms in the union do not intersect C + V .

Lemma 2.9. If X is a TVS and A ⊆ X then A =
⋂
U∈Nbhd(0) (A+ U).

Proof. By definition, x ∈ A iff (x+ U) ∩ A ̸= ∅ for every U ∈ Nbhd (0), iff x ∈ A− U for every U ∈ Nbhd (0), But
U is a neighborhood of zero iff −U is. So we find the desired claim.

Claim 2.10. If E is bounded then so is E.

Proof. By Theorem 2.7, for a given V ∈ Nbhd (0X), we pick some W ∈ Nbhd (0X) such that W ⊆ V . Since E is
bounded, E ⊆ tW for all t sufficiently large. For such t,

E ⊆ tW ⊆ tV

so that E is bounded too.

Theorem 2.11. In a TVS X, (1) For any U ∈ Nbhd (0X) there exists some V ∈ Nbhd (0X) which is balanced such
that V ⊆ U and (2) For any U ∈ Nbhd (0X) which is convex there exists some V ∈ Nbhd (0X) which is balanced and
convex such that V ⊆ U .

Proof. [SKIP] Let U ∈ Nbhd (0X) be given. Thanks to the fact that scalar multiplication is continuous, there is
some δ > 0 and a W ∈ Nbhd (0X) such that αW ⊆ U for all 0 < α < δ. Set V :=

⋃
α∈(0,δ) αW . Then V obeys the

desired criteria. Indeed, clearly V is balanced, contained in U and is a neighborhood of 0.
[SKIP] Next, suppose that further that U is convex. Set

A :=
⋂

α∈C:|α|=1

αU

and let V be balanced and constructed as above.

Theorem 2.12. If X is a TVS and U ∈ Nbhd (0X), then

1. For { rn }n∈N ⊆ (0,∞) with limn rn = ∞,

X =

∞⋃
n=1

rnU .

I.e., any neighborhood of zero is absorbing.

2. If K ⊆ X is compact then K is bounded.

3. If { δn }n ⊆ (0,∞) are such that δj > δj+1 and limn δn = 0, and if furthermore U is bounded, then { δnU }n∈N
is a local base for X.

Proof. Fix x ∈ X, and observe the map C ∋ α 7→ αx is continuous, and so, (·x)−1
(U) ∈ Open (C) and contains the

origin (since 0x = 0 ∈ V ) and so contains 1
rn

for n sufficiently large. That is, 1
rn
x ∈ U for n sufficiently large, which

is x ∈ rnU .
Next, let K ⊆ X be compact, and pick some W ∈ Nbhd (0X) which is balanced and contained in U . By the first
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part,

K ⊆
∞⋃
n=1

nW

But this is an open cover, so there is some finite subset { n1, . . . , nM } ⊆ N with

K ⊆
⋃

n∈{ n1,...,nM }

nW ⊆ nMW

assuming nM is the largest one. This last inclusion follows by the balanced assumption on W . Now, if t > nM , then
K ⊆ tW ⊆ tU .

Finally, let V be a neighborhood of 0. Since U is assumed to be bounded, then there exists some s > 0 such that
U ⊆ tV for all t > s. Pick n sufficiently large so that sδn < 1. Then U ⊆ 1

δn
V , so that V contains all but finitely

many of the set δnU .

2.1 Properties of linear maps between TVS

Claim 2.13. Let Λ : X → Y be a linear map between two TVS X,Y . Assume that Λ is continuous at 0. Then Λ is
continuous globally.

Proof. Let U ∈ Open (Y ). We want to show that Λ−1 (U) ∈ Open (X). If Λ−1 (U) = ∅ we are finished. Otherwise,
let x ∈ Λ−1 (U), that is

Λx ∈ U

↕
0Y ∈ U − Λx

↓
U − Λx ∈ Nbhd (0Y ) .

Since Λ is linear, Λ0x = 0Y , and hence, the fact that Λ is continuous at 0X implies that Λ−1 (U − Λx) ∈ Nbhd (0x).
But that means that Λ−1 (U − Λx) is open, and moreover,

Λ−1 (U − Λx) ≡ { z ∈ X | Λz ∈ U − Λx }
= { z ∈ X | Λ (z + x) ∈ U }
=

{
z ∈ X

∣∣ z + x ∈ Λ−1 (U)
}

= Λ−1 (U)− x .

But translations are homeomorphisms, so Λ−1 (U) is open indeed.

Lemma 2.14. Let Λ : V → C be a linear functional from a TVS V such that ker (Λ) ̸= V . Then TFAE:

1. Λ is continuous.

2. ker (Λ) ∈ Closed (V ).

3. ker (Λ) is not dense in V .

4. ∃U ∈ Nbhd (0) such that Λ|U : U → C is bounded.

Proof. Continuity may just as well be characterized by saying the pre-images of closed sets are closed. Since ker (Λ) ≡
Λ−1 ({ 0 }) and { 0 } ∈ Closed (C), we find that (1) implies (2).

To be dense, we’d have to have ker (Λ) = V . But ker (Λ) is already closed, so that would mean ker (Λ) = V which
is false by hypothesis. So (2) implies (3).

Let us now assume (3). Then that means ker (Λ) has a complement which has a non-empty interior. I.e., for
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some x ∈ V ,

(x+ U) ∩ ker (Λ) = ∅ (2.1)

where U ∈ Nbhd (0). Now, WLOG we may assume that U is balanced via Theorem 2.11. Note that linearity implies
that ΛU is a balanced subset of C. If ΛU happens to be bounded then we have (4). Otherwise, because ΛU is
balanced and unbonded, ΛU = C, in which case, there is some y ∈ U such that Λy = −Λx. But the Λ (x+ y) = 0
so that x+ y ∈ ker (Λ), in contradiction with (2.1).

Now, assume (4). Then |Λψ| < M for all ψ ∈ U for some U ∈ Nbhd (0) and some M < ∞. Now, if r > 0,
W := r

MU , then by linearity, |Λψ − Λ0| = |Λψ| < r for any ψ ∈ W , so that Λ is continuous at the origin, and is
hence continuous globally via Claim 2.13.

2.2 Finite-dimensional spaces

Claim 2.15. If X is a TVS and f : Cn → X is linear then f is continuous.

Proof. By linearity, we may write for any z ∈ Cn that

f (z) =

n∑
j=1

zjf (ej)

where { ej }nj=1 is the standard basis of Cn and z ≡ (z1, . . . , zn). Since z 7→ zj is continuous for each j (by definition
of product topology) and addition and scalar multiplication are continuous in X, we find that f is continuous.

Claim 2.16. If Y ⊆ X is a vector space of a TVS X such that dim (Y ) < ∞ then Y ∈ Closed (X) and every VS
isomorphism Cn → Y is a TVS isomorphism.

Proof. We start by showing the second property. Let f : Cn → Y be a VS isomorphism. We have just seen that
that means f is continuous. Let us denote by

S :=

 z ∈ Cn

∣∣∣∣∣∣
n∑
j=1

|zj |2 = 1

 .

Clearly S is compact as it is topologically S2n−1, and hence, with f being continuous, f (S) is compact too. Since
f is injective and f0Cn = 0, and 0Cn /∈ S, we must have 0X /∈ f (S). Hence there is some balanced V ∈ Nbhd (0X)
such that V ∩ f (S) = ∅ (indeed, f (S)c ∈ Nbhd (0X) and apply Theorem 2.11). Hence

E := f−1 (V ) = f−1 (V ∩ Y ) ⊆ Cn

is disjoint from S. Since V is balanced it is connected (indeed, path-connected) and one may varify that f being
linear implies that E ≡ f−1 (V ) is balanced and connected too. Hence E ⊆ B1 (0) as 0 ∈ E. So the linear map
f−1 takes V ∩ Y into B1 (0). Hence the linear map f−1 is bounded, and so each of its coordinates is a bounded
functional, so that by Lemma 2.14 we learn that f−1 is continuous. Hence f is a topological homeomorphism, and
since we have assumed it is a vector space isomorphism, we conclude all together it is a TVS isomorphism.

Next, for the first property, we want to show that Y ⊆ Y , which is equivalent to Y c ⊆
(
Y
)c

. Let x ∈ Y c. Then
Z := span (x, Y ) is a also finite dimensional, and by the first part, linearly homeomorphic to Cn+1. Hence, since this
property holds in Cn+1 ∼= Z, we have that x ∈

(
Y
)c

where now we mean closure and complement in Z and not in
X. By definition of the subspace topology,

closureZ (Y ) ≡ closureX (Y ) ∩ Z
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and hence
(
Y
)c

with closure and complement in Z equals

Z \ closureZ (Y ) = Z \ (closureX (Y ) ∩ Z)
= Z \ closureX (Y )

⊆ X \ closureX (Y ) .

Hence, x /∈ closureX (Y ) which is what we wanted to show.

Theorem 2.17. Every locally compact TVS X has finite dimension.

Proof. Assume that there is some V ∈ Nbhd (0X) whose closure V is compact. By Theorem 2.12, V is bounded,
and { 2−nV }n forms a local base (at 0) for X. Since⋃

x∈X
x+

1

2
V

is an open cover for V , by compactness, there are some { x1, . . . , xm } such that

V ⊆
⋃

x∈{ x1,...,xm }

x+
1

2
V

Define Y := span ({ x1, . . . , xm }), so that dim (Y ) ≤ m, and so by the above, Y ∈ Closed (X). We have V ⊆ Y + 1
2V .

Indeed, for any v ∈ V , there is some j = 1, . . . ,m with v ∈ xj +
1
2V ⊆ Y + 1

2V . But V ⊆ V , so actually

V ⊆ Y +
1

2
V .

Using the fact that λY = Y for any λ ̸= 0 (since Y is a vector subspace) we find

1

2
V ⊆ Y +

1

4
V

and hence

V ⊆
∞⋂
n=1

(
Y + 2−nV

)
.

Now since { 2−nV }n is a local base, we use Lemma 2.9 to find
⋂∞
n=1 (Y + 2−nV ) = Y = Y , so V ⊆ Y . This implies

that kV ⊆ Y for all k ∈ N (recall kY = Y ) So Y = X via Theorem 2.12.

Theorem 2.18. If X is a locally bounded TVS with the Heine-Borel property then X is finite-dimensional.

Proof. By assumption, there is some V ∈ Nbhd (0X) which is bounded. We claim that V is also bounded too
(via Claim 2.10). Hence by the Heine-Borel property V is compact. Thus X is locally compact, and thus finite
dimensional by the above theorem.

2.3 Metrization

Theorem 2.19. If X is a TVS with a countable local base at 0X then there is a metric d : X2 → [0,∞) such that:

1. d is compatible with Open (X).

2. Bε (0X) is balanced for any ε > 0.

3. d is translation-invariant.
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Proof. See Rudin 1.24.

2.4 Cauchy-Sequences

Definition 2.20. A sequence x : N → X where X is a TVS (with a local base at zero B) is called Cauchy iff for any
V ∈ B, there exists some NV ∈ N such that

xn − xm ∈ V (n,m > NV ) .

Claim 2.21. This definition does not depend on the choice of local base B.

Claim 2.22. If X is a TVS with Open (X) induced by some metric d then sequences are Cauchy iff they are Cauchy
in the usual sense from metric spaces.

2.5 Bounded linear maps

Definition 2.23. If X,Y are two TVS and Λ : X → Y is linear, Λ is called bounded iff Λ maps bounded sets into
bounded sets.

Note that this is not the same thing as a bounded function, whose range is a bounded set (i.e. it maps the whole
domain to a bounded set). But no linear function could ever be bounded in this way.

Theorem 2.24. If X,Y are two TVS and Λ : X → Y is linear then (1)->(2)->(3).

1. Λ is continuous.

2. Λ is bounded.

3. If x : N → X has limn xn = 0 then { Λxn }n is bounded.

It turns out that if X is metrizable then (3) implies (1) too, though we will not show this.

Proof. Assume Λ is continuous. We try to show it is bounded. So let E be a bounded set of X, and we need to
show ΛE is a bounded set of Y . To that end, let W ∈ Nbhd (0Y ). Continuity of Λ implies that there is some
V ∈ Nbhd (0X) with ΛV − Λ0 = ΛV ⊆W . Now since E is bounded, E ⊆ tV for large t, so

ΛE ⊆ ΛtV = tΛV ⊆ tW .

Next, we claim convergent sequences are bounded. Indeed, use the fact that for a convergent sequence xn → x,
the set { xn }n ∪ { x } is compact (any open cover has a finite sub-cover) and then employ Theorem 2.12. But now
since Λ is bounded, { Λxn }n is bounded and we get (3) out of (2).

2.6 Seminorms

Definition 2.25 (Seminorm). A seminorm on a vector space X is map p : X → [0,∞) which has all the axioms of
a norm (see Definition D.7) except it is allowed that p (x) = 0 for some x ̸= 0. I.e.,

1. p (x+ y) ≤ p (x) + p (y) for all x, y ∈ X.

2. p (αx) = |α| p (x) for all α ∈ C and x ∈ X.

Lemma 2.26. If p is a seminorm on a vector space X then: (1) p (0) = 0, (2) |p (x)− p (y)| ≤ p (x− y) for all
x, y ∈ X, (3) ker (p) is a vector subspace of X and (4) B := { x ∈ X | p (x) < 1 } is convex, balanced and absorbing.
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Proof. For (1), use p (αx) = |α| p (x) with α = 0. From the triangle inequality, we have

p (x) = p (x− y + y) ≤ p (x− y) + p (y) .

Since this holds with x, y interchanged and p (x− y) = p (y − x), we have (2) (which actually implies automatically
p ≥ 0 with y = 0). Next, to show ker (p) is a subspace, let x, y ∈ ker (p) and α ∈ C. Then

0 ≤ p (αx+ y) ≤ |α| p (x) + p (y) = 0

so αx+ y ∈ ker (p) as well.
Let us show that B is balanced: let α ∈ C with |α| = 1. Then

αB ≡ { αx | p (x) < 1 }

=

{
αx

∣∣∣∣ 1

|α|
p (αx) < 1

}
= { x | p (x) < |α| }
= { x | p (x) < 1 } .

If x, y ∈ B and t ∈ (0, 1) then

p (tx+ (1− t) y) ≤ tp (x) + (1− t) p (y) < t+ 1− t = 1

so that B is convex. Finally, to see B is absorbing, let x ∈ X. Pick some s ∈ (0,∞) with s > p (x). Then

p
(
s−1x

)
= s−1p (x) < 1

so that s−1x ∈ B or x ∈ sB.

Next, we discuss families of seminorms

Definition 2.27 (Separating family). A family P of seminorms on X is called separating iff ∀x ∈ X \ { 0 } there
exists some p ∈ P with p (x) ̸= 0.

Definition 2.28 (The Minkowski functional). For any convex absorbing set A ⊆ X, define its Minkowski functional
µAas

µA (x) := inf ({ t > 0 | x ∈ tA }) (x ∈ X) .

The fact that A is absorbing implies µA : X → [0,∞).

Claim 2.29. Note that if p is a seminorm and B ≡ { x ∈ X | p (x) < 1 } then as above, B is convex and absorbing,
and µB = p.

Proof. From the above we have seen that for any x ∈ X and s > p (x), x ∈ sB which implies µB (x) ≤ s and hence
µB ≤ p. Conversely, if t ∈ (0, p (x)] then p

(
1
tx
)
= 1

t p (x) ≥ 1 and hence x /∈ tB. Thus p (x) ≤ µB (x).

Theorem 2.30. Assume P is a separating family of seminorms on a VS X (note Open (X) is not assumed to exist).
To each p ∈ P and n ∈ N define

Vn (p) :=

{
x ∈ X

∣∣∣∣ p (x) < 1

n

}
.

Let B be the collection of all finite intersections of { Vn (p) }n∈N,p∈P. Then B is a convex, balanced local base for a
topology on X which makes it a locally convex TVS with (1) any p ∈ P is continuous and, (2) E ⊆ X is bounded iff
for every p ∈ P, p|E is bounded.
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Proof. Define A ∈ Open (X) iff A is the union of translates of members of B, which automatically defines a
translation-invariant topology on X, for which B is a local-base.

Let us see that Open (X) is T1: Since P is separating, for x ̸= 0, p (x) > 0 for some p ∈ P. Hence p (x) > 1
n for

some n sufficiently large, whence x /∈ Vn (p), i.e., 0 /∈ x − Vn (p), that is, x is not in { 0 }. This is equivalent to the
fact that { 0 } ∈ Closed (X), and since Open (X) is translation-invariant, we are T1.

Let us see that addition is continuous. For any U ∈ Nbhd (0), we must have by the definition of the local base,

Vn1
(p1) ∩ · · · ∩ Vnm (pm) ⊆ U (2.2)

for some finite p1, . . . , pm ∈ P and n1, · · · , nm ∈ N. Define

V := V2n1 (p1) ∩ · · · ∩ V2nm (pm) .

Then

V + V = V2n1
(p1) ∩ · · · ∩ V2nm (pm) + V2n1

(p1) ∩ · · · ∩ V2nm (pm)
subadd.
⊆ Vn1 (p1) ∩ · · · ∩ Vnm (pm)

⊆ U .

This shows that addition is continuous.
To see that scalar multiplication is continuous: for x ∈ X and α ∈ C, let U, V be as above. Then thanks to V

being absorbing (why is it?), x ∈ sV for some s > 0. Define t := s
1+|α|s . If y ∈ x+ tV and |α− β| < 1

s then

βy − αx = β (y − x) + (β − a)x

which lies in
|β| tV + |β − α| sV ⊆ V + V ⊆ U

since |β| t ≤ 1 (why)? and V is balanced.
Hence X is a locally convex TVS. From the definition of Vn (p), every p ∈ P is continuous at zero, and so on the

whole of X thanks to |p (x)− p (y)| ≤ p (x− y).
Now let E ⊆ X be bounded. For any p ∈ P, V1 (p) ∈ Nbhd (0) so that E ⊆ kV1 (p) for some k sufficiently large

as E is presumed bounded. Hence p (x) < k for every x ∈ E. Hence p|E is bounded.
Conversely, if p|E is bounded for any p ∈ P, we need to show that E is bounded. Let U ∈ Nbhd (0). Thus

pi|E ≤ Mi for all i = 1, . . . ,m where m is the same as the finite intersection (2.2) above. If n > Mini for all
i = 1, . . . ,m then E ⊆ nU , so that E is indeed bounded.

2.7 Quotient spaces

Definition 2.31. For any vector space X and a vector subspace N ⊆ X, we define

π (x) := x+N (x ∈ X) .

The space { π (x) }x∈X is called X/N , the quotient of X modulu N , with addition and multiplication defined via

π (x) + π (y) ≡ π (x+ y) , απ (x) ≡ π (αx) .

One shows that since N is a vector subspace, X/N is a vector space, and that

π : X → X/N

is a linear mapping which is surjective and has N has its kernel. Recall also that considered as topological spaces,
Open (X) induces a topology Open (X/N) (the final topology associated with π: E ∈ Open (X/N) iff π−1 (E) ∈ Open (X)).
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Theorem 2.32. Let N be a closed subspace of a TVS X. Then

1. X/N is also a TVS with respect to the quotient topology, and π : X → X/N is linear, continuous and open.

2. If B is a local base for Open (X) then π (B) is a local base for Open (X/N).

3. The following properties of X are inherited by X/N : local convexity, local boundedness, metrizability, normabil-
ity, F -space and Banach space.

Proof. See Rudin 1.41.

2.7.1 Seminorm quotient

If p is a seminorm on a TVS X, set N := ker (p), which as we’ve seen is a subspace. Define then p̃ : X/N → [0,∞) via

p̃ (π (x)) := p (x) (x ∈ X) .

Note that p̃ is well-defined. Indeed, if π (x) = π (y) then x + N = y + N or x − y ∈ N , i.e., p (x− y) = 0. But since
|p (x)− p (y)| ≤ p (x− y) this implies p (x) = p (y) and hence well-definedness. One may furthermore verify that p̃ is a
norm on X/N .

2.8 Examples

Example 2.33. Let r ∈ [1,∞) and define

Lr ([0, 1]) ≡ { f : [0, 1] → C | f is msrbl. and pr (f) <∞}

with

pr (f) ≡

(ˆ
t∈[0,1]

|f (t)|r dt

) 1
r

.

We claim that pr is a seminorm on Lr ([0, 1]) (indeed, pr (f) = 0 if f=0 almost-everywhere, but may not be identically
zero). However, Lr ([0, 1]) /N with N ≡ ker (pr) yields a Banach space on which p̃r is a norm.

Example 2.34. Let Ω ∈ Open (Rn) \ {∅ }. Then we know that

Ω =
⋃
n∈N

Kn

with each Kn ̸= ∅ compact, which may be chosen such that Kn ⊆ interior (Kn+1). On C (Ω), we define a separating
family of seminorms

pn (f) := sup ({ |f (x)| | x ∈ Kn }) .

Via Theorem 2.30 this yields a convex topology. Actually this topology is metrizable since the basis is countable, and
the metric is given by

d (f, g) = max
n

2−npn (f − g)

1 + pn (f − g)
.

One may show that d is a complete metric. However, C (Ω) is not locally bounded, and is hence not normable!

Example 2.35. Let Ω ∈ Open (C) \ {∅ }, define C (Ω) as above and let H (Ω) be the subspace of holomorphic
functions. Actually sequences of holomorphic functions that converge uniformly on compact sets have holomorphic
limits, so H (Ω) is a closed subspace of C (Ω).

3 Completeness in the context of Banach spaces
In this chapter, we shall delve into the notion of completeness. However, before doing so, let us switch gears and specify
to the case of Banach spaces (instead of TVS). Strictly speaking we don’t have to do this (indeed, see Rudin Chapter 2),
but it seems like the discussion would be smoother this way. To that end
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3.1 Banach spaces

Definition 3.1 (Norm). A vector space V is called a normed vector space iff there is a map

∥·∥ : V → [0,∞)

which obeys the following axioms:

1. Absolute homogeneity:
∥αψ∥ = |α| ∥ψ∥ (α ∈ C, ψ ∈ V ) .

2. Triangle inequality:
∥ψ + φ∥ ≤ ∥ψ∥+ ∥φ∥ (ψ,φ ∈ V ) .

3. Injectivity at zero: If ∥ψ∥ = 0 for some ψ ∈ V then ψ = 0.

Example 3.2. Of course the first example of a normed vector space is simply Cn, with the Euclidean norm:

Cn ∋ z 7→ ∥z∥ ≡

√√√√ n∑
j=1

|zj |2 .

To show this is a norm we only need to establish the triangle inequality (the other two properties being easy). To
that end, From the Cauchy-Schwarz inequality:

|⟨z, w⟩Cn | ≤ ∥z∥∥w∥

we get

∥z + w∥2 ≡ ⟨z + w, z + w⟩
= ∥z∥2 + ∥w∥2 + 2Re {⟨z, w⟩}
≤ ∥z∥2 + ∥w∥2 + 2 |⟨z, w⟩|

C.S.
≤ ∥z∥2 + ∥w∥2 + 2∥z∥∥w∥
= (∥z∥+ ∥w∥)2 .

Hence we merely need to show the Cauchy-Schwarz inequality. To that end, if w = 0 there is nothing to prove. So
define

z̃ := z − ⟨z, w⟩
∥w∥2

w .

By construction, ⟨z̃, w⟩ = 0 so

∥z∥2 =

∥∥∥∥∥z̃ + ⟨z, w⟩
∥w∥2

w

∥∥∥∥∥
2

= ∥z̃∥2 + |⟨z, w⟩|2

∥w∥4
∥w∥2 ≥ |⟨z, w⟩|2

∥w∥4
∥w∥2 .

Remark 3.3. Be careful that in the foregoing example we have used the inner-product structure of Cn, but more
generally, a norm need not be associated with an inner product.
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Definition 3.4 (Inner product space). An inner-product space is a vector space H along with a sesquilinear map

⟨·, ·⟩ : H×H → C

such that

1. Conjugate symmetry:
⟨ψ,φ⟩ = ⟨φ,ψ⟩ (φ,ψ ∈ H) .

2. Linearity in second argument:

⟨ψ, αφ+ φ̃⟩ = α ⟨ψ,φ⟩+ ⟨ψ, φ̃⟩ (φ, φ̃, ψ ∈ H, α ∈ C) .

3. Positive-definite:
⟨ψ,ψ⟩ > 0 (ψ ∈ H \ { 0 }) .

Example 3.5. Of course Cn with

⟨z, w⟩Cn ≡
n∑
j=1

zjwj

is an inner-product space.

To every inner product one immediately may associate a norm, via

∥ψ∥ :=
√

⟨ψ,ψ⟩ (ψ ∈ H) .

The converse, however, hinges on the norm obeying the parallelogram law

Claim 3.6. If a norm satisfies the parallelogram law:

∥ψ + φ∥2 + ∥ψ − φ∥2 ≤ 2∥ψ∥2 + 2∥φ∥2 (φ,ψ ∈ H)

then
⟨ψ,φ⟩ := 1

4

[
∥ψ + φ∥2 − ∥ψ − φ∥2 + i∥iψ − φ∥2 − i∥iψ + φ∥2

]
defines an inner product whose associated norm is ∥·∥ ≡

√
⟨·, ·⟩. Conversely if the parallelogram law is violated then

no inner-product may be defined compatible with that norm.

Proof. Left as an exercise to the reader.

Example 3.7 (Normed vector space which is not an inner product space). Consider the space Cn, but now with the
L1 norm

∥z∥1 :=

n∑
j=1

|zj | .

Convince yourself that it is indeed a norm, and furthermore, that it violates the parallelogram law and hence cannot
be associated with any inner product.

Another example we will see later is that the space of bounded linear operators on a Hilbert space is a normed vector
space which is not an inner-product space.

We will continue with inner product spaces a little later, but for now we focus on normed vector spaces.
To any norm ∥·∥ a metric is associated via

d : V 2 → [0,∞)

(ψ,φ) 7→ ∥ψ − φ∥ .

Hence every normed vector space is also a metric space automatically. Recall that a metric space is termed complete if
every Cauchy sequence on it converges.
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Definition 3.8 (Banach space). If a normed vector space (V, ∥·∥) is complete when regarded as a metric space, then
we refer to it as a Banach space.

Example 3.9. It is clear that Cn as a TVS is also a Banach space with the Euclidean norm.

Example 3.10 (Counter-example). Let X := { f : [0, 1] → C | f is continuous }. On X define pointwise addition and
multiplication, which makes it into a VS. We furthermore define on it the L2-norm

∥f∥2 :=

√ˆ
t∈[0,1]

|f (t)|2 dt .

One shows that on X, ∥·∥2 is indeed a norm. However, one may find Cauchy-sequences in X which converge to
discontinuous functions (i.e. do not converge in X) and thus X is incomplete. Contrast this with (X, ∥·∥∞) which is
a Banach space.

Here is an L2-Cauchy sequence of continuous functions converging to a discontinuous function:

fn (t) := χ[ 12+2−n,1] (t) + χ[ 12−2−n, 12+2−n] (t)

(
2n−1t− 2n−2 +

1

2

)
(t ∈ [0, 1] , n ∈ N) .

One shows that

∥fn − fm∥2 ≤ 2−n (m ≥ n)

and the sequence is hence Cauchy. But alsom,
∥∥∥χ[ 12 ,1] − fn

∥∥∥
2
→ 0 and χ[ 12 ,1] /∈ X.

Definition 3.11 (Dense subsets). If (V, ∥·∥) is a Banach space and S ⊆ V then we say S is dense in V iff for any
ψ ∈ V and any ε > 0 there exists some φ ∈ S such that

d (ψ,φ) < ε .

This definition agrees with the topological one (S is dense iff S = V ).

Definition 3.12 (Separable spaces). If (V, ∥·∥) is a Banach space which contains a countable, dense subset then V
is called separable.

Proposition 3.13. Any Banach space is also a TVS.

Proof. We need to show that addition and multiplication are continuous w.r.t. the metric induced by the norm. Let
(X, ∥·∥) be a Banach space then. Given any ε > 0 and x, y ∈ X, we want to show that there are δ1, δ2 > 0 (which
depend on ε) such that if x̃ ∈ Bδ1 (x) and ỹ ∈ Bδ2 (y) then

(x̃+ ỹ) ∈ Bε (x+ y) .

We solve the constraint backwards via the triangle inequality:

∥x̃+ ỹ − x− y∥ ≤ ∥x̃− x∥+ ∥ỹ − y∥
≤ δ1 + δ2 .

So it is clear that picking δ1 = δ2 = 1
2ε will do the job.

For scalar multiplication one follows a similar route: given any ε > 0 and x ∈ X,λ ∈ C, we seek some δ1, δ2 > 0
such that if x̃ ∈ Bδ1 (x) and λ̃ ∈ Bδ2 (λ) then

λ̃x̃ ∈ Bε (λx) .
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We have ∥∥∥λ̃x̃− λx
∥∥∥ =

∥∥∥λ̃x̃− λx̃+ λx̃− λx
∥∥∥

≤
∣∣∣λ̃− λ

∣∣∣ ∥x̃∥+ |λ| ∥x̃− x∥

≤
∣∣∣λ̃− λ

∣∣∣ (∥x̃− x∥+ ∥x∥) + |λ| ∥x̃− x∥

≤ δ2 (δ1 + ∥x∥) + |λ| δ1
≤ δ2 (1 + ∥x∥) + |λ| δ1

Hence if we pick δ1 := min
({

1
|λ|

1
2ε, 1

})
and δ2 := 1

1+∥x∥
1
2ε we satisfy the constraint.

Lastly we want to show that X is indeed T1, i.e., that { x } ∈ Closed (X) for any x ∈ X. This is a property that
is always true for metric spaces: indeed, we can show { x }c is open by taking any open ball around any point in
{ x }c thanks to the non-degeneracy of the metric: if x ̸= y then d (x, y) > 0.

3.1.1 The operator norm

Recall from the discussion on TVS that S ⊆ X is bounded iff for any N ∈ Nbhd (0X),

S ⊆ tN

for all t sufficiently large.

Claim 3.14. On a Banach space X, S ⊆ X is bounded iff

sup
x∈S

∥x∥ <∞ .

Proof. All this requires is actually that the metric d is homogeneous:

d (αx, αy) = |α| d (x, y) (α ∈ C, x, y ∈ X) .

This property is automatically true for metrics induced by a norm, thanks to the homogeneity of the norm.
First assume that S is bounded in the TVS sense. We may pick the neighborhood of zero as N := B1 (0X). That

means that there exists some t0 > 0 such that if t ≥ t0 then

S ⊆ tB1 (0x) .

Elements in tB1 (0x) are of the form

tB1 (0x) ≡ t { x ∈ X | ∥x∥ < 1 }
= { x ∈ X | ∥x∥ < t }
= Bt (0x) .

I.e., we have
sup
x∈S

∥x∥ ≤ t0 .

Conversely, assume that S is bounded in the metric space sense, which we may take to mean that S ⊆ BM (0X) for
some M ∈ (0,∞) and let N ∈ Nbhd (0X) be given. Since the open balls at zero form a local basis, we must have
Bε (0X) ⊆ N for some ε > 0. Then

S ⊆ BM (0X)

=
M

ε
Bε (0X)

⊆ M

ε
N .
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Given any two Banach spaces X,Y , we may consider a continuous linear map

A : X → Y .

We have seen above that such maps are automatically bounded Theorem 2.24: If A is continuous then A maps bounded
sets of X to bounded sets of Y . In light of Claim 3.14, we rephrase this as saying: If A : X → Y is continuous, then

A (Br (0X)) ⊆ BM (0Y ) .

In other words,

sup
∥x∥X≤r

∥Ax∥Y < ∞ .

An extremely useful notion in this regard for continuous linear maps is that of the

Definition 3.15 (The operator norm). Given a linear map A : X → Y between Banach spaces, we define its operator
norm as

∥A∥B(X→Y ) := sup ({ ∥Ax∥Y | x ∈ X : ∥x∥ ≤ 1 })

and B (X → Y ) as the space of all bounded linear maps. I.e., the operator norm gives us the maximal scaling of the
unit ball in the domain.

Claim 3.16. The “operator norm” is indeed a norm.

Proof. Absolute homogeneity is clear. Now if ∥A∥B(X→Y ) = 0 then ∥Ax∥Y = 0 for all ∥x∥ ≤ 1, which implies that
Ax = 0 for all x, and hence A = 0. Finally, the triangle inequality follows by that of ∥·∥Y :

∥(A+B)x∥Y ≤ ∥Ax∥Y + ∥Bx∥Y (∥x∥ ≤ 1) .

Take now the supremum over ∥x∥ ≤ 1 of both sides to obtain

sup
∥x∥≤1

∥(A+B)x∥Y ≤ sup
∥x∥≤1

[∥Ax∥Y + ∥Bx∥Y ]

≤

(
sup

∥x∥≤1

∥Ax∥Y

)
+ sup

∥x∥≤1

∥Bx∥Y .

Summarizing the above succinctly, we have seen in Theorem 2.24 is that if A : X → Y is linear and continuous, then

∥A∥B(X→Y ) <∞ .

Claim 3.17. If A : X → Y is a linear map between two Banach spaces and if ∥A∥B(X→Y ) <∞ then A is continuous.

Proof. This could have been demonstrated in Theorem 2.24 if we assumed that X,Y are merely metrizable, but
for Banach spaces (with a homogeneous metric) things are even simpler. Indeed, given x ∈ X and ε > 0, we show
continuity at x as follows: for any x̃ ∈ B ε

∥A∥
(x), we have (using Lemma 3.18 right below)

∥Ax−Ax̃∥ = ∥A (x− x̃)∥
≤ ∥A∥∥x− x̃∥
= ε .

Lemma 3.18. If A : X → Y is a bounded linear map between two Banach spaces then

∥Ax∥Y ≤ ∥A∥B(X→Y )∥x∥X .
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Proof. We write thanks to the homogeneity of the norm,

∥Ax∥Y =
∥Ax∥Y
∥x∥X

∥x∥X

=

∥∥∥∥A x

∥x∥X

∥∥∥∥
Y

∥x∥X .

But since ∥∥∥∥ x

∥x∥X

∥∥∥∥
X

= 1

we must have ∥∥∥∥A x

∥x∥X

∥∥∥∥
Y

≤ ∥A∥B(X→Y ) .

Lemma 3.19. The operator norm is submultiplicative: If A,B : X → X then

∥AB∥B(X) ≤ ∥A∥B(X)∥B∥B(X) .

Proof. We have thanks to the above
∥ABx∥ ≤ ∥A∥B(X)∥Bx∥

taking the supremum over ∥x∥ ≤ 1 on both sides we obtain the result.

Claim 3.20 (R&S Thm. III.2). If X,Y are two Banach spaces then B (X,Y ) together with the operator norm is itself
a Banach space.

Proof. Thanks to Claim 3.16 we know that
(
B (X,Y ) , ∥·∥B(X,Y )

)
is indeed a normed vector space (with pointwise

addition and scalar multiplication). To show it is a Banach space we need to show it is complete. Let {An }n be
Cauchy. Then that means that ∥An −Am∥B(X,Y ) is small as n,m are large. This implies that for any x ∈ X,

∥(An −Am)x∥Y = ∥Anx−Amx∥

is small. I.e., the sequence {Anx }x is Cauchy in Y . Since Y itself is a Banach space (and is hence complete) that
means it converges to some y ∈ Y . Define a new operator, B, via

X ∋ x 7→ lim
n→∞

Anx ∈ Y

which is clearly linear too since the limit is linear.
From the triangle inequality we have

∥An −Am∥ ≥ |∥An∥ − ∥Am∥|

so that { ∥An∥ }n is a Cauchy sequence of real numbers, and so converges to some α ∈ R. Hence, by definition of B,

∥Bx∥Y = lim
n→∞

∥Anx∥Y
≤ lim

n→∞
∥An∥B(X→Y )∥x∥X

= α∥x∥X .

Hence B is bounded, and so continuous. We want to show that limnAn = B in operator norm. We have, by
definition of B,

∥(B −Am)x∥Y = lim
n→∞

∥(An −Am)x∥Y
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so that for ∥x∥ ≤ 1 we have

∥(B −Am)x∥Y ≤ lim
n→∞

∥An −Am∥B(X→Y )

which implies
∥B −Am∥B(X→Y ) ≤ lim

n→∞
∥An −Am∥B(X→Y ) .

The right hand side however becomes arbitrarily small for large m.

Definition 3.21. A linear map A : X → Y between Banach spaces is called an isometry iff ∥Ax∥Y = ∥x∥X for any
x ∈ X.

Claim 3.22. A closed vector subspace of a Banach space is itself a Banach space.

3.2 Completeness
3.2.1 Baire category

Definition 3.23. If S is a topological space, E ⊆ S is called nowhere dense iff E has an empty interior:

int (cl (E)) = ∅ .

Then,

1. Sets “of the first category” or “meager” are subsets of S which are the countable unions of nowhere dense sets.

2. Sets “of the second category” or “nonmeager” are subsets of S which are not of the first category.

Example 3.24 (Nowhere dense set). Z is nowhere dense within R. On the other hand, Q is not nowhere dense within
R. Also, (0, 1) is not nowhere dense within R. Moreover, R is nowhere dense in C. ∅ is nowhere dense, and it is
the only one in a discrete space. Any vector subspace in a TVS is either dense or nowhere dense. The Cantor set is
nowhere dense within [0, 1].

Claim 3.25. Let S be a topological space.

1. If A ⊆ B and B is of the first category, so is A.

2. Any countable union of sets of the first category is of the first category.

3. Any E ∈ Closed (S) such that int (E) = ∅ is of the first category.

4. If h : S → S is a topological isomorphism (homeomorphism) and B ⊆ S then B and h (B) are of the same
category.

Proof. For (1), we have B =
⋃
j∈N Nj where Nj are nowhere dense. Hence A = B ∩ A =

⋃
j∈N Nj ∩ A, but each

Nj ∩A is nowhere dense:
cl (Nj ∩A) ⊆ cl (Nj) ∩ cl (A) ⊆ cl (Nj)

and so
int (cl (Nj ∩A)) ⊆ int (cl (Nj)) = ∅ .

For (2), we note that the countable union of a countable union is itself a countable union, and (3) follows from
the definition. For (4), suppose B is of the first category so that B =

⋃
j∈N Nj where Nj are nowhere dense. Then,

h (B) = h

⋃
j∈N

Nj


=

⋃
j∈N

h (Nj) .
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But each h (Nj) is nowhere dense. Indeed, homeomorphisms map closure and interiors to closures and interiors
resp.

Theorem 3.26 (Baire’s category theorem). If S is either a complete metric space or a locally compact Hausdorff
space and { Vj }j∈N are open dense sets then

⋂
j∈N Vj is dense in S itself. In particular, S is of the second category.

Proof. We first show the “in particular”: Note that if { Ej }j ⊆ S are nowhere dense, we have the following equivalent
chain:

int (cl (Ej)) = ∅
int (cl (Ej))

c
= S

cl ((cl (Ej))
c
) = S

(cl (Ej))
c is dense .

Hence Baire’s conclusion says that ⋂
j

(cl (Ej))
c ̸= ∅

⋃
j

cl (Ej) ̸= S

whence it is impossible that
⋃
j Ej = S, i.e., S is of the second category.

We now tend to the proof of the actual claim. We only show the claim if S is a complete metric space, the
other case left as an exercise. Let { Vj }j be a collection of dense open subsets. Suffice to show that given some
W ∈ Open (S), W ∩

⋂
j∈N Vj ̸= ∅. Since V1 is dense, W ∩ V1 is non-empty. Let x1 ∈W ∩ V1. Since W ∩ V1 is open,

there is some r1 ∈
(
0, 12

)
such that

Br1 (x1) ⊆ W ∩ V1 .

We proceed inductively to define xj ∈ Brj−1
(xj−1) ∩ Vj , rj ∈

(
0, 1

2j

)
such that

Brj (xj) ⊆ Brj−1
(xj−1) ∩ Vj .

Hence

xj ⊆ Brj−1 (xj−1) ∩ Vj
⊆ Brj−2

(xj−2)
⋂
Vj−1 ∩ Vj

⊆ Br1 (x1) ∩
j⋂
l=2

Vl

⊆ W
⋂ j⋂

l=1

Vl .

We now claim that { xj } is Cauchy. Indeed, if ε > 0 then pick any N ∈ N such that 2−N < 1
2ε. Then if n,m ≥ N

we get
xn, xm ∈ BrN (xN )

so that
d (xn, xm) < ε .

But since S is complete, we conclude xn → x for some x. But for every N ∈ N,

xn ∈ BrN (xN ) (n ≥ N)
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so that
x ∈ BrN (xN ) ⊆ BrN−1

(xN−1) ∩W ⊆ VN ∩W .

Since this is true for every N , we conclude that x ∈W ∩
⋂
j Vj , i.e., that intersection is not empty.

For fun, here is an example of an application of the category theorem

Claim 3.27. [0, 1] is uncountable.

Proof. Assume otherwise, so that [0, 1] =
⋃
x∈[0,1] { x } is a countable union. Since each { x } is nowhere dense, [0, 1]

is realized as the countable union of nowhere dense sets, i.e., it is of the first category. But [0, 1] is a complete metric
space, so it is of the second category!

The Banach-Steinhaus theorem: the principle of uniform boundedness

Theorem 3.28 (Banach-Steinhaus). Let X be a Banach space and Y be a normed vector space. Denote by B (X → Y )
the Banach space of all continuous linear operators X → Y . For F ⊆ B (X → Y ), if

sup
A∈F

∥Ax∥Y <∞ (x ∈ X)

then
sup
A∈F

∥A∥B(X→Y ) <∞ .

We have seen before that continuous implies bounded for linear maps (see Theorem 2.24), i.e.,

∥A∥B(X→Y ) <∞ (A ∈ F ) .

The content of the theorem is that, for continuous families, pointwise uniform (in F ) boundedness implies uniform ( in
both F and X) boundedness.

Proof. Define

Xn :=

{
x ∈ X

∣∣∣∣ sup
A∈F

∥Ax∥Y ≤ n

}
(n ∈ N) .

This is a closed set with
⋃
n∈N Xn = X. Since X is of the second category, Theorem 3.26 implies that there must be

some n0 ∈ N for which Xn0 is not nowhere dense, i.e., for which int (Xn0) ̸= ∅: ∃x0 ∈ Xn0 and ε > 0 with

Bε (x0) ⊆ Xn0
.

Now, let u ∈ X with ∥u∥ ≤ 1 and A ∈ F . Then

∥Au∥Y =
1

ε
∥A (x0 + εu)−Ax0∥Y

≤ 1

ε
∥A (x0 + εu)∥+ 1

ε
∥Ax0∥

≤ 1

ε
(n0 + n0)

which yields the result.

As an example application, here is the following

Claim 3.29. Let X,Y, Z be Banach spaces and B : X × Y → Z a separately-continuous bilinear mapping (i.e., for
each x ∈ X, B (x, ·) : X → Z is continuous and the same for the other slot). Then B is actually jointly continuous in
its two slots.
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Proof. Since B (x, ·) is continuous for any x ∈ X, there is some cx ∈ (0,∞) such that

∥B (x, y)∥ ≤ cx∥y∥ (y ∈ Y ) .

Hence
∥B (x, y)∥ ≤ cx (y ∈ ∂B1 (0Y )) .

We now consider the family F := {B (·, y) : X → Z | y ∈ ∂B1 (0Y ) }. Since this is a family of continuous maps, the
uniform boundedness principle implies there is some M > 0 such that

∥B (·, y)∥B(X→Z) ≤M (y ∈ ∂B1 (0Y )) .

Hence if y ̸= 0,

∥B (x, y)∥Z = ∥y∥Y

∥∥∥∥B(x, y

∥y∥

)∥∥∥∥
Z

≤ ∥y∥Y

∥∥∥∥B(·, y

∥y∥

)∥∥∥∥
B(X→Z)

∥x∥X

≤ M∥x∥∥y∥ .

Proof without directly referencing the uniform boundedness principle. It suffices to show that if xn → 0, yn → 0 then
B (xn, yn) → 0. Let us define

Tny := B (xn, y) (y ∈ Y ) .

Each Tn is bounded by continuity of B (xn, ·). We have { ∥Tny∥ }n bounded pointwise in y. Indeed, this follows
from B (·, y) being bounded and xn → 0. But then, since boundedness implies continuity,

∥Tny∥ ≤ C∥y∥Y (n ∈ N, y ∈ Y )

for some C <∞. Hence
∥B (xn, yn)∥ = ∥Tnyn∥ ≤ C∥yn∥ → 0 .

Contrast this with how horribly things can go for nonlinear functions:

f : R2 → R

(x, y) 7→

{
xy

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
.

3.2.2 The open mapping theorem

Definition 3.30. A map f : X → Y between two topological spaces is open iff ∀U ∈ Open (X), f (U) ∈ Open (Y ).

Claim 3.31. A linear map f : X → Y between two TVS is open iff the image of any N ∈ Nbhd (0X) contains some
M ∈ Nbhd (0Y ).

Proof. First assume that f : X → Y is indeed open and let N ∈ Nbhd (0X). Since f is open, f (N) ∈ Open (Y ).
Since f is linear, f (0X) = 0Y and hence 0Y ∈ f (N), i.e., f (N) ∈ Nbhd (0Y ).

Conversely, let U ∈ Open (X) and try to show f (U) ∈ Open (Y ). To that end, let y ∈ f (U) and try to show
that there is some M ∈ Nbhd (y) with M ⊆ f (U). Since y ∈ f (U), there is some x ∈ U with f (x) = y. That means
that 0X ∈ U − x, i.e., (U − x) ∈ Nbhd (0X). Applying the hypothesis on U − x we find L ⊆ f (U − x) for some
L ∈ Nbhd (0Y ). By linearity, this implies L+ y ⊆ f (U), which is precisely what we wanted to show.
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Theorem 3.32 (Open mapping (R&S III.10)). Let X,Y be Banach spaces and A ∈ B (X → Y ) is surjective. Then
A is an open map.

Proof. Since the open balls are a local basis for Open (X), by the above, it suffices to show that there is some r > 0
such that ABr (0X) contains some neighborhood of 0Y . In fact, it will suffices to only show that: (1) ABr (0X) has
non-empty interior for some r > 0 and (2) ABr (0X) ⊆ AB2r (0X) for all r > 0.

Step 0: Show the that (1) and (2) together imply that A is open. Indeed, if (1) holds then ∃y ∈ Y, ε > 0 such that
Bε (y) ⊆ A (Br (0X)), then since y ∈ A (Br (0X)), there is some { yn }n ⊆ A (Br (0X)) which converges to y. This
corresponds to some sequence xn ∈ Br (0X) which converges to some x which obeys Ax = y. Let now ỹ ∈ Bε (0Y ).
Then ỹ + y ∈ Bε (y) ⊆ ABr (0X) so that again there is some sequence {x̃n}n ⊆ Br (0X) which converges to some x̃
which obeys Ax̃ = ỹ + y. Hence

A (x̃− x) = Ax̃−Ax

= ỹ + y − y

= ỹ

and moreover, ∥x̃− x∥ ≤ 2r so that ỹ ∈ AB2r (0X) = AB2r (0X) (the last inclusion follows by continuity of A).
Since ỹ was arbitrary, we conclude that there exists some ε > 0 such that

Bε (0Y ) ⊆ AB2r (0X) . (3.1)

Using (2) now, we have AB2r (0X) ⊆ AB4r (0X) so that Bε (0Y ) ⊆ AB4r (0X), i.e., AB4r (0X) contains a neighbor-
hood of zero.

Step 1: Show (1): We use the fact that

X =
⋃
k∈N

kB1 (0X) =
⋃
k∈N

Bk (0X)

thanks to Theorem 2.12. Since A is surjective we have

Y = AX = A

(⋃
k∈N

Bk (0X)

)
=
⋃
k∈N

ABk (0X)

where we used the fact that the image of a union is the union of the images. Since Y is a Banach space, it is of the
second category, i.e., it can’t be that for all k ∈ N, A (Bk (0X)) is nowhere dense. I.e., there exists some k ∈ N such
that (

ABk (0X)
)◦

̸= ∅ .

That means that ABk (0X) has non-empty interior, and (1) is established.
Step 2: Show (2): Let y ∈ ABr (0X). By the defining property of the closure, for any ε > 0 there exists some

x1 (ε) ∈ Br (0X) with Ax1 (ε) ∈ Bε (y) = Bε (0Y ) + y, i.e., y − Ax1 (ε) ∈ Bε (0Y ). Since this is true for any ε > 0,
pick that one ε for which (3.1) holds with 2r replaced by 1

2r (i.e., for which Bε (0Y ) ⊆ AB 1
2 r

(0X)). We find some
x1 ∈ Br (0X) for which

y −Ax1 ∈ Bε (0Y ) ⊆ AB 1
2 r

(0X) .

We now apply this procedure on y −Ax1 to obtain some x2 ∈ B 1
2 r

(0X) for which

y −Ax1 −Ax2 ∈ B 1
2 ε

(0Y ) ⊆ AB 1
4 r

(0X) .

Note here in the last inclusion we are using the scaling property of the balls rather than picking a new ε. Repeating
this process inductively n times we find xn ∈ B21−nr (0X) such that

y −
n∑
j=1

Axj ∈ B21−nε (0Y ) ⊆ AB2−nr (0X) .
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As a result,
∑n
j=1 xj exists and lies in B2r (0X), since∥∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥∥ ≤
n∑
j=1

∥xj∥ ≤
n∑
j=1

21−jr = 2
(
1− 2−n

)
r → 2r <∞ .

Since A is continuous,

A

n∑
j=1

xj =

n∑
j=1

Axj ∈ B21−nε (y) =⇒ lim
n→∞

n∑
j=1

Axj = y =⇒ A

∞∑
j=1

xj = y .

so that y ∈ AB2r (0X). We conclude

ABr (0X) ⊆ B2r (0X) (r > 0) .

Corollary 3.33 (Inverse mapping theorem). If A : X → Y is a continuous bijection between Banach spaces then it
has a continuous inverse (and so it is a homeomorphism).

Proof. Since A is a bijection, it is surjective. Hence it is open, which is tantamount to A−1 being continuous.

Proposition 3.34. A linear map A : X → Y between Banach spaces is bounded if[
A−1

(
B1 (0Y )

)]◦
̸= ∅ .

Proof. By hypothesis, there exists some x0, ε > 0 such that

Bε (x0) ⊆ A−1
(
B1 (0Y )

)
.

If x ∈ X has ∥x∥ < ε, then x0 + x ∈ Bε (x0) so that

∥Ax∥ ≤ ∥A (x+ x0)∥+ ∥Ax0∥ ≤ 1 + ∥Ax0∥ .

Hence for general x ∈ X with ∥x∥ ≤ 1, we always have∥∥∥∥12εx
∥∥∥∥ ≤ 1

2
ε

so that

∥Ax∥ =
2

ε

∥∥∥∥A1

2
εx

∥∥∥∥
≤ 2

ε
(1 + ∥Ax0∥)

so that ∥A∥ <∞ .

3.2.3 The closed graph theorem

Definition 3.35 (Graph of an operator). Let f : X → Y be a mapping between two normed spaces. The graph of
f , denoted by Γ (f), is given by

Γ (f) := { (x, y) ∈ X × Y | f (x) = y } .

Proposition 3.36. For a linear map f : X → Y , its graph Γ (f) is a sub-vector space of the Banach space X × Y and if
Γ (f) ∈ Closed (X × Y ) then Γ (f) is a Banach space in its own right.
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Theorem 3.37 (Closed graph theorem (R&S Thm. III.12)). Let A : X → Y be a linear map between two Banach
spaces. Then A is bounded iff Γ (A) ∈ Closed (X × Y ).

Proof. We use the sequential characterization of a closed set. First assume that A is bounded. Then it is continuous.
Hence, given any sequence { (xj , Axj) }j∈N ⊆ Γ (A) which converges to some (x, y) ∈ X × Y , with p1 : X × Y → X

and p2 : X × Y → Y the two projections (continuous by definition of the product topology) we have

xj = p1 ((xj , Axj)) → p1 ((x, y)) = x

and
Axj = p2 ((xj , Axj)) → p2 ((x, y)) = y

by continuity of the projections. But A is continuous, so

Ax = lim
j
Axj = y .

Hence (x, y) ∈ Γ (A) so that Γ (A) is indeed closed.
Conversely, if Γ (A) is closed, since it is a closed vector subspace of X×Y , it is a Banach space. Let Ã : X → Γ (A)

be given by
Ãx := (x,Ax) .

Clearly Ã is a bijection. Its inverse is p1|Γ(A). The restriction of a continuous map is continuous as well, so that the
inverse mapping theorem states it has a continuous inverse, i.e., Ã is continuous, so that A = p2 ◦ Ã is continuous
too.

Example 3.38 (Grothendieck). Let p ∈ (1,∞) and

1. µ is a probability measure on some measure space Ω.

2. S ∈ Closed (Lp (µ)) is a subspace.

3. S ⊆ L∞ (µ).

Then S is finite-dimensional.

Proof. Let j : S → L∞ (µ) be the injection map. Let S have the subspace topology from Lp (µ), i.e., given by the
norm

∥f∥p :=
(ˆ

Ω

|f |p dµ
) 1
p

which is complete (verify..., strictly speaking this is only a norm on the quotient space, when quotioning by the
functions which are zero a.e.).

Now if { fn }n is a sequence in S such that fn → f in S, and fn → g in L∞, then f = g a.e.. Indeed, we have

∥f − g∥p ≤ ∥f − fn∥p + ∥fn − g∥p

and
∥fn − g∥p ≤ ∥fn − g∥∞

from Holder’s inequality with x 7→ 1. Hence j satisfies the hypothesis of the closed graph theorem, i.e., that
Γ (j) ∈ Closed (S × L∞). Hence, ∥j∥B(S→L∞) is bounded, i.e., there exists some K ∈ (0,∞) such that

∥f∥∞ ≤ K∥f∥p (f ∈ S) .

If p ≤ 2 then ∥f∥p ≤ ∥f∥2 by virtue of Jensen’s inequality and α 7→ α
2
p being convex. If p > 2, use

|f |p ≤ ∥f∥p−2
∞ |f |2
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and integrate it to find that ∥f∥∞ ≤ K
p
2 ∥f∥2. In either case, ∃M ∈ (0,∞) such that

∥f∥∞ ≤M∥f∥2 (f ∈ S) .

I.e., the embedding L2 → L∞ is continuous.
Let { φ1, . . . , φn } be an orthonormal set in S regarded as a subspace of L2. Let Q be a countable dense subset

of
B := B1 (0Cn) .

Define

ψ : B → S

c 7→
n∑
j=1

cjφj

Then clearly
∥ψ (c)∥2 ≤ ∥c∥Cn = 1

so by the above,
∥ψ (c)∥∞ ≤M .

Since Q is countable, there is some Ω′ ⊆ Ω with µ (Ω′) = 1 such that |ψ (c) (x)| ≤ M for every c ∈ Q and every
x ∈ Ω′. For fixed x, the map

B ∋ c 7→ |ψ (c) (x)|

is a continuous function. Hence |ψ (c) (x)| ≤ M whenever c ∈ B and x ∈ Ω′. Hence
∑
j |φj (x)|

2 ≤ M2 for every
x ∈ Ω′. Integrating this inequality yield n ≤M2 so that dim (S) ≤M2 and hence the proof of this theorem.

4 Convexity
We are going to make use of Zorn’s lemma for which we need to set up some basic terminology about order.

Definition 4.1 (Partial order). Given a set X, a relation R ⊆ X2 is a partial order iff it is

1. Reflexive: (a, a) ∈ R for all a ∈ X.

2. Anti-symmetric: (a, b) ∈ R and (b, a) ∈ R implies a = b for all a, b ∈ X.

3. Transitive: (a, b) , (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ X.

The word partial implies that it may be the case that given a, b ∈ X, neither (a, b) ∈ R nor (b, a) ∈ R. If this does
happen to be the case, R is called linearly ordered.

Definition 4.2. In a partial order, if there is some m ∈ X such that

[(m,x) ∈ R =⇒ x = m] (x ∈ X)

then m is called a maximal element. If Y ⊆ X and (y, p) ∈ R for all y ∈ Y then p is called an upper bound on Y .

Lemma 4.3 (Zorn). If X is a nonempty partially ordered set such that every linearly ordered subset has an upper
bound in X, then each linearly ordered set has some upper bound which is also a maximal element of X.

4.1 Hahn-Banach
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Theorem 4.4 (R-Hahn-Banach theorem). Let X be an R-vector space, p : X → R be given such that

p (αx+ (1− α) y) ≤ αp (x) + (1− α) p (y) (x, y ∈ X;α ∈ [0, 1]) .

Let λ : Y → R linear where Y ⊆ X is a subspace, and such that

λ (x) ≤ p (x) (x ∈ Y ) .

Then there exists Λ : X → R linear such that Λ|Y = λ and such that

Λ (x) ≤ p (x) (x ∈ X) .

Note that the point of this theorem is not that an extension exists, but that an extension which is also dominated by
the convex function exists.

Proof. Let z ∈ X \ Y and Ỹ := span (Y, z). Define λ̃ : Ỹ → R via

λ̃ (az + y) := aλ̃ (z) + λ (y) (y ∈ Y, a ∈ R)

with λ̃ (z) to be determined soon.
Now we show we may choose λ̃ (z) so that the desired properties are obeyed.
Let y1, y2 ∈ Y and α, β > 0. Then

βλ (y1) + αλ (y2) = λ (βy1 + αy2) = (α+ β)λ

(
β

α+ β
y1 +

α

α+ β
y2

)
≤ (α+ β) p

(
β

α+ β
(y1 − αz) +

α

α+ β
(y2 + βz)

)
≤ βp (y1 − αz) + αp (y2 + βz)

so that

1

α
[−p (y1 − αz) + λ (y1)] ≤ 1

β
[p (y2 + βz)− λ (y2)] .

Hence we have some number q ∈ R obeying

sup
y1∈Y, α>0

1

α
[−p (y1 − αz) + λ (y1)] ≤ q ≤ inf

y2∈Y, β>0

1

β
[p (y2 + βz)− λ (y2)] .

Define λ̃ (z) := q. We verify λ̃ (az + y) ≤ p (az + y): Assume a > 0. Then applying the above inequality with β = a,
y2 = y yields

λ̃ (z) ≤ 1

a
[p (y + az)− λ (y)]

which is the desired inequality.
Let now E be the collection of extensions e of λ which satisfy e ≤ p on the subspace where they are defined.

Define a partial order R on E by declaring (e1, e2) ∈ R iff e2 is defined on a larger subset than e1 and e1 = e2 where
both are defined, i.e., if e2 extends e1. Now if { eα }α∈A is a linearly ordered subset of E, with Xα the subspace on
which eα is defined, define e on

⋃
α∈AXα by e (x) := eα (x) if x ∈ Xα (this is unambiguous thanks to the extension

property). Clearly (eα, e) ∈ R so each linearly ordered set has an upper bound. Now apply Zorn’s lemma to find
that E has a maximal element Λ defined on some X ′ ⊆ X with Λ (x) ≤ p (x) for x ∈ X ′. It must be that X ′ = X
since otherwise we could extend Λ outside of X ′ as above and then it would not be a maximal element.
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Theorem 4.5 (Hahn-Banach theorem). Let X be a vector space, p : X → R be given such that

p (αx+ βy) ≤ |α| p (x) + |β| p (y) (x, y ∈ X;α, β ∈ C : |α|+ |β| = 1) .

Let λ : Y → C linear where Y ⊆ X is a subspace, and such that

|λ (x)| ≤ p (x) (x ∈ Y ) .

Then there exists Λ : X → C linear such that Λ|Y = λ and such that

|Λ (x)| ≤ p (x) (x ∈ X) .

Proof. Define ℓ (x) := Re {λ (x)}. Then ℓ is a real linear functional on Y and

ℓ (ix) = Re {λ (ix)} = Re {iλ (x)} = − Im {λ (x)}

we have
λ (x) = ℓ (x)− iℓ (ix) (x ∈ X) .

Applying the above R-Hahn-Banach theorem on the R-valued functional ℓ we find an extension L : X → R with
L (x) ≤ p (x). Define

Λ (x) := L (x)− iL (ix) .

Now, Λ extends λ and is R-linear. Λ (ix) = iΛ (x) so Λ is C-linear as well. So we now must show |Λ (x)| ≤ p (x).
Note that if |α| = 1 we have p (αx) = p (x) by hypothesis. Then

|Λ (x)| = e−i arg(Λ(x))Λ (x) = Λ
(
e−i arg(Λ(x))x

)
= Re

{
Λ
(
e−i arg(Λ(x))x

)}
= L

(
e−i arg(Λ(x))x

)
≤ p

(
e−i arg(Λ(x))x

)
= p (x) .

5 Duality

Definition 5.1. Given a Banach space X, its dual, denoted by X∗ is the space B (X → C), i.e., of continuous linear
functionals X → C, which is also a Banach space. The norm on X∗ is of course the operator norm:

∥λ∥op ≡ sup
x∈X:∥x∥≤1

|λ (x)| (λ ∈ X∗) .

Example 5.2. Given some g ∈ Lp (R) and q ∈ R such that 1
p +

1
q = 1, we define a functional G on Lq (R) as

G (f) :=

ˆ
R
gf .

By Hölder’s inequality, we have ∣∣∣∣ˆ
R
gf

∣∣∣∣ ≤
ˆ

R
|gf |

≡ ∥gf∥1
≤ ∥g∥p∥f∥q
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so that
∥G∥op ≤ ∥g∥p .

Actually this is an equality (exercise). In fact, all bounded linear functionals on Lq arise in this way, and different
g’s give rise to different functionals. Hence, the map Lp ∋ g 7→ G ∈ (Lq)

∗ is an isometric isomorphism. Hence we
identify Lp as the dual of Lq for 1

q + 1
p = 1. By symmetry, it is clear that Lp = (Lq)

∗
=
(
(Lp)

∗)∗, so that Lp is its
own double-dual.

For p = ∞ this is different: the dual of L1 is L∞, but the dual of L∞ is much larger than L1. So it is not always
true that a space is its own double dual!

Theorem 5.3 (X may be regarded as a subset of X∗∗). Let X be a Banach space, and define

J : X → X∗∗

via
X ∋ x 7→ (X∗ ∋ λ 7→ λ (x)) ∈ B (X∗ → C) ≡ X∗∗ .

Then J is isometric and injective, and its range is a (possibly proper) subspace of X∗∗.

Proof. For x ∈ X,λ ∈ X∗ we have J (x) ∈ B (X∗ → C) and the estimate

|J (x) (λ)| ≡ |λ (x)| ≤ ∥λ∥op∥x∥X

so that ∥J (x)∥B(X∗→C) ≤ ∥x∥X . Fixing x0, apply the Hahn-Banach theorem on the one-dimensional subspace Cx0
and the linear functional

X ⊇ Cx0 ∋ αx0 7→ α∥x0∥X (5.1)

which is bounded by the convex function p (y) := ∥y∥, to get some λ0 ∈ X∗ so that

∥λ0∥op ≡ sup ({ |λ0 (y)| | ∥y∥ ≤ 1 })
≤ sup ({ p (y) | ∥y∥ ≤ 1 })
= 1 .

and λ0 (x0) = ∥x0∥X (since it is an extension). Hence,

∥J (x0)∥B(X∗→C) ≡ sup
λ̃∈X∗:∥λ̃∥op

≤1

∣∣∣λ̃ (x0)∣∣∣ ≥ |λ0 (x0)| = ∥x0∥X .

We conclude that ∥J (x)∥B(X∗→C) = ∥x∥X for all x ∈ X so that J is indeed an isometry. Clearly J is linear, so its
range is a subspace of its codomain.

If it happens that J is surjective we call X reflexive (in which case X∗∗ ∼= X). As we have seen Lp are reflexive for p > 1
but L1 is not.

Lemma 5.4. Let X be a Banach space and Y ⊆ X a subspace. If λ ∈ Y ∗ then there exists some extension Λ ∈ X∗

for which ∥Λ∥op = ∥λ∥op.

Proof. Use the Hahn-Banach theorem with the dominating convex function p (x) = ∥λ∥op∥x∥X which is easily convex.
Now, clearly

|λ (y)| ≤ p (y) (y ∈ Y ) .

Hence we get some Λ : X → C with

|Λ (x)| ≤ ∥λ∥op∥x∥X
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which immediately implies ∥Λ∥op ≤ ∥λ∥op . Since Λ extends λ, we must have also

∥Λ∥op ≡ sup
x∈X:∥x∥≤1

|Λ (x)|

≥ sup
x∈Y :∥x∥≤1

|Λ (x)|

= sup
x∈Y :∥x∥≤1

|λ (x)|

≡ ∥λ∥op .

Lemma 5.5 (Another characterization of the operator norm). If X is a Banach space then

∥x∥ = sup
({

|λ (x)|
∣∣∣ λ ∈ X∗ : ∥λ∥op ≤ 1

})
.

Moreover, the supremum is attained.

Proof. Let
α := sup

({
|λ (x)|

∣∣∣ λ ∈ X∗ : ∥λ∥op ≤ 1
})

.

Clearly α ≤ ∥x∥X by |λ (x)| ≤ ∥λ∥op∥x∥X .
For the reverse direction, defining, for each x0 ∈ X,

Cx0 ∋ βx0
η7→ β∥x0∥X

which has operator norm equal to 1:

∥η∥op ≡ sup
βx0∈Cx0:∥βx0∥X≤1

|η (βx0)|

≡ sup
βx0∈Cx0:∥βx0∥X≤1

|β∥x0∥|

= sup
βx0∈Cx0:∥βx0∥X≤1

∥βx0∥

= 1 .

So we may use the above lemma to find some λ0 ∈ X∗ with ∥λ0∥op = 1 and λ0 (x0) = ∥x0∥ (since it is an extension
of η) so that ∥x0∥ ≤ α. The fact we exhibited λ0 means the supremum is attained.

5.1 Weak topologies on Banach spaces

Definition 5.6. Let X be a Banach space with dual X∗. The weak topology on X is the weakest (i.e., coarsest)
topology on X in which each functional λ ∈ X∗ is continuous. I.e., the weak topology is the initial topology generated
by X∗.

Some remarks:

• Recall that T1 is coarser (weaker, smaller) than T2 iff

T1 ⊆ T2 .

In this case we also say that T2 is finer (stronger, larger) than T1.

• Recall in particular that this topology is generated by the sub-basis{
λ−1 (E)

∣∣ λ ∈ X∗, E ∈ Open (C)
}
.
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So a generic open set in the weak topology is of the form

⋃
α

nα⋂
j=1

λ−1
α,j (Eα,j)

with λα,j ∈ X∗ and Eα,j ∈ Open (C), and about any point x in a weakly-open set U we have

x ∈
n⋂
j=1

λ−1
j

(
Bεj (zj)

)
⊆ U .

We have λj (x) ∈ Bεj (zj), so we may take some ε > 0 so that

Bε (λj (x)) ⊆ Bεj (zj) (j = 1, . . . , n)

which the inverse image respects, so we get

x ∈
n⋂
j=1

λ−1
j (Bε (λj (x))) ⊆ U . (5.2)

Remark 5.7. A somewhat subtle point is the fact that as a Banach space, (X, ∥·∥X) has its topology induced by the
metric which is induced by the norm. This data automatically generates

Open (X) ≡ Open∥·∥X (X)

which in turns generatesX∗ (the space of all linear continuous maps, where continuity is w.r.t. Open∥·∥X (X)). Now to
define the weak topology Openweak (X) we use the set of maps in X∗ (whose definition stemmed from Open∥·∥X (X)!).
Hence Open∥·∥X (X) induces Openweak (X). This is somewhat confusing since all λ ∈ X∗ are already continuous w.r.t.
Open∥·∥X (X). However, Openweak (X) is defined as the weakest topology on X so that all λ ∈ X∗ remain continuous.
In particular,

Openweak (X) ⊆ Open∥·∥X (X)

so that a set open in the weak topology is necessarily open in the norm topology, and if f : X → Z is continuous in
the weak topology, then for any U ∈ Open (Z), f−1 (U) ∈ Openweak (X) so f−1 (U) ∈ Open∥·∥X (X) and hence any
weakly-continuous map f : X → Z is norm continuous too.

Lemma 5.8. If X is an infinite dimensional Banach space then every U ∈ Openweak (X) is unbounded in ∥·∥X .

Proof. Let x0 ∈ U ∈ Openweak (X). Then there is some finite collection λ1, . . . , λn ∈ X∗ and ε > 0 such that

x0 ∈
n⋂
j=1

λ−1
j (Bε (λj (x0))) ⊆ U .

By linearity, we may write

λ−1
j (Bε (λj (x0))) ≡ { x ∈ X | λj (x) ∈ Bε (λj (x0)) }

= { x ∈ X | |λj (x)− λj (x0)| < ε }
= { x ∈ X | |λj (x− x0)| < ε }
= { x+ x0 ∈ X | |λj (x)| < ε }
= x0 + { x ∈ X | |λj (x)| < ε }
= x0 + λ−1

j (Bε (0C))
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Hence,

n⋂
j=1

λ−1
j (Bε (λj (x0))) =

n⋂
j=1

(
x0 + λ−1

j (Bε (0C))
)

= x0 +

n⋂
j=1

λ−1
j (Bε (0C))

where the last inequality follows from (x+A) ∩ (x+B) = x+A ∩B. Since

ker (λj) ≡ λ−1
j ({ 0C })

⊆ λ−1
j (Bε (0C))

we get

x0 ∈ x0 +

n⋂
j=1

ker (λj) ⊆ U .

Now let

η : X → Cn

x 7→ (λ1 (x) , . . . , λn (x)) .

Clearly, ker (η) =
⋂n
j=1 ker (λj). If ker (η) = { 0X } we obtain a linear injection η into Cn which implies that

dim (X) ≤ n < ∞. So it must be that there must be some v ∈
(⋂n

j=1 ker (λj)
)
\ { 0X }. Then by linearity we find,

in particular, that for all α ∈ C,
x0 + αv ∈ U

and so clearly U cannot be bounded in norm since we can make x0 + αv arbitrarily large in norm:

∥x0 + αv∥ ≥ |α| ∥v∥ − ∥x0∥
→ ∞ (|α| → ∞) .

Lemma 5.9. If X is an infinite dimensional Banach space then the weak topology Openweak (X) does not arise from
a metric.

Proof. Assume otherwise. Then there is some metric d : X2 → [0,∞) which generates Openweak (X). Let then

Un :=

{
x ∈ X

∣∣∣∣ d (0X , x) < 1

n

}
(n ∈ N) .

Each of these sets is open w.r.t. the metric and hence weakly open. By Lemma 5.8 it follows that Un is norm
unbounded, so that for each n ∈ N there must be some xn ∈ Un with ∥xn∥ ≥ n. This however contradicts the fact
that xn → 0X in the metric d, and hence weakly by hypothesis, so that { xn }n is bounded.

Lemma 5.10. X is a TVS also with respect to Openweak (X). Since Open∥·∥X (X) is arises from the metric induced
by ∥·∥X and Openweak (X) is not metrizable if X is infinite dimensional, we obtain two non-homeomorphism TVS
structures on X starting from merely (X, ∥·∥X).

Proof. First we need the T1 property, i.e., that singletons are closed. Let x ∈ X \ { 0X }. Then there exists some
λ ∈ X∗ for which λ (x) > 0 (for example take the construction from (5.1)). Let ε > 0 so that λ (x) > ε. Then

x /∈ λ−1 (Bε (0C))
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so
0X /∈ x− λ−1 (Bε (0C)) ∈ Nbhd (x) .

Thus
{ 0X } ∈ Closedweak (X)

and hence by translation invariance (which we’ll see in a minute) all singletons, making this topology T1.
We leave the demonstration of continuity of addition and scalar multiplication as an exercise to the reader (it

follows very similarly to Rudin’s Theorem 1.37). Note that the topology Openweak (X) arises from the separating
family of seminorms

X2 ∋ (x, y) 7→ |λ (x)− λ (y)| =: pλ (x, y) (λ ∈ X∗) .

Lemma 5.11 (Another characterization of the weak topology). xn → x in Openweak (X) iff λ (xn) → λ (x) in
Open (C) for every λ ∈ X∗.

Proof. Assume that xn → x in Openweak (X) and let λ ∈ X∗. By definition, for any U ∈ Nbhdweak (x) there is some
NU ∈ N with

xn ∈ U (n ≥ NU ) .

Now let V ∈ NbhdOpen(C) (λ (x)). We want some NV ∈ N such that

λ (xn) ∈ V (n ≥ NV ) .

Since λ is weakly continuous, we know λ−1 (V ) ∈ Openweak (X). Hence apply the above on U := λ−1 (V ) to get that

xn ∈ λ−1 (V )
(
n ≥ Nλ−1(V )

)
which is precisely what we wanted.

Conversely, we try to show that xn → x in Openweak (X) given that λ (xn) → λ (x) in Open (C) for every λ ∈ X∗.
To that end, let U ∈ Nbhdweak (x). We seek some NU ∈ N such that if n ≥ NU then xn ∈ U . By the above proofs,
we know we may find some ε > 0 and λ1, . . . , λm ∈ X∗ so that

x ∈ x+

m⋂
j=1

λ−1
j (Bε (0C)) ⊆ U .

Since we have λj (xn)
n→∞→ λj (x) for each j, we have for each j, some Nj so that if n ≥ Nj

λj (xn) ∈ λj (x) +Bε (0C) .

Let NU := maxj=1,...,mNj so that, whence for all n ≥ NU we have

xn − x ∈
m⋂
j=1

λ−1
j (Bε (0C))

which implies the condition we wanted to satisfy.

Proposition 5.12 (Reed & Simon Chapter IV). Every weakly convergent sequence is norm bounded.

Proof. Let xn → x in Openweak (X). For each n ∈ N, let ηn ∈ X∗∗ be defined by

ηn (λ) := λ (xn)

i.e., in the notation of Theorem 5.3, ηn = J (xn). Via Lemma 5.11, for any λ ∈ X∗, the sequence { λ (xn) }n ⊆ C
converges, so { ηn (λ) }n is a bounded set. Hence by the uniform boundedness principle Theorem 3.28 applied on
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the pointwise (in λ) bounded family of operators ηn : X∗ → C we find that

sup
n
∥ηn∥op <∞ .

But ηn = J (xn) and J is an isometry (again by Theorem 5.3), so

sup
n
∥xn∥X <∞ .

Definition 5.13 (Weak-star topology). Let X∗ be the dual of some Banach space. The weak-star topology on X∗ is
the weakest topology on X∗ in which all functions (determined by all x ∈ X)

X∗ ∋ λ 7→ λ (x) ∈ C

are continuous. Since we have the injective isometry J : X → X∗∗ via Theorem 5.3, we say that the weak-star
topology is the weakest topology on X∗ making all elements in J (X) continuous, i.e., it is the initial topology on X∗

generated by J (X) ⊆ X∗∗.

Claim 5.14. If X is reflexive (i.e., J (X) = X∗∗) then the weak topology on X∗ and the weak-star topology on X∗

coincide.

Proof. The weak topology on X∗ is characterized by the initial topology generated by X∗∗ whereas the weak-star
topology is characterized by the initial topology generated by J (X).

Actually the converse is also true, see [Con19, pp. 131 Theorem 4.2 Banach Spaces, Reflx revisited]. It is thus clear that
if J (X) ̸= X∗∗ (i.e., if X is not reflexive) then the weak-star topology on X∗ is weaker than the weak-topology on X∗

(since it demands less continuity).

5.2 Banach-Alaoglu
We start with an observation.

Lemma 5.15 (Riesz). Let X be a Banach space and Y ⊆ X a subspace which is not dense. Then for any r < 1 there
exists some x ∈ X with ∥x∥ = 1 and

inf
y∈Y

∥x− y∥ ≥ r .

Proof. Since Y is not dense, there exists some z ∈
(
Y
)c ∈ Open (X). Then

R := inf
y∈Y

∥y − z∥ > 0 .

Now for any ε > 0, let yε ∈ Y be such that ∥yε − z∥ < R+ε (by the approximation property of the infimum). Define

x :=
z − yε

∥z − yε∥

so clearly ∥x∥ = 1 and

inf
y∈Y

∥x− y∥ = inf
y∈Y

∥∥∥∥y − z

∥z − yε∥
+

yε
∥z − yε∥

∥∥∥∥
= inf

y∈Y

∥∥∥∥ y

∥z − yε∥
− z

∥z − yε∥
+

yε
∥z − yε∥

∥∥∥∥
=

infy∈Y ∥y − z∥
∥z − yε∥

≥ R

R+ ε
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where the first two inequalities follow from the fact Y is a subspace. Since ε > 0 was arbitrary, we may arrange for
R
R+ε to be as close to 1 as we need.

Claim 5.16. Let X be a Banach space. Iff dim (X) = ∞ then B := { x ∈ X | ∥x∥ ≤ 1 } is not compact.

Proof. If dim (X) < ∞ then X ∼= Cn for some n ∈ N. In this case, we know that B is both closed and bounded,
from which it follows (by Heine-Borel) that it is compact.

Conversely, construct a sequence { xn }n ⊆ B (using Lemma 5.15) which obeys ∥xn − xm∥ > 1
2 for all n ̸= m.

This sequence is thus not Cauchy and so cannot possibly have a convergent subsequence. It is only possible to
construct such a sequence if X is infinite dimensional.

We may thus ask if there exist weaker topologies so that the closed unit ball is compact. It turns out that on X∗ the
weak-star topology is sufficiently weak to allow for this.

Theorem 5.17 (Banach-Alaoglu). Let X∗ be the dual of some Banach space X. Then the closed unit ball in X∗

B1 (0X∗) :=
{
λ ∈ X∗

∣∣∣ ∥λ∥op ≤ 1
}

is compact in the weak-star topology.

Proof. For any x ∈ X, define
Bx := B∥x∥ (0C) ≡ { z ∈ C | |z| ≤ ∥x∥ } .

Since this set is compact in C, by Tychonoff,
B :=

∏
x∈X

Bx

is compact in the product topology. We may think of B as a set of maps, each of which of the form

b : X → C

obeying |b (x)| ≤ ∥x∥. If b were linear we would say ∥b∥op = 1 though this makes no sense. In particular, we may
think of B1 (0X∗) as that subset of B which consists of maps b : X → C which are also linear, so

B1 (0X∗) =: BLinear .

We claim that the subspace topology on B1 (0X∗) induced by the product topology on B coincides with the
subspace topology on B1 (0X∗) from X∗ taken with the weak-star topology. Indeed, recall that the product topology
on B is defined as the initial topology generated by the set of projections

px : B → Bx

b 7→ b (x) .

As such it is clear at this point that on linear maps, px = J (x) where J : X → X∗∗ is the injection from Theorem 5.3.
But this is precisely the definition of the weak-star topology (the initial topology generated by J (X)).

But now, since B is compact, and closed subsets of compact spaces are compact, it is only left to show that
B1 (0X∗) ∈ Closed (B). To that end, for any x, y ∈ X, λ ∈ C, define

φxyλ : B → C

b 7→ b (x+ λy)− b (x)− λb (y) .

We note that φxyλ is a continuous map. Indeed, the map b 7→ b (x) is continuous by definition of the product topology
and to obtain φxyλ we merely have to take this map and compose it with other continuous maps. We now identify

BLinear =
⋂

x,y∈X,λ∈C

ker (φxyλ) .
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I.e., the kernel forces these maps to be linear which is why they set within X∗. Since the kernel of a continuous map
is closed, the intersection of closed sets is closed and we are done.

Note: there is also a proof with nets which we made sure to avoid.

6 Banach Algebras
Consider X a Banach space, and B (X) ≡ B (X → X) the space of all continuous linear maps X → X. Via Claim 3.20
we know that B (X) is a Banach space in its own right with norm ∥·∥op. On B (X) we may consider a multiplication
operation which is merely composition of functions. It is clear that composition of linear maps is linear, and moreover,
thanks to Lemma 3.19, any A,B ∈ B (X) obey

∥AB∥op ≤ ∥A∥op∥B∥op

so that continuous linear maps compose to a continuous linear map. This turns out to be a good model for

Definition 6.1 (Banach algebra). A Banach space A (with norm ∥·∥) is called a Banach algebra iff there is a
multiplication map defined

· : A2 → A

which is associative and distributive w.r.t. scalar multiplication and vector addition, and moreover, such that the
norm is submultiplicative

∥ab∥ ≤ ∥a∥∥b∥ (a, b ∈ A)

and such that ∃1 ∈ A such that a1 = 1a = a for all a ∈ A and ∥1∥ = 1.

Clearly B (X) is a Banach algebra with ∥·∥op and the identity map 1 : X → X.

Claim 6.2. Multiplication in a Banach algebra is automatically continuous.

Proof. Let U ∈ Open (A) and consider some a, b ∈ A with ab ∈ U . Then there exists some ε > 0 such that

Bε (ab) ⊆ U .

Let ã ∈ Bδ (a) and b̃ ∈ Bδ (b). Then∥∥∥ãb̃− ab
∥∥∥ =

∥∥∥ãb̃− ãb+ ãb− ab
∥∥∥

≤ ∥ã∥
∥∥∥b̃− b

∥∥∥+ ∥ã− a∥∥b∥

≤ (∥a∥+ ∥ã− a∥)
∥∥∥b̃− b

∥∥∥+ ∥b∥∥ã− a∥

≤ (1 + ∥a∥) δ + ∥b∥δ

so pick δ := min
({

1, 1
1+∥a∥

1
2ε,

1
∥b∥

1
2ε
})

to get the desired constraint.

Example 6.3. Let C ([0, 1] → C) be the space of continuous functions. Then if we define multiplication pointwise,
this turns out to be a commutative Banach algebra. The constant 1 function is the unit element.If we replace [0, 1]
with a finite set we obtain Cn with componentwise multiplication, and for n = 1 we get the Banach algebra C. If we
take B (Cn) we get the Banach algebra of n× n complex matrices, which is not commutative.

6.1 Invertible elements
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Definition 6.4 (Invertible elements). An element a ∈ A is called left invertible iff there exists some x ∈ A with
xa = 1 and right invertible iff there exists some y ∈ A with ay = 1. If a ∈ A is both left and right invertible then
we call it simply invertible. In this case it is clear that the left and right inverses are equal:

xa = 1 = ay

so
y = 1y = (xa) y = x (ay) = x1 = x .

We then denote this (unique) inverse by a−1. We denote the space of all invertible elements within A as GA ≡ G (A).

Lemma 6.5. If for some x ∈ A we have ∥x− 1∥ < 1 then x ∈ GA,

x−1 =

∞∑
n=0

(1− x)
n

is a series that converges in operator norm, and∥∥x−1
∥∥ ≤ 1

1− ∥1− x∥
. (6.1)

Proof. Define y := 1 − x so that ∥y∥ =: r < 1. By submul., we have ∥yn∥ ≤ ∥y∥n = rn. We claim the sequence
{ zN }N given by

zN :=

N∑
n=0

yn

is Cauchy. Indeed,

∥zN − zM∥ ≤
M∑

n=N+1

∥yn∥ ≤
M∑

n=M+1

rn =
rN+1

1− r

(
1− rM−N) .

So by completeness z :=
∑∞
n=0 y

n exists in A. Now,

z (1− y) = lim
N→∞

N∑
n=0

yn (1− y) = lim
N→∞

[
N∑
n=0

(
yn − yn+1

)]
= lim
N→∞

[
1− yN+1

]
= 1

and similarly (1− y) z = 1. We learn that 1 − y = x is invertible and x−1 =
∑∞
n=0 (1− x)

n converges in operator
norm. Moreover, ∥∥x−1

∥∥ ≤
∞∑
n=0

∥1− x∥n =

∞∑
n=0

rn =
1

1− r
=

1

1− ∥1− x∥
.

Claim 6.6. GA ∈ Open (A) and the −1 : GA → GA mapping a 7→ a−1 is a homeomorphism.

Proof. Let a ∈ G. Then if ã ∈ B∥a−1∥−1 (a), we have

∥ã− a∥ <
∥∥a−1

∥∥−1

↕
∥ã− a∥

∥∥a−1
∥∥ < 1

↓∥∥a−1ã− 1
∥∥ < 1
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so by Lemma 6.5 we get that a−1ã is invertible. Thus(
a−1ã

)−1
a−1ã = 1

so that
(
a−1ã

)−1
a−1 is a left inverse for ã. Similarly,

∥ã− a∥ <
∥∥a−1

∥∥−1

↕
∥ã− a∥

∥∥a−1
∥∥ < 1

↓∥∥ãa−1 − 1
∥∥ < 1

so that ãa−1 is invertible, i.e.,
ãa−1

(
ãa−1

)−1
= 1

and hence a−1
(
ãa−1

)−1 is the right inverse of ã. We conclude that ã is invertible, so that

B∥a−1∥−1 (a) ⊆ GA

and GA is open. Moreover, we note that the above implies that together with (6.1):

∥∥ã−1
∥∥ ≤

∥∥a−1
∥∥∥∥aã−1

∥∥ ≤
∥∥a−1

∥∥ 1

1− ∥ãa−1 − 1∥
≤

∥∥a−1
∥∥

1− ∥a−1∥∥ã− a∥
. (6.2)

To show continuity of −1 : GA → GA , let us observe the resolvent identity

a−1 − b−1 = a−1 (b− a) b−1 . (6.3)

This implies that ∥∥a−1 − b−1
∥∥ ≤

∥∥a−1
∥∥∥a− b∥

∥∥b−1
∥∥

≤
∥∥a−1

∥∥∥a− b∥
∥∥a−1

∥∥
1− ∥a−1∥∥a− b∥

=

∥∥a−1
∥∥2∥a− b∥

1− ∥a−1∥∥a− b∥
.

In the last step we hav penultimate step we have used (6.2) which relies on ∥a− b∥ <
∥∥a−1

∥∥−1. Hence we see that
for any ε > 0, if

∥a− b∥ ≤ 1

2

∥∥a−1
∥∥−1

min

({
1,

1

∥a−1∥
ε

})
then ∥∥a−1 − b−1

∥∥ ≤ ε .

Lemma 6.7. In a Banach algebra A, a, b ∈ A one has 1− ab ∈ GA iff 1− ba ∈ GA.

Proof. Assume that 1− ab ∈ GA . Then we claim

(1− ba)
−1

= 1+ b (1− ab)
−1
a .

43



Indeed,

(1− ba)
(
1+ b (1− ab)

−1
a
)

= 1− ba+ (1− ba) b (1− ab)
−1
a

= 1− ba+ b (1− ab)
−1
a− bab (1− ab)

−1
a

=: ⋆

Now we use

ab (1− ab)
−1

= (ab− 1+ Id) (1− ab)
−1

= −1+ (1− ab)
−1

to get

⋆ = 1− ba+ b (1− ab)
−1
a− bab (1− ab)

−1
a

= 1− ba+ b (1− ab)
−1
a− b

[
−1+ (1− ab)

−1
]
a

= 1− ba+ b (1− ab)
−1
a+ ba− b (1− ab)

−1
a

= 1

6.2 Banach-space-valued analytic functions
In this short section we mainly want to make the point that complex analysis “goes through” if one replaces C by X for the
codomain of functions, X being a Banach space. For more details see Conway pp. 196 or Rudin pp. 82.

Definition 6.8 (C-Differentiability of a Banach-valued function). Let X be a Banach space and Ω ⊆ C an open
connected subset. A function

f : Ω → X

is said to be C-differentiable at z0 ∈ C (synonymous with holomorphic) iff

lim
z→0

f (z0 + z)− f (z0)

z

exists. The limit is to be understood with respect to the topology induced by the norm of X. If the limit does exist
for all z0 ∈ Ω, we obtain a new function, the derivative f ′ : Ω → X given by

f ′ (z0) := lim
z→0

f (z0 + z)− f (z0)

z
(z0 ∈ Ω) .

Compare this with Frechet differentiability, which would amount to

Definition 6.9 (Frechet differentiability). Let X be a C-Banach space and Ω ⊆ C an open connected subset. A
function

f : Ω → X

is said to be C-differentiable at z0 ∈ C iff there exists some C-linear map L : C → X such that

lim
z∈C:|z|→0

∥f (z0 + z)− f (z0)− Lz∥
|z|

= 0 .

Since we know a linear map L : C → X is represented by some vector v ∈ X, so that Lz = zv, we get

lim
z∈C:|z|→0

∥f (z0 + z)− f (z0)− vz∥
|z|

= 0 .

Claim 6.10. The two notions are equivalent.
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Note that if X is an R-Banach space then these two notions are not equivalent.
By analogy we also define f : Ω → X to be weakly-C-differentiable iff Λ ◦ f : Ω → C is C-differentiable (in the usual

sense) for any Λ ∈ X∗. Clearly the norm convergence implies the weak convergence. It turns out that for Banach spaces
these two notions are equivalent

Claim 6.11. In a Banach space, if f : Ω → X is weakly-C-differentiable it is C differentiable.

but we avoid giving the details here (see Rudin 3.31).

Definition 6.12. Given a function f : [a, b] → X where a < b ∈ R and X is a C-Banach space, we define
ˆ
[a,b]

f

using an analogous Darboux-integral definition: for any n-partition P = x1 = a < x2 < · · · < xn = b of [a, b] we
define, for example,

S (f, P ) :=

n∑
j=2

(xj − xj−1) f (xj)

and we similarly claim that f is Riemann-integrable on [a, b] iff the

ω (f, P ) :=

n∑
j=2

(xj − xj−1) sup ({ |f (s)− f (t)| | s, t ∈ (xj−1, xj) })

can be made arbitrarily small: for any ε > 0 there is some partition P such that ω (f, P ) < ε, in which case
ˆ
[a,b]

f := lim
Pn

S (f, Pn)

where Pn is some sequence of partitions with shrinking size (one shows that
´
[a,b]

f does not depend on the limit).

Lemma 6.13 (Another characterization of the vector-valued integral). Let f : [a, b] → X be continuous. Then for
every λ ∈ X∗, the function λ ◦ f : [a, b] → C is Riemann-integrable and

λ

(ˆ
[a,b]

f

)
=

ˆ
[a,b]

λ ◦ f (λ ∈ X∗) .

Conversely, if ψ ∈ X is such that

λψ =

ˆ
[a,b]

λ ◦ f (λ ∈ X∗)

then
ψ =

ˆ
[a,b]

f .

Proof. See Rudin 3.27 for the forward direction. The converse is left as an exercise to the reader.

Claim 6.14. If f : [a, b] → X is Riemann-integrable then ∥f (·)∥X : [a, b] → [0,∞) is also, and we have
∥∥∥´[a,b] f∥∥∥X ≤´

[a,b]
∥f (·)∥X .

Remark 6.15. There is also the Bochner integral which is the Lebesgue-integral version of functions with values in a
Banach space. For more information, one may read, e.g., Rudin “Vector-valued integration”, pp. 77.

Once we have this integral, we may now define contour integration similarly to how it is done in complex analy-
sis:
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Definition 6.16. Let γ : [a, b] → C be a piecewise smooth contour. We define the contour integral of f : C → X
along γ as

ˆ
γ

f :=

ˆ
[a,b]

(f ◦ γ) γ′ (6.4)

where the right hand side is interpreted as follows: γ′ : [a, b] → C and f ◦ γ : [a, b] → X. Then thanks to scalar
multiplication in X, (f ◦ γ) γ′ : [a, b] → X and we may ask whether (f ◦ γ) γ′ is Riemann-integrable in the sense
of Definition 6.12. If it is, then we define

´
γ
f as an element in X via (6.4). The integral does not depend on the

parametrization of γ.

The following collection of statements have proofs which are identical to those found in elementary complex analysis
textbooks, and they use nothing other than the fact that the Banach space X has a norm.

Lemma 6.17 (ML lemma). If f : C → X is continuous and γ : [a, b] → C then∥∥∥∥ˆ
γ

f

∥∥∥∥ ≤ sup
t∈[a,b]

∥f (γ (t))∥XL (γ)

where L (γ) is the length of γ.

Theorem 6.18 (Cauchy’s integral formula). Let Ω ⊆ C be a simply-connected set and f : Ω → X C-differentiable on
it. Then for any γ : [a, b] → Ω simple closed contour taken in CCW , if z0 is a point in the interior of γ,

f (n) (z0) =
n!

2πi

˛
γ

1

(z − z0)
n+1 f (z) dz (n ∈ N≥0) . (6.5)

In particular, any C-differentiable function is in fact smooth.

Proof. Consider the case n = 0. Let λ ∈ X∗. Then λ ◦ f : Ω → C is C-differentiable and so we have from complex
analysis, that

(λ ◦ f) (z0) =
1

2πi

˛
γ

1

z − z0
(λ ◦ f) (z) dz .

But now, since λ was arbitrary, we have thanks to Lemma 6.13 that

f (z0) =
1

2πi

˛
γ

1

z − z0
f (z) dz ,

i.e., (6.5) with n = 0 is correct. The same argument follows for λ ◦ f (n) : Ω → C.

Lemma 6.19 (Cauchy’s intequality). If f : C → C is C-differentiable on BR (z0) then∥∥∥f (n) (z0)∥∥∥
X

≤ n!

Rn
sup

z∈BR(z0)

∥f (z)∥X .

Theorem 6.20 (Rudin 3.32). Let X be a Banach space and f : C → X weakly-entire with f (C) a weakly-bounded
subset of X. Then f is constant.

Proof. The assumption is equivalent to Λ◦f : C → C being bounded and entire for any Λ ∈ X∗. Apply Liouville now
on Λ ◦ f to learn that it is constant. In particular, (Λf) (z) = (Λf) (0C) for any Λ ∈ X∗. So if f (z)− f (0C) ̸= 0X ,
define some Λ0 ∈ X∗ which is not zero on f (z) − f (0C) to find a contradiction, i.e., we find that f is constant
itself.
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6.3 The spectrum
We now come to a main concept for Banach algebras, which is the spectrum. It is mainly in this part of the notes that
the distinction between C-Banach algebras and R-Banach algebras becomes important. As was mentioned already, we will
focus solely on the complex case.

Definition 6.21 (The spectrum). Let A be a Banach algebra. For any element a ∈ A, the spectrum of a, denoted
by σ (a), is a subset of C which is defined as

σ (a) := { z ∈ C | (a− z1) /∈ GA } .

It is sometimes also convenient to refer to the resolvent set ρ (a) which is merely the complement of the spectrum

ρ (a) := C \ σ (a) .

One also speaks of the spectral radius r : A → [0,∞) which is

r (a) := sup |σ (a)| .

Example 6.22. If A = Matn×n (C) then σ (a) is precisely the set of n complex eigenvalues of the n× n matrix a.

In principle the spectrum need not be a finite set.

Theorem 6.23. For any a ∈ A, σ (a) is a non-empty compact subset of C.

Proof. Fix a ∈ A. Define ψ : C → A by
z 7→ a− z1 .

As the composition of continuous functions, ψ is clearly continuous, so that ψ−1 (GA) ∈ Open (C). But

ψ−1 (GA) ≡ { z ∈ C | ψ (z) ∈ GA }
= { z ∈ C | (a− z1) ∈ GA }
≡ ρ (a)

so the resolvent set is open, i.e., the spectrum is closed. Next, we show the spectrum is bounded. We will show
r (a) ≤ ∥a∥. Let z ∈ C such that |z| > ∥a∥. Then

1 >
∥a∥
|z|

=
∥∥∥a
z

∥∥∥ =
∥∥∥1− (1− a

z

)∥∥∥ .
Hence 1− a

z is invertible, so that a− z1 is invertible. Hence z ∈ ρ (a) or z /∈ σ (a).
Define now a map

φ : ρ (a) → A (6.6)

z 7→ (a− z1)
−1

which makes sense since a − z1 is invertible precisely when z ∈ ρ (a). Moreover, the domain of φ is open by the
above. We claim that φ is C-differentiable for any point z0 ∈ ρ (a). Indeed:

φ (z0 + z)− φ (z0)

z
=

(a− (z0 − z)1)
−1 − (a− z01)

−1

z

=
(a− (z0 − z)1)

−1
([a− z01]− [a− (z0 − z)1]) (a− z01)

−1

z

=
(a− (z0 − z)1)

−1
(−z) (a− z01)

−1

z
= −φ (z0 − z)φ (z0)
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We thus find that φ is indeed C-differentiable and φ′ (z0) = −φ (z0)
2. This is also a weak statement: for any λ ∈ X∗,

λ ◦ φ : C → C is C-differentiable with derivative

(λ ◦ φ)′ (z) = − [(λ ◦ φ) (z)]2 .

We claim that φ is bounded at infinity. Indeed, assuming |z| > ∥a∥, we have∥∥∥a
z

∥∥∥ < 1

so that ∥∥∥1−
(
1− a

z

)∥∥∥ < 1

and hence using the estimate (6.1) we have∥∥∥∥(1− a

z

)−1
∥∥∥∥ ≤ 1

1−
∥∥1−

(
1− a

z

)∥∥ =
1

1−
∥∥a
z

∥∥ .
Hence

∥φ (z)∥ ≡
∥∥∥(a− z1)

−1
∥∥∥

≤ |z|−1

∥∥∥∥∥
(
1

z
a− 1

)−1
∥∥∥∥∥

≤ |z|−1 1

1−
∥∥ 1
za
∥∥

|z|→∞→ 0 .

We learn that

|λ (φ (z))| ≤ ∥λ∥op∥φ (z)∥

so that λ ◦φ is also bounded at infinity. Hence, if ρ (a) = C, φ emerges as a weakly-entire weakly-bounded function.
But then, the analog of Liouville’s theorem Theorem 6.20 would imply that φ is constant. However, we have
calculated φ′ (z) = −φ (z)

2 which contradicts that. So σ (a) ̸= ∅.

Lemma 6.24 (Fekete). A sequence { an }n ⊆ R is sub-additive iff

an+m ≤ an + am (n,m ∈ N) .

If { an }n is sub-additive then limn→∞
1
nan exists and equals inf 1

nan.

Proof. Let us write s∗ := infn
an
n and let k ∈ N with ak

k < b where b ∈ (s∗,∞). For any n > k, there are two integers
pn, qn such that

n = pnk + qn

ad 0 ≤ qn ≤ k − 1. We thus find

an = apnk+qn

≤ pnak + aqn

so
an
n

≤ pnk

n

ak
k

+
aqn
n

.

Now, as n→ ∞, pnkn → 1 and aqn
n → 0 as the numerator is bounded (by hypothesis, otherwise the lemma is trivial)

and Hence we find for all b > s∗:
s∗ ≤ lim

n

an
n

≤ ak
k
< b .
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Now let b→ s∗ to get
s∗ = inf

n

an
n

= lim
n

an
n
.

Then lim infn
1
nan ≥ s∗, so suffice to show lim supn

1
nan ≤ s∗. Assume otherwise. Then there exists a sequence

{ ank }k and ε > 0 such that ank
nk

> s∗ + ε for all k. Let am be such that am
m < s∗ + 1

2ε.

Lemma 6.25 (Gelfand’s formula). For any a ∈ A, the limit limn→∞∥an∥
1
n exists and obeys

r (a) = lim
n→∞

∥an∥
1
n = inf

n∈N
∥an∥

1
n .

Proof. First we observe that the sequence

bn := log (∥an∥)

is sub-additive. Indeed,

bn+m = log
(∥∥an+m∥∥)

≤ log (∥an∥∥am∥)
≤ bn + bm .

Hence by Fekete Lemma 6.24 limn→∞
1
nbn exists so by continuity of log, limn→∞∥an∥

1
n exists and equals infn∈N∥an∥

1
n .

Next, if |z| > ∥a∥, we have, using the same definition (6.6) in the preceding proof:

φ (z) = −
∞∑
n=0

z−n−1an

which converges uniformly on ∂BR (0C) for every R > ∥a∥. Hence we may integrate this term by term (using
Theorem 6.18) to get:

˛
z∈∂BR(0C)

zmφ (z) dz = −
˛
z∈∂BR(0C)

zm
∞∑
n=0

z−n−1andz

= −
∞∑
n=0

an
˛
z∈∂BR(0C)

zmz−n−1dz

= −
∞∑
n=0

an2πiδn,m

= −2πiam

and so
an =

−1

2πi

˛
z∈∂BR(0C)

znφ (z) dz (R > ∥a∥;n ∈ N≥0) .

Since ρ (a) ≡ C \ σ (a) contains all z with |z| > r (a), we may deform the contour of integration to get

an =
−1

2πi

˛
z∈∂BR(0C)

znφ (z) dz (R > r (a) ;n ∈ N≥0) . (6.7)

Taking the norm on both sides yields

∥an∥ ≤ Rn+1 sup
z∈∂BR(0C)

∥φ (z)∥︸ ︷︷ ︸
bounded

(R > r (a))
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so we get

lim sup
n→∞

∥an∥
1
n ≤ r (a) .

Conversely, if z ∈ σ (a),
zn1− an = (z1− a)

(
zn−11+ · · ·+ an−1

)
shows that zn1− an is not invertible. Hence zn ∈ σ (an). This yields |zn| ≤ ∥an∥. Hence

r (a) ≤ inf
n
∥an∥

1
n .

Theorem 6.26 (Gelfand-Mazur). If A is a Banach algebra where A \{ 0 } ⊆ GA then A is isometrically isomorphic
to C.

Proof. Le a ∈ A and z1 ̸= z2. Then it can’t be that both a − z11 = 0 and a − z21 = 0 and so, by hypothesis, at
least one of them is invertible. But σ (a) ̸= ∅, so σ (a) consists of exactly one point: that one point which makes
a− z1 = 0. Hence for any a ∈ A, a = z1 for some z ∈ C. This provides the desired isometric isomorphism.

Lemma 6.27. Let { xn }n ⊆ GA, x ∈ ∂GA and xn → x. Then
∥∥∥(xn)−1

∥∥∥→ ∞.

Proof. Assume otherwise. Then ∃M <∞ with
∥∥∥(xn)−1

∥∥∥ < M for infinitely many n. Since also xn → x, take one of
these n such that also

∥xn − x∥ < 1

M
.

Then ∥∥∥1− (xn)
−1
x
∥∥∥ =

∥∥∥(xn)−1
(xn − x)

∥∥∥ < 1 .

Hence (xn)
−1
x is invertible. But x = xn (xn)

−1
x, so x ∈ GA . But x ∈ ∂GA and GA ∈ Open (A), so x /∈ GA !

Theorem 6.28 (Continuity of the spectrum). Let a ∈ A and σ (a) ⊆ Ω ∈ Open (C). Then if b is sufficiently close
to a in norm, e.g.,

b ∈ B[supz∈Ωc∥(a−z1)−1∥]−1 (a)

then σ (b) ⊆ Ω also.

Proof. Recall that we know the map
ρ (a) ∋ z 7→

∥∥∥(a− z1)
−1
∥∥∥

is continuous so
Ωc ∋ z 7→

∥∥∥(a− z1)
−1
∥∥∥

is bounded, as Ωc is closed. Now if b ∈ B[supz∈Ωc∥(a−z1)−1∥]−1 (a), and z ∈ Ωc, we rewrite

b− z1 = (a− z1)
(
(a− z1)

−1
(b− a) + 1

)
and this is manifestly invertible: the product of two invertibles is invertible, and moreover (a− z1)

−1
(b− a) + 1 is

invertible as ∥∥∥(a− z1)
−1

(b− a)
∥∥∥ ≤

∥∥∥(a− z1)
−1
∥∥∥∥b− a∥

< 1
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by construction. This implies z /∈ σ (b).

Corollary 6.29. Let Ω ⊆ C and an → a in norm. If

σ (an) ⊆ Ω (n ∈ N)

then
σ (a) ⊆ Ω .

Proof. As in the preceding proof, for z ∈ Ω
c
, an − z1 is invertible by assumption and we may thus write

a− z1 = (an − z1)
(
(an − z1)

−1
(a− an) + 1

)
.

Now this will be invertible if
∥a− an∥

∥∥∥(an − z1)
−1
∥∥∥ < 1 .

Now since z ∈ Ω
c
, ∃ε > 0 such that Bε (z) ⊆ Ω

c
, and so∥∥∥(an − z1)

−1
∥∥∥ < 1

ε
. (6.8)

Hence for every z ∈ Ω
c

there is a choice of n sufficiently large so that ∥a− an∥ < ε, and hence, invertibility.
Note that it was necessary to take the closure here since Ωc might not be an open set, but we need z to be a

strictly positive distance from Ω.

Lemma 6.30. For any a, b ∈ A,
σ (ab) \ { 0 } = σ (ba) \ { 0 } .

Proof. Invoking Lemma 6.7 we get the result.

6.4 The polynomial functional calculus
For fixed a ∈ A in a Banach algebra, it is clear that we may define a map

χa : P → A

where P is the space of all polynomials in one complex variable and A is a Banach algebra via the mapping

χa : p 7→ p (a)

since p involves only operations which are unambiguously defined in A: If

p (z) =

n∑
j=1

cjz
j

with { cj }nj=1 ⊆ C the coefficients then it is clear what is meant by

p (a) ≡
n∑
j=1

cja
j ∈ A .

This mapping is called a functional calculus and currently since we only know how to apply it to polynomials we have
the polynomial functional calculus. Our goal throughout the semester, in some sense, will be to gradually decrease the
regularity of functions on which we may do this. The price to pay will be more and more assumptions on the A and the
elements on which functional calculus may be applied, the culmination of which shall be the spectral theorem of normal
operators on Hilbert space.

For now let us still remain with Banach algebras and go from polynomials to power series.

51



6.5 The holomorphic functional calculus
Consider the entire function

exp : C → C .

Its power series expansion

exp (z) =

∞∑
n=0

1

n!
zn (z ∈ C)

converges for every z, absolutely, so that for a ∈ A we may make sense of exp (a) as follows. The series
∞∑
n=0

1

n!
an

converges in norm. Indeed, it is Cauchy: If N < M then∥∥∥∥∥
N∑
n=0

1

n!
an −

M∑
n=0

1

n!
an

∥∥∥∥∥ ≤
M∑

n=N+1

1

n!
∥a∥n

the latter expression goes to zero since exp (∥a∥) exists as a series. Hence by completeness of A we have exp (a).
What if f is not entire? Then we need to be careful about the location of σ (a) ⊆ C.
The easiest thing to do is:
Now if f : C → C is merely holomorphic within a ball BR (0C) for some R > 0, we know it may be written as a power

series

f (z) =

∞∑
n=0

cnz
n (|z| ≤ R) .

Let now a ∈ A with r (a) < R, i.e., all the spectrum of a is contained within BR (0C). Then we define

f (a) :=

∞∑
n=0

cna
n .

Thanks to the spectral radius formula Lemma 6.25 one may prove that this series is a Cauchy sequence and hence converges,
it goes along the lines of: ∥∥∥∥∥

N∑
n=0

cna
n −

M∑
n=0

cna
n

∥∥∥∥∥ ≤
M∑

n=N+1

|cn| ∥an∥

=

M∑
n=N+1

|cn|
(
∥an∥

1
n

)n
∼

M∑
n=N+1

|cn| (r (a))n

≤
M∑

n=N+1

|cn|Rn

which exists thanks to the assumption on f .
But we want something better: we don’t want to assume that the spectrum of a is contained in one disc on which f

is holomorphic.
Let us start with rational functions which have poles in various places.

Lemma 6.31. Let a ∈ A α ∈ ρ (a) and Ω := C \ { α }. Assume further that we choose someγj : [a, b] → Ω,
j = 1, . . . ,m a collection of m oriented loops which surround σ (a) within Ω, such that

1

2πi

m∑
j=1

˛
γj

1

z − λ
dz =

{
1 λ ∈ σ (a)

0 λ /∈ Ω
(6.9)

(these are guaranteed to exist thanks to Lemma C.1). Then

1

2πi

m∑
j=1

˛
γj

(α− z)
n
(z1− a)

−1
dz = (α1− a)

n
(n ∈ Z) . (6.10)
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Proof. Let us show first the case n = 0, namely, we want to show that

1

2πi

m∑
j=1

˛
γj

(z1− a)
−1

dz = 1 .

For brevity we replace

m∑
j=1

˛
γj

· →
˛
Γ

· . (6.11)

First we want to replace
¸
Γ

with just one CCW simple contour γR whose image is ∂BR (0C), such that R > ∥a∥. On
γR, we have

(z1− a)
−1

=

∞∑
n=0

z−n−1an

which converges absolutely and uniformly on z ∈ ∂BR (0). Hence we may integrate term by term to obtain

1

2πi

˛
γR

(z1− a)
−1

dz = 1 .

But ρ (a) ∋ z 7→ (z1− a)
−1 is holomorphic, so we may deform the contour of integration Theorem 6.18 to replace¸

γR
with

¸
Γ
. To do so, we note that even though Ω may not be an open disc, on all of its holes, z 7→ (z1− a)

−1

is actually holomorphic since there is no spectrum there. So we may deform the contours of Γ around these holes
to nothing without changing the integral. Once this has been done, we may deform all outer contours into one big
contour around the whole spectrum (note that Rudin doesn’t really explain this point).

For the general case: we denote

yn :=
1

2πi

˛
Γ

(α− z)
n
(z1− a)

−1
dz (n ∈ Z)

and claim that

(α1− a) yn = yn+1 (n ∈ Z) . (6.12)

This would yield the claim since we have just shown y0 = 1.
To show (6.12), employ the resolvent identity (6.3) to get that when z /∈ σ (a),

(z1− a)
−1

= (α1− a)
−1

+ (α− z) (α1− a)
−1

(z1− a)
−1

.

Plug this into

yn ≡ 1

2πi

˛
Γ

(α− z)
n
(z1− a)

−1
dz

=
1

2πi

˛
Γ

(α− z)
n
(
(α1− a)

−1
+ (α− z) (α1− a)

−1
(z1− a)

−1
)
dz

=
1

2πi

˛
Γ

(α− z)
n
(α1− a)

−1
dz +

1

2πi

˛
Γ

(α− z)
n
(α− z) (α1− a)

−1
(z1− a)

−1
dz

= (α1− a)
−1 1

2πi

˛
Γ

(α− z)
n
dz︸ ︷︷ ︸

=0 as α not encircled by Γ

+(α1− a)
−1 1

2πi

˛
Γ

(α− z)
n+1

(z1− a)
−1

dz

= (α1− a)
−1
yn+1 .

Indeed, in the penultimate line we have used (6.9).
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Corollary 6.32. Let R : C → C be a rational function, i.e.,

R (z) = p (z) +

n∑
k=1

q∑
l=1

ck,l (z − zk)
−l (6.13)

where p is a polynomial, n ∈ N, and { zk }k , { ck,l }k,l ⊆ C. Let now a ∈ A such that { zk }nk=1 ⊆ ρ (a).
Assume further that we choose some σ (a) ⊆ Ω ∈ Open (C) such that R is holomorphic on Ω, and γj : [a, b] → Ω,
j = 1, . . . ,m a collection of m oriented loops which surround σ (a) within Ω, such that

1

2πi

˛
Γ

1

z − λ
dz =

{
1 λ ∈ σ (a)

0 λ /∈ Ω
.

(Here we use the notation (6.11)). Then R (a) obeys the Cauchy integral formula, in the sense that

p (a) +

n∑
k=1

q∑
l=1

ck,l (a− zk)
−l

=
1

2πi

˛
Γ

R (z) (z1− a)
−1

dz . (6.14)

Proof. Let us plug in (6.13) into the RHS of (6.14) to get

RHS ≡ 1

2πi

˛
Γ

R (z) (z1− a)
−1

dz

=
1

2πi

˛
Γ

[
p (z) +

n∑
k=1

q∑
l=1

ck,l (z − zk)
−l

]
(z1− a)

−1
dz

=
1

2πi

˛
Γ

p (z) (z1− a)
−1

dz +
1

2πi

n∑
k=1

q∑
l=1

ck,l

˛
Γ

(z − zk)
−l

(z1− a)
−1

dz .

The first term with the polynomial yields p (a). This actually follows from (6.7) (with another change of contour
from γR to Γ). The second term equals the second term on the LHS via an application of Lemma 6.31.

Hence we see that rational functions do obey the Cauchy formula.

Theorem 6.33 (Holomorphic functional calculus). Let a ∈ A and Ω ⊆ C be an open subset such that σ (a) ⊆ Ω. In
particular we do not assume that Ω is connected. Let γj : [a, b] → Ω, j = 1, . . . ,m be a collection of m oriented loops
which surround σ (a) within Ω but are disjoint from σ (a), such that

1

2πi

˛
Γ

1

z − λ
dz =

{
1 λ ∈ σ (a)

0 λ /∈ Ω

with the notation from (6.11). Then

f (a) :=
1

2πi

˛
Γ

f (z) (z1− a)
−1

dz . (6.15)

It is a continuous unital-algebra monomorphism:

• f (a) g (a) = (fg) (a) and f (a) + g (a) = (f + g) (a).

• (z 7→ 1) (a) = 1 and (z 7→ z) (a) = a.

• Continuous in the sense that: if { fn : Ω → C }n is a sequence of holomorphic functions converging uniformly
in compact subsets of Ω, then fn (a) → f (a) in norm.

This definition certainly makes sense as it agrees with the more naive definitions when f is a polynomial, rational
function, or entire!
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Proof. First we want to give meaning to the RHS of (6.15). Since ρ (a) ∋ z 7→ (z1− a)
−1 is holomorphic, we may

ask whether its contour integral exists, in the sense of Theorem 6.18. Indeed it does: as z stays away from σ (a),
and inversion is continuous on A, the function is continuous and hence integrable.

Next, it is clear that f 7→ f (a) is linear, so to show it is injective we ask what is its kernel. If for some f of the
above class, f (a) = 0, then the integral formula implies that for that f ,

1

2πi

˛
Γ

f (z) (z1− a)
−1

dz = 0 .

If this holds for a, then it must also hold for λ1 for any λ ∈ σ (a). This implies that

1

2πi

˛
Γ

f (z) (z1− 1λ)
−1

dz = 0 (λ ∈ σ (a)) .

But this latter formula equals 1
2πi

¸
Γ
f (z) (z1− λ)

−1
dz1 so the integral inside must be zero, so that f = 0. Hence

f 7→ f (a) is injective.
Continuity follows from the integral representation since

z 7→
∥∥∥(z1− a)

−1
∥∥∥

is bounded on the range of Γ.
First let us show that (z 7→ 1) (a) = 1: According our definition,

(z 7→ 1) (a) ≡ − 1

2πi

˛
Γ

(a− z1)
−1

dz .

Now use

(a− z1) (a− z1)
−1 ≡ 1

or a (a− z1)
−1

= 1+ z (a− z1)
−1. Placing this identity within the integrand we find

(z 7→ 1) (a) = − 1

2πi

˛
Γ

a (a− z1)
−1 − 1

z
dz

= 1−− 1

2πi

˛
Γ

a (a− z1)
−1

z
dz .

Since this holds for any series of contour Γ which encloses the entire spectrum, we may integrate on circles of
increasing radii to get the second term zero via

∥∥∥a (a− z1)
−1
∥∥∥ ≲ ∥a∥

|z| (for large |z|) and so it is bounded on these
circles.

Next, for (z 7→ z) (a) = a we have

(z 7→ z) (a) = − 1

2πi

˛
Γ

z (a− z1)
−1

dz

= − 1

2πi

˛
Γ

[
a (a− z1)

−1 − 1
]
dz

= a

(
− 1

2πi

˛
Γ

(a− z1)
−1

dz

)
= a (z 7→ 1) (a)

= a1

= a .

For the multiplicative statement one may use Runge’s theorem ([SS03] Theorem 5.7): Any function holomorphic in
a neighborhood of K can be approximated uniformly on K by rational functions whose singularities are in Kc. It is
easy to see the statement holds for rational functions, so one is only left with the limit statement.

We note that the multiplicative property, implies in particular, that f (a) g (a) = g (a) f (a), i.e, functional calculus of an
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operator commutes!
Some additional properties of the functional calculus are

Lemma 6.34. Let a ∈ A with σ (a) ⊆ Ω ∈ Open (C) and f : Ω → C holomorphic. Then f (a) ∈ GA iff 0 /∈
im
(
f |σ(a)

)
.

Proof. Assume that 0 /∈ im
(
f |σ(a)

)
. Let then g : 1

f , which is holomorphic on some Ω̃ ∈ Open (Ω) with σ (a) ⊆ Ω̃.
By the holomorphic functional calculus, we have f (a) g (a) = 1 so that f (a) is invertible.

Conversely, if 0 ∈ im
(
f |σ(a)

)
, let α ∈ σ (a) : f (α) = 0. Then we have some h : Ω → C holomorphic with

f (λ) = h (λ) (λ− α) (λ ∈ Ω)

so that
f (a) = (a− α1)h (a) = h (a) (a− α1) .

But a− α1 is not invertible (as α ∈ σ (a)), so f (a) can’t be either.

Theorem 6.35 (The spectral mapping theorem). Let a ∈ A with σ (a) ⊆ Ω ∈ Open (C) and f : Ω → C holomorphic.
Then

σ (f (a)) = f (σ (a)) ≡ { f (z) | z ∈ σ (a) } .

Proof. Let z ∈ C. We have

z ∈ σ (f (a)) ⇐⇒ (f (a)− z1) /∈ GA

⇐⇒ 0 ∈ im
(
(σ (a) ∋ λ 7→ f (λ)− z)|σ(a)

)
⇐⇒ z ∈ im

(
(σ (a) ∋ λ 7→ f (λ))|σ(a)

)
⇐⇒ z ∈ f (σ (a)) .

The spectral mapping theorem allows us to compose holomorphic functions for the functional calculus

Lemma 6.36. Let a ∈ A and Ω ∈ Open (C) with σ (a) ⊆ Ω. Let f : Ω → C be holomorphic. Let Ω̃ ∈ Open (C) with
f (σ (a)) ⊆ Ω̃ and g : Ω̃ → C be holomorphic. Then

g (f (a)) = (g ◦ f) (a) .

Proof. By the spectral mapping theorem, it is clear that

g (f (a))

makes sense. Let Γ be a collection of contours in Ω̃ which surrounds f (σ (a)). Then the functional calculus says

g (f (a)) =
i

2π

˛
Γ

g (z) (f (a)− z1)
−1

dz .

We would like to re-express (f (a)− z1)
−1 as a contour integral for all z ∈ im (Γ):

(f (a)− z1)
−1

=
i

2π

˛
Γ̃

(f (ζ)− z)
−1

(a− ζ1)
−1

dζ .

For this to hold, Γ̃ needs to be a collection of contours in Ω surrounding σ (a) but disjoint from it, and we also need
that

Ω ∋ ζ 7→ (f (ζ)− z)
−1
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is holomorphic. This is indeed true, since z only ranges within Ω̃ \ f (σ (a)). We thus find

g (f (a)) =
i

2π

˛
Γ

g (z)

[
i

2π

˛
Γ̃

(f (ζ)− z)
−1

(a− ζ1)
−1

dζ

]
dz

=
i

2π

˛
Γ̃

[
i

2π

˛
Γ

g (z) (f (ζ)− z)
−1

dz

]
︸ ︷︷ ︸

=(g)(f(ζ))≡(g◦f)(ζ)

(a− ζ1)
−1

dζ

=
i

2π

˛
Γ̃

(g ◦ f) (ζ) (a− ζ1)
−1

dζ

≡ (g ◦ f) (a) .

The exchange of integrals is justified thanks to uniform convergence.

One statement that comes up again and again in applications is

Theorem 6.37. If a ∈ A and σ (a) does not separate 0 from ∞ then log (a) ∈ A (via the holomorphic functional
calculus) and

a = exp (log (a)) . (6.16)

Proof. Since 0 lies in the unbounded connected component of the resolvent set, there is a holomorphic function
f : Ω → C with Ω simply connected, open, and containing σ (a), such that exp ◦f = 1Ω, namely, the logarithm with
branch cut outside of Ω (note that in this case the branch cut need not be a straight line–this is fine). Hence using
the holomorphic functional calculus we may define

f (a) ≡
[

i

2π

˛
f (z) (a− z1)

−1
dz

]
∈ A

for an appropriate contour within Ω which encircles σ (a). The identity (6.16) holds thanks to Lemma 6.36.

7 Hilbert spaces
In our journey of combining the linear structure of a space and its topological structure, we have become increasingly more
and more specific, starting with TVS, specifying to complete normed spaces, and now we arrive at our final destination:
assuming that the norm satisfies the parallelogram identity, i.e., talking about complete inner product spaces. These
structures are extremely important for various reasons: they are the mathematical structure of quantum mechanics, and
moreover, they are the best infinite-dimensional generalization of Euclidean spaces.

Of course, all of our previous analysis carries over in Hilbert spaces, but as we shall see, the additional assumptions
of having an inner product will allow us to do even more. The culmination of that “more” will be the bounded Borel-
measurable functional calculus of normal operators on a Hilbert space.

First, the formal definition (which we have already seen in Definition 3.4):

Definition 7.1 (Inner product space). An inner-product space is a C-vector space H along with a sesquilinear map

⟨·, ·⟩ : H×H → C

such that

1. Conjugate symmetry:
⟨ψ,φ⟩ = ⟨φ,ψ⟩ (φ,ψ ∈ H) .

2. Linearity in second argument:

⟨ψ, αφ+ φ̃⟩ = α ⟨ψ,φ⟩+ ⟨ψ, φ̃⟩ (φ, φ̃, ψ ∈ H, α ∈ C) .

3. Positive-definite:
⟨ψ,ψ⟩ > 0 (ψ ∈ H \ { 0 }) .
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To every inner product one immediately may associate a norm, via

∥ψ∥ :=
√

⟨ψ,ψ⟩ (ψ ∈ H) .

The converse, however, hinges on the norm obeying the parallelogram law as we have seen in Claim 3.6.

Claim 7.2. Once we have an inner-product, we immediately have the Cauchy-Schwarz inequality

|⟨φ,ψ⟩| ≤ ∥φ∥∥ψ∥ (φ,ψ ∈ H) .

Definition 7.3 (Hilbert space). A Hilbert space H is a inner-product space with ⟨·, ·⟩ such the induced norm ∥·∥
from this inner product makes H into a Banach space (i.e. a complete metric space w.r.t. to the metric induced by
∥·∥).

Hence we identify a Hilbert space as a Banach space whose norm satisfies the parallelogram identity.
One of the central notions available to us now in Hilbert space, which was not available before, is the notion of

orthogonality of vectors:

Definition 7.4 (Orthogonality). Two vectors φ,ψ ∈ H in a Hilbert space are dubbed orthogonal iff

⟨φ,ψ⟩H = 0 .

A collection { φi }i is called orthonormal iff
⟨φi, φj⟩ = δij .

The following two claims involving orthogonality will be useful. Their proof will be a homework assignment.

Claim 7.5. φ ⊥ ψ iff
∥φ∥ ≤ ∥zψ + φ∥ (∀z ∈ C) .

Proof. We have

0 ≤ ∥zψ + φ∥2 = |z|2 ∥ψ∥2 + ∥φ∥2 + 2Re {⟨zψ, φ⟩} . (7.1)

Hence if ⟨ψ,φ⟩ = 0 we have ∥zψ + φ∥2 ≥ ∥φ∥2.
Conversely, if ψ = 0 we are finished. Otherwise, let z := − ⟨ψ,φ⟩

∥ψ∥2 . Plugging this into (7.1) we find

0 ≤ ∥zψ + φ∥2 = ∥φ∥2 + |z|2 ∥ψ∥2 + 2Re {⟨zψ, φ⟩}

= ∥φ∥2 + |⟨ψ,φ⟩|2

∥ψ∥2
+ 2Re

{〈
−⟨ψ,φ⟩

∥ψ∥2
ψ,φ

〉}

= ∥φ∥2 − |⟨ψ,φ⟩|2

∥ψ∥2

which is coincidentally a proof of the Cauchy-Schwarz inequality. But this also shows that

∥zψ + φ∥2 < ∥φ∥2

for one z if ⟨φ,ψ⟩ ≠ 0.

Theorem 7.6. Every nonempty closed convex set E ⊆ H contains a unique element of minimal norm.

Proof. Let
d := inf ({ ∥x∥ | x ∈ E }) .

Let { xn }n ⊆ E so that { ∥xn∥ }n → d. Since E is convex,

1

2
(xn + xm) ∈ E
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and hence

∥xn + xm∥2 = 4

∥∥∥∥12 (xn + xm)

∥∥∥∥2 ≥ 4d2 .

But The parallelogram law Claim 3.6

∥xn + xm∥2 + ∥xn − xm∥2 = 2∥xn∥2 + 2∥xm∥2

has its right hand side tend to 4d2 also, so ∥xn − xm∥2 → 0 and hence { xn }n is Cauchy, which hence converges to
some x ∈ E (as E is closed) and we have ∥x∥ = d.

For uniqueness, if y ∈ E with ∥y∥ = d, then

{ x, y, x, y, . . . }

must converge by the above, so y = x.

Theorem 7.7. Let M be a closed subspace of H. Then

M⊥ ≡ { φ ∈ H | φ ⊥ ψ∀ψ ∈M }

is also a closed subspace of H and M ∩M⊥ = { 0 }. I.e.,

H =M ⊕M⊥ .

Proof. Since ⟨φ, ·⟩ is linear, M⊥ is linear. Also,

M⊥ =
⋂
φ∈M

⟨φ, ·⟩−1
({ 0 }) (7.2)

and ⟨φ, ·⟩ is continuous by the Cauchy-Schwarz inequality, so M⊥ is closed. Next, if φ ∈M ∩M⊥ then in particular
⟨φ,φ⟩ = 0 so φ = 0.

Finally, let φ ∈ H. The set φ−M is a convex, closed subset and hence by Theorem 7.6 we get some ψ ∈M such
that ∥φ− ψ∥ is minimal. Let

η := φ− ψ .

Then
∥η∥ ≤ ∥η + ξ∥ (ξ ∈M)

by the minimizing property. So by Claim 7.5, η ∈M⊥. But

φ = ψ + η ∈M +M⊥ .

Claim 7.8. For any subspace W ⊆ H,
(
W
)⊥

=W⊥.

Proof. W ⊆W and from (7.2) we have
(
W
)⊥ ⊆W⊥.

Conversely, let v ∈W⊥. We want to show that v ∈
(
W
)⊥

. That is, for all w ∈W , ⟨v, w⟩ = 0. Let { wn }n ⊆W
with wn → w. Then

⟨v, w⟩ =
〈
v, lim

n
wn

〉
= lim

n
⟨v, wn⟩

= lim
n

0

= 0 .

59



where in the second equality we have used the fact that ⟨v, ·⟩ is a continuous function on H:

|⟨v, φ⟩ − ⟨v, ψ⟩| = |⟨v, φ− ψ⟩|
≤ ∥v∥∥φ− ψ∥ .

Claim 7.9. For any subspace W ⊆ H,
(
W⊥)⊥ =W .

Proof. Let w ∈W . Then ⟨w, v⟩ = 0 for all v ∈
(
W
)⊥

, which, via Claim 7.8, implies that ⟨w, v⟩ = 0 for all v ∈W⊥,
which is equivalent to saying that w ∈

(
W⊥)⊥.

Conversely, by Theorem 7.7, for any closed subspace,

H =W ⊕
(
W
)⊥

=W ⊕W⊥ . (Via Claim 7.8)

Now since W⊥ ∈ Closed (H) via Theorem 7.7, we may also write

H =W⊥ ⊕
(
W⊥)⊥ .

Hence we learn that

W⊥ ⊕
(
W⊥)⊥ = W⊥ ⊕W .

Now if W were a proper subspace of
(
W⊥)⊥, this line would lead to a contradiction.

7.1 Duality in Hilbert spaces and the adjoint
Let us now discuss the duality of a Hilbert space. Our ultimate goal is to define, for every A ∈ B (H), an adjoint operator
A∗ ∈ B (H).

Theorem 7.10. There is an anti-C-linear isometric bijection K : H → H∗ given by

φ 7→ ⟨φ, ·⟩ .

Proof. Clearly K is anti-C-linear. To show it is isometric, we have by the Cauchy-Schwarz inequality

∥K (φ)∥op ≡ sup ({ (K (φ)) (ψ) | ∥ψ∥ = 1 })
≡ sup ({ |⟨φ,ψ⟩| | ∥ψ∥ = 1 })
CS
≤ sup ({ ∥φ∥∥ψ∥ | ∥ψ∥ = 1 })
= ∥φ∥ .

But also,
∥φ∥2 ≡ ⟨φ,φ⟩ ≡ (K (φ)) (φ) ≤ ∥K (φ)∥∥φ∥

where the last inequality was Lemma 3.18. Hence ∥K (φ)∥ = ∥φ∥ so K is an isometry. But an isometry is always
injective, is it merely remains to show that K is surjective.

Let then λ ∈ H∗. If λ = 0 then K (0H) = 0 = λ. Otherwise, since ker (λ) is a closed linear subspace, the proof
above says

H = ker (λ)⊕ ker (λ)
⊥
.

Let therefore η ∈ ker (λ)
⊥ and η ̸= 0. Since by linearity we have

[(λψ) η − (λη)ψ] ∈ ker (λ) (ψ ∈ H)
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we have

0 = ⟨η, [(λψ) η − (λη)ψ]⟩
= (λψ) ⟨η, η⟩ − (λη) ⟨η, ψ⟩

i.e.,

λψ =

〈
− (λη)

∥η∥2
η, ψ

〉
or

λ =

〈
− (λη)

∥η∥2
η, ·

〉
.

On every Hilbert space, we have the space of all bounded (and hence continuous) linear functions

B (H) ≡ {A : H → H | A linear and ∥A∥ <∞} .

As we have seen in Claim 3.20, this is a Banach algebra (but in general not a Hilbert space in and of itself!). Now, as we
shall see, it has additional structure: the adjoint, which maps an operator A to its adjoint A∗ (sometimes A† in physics).
It is already clear that given any A ∈ B (H), via the above claim, we may map it to an element in B (H∗) as follows:

A 7→ KAK−1 ≡ (⟨φ, ·⟩ 7→ ⟨Aφ, ·⟩) . (7.3)

Since H∗ is exhibited as isometrically isomorphic to H via K, we ask how to interpret KAK−1 acting directly on H. Let
us study this more systematically.

The next two statements show us that, to an extent, operators are determined by their “diagonal matrix elements”, if
we are allowed to pick arbitrary matrix elements.

Theorem 7.11. If A ∈ B (H) and ⟨φ,Aφ⟩ = 0 for all φ ∈ H then A = 0.

Proof. We also have
⟨φ+ ψ,A (φ+ ψ)⟩ = 0

so
⟨φ,Aψ⟩+ ⟨ψ,Aφ⟩ = 0 (φ,ψ ∈ H) .

We may replace φ by iφ to get
−i ⟨φ,Aψ⟩+ i ⟨ψ,Aφ⟩ = 0 (φ,ψ ∈ H) .

If we now multiply the last equation by i and add it to the first, we get

⟨φ,Aψ⟩ = 0 (φ,ψ ∈ H) .

Hence taking φ = Aψ yields ∥Aψ∥2 = 0 so that Aψ = 0 for all ψ ∈ H.

Corollary 7.12. If A,B ∈ B (H) such that

⟨φ,Aφ⟩ = ⟨φ,Bφ⟩ (φ ∈ H)

then A = B.

Proof. Apply the preceding theorem to A−B.

Note this would fail if we had an R-Hilbert space, as rotations in R2 demonstrate (take rotations by 90 degrees CCW or
CW)!
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Theorem 7.13. If f : H2 → C is sesquilinear and bounded, i.e.,

S := sup ({ |f (φ,ψ)| : ∥φ∥ = ∥ψ∥ = 1 }) <∞

then there is some unique F ∈ B (H) such that

f (φ,ψ) = ⟨Fφ,ψ⟩ (φ,ψ ∈ H)

and ∥F∥ = S.

Proof. Since
|f (φ,ψ)| ≤ S∥φ∥∥ψ∥

we have for fixed φ,
H ∋ ψ 7→ f (φ,ψ)

a bounded linear functional of norm at most S∥φ∥. Hence to each such linear functional there corresponds a unique
element, which we call Fφ, for which

f (φ,ψ) = ⟨Fφ,ψ⟩

and ∥Fφ∥ ≤ S∥φ∥. Clearly F : H → H defined in this way is C-linear from the properties of ⟨·, ·⟩. E.g.,

⟨F (αφ) , ψ⟩ = f (αφ,ψ) = αf (φ,ψ) = α ⟨Fφ,ψ⟩ = ⟨αFφ,ψ⟩ .

Hence F ∈ B (H) with ∥F∥ ≤ S. Moreover,

|f (φ,ψ)| = |⟨Fφ,ψ⟩| ≤ ∥Fφ∥∥ψ∥ ≤ ∥F∥∥φ∥∥ψ∥

and hence S ≤ ∥F∥.

Hence if we have an operator A ∈ B (H), applying the preceding theorem on the function

f (φ,ψ) := ⟨φ,Aψ⟩

we learn there exists some F =: A∗ such that

⟨φ,Aψ⟩ = ⟨A∗φ,ψ⟩ (φ,ψ ∈ H)

and such that ∥A∗∥ = ∥A∥.
We have thus exhibited a map

∗ : B (H) → B (H)

called the adjoint map which is a C-anti-linear involution:

(A+B)
∗

= A∗ +B∗

(λA)
∗

= λA∗

(AB)
∗

= B∗A∗

A∗∗ = A (involution)

these can be verified using Corollary 7.12.

Claim 7.14 (The C-star identity). We have ∥A∥2 = ∥A∗A∥.

Proof. We have
∥Aφ∥2 = ⟨Aφ,Aφ⟩ = ⟨φ,A∗Aφ⟩ ≤ ∥A∗A∥∥φ∥2 .

But also,
∥A∗A∥ ≤ ∥A∗∥∥A∥ = ∥A∥2 .

Again we use the properties of B (H) to make an abstract definition:
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Definition 7.15 (C-star algebra). A C-star algebra is a C-Banach algebra A together with a C-anti-linear involution

∗ : A → A

(i.e. it is a star-algebra) such that
∥a∗a∥ = ∥a∥2 (a ∈ A) .

Remark 7.16. Note that if we regard A∗ as an element of B (H∗) (where H∗is the Banach dual of H) rather than as
an element of B (H) then ∗ : B (H) → B (H∗) may be regarded as a C-linear map. This is how (7.3) is set up.

7.2 Kernels and images

Theorem 7.17. If A ∈ B (H) then

ker (A∗) = im (A)
⊥

ker (A) = im (A∗)
⊥
.

Proof. We have

A∗φ = 0

↕
⟨A∗φ,ψ⟩ = 0 (ψ ∈ H)

↕
⟨φ,Aψ⟩ = 0 (ψ ∈ H)

↕
φ ∈ im (A)

⊥
.

Hence ker (A∗) = im (A)
⊥. Since A∗∗ = A, we get the second statement.

Lemma 7.18. We have ker (A) = ker
(
|A|2

)
with |A|2 ≡ A∗A.

Proof. We have the chain of implications

φ ∈ ker (A) ⇐⇒ Aφ = 0

⇐⇒ A∗Aφ = |A|2 φ = 0

=⇒ v ∈ ker
(
|A|2

)
.

Conversely,

φ ∈ ker
(
|A|2

)
⇐⇒ |A|2 φ = 0

⇐⇒
〈
|A|2 φ,ψ

〉
= 0∀ψ ∈ H

⇐⇒ ⟨Aφ,Aψ⟩ = 0∀ψ ∈ H .

In particular, choose ψ = φ to get ∥Aφ∥ = 0 which implies Aφ = 0 and so φ ∈ ker (A) as desired.

Definition 7.19 (Order on self-adjoint operators). We say that A ∈ B (H), call it “positive”, denote it by A ≥ 0, iff

⟨ψ,Aψ⟩ ≥ 0 (ψ ∈ H) .

Similarly, for two operators A,B ∈ B (H), we say that A ≥ B iff A−B ≥ 0.
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Lemma 7.20. For A ∈ B (H), the following are equivalent:

1. imA ∈ Closed (H).

2. 0 /∈ σ
(
|A|2

)
or zero is an isolated point of σ

(
|A|2

)
.

3. ∃ε > 0 such that

∥Aφ∥ ≥ ε∥φ∥
(
φ ∈ (kerA)

⊥
)
.

Proof. ((1)=>(3)): Assume that im (A) ∈ Closed (H). Consider the bijection Ã : ker (A)
⊥ → im (A). It is clearly

bounded since A is bounded. Since im (A) ∈ Closed (H), im (A) is a Banach space, which implies that Ã−1 : im (A) →
ker (A)

⊥ is bounded by Corollary 3.33. I.e.,
∥∥∥Ã−1

∥∥∥ < ∞, which is tantamount to saying that ∃c < ∞ such that∥∥∥Ã−1φ
∥∥∥ < c∥φ∥ for all φ ∈ im (A). Now if ψ ∈ ker (A)

⊥, then Aψ ∈ im (A), and so Ã−1Aψ ≡ ψ. Hence

∥ψ∥ ≤ c∥Aψ∥
↕

1

c
∥ψ∥ ≤ ∥Aψ∥ .

((3)=>(1)): Let { φn }n ⊆ im (A) such that limn φn = ψ for some ψ ∈ H. Our goal is to show that ψ ∈ im (A).
Let

ηn := Ã−1φn ∈ ker (A)
⊥
.

Then Aηn = AÃ−1φn = φn. Now, ∥Aηn∥ ≥ ε∥ηn∥ by hypothesis. We claim { ηn }n is Cauchy. Indeed, ∥ηn − ηm∥ ≤
1
ε∥A (ηn − ηm)∥ = 1

ε∥φn − φm∥. But { φn }n converges and is hence Cauchy. Hence limn ηn = ξ for some ξ ∈ H

(because regardless of the status of im (A), H certainly is complete and hence Cauchy sequence converge). Since A
is bounded it is continuous, so we find that

Aξ = A lim
n
ηn

= lim
n
Aηn

= lim
n
φn

= ψ .

We obtain then that ψ ∈ im (A) as desired.

((2)<=>(3)): We have ker
(
|A|2

)⊥
= ker (A)

⊥ using Lemma 7.18. Now, since |A|2 ≥ 0, (2) is equivalent to

|A|2 ≥ ε1 on ker (A)
⊥ via Corollary 8.18 way below (apologies...). Hence

|A|2 − ε1 ≥ 0 ⇐⇒
〈
ψ,
(
|A|2 − ε1

)
ψ
〉
∀ψ ∈ ker (A)

⊥

⇐⇒ ∥Aψ∥2 ≥ ε2∥ψ∥2∀ψ ∈ ker (A)
⊥

7.3 Orthogonality and bases

Claim 7.21 (Pythagoras). If { φi }ni=1 is an orthonormal set and ψ ∈ H then

∥ψ∥2 =

n∑
i=1

|⟨φn, ψ⟩|2 +

∥∥∥∥∥ψ −
n∑
i=1

⟨φi, ψ⟩φi

∥∥∥∥∥
2

. (7.4)
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Proof. Let us define

P :=

n∑
i=1

φi ⊗ φ∗
i .

Here we interpret the dual of a vector as a linear functional as follows:

η∗ := ⟨η, ·⟩ ∈ H∗ .

Moreover, φ⊗ ψ∗ is thus an operator as
(φ⊗ ψ∗) (η) := ⟨ψ, η⟩φ .

We claim that P = P ∗ = P 2. The first equality is obvious. The second one follows via

P 2 =

n∑
i,j=1

φi ⊗ φ∗
iφj ⊗ φ∗

j

=

n∑
i,j=1

⟨φi, φj⟩φi ⊗ φ∗
j

=

n∑
i,j=1

δijφi ⊗ φ∗
j

=

n∑
i=1

φi ⊗ φ∗
i

≡ P .

Hence we have

∥ψ∥2 =
∥∥Pψ + P⊥ψ

∥∥2 = ∥Pψ∥2 +
∥∥P⊥ψ

∥∥2 + 2Re
{〈
Pψ, P⊥ψ

〉}
= ∥Pψ∥2 +

∥∥P⊥ψ
∥∥2

where in the last step we have used PP⊥ = 0 .

Definition 7.22. Let { En }n∈N be a sequence of closed subspaces of H. Then

H =
⊕
n∈N

En

iff { En }n∈N is a mutually orthogonal set (i.e. ⟨u, v⟩ = 0 if u ∈ En and v ∈ Em for n ̸= m) and span
(⋃

n∈N En
)

(finite linear combinations of elements of En) is dense in H.

Note that thanks to Theorem 7.7, given any closed subspace M ⊆ H, since

H =M ⊕M⊥

we may define an operator

PM : H → H

given by
ψ 7→ (ψM , 0) ∈M ⊕M⊥ .

This operator is called the projection onto the closed subspace M . It is clearly linear and moreover bounded:

∥PM∥ ≡ sup ({ ∥PMψ∥ | ∥ψ∥ = 1 })
= sup ({ ∥(ψM , 0)∥ | ∥(ψM , ψM⊥)∥ = 1 })
≤ 1 .

In fact, its operator norm is also bounded below by 1 since we may always take a unit vector within M , in which case PM
acts trivially on it. In fact, P 2

M = P ∗
M = PM is a self-adjoint projection.
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Lemma 7.23. Let { φj }j ⊆ H be a mutually orthogonal sequence such that

∞∑
j=1

∥φj∥2 <∞ .

Then

ψ := lim
n→∞

n∑
j=1

φj

exists and

∥ψ∥ =

√√√√ ∞∑
j=1

∥φj∥2 .

Proof. The sequence
{∑n

j=1 φj

}
n

is Cauchy (almost by hypothesis), so the limit exists. But we also have

∥∥∥∥∥∥
n∑
j=1

φj

∥∥∥∥∥∥
2

=

n∑
j=1

∥φj∥2

by mutual orthogonality. Taking the limit n→ ∞ on both sides we obtain the desired equality.

Theorem 7.24. Let { En }n∈N be a sequence of closed subspaces of H such that

H =
⊕
n∈N

En .

Then for any ψ ∈ H,

ψ = lim
n→∞

n∑
j=1

PEnψ

and
∞∑
j=1

∥PEnψ∥
2
= ∥ψ∥2 .

Proof. For any n ∈ N, we have

∥ψ∥2 =

∥∥∥∥∥∥
 n∑
j=1

Pn + 1−

 n∑
j=1

Pn

ψ

∥∥∥∥∥∥
2

=

n∑
j=1

∥PEnψ∥
2
+

∥∥∥∥∥∥
1−

 n∑
j=1

Pn

ψ

∥∥∥∥∥∥
2

(mutual orthogonality)

≥
n∑
j=1

∥PEnψ∥
2

so applying the previous lemma with φn := PEnψ we find that

lim
n→∞

n∑
j=1

PEnψ
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exists. We claim it equals ψ. Indeed, ψ −
n∑
j=1

PEnψ

 ⊥ Em (m ≤ n)

and hence in the limit n→ ∞, ψ − lim
n→∞

n∑
j=1

PEnψ

 ⊥ Em (m ∈ N) .

Since
H =

⊕
n∈N

En

we have that ψ − lim
n→∞

n∑
j=1

PEnψ

 ⊥ H

i.e.,

ψ = lim
n→∞

n∑
j=1

PEnψ .

Definition 7.25 (orthonormal basis). We now discuss bases for Hilbert spaces. If S is an orthonormal set in H,
and no other orthonormal set contains S as a proper subset, then S is called an orthonormal basis (or a complete
orthonormal basis) for H.

Theorem 7.26. Every Hilbert space H has an orthonormal basis.

Proof. Let C be the collection of orthonormal sets in H. Order C by inclusion: S1 < S2 iff S1 ⊆ S2. With this order
< on C, C is partially ordered. It is also non-empty since if φ ∈ H \{ 0 }, then

{
φ

∥φ∥

}
is an orthonormal set. Now if

{ Sα }α∈A is any linearly ordered subset of C, then
⋃
α∈A Sa is an orthonormal set contains each Sα and is hence an

upper bound for { Sα }α∈A. Since every linearly ordered subset of C has an upper bound, we can thus apply Zorn’s
lemma to conclude that C has a maximal element, that is, an orthonormal set not properly contained in any other
orthonormal set.

Theorem 7.27. Let H be a Hilbert space and { φα }α∈A an orthonormal basis. Then

ψ =
∑
α∈A

⟨φα, ψ⟩φα

and
∥ψ∥2 =

∑
α∈A

|⟨φα, ψ⟩|2

for any ψ ∈ H.

Proof. Apply Theorem 7.24 with En := Cφn.

Definition 7.28 (Separable metric space). A metric space which has a countable dense subset is called separable.
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Remark 7.29. The notion of isomorphism in the category of Hilbert spaces must preserve also the inner product, i.e.,

f : H → H̃

is a Hilbert space isomorphism iff it is a C-linear homeomorphism which obeys

⟨fψ, fφ⟩H̃ = ⟨ψ,φ⟩H .

Theorem 7.30. A Hilbert space H is separable iff it has a countable orthonormal basis S. If the basis has n elements,
H is isomorphic to Cn as a Hilbert space. If S is countable then H is isomorphic to ℓ2 (N) as a Hilbert space.

Proof. First assume that H is separable as a metric space. Let { φn }n be a countable set dense. By omitting some
elements of this collection we may make it linearly independent and whose finite linear combination span is the same
as the original collection, which is dense. We may then apply a Gram-Schmidt process to this independent collection
to a countable orthonormal system.

Conversely, given a countable orthonormal basis { φn }n, we may approximate any vector by a finite linear
combination of elements in this collection (say, with rational coefficients, to make sure it is countable) so that it is
dense.

Next, assuming H is separable, setup the isomorphism

U : H → ℓ2 (N)

given by
ψ 7→ (⟨φ1, ψ⟩ , ⟨φ2, ψ⟩ , . . . ) .

Theorem 7.27 shows that this map is well-defined and surjective. The calculation

⟨Uψ,Uφ⟩ℓ2(N) ≡
∞∑
n=1

(Uψ)n (Uφ)n

=

∞∑
n=1

⟨ψ,φn⟩ ⟨φn, φ⟩

=

∞∑
n=1

⟨ψ,φn⟩ ⟨φn, φ⟩

=

∞∑
n=1

⟨ψ, PEnφ⟩

=

〈
ψ,

∞∑
n=1

PEnφ

〉
= ⟨ψ,φ⟩

shows that this map is unitary.

Remark 7.31. Even though all separable Hilbert spaces are isomorphic, it is still convenient and necessary to work
with concrete examples. The “abstract”, “platonic” separable Hilbert space is usually referred to either as ℓ2 (N) or as
C∞ (the latter more in topology).

While ℓ∞ (N → C) is an example of a non-separable Banach space (we may view the power set P (N) as a subset
of ℓ∞ (N → C). This set is however uncountable, and moreover, each of its elements is of distance 1 from any other
element in it. Form open sets around each of these points). It is not a Hilbert space. If we insist on an example of a
non-separable Hilbert space, we have
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Claim 7.32. Define the space

H := ℓ2 (R) ≡

{
f : R → C

∣∣∣∣∣ f−1 (C \ { 0 }) is a countable set and
∑
x∈R

|f (x)|2 <∞

}

with the obvious inner product (using the fact that the countable union of countable sets is countable). Then H is a
non-separable Hilbert space.

Proof. For each y ∈ R, define

δy (x) :=

{
1 x = y

0 x ̸= y
.

The set { δy }y∈R is an uncountable set of elements of distance
√
2 of each other.

Remark 7.33 (Various types of bases). We define a Hamel basis (of a Banach space, and hence of a Hilbert space) to
be any subset B of a Banach space X such that any vector φ ∈ X may be written as finite linear combinations from
the collection B:

φ =
n∑
j=1

αjbj

with n ∈ N, { αj }nj=1 ⊆ C and { bj }nj=1 ⊆ B. We have already seen in the homework (HW2 and HW3) that infinite
dimensional Banach spaces cannot admit a countable Hamel basis, and the same is clearly true for Hilbert spaces.
In contrast, a Schauder basis allows the linear combinations to be infinite. Hence the above statements imply that
a separable Hilbert space has a countable orthonormal Schauder basis. Does every separable Banach space have a
Schauder basis? Apparently, according to Enflo, the answer is no.

7.4 Direct sums and tensor products

Definition 7.34. Given a sequence {Hn }n of Hilbert spaces, let

H :=

{
(xn)n

∣∣∣∣∣ xm ∈ Hm ∧
∞∑
m=1

∥xm∥2 <∞

}
.

Then H =:
⊕∞

n=1 Hn is a Hilbert space with the inner product

⟨(xn)n , (yn)n⟩H :=

∞∑
m=1

⟨xm, ym⟩Hm .

Proof. We want to prove that the inner product is well-defined:

∣∣⟨(xn)n , (yn)n⟩H∣∣ ≤ ∞∑
m=1

∣∣⟨xm, ym⟩Hm
∣∣

≤
∞∑
m=1

∥xm∥∥ym∥ (Cauchy-Schwarz)

≤

( ∞∑
m=1

∥xm∥2
) 1

2
( ∞∑
m=1

∥ym∥2
) 1

2

. (Cauchy-Schwarz)

The fact it is indeed sesquilinear follow from the linear properties of each inner product. For positive definiteness,

⟨(xn)n , (xn)n⟩H ≡
∞∑
m=1

∥xm∥2Hm <∞
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But a series of positive terms can only be zero if each term is zero, which means the whole sequence is zero.
Finally we want to show completeness: assume that { xm }m is a Cauchy sequence in H, i.e., that ∀ε > 0∃Nε ∈ N :

∥xm − xl∥H < ε (n,m ≥ Nε) .

This last inequality is equivalent to ∑
n∈N

∥xn,m − xn,l∥2Hn < ε2 (n,m ≥ Nε) .

which implies that
∥xn,m − xn,l∥2Hn < ε2 (n,m ≥ Nε, n ∈ N) .

As such, for fixed n ∈ N, { xn,m }m is a Cauchy sequence in Hn which converges to some yn. We want to show that
xm → y where y ≡ (yn)n. Hence,

∥xm − y∥2H ≡
∑
n∈N

∥xn,m − yn∥2Hn

=
∑
n∈N

lim
l→∞

∥xn,m − xn,l∥2Hn

≤ lim
l→∞

∑
n∈N

∥xn,m − xn,l∥2Hn (Fatou’s lemma)

= lim
l→∞

∥xm − xl∥2H

≤ ε2 .

We still need to show that y ∈ H:

∥y∥2 ≡
∑
n∈N

∥yn∥2Hn

≤
∑
n∈N

(
∥yn − xn,m∥

Hn
+ ∥xn,m∥

Hn

)2
< ∞ .

Lemma 7.35. Let A and B be two disjoint sets. Then

ℓ2 (A ∪B) ∼= ℓ2 (A)⊕ ℓ2 (B) .

Proof. Setup a basis for ℓ2 (A ∪B) given by { eα }α∈A∪B . Then it is clear how to setup the isomorphism and extend
it linearly.
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Definition 7.36. Given two Hilbert spaces H1,H2, define their tensor product as follows:

V := H1 ⊗vector space H2

where we mean the vector space tensor product (e.g., take the linear span of formal set { ej ⊗ fk } where { ej }j is a
basis for H1 and { fk }k is a basis for H2). On V , we define an inner product as

⟨φ1 ⊗ φ2, ψ1 ⊗ ψ2⟩V := ⟨φ1, ψ1⟩H1
⟨φ2, ψ2⟩H2

and extend linearly from non-simple vectors.

H1 ⊗Hilbert space H2

is then defined as the completion of V under this inner product. One way to think about the completion is as a space
of equivalence classes of Cauchy sequences. There is also an explicit construction by identifying H1⊗Hilbert spaceH2

∼=
B (H1 → H∗

2 ) [TODO: expand on this].

Claim 7.37. Given two countable sets A and B,

ℓ2 (A×B) ∼= ℓ2 (A)⊗ ℓ2 (B) .

Proof. Send the basis element
e(a,b) 7→ ea ⊗ eb

and extend linearly.

Definition 7.38 (Fock space). Given a Hilbert space H, define

F (H) :=

∞⊕
n=0

H⊗ · · · ⊗H︸ ︷︷ ︸
n times

where we use the convention that H⊗0 ≡ C. F (H) is separable if H is. Its symmetric and anti-symmetric subspaces
are called the Bosonic and Fermionic subspaces respectively.

8 Some C-star algebra theory
In this section we momentarily leave B (H) and concentrate on an abstract C-star algebra as in Definition 7.15 A. This
is done for the sake of establishing some properties of elements in C-star algebras which only call for this abstract setting.
We shall culminate with the continuous functional calculus in this setting, as well as a representation theorem for C-star
algebras.

8.1 Normals, self-adjoints, unitaries and self-adjoint projections on C-star algebras
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Definition 8.1 (Algebraic properties of elements in a C-star algebra). For a ∈ A (with |a|2 ≡ a∗a) we say it is

1. Normal iff |a|2 = |a∗|2 iff [a, a∗] = 0 where

|a|2 ≡ a∗a (8.1)

and where

[a, b] ≡ ab− ba . (8.2)

2. Self-adjoint iff a∗ = a.

3. Positive iff a = |b|2 for some b ∈ A.

4. Unitary iff |a|2 = |a∗|2 = 1. Isometry iff |a|2 = 1 and Co-Isometry iff |a∗|2 = 1.

5. Idempotent iff a2 = a.

6. Self-adjoint projection iff a2 = a∗ = a (more commonly orthogonal projection).

7. Partial isometry iff |a|2 is an idempotent (automatically self-adjoint, so we can just as well say that |a|2 is a
self-adjoint projection).

Claim 8.2. For a ∈ A, a = 0 iff |a|2 = 0.

Proof. Clearly if a = 0 then |a|2 = a∗0 = 0. In fact a∗ = 0 too by 0∗ = 0.
Conversely, if |a|2 = 0 then

∥∥∥|a|2∥∥∥ = 0. But the C-star identity then says that ∥a∥2 = 0, i.e., that ∥a∥ = 0 so
that a = 0.

Lemma 8.3. a ∈ A is a partial isometry iff a∗ is a partial isometry, in which case

a
(1)
= aa∗a

(2)
= aa∗aa∗a ≡ |a∗|2 a |a|2 .

Proof. Let us begin by showing (1). Calculate∣∣∣(1− |a∗|2
)
a
∣∣∣2 ≡

[(
1− |a∗|2

)
a
]∗ (

1− |a∗|2
)
a

= a∗
(
1− |a∗|2

)(
1− |a∗|2

)
a

= a∗
(
1− 2 |a∗|2 + |a∗|4

)
a

= |a|2 − 2a∗aa∗a+ a∗aa∗aa∗a

= |a|2 − 2 |a|2 |a|2 + |a|2 |a|2 |a|2

= |a|2 − 2 |a|2 + |a|2 (|a|2 is an idempotent)
= 0 .

Now using Claim 8.2 we conclude that
(
1− |a∗|2

)
a = 0. Hence

aa∗a = |a∗|2 a =
(
|a∗|2 − 1+ 1

)
a = a .

Next, we want to show that |a∗|2 is an idempotent. This is an immediate application of the first equality:(
|a∗|2

)2
≡ (aa∗)

2 ≡ (aa∗a) a∗
⋆
= aa∗ ≡ |a∗|2 .

72



Finally, we tend to the second equality:

aa∗aa∗a = (aa∗a) a∗a
(1)
= aa∗a

(1)
= a .

This lemma shows us that partial isometries can be considered as “maps” from the range of the SA projection |a|2 to the
range of the SA projection |a∗|2.

Claim 8.4. If p ∈ A is a self-adjoint projection then ∥p∥ = 1.

Proof. We have

∥p∥2 = ∥p∗p∥
=

∥∥p2∥∥
= ∥p∥ .

Lemma 8.5. If u ∈ A is a unitary then ∥u∥ = 1 and σ (u) ⊆ S1.

Proof. Again the C-star identity implies

∥u∥2 =
∥∥∥|u|2∥∥∥ = ∥1∥ = 1 .

Now let λ ∈ σ (u). Of course λ ̸= 0 for otherwise u is not invertible, which is false by u∗u = 1. Then by the spectral
mapping theorem Theorem 6.35,

λ−1 ∈ σ
(
u−1

) u∗=u−1

= σ (u∗) = σ (u) .

As the norm bounds the spectral radius, we have r (u) ≤ ∥u∥ = 1, so that |λ| ≤ 1. But the above shows also that∣∣λ−1
∣∣ ≤ 1. Hence |λ| = 1.

Theorem 8.6. If a ∈ A is self-adjoint then the spectral radius r (a) equals the operator norm ∥a∥.

Proof. By the C-star identity, we have
∥a∥2 = ∥a∗a∥ =

∥∥a2∥∥
from which we conclude that

∥a∥2n =
∥∥a2n∥∥

and hence

r (a) ≡ lim
n
∥an∥

1
n = lim

n

∥∥∥a2n∥∥∥2−n = ∥a∥ .

Corollary 8.7. There is at most one norm on a star-algebra making it a C-star algebra.

Proof. We have for any a ∈ A, using the C-star identity and the fact |a|2 is self-adjoint:

∥a∥2 = ∥a∗a∥ = r
(
|a|2
)
= sup
λ∈σ(|a|2)

|λ| .
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But the RHS is independent of the norm.

Actually one only needs the C-star identity as an upper bound:

Lemma 8.8. If A is a Banach star-algebra such that

∥a∥2 ≤ ∥a∗a∥

then A is a C-star algebra.

Proof. [TODO]

Claim 8.9. If a ∈ A is self-adjoint then σ (a) ⊆ R.

Proof. Since ∥a∗∥ = ∥a∥, clearly the involution is continuous. Note that eia (understood via the entire functional
calculus) is unitary: (

eia
)∗

=

( ∞∑
n=0

in

n!
an

)∗

=

∞∑
n=0

(−i)
n

n!
an = e−ia .

But eiae−ia = 1. Hence σ
(
eia
)
⊆ S1.

Now let λ ∈ σ (a). Let b :=
∑∞
n=1

in

n! (a− λ1)
n−1. Then

eia − eiλ1 =
(
ei(a−λ1) − 1

)
eiλ = (a− λ1) beiλ .

Since b commutes with a and a−λ1 is not invertible, eia− eiλ1 is also not invertible. Hence eiλ ∈ σ
(
eia
)
⊆ S1 which

implies λ ∈ R.

Lemma 8.10. Let a ∈ A be such that a = a∗. Then:

1. If σ (a) ⊆ [0,∞) then ∥a− ∥a∥1∥ ≤ ∥a∥.

2. If for some t ≥ 0, ∥a− t1∥ ≤ t then σ (a) ⊆ [0,∞).

Proof. We shall use the spectral mapping theorem, and the fact that the spectral radius equals the norm for self-
adjoint elements.

For the first statement, assume σ (a) ⊆ [0,∞). Together with a being self-adjoint we get σ (a) ⊆ [0, ∥a∥] so that

σ (a− ∥a∥1) spec. mapping
= σ (a)− ∥a∥ ⊆ [−∥a∥, 0]

and hence r (a− ∥a∥1) ≤ ∥a∥ which is what we need.
For the second statement, assume there is some t ≥ 0 for which ∥a− t1∥ ≤ t. Then

σ (a− t1)
spec. mapping

= σ (a)− t
assumption

⊆ [−t, t] .

So if there were λ ∈ σ (a) with λ < 0, it would violate this last inclusion.

Lemma 8.11. Let a, b ∈ A be such that a = a∗ and b = b∗, and such that σ (a) ⊆ [0,∞) and σ (b) ⊆ [0,∞). Then

σ (a+ b) ⊆ [0,∞) .
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Proof. Using the first item in Lemma 8.10 we find that{
∥a− ∥a∥1∥ ≤ ∥a∥
∥b− ∥b∥1∥ ≤ ∥b∥

.

Combining the two together we get

∥a+ b− ∥a∥1− ∥b∥1∥
∆ ̸=
≤ ∥a− ∥a∥1∥+ ∥b− ∥b∥1∥
≤ ∥a∥+ ∥b∥ .

Thus, invoking the second item in Lemma 8.10 (and the trivial fact that (a+ b)
∗
= a∗ + b∗) we get the desired

result.

Lemma 8.12. The power series of z 7→
√
1− z about zero converges absolutely for all z ∈ B1 (0C).

Proof. We have

√
1− z = 1−

∞∑
n=1

1

2n− 1

(
2n
n

)(z
4

)n
.

To define the square root of a positive element, we would have liked to use the holomorphic functional calculus. Unfortu-
nately this is not possible if

0 ∈ σ (a)

so we must find an alternative route. The best such route is the continuous functional calculus, which we shall encounter
below in Theorem 8.40. Another possibility is the so-called Gelfand representation. However, here we choose to proceed
with the tools we already have:

Theorem 8.13 (Square root lemma). If a ∈ A has a = a∗ and σ (a) ⊆ [0,∞) then there exists some b ∈ A such
that: (1) [b, a] = 0, (2) b = b∗, (3) σ (b) ⊆ [0,∞), and (4) b2 = a.

Proof. Consider the power series about zero of

B1 (0C) ∋ z 7→
√
1− z ≡ (1− z)

1
2 =

∞∑
j=0

(
1
2
j

)
(−1)

j
zj .

We have (
1
2
j

)
≡

1
2

(
1
2 − 1

)
· · ·
(
1
2 − j + 1

)
j!

,

(
1
2
0

)
≡ 1 .

In fact

cj := −
(

1
2
j

)
(−1)

j ∈ (0, 1) (j ∈ N≥1) .

It is well-known that this series actually converges absolutely also on the boundary of the disc, i.e., on B1 (0C). As
a result we have the norm convergent series in A

√
1− x := 1−

∞∑
j=1

cjx
j (x ∈ A : ∥x∥ ≤ 1) . (8.3)
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Applying it to x := 1− 1
∥a∥a we have

σ (x)
spec. mapping

= 1− 1

∥a∥
σ (a)

⊆ 1− 1

∥a∥
[0, ∥a∥]

= 1− [0, 1]

= [0, 1]

and so since x = x∗, ∥x∥ = r (x) ≤ 1. We are therefore justified to plug in x into (8.3) in order to get

b :=
√
a

=

√
∥a∥ 1

∥a∥
a

=
√
∥a∥

√
1−

(
1− 1

∥a∥
a

)

=
√

∥a∥

1−
∞∑
j=1

cj

(
1− 1

∥a∥
a

)j (8.4)

as a norm convergent series. Since the convergence is absolute we can square the series and re-arrange the terms
to obtain the fact that b2 = a. Since ∗ : A → A is norm continuous and the partial sums in the series for b are
self-adjoint, so is b itself. Moreover, b also has positive spectrum. Indeed, since cj > 0 and σ

(
1

∥a∥a
)
⊆ [0, 1], we get∥∥∥∥∥∥

∞∑
j=1

cj

(
1− 1

∥a∥
a

)j∥∥∥∥∥∥ ≤
∞∑
j=1

cj

∥∥∥∥∥
(
1− 1

∥a∥
a

)j∥∥∥∥∥
≤

∞∑
j=1

cj

∥∥∥∥1− 1

∥a∥
a

∥∥∥∥j

≤
∞∑
j=1

cj

= 1 .

So the spectral mapping theorem implies

σ

1−
∞∑
j=1

cj

(
1− 1

∥a∥
a

)j = 1− σ

 ∞∑
j=1

cj

(
1− 1

∥a∥
a

)j
⊆ 1− [−1, 1]

= [0, 2]

⊆ [0,∞) .

Since the series for b converges absolutely, it commutes with a.

Lemma 8.14 (The positive and negative parts of a self-adjoint element). Given any a ∈ A with a = a∗ we know
that σ (a) ⊆ R. Then by the spectral mapping σ

(
a2
)
⊆ [0,∞) and so by Theorem 8.13,

√
a2 exists as a self-adjoint

operator with positive spectrum. We then define the positive and negative parts of a as

a± :=
1

2

(√
a2 ± a

)
.

Then a± are self-adjoint elements with positive spectra such that a+a− = 0.
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Proof. First note that

a+a− =
1

4

(√
a2 + a

)(√
a2 − a

)
=

1

4

(
a2 − a2 −

√
a2a+ a

√
a2
)

=
1

4

[
a,
√
a2
]
.

But, from Lemma 8.12 it is clear that
√
a2 is a norm-convergent series in a2, and hence commutes with a.

Let pn be the polynomial approximation to
√
a2 up to order n:

pn :=
√

∥a2∥

1−
n∑
j=1

cj

(
1− 1

∥a2∥
a2
)j

= ∥a∥

1−
n∑
j=1

cj

(
1−

(
1

∥a∥
a

)2
)j

so that

2a± = lim
n

(pn ± a)

= ∥a∥ lim
n

1−
n∑
j=1

cj

(
1−

(
1

∥a∥
a

)2
)j

± 1

∥a∥
a

 .

One verifies that for any n ∈ N the polynomial

(−1, 1) ∋ α 7→ 1−
n∑
j=1

cj
(
1− α2

)j ± α

is positive and hence by Corollary 6.29, the spectrum of a± is contained in [0,∞).

Theorem 8.15 (Characterization of positive elements). a ∈ A is positive iff a = a∗ and σ (a) ⊆ [0,∞).

Proof. Assume first that a is positive, i.e., that a = |b|2. Then clearly |b|2 is self-adjoint and we are left to show that
σ
(
|b|2
)
⊆ [0,∞).

First let us show that if σ
(
− |a|2

)
⊆ [0,∞) then a = 0. Indeed, we first remark that using Lemma 6.30 we have

σ
(
|a|2
)
\ { 0 } = σ

(
|a∗|2

)
\ { 0 } .

Hence σ
(
− |a|2

)
⊆ [0,∞) implies σ

(
− |a∗|2

)
⊆ [0,∞). Let us write

a = b+ ic

where b = Re {a} ≡ 1
2 (a+ a∗) and c = Im {a} ≡ 1

2i (a− a∗). Then

|a|2 + |a∗|2 = (b+ ic)
∗
(b+ ic) + (b+ ic) (b+ ic)

∗

= (b− ic) (b+ ic) + (b+ ic) (b− ic)

= b2 − icb+ ibc+ c2 + b2 − ibc+ icb+ c2

= 2b2 + 2c2 .
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Hence |a|2 = 2b2+2c2+
(
− |a∗|2

)
. By the spectral mapping theorem Theorem 6.35, b2 and c2 have positive spectra,

and the sum of self-adjoint elements with positive spectra has positive spectra Lemma 8.11. Hence |a|2 has positive
spectra. But by assumption, σ

(
− |a|2

)
⊆ [0,∞), i.e.,

σ
(
|a|2
)
⊆ [0,∞) ∩ (−∞, 0] = { 0 }

so that
∥a∥2 =

∥∥∥|a|2∥∥∥ = r
(
|a|2
)
= 0

which implies a = 0 as desired.
Now since |a|2 =: b is Hermitian, so using Lemma 8.14 we may write

b = b+ − b−

with b± self-adjoint with positive spectrum, and b+b− = 0. Now with c := ab− we have

− |c|2 = −b−a∗ab−

= −b−bb−

= −b−
(
b+ − b−

)
b−

=
(
b−
)3
.

By the spectral mapping since σ (b−) ⊆ [0,∞), the same holds for the third power. Thus

σ
(
− |c|2

)
⊆ [0,∞)

so that by the first part of this proof, c = 0. Hence, ab− = 0 by Claim 8.2 so that b− = 0, i.e.,

b =
√
b2 .

But by Theorem 8.13
√
b2 has σ

(√
b2
)
⊆ [0,∞) so that

σ
(
|a|2
)
⊆ [0,∞) .

Conversely, assuming that a = a∗ has σ (a) ⊆ [0,∞), apply Theorem 8.13 to get
√
a which is self-adjoint and for

which (√
a
)∗ √

a =
(√
a
)√

a = a .

Thanks to this characterization of positive elements, we may extend
√
a2 from self-adjoints to arbitrary a ∈ A as√

a∗a ≡ |a|.

Lemma 8.16. The square root defined in Theorem 8.13 is actually unique: if a ≥ 0, and c ∈ A is such that: c ≥ 0,
c2 = a then c =

√
a.

Proof. Let b :=
√
a for convenience. We have

ca = c3 = ac

so that c commutes with a and hence with b. Thus

(b− c) b (b− c) + (b− c) c (b− c) = (b− c)
2
(b+ c) = (b− c)

(
b2 − c2

)
= (b− c) (a− a) = 0 .

But both (b− c) b (b− c) and (b− c) c (b− c) are positive: b− c is self-adjoint, and

w∗qw
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is clearly positive iff q is positive, so they are both zero separately (as in the proof of Theorem 8.15, we would have
the spectrum of a negative operator in [0,∞) which would imply that it is zero). Their difference is

(b− c)
3

= 0 .

But since b− c is self-adjoint, the C-star identity implies

∥(b− c)∥4 =
∥∥∥(b− c)

4
∥∥∥ = 0

so that b = c.

Corollary 8.17. For any a = a∗, a ≤ ∥a∥1 and if 0 ≤ a ≤ b then ∥a∥ ≤ ∥b∥.

Proof. For the first part, we have by the spectral mapping theorem that

σ (∥a∥1− a) = ∥a∥ − σ (a)

= ⊆ [0,∞)

but then, thanks to the above theorem, if ∥a∥1− a is self-adjoint and has positive spectrum, then it is positive.
Next, a ≤ b ≤ ∥b∥1 from which we find ∥b∥1− a having positive spectrum. But

σ (∥b∥1− a) = ∥b∥ − σ (a)

which means that σ (a) ⊆ [0, ∥b∥], i.e., ∥a∥ ≤ ∥b∥.

Corollary 8.18. If a = a∗ obeys a ≥ ε1 for some ε > 0 then a is invertible and
∥∥a−1

∥∥ ≤ 1
ε . This is an if and only

if condition.

Proof. By the above, we have
σ (a− ε1) = σ (a)− ε

positive, i.e., all points λ ∈ σ (a) for which a− λ1 is not invertible have λ ≥ ε > 0 so that a is invertible. Moreover,

σ
(
a−1

)
=

1

σ (a)

and we have
sup

∣∣σ (a−1
)∣∣ = 1

inf |σ (a)|
≤ 1

ε
.

But
∥∥a−1

∥∥ = r
(
a−1

)
≡ sup

∣∣σ (a−1
)∣∣.

Corollary 8.19. If a = a∗, b = b∗ with a invertible obeys 0 ≤ a ≤ b then 0 ≤ b−1 ≤ a−1.

Claim 8.20. σ (p) ⊆ { 0, 1 } for any self-adjoint projection p ∈ A. Furthermore, if p is normal with σ (p) ⊆ { 0, 1 }
then p is a self-adjoint projection.

Claim 8.21. If u is normal and σ (u) ⊆ S1 then u is unitary.

8.2 The GNS representation [extra]
Given a Hilbert space H, we have seen that B (H) serves as a model for a C-star algebra. It turns out that all C-star
algebras may be realized as sub-algebras of B (H) for some H, and this is the contents of this section. In this section we
mainly follow [Con19].
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8.2.1 Maximal ideals and homomorphisms

Recall from algebra that an ideal I in an algebra A is a subgroup with respect to addition, and moreover, is closed under
multiplication:

AI ⊆ I

IA ⊆ I .

(Strictly speaking what we formulated here is a two-sided ideal. One also speaks of left and right ideals). We may also
speak of maximal ideals (in the sense of set inclusion): An ideal I ⊊ A is maximal iff there is no other ideal J ⊊ A such
that

I ⊊ J ⊊ A .

According to this convention, maximal ideals are necessarily proper ideals.

Claim 8.22. Every proper ideal is contained in a maximal ideal.

Proof. Let
S := { J ⊊ A is a proper ideal | I ⊆ J } .

Then I ∈ S and S is partially ordered by set inclusion. If { Ji }i is a totally ordered subset of S, then J :=
⋃
i Ji is

also a proper ideal. So J is an upper bound on { Ji }i. So Zorn’s lemma yields that S has a maximal element.

Claim 8.23. Let A be an Abelian Banach algebra. Then a /∈ GA iff a ∈ M for some maximal ideal M.

Proof. Let M be a maximal ideal and let a ∈ M. If a ∈ GA then ∃a−1 ∈ A. Then a−1a ∈ M. But that implies
1 ∈ M, which means that M = A, in contradiction with M being maximal and hence proper. Hence if a ∈ M for
M maximal then a /∈ GA . Conversely, if a /∈ GA then consider the set

I := { ab | b ∈ A } .

This is a vector subspace which is also an ideal thanks to A being Abelian. It is also a proper ideal since a is not
invertible, so it can’t contain 1. But every proper ideal is contained in a maximal ideal, see Claim 8.22.

Claim 8.24. In a commutative Banach algebra A, every maximal ideal is closed.

Proof. The closure M of an ideal M is also an ideal. But as M is maximal, we must have either M = M or A = M.
But it can’t be the case that M = A. Indeed, we know that M ∩ GA = ∅ via the proof in Claim 8.23. Hence
M ⊆ GcA . But we know that GcA is closed (see Claim 6.6) so that M ⊆ GcA so that it can’t be that M = A.

Proposition 8.25. Let A be an Abelian Banach algebra. Then there is a bijection between the space of non-zero homo-
morphisms and maximal ideals.

Proof. Let M be a maximal ideal. Then since it is closed, A/M is a Banach algebra with identity. Let

π : A → A/M

be the quotient map. We will show that A/M ∼= C. Let a ∈ A. If π (a) /∈ GA/M, then

π (Aa) = π (a) (A/M)

is a proper ideal of A/M. Define

I := { b ∈ A : π (b) ∈ π (Aa) } = π−1 (π (Aa)) .

Then I is a proper ideal of A and M ⊆ I. But M is maximal, so M = I. Hence,

π (aA) ⊆ π (I) = π (M) = (0)
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so that π (a) = (0). I.e., A/M is a field. Thus Theorem 6.26 implies that

A/M = { z +M | z ∈ C } ∼= C .

Let

φ̃ : A/M → C

z +M 7→ z .

Then φ : A → C is defined via φ := φ̃ ◦ π. Hence we find that φ is a homomorphism and ker (φ) = M.
Conversely, if φ : A → C is a non-zero homomorphism, then ker (φ) is a proper ideal and A/ ker (φ) ∼= C again

by Theorem 6.26. So ker (φ) is maximal.
Lastly, if φ, φ̃ are two non-zero homomorphisms and ker (φ) = ker (φ̃), then there is some z ∈ C such that φ = αφ̃.

But
1 = φ (1) = αφ̃ (1) = α

so φ = φ̃.

Definition 8.26 (maximal ideal space for A). Let A be an Abelian Banach algebra and define

Σ := { φ : A → C | φ ̸= 0 ∧ φ is an algebra homomorphism }

with the weak-star topology as in Definition 5.13 (as a subset of A∗). Σ is called the maximal ideal space of A.

Theorem 8.27. If A is an Abelian Banach algebra then its maximal ideal space Σ is a compact Hausdorff space and

σ (a) = { h (a) | h ∈ Σ } (a ∈ A) .

Proof. For the first part the proof would follow very closely along the lines of Theorem 5.17 and so we omit it [see
[Con19] pp. 219 for details].

Let now φ ∈ Σ and λ = φ (a). Then by linearity, φ (a− λ1) = 0, i.e., a − λ1 ∈ ker (φ) so that by the
homomorphism property a− λ1 cannot be invertible, i.e., λ ∈ σ (a). Conversely, let λ ∈ σ (a). Hence a− λ1 is not
invertible, and so, (a− λ)A is a proper ideal. Let M be the maximal ideal in A containing (a− λ1)A, according
to Claim 8.22. Let φ ∈ Σ such that M = ker (φ), according to Proposition 8.25. Then

0 = φ (a− λ1) = φ (a)− λ

so that σ (a) ⊆ { h (a) | h ∈ Σ }.

Definition 8.28 (Gelfand transform). Let A be an Abelian Banach algebra with maximal ideal space Σ. For any
a ∈ A, define the Gelfand transform of a as the function â : Σ → C given by

â (φ) := φ (a) (φ ∈ Σ) .

Theorem 8.29. Let A be an Abelian Banach algebra with maximal ideal space Σ. Then the Gelfand transform maps
A into C (Σ) continuously as a homomorphism with norm 1, and kernel⋂

{M ⊆ A | M is a maximal ideal ofA } .

Proof. See [Con19] Theorem 8.9.

8.2.2 Representations of C-star algebras

81



Definition 8.30 (Representation). Given a C-star algebra A, a representation of it is a pair (π,H) where H is a
Hilbert space and

π : A → B (H)

is a star-homomorphism, with π (1A) = 1B(H).

Definition 8.31. A representation π : A → B (H) of a C-star algebra is cyclic iff there exists a vector ψ in H such
that

π (A)ψ = H .

Two representations are said to be equivalent iff there exists a unitary

U : H1 → H2

with

Uπ1 (a)U
−1 = π2 (a) (a ∈ A) .

Theorem 8.32. If π is a representation of a C-star algebra A then there is a family of cyclic representations
{ πi : A → B (Hi) }i such that π and

⊕
i πi are equivalent.

Proof. See [Con19] Theorem VIII.5.9.

8.2.3 States on C-star algebras

Definition 8.33. A state ρ on a C-star algebra A is a linear functional ρ : A → C which is positive (i.e. ρ (a) ≥ 0
whenever a ≥ 0) and has ∥ρ∥op = 1.

8.2.4 The Gelfand-Naimark-Segal construction

Theorem 8.34. Let A be a C-star algebra. Then:

1. If ρ : A → C is a positive linear function on A, then there exists a cyclic representation (πρ,Hρ) of A with
cyclic vector ψ such that

ρ (a) = ⟨ψ, πψ (a)ψ⟩ (a ∈ A) .

2. If (π,H) is a cyclic representation of A with cyclic vector ψ and

ρ (a) := ⟨ψ, π (a)ψ⟩ (a ∈ A)

and if (πρ,Hρ) is constructed as in the first item, then π and πρ are unitarily equivalent.

Theorem 8.35. If A is a C-star algebra then there exists a representation (π,H) of A such that π is an isometry.
If A is separable, then H may be chosen as separable.

8.3 The continuous functional calculus [extra]

Theorem 8.36. Let A be an Abelian C-star algebra and Σ its maximal ideal space. Then the Gelfand transform
γ : A → C (Σ) is an isometric star-isomoprhims of A onto C (Σ).

Proposition 8.37. Let A be an Abelian C-star algebra with maximal ideal space Σ and a ∈ A such that A = C∗ (a),
i.e., A is the C-star algebra generated by a. Then the map

τ : Σ → σ (a)
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defined by
τ (φ) := φ (a)

is a homeomoprhism, and if p (z, z) is a polynomial and γ : A → C (Σ) is the Gelfand transform, then

γ (p (a, a∗)) = p ◦ τ .

Definition 8.38. Let A be a C-star algebra and a ∈ A be normal (so that C∗ (a) is an Abelian C-star algebra).
Define

ρ : C (σ (a)) → C∗ (a)

as follows. Any f ∈ C (σ (a)) is the limit of polynomials pn (z, z). We thus define

f 7→ lim
n
pn (a, a

∗) .

We thus identify ρ (f) as f (a), the functional calculus of a.

Theorem 8.39. If A is a C-star algebra and a is a normal element of A then the functional calculus has the following
properties:

1. f 7→ f (a) is a star-monomorphism.

2. ∥f (a)∥ = ∥f∥∞.

3. f 7→ f (a) is an extension of the holomorphism functional calculus.

Theorem 8.40. For any normal a ∈ A in a C-star algebra, there is a unique ∗-algebra morphism

C (σ (a) → C) → C∗ (1A , a)

which maps z 7→ z into a. It agrees with the polynomial functional calculus, and maps z 7→ z into a∗.

9 Bounded operators on Hilbert space
We begin with yet another characterization of the operator norm in Hilbert spaces:

Claim 9.1. We have for any A ∈ B (H) that

∥A∥op = sup ({ |⟨φ,Aψ⟩| | ∥φ∥ = ∥ψ∥ = 1 }) .

9.1 Normals, unitaries, projections and positive elements in Hilbert space
This section should be contrasted with the corresponding one above for C-star algebras. Here we concentrate on further
information or characterizations that are enabled by the structure of the Hilbert space.

Claim 9.2. On a Hilbert space, A ∈ B (H) is normal iff

∥Aφ∥ = ∥A∗φ∥ (φ ∈ H) .

Proof. We have
∥Aφ∥2 = ⟨Aφ,Aφ⟩ =

〈
φ, |A|2 φ

〉
.

Now since A is normal, |A|2 = |A∗|2, so this equals〈
φ, |A∗|2 φ

〉
= ⟨A∗φ,A∗φ⟩ = ∥A∗φ∥2 .

These relations are equivalences thanks to Corollary 7.12.
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Corollary 9.3. If A ∈ B (H) is normal then

1. ker (A) = ker (A∗).

2. im (A) is dense in H iff A is injective.

3. A is invertible iff ∃δ > 0 such that ∥Aψ∥ ≥ δ∥ψ∥ for all ψ ∈ H.

4. If Aψ = λψ for some ψ ∈ H, λ ∈ C then A∗ψ = λψ.

5. If λ, µ are two distinct eigenvalues of A then the corresponding eigenspaces are orthogonal to each other.

Proof. The first statement is an immediate corollary of the preceding claim. We also have im (A)
⊥
= ker (A∗) which

implies the second statement. By [TODO: cite correct lemma], the third item implies im (A) is closed, hence the
second item implies im (A) = H so that A is invertible; the converse is the open mapping theorem. For the fourth
item, consider ker (A− λ1) and the first item. Finally, if ψ,φ are two eigenvectors of λ, µ respectively, then

λ ⟨ψ,φ⟩ = ⟨λψ, φ⟩ = ⟨Aψ,φ⟩ = ⟨ψ,A∗φ⟩ = ⟨ψ, µφ⟩ = µ ⟨ψ,φ⟩

But λ ̸= µ, so ⟨ψ,φ⟩ = 0.

Claim 9.4. If U ∈ B (H) then the following are equivalent:

1. U is unitary.

2. im (U) = H and ⟨Uψ,Uφ⟩ = ⟨ψ,φ⟩.

3. im (U) = H and ∥Uψ∥ = ∥ψ∥.

Each of the following properties implies the others for an idempotent P ∈ B (H):

1. P = P ∗.

2. |P |2 = |P ∗|2.

3. im (P ) = ker (P )
⊥.

4. ⟨ψ, Pψ⟩ = ∥Pψ∥2.

Moreover, self-adjoint projections P,Q have im (P ) ⊥ im (Q) iff PQ = 0.

We have already seen above in the chapter about C-star algebras various characterizations of an operator A ∈ B (H)

being positive A ≥ 0 (which we use to mean A = |B|2 for some B ∈ B (H)).

Lemma 9.5. For A ∈ B (H) the following two are equivalent: (1) A ≥ 0 and (2) A = A∗ and

⟨ψ,Aψ⟩ ≥ 0 (ψ ∈ H) .

Proof. Clearly one direction is trivial:

⟨ψ,Aψ⟩ =
〈
ψ, |B|2 ψ

〉
= ∥Bψ∥2 ≥ 0 .

Conversely, assume A = A∗ and ⟨ψ,Aψ⟩ ≥ 0 for all vectors ψ. Let λ ∈ σ (A). Since A is self-adjoint, using the Weyl
criterion [TODO: cite] we know that there is a sequence { φn }n such that ∥φn∥ = 1 and ∥(A− λ1)φn∥ → 0. Then
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for any ε > 0 there is some Nε ∈ N such that for all n ∈ N≥Nε we have

⟨φn, (A− λ1)φn⟩ ≤ |⟨φn, (A− λ1)φn⟩|
(Cauchy-Schwarz)

≤ ∥φn∥∥(A− λ1)φn∥
(Assumption on {φn}n)

< ε

Hence for such n ∈ N≥Nε we find that

λ = λ∥φn∥2

= ⟨φn, λφn⟩
> ⟨φn, Aφn⟩ − ε

Note that the first term on the RHS is always ≥ 0 by our hypothesis. Now as we send ε → 0 we learn that λ ≥ 0,
which is what we wanted to prove. We then conclude by Theorem 8.15.

9.2 The weak and strong operator topologies on B (H)

In addition to the operator norm topology on B (H) we have

Definition 9.6 (Strong operator topology). Openstrong (B (H)) is the initial topology w.r.t. all the maps

Eψ : B (H) → H

A 7→ Aψ

as ψ ranges in H. A sequence {An }n converges to some A iff

Anψ → Aψ

in H for any ψ ∈ H (i.e., it is not uniform in ψ).

Definition 9.7 (Weak operator topology). Openstrong (B (H)) is the initial topology w.r.t. all the maps

Eψ,φ : B (H) → C

A 7→ ⟨ψ,Aφ⟩

as ψ,φ range in H. A sequence {An }n converges to some A iff

⟨ψ,Anφ⟩ → ⟨ψ,Aφ⟩

for all ψ,φ ∈ H iff Anφ→ Aφ in the weak topology on H (considered as a Banach space, as defined in in Definition 5.6).

Remark 9.8. Note that not all bounded linear functionals on B (H) are of the form

⟨ψ, ·φ⟩

for some ψ,φ and hence the weak topology on B (H) (considered as a Banach space as in Definition 5.6) is not as
weak as the weak operator topology. Since ⟨ψ, ·φ⟩ ∈ (B (H))

∗ it is clear that weak convergence implies weak operator
convergence, but not vice versa. Using the identification

B (H) ∼= H⊗H∗

we may identify
(B (H))

∗ ∼= H∗ ⊗H

and hence ⟨ψ, ·φ⟩ as ψ∗ ⊗ φ. In this regard the distinction between the weak operator topology on B (H) and the
weak topology on B (H) (when considered as a Banach space, as in Definition 5.6) is that the weak operator topology
only considers the simple tensors within H∗ ⊗H.
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Claim 9.9. Norm convergence implies strong convergence implies weak convergence. All of these not vice versa.

Proof. If we have An → A in norm, then

∥(An −A)ψ∥ ≤ ∥An −A∥∥ψ∥

so that we have strong convergence. Similarly, if we have An → A strongly then

|⟨φ, (An −A)ψ⟩| ≤ ∥φ∥∥(An −A)ψ∥

so that An → A weakly.

Example 9.10 (Strong does not imply norm). On H = ℓ2 (N), let Pj := ej ⊗ e∗j where { ej }∞j=1 is the standard
orthonormal basis (in physics, the “position” basis). Then ∥Pj∥ = 1 for any j, and yet,

∥Pjψ∥ ≡ |ψj | → 0

since ψ ∈ ℓ2. So { Pj }j converges strongly to zero but does not converge in norm.

Example 9.11 (weak does not imply strong). Again on H := ℓ2 (N), let R be the unilateral right shift operator:

R (ψ1, ψ2, . . . ) ≡ (0, ψ1, ψ2, . . . )
(
ψ ∈ ℓ2

)
.

Then An := Rn converges weakly to zero:

|⟨φ,Anψ⟩| ≡ |⟨φ,Rnψ⟩|

=

∣∣∣∣∣∣
∞∑

j=n+1

φjψj−n

∣∣∣∣∣∣
≤

√√√√ ∞∑
j=n+1

∥φj∥2∥ψ∥ (Cauchy-Schwarz)

→ 0 as n→ ∞ .

On the other hand, this sequence cannot converge strongly to zero since

∥Anψ∥2 =

∞∑
j=1

∣∣∣(Anψ)j∣∣∣2 =

∞∑
j=n+1

|ψj−n|2 = ∥ψ∥2 .

Example 9.12 (An example of something that actually converges in norm). On any Hilbert space, consider An := 1
n1

which converges in norm to 0 as n→ ∞.

Lemma 9.13. When the Hilbert space H has an orthonormal basis { en }∞n=1 then for each A ∈ B (H), the sequence

N∑
n,m=1

⟨en, Aem⟩ en ⊗ e∗m

converges strongly as N → ∞.
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Proof. Let ψ ∈ H be given. Then∥∥∥∥∥
(
A−

N∑
n,m=1

⟨en, Aem⟩ en ⊗ e∗m

)
ψ

∥∥∥∥∥
2

=

∥∥∥∥∥Aψ −
N∑

n,m=1

⟨em, ψ⟩ ⟨en, Aem⟩ en

∥∥∥∥∥
2

=

∞∑
l=1

∣∣∣∣∣
〈
el,

[
Aψ −

N∑
n,m=1

⟨em, ψ⟩ ⟨en, Aem⟩ en

]〉∣∣∣∣∣
2

=

∞∑
l=1

∣∣∣∣∣⟨el, Aψ⟩ −
N∑
m=1

⟨em, ψ⟩ ⟨el, Aem⟩χ{ 1,...,N } (l)

∣∣∣∣∣
2

=

∞∑
l=1

∣∣∣∣∣
∞∑
m=1

⟨el, Aem⟩ ⟨em, ψ⟩ −
N∑
m=1

⟨em, ψ⟩ ⟨el, Aem⟩χ{ 1,...,N } (l)

∣∣∣∣∣
2

=

N∑
l=1

∣∣∣∣∣
∞∑
m=1

⟨el, Aem⟩ ⟨em, ψ⟩ −
N∑
m=1

⟨em, ψ⟩ ⟨el, Aem⟩

∣∣∣∣∣
2

+

+

∞∑
l=N+1

∣∣∣∣∣
∞∑
m=1

⟨el, Aem⟩ ⟨em, ψ⟩

∣∣∣∣∣
2

=

N∑
l=1

∣∣∣∣∣
∞∑

m=N+1

⟨el, Aem⟩ ⟨em, ψ⟩

∣∣∣∣∣
2

+

∞∑
l=N+1

∣∣∣∣∣
∞∑
m=1

⟨el, Aem⟩ ⟨em, ψ⟩

∣∣∣∣∣
2

=

N∑
l=1

∣∣∣∣∣
∞∑

m=N+1

⟨el, Aem⟩ ⟨em, ψ⟩

∣∣∣∣∣
2

+

∞∑
l=N+1

|⟨el, Aψ⟩|2 .

Now, the second term converges to zero as N → ∞ since

∞∑
l=1

|⟨el, Aψ⟩|2 ≡ ∥Aψ∥2 ≤ ∥A∥∥ψ∥ <∞ .

The first term converges to zero as N → ∞ since

∞∑
l=1

∣∣∣∣∣
∞∑
m=1

⟨el, Aem⟩ ⟨em, ψ⟩

∣∣∣∣∣
2

=

∞∑
l=1

|⟨el, Aψ⟩|2 = ∥Aψ∥ ≤ ∥A∥∥ψ∥ <∞ .

9.3 The spectrum
We have already discussed the spectrum of elements of a Banach algebra, and B (H) is an example of a Banach algebra.
Here we want to refine the discussion with the new structure coming from the Hilbert space.

Definition 9.14 (Point spectrum). The point spectrum of A ∈ B (H) is defined as

σp (A) ≡ { λ ∈ C | ker (A− λ1) ̸= { 0 } } .

In particular, this is the set of numbers for which A−λ1 is not injective, i.e., for which there exists some ψ ∈ H\{ 0 }
for which

Aψ = λψ .

In this context, ψ is called an eigenvector of A and λ the corresponding eigenvalue.

Contrast this with the general definition of a point λ ∈ σ (A) which required that A− λ1 is not invertible. Hence we
are asking for less now so that

σp (A) ⊆ σ (A)
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clearly. Also, the points λ ∈ C at which A−λ1 is not invertible but is injective are those for which A−λ1 is not surjective:
im (A− λ1) ̸= H. We further decompose this set as follows:

Definition 9.15 (Continuous spectrum). The continuous spectrum of A ∈ B (H) is given by

σc (A) ≡
{
λ ∈ σp (A)

c
∣∣∣ im (A− λ1) ̸= H ∧ im (A− λ1) = H

}
.

Definition 9.16 (Residual spectrum). The residual spectrum of A ∈ B (H) is given by

σr (A) ≡ σ (A) \
(
σp (A)

⋃
σc (A)

)
.

The residual spectrum may be characterized as those points λ ∈ C for which A − λ1 is injective, but for which
im (A− λ1) is a proper but not dense subspace of H.

Remark 9.17. Clearly if H ∼= Cn then σ (A) = σp (A) for any A ∈ B (H).

Example 9.18. Let A on ℓ2 (N) be given by

(Aψ)n =
1

n
ψn

(
ψ ∈ ℓ2;n ≥ 1

)
.

Then
σp (A) =

{
1

n

∣∣∣∣ n ≥ 1

}
.

Indeed, the eigenvectors of A are the elements of the orthonormal basis { en }n∈N with eigenvalues 1
n . However, since

the spectrum is closed we must also have 0 ∈ σ (A). But zero is not an eigenvalue: indeed, if A were invertible then
its inverse would be (

A−1ψ
)
n
= nψn

which is clearly not bounded. Let us see that A is self-adjoint: For any φ,ψ ∈ H,

⟨φ,A∗ψ⟩ ≡ ⟨Aφ,ψ⟩ ≡
∑
n∈N

(Aφ)nψn =
∑
n∈N

1

n
φnψn =

∑
n∈N

1

n
φnψn =

∑
n∈N

φn (Aψ)n ≡ ⟨φ,Aψ⟩ .

Later we will see that self-adjoint operators have no residual spectrum. Hence 0 ∈ σc (A).

Example 9.19. Let X on L2 ([0, 1] → C) be given by

(Xψ) (x) = xψ (x) .

One has to verify this operator is well-defined and bounded. Then

σ (X) = σc (X) .

One should think of the eigenvectors as the Dirac delta functions at each point in [0, 1]. These are clearly not L2

functions but rather distributions and hence they cannot contribute to the point spectrum of X, which is empty.

Claim 9.20. λ ∈ σr (A
∗) implies that λ ∈ σp (A). Conversely, λ ∈ σp (A) implies λ ∈ σr (A

∗) ∪ σp (A∗).

Proof. First assume that λ ∈ σr (A
∗). Then im

(
A∗ − λ1

)
is a proper closed subspace of H, so its complement is

not zero. But by Claim 7.8 and Theorem 7.17 we have(
im
(
A∗ − λ1

))⊥
=
(
im
(
A∗ − λ1

))⊥
= ker (A− λ1)

which is, as we just said, is non-empty, so λ ∈ σp (A).
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Conversely, if λ ∈ σp (A) then as we just saw,(
im
(
A∗ − λ1

))⊥
̸= { 0 } .

This could either mean that λ ∈ σr (A
∗), unless, it somehow happened that also ker

(
A∗ − λ1

)
̸= { 0 }, in which

case, λ ∈ σp (A
∗).

Theorem 9.21. If A ∈ B (H) is self-adjoint then σr (A) = ∅ and eigenvectors corresponding to distinct eigenvalues
of A are orthogonal.

Proof. Thanks to Claim 8.9 and Claim 9.20 we have that if λ ∈ σr (A), then λ ∈ σp (A). But by definition,

σr (A) ∩ σp (A) = ∅!

Next, assume that Aψ = λψ and Aφ = µφ. We want to show that if λ ̸= µ then ψ ⊥ φ. To that end, assume that
λ ̸= 0 (WLOG; it can’t be that both are zero!). Then

⟨ψ,φ⟩ = 1

λ
λ ⟨ψ,φ⟩ = 1

λ
⟨λψ, φ⟩ = 1

λ
⟨Aψ,φ⟩ = 1

λ
⟨ψ,Aφ⟩ = µ

λ
⟨ψ,φ⟩ .

But via Claim 8.9 we know that λ = λ and so either µ
λ = 1 or ⟨ψ,φ⟩ = 0 as desired.

9.3.1 The Weyl criterion for the spectrum

Theorem 9.22 (Weyl’s criterion). For any A = A∗ ∈ B (H), λ ∈ σ (A) iff there exists some { φn }n∈N with ∥φn∥ = 1
such that

lim
n
∥(A− λ1)φn∥ = 0 .

The sequence { φn }n is called a Weyl sequence.

Proof. Assume that λ /∈ σ (A). Then 0 /∈ σ (A− λ1), or by spectral mapping 0 /∈ σ
(
(A− λ1)

2
)
. But thanks to self-

adjointness, this means 0 /∈ σ
(
|A− λ1|2

)
. Since |A− λ1|2 ≥ 0, it being invertible is tantamount to|A− λ1|2 ≥ ε1

for some ε > 0, which means that

∥(A− λ1)φn∥2 =
〈
φn, |A− λ1|2 φn

〉
≥ ε∥φn∥2 = ε .

Hence no normalized sequence { φn }n may converge to zero.
Conversely, if for all { φn }n∈N with ∥φn∥ = 1,

lim
n
∥(A− λ1)φn∥ ≠ 0

then there exists some ε > 0 such that

∥(A− λ1)ψ∥2 ≥ ε∥ψ∥2 (ψ ∈ H) .

This implies that A − λ1 is injective. As we have seen, this condition also implies the closed range of A − λ1
Lemma 7.20. Since A has no residual spectrum Theorem 9.21, this means that A− λ1 is surjective, i.e., it can’t be
that λ ∈ σ (A).

9.4 The polar decomposition
One should have basic knowledge of the polar decomposition for n× n complex matrices: For any A ∈ Matn×n (C) there
is a partial isometry U such that

A = U |A|
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where |A| ≡
√
A∗A ≥ 0. For matrices

√
A∗A is understood as follows: A∗A is normal, so we may diagonalize to define its

square root. The proof of the existence of the polar decomposition for matrices follows via the singular-value decomposition:
there exist to partial isometries W,V such that

A =WΣV ∗ = (WV ∗)︸ ︷︷ ︸
=:U

(V ΣV ∗)︸ ︷︷ ︸
=:|A|

.

It turns out that this is also true for operators.

Remark 9.23. Note that for matrices U may always be extended from a partial isometry to a unitary, since whatever
kernel A has may be captured by |A|. Not so for operators on infinite dimensional Hilbert space. If U is a partial
isometry, it is isometric on ker (U)

⊥, so its image is closed, and we may write

U : ker (U)⊕ ker (U)
⊥ → im (U)

⊥ ⊕ im (U) .

Then it is clear that U may be extended to a unitary iff dimker (U) = dim im (U)
⊥. For those who know: this happens

when U is Fredholm of index zero, or, if it’s not Fredholm as both of these spaces are infinite dimensional (hence they
are isomorphic). We shall see this more systematically later below.

We have already encountered the notion of partial isometries in Definition 8.1 in the context of C-star algebras. Here
we give another characterization in Hilbert space:

Lemma 9.24. U ∈ B (H) is a partial isometry iff U is an isometry on ker (U)
⊥, i.e., ∥Uψ∥ = ∥ψ∥ for all ψ ∈

ker (U)
⊥.

Proof. Let U ∈ B (H) be a partial isometry. Then |U |2 is a self-adjoint projection and so is |U∗|2. We have
ker (U) = ker

(
|U |2

)
, so that

ψ ∈ ker (U)
⊥
= ker

(
|U |2

)⊥
= im

(
|U |2

)
implies ψ is in the range of the projection |U |2. But for any projection P , if ψ ∈ im (P ), Pψ = ψ. Hence on
im
(
|U |2

)
, |U |2 acts as the identity: |U |2 ψ = ψ. Thus,

∥Uψ∥2 =
〈
ψ, |U |2 ψ

〉
= ∥ψ∥2

as desired. Conversely, if U is an isometry on ker (U)
⊥, then by definition ψ ∈ ker (U)

⊥we have |U |2 ψ = ψ. Using
the decomposition

H = ker (U)⊕ ker (U)
⊥

we then have for general ψ = ψ1 + ψ2,(
|U |4 − |U |2

)
ψ =

(
|U |4 − |U |2

)
(ψ1 + ψ2)

=
(
|U |4 − |U |2

)
ψ2

= ψ2 − ψ2

= 0

so |U |2 is indeed an idempotent.

Hence, for a partial isometry U , since the range of an isometry is always closed, we may write

U : ker (U)⊕ ker (U)
⊥ → im (U)⊕ im (U)

⊥

and consider

Ũ : ker (U)
⊥ → im (U)

ψ 7→ Uψ
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as an isometric isomorphism. ker (U)
⊥ is called the initial subspace and im (U) the final subspace. Similarly,

Ũ∗ : im (U) → ker (U)
⊥

is also an isometric isomorphism which is the inverse of Ũ . We have that |U |2 as a self-adjoint projection onto the initial
and |U∗|2 a self-adjoint projection onto the final subspace.

Theorem 9.25. Let A ∈ B (H). Then there is a partial isometry U ∈ B (H) such that

A = U |A|

where |A| =
√
A∗A. U is uniquely determined by constraining ker (U) = ker (A). Moreover, we have im (U) = im (A).

In particular, we have uniqueness in the sense that if

A =WP

for some W,P ∈ B (H) with W a partial isometry with ker (W ) = ker (P ) and P ≥ 0 then P = |A| and W = U .

Note that if A is invertible then |A| is also invertible and positive (using the holomorphic functional calculus). Then
we may define

U := A |A|−1

and verify it is unitary. Indeed, U is easily an isometry:

|U |2 ≡
(
A |A|−1

)∗
A |A|−1

= |A|−1 |A|2 |A|−1

= 1 .

Whence we learn it is a partial isometry. But an invertible partial isometry is a unitary.

Example 9.26. The right shift R on ℓ2 (N) has

|R|2 ≡ R∗R = 1

but
|R∗|2 = RR∗ = 1− e1 ⊗ e∗1

so that R is not unitary, but is an isometry and a partial isometry. Hence |R| = 1 and so the polar decomposition is

R = U1

with U := R, a partial isometry.

Proof of Theorem 9.25. For the general case (not assuming A is invertible), define

U : im (|A|) → im (A)

by
U |A|ψ := Aψ .

U is well-defined: if |A|ψ = |A|φ then

∥Aψ −Aφ∥ = ∥A (ψ − φ)∥ ⋆
= ∥|A| (ψ − φ)∥ = 0

where in ⋆ we use
∥Aψ∥2 = ⟨Aψ,Aψ⟩ =

〈
ψ, |A|2 ψ

〉
= ⟨|A|ψ, |A|ψ⟩ = ∥|A|ψ∥2 .

I.e.,

∥U |A|ψ∥ ≡ ∥Aψ∥ = ∥|A|ψ∥
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so that U is an isometry. Let us extend U to an isometry

Ũ : im (|A|) → im (A) (9.1)

as follows. Let ψ ∈ im (|A|). Then there is some { φn } ⊆ H so that |A|φn → ψ. Define

Ũψ := lim
n
Aφn .

This limit exists because

∥Aφn −Aφm∥ = ∥A (φn − φm)∥ = ∥|A| (φn − φm)∥

and the latter expression is arbitrarily small as |A|φn converges. Thus Aφn converges to some element in im (A).

Next, Ũ may further be extended to an operator H → H by extending to zero on
(
im (|A|)

)⊥
. Since |A| is

self-adjoint, we have via Theorem 7.17 that im (|A|)
⊥
= ker (|A|). So

ker (U) = ker (|A|) = ker (A) .

To prove uniqueness, assume that

A = UP

for some partial isometry U and positive P . Then

|A|2 = PU∗UP = P |U |2 P

and we assume that |U |2 is a projection onto the image of P (since ker
(
|U |2

)
= ker (U) = ker (P )). So

|A|2 = P 2 .

By uniqueness of the positive square root this implies P = |A|. So

U |A| = W |A|

so that U and W agree on im (|A|) which is their initial space, so U =W .

Claim 9.27. U is the strong-limit of polynomials in A and A∗.

Proof. [TODO, once we have the functional calculus]

Theorem 9.28 (SVD of operators). Given the polar decomposition, we may form a singular-value decomposition for
operators: Given any A ∈ B (H), there are two partial isometries W,V and a positive operator D ≥ 0 such that

A =WDV ∗ .

The eigenvalues of D are called the singular values of the operator.

Proof. [TODO, but requires spectral theorem so perhaps move downwards]

9.5 Compact operators
In infinite dimensional Hilbert spaces, compact operators may be considered as those operators which mostly resemble
finite dimensional matrices embedded in B (H), or as limits of such.
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Definition 9.29 (finite-rank operator). An operator A ∈ B (H) is called of finite rank iff im (A) is a finite-dimensional
subspace of H.

Claim 9.30. A ∈ B (H) is of finite rank iff

A =

N∑
n=1

αnφn ⊗ ψ∗
n

where N ∈ N (the rank of the operator), { αn }Nn=1 ⊆ [0,∞) are the singular values of A, and { φn }n∈N, { ψn }n∈N
are two orthonormal bases of H.

Proof. Since im (A) is finite-dimensional of dimension N , it is closed. So we may write

H = im (A)⊕ (im (A))
⊥
.

Furthermore, we always have
H = ker (A)

⊥ ⊕ ker (A) .

In this decomposition,
A : ker (A)

⊥ ⊕ ker (A) → im (A)⊕ (im (A))
⊥

and

A =

[
Ã 0
0 0

]
with Ã : ker (A)

⊥ → im (A) being an isomorphism, which means that ker (A)
⊥ is finite dimensional of dimension N

as well and Ã is really an invertible matrix. Then let us write an SVD of

Ã =WDV ∗

with D ≥ 0 diagonal and V,W : im (A) → ker (A)
⊥ unitary. Then Λ is the diagonal given by α1, . . . , aN , which are

the singular values and let { ψn }Nn=1 be the columns of V , { φn }Nn=1 be the columns of W . Complete these two
orthonormal sets into bases of H to get the result.

Example 9.31. The operator u⊗ v∗ for any two u, v ∈ H is of finite rank. Indeed, it is of rank 1. The operator 1 is
not of finite rank, and neither is, e.g., exp

(
−X2

)
on ℓ2 (N).

Definition 9.32 (Compact operator). An operator A ∈ B (H) is compact iff it is the norm limit of finite-rank
operators. I.e., if it may be written as

A = lim
N→∞

N∑
n=1

αnφn ⊗ ψ∗
n (9.2)

with { αn }Nn=1 ⊆ [0,∞) and { φn }n∈N, { ψn }n∈N are two orthonormal bases of H.

Remark 9.33. Clearly A is compact if it is finite rank.

We also want a characterization of compact operators which holds valid in Banach spaces:

Lemma 9.34 (Another characterization of compact operators). The following are equivalent for a given A ∈ B (H):

1. A is compact.

2. For any bounded sequence { ψn }n ⊆ H, {Aψn }n has a subsequence which converges.

3. For any bounded B ⊆ H, A (B) is a compact set in H.
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Proof. [TODO: fix this] Assume that A ∈ B (X → Y ) is compact and let B ⊆ X be bounded. We want to show
A (B) is compact. We use the sequential criterion of compactness, so let { φn } ⊆ A (B). Hence each φn has some
ψn ∈ B such that

∥Aψn − φn∥ ≤ 2−n .

Since B is bounded, { ψn }n is a bounded sequence, and so {Aψn }n has a subsequence which converges. But then
the above inequality implies φn must converge to the same limit as that subsequence.

Conversely, let { ψn }n ⊆ X be a bounded sequence. Then its range is a bounded set so that the closure of its
image is compact, admitting a convergent subsequence.

Finally, assume A is compact, i.e., A = limnAn in norm and An are finite rank. Clearly finite rank operators
obey the property that the closure of the image of a bounded set is compact: Let A be finite rank and B be bounded.
Then if ψ ∈ B,

N∑
j=1

αnφn ⊗ ψ∗
nψ =

N∑
j=1

αn ⟨ψn, ψ⟩φn

and hence

∥Aψ∥ ≤
N∑
j=1

αn |⟨ψn, ψ⟩| ∥φn∥ ≤

(
sup
ψ∈B

∥ψ∥

)
N∑
j=1

αn

sup
ψ∈B:∥ψ∥=1

∥Aψ∥

so A (B) is bounded and finite dimensional, so by the Heine-Borel property for finite-dimensional Euclidean spaces,
A (B) is compact indeed. Now using Lemma 9.35 below, we get condition (3).

Conversely, assume condition (3). Since A (B) is compact, it is separable. Hence, im (A) is a separable subspace
of H. Let { ej }j be a basis for im (A) and let Pn be the projection onto { ej }nj=1. Set An := PnA. Then each An
has finite rank and we claim that An → A in norm. First, strongly:

(An −A)ψ = P⊥
n Aψ

= P⊥
n

∞∑
j=1

⟨ej , Aψ⟩ ej

=

∞∑
j=n+1

⟨ej , Aψ⟩ ej

and hence

∥(An −A)ψ∥2 =

∞∑
j=n+1

|⟨ej , Aψ⟩|2 .

So, ∥(An −A)ψ∥ → 0 as this latter sum is finite for n = 0 by ∥Aψ∥ <∞. Next, for the norm convergence, if ε > 0,
there are vectors ψ1, . . . , ψm in the unit ball B of H such that

A (B) ⊆
m⋃
j=1

Bε/3 (Aψj) .

Now if ψ ∈ B, let j such that ∥Aψ −Aψj∥ < 1
3ε. Hence for any n,

∥Aψ −Anψ∥ ≤ ∥Aψ −Aψj∥+ ∥Aψj −Anψj∥+ ∥Pn (Aψj −Aψ)∥
≤ 2∥Aψ −Aψj∥+ ∥Aψj −Anψj∥

≤ 2

3
ε+ ∥Aψj −Anψj∥ .

Using the strong convergence, we may find some n0 ∈ N with ∥Aψj −Anψj∥ < 1
3ε for all j = 1, . . . ,m and n ≥ n0. Hence

∥Aψ −Anψ∥ < ε uniformly in ψ ∈ B. Thus A→ An in norm.
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Lemma 9.35. If An is a sequence of operators such that for any bounded B ⊆ H, An (B) is a compact set in H,
and An → A, then also A (B) is a compact subset.

Proof. [TODO: fix this] Let ε > 0 such that

∥A−An∥ <
1

3
ε

for all n sufficiently large. Since An is compact, for any ε > 0 there are vectors ψ1, . . . , ψm ⊆ B such that

An (B) ⊆
m⋃
j=1

Bε/3 (Anψj) .

Then given ψ ∈ B, there is some j so that

∥Anψj −Anψ∥ ≤ 1

3
ε .

Thus

∥Aψj −Aψ∥ ≤ ∥Aψj −Anψj∥+ ∥Anψj −Anψ∥+ ∥Anψ −Aψ∥

≤ 2∥A−An∥+
1

3
ε

≤ ε .

Thus A (B) ⊆
⋃m
j=1Bε (Aψj).

Corollary 9.36. Using the above two results in conjunction, we learn that the norm limit of a compact sequence is
compact.

Theorem 9.37. The compact operators K (H) form a norm-closed two-sided-star-ideal: if A,K ∈ B (H) with K
compact then AK,KA are both compact, and K∗ is compact.

Proof. This is obvious from the fact ∗ : B (H) → B (H) is norm continuous and the canonical representation (9.2).
Next, for the two-sided ideal statement, clearly if K = limn Fn, then AK = A limn Fn = limnAFn. But each

AFn is a finite rank operator and hence their limit is compact.

Example 9.38. An example of a compact operator which is not finite rank: 1
X on ℓ2 (N).

In fact,

Claim 9.39. If A is a multiplication operator w.r.t. some ONB { en }n of H then A is compact iff

⟨en, Aen⟩ ≡ Ann → 0 (n→ ∞) .

Proof. First assume that Ann → 0. Then as above, define

AN := PNA

(projection onto the first N coordinates.) AN is a bounded finite rank operator, with∥∥A−AN
∥∥ ≤ sup

n>N
|Ann| → 0 .

But finite rank operators are compact, and limits of compact are compact, we have exhibited A as the limit of
compact operators.
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Conversely, if Ann does not tend to zero, then there is some subsequence for which

|Ank | ≥ ε .

If { ej }j is an ONB (a bounded sequence) then Aenk = Ankenk should have a convergent subsequence. But en → 0
weakly, which implies Aen → 0 weakly. Hence there is a subsequence Aenk → 0 in norm. This is a contradiction
since |Ank | ≥ ε.

Example 9.40 (Strong limit of compacts is not compact). We have seen in Lemma 9.13 that if we have an ONB
{ ej }∞j=1, then

A =

∞∑
j,k=1

Ajkej ⊗ e∗k

converges strongly. In fact, each operator
∑N
j,k=1Ajkej ⊗ e∗k is of finite rank and hence compact. But since this

convergence is merely strongly, it does not make the full operator A compact (of course not, it was generic!).

Theorem 9.41. A compact operator maps weakly convergent sequences into norm convergent sequences.

Proof. Let ψn → ψ weakly in H. By the uniform boundedness principle Theorem 3.28, { ∥ψn∥ }n is a bounded
sequence. Let A ∈ B (H) be a compact operator. Our goal is to show that Aψn → Aψ in norm. Define

φn := Aψn φ := Aψ .

For any λ ∈ H∗,

λ (φn)− λ (φ) = λ (φn − φ) = λ (A (ψn − ψ)) = (A∗λ) (ψn − ψ) .

Hence, φn → φ weakly as ∥A∗λ∥ is bounded. Assume φn does not converge to φ in norm though. Then there
must be a subsequence

{
φnj

}
j

which maintains an ε > 0 distance from φ. But ψnj is still a bounded sequence, so
Aψnj contains a norm convergent subsequence, which apparently does not converge to Aψ. This however contradicts
φn → φ weakly.

Theorem 9.42 (Riesz-Schauder theorem). Let A ∈ K (H). Then 0 ∈ σ (A), σ (A) is a discrete set where the only
possible limit point is zero, and

|Bε (0C)
c ∩ σ (A)| <∞ (ε > 0) .

Moreover,
σ (A) \ { 0 } = σp (A)

and dim (ker (A− λ1)) <∞ for all λ ̸= 0.

It will turn out much more convenient to prove this theorem using the machinery of Fredholm operators (which we
anyway want to introduce), so we postpone proving this until later.

9.6 Fredholm operators [mostly extra]
In many regards, Fredholm operators are the opposite of compact operators: they explore the full infinity of the Hilbert
space; as we shall see, they are precisely the invertible operators up to compact defects.

Definition 9.43 (Fredholm operator). An operator A ∈ B (H) is called Fredholm iff dimkerA,dim cokerA are both
finite dimensional.

Here
cokerA ≡ H/im (A)

in the sense of quotient vector spaces Definition 2.31. Recall that the quotient vector space is defined as:

φ ∼ ψ ⇐⇒ φ− ψ ∈ imA
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and

[φ] := { ψ ∈ H | φ ∼ ψ }
cokerA = { [φ] | φ ∈ H } .

Definition 9.44 (Fredholm index). For every Fredholm operator A, we define the index, an integer associated with
that operator, as

index (A) := dimkerA− dim cokerA ∈ Z .

We denote the space of all Fredholm operators as F (H), so that

index : F → Z .

Since an operator is injective iff its kernel is trivial, and surjective iff its image is the whole space (in which case the
cokernel is trivial), we see that Fredholm operators are defined to be precisely those operators which fail to be invertible
up to a finite “problem”.

It is convenient to replace the cokernel with the kernel of the adjoint. To that end, we use the following

Proposition 9.45. For any A ∈ B (H), cokerA finite dimensional iff both (1) kerA∗ is finite dimensional and (2)
im (A) ∈ Closed (H).

Proof. Assume that imA ∈ Closed (H). Then via Theorem 7.17,

(ker (A∗))
⊥
=
(
(imA)

⊥
)⊥

= imA (Via Claim 7.9)
= imA . (By hypothesis)

Now, we always have

H = (kerA)⊕
(
(kerA)

⊥
)
= (kerA∗)⊕

(
(kerA∗)

⊥
)

= (kerA∗)⊕ imA .

Hence

cokerA ≡ H/imA

∼= (imA)
⊥

= kerA∗ .

Hence if dimkerA∗ is finite, so is dim cokerA.
Conversely, assume that dim cokerA is finite. We want to show that imA ∈ Closed (H).
Define a map

η : (H/ kerA)⊕ (imA)
⊥ → H

([φ] , ψ) 7→ Aφ+ ψ .

It is easy to verify that η is a bounded linear bijection (it is in verifying that η is bounded that we used the fact
cokerA ∼= (imA)

⊥ is finite dimensional). Hence

imA ∼= η ((H/ kerA)⊕ { 0 }) ∈ Closed (H)

where the last statement is due to the open mapping Theorem 3.32 which says that the inverse of η is also continuous,
i.e., η is a closed map and hence maps closed sets to closed sets.
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Corollary 9.46. As a result of the above, we say that A ∈ F iff dimkerA,dimkerA∗ are both finite dimensional
and imA is closed. Then, the index equals

index (A) = dimkerA− dimkerA∗ .

Of course, to characterize whether the image of an operator is closed or not it would be convenient to employ Lemma 7.20
above.

When dealing with the space of Fredholm operators, it is customary to endow F (H) with the subspace topology from
the topology induced by the operator norm on B (H). Hence by definition S ∈ Open (F (H)) iff S = T ∩F (H) for some
T ∈ Open (B (H)), where Open (B (H)) is defined in the usual metric since using open balls.

The Fredholm index is continuous, as well shall see, but taking only half of it does not yield a continuous map.

Lemma 9.47. dimker : F (H) → N≥0 is upper semicontinuous.

Proof. Decompose H = ker (A)⊕ ker (A)
⊥ ∼= ker (A∗)⊕ ker (A∗)

⊥. Since im (A) ∼= ker (A∗)
⊥, we have

A =

[
a 0
0 0

]
for some isomorphism a : ker (A)

⊥ → im (A). Taking any norm perturbation B of size at most
∥∥a−1

∥∥−1 will
mean that A+B is injective on ker (A)

⊥ and hence dimkerA+B ≤ dimkerA.

Example 9.48. Here are a few trivial examples for the notion of a Fredholm operator:

1. The identity operator 1 is Fredholm and its index is zero. In fact this is the case for any invertible operator.

2. The zero operator H ∋ v 7→ 0 is not Fredholm.

3. Recall the position operator X on ℓ2 (N), which is not even bounded. Its inverse A := X−1 is however bounded:
∥A∥ ≤ 1. It is however not Fredholm, even though it is self-adjoint and has an empty kernel. To see that imA /∈
Closed

(
ℓ2 (N)

)
, use the second characterization of Lemma 7.20 and note that while zero is not in σ

(
|A|2

)
, it is an

accumulation point and hence not isolated in σ
(
|A|2

)
. What is the cokernel of A? Is it finite dimensional?

4. The right-shift operator R on ℓ2 (N) is Fredholm. Indeed, one checks that

|R|2 = R∗R = 1

and hence by the second characterization of Lemma 7.20 it has closed image. Its kernel is empty and the kernel of
its adjoint, the left shift operator, is spanned by δ1 and is hence one dimensional.

index (R) = −1 .

Note that, considered on ℓ2 (Z), R is also Fredholm, but it is now invertible and hence has zero index. The right shift
operator is the most important example of a Fredholm operator, and in a sense, all other non-zero index operators
may be connected to a power of the right shift, as we shall see.

Claim 9.49. If A ∈ B (H1 → H2) with H1,H2 finite dimensional, then A is Fredholm and its index equals

index (A) = dim (H1)− dim (H2) .

Proof. The rank-nullity theorem [KK07] states that

dim (H1) = dim (ker (A)) + dim (im (A)) .

Furthermore, since coker (A) ≡ H2/im (A), we have

dim (coker (A)) = dim (H2)− dim (im (A)) .
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Thus, we have

index (A) ≡ dim (ker (A))− dim (coker (A))

= dim (H1)− dim (im (A))− dim (H2) + dim (im (A))

= dim (H1)− dim (H2) .

as desired.

In particular, any square matrix is Fredholm with index zero: finite dimensions are not very interesting for Fredholm
theory. Be that as it may some mechanical models in physics have been studied of finite non-square matrices, which have
a non-zero index.

Lemma 9.50. (Riesz) 1−K ∈ F (H) for all K ∈ K (H) and index (1−K) = 0.

Proof. Write K = limn Fn (in operator norm) where Fn is finite rank. Hence 1−K+Fn is invertible for n sufficiently
large since ∥K − Fn∥ may be made arbitrarily small. Then,

1−K = (1−K + Fn)
(
1− (1−K + Fn)

−1
Fn

)
so that

1−K = G (1− F )

with G invertible and F finite rank. Hence ker (1−K) = ker (1− F ). Now, v ∈ ker (1− F ) iff v = Fv which implies
that v is an eigenvector of F with eigenvalue 1. But this if F is finite rank its eigenspaces are finite dimensional.
Same for 1− F ∗. The two kernels are of the same dimension since F is of finite rank.

Theorem 9.51 (Atkinson). A ∈ F (H) iff A is invertible up to compacts, i.e., iff there is some operator B ∈ B (H),
called the parametrix of A, such that,

1−AB,1−BA ∈ K (H) .

We note that we may have 1−AB ̸= 1−BA indeed. Furthermore, index (B) = −index (A).

Proof. If 1 − AB,1 − BA ∈ K (H) then BA = 1 − K for some compact K and using Lemma 9.50 we have that
BA is Fredholm of index zero. Hence ker (BA) is finite dimensional. But ker (A) ⊆ ker (BA) so that ker (A) is finite
dimensional. Also, K (H) is closed under adjoint, so that ker (A∗) is also finite. Finally, let v ∈ ker (A)

⊥. Then
v ∈ ker (BA)

⊥. Since BA is Fredholm, it has closed image, so that by Lemma 7.20 we have

ε∥φ∥ ≤ ∥BAφ∥
≤ ∥B∥∥Aφ∥ .

Consequently, A has closed range. Thus A is Fredholm. Now, using the logarithmic law Theorem 9.57 further below,
since AB = 1−K, 0 = index (AB) = index (A) + index (B).

Also

ker (B) ⊆ ker (AB)

= ker (B∗A∗)

Conversely, assume A ∈ F (H). Want to construct two partial inverses: let P,Q be the orthogonal projections
onto ker (A) and ker (A∗) resp. We claim that |A|2+P and |A∗|2+Q are bijections. Indeed, ker (A) = ker

(
|A|2

)
so if

H ∼= ker
(
|A|2

)⊥
⊕ker

(
|A|2

)
, |A|2+P ∼= |A|2

∣∣∣
im(P )⊥

⊕1 and similarly for the other operator. Hence B := |A|2+P
is invertible, and

1 = B−1A∗A+B−1P .
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But now, B−1P is of finite rank and C := B−1A∗ is the sought-after parametrix.

Definition 9.52 (Essential spectrum). The essential spectrum σess (A) of an operator A ∈ B (H) is the set of all
points z ∈ C such that A− z1 is not Fredholm.

Claim 9.53. If A ∈ F (H) and index (A) = 0 then A = G+K for some G invertible and K compact.

Proof. Since index (A) = 0, dimkerA = dimkerA∗. Thus,

H ∼= ker (A)⊕ ker (A)
⊥ ∼= ker (A∗)⊕ ker (A∗)

⊥
.

But we know that since dimkerA = dimkerA∗, there is a natural linear isomorphism η : ker (A) → ker (A∗). We
also know that im (A) ∼= ker (A∗)

⊥. Hence, A|ker(A)⊥ is just an isomorphism

ker (A)
⊥ → im (A) .

Hence, the map

G := η ⊕ A|ker(A)⊥ : H → H

is an isomorphism and H ∋ (v1, v2)
K7→ (η (v1) , 0) ∈ H is compact and hence the result.

Theorem 9.54. We have the inclusion

F (H) +K (H) ⊆ F (H)

and the Fredholm index is stable under compact perturbations.

Proof. If A ∈ F (H) and K ∈ K (H), then by Atkinson Theorem 9.51, there is some parametrix B such that
AB − 1, BA− 1 is compact. But B will be a parametrix of A+K too:

(A+K)B − 1 = AB +KB − 1

which is compact since KB is compact (as the compacts form an ideal). Hence A +K is Fredholm. We postpone
the proof that the index remains stable until the next theorem.

We see from Atkinson’s theorem that the essential spectrum is stable under compact perturbations.

Theorem 9.55. (Dieudonne) index : F (H) → Z is operator-norm-continuous and if B ∈ F (H) is any parametrix
of A ∈ F (H) then

B∥B∥−1 (A) ⊆ F (H) .

In particular, F (H) ∈ Open (B (H)).

Proof. Let A ∈ F (H) and B be any parametrix of it. Take any Ã ∈ B∥B∥−1 (A). We have∥∥∥B (A− Ã
)∥∥∥ ≤ ∥B∥

∥∥∥A− Ã
∥∥∥ < 1

by assumption, so that 1 − B
(
A− Ã

)
is invertible. We claim that

(
1−B

(
A− Ã

))−1

B is a parametrix for Ã.
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Now,

0 = index (1)

= index (1−K)

= index

((
1−B

(
A− Ã

))−1

BÃ

)
= index

(
BÃ
)

Now, via Theorem 9.57 further below we have index (B) + index
(
Ã
)

and since index (B) = −index (A) we obtain
the result.

Finally, we finish the proof of Theorem 9.54: if A ∈ F (H) and K ∈ K (H), the homotopy [0, 1] ∋ t 7→ A + tK ∈ F (H)
interpolates in a norm continuous way between A and A+K and thus the index is constant along this path.

Claim 9.56. A is invertible up to compacts iff it is invertible up to finite ranks.

Proof. Since finite rank operators are compact one direction is trivial. Now, assume that there is some B ∈ F (H)
with which 1 − AB,1 − BA ∈ K (H). Let { Fn }n be a sequence of finite rank operators which converges to
K := 1 − BA in operator norm. Then ∥Fn −K∥ can be made arbitrarily small and hence Wn := 1 − K + Fn is
invertible for n sufficiently large. Then,

BA = 1−K

= Wn

(
1−W−1Fn

)
and hence

1−W−1
n BA = W−1Fn .

Since finite rank operators form an ideal, W−1
n Fn is finite rank too. This same logic shows that

1−ABW̃−1
n = F̃nW̃

−1
n

where now F̃nW̃
−1
n is finite rank. So Now, W−1

n B is a partial left inverse and BW̃−1
n is a partial right inverse. Then

W−1
n BA = 1−W−1Fn

W−1
n BABW̃−1

n = BW̃−1
n −W−1FnBW̃

−1
n

W−1
n B

(
1− F̃nW̃

−1
n

)
= BW̃−1

n −W−1FnBW̃
−1
n

W−1
n B −BW̃−1

n = W−1
n BF̃nW̃

−1
n −W−1FnBW̃

−1
n

and since the finite rank operators form an ideal within B (H), we find that W−1
n B equals BW̃−1

n up to finite rank
operators and hence there is just one parametrix, say, W−1

n B.

Theorem 9.57. (Logarithmic law) If A,B ∈ F (H) then

index (AB) = index (A) + index (B)

index (A⊕B) = index (A) + index (B) .

Proof. The easiest proof is via Fedosov Theorem 9.78: If Ã is a parametrix for A and B̃ is a parametrix for B then
B̃Ã is a parametrix for AB. If we let F := 1−BB̃ be finite rank, then some algebra implies

index (AB) = index (A) + tr
(
ÃABB̃ − B̃ÃAB

)
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the last trace is seen to equal index (B) since ÃA− 1 is finite rank.
The statement about the direct sum is trivial.

Theorem 9.58. (Atiyah-Jähnich) We have π0 (F (H)) ∼= Z.

Proof. We already know that index : F (H) → Z is continuous and is constant on the path-connected components of
F (H). Thus index lifts to a well-defined map on π0 (F (H)). To see that it’s surjective it suffices to consider powers
of the right-shift operator. So we only need to show it is injective.

First we claim that if index (A) = 0 then there is a path from A to 1: Via Claim 9.53 we have A = G +K for
some invertible G and compact K. By Theorem 10.27, there is a path γ from (A−K)

−1 to 1, and γA is a path
from 1− K̃ to A. From there we can define a further homotopy to reduce K̃ to zero.

Next, we need that if index (A) = index (B) then there is a path between them. To that end, let B̃ be the
parametrix of B. Then index

(
AB̃
)
= 0, whence by the above there is a path γ : AB̃ 7→ 1. The path γ̃ := γB

interpolates between A−K and B. Again, a further homotopy brings us to A.

9.6.1 Back to the Riesz-Schauder theorem

We now want to present the

Proof of Theorem 9.42. Let A ∈ K (H). Then clearly A cannot be invertible, as it cannot be Fredholm. Indeed, if
A were Fredholm, then via Theorem 9.51 1 would be compact, which is false as soon as dimH = ∞. Thus, since A
is not invertible, 0 ∈ σ (A).

Next, we want to show that if λ ∈ σ (A) \ { 0 }, then λ is an isolated point of the point spectrum with
dim (ker (A− λ1)) < ∞. Clearly, if λ ̸= 0, then −λ1 is invertible and hence a compact perturbation from −λ1
into A− λ1 does not change that fact (via Theorem 9.51). Thus

dim (ker (A− λ1)) <∞ .

Now assume that λ /∈ σp (A). That necessarily means that ker (A− λ1) = { 0 }. But λ ∈ σ (A), so im (A− λ1) ̸= H.
Since

index (A− λ1) = index (−λ1) = index (1) = 0

we have
ker (A− λ1) ∼= ker

(
A∗ − λ1

)
so we learn that ker

(
A∗ − λ1

)
= { 0 } too. But(

im (A− λ1)
)⊥

= (im (A− λ1))
⊥
= ker

(
A∗ − λ1

)
= { 0 }

which implies that im (A− λ1) ∼= H. Since A−λ1 is Fredholm, it has closed range, so we learn that im (A− λ1) ∼= H,
which is in contradiction to λ /∈ σp (A).

We have shown thus far that if λ ∈ σ (A) \ { 0 } then λ ∈ σp (A) and dimker (A− λ1) <∞. We are left to show
that λ is an isolated element of the point spectrum. To this end, let { λn }n be a convergent sequence of distinct
eigenvalues of A. We will show that limn λn = 0. Let ψn be the corresponding eigenvectors and

Mn := span ({ ψ1, . . . , ψn }) (n ∈ N) .

Then
M1 ⊊ M2 ⊊ M3 ⊊ · · ·

since eigenvectors of distinct eigenvalues are linearly independent. Let { φn }n be a sequence of unit ectors chosen
so that φn ∈ Mn and φn ⊥ Mn−1. If Hence we have

η =

∞∑
n=1

⟨φn, η⟩φn + φ0

102



where φ0 is some vector orthogonal to all of { φn }n. Since

∥η∥2 =

∞∑
n=1

|⟨φn, η⟩|2 + ∥φ0∥2

it follows that limn→∞ ⟨φn, η⟩ = 0. Hence φn converges weakly to zero, so that {Aφn }n converges to 0 in norm via
Theorem 9.41. Now, for any n ∈ N there exist scalars { αi }ni=1 ⊆ C such that

φn =

n∑
i=1

αiψi

so that

Aφn =

n∑
i=1

αiAψi =

n∑
i=1

αiλiψi = λn

n∑
i=1

αiψi︸ ︷︷ ︸
φn

+

n−1∑
i=1

αi (λi − λn)ψi︸ ︷︷ ︸
∈Mn−1

.

As such, we find

lim
n→∞

|λn|2 ≤ lim
n→∞

(
|λn|2 ∥φn∥2 +

∥∥∥∥∥
n−1∑
i=1

αi (λi − λn)ψi

∥∥∥∥∥
)

= lim
n→∞

∥Aφn∥ = 0 .

We have an inverse of this theorem for self-adjoint operators using the notion of essential spectrum.

Definition 9.59 (Essential spectrum). For any A ∈ B (H), we define the essential spectrum of an operator as

σess (A) := { λ ∈ C | (A− λ1) /∈ F (H) } .

In other words, if the usual spectrum is defined as that set of λ ∈ C for which the operator A− λ1 is not invertible,
using Theorem 9.51, we identify the essential spectrum as those λ for which A−λ1 is essentially not invertible, since
to be Fredholm is to be invertible up to compact. We also define the discrete spectrum as anything else

σdisc (A) := σ (A) \ σess (A) .

Clearly, σdisc (A) is comprised of eigenvalues of A of finite multiplicity, which is somewhat smaller than the point
spectrum (which could contain eigenvalues of infinite multiplicity). Since F (H) is open, σess (A) is closed.

We then have

Theorem 9.60. Let H be an infinite dimensional Hilbert space. Let A ∈ B (H) be self-adjoint, A = A∗. Then
A ∈ K (H) iff

σess (A) = { 0 } .

Proof. Clearly if A ∈ K (H) then σess (A) = { 0 } holds, by the very definition of the essential spectrum. We leave
the other direction as an exercise to the reader.

Theorem 9.61. Let A ∈ B (H). We have λ ∈ σess (A) if and only if at least one of the following holds:

1. λ ∈ σcont (A).

2. λ is a limit point of σp (A).

3. λ is an eigenvalue of infinite multiplicity.
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Theorem 9.62 (Weyl’s criterion for the essential spectrum). Let A ∈ B (H) be self-adjoint, A = A∗. Then λ ∈
σess (A) iff there exists an orthonormal set { ψn }n such that

lim
n→∞

∥(A− λ1)ψn∥ = 0 .

Compare this with Theorem 9.22, where the criterion is for λ ∈ σ (A) and the assumption that ψn ⊥ ψm for n ̸= m
is dropped.

9.7 Trace-class and Schatten ideals [extra]
To generalize the notion of a trace to the infinite dimensional setting, we present the trace-class operators.

Definition 9.63. An operator A ∈ B (H) is said to be of trace-class iff

tr{φn }∞
n=1

(|A|) <∞

where |A| ≡
√
A∗A (as in Theorem 8.13) and tr{φn }∞

n=1
is the trace calculated in any ONB {φn }∞n=1:

tr{φn }∞
n=1

(|A|) ≡
∞∑
n=1

⟨φn, Aφn⟩ .

We denote the space of all trace-class operators as J1 ≡ J1 (H).

Claim 9.64. If tr{φn }∞
n=1

(|A|) <∞ in one ONB {φn }∞n=1 then it is finite in any other ONB.

Proof. Let { ψn }n be any other ONB. Then

tr{ψn }∞
n=1

(|A|) =
∑
n

⟨ψn, |A|ψn⟩

=
∑
n

∥∥∥|A| 12 ψn∥∥∥2
=

∑
n

(∑
m

∣∣∣〈φm, |A| 12 ψn〉∣∣∣2)

=
∑
m

∑
n

∣∣∣〈|A| 12 φm, ψn〉∣∣∣2
=

∑
m

∥∥∥|A| 12 φm∥∥∥
= tr{φn }∞

n=1
(|A|) .

Note that it is not enough to have ∑
n

|⟨φn, Aφn⟩| <∞

for some ONB { φn }n to be trace-class!

Example 9.65. The right shift operator is not trace-class though
∑
n |⟨φn, Rφn⟩| <∞ for it in the position basis.

Example 9.66. Any finite rank operator is trace-class.

Claim 9.67. Any trace-class operator is compact.
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Proof. Assume that tr
(
|A|2

)
< ∞ and let ε > 0. Then we claim there do no exist infinitely many linearly

independent φ ∈ H such that

∥|A|φ∥ ≥ ε .

Indeed, assume otherwise. Let E be an infinite orthonormal set such that

∥|A|φ∥ ≥ ε (φ ∈ E) .

Let Ẽ be an orthonormal basis of H extending E. Then

∞ > tr
(
|A|2

)
=

∑
φ∈Ẽ

〈
φ, |A|2 φ

〉
≥

∑
φ∈E

〈
φ, |A|2 φ

〉
=

∑
φ∈E

∥Aφ∥2

=
∑
φ∈E

∥|A|φ∥2

≥
∑
φ∈E

ε2

= ∞

which is a contradiction.
In conclusion, for any ε > 0 we may choose a finite orthonormal set { φn }Nn=1 such that if for some ψ ∈ H,

∥|A|ψ∥ ≥ ε

then ψ ∈ span
(
{ φn }Nn=1

)
. Define F ∈ B (H) via

Fψ :=

{
|A|ψ ψ ∈ span

(
{ φn }Nn=1

)
0 else

.

Then, for any ψ ∈ H, write ψ = ψ1 + ψ2 with ψ1 ∈ span
(
{ φn }Nn=1

)
and ψ2 in the complement. We thus get

(|A| − F ) (ψ1 + ψ2) = (|A| − F )ψ1 + (|A| − F )ψ2

= (|A| − F )ψ2

= |A|ψ2

so that

∥(|A| − F )ψ∥ = ∥|A|ψ2∥ ≤ ε .

As a result, F approximates |A| to ε accuracy and thus |A| is compact.
Let now A be trace-class, i.e., tr (|A|) <∞ which implies that |A|

1
2 is compact. Write, using the polar decompo-

sition,

A = U |A| .
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Then

A = U |A|
1
2 |A|

1
2 .

Since K (H) is a two-sided ideal, we are finished.

Theorem 9.68. If A ∈ J1 (H) then
tr{φn }∞

n=1
(A)

converges absolutely and is independent of {φn }∞n=1.

Definition 9.69. It is thus justified to define, for any A ∈ J1 (H),

tr (A) := tr{φn }∞
n=1

(A) .

Proof of Theorem 9.68. Using the above claim, we see that |A| is compact. As a self-adjoint operator with only
finite-multiplicitly eigenvalues, we have using Theorem 9.42 that there exists some { λn }n ⊆ [0,∞) and { φn }n
orthonormal with

|A|φn = λnφn .

Then with the polar decomposition A = U |A| we have

|tr (A)| =

∣∣∣∣∣
∞∑
n=1

⟨φn, U |A|φn⟩

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
n=1

⟨φn, Uλnφn⟩

∣∣∣∣∣
≤

∞∑
n=1

|λn| ∥φn∥∥Uφn∥

≤
∞∑
n=1

|λn|

< ∞ .

I.e.,
∑∞
n=1 λn ⟨φn, Uφn⟩ converges absolutely. Then given any other ONB { ψn }n, we have

∑
n

λn ⟨φn, Uφn⟩ =
∑
n

λn

〈∑
m

ψm ⊗ ψ∗
mφn, Uφn

〉
=

∑
n

∑
m

λn ⟨ψm, Uφn⟩ ⟨ψm, φn⟩

=
∑
m

∑
n

λn ⟨ψm, Uφn⟩ ⟨ψm, φn⟩

=
∑
m

∑
n

⟨ψm, λn ⟨ψm, Uφn⟩φn⟩

=
∑
m

⟨ψm, Aψm⟩ .

Thus tr (A) does not depend on the basis chosen to calculate the trace.

Theorem 9.70. The trace is a C-linear map J1 (H) → C. It is unitarily invariant: for any W unitary, tr (W ∗AW ) =
tr (A), and if 0 ≤ A ≤ B then tr (A) ≤ tr (B).
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Proof. First we show that for any unitary W , if A ∈ J1 (H) then W ∗AW ∈ J1 (H). Indeed, this follows from

|W ∗AW |2 = (W ∗AW )
∗
W ∗AW

= W ∗A∗WW ∗AW

= W ∗ |A|2W

so that, using the fact the square root obeys unitary conjugation (see the definition of the square root Theorem 8.13
as a power series),

|W ∗AW | = W ∗ |A|W

and since tr{ φn }n (|·|) does not depend on the basis { φn }n, we find that

tr{ φn }n (|W
∗AW |) = tr{Wφn }n (|A|) .

Thus we know that W ∗AW ∈ J1 (H) too. Now thanks to invariance under the choice of ONB (Theorem 9.68) it is
clear that tr (W ∗AW ) = tr (A). Finally, if

0 ≤ A ≤ B

then for any ψ ∈ H, ⟨ψ,Aψ⟩ ≤ ⟨ψ,Bψ⟩. Hence,

tr (A) =
∑
n

⟨φn, Aφn⟩ ≤
∑
n

⟨φn, Bφn⟩ = tr (B) .

Lemma 9.71 (The two-sided star-ideal property). If A ∈ J1 (H) and B ∈ B (H) then AB,BA,A∗ ∈ J1 (H) and

tr (AB) = tr (BA) ,

tr (A∗) = tr (A) .

Proof. First note that any bounded linear operator may be written as the sum of four unitaries. Indeed, Let
B ∈ B (H). Then

B =
1

2
(B +B∗) + i

1

2i
(B −B∗)

=: BR + iBI

so any operator may be written as the sum of two self-adjoints. Moreover, any bounded self-adjoint H may be
written as the sum of two unitaries:

H = ∥H∥

=
1

2
∥H∥

(
1

∥H∥
H +

√
1− 1

∥H∥2
H2

)
+

1

2
∥H∥

(
1

∥H∥
H −

√
1− 1

∥H∥2
H2

)

and one readily verifies that
1

∥H∥
H ±

√
1− 1

∥H∥2
H2

are unitary. Next, note that

|A| = |UA|

for any unitary U , so UA is actually trace-class too whenever A is. Also

|AU | = U−1 |A|U
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so also AU is traceclass. Then

tr (AB) =
∑
n

⟨φn, ABφn⟩

ψn:=Bφn
=

∑
n

⟨B∗ψn, Aψn⟩

=
∑
n

⟨ψn, BAψn⟩

= tr (BA) .

The rest of the claims are trivial.

If we define on J1 (H) the norm
∥A∥1 := tr (|A|)

then

Theorem 9.72. J1 (H) is a Banach space with the norm ∥·∥1 and

∥A∥op ≤ ∥A∥1 .

Proof. We have ∥A∥op = ∥|A|∥op, but the latter number is equal to r (|A|), i.e., the maximal magnitude of the
spectrum of |A|. On the other hand ∥A∥1 is the sum of all elements in the spectrum of |A|, which is a trivial upper
bound on the maximum.

We leave the proofs of the next two theorems as exercises to the reader.

Theorem 9.73. We have
J1 (H) ⊆ K (H)

and A ∈ K (H) is in J1 (H) iff tr (|A|) <∞.

Proof. The first part has been proven in Claim 9.67.

Theorem 9.74. The trace-class ideal J1 (H) is the ∥·∥1-closure of finite rank operators.

9.7.1 Schatten ideals

Definition 9.75 (Schatten class operators). We define now, for any p ∈ [1,∞), the operator A ∈ B (H) to be of p-th
Schatten class, denoted by A ∈ Jp (H) iff

tr (|A|p) <∞ .

This also yields the p-Schatten norm,
∥A∥p := (tr (|A|p))

1
p

which makes
(
Jp (H) , ∥·∥p

)
into a Banach space. It is to be contrasted with the usual Lebesgue Lp (X,µ) spaces,

with X a measure space and µ a Borel measure. In this sense these Schatten classes could be considered the non-
commutative analogs of these Lp spaces (function multiplication is Abelian of course). We give J2 (H) the special
name of Hilbert-Schmidt operators and it is the only one which is actually itself a Hilbert space under the inner
product

⟨A,B⟩Hilbert-Schmidt := tr (A∗B)

in a similar way to how L2 is a Hilbert space.

Proposition 9.76. We have the inclusion, for any p ≥ 1,

Jp (H) ⊆ K (H) .
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Proof. Sketch: if the sum is finite the spectrum will be finite or countable with the origin as limit point, and hence
a compact operator.

Theorem 9.77. We have the following properties of Jp (H):

1. Jp (H) is a two-sided star-ideal within B (H).

2. If p ≤ q then Jp (H) ⊆ Jq (H), and for any A ∈ Jq (H), we have

∥A∥ ≤ ∥A∥p ≤ ∥A∥q .

3. If p, q, r ∈ [0,∞] are such that
1

q
+

1

p
=

1

r

then for A ∈ Jp (H), B ∈ Jq (H) we have AB ∈ Jr (H) and moreover

∥AB∥r ≤ ∥A∥p∥B∥q .

In particular, when q = ∞ (with the convention that ∥·∥∞ is the operator norm) we get

∥AB∥r ≤ ∥A∥r∥B∥op .

4. The Schatten norms are unitarily invariant: if U, V are unitary and A ∈ Jp (H) then

∥UAV ∥p = ∥A∥p .

5. For p ∈ (0, 1), ∥·∥p is merely a quasinorm.

9.7.2 The Fedosov formula

One we have the notion of a trace, we may go back and compute the Fredholm index using

Proof. The following is taken from [Mur94]:

Theorem 9.78. (Fedosov) If A ∈ F (H) and B is any parametrix of A such that 1−AB,1−BA is finite rank, then

index (A) = tr ([A,B]) .

Proof. First we note that if B,B′ are two such parametrii, then B′ = B + F for some F finite rank. Then
[A,B′] = [A,B] + [A,F ] and since F is finite rank, tr ([A,F ]) = 0. So we are free to choose any such finite rank
parametrix.

We claim there is a finite-rank parametrix B such that A = ABA. If we can find such a parametrix, then 1−AB
and 1−BA are idempotents, and their traces equal the dimension of the cokernel and kernel of A respectively and
hence the result.

To find this special B, since A induces an isomorphism φ : ker (A)
⊥ → im (A), by the bounded inverse theorem,

φ−1 is bounded. Let B be any extension of φ−1 to H. Then it fulfills A = ABA.

Another useful trace formula is the following:

Claim 9.79. If there is some n ∈ N such that 1− |A|2 and 1− |A∗|2 are n-Schatten class, then

index (A) = tr ((1− |A|)n)− tr ((1− |A∗|)n) .

The proof is left as an exercise to the reader.
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10 The spectral theorem for bounded normal operators
In this section we finally extend the functional calculus, i.e., we extend the class of functions f : C → C for which we can
define an operator

f (A)

given some A ∈ B (H). What we will find is the requirement that A is normal (|A|2 = |A∗|2) and f is Borel measurable
and bounded. To define f (A) will take us some steps, the most important of which will be to define the spectral measures
for self-adjoint operators. We mostly follow [RS80],[AW15] and [Tes09].

10.1 Herglotz-Pick-Nevanlinna functions

Definition 10.1 (Nevanlinna function). Let

C+ := { z ∈ C | Im {z} > 0 }

be the open upper half plane. A function f : C+ → C+ which is holomorphic is called a Nevanlinna, Herglotz, Pick
or R function.

Our main interest in such functions stems from

Lemma 10.2. Let ψ ∈ H and A ∈ B (H) be self-adjoint. Then

C+ ∋ z 7→
〈
ψ, (A− z1)

−1
ψ
〉
≡ ⟨RA (z)⟩ψ

is a Herglotz function.

Proof. We know that σ (A) ⊆ R via Claim 8.9. So C+ ∋ z 7→ ⟨RA (z)⟩ψ clearly makes sense, as C+ ⊆ ρ (A), the
resolvent set of A. Moreover, the function is holomorphic since its derivative exists:〈

ψ, (A− (z + w)1)
−1
ψ
〉
−
〈
ψ, (A− z1)

−1
ψ
〉

w
=

1

w

〈
ψ,
[
(A− (z + w)1)

−1 − (A− z1)
−1
]
ψ
〉

=
1

w

〈
ψ,
[
(A− (z + w)1)

−1
(z − (z + w)) (A− z1)

−1
]
ψ
〉

= −
〈
ψ, (A− (z + w)1)

−1
(A− z1)

−1
ψ
〉

so that taking the limit w → 0 yields
−
〈
ψ, (A− z1)

−2
ψ
〉
.

Moreover, we have

Im
{〈
ψ, (A− z1)

−1
ψ
〉}

≡ 1

2i

[〈
ψ, (A− z1)

−1
ψ
〉
−
〈
ψ, (A− z1)

−1
ψ
〉]

=
1

2i

[〈
ψ, (A− z1)

−1
ψ
〉
−
〈
ψ, (A− z1)

−1
ψ
〉]

=
1

2i

〈
ψ,
[
(A− z1)

−1 − (A− z1)
−1
]
ψ
〉

=
1

2i

〈
ψ,
[
(A− z1)

−1
(z − z) (A− z1)

−1
]
ψ
〉

= Im {z}
∥∥∥(A− z1)

−1
ψ
∥∥∥2 .

Hence if Im {z} > 0 and ψ ̸= 0, we have Im
{〈
ψ, (A− z1)

−1
ψ
〉}

> 0 (note it is impossible for (A− z1)
−1
ψ = 0

since A− z1 is invertible!).
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Example 10.3. Other interesting examples of Herglotz functions are

1. z 7→ c+ id, z 7→ c+ dz for c ∈ R, d > 0:

2. z 7→ zr for r ∈ (0, 1) with the appropriate branch.

3. log with the appropriate branch.

4. tan,− cot

5. z 7→ a+bz
c+dz for

[
c d
a b

]
= M which is Hermitian-symplectic: M∗JM = J with J ≡

[
0 −1
1 0

]
. A special case if

z 7→ − 1
z .

Claim 10.4. If m,n : C+ → C+ are Herglotz functions then so are m+ n and m ◦ n.

The main point of identifying the Herglotz property is the

Theorem 10.5. Let f : C+ → C+ be Herglotz. Then there exists a unique Borel measure µf on R satisfying
ˆ
x∈R

1

1 + x2
dµf (x) <∞

such that
f (z) = a+ bz +

ˆ
x∈R

[
1

x− z
− x

1 + x2

]
dµf (x)

(
z ∈ C+

)
where a := Re {f (i)} and

b := lim
η→∞

f (iη)

iη
≥ 0 .

Note it may well happen that b = 0 and

a =

ˆ
x∈R

x

1 + x2
dµf (x)

in which case we find
f (z) =

ˆ
x∈R

1

x− z
dµ

f
(x)

(
z ∈ C+

)
.

The RHS of the above equation is called the Borel-Stieltjes (or just Borel) transform of the measure µf . The sub-class of
Herglotz functions which are the Borel-Stieltjes transform of some measure turns out to play an important role in spectral
theory.

Actually in our applications we know that ⟨RA (iη)⟩ψ → 0 as η → ∞ so that b = 0 for us. Moreover, we have

a = Re {f (i)}

≡ Re
{〈
ψ, (A− iη1)

−1
ψ
〉}

=
1

2

(〈
ψ, (A− iη1)

−1
ψ
〉
+
〈
ψ, (A− iη1)

−1
ψ
〉)

=
1

2

〈
ψ,
[
(A− iη1)

−1
+ (A+ iη1)

−1
]
ψ
〉

=
1

2

〈
ψ,
[
(A− iη1)

−1 − (−A− iη1)
−1
]
ψ
〉

=
1

2

〈
ψ,
[
(A− iη1)

−1
(−2A) (−A− iη1)

−1
]
ψ
〉

=
〈
ψ,
[
(A− iη1)

−1
A (A+ iη1)

−1
]
ψ
〉

=
〈
ψ,
[
A
(
A2 + η21

)−1
]
ψ
〉
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Remark 10.6. For A = A∗, the function C+ ∋ z 7→ ⟨RA (z)⟩ψ obeys

∣∣∣⟨RA (z)⟩ψ
∣∣∣ = ∣∣∣〈ψ, (A− z1)

−1
ψ
〉∣∣∣ ≤ ∥∥∥(A− z1)

−1
∥∥∥∥ψ∥2 ≤ ∥ψ∥2

Im {z}
.

For this reason instead of proving the general representation theorem stated above we contend ourselves with

Theorem 10.7. Let f : C+ → C+ be Herglotz such that there exists some M ∈ (0,∞) for which

|f (z)| ≤ M

Im {z}
(
z ∈ C+

)
.

Then there is a Borel measure µ on on R such that µ (R) ≤M and such that f is the Borel transform of µ:

f (z) =

ˆ
λ∈R

1

λ− z
dµ (λ) .

Proof. We mainly follow [Tes09]. Let x ∈ R and y > 0. Then for ε ∈ (0, y) and R > 0 large, define the contour

Γ := { x+ iε+ λ | λ ∈ [−R,R] } ∪
{
x+ iε+Reiθ

∣∣ θ ∈ [0, π]
}
.

Then z := x+ iy lies within the contour whereas z + 2iε does not. Hence

f (z) =
1

2πi

˛
ζ∈Γ

[
1

ζ − z
− 1

ζ − z − 2iε

]
f (ζ) dζ .

The explicit form of Γ implies

f (z) =
1

π

ˆ R

−R

y − ε

λ2 + (y − ε)
2 f (x+ iε+ λ) dλ+

+
i

π

ˆ π

0

y − ε

R2e2iθ + (y − ε)
2 f
(
x+ iε+Reiθ

)
Reiθdθ .

R→∞→ 1

π

ˆ ∞

−∞

y − ε

λ2 + (y − ε)
2 f (λ+ iε) dλ .

Hence
Im {f (z)} =

ˆ ∞

−∞

y − ε

λ2 + (y − ε)
2

1

π
Im {f (λ+ iε)}dλ

and with y → ∞ we find

lim
y→∞

Im {f (z)} =
1

π

ˆ ∞

−∞
Im {f (λ+ iε)}dλ

and so
1

π

ˆ ∞

−∞
Im {f (λ+ iε)} dλ ≤M

for all ε > 0. In particular, since
gε (λ) :=

y − ε

λ2 + (y − ε)
2

has
|gε (λ)− g0 (λ)| ≤ const. × ε

we have
Im {f (z)} = lim

ε→0+

ˆ
R
g0 (λ) dµε (λ)
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with

µε ((−∞, λ)) =

ˆ λ

−∞

1

π
Im {f (λ+ iε)}dλ .

Now we have µε (R) ≤M so there is a subsequence of measures which converges weakly to some measure µ, and we
have

Im {f (z)} =

ˆ
R
g0 (λ) dµ (λ) .

Since f and
´

1
λ−zdµ (λ) has the same imaginary part, they may only differ by a real constant. But the bound

implies this constant must be zero.

Claim 10.8. Actually we have

Im {f (z)} = Im {z}
ˆ

R

1

|λ− z|2
dµ (λ)

and
lim
λ→∞

λ Im {f (iλ)} = µ (R) .

Theorem 10.9. Let f be the Borel transform of some finite Borel measure µ. Then µ is unique and can be recon-
structed via

1

2
(µ ((λ1, λ2)) + µ ([λ1, λ2])) = lim

ε→0+

1

π

ˆ λ2

λ1

Im {f (λ+ iε)} dλ . (10.1)

Proof. By Fubini we have

1

π

ˆ λ2

λ1

Im {f (λ+ iε)} dλ =
1

π

ˆ λ2

λ1

(ˆ
x∈R

ε

(x− λ)
2
+ ε2

dµ (x)

)
dλ

=
1

π

ˆ
x∈R

(ˆ λ2

λ1

ε

(x− λ)
2
+ ε2

dλ

)
dµ (x) .

But

1

π

ˆ λ2

λ1

ε

(x− λ)
2
+ ε2

dλ =
1

π

(
arctan

(
λ2 − x

ε

)
− arctan

(
λ1 − x

ε

))
ε→0→ 1

π

(
χ[λ1,λ2] (x) + χ(λ1,λ2) (x)

)
∈ [0, 1] .

pointwise. Thus by the dominated convergence theorem.

It turns out that a lot about the measure can be deduced from the limit of the Borel transform on the real line, as the
following statements show us. We should keep these statements in mind when discussing spectral measures of self-adjoint
operators, in connection with their resolvents.

Lemma 10.10. Let µ be a finite Borel measure and f its Borel transform. Then

dµ

dL
(λ) = lim

ε→0+

1

π
Im {f (λ+ iε)}

whenever the limit on the RHS exists, where dµ
dL is the Radon-Nikodym derivative of µ w.r.t. the Lebesgue measure

L.

We conclude that when limε→0+
1
π Im {f (λ+ iε)} exists, the associated measure µ to f is absolutely-continuous w.r.t.

the Lebesgue measure L.
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Lemma 10.11 (Characterization of measure type via the Borel transform). Let µ be a finite Borel measure and f
its Borel transform. Then

lim
ε→0+

1

π
Im {f (λ+ iε)}

exists a.e. w.r.t. both µ and L. Moreover,{
λ ∈ R

∣∣ Im
{
f
(
λ+ i0+

)}
= ∞

}
and {

λ ∈ R
∣∣ 0 < Im

{
f
(
λ+ i0+

)}
<∞

}
are the support of the singular and absolutely continuous parts of µ respectively. Moreover, the set of point masses of
µ is given by {

λ

∣∣∣∣ lim
ε→0+

ε Im {f (λ+ iε)} > 0

}
.

Proof. See [Jak06].

10.2 The spectral measures

Definition 10.12 (spectral measure of an operator and a vector). Given the above considerations, given a self-adjoint
operator A = A∗ and any ψ ∈ H, we have a unique positive measure µA,ψ on R, called the spectral measure of the
duo A,ψ, such that C+ ∋ z 7→

〈
ψ, (A− z1)

−1
ψ
〉

is the Borel transform of µA,ψ, i.e.,

〈
ψ, (A− z1)

−1
ψ
〉
=

ˆ
λ∈R

1

λ− z
dµA,ψ (λ)

(
z ∈ C+

)
.

It has the property that
µA,ψ (R) = ∥ψ∥2

so that if ∥ψ∥ = 1 we get a probability measure on R. Moreover,

Claim 10.13. The support of µA,ψ is contained in the spectrum of A.

Proof. We have the inversion formula (10.1), and

Im
{〈
ψ, (A− (λ+ iε)1)

−1
ψ
〉}

= ε
∥∥∥(A− (λ+ iε)1)

−1
ψ
∥∥∥2

and if λ /∈ σ (A), A− λ1 is invertible so that

sup
ε>0

∥∥∥(A− (λ+ iε)1)
−1
ψ
∥∥∥2 <∞ .

As a result, these points will not be contained in the support of the unique measure defined above.

Recall that we have the polarization identity,

⟨ψ,Zφ⟩ ≡ 1

4

3∑
k=0

ik
〈
ψ + ikφ,Z

(
ψ + ikφ

)〉
. (10.2)

Using this identity we may define the spectral measures associated to triplets of an operator and two vectors:
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Definition 10.14 (Spectral measure of an operator and two vectors). Given a self-adjoint operator A = A∗ and any
two ψ,φ ∈ H, we have a unique complex measure µA,ψ,φ on R given by

µA,ψ,φ :=
1

4
[µA,ψ+φ − µA,ψ−φ − iµA,ψ+iφ + iµA,ψ−iφ]

which obeys the property that〈
ψ, (A− z1)

−1
φ
〉
=

ˆ
λ∈R

1

λ− z
dµA,ψ,φ (λ)

(
z ∈ C+

)
.

10.3 The bounded measurable functional calculus

Definition 10.15 (The bounded measurable functional calculus). Given any measurable f ∈ L∞ (R → C), A = A∗ ∈
B (H) we want to define an operator f (A) via its inner products. To that end, for any ψ,φ ∈ H, we define

⟨ψ, f (A)φ⟩ :=
ˆ
λ∈R

f (λ) dµA,ψ,φ (λ) .

Clearly we have ∣∣∣∣ˆ
λ∈R

f (λ) dµA,ψ,φ (λ)

∣∣∣∣ ≤ ∥f∥∞∥ψ∥∥φ∥

by the polarization identity.
Once we have the operator f (A) defined in the inner-product for any pair ψ,φ ∈ H, it is uniquely defined via

Theorem 7.13, so we get an actual operator f (A) ∈ B (H), with

∥f (A)∥ = sup ({ |⟨ψ, f (A)ψ⟩| : ∥ψ∥ = 1 })
= sup

λ∈σ(A)

|f (λ)|

where in the last step we have used Claim 10.13.

Theorem 10.16. The functional calculus obeys

(f + g) (A) = f (A) + g (A)

(fg) (A) = f (A) g (A)(
f
)
(A) = (f (A))

∗

i.e., the functional calculus is a star-homomorphism from functions to operators, and f ≥ 0 leads to f (A) ≥ 0.
Moreover, we have

(x 7→ x) (A) = A

and if fn → f pointwise and supn∥fn∥L∞ <∞ then fn (A) → f (A) strongly. Next, if [A,B] = 0 then [f (A) , B] = 0.
Finally,

ker (A− λ1) = ker (f (A)− f (λ)1)

Proof. The linearity and star property may be deduced from

⟨ψ, f (A)φ⟩ ≡
ˆ
λ∈R

f (λ) dµA,ψ,φ (λ) .
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The multiplicative property is proven using

⟨ψ, f (A) g (A)φ⟩ ≡

〈
ψ, f (A)

∑
n

en ⊗ e∗ng (A)φ

〉

=
∑
n

ˆ
λ∈R

f (λ) dµA,ψ,en (λ)

ˆ
λ∈R

g (λ) dµA,en,φ (λ)

and now we’d like to show that∑
n

dµA,ψ,en (λ)dµA,en,φ

(
λ̃
)
= dµA,ψ,φ (λ)δ

(
λ− λ̃

)
.

Now, the measure is fully determined by

1

π

ˆ λ2

λ1

Im
{〈
ψ, (A− λ− iε)

−1
φ
〉}

dλ .

If f ≥ 0 we have
⟨ψ, f (A)ψ⟩ ≥ 0

so that f (A) ≥ 0. Clearly,

⟨ψ,Aφ⟩ = ⟨ψ, (x 7→ x) (A)φ⟩ ≡
ˆ
λ∈R

λdµA,ψ,φ (λ) .

If [A,B] = 0 then
[RA (z) , B] = 0

which implies the same thing about the spectral projections:

⟨ψ,RA (z)Bφ⟩ = ⟨ψ,BRA (z)φ⟩ .

If ψ ∈ ker (A− λ1) then Aψ = λψ so that

⟨φ,RA (z)ψ⟩ = 1

λ− z
⟨φ,ψ⟩

and from there the same thing for the functional calculus.
The limit of functions implies the strong limit due to the fact the spectral measures are defined diagonally.

10.4 Projection-valued measures
We begin with a new notion

Definition 10.17 (Projection-valued measures). Let { PΩ }Ω⊆R be a sequence of self-adjoint projections on H indexed
by measurable subsets of R, which obey

1. P∅ = 0 and P(−a,a) = 1 for some a > 0.

2. If Ω =
⋃∞
n=1 Ωn with Ωn ∩ Ωm = ∅ for all n ̸= m then

PΩ = s-lim
N→∞

N∑
n=1

PΩn .

3. For any Ω1,Ω2 measurable,
PΩ1PΩ2 = PΩ1∩Ω2 .

Then { PΩ }Ω⊆R is called a projection-valued measure.

These properties allow us now to define the
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Definition 10.18 (Projection-valued measures). Given any A = A∗ ∈ B (H), we define a map

S 7→ B (H)

from Borel measurable sets to self-adjoint projections on Hilbert space as follows. The characteristic function

χS (λ) :=

{
1 λ ∈ S

0 λ /∈ S

is bounded and measurable for measurable subsets, and so χS (A) makes sense. According to the above definition,
χ· (A) is a projection-valued measure.

It is comforting to know that the two guises of the spectral theorem agree, in the sense that

Theorem 10.19. We have for any ψ,φ ∈ H,

⟨ψ, χ· (A)φ⟩ = µA,ψ,φ .

Proof. We have, by definition, for any Borel set S ⊆ R,

⟨ψ, χS (A)φ⟩ ≡
ˆ
x∈S

dµA,ψ,φ (x) ≡ µA,ψ,φ (S) .

We may also define the functional calculus now using the projection-valued measures alone, without reference for µA,ψ,φ
itself. This is done as follows: Let χ· (A) be the projection-valued measure of A = A∗. Then for any f ∈ L∞ (R), we have

f (A) ≡
ˆ
x∈R

f (x) dχx (A) . (10.3)

Theorem 10.20 (Stone’s formula). We have for any A = A∗ ∈ B (H),

s-lim
ε→0+

1

2πi

ˆ λ2

λ1

(RA (λ+ iε)−RA (λ− iε)) dλ =
1

2

(
χ(λ1,λ2) (A) + χ[λ1,λ2] (A)

)
.

Proof. First we note that for E ∈ R,

1

2i

[
1

E − λ− iε
− 1

E − λ+ iε

]
= Im

{
1

E − λ− iε

}
.

Next, note that

lim
ε→0+

ˆ λ2

λ=λ1

1

π
Im

{
1

E − λ− iε

}
dλ =


1 E ∈ (λ1, λ2)

0 E /∈ [λ1, λ2]
1
2 E ∈ { λ1, λ2 }

.

This can be deduced, e.g., using the “Sokhotski–Plemelj theorem” or “Kramers-Kronig relation”.
But now, invoking Theorem 10.16, in particular, that if fn → f in L∞ then fn (A) → f (A) strongly, we obtain

the desired result.

10.5 The multiplicative form of the spectral theorem

Definition 10.21 (Cyclic vectors). A vector ψ ∈ H is called cyclic for A ∈ B (H) iff

span ({Anψ }n) = span
({

(A− z1)
−1
ψ
∣∣∣ z ∈ C \ R

})
(in the sense of finite-linear combinations) is dense in H.
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Lemma 10.22. If A = A∗ ∈ B (H) and ψ ∈ H is a cyclic vector for A then there is a unitary

U : H → L2 (R, µA,ψ)

such that
(UAU∗f) (λ) = λf (λ) (λ ∈ σ (A)) .

Proof. Define U by mapping
H ∋ Anψ 7→ (λ 7→ λn) (n ∈ N≥0) .

Since ψ ∈ H is cyclic, this definition (and its extension by linearity) covers a dense subspace of vectors in H.
Moreover, clearly this map is an isometry:

∥λ 7→ λn∥L2(R,µA,ψ)
=

ˆ
λ∈R

|λ|2n dµA,ψ (λ)

=
〈
ψ, |An|2 ψ

〉
= ∥Anψ∥2 .

To extend it to all of H we use the “bounded linear extension theorem” (9.1). It extends as an isometry. It is clearly
injective, because if f = g µA,ψ-a.e., then

ˆ
|f |2 dµA,ψ = 0

↕
∥f (A)ψ∥2 = 0

↕
f (A)ψ = 0 .

Hence U defined as such is a unitary.

Lemma 10.23. If A = A∗ ∈ B (H) and H is separable, then H is graded as

H =

N⊕
j=1

Hj

with N ∈ N≥1 ∪ {∞ } such that:

1. AHj ⊆ Hj.

2. For each j, A|Hj has a cyclic vector:

Hj = span ({Alφ | l ∈ N })

for some φ ∈ Hj.

Proof. By Zorn’s lemma.

Theorem 10.24 (Spectral theorem in its multiplicative form). Let A = A∗ ∈ B (H) with H separable. Then there is
some N ∈ N≥1 ∪ {∞ } and measures { µn }Nn=1 on R such that there is a unitary operator

U : H →
N⊕
n=1

L2 (R, µn)

such that
(UAU∗f)n (λ) = λfn (λ)

(
f ∈ L2 (R, µn)

)
.
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Proof. Apply the spectral theorem on each invariant cyclic subspace separately.

We note that these measures are not uniquely defined.

Example 10.25. Let R be the bilateral right shift operator on ℓ2 (Z). Define

A := R+R∗ .

It is self-adjoint. How to realize it as a multiplication operator? Set up the Fourier series as the unitary map

F : ℓ2 (Z) → L2
(
S1
)

which realizes FAF∗ : L2
(
S1
)
→ L2

(
S1
)

as a multiplication operator by the map

[0, 2π] ∋ θ 7→ 2 cos (θ) .

To realize A as a multiplication operator by a map

λ 7→ λ

we must take two direct sum factors.

Example 10.26. On L2 (R), we have P := −i∂. This operator is unbounded, but via the (unitary) Fourier transform
we get a multiplication operator by the function

R ∋ p 7→ p .

10.6 Decomposition of spectrum
The Lebesgue decomposition theorem says that any regular measure µ on R may be decomposed as

µ = µpp + µac + µsc

where µ♯ is the pure-point, absolutely-continuous and singular-continuous parts respectively. Indeed, we know that any
regular measure µ on R may be written as

µ = µsing + µac

w.r.t. the Lebesgue measure, where µac obeys: if a measurable set S ⊆ R has measure zero then µac (S) = 0. µsing is
singular w.r.t. the Lebesgue measure, meaning that there is a decomposition of R into two disjoint parts, such that µsing
is zero on all measurable subsets of the first constituent and the Lebesgue measure is zero on all measurable subsets of
the second constituent. Now µsing is further decomposed into the point masses (pure point) and the rest, i.e.,

µpp =
∑
j∈N

ajδ (· − xj) .

These three pieces are mutually singular, which implies

L2 (R, µ) =
⊕

♯∈{ pp,ac,sc }

L2 (R, µ♯) .

We thus define, for any fixed A = A∗ ∈ B (H),

H♯ := { ψ ∈ H | µA,ψ is ♯ }

and obtain
H =

⊕
♯∈{ pp,ac,sc }

H♯ .
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10.7 Extension to normal operators
So far we have obtained the spectral theorem for self-adjoint operators. We now want to extend this to normal operators.
We do it in two steps: (1) generalize the spectral theorem to any number of commuting operators, and (2) write any
normal as a sum of two commuting self-adjoints (its real and imaginary parts):

A =
1

2
(A+A∗)︸ ︷︷ ︸
≡Re{A}

+i
1

2i
(A−A∗)︸ ︷︷ ︸
≡Im{A}

.

Normality of A, [A,A∗] = 0, guarantees that
[Re {A} , Im {A}] = 0 .

This construction has been delegated to the homework (in particular, see HW10).

10.8 Kuiper’s theorem [extra]
It is a striking fact, due to Kuiper, that any invertible operator can be path-connected (within invertibles) to 1:

Theorem 10.27. (Kuiper’s theorem) The invertible operators are contractible within B (H).

Proof. Let A ∈ B (H). We wish to find a continuous path to 1. Using the polar decomposition, write

A = |A|U

where |A| ≡
√
A∗A and U = A |A|−1 is unitary. Since

log : S1 → i [0, 2π]

is a bounded measurable function, we get some self-adjoint operator 1
i log (U) =: H. Thanks to the functional

calculus, it obeys U = eiH . Define the map

γ : [0, 1] → GL (B (H))

via

γ (t) = ((1− t) |A|+ t1) ei(1−t)H .

Then γ (0) = A and γ (1) = 1, γ is norm continuous and γ (t) is invertible because |A| > 0.

11 Unbounded operators and their spectral theorem
The material for this chapter is mainly taken from [RS80, Jak06].

It turns out that there are many situations in mathematics and in physics for which bounded operators are insufficient.
The most typical example is that of the position operator X on L2 (R):

(Xψ) (x) ≡ xψ (x) .

Coming from quantum mechanics, we interpret X as the position operator, i.e., the observable whose measurement yields
the position of the particle. As such its spectrum are all possible position measurement outcomes, so that

σ (X) = R

and we expect that X = X∗. But since the spectral radius r (X) equals ∥X∥ for a self-adjoint operator, it must be that

∥X∥ = ∞ .

Said differently, we know e.g. that x 7→ 1√
1+x2

belongs in L2 (R). However, applying the position operator on this function
yields

x 7→ x√
1 + x2

which is not in L2 (R). So it can’t be that X : L2 (R) → L2 (R) as defined above is a well-defined function. We rather
need to define it on a smaller subset of L2 (R).
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11.1 The domain of unbounded operators
Let H be a separable Hilbert space. The first thing we want to see is that necessarily we must allow unbounded operators
to be a defined on a subset of H so that they may well-defined linear functions.

Theorem 11.1 (Hellinger–Toeplitz theorem). Let A : H → H be a symmetric linear map, in the sense that

⟨φ,Aψ⟩ = ⟨Aφ,ψ⟩ (φ,ψ ∈ H) .

Then ∥A∥ <∞.

Proof. Recall the closed graph theorem Theorem 3.37 which says that ∥A∥ <∞ iff Γ (A) ∈ Closed
(
H2
)
, where

Γ (A) ≡
{
(φ,ψ) ∈ H2

∣∣ ψ = Aφ
}
.

is the graph of A. Let then { (φn, ψn) }n ⊆ Γ (A). Then ψn = Aφn by definition. Assume that

lim
n

(φn, ψn) = (φ,ψ) ∈ H2

for some (φ,ψ). We want to show that (φ,ψ) ∈ Γ (A), i.e., that ψ = Aφ.
To that end, let ξ ∈ H. Then

⟨ξ, ψ⟩ =
〈
ξ, lim

n
ψn

〉
=
〈
ξ, lim

n
Aφn

〉
= lim

n
⟨ξ, Aφn⟩ = lim

n
⟨Aξ, φn⟩ =

〈
Aξ, lim

n
φn

〉
= ⟨Aξ, φ⟩ = ⟨ξ, Aφ⟩ .

Since this is true for arbitrary ξ, we conclude ψ = Aφ and hence the conclusion.

As a result, we conclude that if, for a symmetric operator A, σ (A) is unbounded and hence ∥A∥ = ∞ then we must
allow A to be defined on a subset of H. Since we are mostly interested in symmetric operators, we are left to the
following generalized definition of an operator, which applies also to unbounded operators. It supersedes our previous
definition.

Definition 11.2 (operator). An (possibly unbounded) operator on a separable Hilbert space H is a pair (D, A) where
D is a vector subspace of H (closed or not) and A is linear map A : D → H. The space D is called the domain of
the operator, and sometimes is denoted by D (A). We say that A is densely defined iff D is dense in H. We set

ker (A) := { ψ ∈ D | Aψ = 0 }
im (A) := {Aψ ∈ H | ψ ∈ D } .

We likewise extend the definition of the operator norm as

∥A∥ ≡ sup ({ ∥Aψ∥ | ψ ∈ D : ∥ψ∥ = 1 }) .

Since operators on Hilbert space have natural operations (of addition, composition, etc) the question of the domain of
the resulting operators arises. We set

D (A+B) := D (A) ∩D (B)

D (AB) := { ψ ∈ D (B) | Bψ ∈ D (A) } .

We emphasize that what specifies an unbounded operator is the duo of both the domain of definition and the map on
which it is defined. As such, changing the domain results in a new unbounded operator. Be that as it may, it is very
inconvenient to keep track of two rather than one symbols for each operator, and so, from now on, we will rather refer to
an operator by A (with the understanding that we really mean (D (A) , A)) and when necessary to refer to its domain use
D (A).
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Definition 11.3 (Extension). The operator B is an extension of A iff

D (A) ⊆ D (B)

and
Aψ = Bψ (ψ ∈ D (A)) .

We then denote this situation by A ⊆ B.

The graph of this generalized notion of an operator is defined in a natural way as

Γ (A) ≡
{
(ψ,Aψ) ∈ H2

∣∣ ψ ∈ D (A)
}
.

Claim 11.4. For two unbounded operators, A ⊆ B iff Γ (A) ⊆ Γ (B).

Proof. Assume that A ⊆ B. Let (ψ,φ) ∈ Γ (A). Then ψ ∈ D (A). But D (A) ⊆ D (B), so ψ ∈ D (B). Also, φ = Aψ.
But on D (A), A = B, so we also have φ = Bψ. Thus (ψ,φ) ∈ Γ (B).

Conversely, if Γ (A) ⊆ Γ (B), if ψ ∈ D (A) then (ψ,Aψ) ∈ Γ (A) and so (ψ,Aψ) ∈ Γ (B). But then ψ ∈ D (B).
Also, that means previous equation means Aψ = Bψ so that A = B on D (A) as desired.

Definition 11.5 (Bounded (generalized) operator). We say that A is bounded iff D (A) = H and

∥A∥ <∞ .

We then recover the previous definition from Section 9. Note that some sources don’t require D (A) = H to be
bounded and instead only ask that ∥A∥ <∞.

Claim 11.6 (“BLT lemma”). If A is an operator such that D (A) = H (i.e. it is densely defined) and

∥Aψ∥ ≤ C∥ψ∥ (ψ ∈ D (A))

then A has a unique extension to a bounded operator on H.

Proof. We follow the same proof as in Theorem 9.25: Define Ã : H → H as follows. For all ψ ∈ D (A), define

Ãψ := Aψ .

Now let ψ ∈ H \ D (A) and we need to define Ãψ. By density, there is some { φn }n ⊆ D (A) such that φn → ψ.
Thus define

Ãψ := lim
n
Aφn .

The limit exists because
∥Aφn −Aφm∥ = ∥A (φn − φm)∥ ≤ C∥φn − φm∥ .

For uniqueness, assume that B ∈ B (H) is some other (bounded) operator such that Bψ = Aψ for all ψ ∈ D (A).
Then by density, for ψ = limn φn with φn ∈ D (A),

Bψ = B lim
n
φn

⋆
= lim

n
Bφn = lim

n
Aφn ≡ Ãψ

where in ⋆ we have used that B is bounded, and hence continuous: Theorem 2.24.

Example 11.7 (The position operator revisited). On H = L2 (R), we return to the position operator discussed above,
X. We define

D (X) :=

{
φ ∈ L2 (R)

∣∣∣∣ ˆ
x∈R

x2 |φ (x)|2 dx <∞
}
.
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Clearly, this is a vector subspace. We can make ∥Xφ∥ arbitrarily large while keeping ∥φ∥ = 1 by taking, e.g.,

φa (x) := exp

(
−1

2
π (x− a)

2

)
whence ∥φa∥ = 1 and

∥Xφa∥2 ≡
ˆ
x∈R

x2 exp
(
−π (x− a)

2
)
dx

=

ˆ
x∈R

(x+ a)
2
exp

(
−πx2

)
dx

= a2 +
1

2π
.

As a result, we conclude ∥X∥ cannot be finite. It is also clear that there are no extensions of X since D (X) is the
largest space on which X will land vectors from L2 back in L2.

Definition 11.8 (Closed and closable operator). An operator A is called closed iff its graph

Γ (A) ≡
{
(ψ,Aψ) ∈ H2

∣∣ ψ ∈ D (A)
}

is a closed subset of H2. We emphasize that having a closed graph does NOT imply the domain needs to be closed.
A is called closable iff it has a closed extension. If an operator is closable, its smallest closed extension is called its
closure and is denoted by A (with domain D

(
A
)
).

The significance of closed operators stems from the close graph theorem Theorem 3.37, which gives us some sense of
boundedness of A : D (A) → H on its domain. Be careful, however, that even if A is “closed”, D (A) may not be closed
and hence is not even a Banach space. So one cannot apply the closed graph theorem directly.

Claim 11.9. If A : D (A) → H is bounded, then D (A) is closed iff A is closed.

Proof. Assume D (A) is closed. Then since A : D (A) → H is a bounded map between two Banach spaces, by
the closed graph theorem Theorem 3.37, it has Γ (A) closed, i.e., A is closed. Conversely, if Γ (A) is closed, taking
{ ψn }n ∈ D (A) such that ψn → ψ for some ψ ∈ H, we want to show ψ ∈ D (A). We have

(ψn, Aψn) ∈ Γ (A) (n ∈ N)

and

lim
n

(ψn, Aψn) =
(
ψ, lim

n
Aψn

)
cont. of A

= (ψ,Aψ)

this latter point lies in Γ (A) since it is closed, and hence ψ ∈ D (A).

Corollary 11.10. Any bounded operator defined on a non-closed domain is not closed.

Claim 11.11. The unbounded operator A is closable iff Γ (A) is the graph of a linear operator, in which case

Γ
(
A
)

= Γ (A) .

Proof. First assume that

Γ (A) = Γ (B)

for some operator B. Then by definition B is closed and as

Γ (A) ⊆ Γ (A) ,
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we have that B is an extension of A, hence A is closable. Since B is that operator whose graph equals the closure
of Γ (A), it is the smallest closed extension of A and hence A = B as desired.

In the reverse direction, assume that A is closable. Then let (D (B) , B) be a closed extension of (D (A) , A).
Then by definition, Γ (A) ⊆ Γ (B) and since Γ (B) is closed,

Γ (A) ⊆ Γ (B)

as Γ (A) is the smallest closed subset containing Γ (A). Hence if (0, ψ) ∈ Γ (A) then ψ = 0. Indeed, then

(0, ψ) ∈ Γ (B) ⇐⇒ B0 = ψ

⇐⇒ ψ = 0 .

Define now R : D (R) → H via

D (R) :=
{
ψ
∣∣∣ (ψ,φ) ∈ Γ (A)∃φ ∈ H

}
Rψ := φ

(
φ is the unique vector so that (ψ,φ) ∈ Γ (A)

)
.

First we show that R is indeed well defined. This follows since if there are two φ1, φ2 such that

(ψ,φ1) = (ψ,φ2)

then we’d have (0, φ1 − φ2) ∈ Γ (B) which implies φ1 = φ2. By construction,

Γ (R) = Γ (A)

so R is a closed extension of A. But R ⊆ B, where B is an arbitrary closed extension, so R = A.

Not every operator is even closable, as the following example shows:

Example 11.12 (Non-closable operator). Let { φn }n be an ONB for H and ψ ∈ H be some vector which is not a
finite linear combination of these basis vectors. Let D be the set of finite linear combinations of elements of { φn }n
as well as ψ (so that it is a vector subspace) and on it define

A

aψ +

N∑
j=1

ajφj

 := aψ

for all a, a1, . . . , aN ∈ C. Then since { φj }∞j=1 is an ONB, we may, via approximation, exhibit the set

{ (aψ + φ, aψ) | a ∈ C, φ ∈ H }

within Γ (A), so the latter contains both (ψ + 0, ψ) = (ψ,ψ) as well as (0ψ + ψ, 0ψ) = (ψ, 0). But no linear map B
may contain both of these points in its graph, since that would imply

Bψ = 0

and

Bψ = ψ

i.e., B is not well-defined.

Definition 11.13 (Core of an operator). If A is a closed operator then a subset C ⊆ D (A) is called a core for A iff

A|C = A .

124



Definition 11.14 (Adjoint). Given a densely-defined operator A, we define its adjoint using the following procedure.
First, however we end up defining the adjoint A∗ of A, it better obey the equation

⟨φ,Aψ⟩ = ⟨A∗φ,ψ⟩ (ψ ∈ D (A) , φ ∈?) .

But it might not be the case that there is a solution ξ (which is our tentative definition for A∗φ) to the equation

⟨φ,Aψ⟩ = ⟨ξ, ψ⟩ (ψ ∈ D (A))

for all φ. The solution is thus to define

D (A∗) := { φ ∈ H | ∃ξ ∈ H : ∀ψ ∈ D (A) , ⟨φ,Aψ⟩ = ⟨ξ, ψ⟩ } .

If such a solution ξ ∈ H exists then it is unique. Indeed, if ξ̃ ∈ H also obeys

⟨φ,Aψ⟩ =
〈
ξ̃, ψ

〉
then 〈

ξ̃, ψ
〉
= ⟨φ,Aψ⟩ = ⟨ξ, ψ⟩ (ψ ∈ D (A)) .

As such, ξ̃ − ξ ∈ D (A)
⊥. But D (A) is dense, so using Claim 7.8, we have

D (A)
⊥
=
(
D (A)

)⊥
= H⊥ = { 0 } .

Hence, ξ = ξ̃. Note it may happen that
D (A∗) := { 0 } .

If D (A∗) = H then we define A∗∗ := (A∗)
∗. Otherwise, (A∗)

∗ does not exist as an operator (we need a densely
defined operator to define the adjoint!).

Claim 11.15. For any densely defined operator A,

D (A∗) =

{
φ ∈ H

∣∣∣∣∣ sup
ψ∈D(A)

|⟨φ,Aψ⟩|
∥ψ∥

<∞

}
.

Proof. First let φ ∈ D (A∗). Then we know A∗φ ∈ H exists which obeys

⟨φ,Aψ⟩ = ⟨A∗φ,ψ⟩ (ψ ∈ D (A)) .

Then
|⟨φ,Aψ⟩| = |⟨A∗φ,ψ⟩| ≤ ∥A∗φ∥∥ψ∥

so that
sup

ψ∈D(A)

|⟨φ,Aψ⟩|
∥ψ∥

≤ ∥A∗φ∥ <∞ .

Conversely, if supψ∈D(A)
|⟨φ,Aψ⟩|

∥ψ∥ <∞, then
ψ 7→ ⟨φ,Aψ⟩

is a bounded linear functional and hence by Riesz’ lemma, Theorem 7.10, there corresponds to it a unique vector
(which ends up being A∗φ), i.e., φ ∈ D (A∗).

Example 11.16 (Example where D (A∗) is not dense). Let f : R → C be bounded and measurable, but not L2 (R).
Define

D (A) :=

{
ψ ∈ L2 (R)

∣∣∣∣ ˆ |f (x)ψ (x)|dx <∞
}
.

Now clearly D (A) contains all L2 functions with compact support so that D (A) is dense in L2. Now fix some ψ0 ∈ L2
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and define
Aψ := ⟨f, ψ⟩L2 ψ0 (ψ ∈ D (A)) .

Then for φ ∈ D (A∗), we have

⟨ψ,A∗φ⟩ ≡ ⟨Aψ,φ⟩ = ⟨⟨f, ψ⟩ψ0, φ⟩ = ⟨ψ, f⟩ ⟨ψ0, φ⟩ ⟨ψ, ⟨ψ0, φ⟩ f⟩ (ψ ∈ D (A)) .

Hence
A∗φ = ⟨ψ0, φ⟩ f .

But f /∈ L2, so ⟨ψ0, φ⟩ = 0, i.e., φ ⊥ ψ0 and hence D (A∗) = { φ | φ ⊥ ψ0 } cannot be dense. So on that domain, A∗

is the zero operator.

Theorem 11.17. [R&S Thm. VIII.1] Let A be a densely defined operator. Then

1. A∗ is closed.

2. A is closable iff D (A∗) is dense, and in this case A = A∗∗.

3. If A is closable then
(
A
)∗

= A∗.

Proof. Define a unitary V on H2 via
V (φ,ψ) := (φ,−ψ) .

It is indeed unitary since it can be written in operator block form as

V =

[
1 0
0 −1

]
.

The unitarity of V guarntees that for any subspace E, V
(
E⊥) = (V (E))

⊥. We claim that

Γ (A∗) = V (Γ (A))
⊥
. (11.1)

This would imply the first statement thanks to Theorem 7.7. But (11.1) holds, via

(φ,ψ) ∈ Γ (A∗) ⇐⇒ φ ∈ D (A∗) ∧ ψ = A∗φ

⇐⇒ ⟨φ,Aη⟩ = ⟨ψ, η⟩ (η ∈ D (A))

⇐⇒ ⟨(ψ,φ) , (η,−Aη)⟩ (η ∈ D (A))

⇐⇒ ((ψ,φ) , V ⟨η,Aη⟩) (η ∈ D (A))

⇐⇒ (ψ,φ) ⊥ V (Γ (A)) .

For the second statement, we have via Claim 7.8,

Γ (A) =
(
Γ (A)

⊥
)⊥

V 2=1
=

(
V 2Γ (A)

⊥
)⊥

Γ(A∗)=V (Γ(A))⊥

= (V Γ (A∗))
⊥

same equation again
= Γ

(
(A∗)

∗)
.

But if A∗ is densely defined, (A∗)
∗ is an operator so that Γ

(
(A∗)

∗)
= Γ (A∗∗) is the graph of an operator, and hence

A is closable. Conversely, if A∗ is not densely defined, let ψ ∈ D (A∗)
⊥. Then

(ψ, 0) ∈ Γ (A∗)
⊥

hence V (Γ (A∗))
⊥ is not the graph of a single-valued operator. But (V Γ (A∗))

⊥
= Γ (A), so A is not closable.
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Finally, if A is closable,

A∗ A∗ is closed
= A∗

second statement
= (A∗)

∗∗

= A∗∗∗

=
(
A
)∗
.

Definition 11.18 (The spectrum of an unbounded densely defined operator). Let a closed operator A be given. Then

ρ (A) := { z ∈ C | (A− z1) : D (A) → H is a bijection }

is the resolvent set. Since Γ (A) is closed, by the closed graph theorem Theorem 3.37, for all z ∈ ρ (A), (A− z1)
−1

:
H → D (A) is continuous, and hence

RA (z) := (A− z1)
−1 ∈ B (H) (z ∈ ρ (A)) .

The spectrum of a closed operator is defined as

σ (A) := C \ ρ (A) .

We use the same definition of point spectrum

σp (A) := { z ∈ C | ker (A− z1) ̸= { 0 } } .

and residual spectrum from Definition 9.14. The spectrum of a closable operator is the spectrum of the closure of the
operator.

Theorem 11.19. Let A be a closed densely defined operator. Then ρ (A) ∈ Open (C) and RA : ρ (A) → H is an
analytic operator-valued function. Moreover,

{RA (λ) | λ ∈ ρ (A) }

is a commuting family of bounded operators for which

RA (λ)−RA (µ) = (µ− λ)RA (λ)RA (µ) .

The proof is the same as in the bounded case and hence is not repeated.

Example 11.20 (Spectrum depends on domain of definition). Let

A :=
{
ψ : [0, 1] → C

∣∣ ψ is ac and ψ′ ∈ L2 ([0, 1])
}
.

Recall that ψ is called absolutely-continuous iff ψ′ exists Lebesgue-almost-everywhere on [0, 1], ψ′ ∈ L1, and

ψ (x) = ψ (0) +

ˆ x

0

ψ′ (x ∈ [0, 1]) .

We then define A1, A2 both with

D (A1) := A

D (A2) := { φ ∈ A | φ (0) = 0 }

and with the joint operator
ψ 7→ −iψ′ .

We claim that both A1, A2 have densely defined and closed, but:

σ (A1) = C yet σ (A2) = ∅ .
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To see the spectral claim, let us calculate
(A1 − λ1) eiλ· = 0

and observe eiλ· ∈ D (A1) and this is true for all λ ∈ C. For the second spectrum, we exhibit an inverse for A2 − λ1 for
all λ ∈ C:

(Bλg) (x) := −i

ˆ x

0

eiλ(x−y)g (y) dy .

Then

(A2 − λ1)Bλ = 1H

Bλ (A2 − λ1) = 1D(A2) .

11.2 Symmetric and self-adjoint operators

Definition 11.21 (symmetric operator). A densely defined operator A is called symmetric iff A ⊆ A∗. That means
D (A) ⊆ D (A∗) and Aφ = A∗φ for all φ ∈ D (A).

Claim 11.22. A is symmetric iff
⟨Aφ,ψ⟩ = ⟨φ,Aψ⟩ (φ,ψ ∈ D (A)) .

Proof. Assume that A is symmetric. Then A ⊆ A∗. Then for φ,ψ ∈ D (A), we have

⟨φ,Aψ⟩ = ⟨A∗φ,ψ⟩ A
∗φ=Aφ for φ∈D(A)

= ⟨Aφ,ψ⟩ .

Conversely, assume
⟨Aφ,ψ⟩ = ⟨φ,Aψ⟩ (φ,ψ ∈ D (A)) .

Then, given φ ∈ D (A), we have ξ = Aφ as the solution of

⟨φ,Aψ⟩ = ⟨ξ, ψ⟩

by symmetry, so that φ ∈ D (A∗). Moreover, Aφ = A∗φ then so that indeed A ⊆ A∗.

Definition 11.23 (self-adjoint operator). A densely defined operator A is called self-adjoint iff A = A∗, that is, iff
A is symmetric and D (A) = D (A∗).

Note that a symmetric operator is always closable by Theorem 11.17, since D (A∗) ⊇ D (A), the latter being dense by
definition of symmetric operator. Moreover, for a symmetric operator, A∗ is a closed extension of A, so by Theorem 11.17
again, A = A∗∗ is contained in A∗. Hence, for symmetric operators

A ⊆ A∗∗ ⊆ A∗ .

For closed symmetric operators,
A = A∗∗ ⊆ A∗ .

Finally, for self-adjoint operators,
A = A∗∗ = A∗ .

Hence for A closed symmetric, A is self-adjoint iff A∗ is symmetric.

Definition 11.24 (essentially self-adjoint operator). A symmetric operator A is called essentially self-adjoint iff its
closure A is self-adjoint.

Claim 11.25. If A is essentially self-adjoint (i.e. if
(
A
)∗

= A), then it has a unique self-adjoint extension.
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Proof. Let B be any self-adjoint extension of A. We claim that actually B = A∗∗ = A (last equality via Theo-
rem 11.17, recall that symmetric is always closable). We show this in two ways: First B ⊇ A∗∗. Indeed, A = A∗∗ is
the smallest closed extension of A. But B is also closed and is an extension of A. For the other direction, first note
that if C ⊆ D and both are densely defined then D∗ ⊆ C∗. Indeed, we have C ⊆ D iff Γ (C) ⊆ Γ (D) via Claim 11.4.
But in a proof above that

Γ (C∗) = V (Γ (C))
⊥

for some unitary operator. Using that fact, we have then for the other direction,

B = B∗ ⊆ (A∗∗)
∗
=
(
A
)∗

= A = A∗∗

where we have used the fact that A is essentially self-adjoint in the penultimate equality.

Thus we see that a non-closed but symmetric operator has a uniquely defined self-adjoint operator associated to it, and
many times, it is easier to specify a self-adjoint operator by specifying a non-closed symmetric operator whose domain
doesn’t have to be determined precisely, but just the core on which it is essentially self-adjoint!

Note also that the converse is also true: if A has a unique self-adjoint extension then it is essentially self-adjoint.

Theorem 11.26. Let A be a symmetric operator. Then the following are equivalent:

1. A is self-adjoint.

2. A is closed and ker (A∗ ± i1) = { 0 }. (In fact, here ±i may be replaced by z, z for any z ∈ C \ R).

3. im (A± i1) = H.

Proof. Assume that A is self-adjoint. Then A = A∗ and since Theorem 11.17 says A∗ is closed, so is A. Assume that

Aψ = iψ (ψ ∈ D (A)) .

Then
−i ⟨ψ,ψ⟩ = ⟨iψ,ψ⟩ = ⟨Aψ,ψ⟩ = ⟨ψ,Aψ⟩ = i ⟨ψ,ψ⟩

so ψ = 0. I.e., ker (A∗ ± i1) = { 0 }.
Next, we show that the second statement implies the third. Assume that

A∗φ = −iφ

has no solutions. We want to show that im (A− i1) = H which we do in two steps: show im (A− i1) is dense and
then that it is closed. For the first step, assume that ψ ∈ im (A− i1)

⊥. Then

⟨(A− i1)φ,ψ⟩ = 0 (φ ∈ D (A))

so ψ ∈ D (A∗) and hence
(A− i1)

∗
ψ = (A∗ + i1)ψ = 0

which is impossible as we said A∗ψ = −iψ has no solutions. To show im (A− i1) is closed, note that for any
φ ∈ D (A),

∥(A− i1)φ∥2 = ∥Aφ∥2 + ∥φ∥2 .

Hence if φn ∈ D (A) and (A− i1)φn → ξ then φn → φ0 and Aφn converges too. But A is closed, so φ0 ∈ D (A)
and (A− i1)φ0 = ξ. Hence im (A− i1) is closed.

Finally, let us show the third statement implies self-adjointness. Let φ ∈ D (A∗). Since im (A− i1) = H, there
is some η ∈ D (A) with

(A− i1) η = (A∗ − i)φ .

But D (A) ⊆ D (A∗), so
φ− η ∈ D (A∗)
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and
(A∗ − i1) (φ− η) = 0 .

But im (A+ i1) = H too, so ker (A∗ − i1) = { 0 }, so that φ = η ∈ D (A). Hence D (A∗) = D (A) and hence A is
self-adjoint.

Corollary 11.27. Let A be a symmetric operator. Then the following are equivalent:

1. A is essentially self-adjoint.

2. ker (A∗ ± i1) = { 0 } .

3. im (A± i1) = H.

Proof. Assume that A is essentially self-adjoint. Then A = A∗∗ is self-adjoint. Applying of the above lemma on A
then yields that A is closed (trivial) and that

ker
((
A
)∗ ± i1

)
= { 0 } .

But by Theorem 11.17 we know that A
∗
= A∗. Next, another application of the lemma on A yields that im

(
A± i1

)
=

H. We then claim that

im
(
A± i1

)
= im (A± i1) . (11.2)

Indeed, let ξ ∈ im (A± i1). Then { φn }n ⊆ H with

Aφn ± iφn → ξ .

But

∥Aφn + zφn∥2 = ⟨Aφn + zφn, Aφn + zφn⟩
= ⟨Aφn, Aφn⟩+ |z|2 ⟨φn, φn⟩+ z ⟨φn, Aφn⟩+ z ⟨Aφn, φn⟩

A symm.
= ∥Aφn∥2 + |z|2 ∥φn∥2 + 2Re {z} ⟨φn, Aφn⟩

so that if z = ±i we get

∥Aφn ± iφn∥ =

√
∥Aφn∥2 + ∥φn∥2

imply that if {Aφn ± iφn }n is Cauchy, so are {Aφn }n and { φn }n. Thus φn → φ and Aφn → ψ for some φ,ψ ∈ H.
I.e., (φ,ψ) ∈ Γ (A). But A is closable, so

Γ
(
A
)
= Γ (A)

and hence (φ,ψ) ∈ Γ
(
A
)
. I.e., ψ = Aφ and φ ∈ D

(
A
)
. Hence

Aφn ± iφn → Aφ± iφ .

But the limit is unique, so
Aφ± iφ = ξ ,

i.e., ξ ∈ im
(
A± i1

)
.

Conversely, if ξ ∈ im
(
A± i1

)
, we write ξ = Aφ± iφ for some φ ∈ D

(
A
)
. Then

Γ (A) = Γ
(
A
)
∋
(
φ,Aφ

)
= (φ, ξ ∓ iφ)

so there is a sequence { ψn }n ⊆ D (A) such that ψn → φ and Aψn → ξ ∓ iφ. But

∥ξ − (Aψn ± iψn)∥ ≤ ∥(ξ ∓ iφ)−Aψn∥+ ∥±iφ∓ iψn∥ → 0
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so ξ ∈ im (A± i1).
Thanks to (11.2) we now have the third item.
Finally, assuming the third item, using (11.2) and applying the lemma again on A we obtain that A is self-adjoint,

i.e., A is essentially self-adjoint.

An operator which is merely symmetric but not essentially self-adjoint may have either no self-adjoint extensions or many
self-adjoint extensions.

Example 11.28 (many self-adjoint extensions). Let P := −i∂ with

D (P ) := { φ ∈ A | φ (0) = φ (1) = 0 }

with A as above. Integration by parts shows that P is symmetric:

⟨φ, Pψ⟩ =

ˆ
φPψ = (−i)

ˆ
φψ′ = i

ˆ
φ′ψ =

ˆ
(−i)φ′ψ =

ˆ
Pφψ = ⟨Pφ,ψ⟩ .

We claim that P ∗ is given by P ∗ = −i∂ as well, but with

D (P ∗) = A .

[TODO: prove this] But P is not essentially self-adjoint, since e±· ∈ D (A) and

P e±· = ±ie±· .

Actually P is a closed symmetric but not self-adjoint operator. It has uncountably many self-adjoint extensions indexed
by the unit circle: for any α ∈ S1,

D (Pα) := { φ ∈ A | φ (0) = αφ (1) }
and Pα := −i∂.

Theorem 11.29. Let A be self-adjoint. Then

1. If z ∈ C,
∥(A− z1)ψ∥2 = ∥(A− Re {z}1)ψ∥2 + Im {z}2 ∥ψ∥2 (ψ ∈ D (A)) .

2. σ (A) ⊆ R and for all z ∈ C \ R, ∥∥∥(A− z1)
−1
∥∥∥ ≤ 1

|Im {z}|
(z ∈ C \ R) .

3. For any x ∈ R and ψ ∈ H,
lim
y→∞

iy (A− (x+ iy)1)
−1
ψ = −ψ .

4. If λ1, λ2 ∈ σp (A) with λ1 ̸= λ2 and ψ1, ψ2 are the corresponding eigenvectors, then ψ1 ⊥ ψ2.

Proof. We have

∥(A− (x+ iy)1)ψ∥2 = ⟨(A− (x+ iy)1)ψ, (A− (x+ iy)1)ψ⟩
=

〈
ψ, (A− (x+ iy)1)

∗
(A− (x+ iy)1)ψ

〉
= ⟨ψ, (A− (x− iy)1) (A− (x+ iy)1)ψ⟩

=
〈
ψ,
(
(A− x1)

2
+ y21

)
ψ
〉

= ∥(A− x1)ψ∥2 + y2∥ψ∥2 .

For the next statement, let z ∈ C \ R. If (A− z1)ψ = 0 then

∥(A− x1)ψ∥2 = y2∥ψ∥2 = 0

which implies ψ = 0. So
A− z1 : D (A) → H
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is injective. By the third condition in Theorem 11.26 (using it at z ∈ C \ R rather than z = ±i), since A is assumed
to be self-adjoint, im (A− z1) = H. Hence A − z1 is bijective. By Definition 11.18, this implies z ∈ ρ (A). Next,
from the first statement of the claim, we have

∥ψ∥ ≤ 1

|Im {z}|
∥(A− z1)ψ∥ (ψ ∈ D (A)) .

Now let φ ∈ H. Then (A− z1)
−1
φ ∈ D (A) as (A− z1)

−1
: H → D (A) is a bijection. Hence we may write∥∥∥(A− z1)

−1
φ
∥∥∥ ≤ 1

|Im {z}|
∥φ∥ (φ ∈ H)

which is what we wanted to prove. We learn that (A− z1)
−1 is bounded in the sense that its operator norm has

the (so-called) “trivial bounded” ∥∥∥(A− z1)
−1
∥∥∥ ≤ 1

|Im {z}|
.

Of course we may re-define its codomain as H in which case it would be bounded in the sense of Definition 11.5.
Finally, for the third statement, let B := A− x1 for x ∈ R. Then B is also self-adjoint. Its domain equals

D (A− x1) ≡ D (A) ∩D (−x1) = D (A) ∩H = D (A) .

It is symmetric:

⟨φ,Bψ⟩ = ⟨φ, (A− x1)ψ⟩ = ⟨φ,Aψ⟩ − x ⟨φ,ψ⟩ = ⟨Aφ,ψ⟩ − ⟨xφ, ψ⟩ = ⟨(A− x1)φ,ψ⟩ .

As such, via Theorem 11.26 it is self-adjoint since we can invoke the third condition

im (A± i1) = H

with any complex number off the real axis, rather than merely ±i. Let us thus prove the statement for B. First, let
ψ ∈ D (B). Then we have

(B − iy1) (B − iy1)
−1 ≡ 1

B (B − iy1)
−1 − iy (B − iy1)

−1
= 1

iy (B − iy1)
−1

+ 1 = (B − iy1)
−1
B

and so ∥∥∥iy (B − iy1)
−1
ψ + ψ

∥∥∥ =
∥∥∥(B − iy1)

−1
Bψ
∥∥∥

≤
∥∥∥(B − iy1)

−1
∥∥∥∥Bψ∥

≤ 1

|y|
∥Bψ∥ .

Taking now the limit y → ∞ yields the desired limit for all ψ ∈ D (B). Now, if ψ /∈ D (B), since B is self-adjoint,
we have via Theorem 11.17 that D (B) is dense. So let { ψn }n ⊆ D (B) be such that ∥ψn − ψ∥ ≤ 1

n . Then∥∥∥iy (B − iy1)
−1
ψ + ψ

∥∥∥ ≤
∥∥∥iy (B − iy1)

−1
(ψ − ψn)

∥∥∥+ ∥ψ − ψn∥+

+
∥∥∥iy (B − iy1)

−1
ψn + ψn

∥∥∥
≤ 2∥ψ − ψn∥+

∥Bψn∥
|y|

≤ 2

n
+

∥Bψn∥
|y|

.

Taking now lim supy→∞ and then n → ∞ we find the result. The last claim’s proof is identical to the one in the
case of bounded operators, shown in Theorem 9.21.
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11.3 Direct sums and invariant subspaces
11.3.1 Direct sum of operators

Let Ai : D (Ai) → Hi for i = 1, 2. Then we can form the map A := A1 ⊕ A2 : D (A1) ⊕ D (A2) → H1 ⊕ H2 using the
notion of direct sum of Hilbert spaces as in Section 7.4. Since D (Ai) is not required to be closed, the direct sum within
D (A1)⊕D (A2) is meant in the sense of vector spaces, not Hilbert spaces. It is clear that if Ai is self-adjoint for i = 1, 2
then so is A, and

(A− z1)
−1

= (A1 − z1)
−1 ⊕ (A2 − z1)

−1
.

Definition 11.30 (invariant subspace). Let A be a self-adjoint operator on Hilbert space. We say that a closed
vector subspace I ⊆ H is invariant under A iff

(A− z1)
−1

I ⊆ I (z ∈ C \ R) .

Observe that if I is invariant under A, so is I⊥: let ψ ∈ (A− z1)
−1

I⊥. Then

ψ = (A− z1)
−1
φ ∃φ ∈ I⊥ .

Now let η ∈ I. Then 〈
η, (A− z1)

−1
φ
〉
=

〈
(A− z1)

−1
η︸ ︷︷ ︸

∈I

, φ︸︷︷︸
∈I⊥

〉
= 0

so that I⊥ is invariant as well. Let us define for any closed vector subspace V,

D (AV) := D (A) ∩ V

and AV : D (AV) → V an operator on the Hilbert space V via

AVψ := Aψ (ψ ∈ D (AV)) .

Claim 11.31. If I is invariant under the self-adjoint operator A then AI as defined above is also self-adjoint.

Proof. Clearly D (AV) is dense in I if D (A) is dense in H, since V is closed. We first show that AI is symmetric:
we want

⟨AIφ,ψ⟩ = ⟨φ,AIψ⟩ (φ,ψ ∈ D (AI)) .

Since AI = A on I, and D (AI) ⊆ I, we have

⟨AIφ,ψ⟩ = ⟨Aφ,ψ⟩ A symmetric
= ⟨φ,Aψ⟩ = ⟨φ,AIψ⟩ .

Next, note that

Γ (AI) ≡ { (φ,AIφ) | φ ∈ D (AI) }
= { (φ,Aφ) | φ ∈ D (A) ∩ I }
= { (φ,Aφ) | φ ∈ D (A) } ∩ (I ×H)

= Γ (A) ∩ (I ×H) .
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Hence using the same unitary from Theorem 11.17, we have

Γ (A∗
I) = (V Γ (AI))

⊥

= (V (Γ (A) ∩ (I ×H)))
⊥

= ((V Γ (A)) ∩ (I × (−H)))
⊥

H=−H
= ((V Γ (A)) ∩ (I ×H))

⊥

=
(
Γ (A∗)

⊥ ∩ (I ×H)
)⊥

=
(
Γ (A)

⊥ ∩ (I ×H)
)⊥

= { (φ,Aφ) | φ ∈ D (A) ∩ I }
= Γ (AI) .

Hence, A∗
I = AI.

Proposition 11.32. Let {An : D (An) → Hn }n be a sequence of self-adjoint operators. Define the operator A : D (A) →
H on

H :=
⊕
n

Hn

with the direct sum as in Section 7.4, via the domain

D (A) :=

{
ψ ∈ H

∣∣∣∣∣ ψn ∈ D (An)∀n ∧
∑
n

∥Anψn∥2Hn <∞

}

and action
Aψ := {Anψn } (ψ ∈ D (A)) .

Then:

1. A is a self-adjoint operator on H.

2. For all z ∈ C \ R,
(A− z1)

−1
=
⊕
n

(An − z1n)
−1

3. The spectrum obeys
σ (A) =

⋃
n

σ (An) .

Proof. We have
A∗ =

⊕
n

A∗
n =

⊕
n

An = A

since the adjoint of the direct sum is the direct sum of the adjoints, by definition. The same statement holds for the
inverse, which shows the second claim. Finally, for the spectrum, let z ∈ σ (A). Then

(A− z1) : D (A) → H

is not a bijection. Thanks to the direct sum decomposition, this implies there exists at least one n for which

(An − z1n) : D (An) → Hn

is not a bijection for otherwise the whole A would be. But that implies that z ∈ σ (An) ⊆
⋃
n σ (An). Conversely. if

z ∈
⋃
n

σ (An)
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then there is a sequence { wj }j ⊆
⋃
n σ (An) such that wj → z. Then for each j there is some nj such that(

Anj − wj1nj
)
: D

(
Anj

)
→ Hnj

is not a bijection. That means that A− wj1 is not a bijection for each j, i.e., wj ∈ σ (A) for each j. But since the
spectrum is closed, z ∈ σ (A) as well.

11.4 Cyclic spaces and the decomposition theorem

Definition 11.33. Let A be a self-adjoint operator on H. A collection { ψn }n ⊆ H is called cyclic for A iff

span
({

(A− z1)
−1
ψn

∣∣∣ z ∈ C \ R
})

= H .

Note that a cyclic set always exists since we can always take as the initial set an orthonormal basis for H. If it happens
that the whole set is just one single vector, then that vector is called cyclic for A.

Theorem 11.34. Let A be a self-adjoint operator on H. Then there exists a sequence of closed subspaces

{Hn }n ⊆ H

which are mutually orthogonal (Hn ⊥ Hm for all n ̸= m) and self-adjoint operators {An : D (An) → Hn }n such that

1. For all n, there exists a vector ψn ∈ Hn cyclic for An.

2. H =
⊕

nHn and A =
⊕

nAn.

Proof. Let { φn }n be any cyclic set for A. Define

ψ1 := φ1

and let H1 be the cyclic space generated by A and ψ1:

H1 := span
({

(A− z1)
−1
ψ1

∣∣∣ z ∈ C \ R
})

.

We know that ψ1 ∈ H1 via the third item in Theorem 11.29. Using the same claim, we see that H1 is invariant
under A. We set

A1 := AH1

with the notation as in the section above about invariant subspaces.
Let now φ̃2 be the first element of { φ2, φ3, . . . } which is not in H1. Decompose

φ̃n2
=: φ̃(1)

n2
⊕ φ̃(2)

n2
∈ H1 ⊕H⊥

1 .

Define

ψ2 := φ̃(2)
n2

and let H2 be the cyclic subspace generated by A and ψ2. We claim that H1 ⊥ H2. Indeed,〈
(A− z1)

−1
ψ1, (A− w1)

−1
ψ2

〉
=

〈
ψ1, (A− z1)

−1
(A− w1)

−1
ψ2

〉
=

1

w − z

〈
ψ1,
[
(A− z1)

−1 − (A− w1)
−1
]
ψ2

〉
and now use the fact that ψ2 ⊥ H1. Define A2 are the restriction of A to H2, which is also invariant. By construction
and Proposition 11.32, the rest of the claims follow.
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11.5 The spectral theorem for unbounded operators

Theorem 11.35. Let (X,F, µ) be a finite measure space, with µ a finite positive measure. Let

f : X → R

be measurable and define Mf : D (Mf ) → L2 (X,µ) with

D (Mf ) :=
{
ψ ∈ L2 (X,µ)

∣∣ fψ ∈ L2 (X,µ)
}

Mfψ := fψ .

Then

1. Mf is self-adjoint.

2. Mf is bounded iff f ∈ L∞ (X,µ), in which case

∥Mf∥ = ∥f∥∞ .

3. σ (Mf ) equals the essential range of f , that is,

σ (Mf ) =
{
λ ∈ R

∣∣ µ (f−1 (Bε (λ))
)
> 0∀ε > 0

}
.

Proof. First we want to show that Mf is densely defined. This is clear since the compactly supported functions are
dense in L2. Next, Mf is symmetric, since

⟨φ,Mfψ⟩L2 ≡
ˆ
X

φfψdµ
im(f)⊆R

=

ˆ
X

fφψdµ = ⟨Mfφ,ψ⟩L2 .

According to Definition 11.23 we are left to show that D
(
M∗
f

)
⊆ D (Mf ). Divide X according to the decomposition

YN (x) :=

{
1 |f (x)| ≤ N

0 else
(x ∈ X) .

Through a limiting argument with YN we may show that∥∥M∗
fψ
∥∥ = ∥fψ∥

so that fψ ∈ L2, i.e., ψ ∈ D (Mf ). The proof of the spectral statement follows as in the bounded case (this was
HW10Q6).

Definition 11.36 (unitary equivalence). Let Ai : D (Ai) → Hi be given for i = 1, 2. We say that A1 is unitarily
equivalent to A2 iff there exists a unitary map U : H1 → H2 such that

UD (A1) = D (A2)

and
UA1U

−1 = A2 .

Theorem 11.37 (Spectral theorem for self-adjoint operators). Let A be a self-adjoint operator on H. Then there
exists a measure space (X,F, µ) with µ a finite positive measure and a measurable functions f : M → R such that A
is unitarily equivalent to the operator Mf on L2 (X,µ).

We will prove this theorem in two steps. The first step is to decompose H into the cyclic subspaces of A as in
Theorem 11.34. Then we shall prove the unitary equivalence to a multiplication operator in each cyclic subspace separately.

11.5.1 Proof of the spectral theorem in the cyclic case
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Theorem 11.38. Let V : C+ → R be a positive harmonic function. Then there is a constant

c ≥ 0

and a positive measure µ on R such that

V (z) = c Im {z}+ Im {z}
ˆ
t∈R

1

(Re {z} − t)
2
+ Im {z}2

dµ (t)
(
z ∈ C+

)
.

Note that y
x2+y2 = Im

{
1

x−iy

}
so this could also be written as

V (z) = Im

{
cz +

ˆ
t∈R

1

t− z
dµ (t)

}
connecting with the previous Herglotz perspective and invoke Theorem 10.7.

Proof. This is Theorem 2.11 in [Jak06], which we do not reproduce here.

Theorem 11.39. Let A be a self-adjoint operator on H and ψ ∈ H be given. Then there exists a unique finite positive
Borel measure µψ on R such that µψ (R) = ∥ψ∥2 and〈

ψ, (A− z1)
−1
ψ
〉
=

ˆ
R

1

t− z
dµψ (t) (z ∈ C \ R) . (11.3)

The measure µψ is called the spectral measure of A and ψ.

Proof. Le z ∈ C+. Set

U (z) :=
〈
ψ, (A− z1)

−1
ψ
〉

and

V (z) := Im {U (z)} .

Then from the resolvent identity,

V (z) =
1

2i

(
U (z)− U (z)

)
=

1

2i

(〈
ψ, (A− z1)

−1
ψ
〉
−
〈
ψ, (A− z1)

−1
ψ
〉)

=
1

2i

(〈
ψ, (A− z1)

−1
ψ
〉
−
〈
(A− z1)

−1
ψ,ψ

〉)
=

1

2i

(〈
ψ, (A− z1)

−1
ψ
〉
−
〈
ψ,
[
(A− z1)

−1
]∗
ψ
〉)

=
1

2i

(〈
ψ, (A− z1)

−1
ψ
〉
−
〈
ψ, (A− z1)

−1
ψ
〉)

=
〈
ψ, (A− z1)

−1 Im {z} (A− z1)
−1
ψ
〉

= Im {z}
∥∥∥(A− z1)

−1
ψ
∥∥∥2 .

So V is strictly positive on C+. In fact, it is harmonic, since it is the imaginary part of a holomorphic function U .
Invoking Theorem 11.39 implies there is a unique measure µ and c ≥ 0 such that

V (z) = c Im {z}+ Im {z}
ˆ
t∈R

1

(Re {z} − t)
2
+ Im {z}2

dµ (t)
(
z ∈ C+

)
.

137



Since we have

V (z) ≤ ∥ψ∥2

|Im {z}|

we get c = 0 (the other term is already 1
|Im{z}| as |Im {z}| → ∞). Next, we have from the third iterm in Theorem 11.29

that
lim
y→∞

yV (x+ iy) = ∥ψ∥2 .

Hence

lim
y→∞

ˆ
t∈R

y2

(x− t)
2
+ y2

dµ (t) = ∥ψ∥2 .

Applying now the DCT yields µ (R) = ∥ψ∥2.
Finally, the functions C+ ∋ z 7→

´
R

1
t−zdµψ (t) and U are analytic and have equal imaginary parts. So the

Cauchy-Riemann equations imply they are equal up to a constant. But they both vanish at |Im {z}| → ∞, so they
must be equal, and hence (11.3) holds.

Corollary 11.40. Let φ,ψ ∈ H and A be self-adjoint. Then there exists a unique complex measure µφ,ψ on R such
that 〈

φ, (A− z1)
−1
ψ
〉
=

ˆ
t∈R

1

t− z
dµφ,ψ (t) (z ∈ C \ R) .

Proof. We use the polarization identity to get

µφ,ψ :=
1

4
(µφ+ψ − µφ−ψ + i (µφ−iψ − µφ+iψ)) .

For uniqueness, we note that if ν is any other measure obeying〈
φ, (A− z1)

−1
ψ
〉
=

ˆ
t∈R

1

t− z
dν (t) (z ∈ C \ R)

then we have ˆ
t∈R

1

t− z
dν (t) =

ˆ
t∈R

1

t− z
dµφ,ψ (t) (z ∈ C \ R) .

But since t 7→ 1
t−z is dense in C0 (R) as z ranges in C \ R, the two measures must coincide.

Theorem 11.41. Assume that ψ is a cyclic vector for the self-adjoint operator A. Then A is unitarily equivalent to
the operator of multiplication by x on

L2 (R, µψ) .

In particular,
σ (A) = supp (µψ) .

Proof. We note that (as long as ψ ̸= 0, otherwise nothing makes sense),

(A− z1)
−1
ψ = (A− w1)

−1
ψ

iff z = w. For z ∈ C \ R, set
rz (x) := (x− z)

−1
.

Then rz ∈ L2 (R, µψ) and the linear span of { rz }z∈C\R is dense in L2 (R, µψ). Define

U (A− z1)
−1
ψ := rz .
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If z ̸= w, then

⟨rz, rw⟩L2(R,µψ)
=

ˆ
R
rzrwdµψ =

ˆ
R
rzrwdµψ =

1

z − w

ˆ
R
(rz − rw) dµψ =

1

z − w

[ˆ
R
rzdµψ −

ˆ
R
rwdµψ

]
.

But ˆ
R
rwdµψ ≡

〈
ψ, (A− w1)

−1
ψ
〉

(w ∈ C \ R)

by definition of µψ. Thus,

⟨rz, rw⟩L2(R,µψ)
=

1

z − w

[〈
ψ, (A− z1)

−1
ψ
〉
−
〈
ψ, (A− w1)

−1
ψ
〉]

=
〈
(A− z1)

−1
ψ, (A− w1)

−1
ψ
〉
.

If z = w, take a sequence of points to get the relation for all z, w ∈ C \ R. Thanks to cyclicity and (9.1), U extends
to a unitary

U : H → L2 (R, µψ) .

Note that

U (A− z1)
−1

(A− w1)
−1
ψ

resol. id.
= rz (x) rw (x) = rz (x)U (A− w1)

−1
ψ

or in other words,

U (A− z1)
−1

= rz (x)U

which means that (A− z1)
−1 is unitarily equivalent to multiplication by rz. Next, for any φ ∈ H,

UA (A− z1)
−1
φ = Uφ+ zU (A− z1)

−1
φ

=
(
1+ z (x− z)

−1
)
Uφ

= x (x− z)
−1
Uφ

= xU (A− z1)
−1
φ

or in other words

UA = xU

i.e., A is unitarily equivalent to multiplication by x.

Note that a unitary satisfying

UAU−1 = multiplication by x 7→ x on L2 (R, µψ)

is not unique, but it can be made unique by further requiring that

Uψ =
∥ψ∥
∥f∥

f .

11.5.2 The proof of the spectral theorem in the general case

Using the decomposition theorem Theorem 11.34, we have for any self-adjoint A, the sequence

{An : D (An) → Hn }

with ψn ∈ Hn cyclic for An, and so applying the cyclic spectral theorem pointwise in n we find a sequence of unitary maps

Un : Hn → L2 (R, µψn) .

We thus define

U :=
⊕
n

Un
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which is also unitary and find

Theorem 11.42. The map
U : H →

⊕
n

L2 (R, µψn)

is unitary and A is unitarily equivalent to
⊕

nMn where Mn is multiplication by x 7→ x on L2 (R, µψn). In particular,

σ (A) =
⋃
n

supp (µψn) .

Moreover, if φ ∈ H and Uφ := { φn }n then µφ =
∑
n µφn .

11.6 Schrödinger operators
The material for this section is taken from [Tes09] among other sources.

11.6.1 The Laplacian–free dynamics

Consider the operator −∆ on L2
(
Rd
)
. This represents the Hamiltonian of a free particle in three-dimensional space.

Indeed,

H =
P 2

2m
+ V (X)

in quantum mechanics where m is the mass of the particle and V : Rd → R is the potential. Here X is the position
operator on L2

(
Rd
)

and P ≡ −i∇ (we use ℏ ≡ 1). Hence, with V = 0 (free particle) and m = 1
2 we get

H = −∆ ≡
d∑
j=1

−∂2j .

Clearly this operator requires some explanation since functions in L2
(
Rd
)

are not differentiable! By the way, recall we
are using L2 because quantum mechanics stipulates that if ψ : Rd → C is the wave function of a particle, then

Rd ∋ x 7→ |ψ (x)|2

is a probability density function (which yields the probability to find the particle in a given position).
The problem of functions in L2 not being twice-differentiable can be understood as their derivatives (or second deriva-

tives) being infinite, or having infinite L2 norm. Hence, to make sense of −∆ we need to first give it a domain. A natural
choice would be those L2 functions which are twice differentiable and whose derivatives land in L2:

D (−∆) :
?
=
{
ψ ∈ L2

(
Rd
) ∣∣ ψ is twice differentiable with derivatives in L2

}
.

But this definition turns out to be too restrictive. Instead we need the notion of

Definition 11.43 (Weak derivatives). A function f ∈ L2
(
Rd → C

)
is said to be weakly-differentiable with weak-j-

derivative ψ ∈ L2
(
Rd
)

iff ˆ
Rd
f∂jφ = −

ˆ
Rd
ψφ

(
φ ∈ C∞

c

(
Rd
))
.

We then say that ψ = ∂jφ weakly.

Claim 11.44. The weak derivative is unique if it exists.

Hence we rather define

D (−∆) :=
{
ψ ∈ L2

(
Rd
) ∣∣ ψ has two weak derivatives in L2

}
.

This space actually has a name: the second Sobolev space.
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The Fourier transform There is yet another way to characterize the second Sobolev space, via the Fourier transform

F : L2
(
Rd
)
→ L2

(
Rd
)

given by

(Fψ) (p) := (2π)
− d

2

ˆ
Rd

e−ip·xψ (x) dx .

In fact, this integral is initially only defined for functions in L1, but not necessarily in L2! A convenient thing to do in
this case is to define F only on the Schwarz space

S
(
Rd
)
:=

{
ψ ∈ C∞ (Rd) ∣∣∣∣ sup

x∈Rd
|xα (∂βψ) (x)| <∞∀α, β ∈ Nd≥0

}
.

This space is a vector space which is dense in L2
(
Rd
)

(recall the functions of compact support are dense in L2 and
C∞
c ⊆ S). Then one may prove that

F : S
(
Rd
)
→ S

(
Rd
)

is a well-defined bijection with inverse (
F−1ψ̂

)
(x) = (2π)

− d
2

ˆ
p∈Rd

eip·xψ̂ (p) dp .

Moreover, F4 = 1. Since we have Parseval’s theorem

∥ψ∥L2 = ∥Fψ∥L2

(
ψ ∈ S

(
Rd
))

then (9.1) allows us to extend F to the entirety of L2
(
Rd
)

by setting

(F (ψ)) (p) := (2π)
− d

2 lim
R→∞

ˆ
x∈BR(0)

e−ip·xψ (x) dx

and the limit is to be understood in the L2 norm. Hence F extends to a unitary operator

F : L2 → L2

with spectrum
σ (F) = { ±1,±i } .

The Sobolev space With the Fourier transform at hand, it is easier to characterize the Sobolev spaces encountered
above as

Definition 11.45 (Sobolev space). For r ∈ N, we define the rth Sobolev space as

Hr
(
Rd
)
:=
{
ψ ∈ L2

∣∣ p 7→ ∥p∥rF (ψ) (p) ∈ L2
(
Rd
) }

which is essentially a statement about existence of weak derivatives. This space turns out to be a Hilbert space, with
inner product

⟨φ,ψ⟩Hr :=
∑

α,β∈Nd≥0
:|α|=|β|≤r

〈
∂αφ, ∂βψ

〉
L2 .

Back to the domain of −∆ We thus identify

D (−∆) ≡ H2
(
Rd
)
.

We have seen that this domain is a dense vector space within L2. In fact using F we see that −∆ is unitarily equivalent
to Mp 7→∥p∥2 on L2. Its domain is

D
(
Mp 7→∥p∥2

)
=
{
ψ̂ ∈ L2

∣∣∣ p 7→ ∥p∥2ψ̂ (p) ∈ L2
}
.

We have seen in HW11 that this domain is the maximal domain of definition for this operator. Thanks to this, we know
that −∆ is self-adjoint.

Claim 11.46. We have
σ (−∆) = σac (−∆) = [0,∞) .
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Proof. We calculate the spectral measure associated to some ψ. We start with the resolvent〈
ψ, (−∆− z1)

−1
ψ
〉

=
〈
Fψ,F (−∆− z1)

−1
F∗Fψ

〉
=

ˆ
Rd

∣∣∣ψ̂ (p)
∣∣∣2 1

∥p∥2 − z
dp

= Cd

ˆ ∞

r=0

drrd−1

ˆ
ω∈Sd−1

dΩ (ω)
∣∣∣ψ̂ (rω)

∣∣∣2 1

r2 − z

=

ˆ ∞

r=0

1

r2 − z
rd−1

(
Cd

ˆ
ω∈Sd−1

∣∣∣ψ̂ (rω)
∣∣∣2 dΩ (ω)

)
dr

=

ˆ ∞

r=−∞

1

r2 − z
χ[0,∞) (r) r

d−1

(
Cd

ˆ
ω∈Sd−1

∣∣∣ψ̂ (rω)
∣∣∣2 dΩ (ω)

)
dr︸ ︷︷ ︸

=:dµ̃(r)

.

Hence we identify

dµ̃ (r) ≡ χ[0,∞) (r) r
d−1

(
Cd

ˆ
ω∈Sd−1

∣∣∣ψ̂ (rω)
∣∣∣2 dΩ (ω)

)
dr

as the spectral measure associated to −∆ and ψ. Make now a change of variable λ := r2 to get〈
ψ, (−∆− z1)

−1
ψ
〉
=

ˆ
λ∈R

1

λ− z
dµψ (λ)

with
dµψ (λ) :=

1

2
χ[0,∞) (λ)λ

d
2−1

(
Cd

ˆ
ω∈Sd−1

∣∣∣ψ̂ (√λω)∣∣∣2 dΩ (ω)

)
dλ .

In particular µψ is absolutely-continuous w.r.t. the Lebesgue measure. Since ψ was arbitrary, this implies there is
only ac part to the spectrum.

Claim 11.47. C∞
c

(
Rd
)

is a core for −∆.

Proof. In fact S
(
Rd
)

is a core for −∆ and hence suffice to show −∆|C∞
c

contains −∆|S. To that end, let φ ∈ C∞
c

which is 1 for ∥x∥ ≤ 1 and vanishes for ∥x∥ ≥ 2. Set

φn (x) := φ

(
1

n
x

)
.

Then ψn (x) := φn (x)ψ (x) is in C∞
c for any ψ ∈ S and ψn → ψ, as well as

−∆ψn → −∆ψ .

Hence we know that −∆ has a unique self-adjoint extension.

Claim 11.48. For any t > 0 the operator exp (−it (−∆)) exists and is given with the integral kernel on L1 ∩ L2 via

exp (−it (−∆)) (x, y) =
1

(4πit)
d
2

exp

(
i
∥x− y∥2

4t

) (
x, y ∈ Rd

)
.

and for any ψ ∈ L2, Ω ⊆ Rd compact,

lim
t→∞

∥∥∥χΩ (X) e−it(−∆)ψ
∥∥∥2 = 0 .

In fact one may also calculate the heat kernel

exp (−t (−∆)) (x, y) =
1

(4πt)
d
2

exp

(
−∥x− y∥2

4t

) (
t > 0; x, y ∈ Rd

)
.
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Using the identity
1

λ− z
=

ˆ ∞

t=0

e−t(λ−z)dt (λ ∈ R, z ∈ C : Re {z} < 0)

we can calculate the resolvent out of the heat kernel.

Claim 11.49. For any z ∈ C with Re {z} < 0, the resolvent of the Laplacian at spectral parameter z, i.e.,

(−∆− z1)
−1

is given by an integral kernel which has the integral form

(−∆− z1)
−1

(x, y) =

ˆ ∞

t=0

1

(4πt)
d
2

exp

(
− 1

4t
∥x− y∥2 + zt

)
dt .

This integral may be evaluated to yield

(−∆− z1)
−1

(x, y) =
1

2π

( √
−z

2π∥x− y∥

) d
2−1

K d
2−1

(√
−z∥x− y∥

)
where Kν is the modified Bessel function, given by the solution to the differential equation(

∂2 +
1

X
∂ − 1− ν2

X2

)
Kν = 0 .

It has the asymptotic form

Kν (x) =

{
Γ(ν)
2

(
x
2

)−ν
+O

(
x−ν+2

)
ν > 0

− log
(
x
2

)
+O (1) ν = 0

(|x| → 0)

and

Kν (x) =

√
π

2x
e−x

(
1 +O

(
1

x

))
(|x| → 0) .

In particular, (−∆− z1)
−1

(x, y) has an analytic continuation to z ∈ C \ [0,∞). In fact, for odd d we find the explicit
form

(−∆− z1)
−1

(x, y) =


1

2
√
−z e

−
√
−z∥x−y∥ d = 1

1
4π∥x−y∥e

−
√
−z∥x−y∥ d = 3

· · · d ≥ 5

.

We see in particular that for z = 0 there is still decay for d ≥ 3 but not for d = 1.

11.6.2 The Laplacian on more complicated domains

Studying the Laplacian on some other domain Ω ⊆ Rd rather than the whole space leads to some interesting questions,
e.g., those of boundary conditions, only some of which yield a self-adjoint operator. We have seen some of this phenomenon
in Example 11.28.

[TODO: elaborate on this]

11.6.3 The Harmonic oscillator

Another exactly solvable model is the harmonic oscillator. While it may be solved in any d ∈ N≥0, we concentrate on
d = 1 for simplicity, the generalization being clear. We thus consider on L2 (R → C) the operator

HSHO = P 2 +
1

2
ω2X2

= −∆+
1

2
ω2X2 .

For its domain we again need to be careful. We pick

D (HSHO) := span
({

x 7→ xαe−
1
2x

2
∣∣∣ α ∈ N≥0

})
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for reasons that will become clear momentarily. To diagonalize this Hamiltonian, it is convenient to introduce the shift
operators

R :=
1√
2

(√
ω

2
X −

√
2

ω
∂

)
with the same domain. One then may verify that

[R∗, R] = 1

and
HSHO =

1√
2
ω (2RR∗ + 1) .

In fact, N := RR∗ is called the number operator which obeys [N,R] = R and [N,R∗] = −R∗. Moreover, if ψ is an
eigenvector of N with eigenvalue n, Nψ = nψ, then

NRψ = (n+ 1)Rψ .

Moreover, ∥Rψ∥2 = ⟨ψ,R∗Rψ⟩ = (n+ 1) ∥ψ∥2 and ∥R∗ψ∥2 = n∥ψ∥2. Hence

σp (N) ⊆ N≥0 .

If Nψ0 = 0 for some ψ0 ̸= 0 then R∗ψ0 = 0 which is a simple ODE whose solution is

ψ0 (x) =

(
ω√
2π

) 1
4

e
− 1

2
1√
2
ωx2

(x ∈ R)

which lies in D. Hence

ψn (x) :=
1√
n!
Rnψ0

is a normalized eigenfucntion of N with eigenvalue n. In fact, these generate polynomials, so span (ψn) = D (HSHO).
These polynomials are called the Hermite polynomials. We find

Claim 11.50. HSHO is essentially self-adjoint on D (HSHO) and has an orthonormal basis of eigenfunctions. The
spectrum is given by

σ (HSHO) = σp (HSHO) =

{
1√
2
ω (2n+ 1)

∣∣∣∣ n ∈ N≥0

}
.

11.6.4 One particle Schrödinger operators

These are operators on L2
(
Rd
)

of the form
H = −∆+ V (X)

for some V : Rd → R. The first question we’d like to ask is what conditions on V guarantee the self-adjointness of H, and
what conditions on V imply certain spectral properties of H.

[TODO: elaborate on this]
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A Useful identities and inequalities

B Glossary of mathematical symbols and acronyms
Sometimes it is helpful to include mathematical symbols which can function as valid grammatical parts of sentences. Here
is a glossary of some which might appear in the text:

• The bracket ⟨·, ·⟩V means an inner product on the inner product space V . For example,

⟨u, v⟩R2 ≡ u1v1 + u2v2
(
u, v ∈ R2

)
and

⟨u, v⟩C2 ≡ u1v1 + u2v2
(
u, v ∈ C2

)
.

• Sometimes we denote an integral by writing the integrand without its argument. So if f : R → R is a real function,
we sometimes in shorthand write ˆ b

a

f

when we really mean ˆ b

t=a

f (t) dt .

This type of shorthand notation will actually also apply for contour integrals, in the following sense: if γ : [a, b] → C
is a contour with image set Γ := im (γ) and f : C → C is given, then the contour integral of f along γ will be denoted
equivalently as ˆ

Γ

f ≡
ˆ
Γ

f (z) dz ≡
ˆ b

t=a

f (γ (t)) γ′ (t) dt

depending on what needs to be emphasized in the context. Sometimes when the contour is clear one simply writesˆ z1

z0

f (z) dz

for an integral along any contour from z0 to z1.

• iff means “if and only if”, which is also denoted by the symbol ⇐⇒.

• WLOG means “without loss of generality”.

• CCW means “counter-clockwise” and CW means “clockwise”.

• ∃ means “there exists” and ∄ means “there does not exist”. ∃! means “there exists a unique”.

• ∀ means “for all” or “for any”.

• : (i.e., a colon) may mean “such that”.

• ! means negation, or “not”.

• ∧ means “and” and ∨ means “or”.

• =⇒ means “and so” or “therefore” or “it follows”.

• ∈ denotes set inclusion, i.e., a ∈ A means a is an element of A or a lies in A.

• ∋ denotes set inclusion when the set appears first, i.e., A ∋ a means A includes a or A contains a.

• Speaking of set inclusion, A ⊆ B means A is contained within B and A ⊇ B means B is contained within A.

• ∅ is the empty set { }.

• While = means equality, sometimes it is useful to denote types of equality:

– a := b means “this equation is now the instant when a is defined to equal b”.
– a ≡ b means “at some point above a has been defined to equal b”.
– a = b will then simply mean that the result of some calculation or definition stipulates that a = b.
– Concrete example: if we write i2 = −1 we don’t specify anything about why this equality is true but writing

i2 ≡ −1 means this is a matter of definition, not calculation, whereas i2 := −1 is the first time you’ll see this
definition. So this distinction is meant to help the reader who wonders why an equality holds.
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B.1 Important sets
1. The unit circle

S1 ≡ { z ∈ C | |z| = 1 } .

2. The (open) upper half plane

H ≡ { z ∈ C | Im {z} > 0 } .

C Reminder from complex analysis

Lemma C.1. Given Ω ∈ Open (C) and K ∈ Compact (C) such that K ⊆ Ω. Then there exists some collection
γj : [0, 1] → Ω, j = 1, . . . , n of simple loops none of whose range intersects K, and such that

i

2π

n∑
j=1

˛
γj

1

α− z
dz =

{
1 α ∈ K

0 α /∈ Ω
.

D Vocabulary from topology

Definition D.1. Given a set S, a topology on S is a set of subsets T of S (i.e., it is a subset of the power set P (S))
with the properties that:

1. S,∅ ∈ T.

2. A ∩B ∈ T for any A,B ∈ T.

3.
(⋃

α∈I Aα
)
∈ T for any {Aα }α∈I ⊆ T. Here I is any index set, which need not be countable.

If we have a space S which we know is a topological space and we want to refer to its topology, we denote this by
Open (S).

Definition D.2. A neighborhood of a point x ∈ S is any open set U ∈ Open (S) that contains x: x ∈ U ∈ Open (S).
We denote the set of neighborhoods of a point x as Nbhd (x) ⊆ Open (S).

Definition D.3. A topological space S is called Hausdorff iff for any x, y ∈ S such that x ̸= y, there are U ∈
Nbhd (x) , V ∈ Nbhd (y) such that U ∩ V = ∅.

Definition D.4. A subset B ⊆ Open (S) is called a base or basis for Open (S) iff any U ∈ Open (S) may be written
as

U =
⋃
α∈I

Bα

for some {Bα }α∈I ⊆ B. Here I is some (not necessarily countable) index set.

Definition D.5. A set T ⊆ S is compact iff every open cover of T has a finite sub-cover.

Definition D.6 (Metric). Given a set S, a metric on S is a map d : S2 → [0,∞) such that

1. d (x, y) = 0 implies that x = y for all x, y ∈ S.

2. d (x, y) = d (y, x) for all x, y ∈ S.

3. d (x, y) ≤ d (x, z) + d (z, y) for all x, y, z ∈ S.
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Definition D.7 (Norm). A vector space V is called a normed vector space iff there is a map

∥·∥ : V → [0,∞)

which obeys the following axioms:

1. Absolute homogeneity:
∥αψ∥ = |α| ∥ψ∥ (α ∈ C, ψ ∈ V ) .

2. Triangle inequality:
∥ψ + φ∥ ≤ ∥ψ∥+ ∥φ∥ (ψ,φ ∈ V ) .

3. Injectivity at zero: If ∥ψ∥ = 0 for some ψ ∈ V then ψ = 0.

To any norm ∥·∥ a metric is associated via

d : V 2 → [0,∞)

(ψ,φ) 7→ ∥ψ − φ∥ .
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